WO2021114173A1 - 无线通信方法和装置 - Google Patents

无线通信方法和装置 Download PDF

Info

Publication number
WO2021114173A1
WO2021114173A1 PCT/CN2019/124834 CN2019124834W WO2021114173A1 WO 2021114173 A1 WO2021114173 A1 WO 2021114173A1 CN 2019124834 W CN2019124834 W CN 2019124834W WO 2021114173 A1 WO2021114173 A1 WO 2021114173A1
Authority
WO
WIPO (PCT)
Prior art keywords
time units
indication information
time
uplink reference
reference signal
Prior art date
Application number
PCT/CN2019/124834
Other languages
English (en)
French (fr)
Inventor
余雅威
郭志恒
谢信乾
Original Assignee
华为技术有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 华为技术有限公司 filed Critical 华为技术有限公司
Priority to CN201980102529.5A priority Critical patent/CN114731646A/zh
Priority to EP19955528.5A priority patent/EP4061075A4/en
Priority to PCT/CN2019/124834 priority patent/WO2021114173A1/zh
Publication of WO2021114173A1 publication Critical patent/WO2021114173A1/zh
Priority to US17/837,845 priority patent/US20220303989A1/en

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/04Wireless resource allocation
    • H04W72/044Wireless resource allocation based on the type of the allocated resource
    • H04W72/0446Resources in time domain, e.g. slots or frames
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L25/00Baseband systems
    • H04L25/02Details ; arrangements for supplying electrical power along data transmission lines
    • H04L25/0202Channel estimation
    • H04L25/0204Channel estimation of multiple channels
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L25/00Baseband systems
    • H04L25/02Details ; arrangements for supplying electrical power along data transmission lines
    • H04L25/0202Channel estimation
    • H04L25/0224Channel estimation using sounding signals
    • H04L25/0228Channel estimation using sounding signals with direct estimation from sounding signals
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • H04L5/003Arrangements for allocating sub-channels of the transmission path
    • H04L5/0044Arrangements for allocating sub-channels of the transmission path allocation of payload
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • H04L5/003Arrangements for allocating sub-channels of the transmission path
    • H04L5/0048Allocation of pilot signals, i.e. of signals known to the receiver
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • H04L5/003Arrangements for allocating sub-channels of the transmission path
    • H04L5/0048Allocation of pilot signals, i.e. of signals known to the receiver
    • H04L5/0051Allocation of pilot signals, i.e. of signals known to the receiver of dedicated pilots, i.e. pilots destined for a single user or terminal
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • H04L5/003Arrangements for allocating sub-channels of the transmission path
    • H04L5/0078Timing of allocation
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • H04L5/0091Signaling for the administration of the divided path
    • H04L5/0094Indication of how sub-channels of the path are allocated
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/20Control channels or signalling for resource management
    • H04W72/23Control channels or signalling for resource management in the downlink direction of a wireless link, i.e. towards a terminal

Definitions

  • This application relates to the field of wireless communication, and more specifically to a wireless communication method and device.
  • a terminal device sends an uplink reference signal to a network device, and the network device performs uplink channel estimation based on the received uplink reference signal, and configures reasonable scheduling parameters for the uplink transmission of the terminal device. Therefore, the accuracy of the uplink channel estimation It has a great impact on the uplink transmission performance.
  • the uplink reference signal is a demodulation reference signal (DMRS)
  • DMRS demodulation reference signal
  • PUSCH physical uplink shared channel
  • SRS sounding reference signal
  • the network equipment configures the terminal equipment with an excessively high modulation method or code rate, resulting in the uplink transmission data cannot be correctly transmitted by the network equipment.
  • the network device configures the terminal device with a too low modulation mode or code rate, which results in less effective information for uplink transmission and reduces the efficiency of uplink transmission. Therefore, ensuring accurate channel estimation based on reference signals is very important for system performance.
  • the existing radio access technology New Radio (NR) performs uplink channel estimation based on the uplink reference signal of a time unit.
  • NR New Radio
  • It is unable to flexibly adapt to the change of the uplink transmission channel. Therefore, it is necessary to propose a method with more accurate channel estimation and more flexible reference signal configuration.
  • This application provides a wireless communication method and device to improve the accuracy of channel estimation.
  • a wireless communication method including: sending first indication information to a terminal device, where the first indication information is used to indicate K consecutive time units, where K is an integer greater than or equal to 2, and The uplink data carried by at least two of the K time units are different; at least one of the K time units is used to receive the first uplink reference signal from the terminal device; according to the first uplink The reference signal performs joint channel estimation on the K time units.
  • This technical solution is implemented by the network equipment.
  • the network equipment can schedule uplink transmission resources more reasonably according to the joint channel estimation value.
  • At least two of the K time units carry the first uplink reference signal, and the uplink corresponding to the at least two time units
  • the transmission parameters of the reference signals are the same, and the transmission parameters include at least one of the following parameters: transmission power, antenna port, or frequency domain resources.
  • the transmission path corresponding to the uplink reference signal is the same, that is, the uplink reference signal in each time unit corresponds to the same transmission path, so that joint channel estimation can be performed.
  • the positions of the K time units may be consecutive K time units starting from the first time unit, and the first time unit is a bearing first indication
  • the time unit of the information uses the first time unit as the starting time of the joint channel estimation; the position of the K time units may also be K consecutive time units starting from the second time unit, and the second time unit
  • the time unit is separated from the first time unit by N time units.
