WO2021114265A1 - 设备/集成设备的工作方法、装置、可移动设备、介质 - Google Patents

设备/集成设备的工作方法、装置、可移动设备、介质 Download PDF

Info

Publication number
WO2021114265A1
WO2021114265A1 PCT/CN2019/125306 CN2019125306W WO2021114265A1 WO 2021114265 A1 WO2021114265 A1 WO 2021114265A1 CN 2019125306 W CN2019125306 W CN 2019125306W WO 2021114265 A1 WO2021114265 A1 WO 2021114265A1
Authority
WO
WIPO (PCT)
Prior art keywords
data
work
working
condition
camera
Prior art date
Application number
PCT/CN2019/125306
Other languages
English (en)
French (fr)
Inventor
钱亮
Original Assignee
深圳市大疆创新科技有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 深圳市大疆创新科技有限公司 filed Critical 深圳市大疆创新科技有限公司
Priority to CN201980051242.4A priority Critical patent/CN112544072A/zh
Priority to PCT/CN2019/125306 priority patent/WO2021114265A1/zh
Publication of WO2021114265A1 publication Critical patent/WO2021114265A1/zh

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N5/00Details of television systems
    • H04N5/30Transforming light or analogous information into electric information
    • H04N5/33Transforming infrared radiation
    • GPHYSICS
    • G08SIGNALLING
    • G08BSIGNALLING OR CALLING SYSTEMS; ORDER TELEGRAPHS; ALARM SYSTEMS
    • G08B17/00Fire alarms; Alarms responsive to explosion
    • G08B17/12Actuation by presence of radiation or particles, e.g. of infrared radiation or of ions
    • G08B17/125Actuation by presence of radiation or particles, e.g. of infrared radiation or of ions by using a video camera to detect fire or smoke
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N23/00Cameras or camera modules comprising electronic image sensors; Control thereof
    • H04N23/60Control of cameras or camera modules
    • H04N23/66Remote control of cameras or camera parts, e.g. by remote control devices

