WO2021114438A1 - 叶旋发动机 - Google Patents

叶旋发动机 Download PDF

Info

Publication number
WO2021114438A1
WO2021114438A1 PCT/CN2019/130966 CN2019130966W WO2021114438A1 WO 2021114438 A1 WO2021114438 A1 WO 2021114438A1 CN 2019130966 W CN2019130966 W CN 2019130966W WO 2021114438 A1 WO2021114438 A1 WO 2021114438A1
Authority
WO
WIPO (PCT)
Prior art keywords
rotor
shaft
hole
oil
cylinder
Prior art date
Application number
PCT/CN2019/130966
Other languages
English (en)
French (fr)
Inventor
李炳强
Original Assignee
李炳强
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 李炳强 filed Critical 李炳强
Publication of WO2021114438A1 publication Critical patent/WO2021114438A1/zh

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02BINTERNAL-COMBUSTION PISTON ENGINES; COMBUSTION ENGINES IN GENERAL
    • F02B53/00Internal-combustion aspects of rotary-piston or oscillating-piston engines
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01MLUBRICATING OF MACHINES OR ENGINES IN GENERAL; LUBRICATING INTERNAL COMBUSTION ENGINES; CRANKCASE VENTILATING
    • F01M1/00Pressure lubrication
    • F01M1/02Pressure lubrication using lubricating pumps
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02BINTERNAL-COMBUSTION PISTON ENGINES; COMBUSTION ENGINES IN GENERAL
    • F02B53/00Internal-combustion aspects of rotary-piston or oscillating-piston engines
    • F02B53/02Methods of operating
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02BINTERNAL-COMBUSTION PISTON ENGINES; COMBUSTION ENGINES IN GENERAL
    • F02B55/00Internal-combustion aspects of rotary pistons; Outer members for co-operation with rotary pistons
    • F02B55/02Pistons
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02BINTERNAL-COMBUSTION PISTON ENGINES; COMBUSTION ENGINES IN GENERAL
    • F02B55/00Internal-combustion aspects of rotary pistons; Outer members for co-operation with rotary pistons
    • F02B55/02Pistons
    • F02B55/04Cooling thereof
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02BINTERNAL-COMBUSTION PISTON ENGINES; COMBUSTION ENGINES IN GENERAL
    • F02B55/00Internal-combustion aspects of rotary pistons; Outer members for co-operation with rotary pistons
    • F02B55/08Outer members for co-operation with rotary pistons; Casings
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02BINTERNAL-COMBUSTION PISTON ENGINES; COMBUSTION ENGINES IN GENERAL
    • F02B55/00Internal-combustion aspects of rotary pistons; Outer members for co-operation with rotary pistons
    • F02B55/08Outer members for co-operation with rotary pistons; Casings
    • F02B55/10Cooling thereof
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16CSHAFTS; FLEXIBLE SHAFTS; ELEMENTS OR CRANKSHAFT MECHANISMS; ROTARY BODIES OTHER THAN GEARING ELEMENTS; BEARINGS
    • F16C3/00Shafts; Axles; Cranks; Eccentrics
    • F16C3/02Shafts; Axles
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01MLUBRICATING OF MACHINES OR ENGINES IN GENERAL; LUBRICATING INTERNAL COMBUSTION ENGINES; CRANKCASE VENTILATING
    • F01M1/00Pressure lubrication
    • F01M1/02Pressure lubrication using lubricating pumps
    • F01M2001/0207Pressure lubrication using lubricating pumps characterised by the type of pump
    • F01M2001/0238Rotary pumps
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02BINTERNAL-COMBUSTION PISTON ENGINES; COMBUSTION ENGINES IN GENERAL
    • F02B55/00Internal-combustion aspects of rotary pistons; Outer members for co-operation with rotary pistons
    • F02B55/02Pistons
    • F02B55/04Cooling thereof
    • F02B55/06Cooling thereof by air or other gas
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02BINTERNAL-COMBUSTION PISTON ENGINES; COMBUSTION ENGINES IN GENERAL
    • F02B55/00Internal-combustion aspects of rotary pistons; Outer members for co-operation with rotary pistons
    • F02B55/08Outer members for co-operation with rotary pistons; Casings
    • F02B55/10Cooling thereof
    • F02B55/12Cooling thereof by air or other gas
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/10Internal combustion engine [ICE] based vehicles
    • Y02T10/12Improving ICE efficiencies