  • the value of N is a predefined value or a value configured for a network side device.
  • the value of N can be configured through RRC signaling.
  • This technology uses the second time unit as the starting time of the joint channel estimation.
  • the terminal device After receiving the first indication information, the terminal device can make a joint channel estimation response, that is, send an uplink reference signal for joint channel estimation.
  • the first indication information includes information of a first modulation and coding scheme MCS, wherein the value of K is indicated by the first mapping relationship and the first A value corresponding to MCS, and the first mapping relationship is used to indicate the corresponding relationship between the value of MCS and the value of K.
  • the indication information used to indicate the number of K is implicitly included in the MCS.
  • the terminal device receives the MCS index value indicated by the first indication information, it can be determined from the first mapping relationship according to the MCS index value The number of K saves the signaling overhead of network equipment in the communication process.
  • the first indication information is carried in the downlink control information DCI.
  • the method further includes: before sending the first indication information to the terminal device, The terminal device sends second indication information.
  • the second indication information is used to indicate a value M, where M is an integer greater than or equal to 2, and the second indication information is carried in higher layer signaling, such as RRC signaling.
  • the indication information includes first offset information, and the first offset information is used to indicate the offset of the K relative to the M.
  • the network device preconfigures a value of M.
  • the offset value of K relative to M is dynamically configured through DCI as needed.
  • the flexible and dynamic configuration requires the number of time units K for joint channel estimation, and can save the indication overhead of the DCI and improve the transmission efficiency of the system.
  • the method further includes: some time units within the K time units carry uplink reference signals.
  • the network device configures the time domain symbols in K time units, and the number of time domain symbols in the time unit can be determined by the number of reference symbols and the offset.
  • This method can be flexibly configured to carry uplink reference signals. Time domain symbols, and part of the time unit can be configured to carry the uplink reference signal, which can save the overhead of the uplink reference signal.
  • the method further includes: sending third indication information to the terminal device, where the third indication information is used to indicate that the K time units carry The time unit of the uplink reference signal; or the third indication information is used to indicate the time unit that does not carry the uplink reference signal among the K time units.
  • the network device can indicate the time unit that does not carry the uplink reference signal, and can also indicate the time unit that carries the uplink reference signal.
  • the network device can flexibly configure the number of time units to save signaling overhead.
  • the method further includes: sending fourth indication information to the terminal device, where the fourth indication information is used to indicate the first transmission power, and the second A transmission power is the transmission power of the first uplink reference signal for all K time units, that is, all K time units use the first transmission power to send the uplink reference signal.
  • the method further includes: the fourth indication information includes information about the transmit power of each of the K time units.
  • the method further includes: sending fifth indication information to the terminal device, where the fifth indication information is used to indicate the first antenna port, and the first antenna port An antenna port is a transmission port of the first uplink reference signal.
  • the method further includes: sending sixth indication information to the terminal device, where the sixth indication information is used to indicate the first frequency domain resource, and the The first frequency domain resource is a frequency domain resource carrying the first uplink reference signal.
  • the network equipment instructs the terminal equipment to transmit the uplink reference signal through the same antenna port through the fifth indication information and the sixth indication information, and the frequency domain resources of the uplink reference signal of each time unit are the same, so as to ensure the joint channel estimation time.
  • the transmission link corresponding to each time unit is the same.
  • the method further includes: sending seventh indication information to the terminal device, where the seventh indication information is used to indicate to carry the first uplink reference signal The number of the first symbol in the time unit of, where the first symbol is a symbol used to carry a reference signal.
  • the method further includes: the seventh indication information includes second offset information, and the second offset information is used to indicate the second offset information.
  • the method further includes: the reference symbol is a symbol used to carry an uplink reference signal in the jth time unit among the K time units,
  • the jth time unit is any one of the K time units.
  • a wireless communication method including: receiving first indication information from a network device, where the first indication information is used to indicate K consecutive time units, where K is an integer greater than or equal to 2, so At least one of the K time units is used to carry an uplink reference signal, and the uplink reference signal is used for joint channel estimation of the K time units; through at least one time unit of the K time units, The first uplink reference signal is sent, and the uplink data carried by at least two of the K time units are different.
  • the method is executed by a terminal device, and when the terminal device receives the first indication information, it sends an uplink reference signal for joint channel estimation to the network device.
  • the first uplink reference signal is carried on at least two of the K time units, and the at least two time units are correspondingly carried
  • the transmission parameters corresponding to the uplink reference signals of are the same, and the transmission parameters include at least one of the following parameters: transmission power, antenna port, and frequency domain resources.
  • the transmission path corresponding to the uplink reference signal is the same, that is, the uplink reference signal in each time unit corresponds to the same transmission path, so that joint channel estimation can be performed.
  • At least two of the K time units carry different uplink data.
  • the positions of the K time units may be K consecutive time units starting from the first time unit, and the first time unit is to carry the first indication
  • the time unit of the information uses the first time unit as the starting time of the joint channel estimation; the position of the K time units may also be K consecutive time units starting from the second time unit, and the second time unit
  • the time unit is separated from the first time unit by N time units.
  • the value of N is a predefined value or a value configured for a network side device.
  • the value of N can be configured through RRC signaling.
  • This technology uses the second time unit as the starting time of the joint channel estimation.
