WO2021114485A1 - 一种磁悬浮空气压缩机防止喘振的结构 - Google Patents

一种磁悬浮空气压缩机防止喘振的结构 Download PDF

Info

Publication number
WO2021114485A1
WO2021114485A1 PCT/CN2020/076881 CN2020076881W WO2021114485A1 WO 2021114485 A1 WO2021114485 A1 WO 2021114485A1 CN 2020076881 W CN2020076881 W CN 2020076881W WO 2021114485 A1 WO2021114485 A1 WO 2021114485A1
Authority
WO
WIPO (PCT)
Prior art keywords
air inlet
air
end cover
volute
impeller
Prior art date
Application number
PCT/CN2020/076881
Other languages
English (en)
French (fr)
Inventor
林英哲
刘淑云
吴立华
董继勇
Original Assignee
南京磁谷科技股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 南京磁谷科技股份有限公司 filed Critical 南京磁谷科技股份有限公司
Publication of WO2021114485A1 publication Critical patent/WO2021114485A1/zh

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04DNON-POSITIVE-DISPLACEMENT PUMPS
    • F04D29/00Details, component parts, or accessories
    • F04D29/40Casings; Connections of working fluid
    • F04D29/42Casings; Connections of working fluid for radial or helico-centrifugal pumps
    • F04D29/4206Casings; Connections of working fluid for radial or helico-centrifugal pumps especially adapted for elastic fluid pumps
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04DNON-POSITIVE-DISPLACEMENT PUMPS
    • F04D27/00Control, e.g. regulation, of pumps, pumping installations or pumping systems specially adapted for elastic fluids
    • F04D27/02Surge control
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04DNON-POSITIVE-DISPLACEMENT PUMPS
    • F04D29/00Details, component parts, or accessories
    • F04D29/40Casings; Connections of working fluid
    • F04D29/42Casings; Connections of working fluid for radial or helico-centrifugal pumps
    • F04D29/4206Casings; Connections of working fluid for radial or helico-centrifugal pumps especially adapted for elastic fluid pumps
    • F04D29/4213Casings; Connections of working fluid for radial or helico-centrifugal pumps especially adapted for elastic fluid pumps suction ports
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04DNON-POSITIVE-DISPLACEMENT PUMPS
    • F04D29/00Details, component parts, or accessories
    • F04D29/66Combating cavitation, whirls, noise, vibration or the like; Balancing
    • F04D29/661Combating cavitation, whirls, noise, vibration or the like; Balancing especially adapted for elastic fluid pumps
    • F04D29/667Combating cavitation, whirls, noise, vibration or the like; Balancing especially adapted for elastic fluid pumps by influencing the flow pattern, e.g. suppression of turbulence