Definitions

  • the invention relates to a new type of internal combustion engine, pump and pneumatic equipment, and relates to an engine with large power-to-weight ratio, no vibration, and fuel saving, which is applied to large, medium and small equipment.
  • the more mature engines are mainly reciprocating piston engines and triangular rotor engines for vehicles.
  • the reciprocating piston engine has undergone hundreds of years of improvement, and its design and manufacturing have reached a very high level, but there are still big defects.
  • the use of any method to arrange the cylinders makes the power to weight ratio of the whole machine too small.
  • the complex intake valve and exhaust valve reduce the engine energy conversion rate, increase the weight, and increase the volume and noise.
  • the inertia generated by the reciprocating movement of the piston reduces the limit speed of the whole machine, and the power transmission mode makes the whole machine torque very small. When applied to heavy equipment, the torque can only be increased by sacrificing the speed.
  • the change of the arm of the crankshaft makes the power curve of the whole machine cosine, which greatly reduces the energy conversion rate of the whole machine.
  • the limit speed of the triangular rotor engine is higher, and the intake and exhaust do not require complicated valve mechanisms.
  • the power and weight are better than the reciprocating engine, but it also has great shortcomings, such as excessive fuel consumption and insufficient combustion.
  • the transmission mechanism used by the triangular rotor engine is an internal gear type, the expansion pressure acting on the side of the rotor is divided into two forces, one force pushes the output shaft to rotate, and the other force points to the center of the output shaft, resulting in the torsion of the whole machine Very small, because the cylinder is narrow and long, the combustion rate is too low and the conversion rate is reduced.
  • the vibration generated when the rotor is running, the use of a special-shaped cylinder and sealing problems all increase the difficulty of processing and production to varying degrees.
  • Compound piston engine small power ratio, complicated valve mechanism, vibration, triangular rotor engine: extremely small torque, excessive fuel consumption, low cylinder sealing, vibration.
  • the present invention provides a vane engine with a brand-new structure.
  • the engine is small in size, but has high output power and torque, and does not produce vibration during operation.
  • the friction force generated during the operation of the machine is very small, the compression ratio is high, and the inertia transfer, the power is increased quickly, and the output power of the engine is improved.
  • the structure and shape of the cylinder and the ignition method enable the gas to burn fully, which is suitable for the use of various fuels.
  • the whole machine has no valve mechanism for air exchange, and its sealing is good; the oil will not directly contact with the combustion, which reduces the possibility of burning the oil, and can make the moving parts more durable; three temperature control systems: AS, BS, CS, and AS are the shell cooling System, BS is the engine cooling system, CS is the rotor center cooling system, which can achieve more precise temperature control of each component, ensure that the performance of each moving component is within the controllable range, and increase the engine output power (such as compression ratio, fuel concentration ratio) , Speed ratio, etc.); BS and CS are also the lubrication system of each component, which makes the lubrication and sealing of each component better.
  • the work of the engine is directly transmitted from the rotor to the transmission shaft.
  • the work curve is different from the previous engine, and the energy conversion efficiency higher.
  • the whole machine has a compact structure, few parts, and is easy to manufacture.
  • the invention solves its technical problems and adopts a brand-new technical scheme.
  • the engine is composed of three parts, the rotor assembly, the casing assembly, and the drive shaft assembly. During operation, the rotor assembly rotates without eccentricity in the casing assembly and realizes the principle of four strokes to form the engine.
  • the components that make up the rotor include the rotor seat and the blades.
  • the cylinder of the rotor seat is provided with an average of 4 convex columns with a special structure arranged in a circle.
  • the two sides of the convex column are hinged structures.
  • the two leaves are hinged on the left and right sides of the convex column.
  • the inner cavity of the rotor seat is a special centrifugal pump structure.
  • the inner wall of the shaft hole has oil inlet and outlet holes corresponding to the drive shaft.
  • the components of the casing include the left side plate, the left shaft sleeve, The middle plate, the right side plate, the right shaft sleeve, the sealing ring, and the bolts
  • the components of the transmission shaft assembly include the oil inlet passage, the oil inlet hole, the oil outlet passage, and the oil outlet hole of the transmission shaft, as well as the sealing gasket, Springs, bolts, the oil inlet, oil inlet, outlet, and outlet holes of the drive shaft correspond to the rotor, left sleeve, and right sleeve.
  • the 8 leaves of the rotor divide the inner cavity of the casing into There are 8 sealed cavities, 4 of which are cylinders or combustion chambers, and 4 are oil cylinders that are lubrication and cooling cylinders.
  • the combustion chamber components form the engine's four-stroke work
  • the oil cylinders and the casing middle plate oil passage components form the rotor's outer cooling and rotor and
  • the lubrication of the various components of the casing is the middle to cooling system (BS) and lubrication system (BS1) of the engine, the centrifugal pump system of the rotor and the inlet and outlet oil passages of the drive shaft and the inlet and outlet of the side plates of the casing.
  • BS middle to cooling system
  • BS1 lubrication system
  • the oil passage system components form an oil passage circuit system, which cools the interior of the rotor and the transmission shaft, and lubricates the transmission shaft components, that is, the central cooling system (CS).
  • the engine water cooling system (AS) is equipped with a rotor in the casing cavity.
  • the drive shaft is connected through the shaft sleeves on both sides and the rotor center hole.
  • the rotating shaft and the shaft sleeve slide tightly, and the rotor is fixed by a key.
  • the components form the engine.
  • the rotor rotates in a single direction without eccentricity in the casing.
  • the dynamic balance and rolling design of each moving component reduces the frictional resistance of each component to less and more durable, making the whole machine almost vibration-free. Reduce energy loss and make power conversion greater.
  • the cylinder seal is sealed by the rotor side seal and the roller.
  • the roller and the inner wall of the middle plate are in rolling friction.
  • Each sealing member has sufficient oil lubrication, so the resistance is very small, and the sealing and durability are excellent.
  • the movement of the rotor in the combustion chamber is non-eccentric rotation, thereby increasing the energy conversion efficiency.
  • the present invention is designed to install valve seals on both sides of the rotor facing the exchange valve valve mechanism, and install the intake valve and exhaust valve on the left and right side panels opposite each other.
  • Each intake system and exhaust system are independent, and the exhaust , Air intake is synchronized, exhaust and intake time are long and completely timing, thereby increasing the ventilation efficiency.
  • the blades of the present invention rotate on the hinge of the rotor and follow the revolution of the rotor.
  • the rotor rotates in a circle, and the inertia is directly transmitted, thereby increasing the energy conversion efficiency.
  • the adjacent cylinders are the combustion chamber cylinder and the lubricating temperature control oil cylinder, which are arranged in sequence around the rotor. During combustion, the blades open at the same speed so that the gas in the combustion chamber forms a vortex, so the fuel burns. Quite adequately, reducing pollution.
  • the leaf is rolling tightly with the rotor seat.
  • the other end of the leaf has a roller and leaf rolling tight connection chain, and the roller and the inner wall of the middle plate rolling tight connection chain.
  • the two sides of the rollers slide tightly with the left side plate and the right side plate.
  • the roller is composed of two rollers, springs, and roller shafts.
  • the two rollers are tightly connected to the chain by keys, and the key distance is as small as possible.
  • the two sides of the leaf have a leaf side seal and a leaf side seal spring member. The leaf seal surface slides with the left side plate and the right side plate to tightly connect the chain, and the two ends of the leaf side seal slide tightly with the rotor seat.
  • the component is the seal of each cylinder in the vane rotary engine;
  • the maximum force and wear of the rotor is the roller of the leaf, and the roller moves in a pulley type on the inner wall of the middle plate and has a cylinder directly
  • the force of the common rod of the blades is only half when the force of the blade reaches the roller.
  • the force acting on the blade is proportional to the force of the roller and the inner wall of the middle plate.
  • the cylinder formed by the rotor and casing components has better sealing and less wear, which makes the power loss of the engine smaller.
  • the present invention uses the rotation of the rotor to transmit power, when the cylinder is working, the effective power is the power acting on the curved convex side of the rotor base and the side of the blade.
  • the power curve of the engine is continuous parabolic, which is different from the cosine of the existing engine.
  • the energy conversion rate of the engine is much higher than that of the existing engine.
  • the present invention is composed of three parts: rotor, casing and transmission shaft, so installation and maintenance are extremely easy.
  • the present invention can be designed as a dual-rotor, two or more multi-rotor engines; when a multi-rotor engine is used, the length of the output shaft needs to be increased, and the corresponding number of rotors, left side plate, middle plate, and right side plate need to be increased. The number of connecting components is changed, and the stator is changed to a multi-stage parallel arrangement to adapt to larger power equipment.
  • the gas does not touch the spark plug hole.
  • the compressed gas reaches the spark plug hole position, so the spark plug can continue to ignite, and the position of the spark plug hole in the combustion chamber can be used to accurately control The ignition advance angle reduces the difficulty of controlling the ignition advance angle.
  • the present invention is easy to adjust the displacement.
  • the displacement can be designed to be larger to achieve the purpose of super power.
  • the transmission system, combustion system, cooling system, and lubrication system are independent and interrelated, saving a lot of mechanisms than traditional engines.
  • the output power and power of the same displacement are much higher than that of traditional engines.
  • the cylinder does work on the rotor
  • the outer circumference of the rotor moves in a circle, with large torque and continuous power, which can make low-speed powerful and high-speed transmission performance.
  • the pressure of the blade in the cylinder is proportional to the sealing performance, and the blade is self-compensating and self-sealing. The tightness reduces air leakage, so as to achieve the purpose of energy saving and environmental protection.
  • the present invention is an engine with four-stroke principle, and the engine can be easily changed to a pump body or pneumatic equipment.
  • the present invention has very few parts and is simple and easy to produce and manufacture.
  • Figure 1 The appearance of the whole machine.
  • Figure 2 Front sectional view of the whole machine structure.
  • Figure 3 Rear cross-sectional view of the whole structure.
  • FIG. 4 Front cross-sectional view of the chassis assembly structure.
  • FIG. 1 Side sectional view of the chassis assembly structure.
  • Figure 6 Schematic diagram of the assembly structure of the whole machine.
  • Figure 7 A perspective view of the overall structure of the whole machine.
  • Figure 8 The front view of the rotor assembly structure.
  • Figure 9 Schematic diagram of the assembly side sealing structure of the rotor assembly.
  • Figure 10 A schematic diagram of the assembly of the rotor blade and the rotor seat structure.
  • Figure 11 An enlarged schematic diagram of the assembly of the rotor seat and the shaft seal structure.
  • Figure 12 Sectional structure diagram of the rotor assembly.
  • Figure 13 The structure diagram of the leaf B assembly.
  • FIG. 14 Schematic diagram of leaf B assembly structure assembly.
  • Figure 15 The structure diagram of the leaf A assembly.
  • FIG. 16 Schematic diagram of leaf A assembly structure assembly.
  • FIG. 17 Structure diagram of leaf seat B a. House view structure b. Bottom view structure.