Definitions

  • the present disclosure relates to a working method, device, movable device, and recording medium of equipment/integrated equipment.
  • the present disclosure is made to solve the above-mentioned technical problems.
  • a first aspect of the present disclosure provides a working method of a device, including: acquiring first data; in a case where the first data meets a first condition, stopping the device's work of acquiring the first data, And, receiving second data; in the case that the second data meets the second condition, restart the device to obtain the first data, wherein the first data is the receiving of the device
  • the tolerance data related to the impairment tolerance capability, and the second data is trigger data used to trigger the restart of the work of acquiring the first data of the device.
  • a second aspect of the present disclosure provides a working method of an integrated device, including: obtaining first data by a first obtaining unit of the integrated device; and stopping the The work of the first acquiring unit of the integrated device, and the second acquiring unit of the integrated device acquires second data; in the case that the second data meets the second condition, restart the integrated device
  • a third aspect of the present disclosure provides an apparatus, including: a processor; a memory, storing machine-readable instructions, which when executed by the processor, cause the processor to execute the first section of the present disclosure.
  • the working method of the device in one aspect or the working method of the integrated device in the second aspect.
  • a fourth aspect of the present disclosure provides a movable device, including: a body; a power device; and the device of the third aspect.
  • the fifth aspect of the present disclosure provides a computer-readable recording medium that stores executable instructions that, when executed by a processor, cause the processor to execute the working method of the device of the first aspect of the present disclosure , Or the working method of the integrated device of the second aspect.
  • the working method, device, movable device, and recording medium of the device/integrated device of the present disclosure it can effectively protect the long-term stable operation of the device working in harsh environments and harsh conditions, thereby greatly improving the service life of the device, and Obtain stable work results.
  • Fig. 1 schematically shows a brief schematic diagram of a working method of a device according to an embodiment of the present disclosure.
  • Fig. 2 schematically shows a brief flow chart of the working method of the device of the embodiment of the present disclosure.
  • Fig. 3 schematically shows a brief flow chart of a working method of a device/integrated device according to another embodiment of the present disclosure.
  • Fig. 4 schematically shows a structural diagram of a device according to another embodiment of the present disclosure.
  • Fig. 5 schematically shows a brief schematic diagram of the working method of the existing equipment.
  • Fig. 6 schematically shows a brief flow chart of the working method of the existing equipment.
  • an infrared camera as an infrared sensor device to photograph high-energy objects such as the sun and lava as an application scenario in a harsh environment.
  • an infrared camera such as an infrared sensor device exemplified here can of course also be mounted on a mobile device such as a drone, an autonomous driving car, and a self-propelled robot.
  • a mobile device for example, a drone may also include a fuselage, a power unit, and a pan/tilt, through which the device is connected to the drone as a mobile device.
  • infrared sensing devices such as infrared cameras
  • high-energy objects can easily cause irreversible damage to them, which requires effective protection of infrared sensing devices.
  • in this case it is more difficult to obtain infrared image transmission data.
  • the protection methods generally adopted today include, for example:
  • the infrared movement After the infrared movement receives high energy for a period of time (for example, less than 2 minutes), it directly closes the shutter to prevent damage, and triggers an alarm at the same time, allowing the user to manually operate out of the harsh scene;
  • Fig. 5 schematically shows a brief schematic diagram of the working method of the existing equipment.
  • Fig. 6 schematically shows a brief flow chart of the working method of the existing equipment.
  • an infrared camera 100 as a sensing device may be included.
  • the infrared camera 100 may include: an infrared sensor 110, which receives incident light from the outside, and outputs collected data; an energy perception processing unit 120, based on the collected data output by the infrared sensor 110 to obtain that high-energy data is being collected and send it to the shutter control unit 130 A notification signal is output to notify the shutter control unit 130 that high-energy data is being collected; the shutter control unit 130 transmits to the infrared shutter 140, such as a timed flash, according to the notification signal transmitted from the energy sensing processing unit 120 The control signal of the shutter; and the infrared shutter 140, according to the control signal, such as the speed shutter, which is transmitted by the shutter control unit 130, executes the speed shutter (for example, a frequency of 2 seconds).
  • the speed shutter for example, a frequency of 2 seconds
  • step S1' the infrared sensor 110 in the infrared camera 100 as an infrared sensor device receives the incident light, and transmits the infrared collected data from the infrared sensor 110 to the energy sensing processing unit 120, and then the energy sensing processing unit 120 transmits the notification signal (That is, a notification that high-energy data is being collected) is transmitted to the shutter control unit 130.
  • the infrared shutter 140 is controlled by the shutter control unit 130 so that the infrared shutter 140 is opened quickly, for example, the infrared shutter 140 is opened quickly at a frequency of 2 seconds. In this way, the protection of the infrared camera 100 as an infrared sensor device in a harsh environment is realized.
  • the above protection method (1) cannot be used continuously when the user needs to deal with fires and other high-energy scenes in real time; the above protection method (2) has a solution for high-energy scenes, but due to frequent shutter releases, it will There are at least the following two adverse effects: the first is to accelerate the loss of the shutter, which will reduce the service life of the shutter; the second is that the frequent opening and closing of the shutter will cause the convergence of the image transmission screen to be unstable, which greatly affects users Experience.
  • the inventors of the present disclosure have achieved effective protection for sensing devices (for example, infrared cameras, etc.) that work in harsh environments (for example, shooting high-energy objects), so that they are not easily damaged and can be extended. Its service life.
  • sensing devices for example, infrared cameras, etc.
  • harsh environments for example, shooting high-energy objects
  • Fig. 1 schematically shows a brief schematic diagram of a working method of a device according to an embodiment of the present disclosure.
  • Fig. 2 schematically shows a brief flow chart of the working method of the device of the embodiment of the present disclosure.
  • the "device” described here can be either a “single device” that only includes the infrared camera 200 as the first sensing device as shown in the upper part of FIG. 1, or it can be such as
  • the "integrated device” shown in FIG. 1 as a whole includes, for example, an infrared camera 200 as a first sensing device and a camera 300 as a second sensing device.
  • the first sensing device is an infrared camera 200 as an example, where, for example, the infrared camera 200 as the first sensing device may include: an infrared sensor 210, an energy sensing processing unit 220, a shutter control unit 230, and Infrared shutter 240. Further, the infrared sensor 210 receives incident light from the outside and outputs collected data; the energy perception processing unit 220 judges the working environment (for example, a high-energy environment, etc.) of the device according to the collected data output by the infrared sensor 210, When the data being collected is high-energy data, the notification signal A is output to the shutter control unit 230 to notify the shutter control unit 130 that the high-energy data is being collected.
  • the infrared sensor 210 receives incident light from the outside and outputs collected data
  • the energy perception processing unit 220 judges the working environment (for example, a high-energy environment, etc.) of the device according to the collected data output by the infrared sensor 210,
  • the energy sensing processing unit 220 may also transmit the notification signal A to an external second sensing device.
  • the shutter control unit 230 may be based on the energy sensing
  • the notification signal A transmitted from the processing unit 220 transmits a control signal for closing the shutter to the infrared shutter 240.
  • the shutter control unit 230 may transmit the shutter closing situation as the notification signal B to the external as the second sensor device
  • the shutter control unit 230 may also receive trigger data for triggering the closed infrared shutter 240 to reopen the shutter transmitted from the external second sensing device, such as the camera 300.
  • the shutter control unit 230 transmits to the infrared shutter 240 according to determining whether the trigger data exceeds a preset threshold (ie, for example, whether the degree of change of the work scene image captured by the external camera 300 exceeds the preset threshold) A control signal for reopening the shutter (for example, if the degree of change of the working scene image exceeds a preset threshold, a control signal for reopening the shutter is issued).
  • a preset threshold may be 95%, 90%, 85%, 80%, 75%, 70%, 65%, 60% or other suitable values, which are not limited here.
  • the infrared shutter 240 closes or opens the infrared shutter 240 according to the control signal transmitted from the shutter control unit 230.
  • the camera 300 as the second sensing device may include a sensor 310, a data acquisition unit 320, and a data processing unit 330.
  • the sensor 310 receives incident light from the outside, and outputs collected data, that is, outputs collected data including, for example, images of working scenes.
  • the sensor 310 may be, for example, COMS or CCD, and use the well-known photoelectric conversion principle to convert the incident light into collection data.
  • the data collection unit 320 receives the collected data transmitted from the sensor 310, that is, for example, the working scene image, and when the data is received from the infrared camera 200 as the first sensing device, for example, the When the notification signal A or the notification signal B is notified, the image of the work scene is stored immediately and output to the data processing unit 330; the data processing unit 330 receives the image of the work scene stored in real time transmitted from the data collection unit 320 , Perform similarity analysis of the work scene image, and transmit the result of the similarity analysis as the trigger data to, for example, the infrared camera 200 as the first sensing device, to determine the trigger data (ie, for example, the change of the work scene image) Degree) whether it exceeds a predetermined threshold.
  • the trigger data ie, for example, the change of the work scene image
  • Degree the trigger data (ie, for example, the change of the work scene image) Degree) whether it exceeds a predetermined threshold.
  • the camera 300 may also preferably be a wide-angle camera, so that the image of the work scene can be obtained more comprehensively, so that the accuracy of the trigger data can be improved, that is, the accuracy of judging the degree of change of the image of the work scene can be improved, and finally it can be more effective. Precisely protect the infrared camera as the first sensing device.