  • This technical solution takes the time of the indication information as the starting time of the joint channel estimation. This technical solution performs channel estimation by combining multiple time units. After receiving the first indication information, the terminal device can make a joint channel estimation. In response, an uplink reference signal for joint channel estimation is sent.
  • the first indication information includes information of a first modulation and coding scheme MCS, wherein the value of K is indicated by the first mapping relationship and the first A value corresponding to MCS, and the first mapping relationship is used for the corresponding relationship between the value of MCS and the value of K. .
  • the indication information used to indicate the value of K is implicitly included in the MCS.
  • the terminal device receives the MCS index value indicated by the first indication information, it can be determined from the first mapping relationship according to the MCS index value
  • the value of K saves the signaling overhead of the network equipment in the communication process.
  • the first indication information is carried in the downlink control information DCI.
  • the method further includes:
  • the receiving the first indication information from the network device includes: receiving the downlink control information DCI from the network device, where the DCI includes first offset information, and the value of K is Determined according to the first offset information and the M.
  • This technical solution determines the value of K through high-level signaling and the indication information in the DCI.
  • the network device pre-configures a value of M.
  • the offset value of K relative to M is dynamically configured through DCI as needed.
  • the flexible and dynamic configuration requires the number of time units K for joint channel estimation, and can save the indication overhead of the DCI and improve the transmission efficiency of the system.
  • some of the K time units carry uplink reference signals.
  • the method further includes: receiving third indication information from the network device, where the third indication information is used to indicate the K times The time unit that carries the uplink reference signal in the unit; or the third indication information is used to indicate the time unit that does not carry the uplink reference signal among the K time units.
  • the method further includes: receiving fourth indication information from a network device, where the fourth indication information is used to indicate a first transmission power, and the first The transmission power is the transmission power of the first uplink reference signal, that is, all K time units use the first transmission power to send the uplink reference signal.
  • the fourth indication information includes information about the transmit power of each of the K time units.
  • the method further includes: receiving fifth indication information from a network device, where the fifth indication information is used to indicate the first antenna port, and the first antenna port The antenna port is a transmission port of the first uplink reference signal.
  • the method further includes: receiving sixth indication information from a network device, where the sixth indication information is used to indicate the first frequency domain resource, and the second A frequency domain resource is a frequency domain resource carrying the first uplink reference signal.
  • the network equipment instructs the terminal equipment to transmit the uplink reference signal through the same antenna port through the fifth indication information and the sixth indication information, and the frequency domain resources of the uplink reference signal of each time unit are the same to ensure that the joint channel estimation time ,
  • the transmission link corresponding to each time unit is the same.
  • the method further includes: receiving seventh indication information from a network device, where the seventh indication information is used to indicate that the first uplink reference signal is carried.
  • the seventh indication information includes second offset information, and the second offset information is used to indicate that the number of the first symbols is relative to The offset of the number of reference symbols, where the number of reference symbols is indicated by the network device; or the reference number is specified by the communication protocol.
  • the reference symbol is a symbol used to carry an uplink reference signal in the jth time unit among the K time units, and the jth time unit The unit is any one of the K time units.
  • a wireless communication device including: a transceiving unit, configured to send first indication information to a terminal device, where the first indication information is used to indicate K consecutive time units, and K is greater than or equal to 2. Integer of, the uplink data carried by at least two of the K time units are different. ;
  • the transceiving unit is further configured to receive a first uplink reference signal from the terminal device through at least one time unit among the K time units;
  • the K time units are used for joint channel estimation.
  • At least two of the K time units carry the first uplink reference signal, and the corresponding The transmission parameters of the uplink reference signals are the same, and the transmission parameters include at least one of the following parameters: transmission power, antenna port, or frequency domain resources.
  • the positions of the K time units may be consecutive K time units starting from the first time unit, and the first time unit is a bearing of the first indication
  • the time unit of the information uses the first time unit as the starting time of the joint channel estimation; the position of the K time units may also be K consecutive time units starting from the second time unit, and the second time unit
  • the time unit is separated from the first time unit by N time units.
  • the value of N is a predefined value or a value configured for a network side device.
  • the value of N can be configured through RRC signaling.
  • This technology uses the second time unit as the starting time of the joint channel estimation.
  • some time units within the K time units carry uplink reference signals.
  • the first indication information includes information of a first modulation and coding scheme MCS, wherein the value of K is indicated by the first mapping relationship and the first A value corresponding to MCS, and the first mapping relationship is used to indicate the corresponding relationship between the value of MCS and the value of K.
  • the first indication information is carried in the downlink control information DCI
  • the transceiver unit before sending the first indication information to the terminal device, the transceiver unit is further configured to: Send second indication information to the terminal device, the second indication information is used to indicate the value M, M is an integer greater than or equal to 2, the second indication information is carried in high-level signaling, and downlink control is sent to the terminal device Information DCI, where the DCI includes first offset information, and the value of K is determined according to the first offset information and the M.
  • the transceiver unit is further configured to: send third indication information to the terminal device, where the third indication information is used to indicate the K time units Or the third indication information is used to indicate the time unit that does not carry the uplink reference signal among the K time units.
  • the transceiving unit is further configured to: send fourth indication information to the terminal device, where the fourth indication information is used to indicate the first transmission power, so The first transmission power is the transmission power of the first uplink reference signal.