Definitions

  • the invention belongs to the field of compressors, and particularly relates to a structure for preventing surge of a magnetic levitation air compressor.
  • Surge is a kind of abnormal vibration that occurs when the flow of a turbo compressor (also called a vane compressor) is reduced to a certain degree.
  • a turbo compressor also called a vane compressor
  • the compressor feed is reduced to a certain value, resulting in uneven gas velocity and reverse flow in the blade channel.
  • this phenomenon extends to the entire blade channel, the air flow in the blade channel cannot pass out, resulting in the compressor stage.
  • the pressure drops suddenly, and the relatively high pressure after the stage back pressures the airflow back into the stage, the pressure in the stage returns to normal, the impeller work also returns to normal, and the backflowing airflow is forced out again. After that, the pressure in the stage dropped suddenly, and the air flow retreated again. This phenomenon recurred and the compressor was unstable, which became a surge phenomenon.
  • Short-term surge will not have much impact on the compressor except for changing the thrust. However, long-term surge will accelerate the fatigue of the internal parts of the compressor and rapidly expand the existing cracks. In severe cases, it can cause irreparable damage or even explosion of the engine.
  • the present invention discloses a new structure for preventing surge of a magnetic levitation air compressor.
  • the present invention adopts the following technical solution: a structure for preventing surge of a magnetic levitation air compressor, including a volute, an air inlet, an impeller, an end cover, a limit block, a displacement sensor, and a first connecting the compressor outlet pipe The air inlet and the second air inlet; wherein the inner diameter of the volute is in sliding fit with the outer diameter of the air inlet, a displacement sensor is provided in the air inlet, an end cover is provided on the volute, and a first air inlet is provided on the volute, A limit block is arranged on the end cover, and a second air inlet is arranged on the end cover.
  • the limiting block of the present invention is arranged at the contact surface of the air inlet duct and the end cover, which can limit the height of the air inlet duct ascending.
  • volute and the end cover of the present invention are fixed by screws, and the end cover and the limiting block are fixed by screws.
  • the contact surfaces between the volute and the air inlet, the volute and the end cover, and the air inlet and the end cover of the present invention are sealed with a sealing ring.
  • the air inlet when compressed air is passed into the first air inlet, the air inlet rises under the action of the compressed air, and rises to the highest position of the air inlet when it comes into contact with the limiting block. At this time, the clearance between the air inlet and the impeller is the largest .
  • the air inlet when compressed air is passed into the second air inlet, the air inlet will descend under the action of the compressed air, and when it falls on the end surface of the volute, it will drop to the lowest position of the air inlet. At this time, the air inlet and the impeller are in clearance. The smallest.
  • the present invention has the following beneficial effects:
  • the present invention affects the gap between the compressor inlet and the impeller by adjusting the air inlet direction and the air inlet volume, and adjusts the amount of gas leakage, so it can effectively and conveniently control the surge;
  • the present invention only needs to add two air inlets, a displacement sensor, an end cover and a limit block, which makes little change to the original structure and is easy to install and implement.
  • Figure 1 is a schematic diagram of the structure of the present invention when the gap between the inlet and the impeller is the smallest;
  • Figure 2 is an enlarged schematic diagram of the structure at A when the gap between the inlet and the impeller in the present invention is the largest;
  • volute 1 the air inlet 2, the impeller 3, the end cover 4, the limit block 5, the displacement sensor 6, the air inlet and the impeller gap 8, the first air inlet 9, the second air inlet 10, the rotor 12.
  • the lowest position of the intake port is 13, and the highest position of the intake port is 14.
  • the size of the clearance between the compressor inlet and the impeller 8 affects the size of the intake air: a large clearance has a large leakage, a small clearance has a small leakage, and the amount of leakage affects the intake air volume. Therefore, the present invention adjusts the air intake direction of the air inlet. And the amount of intake air to adjust the size of the compressor inlet and the impeller clearance 8 so as to control the surge of the system.
  • the invention discloses a structure for preventing surge of a magnetic levitation air compressor. As shown in Fig. 1, it includes a volute 1, an air inlet 2, an impeller 3, an end cover 4, a limit block 5, a displacement sensor 6, a connection compression The first air inlet 9 and the second air inlet 10 of the machine outlet duct.
  • the intake port 2 is provided with a displacement sensor 6 which detects the position of the intake port 2.
  • the end cover 4 is connected to the volute 1 by screws.
  • the shell 1 is provided with a first air inlet 9, and the end cover 4 is connected with a limiting block 5 by screws.
  • the limiting block 5 is provided at the contact surface of the air inlet 2 and the end cover 4, which can limit the rising of the air inlet.
  • the end cover 4 is provided with a second air inlet 10, the contact surface between the volute 1 and the air inlet 2, the volute 1 and the end cover 4, and the air inlet 2 and the end cover 4 is sealed with a sealing ring .
  • the position of the intake port 2 can be adjusted between the lowest position 13 of the intake port and the highest position 14 of the intake port.
  • the air inlet 2 is separated from the bottom surface of the limiting block 5 by one end.
  • the air inlet 2 rises under the action of the compressed air, and is connected to the limiting block 5.
  • the gap 8 between the intake port and the impeller is the largest.
  • the air inlet 2 is separated from the end surface of the volute 1 by one end.
  • the air inlet 2 will descend under the action of the compressed air and land on the end of the volute 1.
  • the end face of the volute 1 limits the position of the inlet, and then no longer descends.
  • the clearance 8 between the inlet and the impeller is smallest.