  • Figure 18 Structure diagram of leaf seat A c. House view structure d. Bottom view structure.
  • Figure 19 Left view of the structure of the leaf seat.
  • Figure 20 The structure diagram of the leaf shaft seal assembly a. The combined structure of the leaf shaft seal assembly b. The assembly diagram of the leaf shaft seal structure c1. The top view of the sealing pad structure of the leaf shaft seal A c2. The bottom view of the sealing pad structure of the leaf shaft seal A c3.
  • Roller assembly structure diagram a Roller assembly structure b. Roller assembly structure assembly diagram c. Roller structure cross-sectional view d. Roller structure cross-sectional view e. Roller assembly internal structure cross-sectional view.
  • Figure 22 The front view of the rotor seat assembly structure.
  • Figure 23 Rear view of the rotor seat assembly structure.
  • Figure 24 Schematic diagram of the structure assembly of the rotor seat assembly.
  • Figure 25 A cross-sectional view of the outer rotor seat structure.
  • Figure 26 A cross-sectional view of the inner rotor seat structure.
  • Figure 27 A cross-sectional view of the rotor seat assembly structure.
  • Transmission shaft structure diagram a Transmission shaft structure diagram b. Front cross-sectional view of the internal structure of the transmission shaft oil intake c. Upper cross-sectional view of the internal structure of the transmission shaft oil discharge d. Partial cross-sectional view of the internal structure of the transmission shaft.
  • Figure 29 The front view of the left side panel structure.
  • Figure 30 Rear view of the left side panel structure.
  • Figure 31 A cross-sectional view of the internal structure of the left side panel.
  • Figure 32 The front view of the right side panel structure.
  • Figure 33 Rear view of the right side panel structure.
  • Figure 34 A cross-sectional view of the internal structure of the right side plate.
  • Figure 35 The structure of the mid-plate.
  • Figure 36 a. Front cross-sectional view of the left shaft sleeve structure b. Front cross-sectional view of the left shaft sleeve structure c. Left shaft sleeve structure diagram.
  • FIG. 37 d Front cross-sectional view of right shaft sleeve structure e. Front cross-sectional view of right shaft sleeve structure f. Right shaft sleeve structure diagram.
  • Figure 38 The structure diagram of the valve seal.
  • Figure 39 Schematic diagram of the structure of the central cooling system (CS) a. Perspective view of the structure of the engine’s central cooling system b. Schematic diagram of the internal oil passage guide structure of the rotor c. Schematic diagram of the oil inlet guide and structure d. Schematic diagram of the outlet guide structure.
  • Figure 40 Engine four-stroke working principle diagram a. Intake process b. Intake stroke c. Compression process d. Compression stroke e. Heating process f. Work stroke g. Exhaust process h. Exhaust stroke.
  • the engine is composed of three parts: the rotor assembly (4), the casing assembly (79), and the drive shaft assembly (5).
  • the parallel components are the combustion system of the engine as shown in Figure 40, the central cooling system (CS) in Figure 39, the middle to cooling system (BS) in Figure 41, the casing water cooling system (AS) in Figure 4, and the rotor in Figure 41.
  • Fig. 1 is the complete engine
  • Figs. 2 and 3 are cross-sectional views of the engine
  • Fig. 6 is the assembly diagram of the engine structure
  • Fig. 7 is the perspective view of the engine structure.
  • the components of the rotor assembly (4) include leaf A (28), leaf B (27), rotor seat (41), leaf (27) (28) and rotor
  • the seat (41) is connected by the hinge of the leaf shaft (32).
  • the hinged seal is formed by the leaf shaft seal (29).
  • the two ends of the return spring (35) in the leaf shaft seal (29) are fixed on the corresponding hinge.
  • the components are formed into leaf A (28) and leaf B (27) hinged back, as shown in Figures 7 and 8, the rotor assembly (4) is provided with 8 corresponding leaves opposite to each other.
  • the components that make up the leaf include the leaf seat (30) (31), the roller (26), the leaf side seal (18), the leaf side seal spring (25), and the leaf shaft ( 32), Ye Feng (29).
  • Figure 13 shows the leaf B (27) assembly structure
  • Figure 15 shows the leaf A (28) assembly structure.
  • the structure of the blade seat includes two shapes of blade seat A (31) and blade seat B (30).
  • the seal (26) has better sealing and lubrication.
  • the leaf seal (29) assembly includes leaf seals (34), return springs (35), two leaf seals (34) and return springs (35) components form leaf seals (29), Its function is the hinge seal of the rotor and the turning opening force of the leaf, (a to f) are the leaf seal assembly and various components, (c), (d) are rounded corner components, (e), (f) It is a non-chamfered member.
  • the components of the roller assembly (26) include a roller column (38), a roller shaft (39), a roller spring (40), two roller columns (38) and a roller shaft ( 39).
  • the roller spring (40) constitutes the roller assembly (26), as shown in Figures 3 and 7, under the action of the roller spring (40), the two ends of the roller and the inner wall surface of the left side plate (1D)
  • the inner wall (3D) of the right side plate is tightly matched, and the keyways (38E) of the two roller columns are longitudinally slid and tightly matched, so that the roller (26) has a certain extension space, and also ensures that the roller (26) and the inner wall of the middle plate (2D) Sealed.
  • the components of the rotor seat assembly (41) include the outer rotor seat (45), the inner rotor seat (46), the rotor bolts (49), and the rotor seat ring
  • the structure of the transmission shaft (5) includes a cylindrical body made of multi-cylindrical components with a transmission shaft inlet (50), a secondary oil inlet (52), a transmission shaft oil inlet (54), and a transmission shaft.
  • Secondary oil outlet (53), transmission shaft oil outlet (51), transmission shaft oil outlet (55), as shown in Figures 2 and 3 the transmission shaft (5) and the rotor shaft hole (4K) are closely matched to The key is fixed and fits tightly with the left sleeve (6) and right sleeve (7).
  • the kinetic energy of the combustion chamber (72) formed by the rotor and the casing is directly transmitted to the The transmission shaft (5) constitutes the output power shaft of the engine.
  • the structure of the left side plate (1) includes a water channel (56), a spark hole (57), a spark plug (58), an exhaust valve (59), an intake valve (60), and an oil outlet Channel (61), fuel injection channel (62), intake channel (63), exhaust channel (64), oil outlet (65), positioning shaft hole (9Q), inner wall surface of the left side plate (1D), left Side plate groove (1E), left plate shaft sleeve hole (1K), left plate bolt hole (1a), left shaft sleeve bolt hole (1b).
  • the structure of the right side plate (3) includes a water channel (56), a spark hole (57), a spark plug (58), an exhaust valve (59), an intake valve (60), and an oil inlet Channel (66), fuel injection channel (62), intake channel (63), exhaust channel (64), oil inlet (70), water inlet and outlet (67), right side plate groove (3E), right side Plate shaft sleeve hole (3K), positioning shaft hole (9Q), right side plate inner wall surface (3D), right side plate bolt hole (3a), right shaft sleeve bolt hole (3b).
  • the spark holes, intake valves, exhaust valves, water passage ports, and central shaft holes of the left and right plates correspond to each other.
  • the structure of the middle plate (2) includes the 8-shaped middle cavity wall as the inner wall of the middle plate (2D), the water channel (56), the middle plate oil injection hole (68), and the middle plate oil drain hole ( 69).
  • the positioning shaft hole (9Q) and the screw hole (2a) correspond to the left and right side plates.
  • the structure of the left sleeve (6) includes the left sleeve hole (6K), the left sleeve groove (76), the left sleeve oil hole (75), and the left sleeve bolt hole (6a) .
  • the structure of the right bushing (7) includes the right bushing hole (7K), the right bushing groove (74), the right bushing oil inlet (73), and the right bushing bolt hole (7a) .
  • valve seals (17) and (17a) there are two types of valve seals facing each other, the valve seals (17) and (17a).
  • the left side plate (1), middle plate (2), The right side plate (3) is fixed by engine bolts (12), and the component is a vane rotary engine casing (79). It consists of the inner wall surface of the left side plate (1D), the inner wall surface of the middle plate (2D), and the inner wall surface of the right side plate (3D). )
  • the components form the engine inner cavity (T), and the outer water channel (56) of the casing and the water inlet and outlet (67) components form a sealed circuit water channel, which constitutes the water cooling system (AS) of the engine casing.
  • the rotor (4) is installed in the inner cavity (T) of the casing (79), and the drive shaft (5) passes through the left plate shaft sleeve hole (1K) and the rotor shaft hole (4K), the shaft sleeve hole (3K) of the right side plate, the drive shaft (5) and the rotor shaft hole (4K) are closely matched and fixed with a key, and the left shaft sleeve (6) is inserted into the drive shaft (5) and installed in Fix the shaft sleeve hole (1K) of the left side plate with bolts (10), and insert the right shaft sleeve (6) into the drive shaft (5) and install it in the shaft sleeve hole (3K) of the right side plate with bolts (11) Fixed, the components form the complete vane rotary engine.
  • the rotor blades divide the inner cavity of the casing into 8 cavities, 4 cylinders (72), 4 oil cylinders (71), the cylinder (72) is the working cylinder of the engine to achieve 4-stroke,
  • the oil cylinder (71) is the lubrication system (BS1) of the rotor components of the engine, and the peripheral cooling system is the middle to cooling system (BS) of the engine.
  • the oil passage (54) and the oil outlet (55) constitute the central cooling system (CS) of the engine, and at the same time lubricate the transmission shaft.
  • the rotor rotates in a single direction without eccentricity in the casing.
  • the rotor is divided into 8 chambers in the casing, 4 of which are cylinders (72) (combustion chamber), 4 are oil cylinders (71) (that is, cooling and lubricating cylinders).
  • the opposite cylinders have the same stroke.
  • the rotor rotates one round, each cylinder completes: expansion-compression-expansion-compression, 8 cylinders are carried out at the same time, and gradually alternate Conversion, the power of the combustion chamber is directly transmitted to the drive shaft through the rotor, the transmission ratio is 1:1, the spark holes are arranged on the inner wall of the left and right side plates in the cavity where the cylinder compression is minimal, and the exhaust valve and intake valve are arranged on Between the largest cylinder and the smallest cylinder, on the inner wall surfaces of the left and right side plates corresponding to the rotor valve seal, the rotor performs work output 4 times per revolution.
  • the rotor rotates to the (d) position.
  • the cylinder volume gradually decreases and the gas is compressed. This process It is the compression stroke of the cylinder (d).
  • position (e) When the rotor rotates to position (e), the volume of the cylinder is the smallest, the gas compression is completed, and the ignition heating gas is exposed at the spark port. It is the heating process of the cylinder (e).
  • the ignited gas expands and pushes the rotor to ( f)
  • the cylinder volume is the largest, the gas combustion is completed, and the cylinder volume gradually increases. This process is the work stroke (f) of the cylinder.
  • the cylinder volume When the rotor rotates to the (g) position, the cylinder volume is the largest, and the gas combustion is completed.
  • the valve is about to open, which is the exhaust process of the cylinder (g).
  • the rotor rotates to the (h) position under the effect of consistency.
  • the exhaust valve opens immediately to discharge gas, and the cylinder volume gradually decreases. This process is the exhaust of the cylinder. Stroke (h).
  • This whole process constitutes a four-stroke engine power cycle.
  • the four cylinders perform work alternately and gradually at the same time, with continuous power, smooth output power, large torque, and high-speed response.
  • the volume of the oil cylinder gradually decreases, and the oil outlet opens to keep lubricating and Discharge the hot oil to cool down and take away the heat.
  • the components of this process are the middle to cooling system (BS) of the engine and the lubrication system (BS1) of the rotor components.
  • the oil when the engine is working, the oil enters from the oil inlet of the right side plate, enters the inner cavity of the rotor centrifugal pump through the oil hole of the right sleeve and the oil inlet of the drive shaft, and the oil is uniform under the action of the centrifugal blades.
  • the oil is sprayed to the inner wall of the rotor to cool the rotor.
  • the oil Under the action of centrifugal force, the oil is discharged through the partition, the transmission shaft oil outlet, the oil outlet, the left shaft sleeve oil outlet, and the left plate oil outlet.
  • the components form the central cooling system (CS ), at the same time, the oil lubricates the drive shaft through the grooves (74) (76) (ie oil grooves) of the left and right sleeves.