  • the fourth indication information includes information about the transmit power of each of the K time units.
  • the transceiver unit is further configured to: send fifth indication information to the terminal device, where the fifth indication information is used to indicate the first antenna port, and The first antenna port is a transmission port of the first uplink reference signal.
  • the transceiving unit is further configured to: send sixth indication information to the terminal device, where the sixth indication information is used to indicate the first frequency domain resource,
  • the first frequency domain resource is a frequency domain resource carrying the first uplink reference signal.
  • the transceiving unit is further configured to: send seventh indication information to the terminal device, where the seventh indication information is used to indicate to carry the first uplink The number of first symbols in a time unit of the reference signal, where the first symbol is a symbol used to carry the reference signal.
  • the seventh indication information includes second offset information, and the second offset information is used to indicate that the number of the first symbols is relative to The offset of the number of reference symbols, where the number of reference symbols is indicated by the network device; or the number of reference symbols is specified by the communication protocol.
  • the number of reference symbols is the number of symbols used to carry uplink reference signals in the jth time unit among the K time units, and
  • the jth time unit is any one of the K time units.
  • some time units within the K time units carry uplink reference signals.
  • a wireless communication device including: a transceiving unit, configured to receive first indication information from a network device, where the first indication information is used to indicate K consecutive time units, where K is greater than or equal to An integer of 2, at least one of the K time units is used to carry an uplink reference signal, and the uplink reference signal is used for joint channel estimation of the K time units; the transceiver unit is also used to pass At least one of the K time units sends a first uplink reference signal, and at least two of the K time units carry different uplink data.
  • At least two of the K time units carry the first uplink reference signal, and the corresponding The transmission parameters of the uplink reference signals are the same, and the transmission parameters include at least one of the following parameters: transmission power, antenna port, or frequency domain resources.
  • the positions of the K time units may be consecutive K time units starting from the first time unit, and the first time unit is a bearing first indication
  • the time unit of the information uses the first time unit as the starting time of the joint channel estimation; the position of the K time units may also be K consecutive time units starting from the second time unit, and the second time unit
  • the time unit is separated from the first time unit by N time units.
  • the value of N is a predefined value or a value configured for a network side device.
  • the value of N can be configured through RRC signaling.
  • This technology uses the second time unit as the starting time of the joint channel estimation.
  • the first indication information includes information of a first modulation and coding scheme MCS, wherein the value of K is indicated by the first mapping relationship and the second indication information.
  • MCS modulation and coding scheme
  • a value corresponding to MCS, and the first mapping relationship is used to indicate the corresponding relationship between the value of MCS and the value of K.
  • the first indication information is carried in the downlink control information DCI, and before receiving the first indication information from the network device, the transceiver unit is further configured to : Receive second indication information from a network device, the second indication information is used to indicate a value M, M is an integer greater than or equal to 2, the second indication information is carried in higher layer signaling, and the first indication The information includes first offset information, and the first offset information is used to indicate the offset of the K relative to the M.
  • some time units within the K time units carry uplink reference signals.
  • the transceiver unit is further configured to: receive third indication information from a network device, where the third indication information is used to indicate the K time units The time unit that carries the uplink reference signal; or the third indication information is used to indicate the time unit that does not carry the uplink reference signal among the K time units.
  • fourth indication information is received from a network device, where the fourth indication information is used to indicate a first transmission power, and the first transmission power is the first transmission power.
  • the transmit power of an uplink reference signal is received from a network device, where the fourth indication information is used to indicate a first transmission power, and the first transmission power is the first transmission power.
  • the fourth indication information includes information about the transmit power of each of the K time units.
  • the transceiver unit is further configured to: receive fifth indication information from the network device, where the fifth indication information is used to indicate the first antenna port, and The first antenna port is a transmission port of the first uplink reference signal.
  • the transceiver unit is further configured to: receive sixth indication information from a network device, where the sixth indication information is used to indicate the first frequency domain resource, so The first frequency domain resource is a frequency domain resource carrying the first uplink reference signal.
  • the transceiving unit is further configured to: receive seventh indication information from a network device, where the seventh indication information is used to indicate to carry the first uplink reference The number of the first symbol in the time unit of the signal, where the first symbol is a symbol used to carry the reference signal.
  • the seventh indication information includes second offset information, and the second offset information is used to indicate that the number of the first symbols is relative to The offset of the number of reference symbols, where the number of reference symbols is indicated by the network device; or the number of reference symbols is specified by the communication protocol.
  • the number of reference symbols is the number of symbols used to carry uplink reference signals in the jth time unit among the K time units, and the The j time units are any one of the K time units.
  • a communication device including various modules or units for executing the method in the first aspect or the third aspect and any one of the first aspect or the third aspect.
  • a wireless communication device including a processor, which is coupled with a memory and can be used to execute the method in the first aspect or the third aspect and the possible implementation manner of the first aspect or the third aspect.
  • the wireless communication device further includes a memory.
  • the wireless positioning device further includes a communication interface, and the processor is coupled with the communication interface.
  • the device further includes a communication interface, and the processor is coupled with the communication interface.
  • the wireless communication device is a network device.
  • the communication interface may be a transceiver, or an input/output interface.
  • the communication device is a chip or a chip system.
  • the communication interface may be an input/output interface, interface circuit, output circuit, input circuit, pin or related circuit on the chip or chip system.