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Structures Of Non-Positive Displacement Pumps (AREA)

Abstract

一种磁悬浮空气压缩机防止喘振的结构,包括蜗壳(1)、进气道(2)、叶轮(3)、端盖(4)、限位块(5)、位移传感器(6)、连接压缩机出气管道的第一进气口(9)和第二进气口(10),其中所述蜗壳(1)内径与进气道(2)外径滑动配合,所述进气道(2)中设置有位移传感器(6),所述蜗壳(1)上设置有端盖(4),所述蜗壳(1)上设置有第一进气口(9),所述端盖(4)上设置有限位块(5),所述端盖(4)上设置有第二进气口(10)。该结构通过调整进气口的进气方向和进气量,从而影响压缩机进气道与叶轮叶片之间的间隙大小,能够有效、方便的控制喘振。

Description

一种磁悬浮空气压缩机防止喘振的结构 技术领域
本发明属于压缩机领域,特别涉及一种磁悬浮空气压缩机防止喘振的结构。
背景技术
喘振是透平式压缩机(也叫叶片式压缩机)在流量减少到一定程度时所发生的一种非正常工况下的振动。当转速一定,压缩机的进料减少到一定的值,造成叶道中气体的速度不均匀和出现倒流,当这种现象扩展到整个叶道,叶道中的气流通不出去,造成压缩机级中压力突然下降,而级后相对较高的压力将气流倒压回级里,级里的压力又恢复正常,叶轮工作也恢复正常,重新将倒流回的气流压出去。此后,级里压力又突然下降,气流又倒回,这种现象重复出现,压缩机工作不稳定,这种现象成为喘振现象。
压缩机发生喘振时,典型现象有:
(1)、压缩机的出口压力最初先升高,继而急剧下降,并呈周期性大幅波动;
(2)、压缩机的流量急剧下降,并大幅波动,严重时甚至出现空气倒灌至吸气管道;
(3)、拖动压缩机的电机的电流和功率表指示出现不稳定,大幅波动;
(4)、机器产生强烈的振动,同时发出异常的气流噪声。
短期的喘振除了改变推力大小以外,不会对压缩机造成太大的影响。但长期的喘振会加速压缩机内部零件的疲劳并快速扩大已有的裂纹,严重者可导致引擎不可修复的损毁甚至爆炸。
目前来说解决喘振常用的方法有三种:
(1)、在压气机上增加放气活门,使多余的气体能够排出;
(2)、使用双转子或三转子压气机;
(3)、使用可调节式叶片。
发明内容
发明目的:针对现有技术中叶片式压缩机存在喘振的问题,本发明公开了一种新的磁悬浮空气压缩机防止喘振的结构。
技术方案:本发明采用以下技术方案:一种磁悬浮空气压缩机防止喘振的结构,包括蜗壳、进气道、叶轮、端盖、限位块、位移传感器、连接压缩机出气管道的第一进气口和第二进气口;其中,蜗壳内径与进气道外径滑动配合,进气道中设置有位移传感器,蜗壳上设置 有端盖,蜗壳上设置有第一进气口,端盖上设置有限位块,端盖上设置有第二进气口。
优选的,本发明限位块设置在进气道与端盖的接触面处,能够限制进气道上升的高度。