Landscapes

  • Engineering & Computer Science (AREA)
  • General Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Ocean & Marine Engineering (AREA)
  • Lubrication Of Internal Combustion Engines (AREA)
  • Rotary Pumps (AREA)

Abstract

一种叶旋发动机,由转子(4)与机壳(1,2,3)、传动轴(5)构建成。转子(4)与机壳(1,2,3)之间构建成的腔分为气缸(72)和油缸(71),转子(4)上安装有8个叶(27,28)在机壳(1,2,3)腔内做逐步合页转动并跟随转子(4)公转,转子(4)相邻2个凸台上被相邻的2个叶(27,28)与机壳(1,2,3)分割成气缸(72)即燃烧室,同一凸台上被相邻的2个叶(27,28)与机壳(1,2,3)分割成油缸(71),运转时,相邻的2个叶(27,28)和机壳(1,2,3) 构建成的气缸(72)、油缸(71)容积在变化,其它气缸(72)、油缸(71)容积同时在相应变化,彼此间容积发生变化从而实现4个冲程,对置的2个气缸(72)、油缸(71)冲程相同,各冲程同时进行,气缸(72)为动力做功,油缸(71)为润滑、冷却,膨胀力是通过转子(4)直接递给传动轴(5)旋转做功。

Description

叶旋发动机 技术领域
本发明涉及一种新型内燃发动机、泵及气动设备,是涉及一种功率重量比大,无震动,且节省燃油,应用于大中小设备的发动机。
背景技术
目前现有的发动机中,技术较成熟的发动机主要是车用的往复活塞式发动机及三角转子式发动机。
其中往复活塞式发动机经过了尽百年的改进,设计与制造已经达到了相当高的水平,不过还存在着很大的缺陷,比如使用任何方式排列汽缸,都使整机功率与重量比太小,复杂的进气阀门与排气阀门使发动机能量转化率降低,重量增加,体积与噪音增大,活塞的往复式运动所产生的惯性使整机极限转速降低,动力传动方式使整机扭力很小,当应用在重型设备上时,只能牺牲转速来提高扭力,做功过程中,曲轴的力臂变化使整机动力曲线呈余弦式,使整机能量转化率大幅度降低。
其中三角转子式发动机的极限转速较高,进气与排气不需要复杂的阀门机构,功率与重量比较往复式发动机出色,但其也存在着很大的不足,比如油耗过大,燃烧不充分,因为三角转子发动机使用的传动机构为内齿轮式,作用在转子侧面的膨胀压力被分为两个力,一个力推动输出轴旋转,而另一个力指向输出轴中心,从而导致整机的扭力极小,因为其汽缸狭长而使燃烧率过低从而导致转化率降低,再加上转子运转时产生的震动与使用特殊形状汽缸及密封问题都不同程度的增加了加工与生产的难度。
技术问题
复活塞式发动机:功率比重小,复杂的气阀门机构,震动,三角转子式发动机:扭力极小,油耗过大,汽缸密封性低,震动。
技术解决方案
为了克服现有发动机的各种缺陷,本发明提供了一种全新结构的叶旋发动机,该发动机体积很小,但输出的功率与扭力大,运转时不产生震动。该机运转过程中产生的摩擦力很小,压缩比高,且惯性传递,提升功率快,提升了发动机的输出功率。汽缸结构形状与点火方式使气体燃烧充分,适合使用多种燃料。整机换气无阀门机构,且其密封好;机油不会与燃烧直接接触,减少烧机油可能,能使运动各构件更耐用;三个温度控制系:AS、BS、CS,AS为外壳冷却系、BS为发动机中至冷却系、CS为转子中心冷却系,能达到各构件更精确的温度控制,保证各运动构件性能在可控范围内,提高发动机输出功率(如压缩比、燃料浓度比、速率比等);BS、CS也是各构件的润滑系,使各构件的润滑和封密更好,该发动机的做功是由转子直接传递给传动轴,做功曲线不同于以往发动机,能量转化效率更高。整机结构紧凑,部件很少,容易生产制造。
本发明解决其技术问题,采用的全新的技术方案。发动机由三大部分组成,转子总成、机壳总成、传动轴总成。运转时转子总成在机壳总成内做无偏心转动并实现四个冲程的原理来构成发动机。当安装发动机时,只需将转子安装在壳体内部以传动轴为联动机构,并用螺栓将三个壳体固定即可。
构成转子的部件包括转子座、叶,转子座的圆柱体上设置平均4个圆周排列的特殊结构的凸面柱,凸面柱两侧为铰合结构,在凸面柱左右两侧铰链2个叶,构件成转子上的8个叶,转子座内腔为特殊的离心泵结构,轴孔内壁有进油孔、出油孔与传动轴相对应,构成机壳的部件包括左侧板、左轴套、中板、右侧板、右轴套、封密圈、螺栓,构成传动轴总成的部件包括传动轴的进油道、进油孔、出油道、出油孔,还有封密垫、弹簧、螺栓,传动轴的进油道、进油孔、出油道、出油孔与转子、左轴套、右轴套相对应,在发动机中转子的8个叶将机壳内腔分割成8个封密腔,其中4个为气缸即燃烧室,4个为油缸即润滑、冷却缸,燃烧室构件成发动机的四冲程做功,油缸与机壳中板油道构件成转子外冷却和转子与机壳各构件的润滑,即为发动机的中至冷却系(BS)、润滑系(BS1),转子的离心泵系与传动轴的进、出油道系与机壳两侧板的进、出油道系构件成油道回路系,冷却转子内部与传动轴,并润滑传动轴构件,即为中心冷却系(CS),机壳中的各构件水道构件成水道回路系冷却机壳,构件成发动机水冷却系(AS),在机壳腔内安装转子,传动轴通过两侧板的轴套、转子中心孔连接,转动轴与轴套滑动紧密配合,与转子以键固定,构件成发动机。
有益效果
本发明显著的有益效果是。
1. 转子在机壳内做单方向无偏心转动,各运动构件动平衡和滚动设计,使各构件摩擦阻力减至更少、更耐用,使整机几乎无震动。减少能量损失,使功率转换更大。
2. 汽缸密封是由转子侧封和滚轴来密封,滚轴与中板内壁面是滚动摩擦,各封密构件有充份的油润滑,所以阻力极小,而且密封和耐用性极好,转子在燃烧室内的运动是无偏心转动,从而增加了能量转化效率。
3. 本发明设计在转子两侧面对置设置气门封代换气门阀门机构,在左、右侧板对置设置进气门与排气门,各进气系、排气系独立,排气、进气同步进行,排气、进气时间长且完全正时,从而增加换气效率。
4. 本发明叶在转子上合页转动并跟随转子公转运动,转子作圆周转动,惯性是直接传递,从而增大能量转化效率。
5. 在发动机内被安排了8 个缸,相邻缸为燃烧室气缸、润滑温控油缸,环绕转子依次排列,在燃烧时叶顺速张开使燃烧室内的燃气形成涡流,所以燃料的燃烧相当充分,减少污染。
6. 转子两侧面对置设置气门封代换气门阀门机构,无需设计复杂的阀门机构,使体积大幅度减少。气缸做功在转子外围直接推动转子圆周运动做功,相对现有的发动机同等燃料量,扭力更大,转速更快,功率更高,所以机械利用率高。当输出轴转动一周时,每个气缸膨胀2 次、压缩2次,每个油缸膨胀2 次、压缩2次,每对置的2 对缸做功相同,8个缸同时进行,单个叶旋发动机相当于8缸发动机,体积却比4 缸发动机还小很多,所以本发明功率重量比很大。
7. 叶的一端与转子座滚动紧密铰链,铰链中有回力弹簧、叶轴封、叶轴,叶的另一端有滚轴与叶滚动紧密接链、滚轴与中板内壁面滚动紧密接链,滚轴两端侧面与左侧板、右侧板滑动紧密接链,滚轴的是两个滚柱、弹簧、滚轴轴构件成,两个滚柱以键紧密接链,键距尽量小构件成;叶的两侧面各有一叶侧封、叶侧封弹簧构件成,叶封的面与左侧板、右侧板滑动紧密接链,叶侧封两端面与转子座滑动紧密接链、与滚轴滚动紧密接链,构件成叶旋发动机中各缸的封密;转子的最大受力、最大磨损是叶的滚轴,滚轴在中板内壁面上是滑轮式运动并有油缸直接供油润滑,叶的共杆原理作用在叶的力到滚轴时只有一半,结果滚轴的阻力、磨损也减少,作用在叶的力和滚轴与中板内壁面的力成正比,使转子、机壳构件成的缸封密更好,磨损更小,使发动机的功率损耗更小。
8. 因为本发明采用转子转动来传递动力,气缸做工时,有效动力是气体作用在转子座弧型凸侧面、叶的侧面上动力。使发动机的动力曲线是连续的抛物线式,不同于现有发动机的余弦式。使本发动机能量转化率较比现有发动机高很多。
9. 本发明是由转子、机壳、传动轴三部分构成,所以安装与维修极其容易。