  • FIG. 2 in conjunction with FIG. 1, a brief flow of the working method of the device of the embodiment of the present disclosure will be specifically described.
  • step S1 first data is acquired by, for example, an infrared camera 200 as the first sensing device.
  • the first data is tolerance data related to the damage tolerance capability of the device, for example, Energy data collected by infrared.
  • step S1a it is determined whether the first data satisfies a first condition, and the first condition means that the first data exceeds a first threshold preset for the tolerance data. For example, it is determined whether the infrared collected energy data as the first data exceeds an energy threshold (for example, 500° C.) preset according to the actual high temperature resistance capability of the device (for example, the included infrared camera). If it is determined that it exceeds the preset energy threshold, go to step S2; otherwise, return to step S1 to continue acquiring the first data.
  • an energy threshold for example, 500° C.
  • step S2 obtaining the first data is stopped, and second data is obtained, and the second data is trigger data used to trigger the restart of the work of obtaining the first data of the device.
  • the trigger data is an external real-time work scene image acquired by a camera, for example.
  • step S2a it is determined whether the second data satisfies a second condition, and the second condition means that the second data exceeds a second threshold preset for the trigger data. For example, it is determined whether the degree of change of the real-time work scene image as the second data exceeds a preset threshold (for example, the preset threshold may be 80%). If it is determined that the preset threshold value is exceeded, step S3 is entered, otherwise, step S2 is returned to continue acquiring the second data.
  • a preset threshold for example, the preset threshold may be 80%
  • step S3 the work of acquiring the first data of the device is restarted, that is, the work of collecting energy data of the infrared camera 200 is restarted.
  • the infrared camera as a sensing device in a harsh environment (for example, photographing a high-energy object), so that it is not easily damaged and its service life can be prolonged.
  • step S2a in the case that the second data does not meet the second condition and is greater than the duration of the predetermined time, restart the device to acquire the first A data job.
  • the duration of the state where the real-time scene does not change much exceeds the predetermined time.
  • the predetermined time may be set in real time according to actual conditions, for example, in a real-time mode, or may be directly set in advance (for example, 5 minutes).
  • step S3 is entered to restart the work of obtaining the first data of the device.
  • the sensing device such as an infrared camera
  • a harsh environment for example, shooting a high-energy object
  • the above method can be: as shown in FIG. 1, on the side of the infrared camera 200 as the first sensing device, the infrared sensor 210 receives incident light, and the infrared sensor 210 receives the incident light. 210 transmits the infrared collected energy data as the first data to the energy perception processing unit 220. In the energy perception processing unit 220, it is determined whether the infrared collected energy data as the first data exceeds the energy threshold preset according to the actual high temperature resistance capability of the device (for example, the included infrared camera).
  • the prediction The set energy threshold can be set in real time according to actual conditions, for example, in a real-time mode, or can be directly set in advance (for example, 500° C.). If it is determined that the energy threshold is exceeded, the energy sensing processing unit 220 transmits a notification signal A to the shutter control unit 230.
  • the notification signal A may be used to indicate the infrared collected energy data Threshold exceeded (that is, high energy). Further optionally, the notification signal A may also be transmitted to, for example, the camera 300 as the second sensing device, so that the camera 300 uses this time as the starting point to start the storage of the real-time work scene image.
  • the shutter control unit 230 transmits a “close shutter” control signal to the infrared shutter 240 according to the notification signal A, so as to stop the infrared camera 200 from acquiring the first data.
  • the shutter control unit 230 may also notify "close the shutter” as a notification.
  • the signal B is transmitted to, for example, the camera 300 as the second sensing device, so that the camera 300 starts the storage of the real-time work scene image with this time as the starting point.
  • the shutter control unit 230 also receives the trigger data transmitted from an external, such as the camera 300, and judges, for example, whether the degree of change of the real-time work scene image exceeds a predetermined threshold (for example, 80%) based on the trigger data, and then judges it as When the predetermined threshold value is exceeded (ie, the instant scene changes significantly), a control signal of "reopening the shutter" is transmitted to the infrared shutter 240 to restart the infrared camera 200 to obtain the first data.
  • a predetermined threshold for example, 80%
  • the sensor 310 receives incident light from the outside (ie, for example, photographing the surrounding scene), and uses the real-time image of the real-time work scene as the acquisition
  • the data is transmitted to the data collection unit 320.
  • the data collection unit 320 starts the storage of the real-time work scene image by receiving the notification signal A or the notification signal B transmitted from an external first sensing device, such as an infrared camera 200, as a starting point, and
  • the stored immediate work scene image is transmitted to the data processing unit 330.
  • the data processing unit 330 performs similarity analysis on the work scene image stored at the current time and the work scene image stored at the previous time according to the received instant work scene image, and obtains the instant work scene image according to the result of the similarity analysis.
  • the degree of change of the image of the work scene, and the degree of change of the image of the immediate work scene is transmitted as trigger data to, for example, the infrared camera 200 as the first sensing device.
  • the infrared camera as a sensing device in a harsh environment (for example, photographing a high-energy object), so that it is not easily damaged and its service life can be prolonged.
  • the "device” described herein can be either a “single device” that only includes the infrared camera 200 as the first sensing device as shown in the upper part of FIG. 1, or it may be the “single device” as shown in FIG.
  • the whole shown includes an "integrated device” such as an infrared camera 200 as a first sensing device and a camera 300 as a second sensing device.
  • the infrared camera 200 as the first sensing device and the camera 300 as the second sensing device may be separate from each other or may be integrally formed.
  • FIG. 3 is taken as an example for description.
  • step S101 for acquiring information related to the work scene and step S102 for judging whether the work scene is a predetermined work scene can be added.
  • step S101 information related to the work scene is acquired.
  • step S102 it is judged whether the acquired working scene is a predetermined working scene, and the predetermined working scene may be, for example, a scene that needs to acquire data for a long time in a harsh environment (for example, shooting high-energy objects for more than 5 minutes, etc.). If the work scene is the predetermined work scene, enter step S1 as shown in FIG.
  • step S1 to S3 of the above-mentioned method of the present disclosure when it is determined that the work scene is not the In the case of a predetermined work scene (for example, shooting a high-energy object in less than 5 minutes, etc.), it can be considered that the existing method of timing the shutter as shown in Figure 5 and Figure 6 is used for data acquisition, that is, taking photos, etc. The continuity of the acquisition is well maintained and the sensing device (such as the shutter, etc.) will not be greatly damaged.
  • step S1' as shown in Figure 6 to execute the existing timing quick shutter release Step S1' to step S2' of the method.
  • the user can choose whether to use the above-mentioned method of the present disclosure or the existing timed quick shutter method based on the different working scenarios, so that the user can flexibly and effectively adopt the protection strategy according to the actual application scenario, greatly improving User experience.
  • FIG. 4 another device that implements the foregoing method of the present disclosure in a hardware manner is described.
  • Fig. 4 schematically shows a structural diagram of a device according to another embodiment of the present disclosure.
  • the apparatus 500 may include: a processor 510 (for example, a CPU, etc.), and a memory 520 (for example, a hard disk HDD, a read-only memory ROM, etc.). In addition, it may also include a readable storage medium 521 (for example, a magnetic disk, an optical disk, CD-ROM, USB, etc.) indicated by a dotted line.
  • a processor 510 for example, a CPU, etc.
  • a memory 520 for example, a hard disk HDD, a read-only memory ROM, etc.
  • a readable storage medium 521 for example, a magnetic disk, an optical disk, CD-ROM, USB, etc.
  • each part in the moving route generating device 500 may be one or more, for example, the processor 510 may be one or more processors.
  • the computer software program is stored in the memory 520 as a storage device of the device 500, and by executing the computer software program, one or more processors 510 of the device 500 execute the diagrams of the present disclosure.
  • an infrared camera as a sensing device in harsh environments (for example, shooting high-energy objects), making it less vulnerable to damage, prolonging its service life, and realizing in harsh environments (for example, , In front of high-energy objects) still simulates real and reliable data display (for example, infrared and visible light images, etc.), and enables users to flexibly and effectively adopt protection strategies according to actual application scenarios, greatly improving user experience .
  • the method can also be stored in a computer-readable storage medium (for example, the readable storage medium 521 shown in FIG. 4) as a computer program, and the computer program may include code/computer-executable instructions , To make the computer execute the method and its variants shown in the flowcharts of Figs. 2, 3, and 6 of the present disclosure, for example.
  • a computer-readable storage medium for example, the readable storage medium 521 shown in FIG. 4
  • the computer program may include code/computer-executable instructions
  • a computer-readable storage medium may be, for example, any medium that can contain, store, transmit, propagate, or transmit instructions.
  • a readable storage medium may include, but is not limited to, an electric, magnetic, optical, electromagnetic, infrared, or semiconductor system, device, device, or propagation medium.
  • Specific examples of readable storage media include: magnetic storage devices, such as magnetic tape or hard disk (HDD); optical storage devices, such as optical disks (CD-ROM); memory, such as random access memory (RAM) or flash memory; and/or wired /Wireless communication link.
  • the computer program may be configured to have, for example, computer program code including computer program modules. It should be noted that the division method and number of modules are not fixed. Those skilled in the art can use appropriate program modules or program module combinations according to actual conditions. When these program module combinations are executed by a computer (or processor), the computer For example, the flow of the method described above in conjunction with FIGS. 2, 3, and 6 and its variants can be executed.