优选的,本发明蜗壳与端盖通过螺钉固定,端盖与限位块通过螺钉固定。
优选的,本发明蜗壳与进气道、蜗壳与端盖、进气道与端盖之间的接触面用密封圈进行密封。
优选的,本发明当第一进气口通入压力空气时,进气道在压力空气作用下上升,与限位块接触时升至进气道最高位置,此时进气道与叶轮间隙最大。
优选的,本发明当第二进气口通入压力空气时,进气道在压力空气作用下下降,落在蜗壳端面上时降至进气道最低位置,此时进气道与叶轮间隙最小。
有益效果:本发明具有以下有益效果:
(1)、本发明通过调整进气口的进气方向和进气量,影响压缩机进气道与叶轮之间的间隙大小,调节气体泄漏量,因此能够有效、方便的控制喘振;
(2)、本发明在原压缩机的基础上,只需增加两个进气口、位移传感器、端盖以及限位块,对原有的结构改变不大,易于安装实施。
附图说明
图1为本发明中进气道与叶轮之间间隙最小时的结构示意图;
图2为本发明中进气道与叶轮之间间隙最大时A处的结构放大示意图;
其中,蜗壳1,进气道2,叶轮3,端盖4,限位块5,位移传感器6,进气道与叶轮间隙8,第一进气口9,第二进气口10,转子12,进气道最低位置13,进气道最高位置14。
具体实施方式
下面结合附图对本发明作更进一步的说明。
压缩机进气道与叶轮间隙8大小影响进气的大小:间隙大泄漏量大,间隙小泄漏量就小,泄漏量大小影响进气量,因此,本发明通过调整进气口的进气方向和进气量来调整压缩机进气道与叶轮间隙8大小,从而控制系统的喘振。
本发明公开了一种磁悬浮空气压缩机防止喘振的结构,如图1所示,包括蜗壳1、进气道2、叶轮3、端盖4、限位块5、位移传感器6、连接压缩机出气管道的第一进气口9和第二进气口10。
其中,蜗壳1内径与进气道2外径滑动配合,进气道2中设置有位移传感器6,位移传感器6检测进气道2的位置,蜗壳1上通过螺钉连接端盖4,蜗壳1上设置有第一进气口9,端盖4上通过螺钉连接限位块5,限位块5设置在进气道2与端盖4的接触面处,能够限制 进气道上升的高度,端盖4上设置有第二进气口10,蜗壳1与进气道2、蜗壳1与端盖4、进气道2与端盖4之间的接触面用密封圈进行密封。
进气道2的位置可以在进气道最低位置13和进气道最高位置14之间进行调整。
如图2所示,进气道2与限位块5底面隔有一端距离,当第一进气口9通入压力空气时,进气道2在压力空气作用下上升,与限位块5接触时升至进气道最高位置14,之后不再上升,此时进气道与叶轮间隙8最大。
如图1所示,进气道2与蜗壳1端面隔有一端距离,当第二进气口10通入压力空气时,进气道2在压力空气作用下下降,落在蜗壳1端面上时降至进气道最低位置13,蜗壳1端面限制进气道位置,之后不再下降,此时进气道与叶轮间隙8最小。
以上所述仅是本发明的优选实施方式,应当指出:对于本技术领域的普通技术人员来说,在不脱离本发明原理的前提下,还可以做出若干改进和润饰,这些改进和润饰也应视为本发明的保护范围。

Claims (6)