10. 由于转子的特征性与机壳构件成的燃烧室,可使用多种燃料为动力输出。
11. 本发明可设计成双转子, 2个以上的多转子发动机;当使用多转子发动机时,需增加输出轴长度,增加相对应的转子、左侧板、中板、右侧板数量,增加连接构件数量,并将定子改为多段式并列排置,适应更大的动力设备。
12. 当汽缸做压缩冲程时,气体并不接触火花塞孔,当气体压缩结束时,压缩气体才到达火花塞孔位置,所以火花塞可持续打火,并可以用火花塞孔在燃烧室内的位置来精确控制点火提前角,从而降低了点火提前角控制难度。
13.当改变转子的半径或厚度时可改变整机的排量及压缩比,所以本发明调节排量容易,当增加材料强度时可将排量设计的更大来达到超大功率的目的。
14. 本发明中传动系、燃烧系、冷却系与润滑系各系独立也相互关联,比传统发动机节省了很多机构,同等排量输出的功率、动力比传统发动机高很多,由于气缸做功在转子外环绕转子圆周运动,力距大、动力连续不断,从而能使低速度有力、高速传动性能高,由于转子结构的特性,叶在气缸内压力与封密性成正比,和叶的自补自封密性减少漏气现象,从而达到节能环保目的。
15. 本发明是四冲程原理的发动机,可很容易的将发动机改为泵体或气动设备。
16. 本发明部件极少,生产与制造简单容易。
附图说明
图1 整机外观图。
图2 整机结构前剖视图。
图3 整机结构后剖视图。
图4 机壳总成结构前剖视图。
图5 机壳总成结构侧剖视图。
图6 整机组装结构示意图。
图7 整机结构总成结构透视图。
图8 转子总成结构正视图。
图9 转子总成侧封密结构组装示意图。
图10 转子的叶与转子座结构组装示意图。
图11 转子座与叶轴封结构组装放大示意图。
图12 转子总成剖面结构图。
图13 叶B总成结构图。
图14 叶B总成结构组装示意图。
图15 叶A总成结构图。
图16 叶A总成结构组装示意图。
图17 叶座B结构图 a.府视图结构 b.底视图结构。
图18 叶座A结构图 c.府视图结构 d.底视图结构。
图19 叶座左视结构图。
图20 叶轴封总成结构图  a.叶轴封总成组合结构  b.叶轴封结构组装示意图  c1.叶轴封A封密垫结构上视图  c2.叶轴封A封密垫结构底视图  c3.叶轴封A回力弹簧结构图  c.叶轴封A总成图  d1.叶轴封B封密垫结构上视图  d2.叶轴封B封密垫结构底视图  d3.叶轴封B回力弹簧结构图 d.叶轴封B总成图  e1.叶轴封E封密垫结构上视图  e2.叶轴封E封密垫结构底视图  e3.叶轴封E回力弹簧结构图  e.叶轴封E总成图  f1.叶轴封F封密垫结构上视图  f2.叶轴封F封密垫结构底视图  f3.叶轴封F回力弹簧结构图  f.叶轴封F总成图。
图21 滚轴总成结构图  a.滚轴总成结构  b.滚轴总成结构组装图  c.滚柱结构剖视图  d.滚柱结构剖视图  e.滚轴总成内部结构剖视图。
图22 转子座总成结构前视图。
图23 转子座总成结构后视图。
图24 转子座总成结构组装示意图。
图25 外转子座结构剖视图。
图26 内转子座结构剖视图。
图27 转子座总成结构剖视图。
图28 传动轴结构图 a.传动轴结构图 b.传动轴进油内部结构前剖视图 c.传动轴排油内部结构上剖视图 d.传动轴内部结构局部剖视图。
图29 左侧板结构前视图。
图30 左侧板结构后视图。
图31 左侧板内部结构剖视图。
图32 右侧板结构前视图。
图33 右侧板结构后视图。
图34 右侧板内部结构剖视图。
图35 中板结构图。
图36 a.左轴套结构正剖视图 b.左轴套结构前剖视图 c.左轴套结构图。
图37 d.右轴套结构正剖视图 e.右轴套结构前剖视图 f.右轴套结构图。
图38 气门封结构图。
图39 中心冷却系结构原理图(CS)  a.发动机中心冷却系结构透视图 b.转子内部油路导向结构示意图 c.进油道导向和结构示意图 d.出油道导向结构示意图。
图40 发动机四冲程做功原理图   a.进气过程 b.进气冲程 c.压缩过程 d.压缩冲程 e.加热过程 f.做功冲程 g.排气过程 h.排气冲程。
图41 中至冷却系统(BS)和润滑系统(BS1) 原理图  a1-b1进油冲程 b1-c1润滑冷却 c1-d1润滑吸收热量 d1-e1保持润滑吸收热量 e1-f1排油降温。
 图中
1.左侧板 1a.左侧板螺孔 1b.左轴套螺孔 1D.左侧板内壁面 1E.左侧板凹槽 1K.左侧板轴套孔 2.中板 2a.中板螺孔 2D.中板内壁面 3.右侧板 3a.右侧板螺孔 3b.右轴套螺孔 3D.右侧板内壁面 3E.右侧板凹槽 3K.右侧板轴套孔 4.转子总成 4K.转子轴孔 5.传动轴 6.左轴套 6K.左轴套孔 6a.左轴套螺栓孔 7.右轴套 7K.右轴套孔 7a.右轴套螺栓孔 8.侧板-封密圈 9.定位轴 9a.定位轴孔 10.左轴套-螺丝 11.右轴套-螺丝 11a.定位销 12. 发动机-螺丝 13.左轴套-油封 14.传动轴油封垫 15.油封垫-弹簧 16.传动轴-螺丝 17.气门封 17a.气门封 18.叶侧封 19.半环封 20.封密环 21.转子-封密圈 22.转子-弹簧圈 23.气门弹簧 24.半环封弹簧 25.叶侧封弹簧 26.滚轴 27.叶B  28.叶A 29.叶轴封 30.叶座B 31.叶座A 32.叶轴 33.弹簧固定孔 34.叶轴封垫 35.回力弹簧 36.叶轴封a 37.叶轴封b 38.滚柱 38E.键槽 39.滚轴-轴 40.滚轴弹簧 41.转子座总成 41D.转子内腔壁 42.转子进油孔 43.转子出油孔 44.转子座内腔结构 45.外转子座 45a.外转子座螺柱孔 45B.铰链轴孔 45E.转子环状凹槽 45Q.弹簧固定孔 46.内转子座 46a.内转子座螺柱孔 46E.转子圆凹槽 47.隔板 48.离心叶片 49.转子螺丝 50.进油孔 51.出油孔52.出油孔 53.进油孔 54.进油道 55.出油道 56.冷却水道 57.点火孔 58.火花塞 59.排气门 60.进气门 61.出油道 62.燃油喷孔 63.进气道 64.排气道 65.排油孔 66.进油道 67.水冷却进出口 68.中冷喷油孔 69.中冷排油孔 70.进油孔 71.油缸 72.气缸 73.右轴套进油孔 74.右轴套凹槽(油槽)75.左轴套出油孔 76.左轴套凹槽(油槽) 77.机壳总成 AS.机壳冷却系  BS.中至冷却系  BS1.润滑系  CS.中心冷却系  T.机壳内腔。
本发明的实施方式
1.叶旋发动机的各种部件。
如图1、2、3、4、5、6、7所示,本发动机由转子总成(4)、机壳总成(79)、传动轴总成(5)三部分组成。并构件成如图40所示发动机的燃烧系、图39的中心冷却系(CS)、图41的中至冷却系(BS)、图4的机壳水冷却系(AS)、图41的转子各构件的润滑系(BS1)和图39的传动轴润滑系,图1为发动机整机、图2、3为发动机剖视图、图6为发动机结构组装图、图7为发动机结构透视图。
如图8、9、10、11、12所示,转子总成(4)的部件包括叶A(28)、叶B(27)、转子座(41),叶(27)(28)与转子座(41)是通过叶轴(32)铰链连接,铰合的封密由叶轴封(29)构成,叶轴封(29)内的回力弹簧(35)两端线固定在相应的铰合固定孔(33)(41Q)内,构件成叶A(28)、叶B(27)回力铰合,如图7、8所示,转子总成(4)上对置安装相应的8个叶。
如图13、14、15、16所示,构成叶的部件包括叶座(30)(31)、滚轴(26)、叶侧封(18)、叶侧封弹簧(25)、叶轴(32)、叶封(29)。图13为叶B(27)总成结构,图15为叶A(28)总成结构。
如图17、18、19所示,叶座的结构包括有叶座A(31)、叶座B(30)的两种形状,叶座开口圆孔上有多道油槽(30E)使滚轴封(26)封密润滑更好,叶座两侧面有侧封凹槽(30Q),叶座铰合位内有弹簧固定孔(33)与转子座(41)相应的弹簧固定孔(41Q)固定回力弹簧(35),至使叶在转子上有一定的张开力量,使滚轴(26)紧贴中板内壁面(2D),能使转子与机壳构成的各缸体封密性更好。