Landscapes

  • Engineering & Computer Science (AREA)
  • Multimedia (AREA)
  • Signal Processing (AREA)
  • Business, Economics & Management (AREA)
  • Emergency Management (AREA)
  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Studio Devices (AREA)

Abstract

本公开涉及一种设备的工作方法,包括:获取第一数据(S1);在所述第一数据满足第一条件的情况下,停止所述设备的获取所述第一数据的工作,并且,接收第二数据(S2);在所述第二数据满足第二条件的情况下,重新启动所述设备的获取所述第一数据的工作(S3);其中,所述第一数据是与所述设备的受损耐受能力相关的耐受数据,所述第二数据是用于触发所述设备的获取所述第一数据的工作的重新启动的触发数据。

Description

设备/集成设备的工作方法、装置、可移动设备、介质 技术领域
本公开涉及一种设备/集成设备的工作方法、装置、可移动设备、记录介质。
背景技术
随着自动化设备发展,尤其是可移动设备(例如,包括无人机、自动驾驶型汽车、自走型机器人等自走型设备)技术的快速发展,这类设备已广泛应用于各种各样的应用场景,尤其可以应用于某些特定的应用场景(例如,利用这类设备到人类无法涉及的区域来探测/获取各种现场数据等)。
所谓特定的应用场景往往是些恶劣环境下的应用场景、或者所要探测/获取的现场数据是恶劣条件下的现场数据。这样,这些恶劣环境、恶劣条件就会对这类设备和/或其包含的部件等带来损害,在这些恶劣环境、恶劣条件下长时间工作更会导致这类设备和/或其包含的部件等受损而工作异常,甚至完全无法工作。
因此,如何有效地保护这类设备在恶劣环境、恶劣条件下的长时间稳定工作,就成为急需解决的技术问题。
发明内容
本公开就是为了解决上述这样的技术问题而做出的。
本公开的第一方面提供了一种设备的工作方法,包括:获取第一数据;在所述第一数据满足第一条件的情况下,停止所述设备的获取所述第一数据的工作,并且,接收第二数据;在所述第二数据满足第二条件的情况下,重新启动所述设备的获取所述第一数据的工作,其中,所述第一数据是与所述设备的受损耐受能力相关的耐受数据,所 述第二数据是用于触发所述设备的获取所述第一数据的工作的重新启动的触发数据。
本公开的第二方面提供了一种集成设备的工作方法,包括:由所述集成设备的第一获取单元获取第一数据;在所述第一数据满足第一条件的情况下,停止所述集成设备的所述第一获取单元的工作,并且,由所述集成设备的第二获取单元获取第二数据;在所述第二数据满足第二条件的情况下,重新启动所述集成设备的所述第一获取单元的工作,其中,所述第一数据是与所述第一获取单元的受损耐受能力相关的耐受数据,所述第二数据是用于触发所述集成设备的所述第一获取单元的工作的重新启动的触发数据。
本公开的第三方面提供了一种装置,包括:处理器;存储器,存储有机器可读指令,所述指令在被所述处理器执行时,使得所述处理器执行本公开的所述第一方面的所述设备的工作方法、或所述第二方面的所述集成设备的工作方法。
本公开的第四方面提供了一种可移动设备,包括:机身;动力装置;以及所述第三方面的所述装置。
本公开的第五方面提供了一种计算机可读的记录介质,存储有可执行指令,该指令被处理器执行时使该处理器执行本公开的所述第一方面的所述设备的工作方法、或所述第二方面的所述集成设备的工作方法。
根据本公开的设备/集成设备的工作方法、装置、可移动设备、记录介质,能够有效地保护在恶劣环境、恶劣条件下工作的设备的长时间稳定工作,从而大大提高设备的使用寿命,并获得稳定的工作成果。
附图说明
为了更完整地理解本公开及其优势,现在将参考结合附图的以下描述,其中:
图1示意性示出了本公开实施例的设备的工作方法的简要示意图。
图2示意性示出了本公开实施例的设备的工作方法的简要流程图。
图3示意性示出了本公开另一实施例的设备/集成设备的工作方法 的简要流程图。
图4示意性示出了本公开另一实施例的装置的结构简图。
图5示意性示出了现有的设备的工作方法的简要示意图。
图6示意性示出了现有的设备的工作方法的简要流程图。
具体实施方式
以下,将参照附图来描述本公开的实施例。
首先,以例如利用作为红外传感装置的红外相机拍摄太阳、熔岩等高能量物体作为恶劣环境下的应用场景。
此外,这里要说明的是,在此仅为一种示例,恶劣环境下的应用场景还可以是例如超高气压(或水压)、超低气温、高酸/碱环境等其他恶劣环境下的应用场景,同样,这些其他应用场景也可以根据实际情况而应用本公开的技术方案。
此外,这里示例的作为红外传感装置的例如红外相机当然也可以搭载于例如无人机、自动驾驶型汽车、自走型机器人等可移动设备。在此情况下,作为可移动设备,例如无人机还可以包括机身、动力装置、云台,通过所述云台将装置连接于作为可移动设备的无人机。
众所周知,由于作为红外传感装置的例如红外相机等的特性,高能量物体很容易对其造成不可恢复的损伤,这就需要对红外传感装置进行有效的保护。另一方面,在这种情况下,获取红外的图像传输数据就更为困难。
另外,由于考虑到作为红外传感装置的例如红外相机的机芯的敏感性,现今一般采取的保护方法例如有:
(1)红外机芯接收到高能量一段时间之后(例如,小于2分钟),就直接将快门关闭,以防止损坏,同时触发报警,让用户手动操作脱离该恶劣场景;
(2)如图5、图6所示的定时快速打快门的方法。
下面,简要说明这一当前较常用的定时快速打快门的方法。
图5示意性示出了现有的设备的工作方法的简要示意图。
图6示意性示出了现有的设备的工作方法的简要流程图。
如图5所示,作为现有的设备例如可以包括作为传感装置的红外相机100。红外相机100可以包括:红外传感器110,接收外部的入射光,输出采集数据;能量感知处理单元120,根据由红外传感器110输出的所述采集数据来得出正在采集高能量数据而向快门控制单元130输出通知信号,以将正在采集高能量数据这一情形通知给快门控制单元130;快门控制单元130,根据由能量感知处理单元120传送来的所述通知信号,向红外快门140传送例如定时快打快门的控制信号;以及红外快门140,根据由快门控制单元130传送来的例如定时快打快门的所述控制信号,执行该定时快打快门(例如,2秒的频率)。
下面,参照图6并结合图5来说明现有的设备的工作方法的简要流程。
在步骤S1’,由作为红外传感装置的红外相机100中的红外传感器110接收入射光,从红外传感器110将红外采集数据传送给能量感知处理单元120,再由能量感知处理单元120将通知信号(即,通知正在采集高能量数据)传送给快门控制单元130。然后,在步骤S2’,由快门控制单元130控制红外快门140,以使得定时快打该红外快门140,例如,以2秒的频率定时快打红外快门140。由此来实现在恶劣环境下对作为红外传感装置的红外相机100的保护。