  • the processor may also be embodied as a processing circuit or a logic circuit.
  • a communication device which includes various modules or units for executing the method in the second aspect or the fourth aspect, and any one of the second or fourth aspects in a possible implementation manner.
  • a communication device including a processor.
  • the processor is coupled with the memory and can be used to execute instructions in the memory to implement the method in any one of the foregoing second aspect or fourth aspect and any one of the second aspect or fourth aspect.
  • the communication device further includes a memory.
  • the communication device further includes a communication interface, and the processor is coupled with the communication interface.
  • the transceiver may be a transceiver circuit.
  • the input/output interface may be an input/output circuit.
  • the communication device is a terminal device.
  • the communication interface may be a transceiver, or an input/output interface.
  • the transceiver may be a transceiver circuit.
  • the input/output interface may be an input/output circuit.
  • the communication device is a chip or a chip system.
  • the communication interface may be an input/output interface, interface circuit, output circuit, input circuit, pin or related circuit on the chip or chip system.
  • the processor may also be embodied as a processing circuit or a logic circuit.
  • a processor including: an input circuit, an output circuit, and a processing circuit.
  • the processing circuit is configured to receive a signal through the input circuit and transmit a signal through the output circuit, so that any one of the first aspect to the fourth aspect, and any one of the first aspect to the fourth aspect.
  • the above-mentioned processor may be a chip, the input circuit may be an input pin, the output circuit may be an output pin, and the processing circuit may be a transistor, a gate circuit, a flip-flop, and various logic circuits.
  • the input signal received by the input circuit may be received and input by, for example, but not limited to, a receiver, and the signal output by the output circuit may be, for example, but not limited to, output to the transmitter and transmitted by the transmitter, and the input circuit and output
  • the circuit can be the same circuit, which is used as an input circuit and an output circuit at different times.
  • the embodiments of the present application do not limit the specific implementation manners of the processor and various circuits.
  • a processing device including a processor and a memory.
  • the processor is used to read instructions stored in the memory, receive signals through a receiver, and transmit signals through a transmitter to execute any one of the first aspect to the fourth aspect and any one of the first aspect to the fourth aspect.
  • processors there are one or more processors, and one or more memories.
  • the memory may be integrated with the processor, or the memory and the processor may be provided separately.
  • the memory can be a non-transitory (non-transitory) memory, such as a read only memory (ROM), which can be integrated with the processor on the same chip, or can be set in different On the chip, the embodiment of the present application does not limit the type of the memory and the setting mode of the memory and the processor.
  • ROM read only memory
  • sending instruction information may be a process of outputting instruction information from the processor
  • receiving capability information may be a process of receiving input capability information by the processor.
  • the processed output data may be output to the transmitter, and the input data received by the processor may come from the receiver.
  • the transmitter and receiver can be collectively referred to as a transceiver.
  • the processor in the above tenth aspect may be a chip, and the processor may be implemented by hardware or software.
  • the processor When implemented by hardware, the processor may be a logic circuit, an integrated circuit, etc.; when implemented by software
  • the processor may be a general-purpose processor, which is implemented by reading software codes stored in the memory.
  • the memory may be integrated in the processor, may be located outside the processor, and exist independently.
  • a computer program product includes: a computer program (also called code, or instruction), which when the computer program is executed, causes a computer to execute the first aspect to The fourth aspect and the method in any one of the possible implementation manners of the first to fourth aspects.
  • a computer program also called code, or instruction
  • a computer-readable medium stores a computer program (also called code, or instruction) when it runs on a computer, so that the computer executes the above-mentioned first aspect to The fourth aspect and the method in any one of the possible implementation manners of the first to fourth aspects.
  • a computer program also called code, or instruction
  • a communication system including the aforementioned network equipment and terminal equipment.
  • Figure 1 is an application scenario of an embodiment of the present application
  • Figure 2 is a schematic diagram of a wireless communication process according to an embodiment of the present application.
  • FIG. 3 is another schematic diagram of a wireless communication process according to an embodiment of the present application.
  • FIG. 4 is a schematic block diagram of a wireless communication device according to an embodiment of the present application.
  • FIG. 5 is another schematic block diagram of a wireless communication device according to an embodiment of the present application.
  • FIG. 6 is a schematic block diagram of a terminal device according to an embodiment of the present application.
  • Fig. 7 is a schematic block diagram of a network device according to an embodiment of the present application.
  • GSM global system for mobile communications
  • CDMA code division multiple access
  • WCDMA broadband code division multiple access
  • GPRS general packet radio service
  • LTE long-term evolution
  • FDD frequency division duplex
  • TDD Time division duplex
  • UMTS Universal Mobile Telecommunications System
  • WiMAX Worldwide Interoperability for Microwave Access
  • FIG. 1 is a schematic diagram of a communication system 100 applicable to the method for sending and receiving a reference signal according to an embodiment of the present application.
  • the communication system 100 may include a network device 102 and terminal devices 104-114.
  • the network device 102 can be any device with a wireless transceiver function or a chip that can be installed in the device, and the device includes but is not limited to: base station (for example, base station NodeB, evolved base station eNodeB, fifth generation ( 5G) Network equipment in communication systems (such as transmission point (TP), transmission reception point (TRP), base station, small cell equipment, etc.), network equipment in future communication systems, wireless fidelity ( Wireless-Fidelity (WiFi) system access node, wireless relay node, wireless backhaul node, etc.