如图20所示,叶封(29) 总成部件包括叶封垫(34)、回力弹簧(35),2个叶封垫(34)与回力弹簧(35)构件成叶封(29),其作用是转子的铰合封密与叶的回旋张开力,(a至f)是叶封总成和各种构件,(c)、(d)是倒圆角形构件,(e)、(f)是不倒角形构件。
如图21所示,滚轴总成(26)的部件包括滚轴柱(38)、滚轴轴(39)、滚轴弹簧(40),2个滚轴柱(38)与滚轴轴(39)、滚轴弹簧(40)构成滚轴总成(26),如图3、7所示,在滚轴弹簧(40)的作用下,滚轴两端面与左侧板内壁面(1D)右侧板内壁(3D)紧密配合,2个滚轴柱的键槽(38E)纵向滑动紧密配合,使滚轴(26)有一定的伸展空间,也保证了滚轴(26)与中板内壁面(2D)封密。
如图22、23、24、25、26、27所示,转子座总成(41)的部件包括外转子座(45)、内转子座(46)、转子螺栓(49),转子座的环状凹槽(45E)与相应侧封构件:气门封(17)、转子半环封(18)气门弹簧(23)、半环弹簧(24)滑动紧密配合,圆凹槽(46E)与相应侧封构件:转子封密环(20)、转子封密圈(21)、转子弹簧圈(22)滑动紧密配合,构成转子座总成(41)两端侧面与机壳(1D)(3D)的封密,同时还构件成叶旋发动机气门的开启,如图24、26、27所示,内转子座(46)上有离心叶片(48)、隔板(47),如图24、25、27所示,外转子座(45)上有环型内腔(44)、转子进油孔(42)、转子出油孔(43),如图27、39所示,转子转动时,经转子进油孔(42)进入环型内腔(44)的冷却油在离心叶片(48)的作用下均匀洒向转子内腔壁(41D),再经由隔板(47)、转子出油孔(43)流向传动轴出油道(55)排出,使转子中心冷却构成中心冷却系重要构件。
如图28所示,传动轴(5)结构包括多圆柱构件成的圆柱体上有传动轴进孔(50)、二级进油孔(52)、传动轴进油道(54)、传动轴二级出油孔(53)、传动轴出油孔(51)、传动轴出油道(55),如图2、3所示,传动轴(5)与转子轴孔(4K)紧密配合以键的方式固定,与左轴套(6)、右轴套(7)滑动紧密配合,如图7、40所示,转子与机壳构成的燃烧室(72)做功的动能直接经转子传递给传动轴(5),构成发动机的输出动力轴。
如图29、30、31所示,左侧板(1)结构包括水道(56)、火花孔(57)、火花塞(58)、排气门(59)、进气门(60)、出油道(61)、喷燃油道(62)、进气道(63)、排气道(64)、出油孔(65)、定位轴孔(9Q)、左侧板内壁面(1D)、左侧板凹槽(1E)、左侧板轴套孔(1K)、左侧板螺栓孔(1a)、左轴套螺栓孔(1b)。
如图32、33、34所示,右侧板(3)结构包括水道(56)、火花孔(57)、火花塞(58)、排气门(59)、进气门(60)、进油道(66)、喷燃油道(62)、进气道(63)、排气道(64)、进油孔(70)、进出水口(67)、右侧板凹槽(3E)、右侧板轴套孔(3K)、定位轴孔(9Q)、右侧板内壁面(3D)、右侧板螺栓孔(3a)、右轴套螺栓孔(3b)。左侧板、右侧板的火花孔、进气门、排气门、水道口、中心轴孔相对应。
如图35所示 ,中板(2)的结构包括类8字型中腔壁为中板内壁面(2D)、水道(56)、中板喷油孔(68)、中板排油孔(69)、定位轴孔(9Q)、螺孔(2a)与左右侧板相对应。
如图36所示,左轴套(6)的结构包括左轴套孔(6K)、左轴套凹槽(76)、左轴套出油孔(75)、左轴套螺栓孔(6a)。
如图37所示,右轴套(7)的结构包括右轴套孔(7K)、右轴套凹槽(74)、右轴套进油孔(73)、右轴套螺栓孔(7a)。
如图38所示,是气门封对置的2种结构,气门封(17)、(17a)。
如图3、4、5所示,在左、右侧板凹槽(1E)放置侧板封密圈(8)构成机壳的封密,左侧板(1)、中板(2)、右侧板(3)由发动机螺栓(12)固定,构件成叶旋发动机机壳(79),由左侧板内壁面(1D)、中板内壁面(2D)、右侧板内壁面(3D)构件成发动机内腔(T),机壳外围水道(56)、进出水口(67)构件成封密的回路水道,构成发动机的机壳水冷却系(AS)。
如图3、4、5、6、7所示,在机壳(79)内腔(T)安装转子(4),传动轴(5)通过左侧板轴套孔(1K)、转子轴孔(4K)、右侧板轴套孔(3K),传动轴(5)与转子轴孔(4K)相对应紧密配合以键固定,将左轴套(6)套入传动轴(5)安装在左侧板的轴套孔(1K)内用螺栓(10)固定,将右轴套(6)套入传动轴(5)安装在右侧板的轴套孔(3K)内用螺栓(11)固定,构件成叶旋发动机整机。
如图7、40所示,转子的叶将机壳内腔分隔成8个腔,4个气缸(72),4个油缸(71),气缸(72)为发动机的工作缸来实现4冲程,如图41所示,油缸(71)为发动机的转子各部件润滑系(BS1)和外围冷却系即为发动机的中至冷却系统(BS)。
如图3、27、39所示,发动机的机壳(77)出油道(61)进油道(66)、转子(4)内腔(44)离心泵结构、传动轴(5)的进油道(54)出油道(55)构件成发动机的中心冷却系(CS),同时润滑传动轴。
2. 叶旋发动机的工作过程。
如图40所示,当发动机工作时,转子在机壳内做单方向无偏心转动。转子在机壳内分割成8个腔,其中4个为气缸(72)(即燃烧室),4个为油缸(71)(即冷却、润滑缸),对置的缸所做的冲程相同,容积变大时,缸为吸气与膨胀过程,容积变小时,缸为排气与压缩过程,转子转动一周,每个缸完成:膨胀-压缩-膨胀-压缩,8个缸同时进行,逐步交替变换,燃烧室做功的动力直接通过转子传递给传动轴,传动比为1:1,火花孔设置在气缸压缩最小的腔内左、右侧板内壁面上,排气门、进气门设置在最大气缸与最小气缸之间,与转子气门封相对应的左、右侧板内壁面上,转子转动一周做功输出4次。
如下以单个气缸做功为例,如图40所示,当发动机工作时,转子转动至(a)的位置时,叶A和叶B构成的气缸容积最小,进气门即将打开,即将开始进气为气缸的进气过程(a),转子向(b)位转动,进气门即时打开,气缸容积逐渐变大,吸入气体,此过程为气缸的进气冲程(b),转子转动至(c)位时,气缸容积最大,吸气完成,进气门关闭,气缸即将开始压缩,为气缸的压缩过程(c),转子向(d)位转动,气缸容积逐渐变小气体被压缩,此过程为气缸的压缩冲程(d),转子转动至(e)位时,气缸容积最小,完成气体压缩,火花口露出点火加热气体,为气缸的加热过程(e),点燃的气体膨胀推动转子向(f)位转动做功,动力直接传递给传动轴转动,气缸容积逐渐变大,此过程为气缸的做功冲程(f),当转子转动至(g)位时,气缸容积最大,气体燃烧完成,排气门即将打开,为气缸的排气过程(g),转子在贯性的作用下向(h)位转动,排气门即时打开排出气体,气缸容积逐渐变小,此过程为气缸的排气冲程(h)。此全过程构成发动机做功四冲程。4个气缸是同时进行逐步交替做功,动力不断,输出动力平顺,扭矩大,高速响应快。
如下以单个油缸做功为例,如图41所示,当发动机工作时,转子转动从(a1)位向(b1)位转动时,进油口打开,油缸容积逐步变大,吸入油并进行润滑和冷却,转子转动从(b1)位向(c1)位转动,吸油完成,进油口关闭,保持进行润滑和冷却,转子转动从(c1)位向(d1)位转动,进行润滑吸收热量,转子转动从(d1)位向(e1)位转动,保持进行润滑吸收热量,当转子转动从(e1)位向(f1)位转动,油缸容积逐步变小,排油口打开,保持进行润滑并排出热油降温带走热量,此过程构件成发动机的中至冷却系统(BS)和转子构件的润滑系(BS1)。
如图39所示,发动机在做功过程中,机油从右侧板的进油道进入,经右轴套油孔、传动轴进油道进入转子离心泵内腔,在离心叶片的作用下机油均匀喷洒向转子内壁面冷却转子,机油在离心力的作用下经过隔板、传动轴出油孔、出油道、左轴套出油孔、左侧板出油道排出,构件成中心冷却系(CS),同时机油通过左、右轴套的凹槽(74)(76)(即油槽)润滑传动轴。