然而,上述保护方法(1),在用户需要应对火灾等这样需要实时拍摄高能量场景时无法持续使用;上述保护方法(2),针对高能量场景有解决方案,但是由于频繁打快门,就会产生至少如下两点不利影响:第一点就是加快了快门的损耗,会降低快门的使用寿命;第二点是由于频繁开关快门,会导致图像传输画面的收敛不稳定,这就非常影响用户的体验。
因此,本公开的发明人经过锐意研究,实现了对在恶劣环境下(例如,拍摄高能量物体)工作的传感装置(例如,红外相机等)的有效保护,使其不易受损、能延长其使用寿命。
下面,参照图1以及图2来具体说明本公开的上述技术方案。
图1示意性示出了本公开实施例的设备的工作方法的简要示意图。
图2示意性示出了本公开实施例的设备的工作方法的简要流程图。
此外,这里要说明的是,在此所述的“设备”既可以是如图1中上部所示的仅包括作为第一传感装置的例如红外相机200的“单一设备”,也可以是如图1整体所示的包括作为第一传感装置的例如红外相机200和作为第二传感装置的例如相机300的“集成设备”。
如图1所示,以第一传感装置为红外相机200为例,其中,作为第一传感装置的例如红外相机200可以包括:红外传感器210、能量感知处理单元220、快门控制单元230以及红外快门240。进一步地,红外传感器210接收外部的入射光,输出采集数据;能量感知处理单元220根据由红外传感器210输出的所述采集数据来判断所述设备所处工作环境(例如,高能量环境等),当正在采集的数据为高能量数据时,向快门控制单元230输出通知信号A,以将正在采集高能量数据这一情形通知给快门控制单元130。
进一步地,所述能量感知处理单元220还可以将所述通知信号A传送给外部的第二传感装置,其中,以第二传感装置为相机300为例,快门控制单元230根据由能量感知处理单元220传送来的所述通知信号A,向红外快门240传送关闭快门的控制信号,例如,快门控制单元230可以将关闭快门这一情形作为通知信号B传送给外部的作为第二传感装置的例如相机300,而且,所述快门控制单元230还可以接收由外部的作为第二传感装置的例如相机300传送来的用于触发使被关闭的红外快门240重新打开快门的触发数据。具体地,所述快门控制单元230根据判断该触发数据是否超出预设的阈值(即,例如外部的相机300拍摄到的工作场景图像的变化程度是否超出预设阈值),来向红外快门240传送重新打开快门的控制信号(例如,工作场景图像的变化程度超出预设阈值,则发出重新打开快门的控制信号)。在一种实施方式中,预设阈值可以为95%,90%,85%,80%,75%,70%,65%,60%或其他合适的数值,在此不作限定。进一步地,红外快门240根据由快门控制单元230传送来的控制信号,执行红外快门240的关闭或打开。
另外,作为第二传感装置的例如相机300可以包括:传感器310、数据采集单元320、以及数据处理单元330。进一步地,传感器310 接收外部的入射光,输出采集数据,即输出例如包括工作场景图像的采集数据,这里传感器310可以为例如COMS或CCD,利用公知的光电转换原理,将入射光转变为作为采集数据的工作场景图像而输出;数据采集单元320,接收由传感器310传送来的采集数据,即例如工作场景图像,且当接收到从作为第一传感装置的例如红外相机200传送来的所述通知信号A或所述通知信号B时,开始即时存储所述工作场景图像,并输出至数据处理单元330;数据处理单元330,接收由数据采集单元320传送来的即时存储的所述工作场景图像,进行工作场景图像的相似度分析,将相似度分析的结果作为所述触发数据传送给作为第一传感装置的例如红外相机200,以判断所述触发数据(即,例如工作场景图像的变化程度)是否超出预定的阈值。这里,相机300也可以优选为广角相机,这样,能够更全面地获取工作场景图像,从而能够提高所述触发数据的准确性,即提高工作场景图像的变化程度判断的准确性,最终能够更有效精准地保护作为第一传感装置的例如红外相机。
下面,参照图2并结合图1来具体说明本公开实施例的设备的工作方法的简要流程。
如图2所示,在步骤S1,由作为第一传感装置的例如红外相机200获取第一数据,该第一数据是与所述设备的受损耐受能力相关的耐受数据,例如,红外采集的能量数据。
在步骤S1a,判断所述第一数据是否满足第一条件,所述第一条件是指:所述第一数据超出针对所述耐受数据预设的第一阈值。例如,判断作为所述第一数据的红外采集的能量数据是否超过根据该设备(例如,包含的红外相机)的实际耐高温能力而预设的能量阈值(例如,500℃)。若判断为超出预设的能量阈值,则进入步骤S2,否则返回步骤S1继续获取所述第一数据。
在步骤S2,停止获取所述第一数据,而获取第二数据,该第二数据是用于触发所述设备的获取所述第一数据的工作的重新启动的触发数据。例如,所述触发数据是外部的例如相机所获取的即时工作场景图像。
在步骤S2a,判断所述第二数据是否满足第二条件,所述第二条件是指:所述第二数据超出针对所述触发数据预设的第二阈值。例如,判断作为所述第二数据的即时工作场景图像的变化程度是否超出预设阈值(例如预设阈值可以为80%)。若判断为超出预设的阈值,则进入步骤S3,否则返回步骤S2继续获取所述第二数据。
在步骤S3,重新启动所述设备的获取所述第一数据的工作,即重新启动所述红外相机200的采集能量数据的工作。
由此,能够实现在恶劣环境下(例如,拍摄高能量物体)有效保护作为传感装置的例如红外相机,使其不易受损、能延长其使用寿命。
此外,作为一种优选,还可以根据实际情况,在步骤S2a追加如下步骤:在所述第二数据不满足第二条件且大于持续预定时间的情况下,重新启动所述设备的获取所述第一数据的工作。例如,在即时工作场景图像的变化程度未为超出阈值(也就是说,即时场景没有太大变化)的情况下,进一步判断这一即时场景变化不大的状态的持续时间是否超过预定时间。这里,该预定时间既可以例如在实时方式下根据实际情况而实时设定,也可以直接预先设定(例如,5分钟)。在一种实施方式中,在该持续时间超过所述预定时间的情况下,进入步骤S3来重新启动所述设备的获取所述第一数据的工作。这样,能够在恶劣环境下(例如,拍摄高能量物体)有效保护作为传感装置的例如红外相机的同时,还尽量保证传感装置获取数据的连续性和稳定性。