  • base station for example, base station NodeB, evolved base station eNodeB, fifth generation ( 5G) Network equipment in communication systems (such as transmission point (TP), transmission reception point (TRP), base station, small cell equipment, etc.), network equipment in future communication systems, wireless fidelity ( Wireless-Fidelity (WiFi) system access node, wireless relay node, wireless backhaul node, etc.
  • base station for example, base station NodeB, evolved base station
  • the network device 102 can communicate with multiple terminal devices (for example, the terminal devices 104-114 shown in the figure).
  • terminal equipment may also be referred to as user equipment (UE), access terminal, user unit, user station, mobile station, mobile station, remote station, remote terminal, mobile equipment, user terminal, terminal, wireless communication Equipment, user agent, or user device.
  • the terminal device in the embodiment of the present application may be a mobile phone (mobile phone), a tablet computer (Pad), a computer with a wireless transceiver function, a virtual reality (VR) terminal device, and an augmented reality (AR) terminal Equipment, wireless terminals in industrial control, wireless terminals in self-driving, wireless terminals in remote medical, wireless terminals in smart grid, transportation safety ( The wireless terminal in transportation safety, the wireless terminal in the smart city, the wireless terminal in the smart home, and so on.
  • the embodiments of this application do not limit the application scenarios.
  • the aforementioned terminal equipment and the chips that can be installed in the aforementioned terminal equipment are collectively referred to as terminal equipment.
  • the communication system 100 may also be a public land mobile network (PLMN) network, a device to device (D2D) network, a machine to machine (M2M) network or other networks.
  • PLMN public land mobile network
  • D2D device to device
  • M2M machine to machine
  • FIG. 1 is only a simplified schematic diagram of an example for ease of understanding.
  • the communication system 100 may also include other network devices and terminal devices, which are not shown in FIG. 1.
  • the NR protocol defines uplink reference signals for estimating the uplink transmission channel, for example, demodulation reference signal (DMRS) and sounding reference signal (SRS), network equipment based on uplink reference signal channel estimation It has a great impact on the uplink transmission performance.
  • DMRS demodulation reference signal
  • SRS sounding reference signal
  • DMRS and SRS as examples, when the DMRS estimation is not accurate, the network equipment will not be able to correctly demodulate the received data carried on the physical uplink shared channel (PUSCH), which will reduce the throughput of the uplink transmission.
  • the spectrum efficiency is low; when the network equipment is inaccurate based on the SRS estimation, the scheduling parameters of the network equipment instructing the terminal equipment to perform uplink transmission may be unreasonable.
  • the modulation coding scheme (MCS) used for scheduling PUSCH transmission is not correct.
  • the uplink transmission power control is very important for the transmission of the uplink reference signal.
  • the channel quality of the uplink transmission is poor, for example, the long distance of the terminal equipment for uplink propagation causes a large path loss, or the network equipment receives the uplink reference signal. At this time, the interference is large.
  • the network device needs to instruct (hereinafter, also referred to as configuration) the terminal device to perform uplink transmission with a higher uplink reference signal power in order to effectively receive the uplink reference signal.
  • ⁇ P 0 (j)+ ⁇ (j)*P L (p) ⁇ is the open-loop operating point
  • ⁇ f(l) ⁇ is the closed-loop offset
  • ⁇ 10lgM+ ⁇ is other adjustments.
  • the open-loop operating point is configured through high-level signaling.
  • the high-level signaling can be RRC signaling, which is applicable to multiple time units.
  • the closed-loop offset is configured through downlink control information (DCI).
  • DCI downlink control information
  • M represents the number of physical resource blocks PRB occupied by this uplink transmission.
  • the default uplink reference signal is a subcarrier interval of 15KHz.
  • the open-loop operating point includes the path loss information obtained after the terminal device performs channel estimation on the downlink reference signal sent by the network device.
  • the network device performs power compensation on the path loss value, and performs slow and semi-static power adjustment; closed-loop offset For network equipment to quickly and accurately adjust based on the quality of the upstream signal received during the last transmission, for example, when the upstream transmission power received by the network equipment last time is too small, the network equipment can adjust the amount through a closed loop to indicate that the terminal equipment is in This uplink transmission performs higher power transmission.
  • the P L (p) in the open-loop operating point is the path loss estimation of the open-loop operating point.
  • the value of p is configured through the high-level parameter pathlossReferenceSignal, and the index is indexed to the relevant
  • the terminal device directly uses the reference signal in the synchronization signal block to calculate the path loss.
  • the PL (p) of the open-loop operating point that is, the path loss estimation of the open-loop operating point
  • the terminal device is based on The reference signal in the synchronization signal block is calculated for path loss; when the terminal device is configured with the high-level parameter pathlossReferenceSignal, it is directly indexed to the specific reference signal through the high-level parameter pusch-pathlossReferenceSignal-Id to calculate the path loss; when the PUSCH is transmitted in msg3,
  • the terminal device uses the same reference signal sent by PRACH to calculate the path loss; when the terminal device is configured with the high-level parameter SRI-PUSCH-PowerControl and multiple pusch-pathlossReferenceSignal-Id values, it needs to use the mapping relationship between the SRI in the DCI and the configuration , Index to the corresponding downlink reference signal, and calculate the path loss
  • the terminal device For non-codebook PUSCH/DMRS transmission, the terminal device needs to select at least one antenna port for PUSCH transmission based on the number of layers of data to be transmitted and the number of SRS resources configured by the network device through the SRI index, and according to the path loss of the antenna port Take the value to calculate the path loss.