  1. 一种磁悬浮空气压缩机防止喘振的结构,其特征在于,包括蜗壳(1)、进气道(2)、叶轮(3)、端盖(4)、限位块(5)、位移传感器(6)、连接压缩机出气管道的第一进气口(9)和第二进气口(10);其中,所述蜗壳(1)内径与进气道(2)外径滑动配合,所述进气道(2)中设置有位移传感器(6),所述蜗壳(1)上设置有端盖(4),所述蜗壳(1)上设置有第一进气口(9),所述端盖(4)上设置有限位块(5),所述端盖(4)上设置有第二进气口(10)。
  2. 根据权利要求1所述的一种磁悬浮空气压缩机防止喘振的结构,其特征在于,所述限位块(5)设置在进气道(2)与端盖(4)的接触面处,能够限制进气道(2)上升的高度。
  3. 根据权利要求1所述的一种磁悬浮空气压缩机防止喘振的结构,其特征在于,所述蜗壳(1)与端盖(4)通过螺钉固定,所述端盖(4)与限位块(5)通过螺钉固定。
  4. 根据权利要求1所述的一种磁悬浮空气压缩机防止喘振的结构,其特征在于,所述蜗壳(1)与进气道(2)、蜗壳(1)与端盖(4)、进气道(2)与端盖(4)之间的接触面用密封圈进行密封。
  5. 根据权利要求1所述的一种磁悬浮空气压缩机防止喘振的结构,其特征在于,当所述第一进气口(9)通入压力空气时,所述进气道(2)在压力空气作用下上升,与限位块(5)接触时升至进气道最高位置(14),此时进气道与叶轮间隙(8)最大。
  6. 根据权利要求1所述的一种磁悬浮空气压缩机防止喘振的结构,其特征在于,当所述第二进气口(10)通入压力空气时,所述进气道(2)在压力空气作用下下降,落在蜗壳(1)端面上时降至进气道最低位置(13),此时进气道与叶轮间隙(8)最小。
PCT/CN2020/076881 2019-12-13 2020-02-27 一种磁悬浮空气压缩机防止喘振的结构 WO2021114485A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201911278297.7 2019-12-13
CN201911278297.7A CN110762051B (zh) 2019-12-13 2019-12-13 一种磁悬浮空气压缩机防止喘振的结构

Publications (1)

Publication Number Publication Date
WO2021114485A1 true WO2021114485A1 (zh) 2021-06-17

Family

ID=69341647

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2020/076881 WO2021114485A1 (zh) 2019-12-13 2020-02-27 一种磁悬浮空气压缩机防止喘振的结构

Country Status (2)

Country Link
CN (1) CN110762051B (zh)
WO (1) WO2021114485A1 (zh)

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110762051B (zh) * 2019-12-13 2024-03-15 南京磁谷科技有限公司 一种磁悬浮空气压缩机防止喘振的结构
CN111963470A (zh) * 2020-08-07 2020-11-20 中国北方发动机研究所(天津) 一种涡轮增压器压气机间隙控制装置
CN112780584A (zh) * 2021-02-22 2021-05-11 珠海格力电器股份有限公司 磁悬浮压缩机
CN113175445B (zh) * 2021-05-27 2024-06-04 中车大连机车研究所有限公司 一种扩展鼓风机进气量的进气罩壳
CN113738674A (zh) * 2021-09-09 2021-12-03 鑫磊压缩机股份有限公司 一种可调叶顶间隙的磁悬浮鼓风机及调试方法
CN116146504B (zh) * 2023-04-23 2023-07-28 江苏海拓宾未来工业科技集团有限公司 防喘振的空气悬浮离心鼓风机及其加工工艺

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2005068842A1 (en) * 2003-12-24 2005-07-28 Honeywell International, Inc. Recirculation port
JP4798491B2 (ja) * 2006-03-24 2011-10-19 トヨタ自動車株式会社 遠心圧縮機およびこれを用いたエンジンの吸気制御システムならびに吸気制御方法
CN102720692A (zh) * 2012-05-07 2012-10-10 康跃科技股份有限公司 双驱并联顺序增压压气机
CN104428539A (zh) * 2012-08-24 2015-03-18 三菱重工业株式会社 离心压缩机
CN109869352A (zh) * 2017-12-05 2019-06-11 福特全球技术公司 配有可移动套筒的有源套管处理装置
CN110762051A (zh) * 2019-12-13 2020-02-07 南京磁谷科技有限公司 一种磁悬浮空气压缩机防止喘振的结构