此外,若具体以图1为示例来描述上述方法,则可以为:如图1所示,在作为第一传感装置的例如红外相机200一侧,由红外传感器210接收入射光,从红外传感器210将作为所述第一数据的红外采集的能量数据传送给能量感知处理单元220。在能量感知处理单元220中,判断作为所述第一数据的红外采集的能量数据是否超过根据该设备(例如,包含的红外相机)的实际耐高温能力而预设的能量阈值,这里,该预设的能量阈值既可以例如在实时方式下根据实际情况而实时设定,也可以直接预先设定(例如,500℃)。若判断为超出预设的能量阈值,则由能量感知处理单元220向快门控制单元230传送通知信号A,例如,在一种实施方式中,通知信号A可以用于表示所述红 外采集的能量数据超出阈值(即表示高能量)。进一步可选地,通知信号A也可以传送给作为第二传感装置的例如相机300,以使相机300以此时作为起点而开始即时工作场景图像的存储。所述快门控制单元230根据该通知信号A,向红外快门240传送“关闭快门”的控制信号,以停止红外相机200的获取第一数据的工作。同时,可选地,在能量感知处理单元220未向作为第二传感装置的例如相机300传送所述通知信号A的情况下,也可以由所述快门控制单元230将“关闭快门”作为通知信号B传送给作为第二传感装置的例如相机300,以使相机300以此时作为起始点而开始即时工作场景图像的存储。此外,快门控制单元230还接收由外部的例如相机300传送来的所述触发数据,根据该触发数据来判断例如即时工作场景图像的变化程度是否超出预定的阈值(例如80%),在判断为超出预定的阈值(即,即时场景发生明显变化)的情况下,向红外快门240传送“重新打开快门”的控制信号,以重新启动红外相机200的获取第一数据的工作。
此外,如图1所示,在作为第二传感装置的例如相机300一侧,由传感器310接收外部的入射光(即,例如拍摄周围场景),并将即时拍摄的即时工作场景图像作为采集数据传送给数据采集单元320。数据采集单元320以接收到由外部的作为第一传感装置的例如红外相机200传送来的所述通知信号A或所述通知信号B作为起始点而开始所述即时工作场景图像的存储,并将所存储的所述即时工作场景图像传送给数据处理单元330。数据处理单元330根据接收到的所述即时工作场景图像,将当前时刻存储的工作场景图像与前一时刻存储的工作场景图像进行相似度分析,根据所述相似度分析的结果来得出所述即时工作场景图像的变化程度,并将该即时工作场景图像的变化程度作为触发数据传送给作为第一传感装置的例如红外相机200。
由此,能够实现在恶劣环境下(例如,拍摄高能量物体)有效保护作为传感装置的例如红外相机,使其不易受损、能延长其使用寿命。
此外,如上所述,在此所述的“设备”既可以是如图1中上部所示的仅包括作为第一传感装置的例如红外相机200的“单一设备”,也可以是如图1整体所示的包括作为第一传感装置的例如红外相机200和作 为第二传感装置的例如相机300的“集成设备”。在所述“集成设备”的情况下,作为第一传感装置的例如红外相机200和作为第二传感装置的例如相机300既可以为彼此分立,也可以为一体构成。
此外,正是通过上述方法这样的两个传感装置(例如,红外相机和广角相机)的协同动作及有效配合,从而能够实现在恶劣坏境下(例如,在高能量体面前)依然模拟出真实、可靠的数据展示(例如,红外和可见光的画面等)。
下面,作为上述方法的另一实施例,以图3为示例进行说明。
如图3所示,可以在图2所示的步骤S1之前,追加获取与工作场景相关的信息的步骤S101和判断工作场景是否为预定工作场景的步骤S102。
具体而言,在步骤S101,获取与工作场景相关的信息。在步骤S102,判断所获取的工作场景是否为预定工作场景,所述预定工作场景可以为例如需要在恶劣环境下长时间获取数据的场景(例如,5分钟以上拍摄高能量物体等),在判断为所述工作场景为所述预定工作场景的情况下,进入如图2所示的步骤S1,执行本公开的上述方法的步骤S1至步骤S3;而在判断为所述工作场景不为所述预定工作场景的情况下(例如,不到5分钟拍摄高能量物体等),可以认为以现有的如图5、图6所示的定时快打快门的方法进行数据获取即例如拍照等能更好地保持获取的连续性且对传感装置(例如其中的快门等)也不会带来很大损伤,此时可以进入如图6所述的步骤S1’,执行现有的定时快打快门方法的步骤S1’至步骤S2’。
由此,用户可以通过工作场景的不同来选择是采用本公开的上述方法、还是采用现有的定时快打快门方法,从而能够使用户根据实际应用场景而灵活且有效地采取保护策略,大大提高用户的使用体验。
下面,以图4为例,说明另一种以硬件方式来实现了本公开的上述方法的装置。
图4示意性示出了本公开另一实施例的装置的结构简图。
如图4所示,装置500可以包括:处理器510(例如,CPU等)、存储器520(例如,硬盘HDD、只读存储器ROM等)。此外,还可以 包括用虚线表示的可读存储介质521(例如,磁盘、光盘CD-ROM、USB等)。
此外,该图4仅是一个示例,并不限定本公开的技术方案。其中,移动路线生成装置500中的各个部分均可以是一个或多个,例如,处理器510既可以是一个也可以是多个处理器。
这样,不言而喻,本公开实施例的上述方法的上文参考流程图(图2、3、6)描述的过程可以被实现为计算机软件程序。在此,该计算机软件程序也可以为一个或多个。
于是,例如,所述计算机软件程序存储于所述装置500的作为存储装置的存储器520中,通过执行该计算机软件程序,从而使所述装置500的一个或多个处理器510执行本公开的图2、3、6等流程图所示的所述方法及其变形。
由此,同样能够实现在恶劣环境下(例如,拍摄高能量物体)有效保护作为传感装置的例如红外相机,使其不易受损、能延长其使用寿命,能够实现在恶劣坏境下(例如,在高能量体面前)依然模拟出真实、可靠的数据展示(例如,红外和可见光的画面等),且能够使用户根据实际应用场景而灵活且有效地采取保护策略,大大提高用户的使用体验。
此外,不言而喻,所述方法同样可以作为计算机程序而存储于计算机可读存储介质(例如,图4所示的可读存储介质521)中,该计算机程序可以包括代码/计算机可执行指令,使计算机执行例如本公开的图2、3、6等流程图所示的所述方法及其变形。
此外,计算机可读存储介质,例如可以是能够包含、存储、传送、传播或传输指令的任意介质。例如,可读存储介质可以包括但不限于电、磁、光、电磁、红外或半导体系统、装置、器件或传播介质。可读存储介质的具体示例包括:磁存储装置,如磁带或硬盘(HDD);光存储装置,如光盘(CD-ROM);存储器,如随机存取存储器(RAM)或闪存;和/或有线/无线通信链路。
另外,计算机程序可被配置为具有例如包括计算机程序模块的计算机程序代码。应当注意,模块的划分方式和个数并不是固定的,本领域技术人员可以根据实际情况使用合适的程序模块或程序模块组合,当这 些程序模块组合被计算机(或处理器)执行时,使得计算机可以执行例如上面结合图2、3、6所描述的方法的流程及其变形。
本领域技术人员可以理解,本公开的各个实施例和/或权利要求中记载的特征可以进行多种组合或/或结合,即使这样的组合或结合没有明确记载于本公开中。特别地,在不脱离本公开精神和教导的情况下,本公开的各个实施例和/或权利要求中记载的特征可以进行多种组合和/或结合。所有这些组合和/或结合均落入本公开的范围。
尽管已经参照本公开的特定示例性实施例示出并描述了本公开,但是本领域技术人员应该理解,在不背离所附权利要求及其等同物限定的本公开的精神和范围的情况下,可以对本公开进行形式和细节上的多种改变。因此,本公开的范围不应该限于所述实施例,而是应该不仅由所附权利要求来进行确定,还由所附权利要求的等同物来进行限定。