  • the terminal device determines the antenna port for transmitting PUSCH/DMRS through the index table.
  • the terminal device can transmit PUSCH/DMRS through two antenna ports. And the network device can use the SRI index value to instruct the terminal device to send PUSCH/DMRS from a certain antenna port.
  • the terminal device uses the antenna port corresponding to the first SRS resource (SRS resource 0)
  • the terminal equipment uses the path loss of the first antenna port to calculate the path loss;
  • the terminal equipment corresponds to the second SRS resource (SRS resource 1)
  • the antenna port sends PUSCH/DMRS, correspondingly, the terminal equipment uses the path loss of the second antenna port to calculate the path loss.
  • the network device For the power adjustment of the closed-loop offset, when the network device finds that the power of the uplink signal transmitted by the terminal device in a certain time unit is too high, the network device exemplarily informs the terminal device of the same type of uplink signal transmission by using DCI.
  • the transmitted uplink signal power is reduced by 1 dB, and the information used in the DCI to notify the terminal device to quickly adjust the power is called a transmit power control command (TPC-command).
  • TPC-command has 2 bits. For example, when this field is 00 and the value of TPC-Accumulation in high-level signaling is 1, that is, TPC-Accumulation is enabled, the terminal device will Reduce the power by 1dB based on the closed-loop adjustment of the same type of transmission.
  • TPC-Accumulation is 0, that is, when TPC-Accumulation is not enabled, the closed-loop adjustment of the terminal device in the current time unit is reduced by 4dB; similarly, when the field is At 01, 10, and 11, the value of the closed-loop power adjustment is different.
  • P 0 (j) and ⁇ (j) are configured in pairs in open-loop parameters, and 32 sets can be configured in total, which are included in the P0-PUSCH-AlphaSet parameters of high-level signaling.
  • the parameters of P 0 (j) and ⁇ (j) The value is selected from the configured P0-PUSCH-AlphaSet through the p0-PUSCH-AlphaSetId index.
  • the terminal equipment performs downlink path loss estimation based on the index value in the path loss estimate P L (p) of the open loop operating point.
  • the path loss estimate of the downlink transmission is the uplink path loss estimate of the current time unit and is related to the path loss estimate
  • the parameter of is the PUSCH-PathlossReferenceRS.
  • the terminal device learns the value of p from the PUSCH-PathlossReferenceRS-Id in the SRI-PUSCH-PowerControl, and performs path loss measurement on the reference signal with the index value of p.
  • the high-level parameter powerControlLoopToUse is used to indicate the value of ⁇ f(l) ⁇ .
  • TPC-Accumulation is not enabled, that is, when it is 0, the value of ⁇ f(l) ⁇ is obtained through the instruction of TPC-command.
  • the NR In addition to the transmit power, the NR also configures the time-frequency resource of the uplink reference signal through high-level signaling, that is, the terminal device determines the time-frequency resource of the uplink reference signal through the configuration values of different fields in the high-level signaling.
  • the time-frequency resource refers to the distribution of time-domain resources and frequency-domain resources within a unit of time.
  • the frequency-domain resource distribution can be determined by the start position of the frequency-domain resource, the offset of frequency-domain subcarriers, and the frequency-domain sequence.
  • the offset of the frequency domain sequence is determined by parameters such as frequency hopping.
  • the distribution of time domain resources can be determined by parameters such as the starting position of the time domain symbols and the number of time domain symbols.
  • the fields in high-level signaling are: nrofSymbols, the number of real-time domain symbols, the upper reference signal is SRS as an example, the number of time-domain symbols occupied in each time unit can be 1, 2, or 4, startPosition , The starting position of the real-time domain symbol, freqDomainPosition, the position of the frequency domain symbol, freqDomainShift, the subcarrier offset in the frequency domain, transmissionComb, the offset value of the frequency domain sequence, resourceType, the type of uplink reference signal resource configuration It can be periodic, non-periodic, or semi-persistent, groupOrSequenceHopping, that is, the mode of uplink reference signal frequency hopping, which can be non-frequency hopping, or frequency hopping in time domain order.
  • S210 sends first indication information, which is used to indicate K consecutive time units.
  • This step is executed by the network device and is used to instruct the terminal device to send the uplink reference signal within K consecutive time units after receiving the indication information.
  • the indication information may be periodic indication information or trigger indication information.
  • the indication information may include the position of the start time of the continuous K time units.
  • the location of the start time may be the current time when the instruction information is sent.
  • the location of the starting time may also be the location of a time after the instruction information is sent.
  • the position of the starting time may also be based on the position of the current time and the offset value.
  • the position of the starting time may be the position of the time after the time corresponding to the offset value has passed since the current time.
  • the offset value may be indicated by the indication information, or it may be pre-configured by the protocol. This application is not specifically limited. The following will describe in detail with reference to specific reference signals, and will not be repeated here.
  • the terminal device transmits uplink reference signals with the same power in each of the continuous K time units, and the frequency domain resources and antenna ports associated with the uplink reference signal of each time unit are the same, ensuring continuous K time
  • the uplink reference signal of the unit corresponds to the same uplink transmission channel, so that after receiving the uplink reference signal of the continuous K time units sent by the terminal device, the network device can perform a joint estimation on the channels of the continuous K time units.