Claims (10)

  1. 一种叶旋发动机包括,构成转子总成的外转子座、内转子座、叶座、叶轴、叶轴封、滚轴、叶侧封、气门封、半环封、封密环、封密圈、弹簧、螺栓,构成机壳的左侧板总成包括左轴套、油封、封密圈、气门、火花塞、水道、油道;构成机壳的中板包括类8字型内壁的中腔、水道、油道,构成机壳的右侧板总成包括右轴套、气门、火花塞、水道、油道、封密圈,构成传动轴总成包括油封垫、螺栓、弹簧、油道;还包括转子与机壳之间构件成的燃烧室与油缸;转子与传动轴之间构件成的中心冷却腔,机壳内部的水循环系,转子上的8个叶将机壳分割成8个缸,转子相邻2个凸面柱上被相邻的2个叶与机壳分割成气缸即燃烧室,其形状像双门对合,同一凸面柱上被相邻的2个叶与机壳分割成油缸,其形状像鹰展翅,其中4个气缸为燃烧室、4个为油缸,叶的滚轴面以中板类8字形的中腔内壁面为运动轨迹线绕传动轴中心转动,叶绕叶轴做逐步合页运动并跟随转子公转推动转子转动,在转动过程中叶的合页运动构件成缸的容积发生周期性变化,气缸容积在变大时,气缸膨胀与吸气过程,气缸容积变小时,气缸压缩与排气过程,8个缸同时进行,逐步交替变换,实现气缸的做功4个冲程与油缸的润滑冷却过程,其特征在于整机转子在机壳内以传动轴为中心轴做单方向无偏心转动,传递动力的连接构件分别为左侧板、左轴套、右侧板、右轴套、中板、转子、传动轴。
  2. 根据权利要求1 所述,构成叶的叶座、叶轴、叶轴封、滚轴、叶侧封、弹簧,
    a.其特征在于叶座的特殊板形状柱体,一端为开口圆柱通孔,圆柱通孔内有径向油道,开口量小于滚轴直径,圆柱通孔大于滚轴直径,使滚轴与圆柱通孔相对应间隙配合,叶的滚轴在圆柱通孔内有一定量的凸出柱面与机壳中板内壁面接触在压力作用滚动紧密配合;叶座的另一端为铰合型,叶座的铰合与对应的转子座铰合相对应滑动紧密配合,在铰合之间有相对应叶轴封封密铰合,叶座铰合凹柱面有小圆孔用于固定叶轴封回力弹簧端线,构件成封密的回力铰合,叶座的前后两侧面有凹槽与叶侧封相对应润滑紧密配合,同时叶侧封的两端与滚轴、转子座铰合位滑动紧密配合,弹簧安装在凹槽与叶侧封之间使叶侧封有一定量的弹性紧贴机壳侧板构成封密,叶座的特殊板形状柱体有2种形状,转子上构件成气缸的2个叶,在气缸压缩容积最小时,转子上的2个叶为铰合关闭状,左边的叶的叶座壁面与转子壁面刚好契合接触,不会构成空间容积,为叶座(B)的第一种形状,右边叶的叶座壁面与转子壁面构件成一定量的空间,这空间的容积为气缸的压缩容积,也为叶座(A)的第二种形状,
    b. 根据权利要求1、2.a所述,构成滚轴的滚柱、滚轴-轴、弹簧,其特征在于滚柱的圆柱一端面有轴心圆孔与滚轴-轴相对应滑动紧密配合,端面为花键结构,另一端面也有轴心凹圆孔,圆孔内有轴心小圆通孔,其特征在于滚轴-轴为圆柱管,管的外直径与滚柱花键端的圆孔直径相对应,管的内直径与弹簧相对应间隙配合;2个滚柱对置的花键与花键滑动紧密配合,在2个滚柱构件成的圆孔腔内放配置滚轴-轴柱面滑动紧密配合,端面间隙配合,滚轴-轴内配置弹簧,弹簧两端面与2个滚柱构件成的圆孔腔端面弹性配合,构件成的滚轴有一定量的弹性使两端面紧贴机壳侧板内壁面滑动紧密配合,滚轴上的花键结构使滚轴在中板内壁面上滚动封密不漏气,
    c. 根据权利要求1、2.a 所述,构成叶轴封的叶轴封垫、回力弹簧,其特在于叶轴封垫的圆环柱内径与回力弹簧相对应间隙配合,圆环柱外径与叶铰合相对应滑动紧密配合,圆环柱一端面上有贯穿凹槽为回力弹簧一端线的出口与铰合固定弹簧孔相对应,圆环柱的端面外径可以倒圆角或不倒角要与铰合相对应,另一端面为平整面,2个叶封垫同轴相对置的平整端面滑动紧密配合,有凹槽端面向外,有凹槽两端面与相对应叶和转子座的铰合径面滑动紧密配合,在叶轴封垫孔内配置回力弹簧,回力弹簧的两端线经凹槽伸出构件成叶轴封。
  3. 根据权利要求1、2所述,构成转子座的外转子座、内转子座、封密环、封密圈、半环封、气门封、弹簧、螺栓,
    a.外转子座特征在于圆柱面环绕有平均分布多个特殊形状的凸面柱,凸面柱的两边为铰链结构,与叶的铰合相对应滑动紧密配合,铰合的凹圆面有固定回力弹簧的小圆孔与叶相对应,圆柱面上2个凸面柱之间构件成的形状与2个叶相对应,外转子座有轴心圆通孔与传动轴相对应以键结构固定紧密配合,环绕轴心孔有上开口环状圆柱腔,环状圆柱腔外圆壁开口端有环形凸台,用于承托内转子座构件成的盖形凸台,其形状与内转子座相对应固定紧密配合,使其构件成平整面,并构件成转子座封密的环状圆柱内腔,在轴心孔内有与环状圆柱内腔相通的进油孔、出油孔与传动轴相对应,外转子座下端面环绕轴心在凸面柱相应位置设置气门封凹槽,气门封凹槽之间设置半环封槽连接,构件成闭合的特殊环状凹槽,在中心设置圆凹槽,在圆凹槽与环状凹槽之间设置螺栓通孔与内转子座相对应,外转子座上端面对置有气门封凹槽与半环封凹槽构件成的环状凹槽,
    b.其特征在于内转子座是外转子座环状内腔开口的顶盖凸台,其形状与外转子座相对应固定紧密配合,内转子座有中心通孔与外转子座轴孔相对应,内转子座的下端面上环绕通孔设置离心叶片, 离心叶片下端连接有环状隔板与外转子座内腔相对应,内转子座下端面上还有与外转子座相对应的螺栓孔,内转子座上端面中心有圆凹槽与外转子座相对应,在外转子座上安装内转子座用螺栓固定,两端凹槽内安装对应的弹簧、气门封、半环封、环封、封密圈,构件成转子座和离心泵系。
  4. 根据权利要求1、2、3所述,其特征在于叶与转子座通过叶轴铰链绕叶轴滑动紧密配合构件成封密的铰合,回力弹簧的端线安装在转子座对应的弹簧固定孔内,叶与转子座构件成转子总成,叶与转子座在回力弹簧的作用下有一定量的弹性回力使叶自然张开,在发动机中使叶的滚轴面紧贴中板类8字形内壁面构件成封密,转子的各侧封构件成转子与左、右侧板的封密,转子与中板内腔相对应。
  5. 根据权利要求1所述,其特征在于构成机壳的左侧板、左轴套、左轴套油封、中板、右侧板、右轴套、封密圈、螺栓,在左侧板、中板、右侧板中用封密圈封密,通过螺栓固定构件成封密中腔的机壳,
    a. 根据权利要求1、2、3、4所述,左侧板的特征在于板形柱体中腔有水道、油道、进气道、出气道,与中板相连的壁面有进气门、排气门、火花塞孔与转子相对应与右侧板相对置,中心有轴套孔与左轴套相对应固定紧密配合,轴套孔径向有油道孔与左轴套油孔相对应,周边还有水道口、螺栓通孔、封密圈凹槽、定位轴孔与中板相对应,另一侧面中心有凹圆孔在凹圆孔外环绕轴套孔有螺孔与左轴套相对应,用螺栓固定左轴套,上侧面设置火花塞与火花塞孔相对应,左侧面有进气口、燃料喷口、油道口,右侧面有排气口,
    b. 根据权利要求1、2、3、4所述,右侧板的特征在于板形柱体中腔有水道、油道、进气道、出气道,与中板相连的壁面有进气门、排气门、火花塞孔与转子相对应与左侧板相对置,中心有轴套孔与右轴套相对应固定紧密配合,轴套孔径向有油道孔与右轴套油孔相对应,周边还有水道口、螺栓孔、封密圈凹槽、定位轴孔与中板相对应,另一侧面环绕轴套孔有螺孔与右轴套相对应,用螺栓固定右轴套,上侧面设置火花塞与火花塞孔相对应,左侧面有排气口,右侧面有进气口、燃料喷口、油道口,
    c. 根据权利要求1、2、3、4所述,中板的特征在于柱体中有类8字形构成内壁的内腔,内壁、外壁中围绕有水道、螺栓通孔、定位轴孔与左、右侧板相对应,壁面有入油孔、出油孔;中板的内壁面与转子滚轴面滚动紧密配合,构成叶的运动轨迹线,中板内腔与转子相匹配,中板厚度与转子相对应,中板的两侧面与左侧板、右侧板相对应紧密配合,
    d. 根据权利要求1、2、3、4所述,左轴套的特征在于由2个同心圆柱构成的凸台圆柱,上圆柱与左侧板轴套孔相对应紧密配合,在下圆柱柱面上同心圆环形凸台,在环形凸台面上环绕下圆柱有螺栓通孔,下圆柱和圆环形凸台面、螺栓通孔与左侧板凹圆孔、轴套孔面、螺栓孔相对应紧密配合,左轴套有轴心通孔与传动轴相对应滚动紧密配合,轴心通孔壁有环形凹槽,在环形凹槽内有径向通孔与左侧板轴套孔的油道孔相对应,环形凹槽与传动轴出油孔相对应,在下圆柱的端面有中心凹圆形孔,安装封密圈,构件成侧板与传动轴的封密,
    e. 根据权利要求1、2、3、4所述,右轴套的特征在于由2个同心圆柱构成的凸台圆柱,上圆柱与右侧板轴套孔相对应紧密配合,下圆柱为圆板形,在下圆柱面上环绕上圆柱有螺栓通孔与左侧板相对应紧密配合,用螺栓固定,右轴套有轴心通孔与传动轴相对应滚动紧密配合,轴心通孔壁有环形凹槽,在环形凹槽内有径向通孔与右侧板轴套孔的油道孔相对应,环形凹槽与传动轴进油孔相对应,
    f. 根据权利要求5.a至5.e所述,其特征在于左侧板、中板、右侧板之间用封密圈封密,用螺栓固定,在左侧板上安装左轴套,右侧板上安装右轴套,用螺栓固定,构件成机壳总成,同时也构件成机壳的封密内腔和机壳的水道循环回路。
  6. 根据权利要求1、3、4、5所述,构成传动轴总成的油封垫、螺栓、弹簧、油道,其特征在于传动轴由多级圆柱构件成的圆柱体,圆柱体内的轴向中腔有进油道、出油道,轴向的进油道口、出油道口用油封垫封密用弹簧、螺栓固定,构成各自封闭的油道,径向有进油孔与进油道相通,径向有出油孔与出油道相通,在传动轴多级圆柱体上,右边的进油孔与右轴套凹槽相对应,其圆柱的直径、长度与右轴套相对应滑动紧密配合,传动轴中间圆柱上的进油孔、出油孔与转子的进油孔、出油孔相对应,其圆柱直径、长度与转子的中心轴孔相对应紧密配合以键固定,传动轴左边的圆柱上的出油孔与左轴套的凹槽相对应,其圆柱的直径、长度与左轴套相对应滑动紧密配合,构件成传动轴总成。
  7. 根据权利要求1至6所述,
    a.其特征在于机壳中腔内安装转子,传动轴通过机壳左轴套、转子轴孔、机壳右轴套与其各构件相应配合构件成叶旋发动机,
    b.其特征在于转子与机壳中板通过叶的滚轴滚动紧密配合构件成封密,转子与机壳的左侧板、右侧板通过转子的滚轴、叶侧封、气门封、半环封、封密环滑动紧密配合构件成封密,并构件成各个缸的封密,
    c.其特征在于转子上4个凸面柱的8个叶在机壳内分割成8个封密腔,转子座相邻2个凸面柱上的相邻2个叶与机壳构件成封密的腔为气缸(即燃烧室),其形状像双门对合,转子座同一凸面柱上相邻的2个叶与机壳构件成封密的腔为油缸,其形状像鹰展翅,滚轴以中板中腔类8字形内壁面为轨道滑轮式运动,叶之间进行逐步合页转动并以传动轴为中心轴跟随转子公转,实现此转动方式的构件包括:机壳、转子、传动轴。
  8. 根据权利要求1至7所述,其特征在于所述的三个温度控制系:AS、BS、CS,(AS)的由左侧板的水道、中板的水道、右侧板的水道、出水口、入水口构件成温度控制系为机壳冷却系(AS),介质为水或空气,当机壳改为空气冷却时需将机壳水道改为散热片;(BS)的由转子、机壳构件成的油缸与中板的出油孔、入油孔构件成温度控制系为中至冷却系(BS),介质为油,(BS)也是转子各构件的润滑系(BS1);(CS)的由转子内离心泵系与传动轴的出油道、进油道和左侧板、右侧板的出油道、进油道构件成中心冷却系(CS),介质为油,也构件成传动轴的润滑。
  9. 根据权利要求1至8所述,
    a.其特征在于无需设计复杂的阀门机构,火花塞可持续打火,点火提前角由叶在燃烧室内的位置来决定,
    b.其特征在于所述的转子与传动轴的转动比为 1∶1,运转时叶合页转动,并跟随转子公转,转子直接带传动轴转动,输出轴转动一周时,叶:开2次、合2次,每个冲程进行4次,8个缸同时做功,对置的缸做功方式相同,燃烧室输出动力4次,并使动力曲线为连续的抛物线式,动力输出均衡,中心轴线运动对置各构件质量平衡,发动机做功时不会产生振动,
    c.其特征在于气缸的排量及压缩比可用叶的大小、机壳的内腔大小相对应的变量来控制,
    d.本发动机,可使用多种燃料为动力输出,可使用点燃、压燃等多种方式点火。
  10. 根据权利要求1至9所述,
    a.其特征在于所述的转子、左侧板、中板、右侧板及燃烧室可多个并列设置来改为多转子发动机,如双转子发动机,2个以上的多转子发动机;当使用多转子发动机时,需增加输出轴长度,增加相对应的转子、左侧板、中板、右侧板数量,增加连接构件数量,并将定子改为多段式并列排置,
    b. 转子上环绕转子分布的特殊形状凸面柱可以增减数量,当凸面柱数量改变时,叶的数量相应变量,
    c.发动机可改为泵及气动设备,
    d.根据权利要求所述的上、下、左、右、前、后,只描述方向位置,并不表示构件唯一的特征性。
PCT/CN2019/130966 2019-12-13 2019-12-31 叶旋发动机 WO2021114438A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201911280212.9 2019-12-13
CN201911280212.9A CN110925082B (zh) 2019-12-13 2019-12-13 叶旋发动机