Claims (36)

  1. 一种设备的工作方法,其特征在于,包括:
    获取第一数据;
    在所述第一数据满足第一条件的情况下,停止所述设备的获取所述第一数据的工作,并且,接收第二数据;
    在所述第二数据满足第二条件的情况下,重新启动所述设备的获取所述第一数据的工作,
    其中,所述第一数据是与所述设备的受损耐受能力相关的耐受数据,所述第二数据是用于触发所述设备的获取所述第一数据的工作的重新启动的触发数据。
  2. 根据权利要求1所述的方法,其特征在于,
    所述第一条件是指:所述第一数据超出针对所述耐受数据预设的第一阈值;和/或
    所述第二条件是指:所述第二数据超出针对所述触发数据预设的第二阈值。
  3. 根据权利要求2所述的方法,所述触发数据包括所述设备的工作场景图像,所述第二阈值用于表征所述工作场景图像的变化程度。
  4. 根据权利要求3所述的方法,所述工作场景图像的变化程度通过对顺次取得的所述工作场景图像进行相似度分析获取。
  5. 根据权利要求4所述的方法,其特征在于,
    所述设备包括第一传感装置。
  6. 根据权利要求5所述的方法,其特征在于,
    所述第一传感装置从外部获取所述耐受数据
    所述第一传感装置接收第二传感装置从外部获取的所述触发数据。
  7. 根据权利要求6所述的方法,其特征在于,
    所述第一传感装置包括红外相机,
    所述耐受数据是所述红外相机从外部获取的红外能量。
  8. 根据权利要求7所述的方法,其特征在于,
    所述第一阈值是所述红外相机能够承受的红外能量值。
  9. 根据权利要求6所述的方法,其特征在于,
    所述第二传感装置包括相机,
    所述工作场景图像是所述相机从外部获取的。
  10. 根据权利要求9所述的方法,其特征在于,
    所述相机是广角相机。
  11. 根据权利要求4所述的方法,其特征在于,
    所述工作场景图像的变化程度通过对顺次取得的所述工作场景图像进行相似度分析获取,包括:
    即时存储所述工作场景图像;
    将当前时刻存储的工作场景图像与前一时刻存储的工作场景图像进行相似度分析;
    根据所述相似度分析的结果获取所述工作场景图像的变化程度。
  12. 根据权利要求1-11中任一项所述的方法,其特征在于,还包括:
    在所述第二数据不满足第二条件且大于持续预定时间的情况下,重新启动所述设备的获取所述第一数据的工作。
  13. 根据权利要求1-11所述的方法,其特征在于,
    所述设备接收到的所述第二数据用于判断是否满足所述第二条件的起始点是在所述第一数据满足所述第一条件的时刻。
  14. 根据权利要求1-11所述的方法,其特征在于,
    所述设备接收到的所述第二数据用于判断是否满足所述第二条件的起始点是在停止所述设备的获取所述第一数据的工作的时刻。
  15. 根据权利要求1所述的方法,其特征在于,还包括:
    在所述获取第一数据的步骤之前,判断所述设备的工作场景是否为预定工作场景,
    在所述工作环境为所述预定工作场景的情况下,执行所述获取第一数据的步骤及其之后的步骤。
  16. 一种集成设备的工作方法,其特征在于,包括:
    由所述集成设备的第一获取单元获取第一数据;
    在所述第一数据满足第一条件的情况下,停止所述集成设备的所述第一获取单元的工作,并且,由所述集成设备的第二获取单元获取第二数据;
    在所述第二数据满足第二条件的情况下,重新启动所述集成设备的所述第一获取单元的工作,
    其中,所述第一数据是与所述第一获取单元的受损耐受能力相关的耐受数据,所述第二数据是用于触发所述集成设备的所述第一获取单元的工作的重新启动的触发数据。
  17. 根据权利要求16所述的方法,其特征在于,
    所述第一条件是指:所述第一数据超出针对所述耐受数据预设的第一阈值;和/或
    所述第二条件是指:所述第二数据超出针对所述触发数据预设的第二阈值。
  18. 根据权利要求17所述的方法,所述触发数据包括所述设备的工作场景图像,所述第二阈值用于表征所述工作场景图像的变化程度。
  19. 根据权利要求18所述的方法,所述工作场景图像的变化程度通过对顺次取得的所述工作场景图像进行相似度分析获取。
  20. 根据权利要求19所述的方法,其特征在于,
    所述第一获取单元是从外部获取所述耐受数据的第一传感装置。
  21. 根据权利要求20所述的方法,其特征在于,
    所述第一传感装置包括红外相机,
    所述耐受数据是所述红外相机从外部获取的红外能量。
  22. 根据权利要求21所述的方法,其特征在于,
    所述第一阈值是所述红外相机能够承受的红外能量值。
  23. 根据权利要求19所述的方法,其特征在于,
    所述第二获取单元是从外部获取所述触发数据的第二传感装置。
  24. 根据权利要求23所述的方法,其特征在于,
    所述第二传感装置包括相机,
    所述触发数据是所述相机从外部获取的工作场景图像。
  25. 根据权利要求24所述的方法,其特征在于,
    所述相机是广角相机。
  26. 根据权利要求19所述的方法,其特征在于,
    所述工作场景图像的变化程度通过对顺次取得的所述工作场景图像进行相似度分析获取,包括:
    即时存储所述工作场景图像;
    将当前时刻存储的工作场景图像与前一时刻存储的工作场景图像进行相似度分析;
    根据所述相似度分析的结果来得出所述工作场景图像的变化程度。
  27. 根据权利要求16-26中任一项所述的方法,其特征在于,还包括:
    在所述第二数据不满足第二条件且大于持续预定时间的情况下,重新启动所述集成设备的所述第一获取单元的工作。
  28. 根据权利要求16-26中任一项所述的方法,其特征在于,
    所述集成设备的所述第一获取单元和所述第二获取单元是彼此分立的、或者是组成一体的。
  29. 根据权利要求16-26所述的方法,其特征在于,
    所述第二获取单元获取用于判断是否满足所述第二条件的所述第二数据的起始点是在所述第一数据满足所述第一条件的时刻。
  30. 根据权利要求16-26所述的方法,其特征在于,
    所述第二获取单元获取用于判断是否满足所述第二条件的所述第二数据的起始点是在停止所述集成设备的所述第一获取单元的工作的时刻。
  31. 根据权利要求16所述的方法,其特征在于,还包括:
    在所述由所述集成设备的第一获取单元获取第一数据的步骤之前,判断所述集成设备的工作场景是否为预定工作场景,
    在所述工作环境为所述预定工作场景的情况下,执行所述由所述集成设备的第一获取单元获取第一数据的步骤及其之后的步骤。
  32. 一种装置,其特征在于,包括:
    处理器;和
    存储器,存储有机器可读指令,所述指令在被所述处理器执行时,使得所述处理器执行权利要求1~15中任一项所述设备的工作方法、或权利要求16~31中任一项所述集成设备的工作方法。
  33. 一种可移动设备,其特征在于,包括:
    机身;
    动力装置;以及
    权利要求32所述的装置。
  34. 根据权利要求33所述的可移动设备,其特征在于,
    还包括云台,
    所述装置通过所述云台连接于所述可移动设备。
  35. 根据权利要求33所述的可移动设备,其特征在于,
    所述可移动设备为无人机。
  36. 一种计算机可读的记录介质,存储有可执行指令,该指令被处理器执行时使该处理器执行权利要求1~15中任一项所述设备的工作方法、或权利要求16~31中任一项所述集成设备的工作方法。
PCT/CN2019/125306 2019-12-13 2019-12-13 设备/集成设备的工作方法、装置、可移动设备、介质 WO2021114265A1 (zh)