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5999943B2 (ja) * 2012-03-22 2016-09-28 三菱重工業株式会社 多段遠心圧縮機及び多段遠心圧縮機の製造方法
US9822698B2 (en) * 2015-02-06 2017-11-21 Honeywell International Inc. Passive and semi-passive inlet-adjustment mechanisms for compressor, and turbocharger having same
CN109236750B (zh) * 2018-08-06 2024-03-19 南京磁谷科技有限公司 一种进气道与叶轮同心度的调节结构
CN108868910B (zh) * 2018-09-18 2023-09-22 凤城市东宁动力有限公司 涡轮增压器防喘振进气导流罩结构
CN211230997U (zh) * 2019-12-13 2020-08-11 南京磁谷科技有限公司 一种磁悬浮空气压缩机防止喘振的结构

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2005068842A1 (en) * 2003-12-24 2005-07-28 Honeywell International, Inc. Recirculation port
JP4798491B2 (ja) * 2006-03-24 2011-10-19 トヨタ自動車株式会社 遠心圧縮機およびこれを用いたエンジンの吸気制御システムならびに吸気制御方法
CN102720692A (zh) * 2012-05-07 2012-10-10 康跃科技股份有限公司 双驱并联顺序增压压气机
CN104428539A (zh) * 2012-08-24 2015-03-18 三菱重工业株式会社 离心压缩机
CN109869352A (zh) * 2017-12-05 2019-06-11 福特全球技术公司 配有可移动套筒的有源套管处理装置
CN110762051A (zh) * 2019-12-13 2020-02-07 南京磁谷科技有限公司 一种磁悬浮空气压缩机防止喘振的结构

Also Published As

Publication number Publication date
CN110762051A (zh) 2020-02-07
CN110762051B (zh) 2024-03-15

Similar Documents

Publication Publication Date Title
WO2021114485A1 (zh) 一种磁悬浮空气压缩机防止喘振的结构
EP1704330B1 (en) Recirculation port
US8567184B2 (en) Energy recovery system in a gas compression plant
EP2780568B1 (en) Adjustable compressor trim
CN211230997U (zh) 一种磁悬浮空气压缩机防止喘振的结构
CN201262164Y (zh) 一种进气导叶装置
CN102678590B (zh) 超紧凑高压比斜流-离心组合压气机结构
US10197064B2 (en) Centrifugal compressor with fluid injector diffuser
CN1021591C (zh) 透平压缩机的扩压器
CN106762747B (zh) 采用周向可变叶片高度非对称有叶扩压器的离心压气机
CN105370629A (zh) Pta装置用能量回收控制方法
CN112879317A (zh) 高速高压磁悬浮离心式两级空气压缩机及其控制方法
CN105626158A (zh) 一种带有动叶片前部消涡孔结构的变几何涡轮
CN108730203A (zh) 一种带有可转导流叶片的压气机
CN212225544U (zh) 一种可控制喘振点的节流高效压缩空气系统
CN101761511B (zh) 开槽宽度为抛物线的离心压气机非对称自循环处理机匣
RU2352826C2 (ru) Центробежный гидравлический и воздушный насос-компрессор
CN208634063U (zh) 一种多流量鼓风机
WO2020019800A1 (zh) 一种多流量鼓风机
CN213450775U (zh) 一种带预增压机构的压缩机
WO2019229159A1 (en) Impeller and centrifugal compressor comprising same
KR102150374B1 (ko) 흡입유로에 슬릿 브로윙을 적용한 대용량 공기압축기의 성능개선 구조
CN113294371B (zh) 测试出口容积对压气机稳定性影响的试验装置和试验方法
KR102202063B1 (ko) 토출유체의 반경압력을 감소시킨 볼류트 펌프
Tsukamoto et al. Effect of curvilinear element blade for open-type centrifugal impeller on stator performance

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 20897895

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 20897895

Country of ref document: EP

Kind code of ref document: A1