Publications (1)

Publication Number Publication Date
WO2021114438A1 true WO2021114438A1 (zh) 2021-06-17

Family

ID=69860373

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2019/130966 WO2021114438A1 (zh) 2019-12-13 2019-12-31 叶旋发动机

Country Status (2)

Country Link
CN (1) CN110925082B (zh)
WO (1) WO2021114438A1 (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN116677493A (zh) * 2023-08-02 2023-09-01 成都工业学院 一种圆周转子发动机

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113482766A (zh) * 2021-07-13 2021-10-08 李炳强 转子机构和叶旋发动机

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1160811A (zh) * 1996-03-29 1997-10-01 唐禾天 叶片转子式发动机
CN1414214A (zh) * 2001-10-26 2003-04-30 张长春 自平衡的转子发动机
CN101070778A (zh) * 2006-05-09 2007-11-14 彭为民 叶轮式旋转发动机
CN201991604U (zh) * 2011-02-25 2011-09-28 绍兴文理学院 叶片式汽油发动机
WO2015104524A1 (en) * 2014-01-07 2015-07-16 Jack Pearce A heat engine
US20180347363A1 (en) * 2017-06-04 2018-12-06 Robert A. Grisar Circle ellipse engine

Family Cites Families (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR1458413A (fr) * 1965-09-07 1966-03-04 Thomson Houston Comp Francaise Perfectionnements aux dispositifs de réfrigération de pièces mobiles de machines thermiques
US3860365A (en) * 1973-05-03 1975-01-14 William H Bibbens Seals and methods and means of sealing for rotary engines and the like
CN1138136A (zh) * 1995-06-12 1996-12-18 吕文杰 前后叶片式转子发动机
CN2309431Y (zh) * 1997-08-15 1999-03-03 尹平 “8”形转子发动机
CN2911205Y (zh) * 2004-02-17 2007-06-13 顾航 旋转活塞式内燃机
JP4827658B2 (ja) * 2006-08-18 2011-11-30 宗司 中川 ベーン型内燃機関
CN101265839B (zh) * 2008-04-02 2010-11-10 刘若丹 转子发动机
FR2944832A1 (fr) * 2009-04-28 2010-10-29 Vache Conseils Et Participatio Moteur rotatif a air equipe de pales coulissantes
CN201560841U (zh) * 2009-08-11 2010-08-25 天津工程师范学院 双叶片式转子发动机
CN109882286A (zh) * 2019-04-26 2019-06-14 刘志波 一种新型阵列式连续发动机

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1160811A (zh) * 1996-03-29 1997-10-01 唐禾天 叶片转子式发动机
CN1414214A (zh) * 2001-10-26 2003-04-30 张长春 自平衡的转子发动机
CN101070778A (zh) * 2006-05-09 2007-11-14 彭为民 叶轮式旋转发动机
CN201991604U (zh) * 2011-02-25 2011-09-28 绍兴文理学院 叶片式汽油发动机
WO2015104524A1 (en) * 2014-01-07 2015-07-16 Jack Pearce A heat engine
US20180347363A1 (en) * 2017-06-04 2018-12-06 Robert A. Grisar Circle ellipse engine

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN116677493A (zh) * 2023-08-02 2023-09-01 成都工业学院 一种圆周转子发动机
CN116677493B (zh) * 2023-08-02 2023-09-26 成都工业学院 一种圆周转子发动机

Also Published As

Publication number Publication date
CN110925082A (zh) 2020-03-27
CN110925082B (zh) 2021-10-22

Similar Documents

Publication Publication Date Title
RU2357085C2 (ru) Роторное устройство (варианты)
AU2005230656B2 (en) Rotary-piston engine and vehicle comprising an engine of this type
US4004556A (en) Rotary internal combustion engine of axially sliding vane type
HU219044B (hu) Axiáldugattyús forgógép
WO2021114438A1 (zh) 叶旋发动机
KR20140005206A (ko) 로터리 열 엔진
CN1186524C (zh) 自平衡的转子发动机
RU2619672C1 (ru) Шеститактный роторно-лопастной двигатель внутреннего сгорания
CN111102069A (zh) 插板转子发动机
CN108644009A (zh) 一种内燃机端盖及旋转式内燃机
JP2011520060A (ja) オリーブ形ロータリエンジン
US4677950A (en) Rotary cam fluid working apparatus
CN208416698U (zh) 一种内燃机端盖及旋转式内燃机
CN111287972B (zh) 叶旋压缩机
CN208281046U (zh) 一种阀体组件、活塞轴组件及旋转式内燃机
HU222919B1 (hu) Forgódugattyús gép, főleg belső égésű motor
CN101852123A (zh) 摆线转子发动机
CN112664314A (zh) 一种拓扑转子发动机
WO2007054106A1 (en) Internal combustion rotary orbital engine
US6065874A (en) Linear bearing
CN109611195A (zh) 一种转子与定子间导流式转子内燃机
CN218894703U (zh) 转子活塞发动机
CN108468589A (zh) 一种阀体组件、活塞轴组件及旋转式内燃机
RU2777579C1 (ru) Топологический роторный двигатель
WO2018184035A1 (en) Two-stroke cycle rotary internal combustion engine

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 19955743

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

32PN Ep: public notification in the ep bulletin as address of the adressee cannot be established

Free format text: NOTING OF LOSS OF RIGHTS PURSUANT TO RULE 112(1) EPC (EPO FORM 1205A DATED 17.11.2022)

122 Ep: pct application non-entry in european phase

Ref document number: 19955743

Country of ref document: EP

Kind code of ref document: A1