Priority Applications (2)

Application Number Priority Date Filing Date Title
CN201980051242.4A CN112544072A (zh) 2019-12-13 2019-12-13 设备/集成设备的工作方法、装置、可移动设备、介质
PCT/CN2019/125306 WO2021114265A1 (zh) 2019-12-13 2019-12-13 设备/集成设备的工作方法、装置、可移动设备、介质

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/CN2019/125306 WO2021114265A1 (zh) 2019-12-13 2019-12-13 设备/集成设备的工作方法、装置、可移动设备、介质

Publications (1)

Publication Number Publication Date
WO2021114265A1 true WO2021114265A1 (zh) 2021-06-17

Family

ID=75013385

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2019/125306 WO2021114265A1 (zh) 2019-12-13 2019-12-13 设备/集成设备的工作方法、装置、可移动设备、介质

Country Status (2)

Country Link
CN (1) CN112544072A (zh)
WO (1) WO2021114265A1 (zh)

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103871186A (zh) * 2012-12-17 2014-06-18 博立码杰通讯(深圳)有限公司 安防监控系统及相应的报警触发方法
CN106454099A (zh) * 2016-10-25 2017-02-22 武汉烽火众智数字技术有限责任公司 一种改进型摄像机日夜模式切换方法
CN108270970A (zh) * 2018-01-24 2018-07-10 北京图森未来科技有限公司 一种图像采集控制方法及装置、图像采集系统
CN109218598A (zh) * 2017-06-30 2019-01-15 北京臻迪科技股份有限公司 一种相机切换方法、装置及无人机
CN109688332A (zh) * 2019-02-14 2019-04-26 普联技术有限公司 摄像模式调整方法、装置及终端设备
US20190130579A1 (en) * 2017-10-27 2019-05-02 Samsung Electronics Co., Ltd. Method and apparatus for tracking object

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104349038B (zh) * 2013-07-31 2018-10-12 联想(北京)有限公司 启用全景拍摄的方法和电子设备
CN110046071B (zh) * 2019-03-13 2023-05-30 中国平安人寿保险股份有限公司 数据库监控方法、装置、计算设备与存储介质

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103871186A (zh) * 2012-12-17 2014-06-18 博立码杰通讯(深圳)有限公司 安防监控系统及相应的报警触发方法
CN106454099A (zh) * 2016-10-25 2017-02-22 武汉烽火众智数字技术有限责任公司 一种改进型摄像机日夜模式切换方法
CN109218598A (zh) * 2017-06-30 2019-01-15 北京臻迪科技股份有限公司 一种相机切换方法、装置及无人机
US20190130579A1 (en) * 2017-10-27 2019-05-02 Samsung Electronics Co., Ltd. Method and apparatus for tracking object
CN108270970A (zh) * 2018-01-24 2018-07-10 北京图森未来科技有限公司 一种图像采集控制方法及装置、图像采集系统
CN109688332A (zh) * 2019-02-14 2019-04-26 普联技术有限公司 摄像模式调整方法、装置及终端设备

Also Published As

Publication number Publication date
CN112544072A (zh) 2021-03-23

Similar Documents

Publication Publication Date Title
RU2628745C2 (ru) Система защитного наблюдения и соответствующий способ инициирования тревожной сигнализации
WO2017071044A1 (zh) 无人飞行器的控制方法及装置
CN106954026B (zh) 拍摄方法以及触发监控装置
TWI399084B (zh) 圖像捕捉方法和數位相機
WO2016115805A1 (zh) 拍摄方法、拍摄装置、移动终端及计算机存储介质
WO2016187985A1 (zh) 拍摄设备、跟踪拍摄方法和系统、以及计算机存储介质
JP2008131204A5 (zh)
CN103905706A (zh) 一种网络摄像机及其控制方法
CN112820014A (zh) 一种智能门禁系统控制方法、装置、设备及介质
WO2020238569A1 (zh) 终端的控制方法及控制装置、终端及计算机可读存储介质
CN106708070B (zh) 一种航拍控制方法和装置
CN104363518A (zh) 基于智能电视的家庭安防系统及其方法
EP2924461A1 (en) Method and image pick-up system for obtaining clear images through the rain, snow or fog
US20160088219A1 (en) Image capture apparatus which controls frame rate based on motion of object, information transmission apparatus, image capture control method, information transmission method, and recording medium
JP2012119846A (ja) カメラシステムおよびカメラ
WO2021114265A1 (zh) 设备/集成设备的工作方法、装置、可移动设备、介质
EP3511906B1 (en) Image processing apparatus and image processing method
JP2010010967A (ja) 撮影装置、その制御方法及びコンピュータプログラム
CN102930685A (zh) 一种预防火灾的安防系统以及火灾探测方法
WO2017114252A1 (zh) 一种采集静态图像的方法及装置
CN102930686A (zh) 一种预防火灾的安防系统以及火灾探测方法
JP2017176058A (ja) 箱罠制御システム、制御装置、箱罠制御方法および箱罠制御プログラム
CN112422823B (zh) 一种自动触发视觉拍照方法及装置
JP2014239389A (ja) 撮影制御装置、遠方監視システム、及び撮影制御プログラム
JP5854861B2 (ja) 撮像装置、その制御方法、および制御プログラム

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 19955964

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 19955964

Country of ref document: EP

Kind code of ref document: A1