  • the network device indicates the continuous K time units through the indication information, and can perform joint channel estimation on the uplink transmission channel in the continuous K time units.
  • the embodiment of the present application provides In the technical solution, network equipment can perform more accurate channel estimation, so as to more reasonably schedule uplink transmission resources and improve the efficiency of uplink transmission.
  • more accurate uplink channel estimation also helps the network side to perform more reasonable downlink transmission resource scheduling and improve the efficiency of downlink transmission.
  • K can be configured through related fields in high-level signaling, or K can be configured through related fields in downlink control information.
  • the details will be described below in conjunction with specific reference signals. Description, I won’t repeat it here.
  • the time unit in this step may be a time slot slot or a sub-slot sub-slot, which is not specifically limited in this application.
  • S220 determines the sending parameters of the uplink reference signal in K time units.
  • the terminal device When a network device performs channel joint estimation on continuous K time units of uplink transmission, the terminal device needs to use the same transmission power (that is, the first transmission power) on each of the continuous K time units, The same antenna port (that is, the first antenna port) and the same frequency domain resource (that is, the first frequency domain resource) send uplink reference signals to the network device, that is, when the transmission power of the uplink reference signal of each time unit Similarly, when the transmitting antenna ports are the same and the frequency domain resources are the same, it can be ensured that the uplink reference signal of each time unit corresponds to the same transmission path, so as to ensure that the network device performs joint channel estimation for the continuous K time units.
  • the network side uses the same transmission power to transmit the uplink reference signals of K time units from the same antenna port.
  • the frequency domain resources of the K time units can be the same, that is, the network side performs channel estimation on the uplink reference signals on the K time units and the same subcarrier/frequency domain to improve the accuracy of channel estimation;
  • the frequency domain resources of the K time units can be different, that is, the network side performs channel estimation on the uplink reference signals of the K time units and different subcarriers, and performs channel estimation in a wider bandwidth range, which is helpful for the base station in frequency selectivity.
  • the terminal performs uplink scheduling transmission on a better quality frequency domain carrier.
  • the network device may send indication information indicating the first transmission power of the uplink reference signal, the first antenna port and the first frequency domain resource.
  • the network device may also be pre-defined through the communication protocol.
  • the terminal device uses the same transmission power (that is, the first transmission power), the same antenna port (that is, the first antenna port), and the same frequency domain resource (that is, the first frequency). Domain resource) to send an uplink reference signal to the network device.
  • the network device indicates the first transmit power of the uplink reference signal for continuous K time units, which can be indicated by higher layer signaling, or it can be indicated by a field in the downlink control information, and the network device indicates the uplink reference for continuous K time units.
  • the first antenna port of the signal may be indicated by a field in the downlink control information, and the network device indicating the first frequency domain resource of the uplink reference signal of continuous K time units may be indicated by high-level signaling.
  • the network device can also indicate the time domain resource of the uplink reference signal in the continuous K time units. There are many ways for the network device to indicate the time domain resource of the uplink reference signal. For example, the network device can configure the uplink reference signal through high-level signaling. The time domain resources of the uplink reference signal of the continuous K time units may also be configured through the field of the downlink control information DCI related to the uplink reference signal, which is not specifically limited in this application.
  • each time unit may carry the uplink reference signal, or part of the time unit may carry the uplink reference signal, which is not specifically limited in this application.
  • the time domain resources mentioned here include the number of time domain symbols, the starting position of the time domain symbols, and the pattern of the time domain symbols.
  • the network device can configure the number of reference symbols to indicate K times. A certain number of symbols in the time domain symbols of the unit is configured with an offset value to indicate the actual number of time domain symbols occupied by the reference signals contained in the K time units.
  • the number of reference symbols can be determined by the network equipment.
  • the configuration can also be pre-defined by the communication protocol.
  • the network device may also instruct the terminal device in the K time units, a certain time unit does not carry the reference signal.
  • time unit mentioned in this application may be a time slot slot or a sub-slot sub-slot, which is not specifically limited here.
  • the terminal device After receiving the instruction information of the network device, the terminal device sends an uplink reference signal to the network device according to the instruction information or the provisions of the communication protocol, and the network device performs joint channel estimation of K time units according to the uplink reference signal
  • the network device can perform joint channel estimation on the uplink transmission channel of continuous K time units.
  • the channel estimation value is compared with that for a single time unit.
  • the estimated value of the uplink transmission channel is more accurate, and part of the K time unit can carry the uplink transmission signal, and the configuration method is relatively flexible. Therefore, the network equipment can perform more reasonable uplink and downlink transmission scheduling to improve the uplink transmission of the terminal equipment. effectiveness.
  • the upstream reference signal is SRS
  • the high-level signaling is RRC signaling as an example to illustrate the technical solutions of the embodiments of the present application
  • S310 Send the first and/or second indication information, which is used to indicate K consecutive time units.
  • This step is executed by the network device and is used to instruct the terminal device to send the uplink reference signal within K consecutive time units after receiving the indication information.
  • the indication information may be periodic indication information or triggering. Instructions.
  • the indication information may include the position of the starting time of the continuous K time units, and the starting time may be the position of the current time when the indication information is sent (hereinafter referred to as mode A); or it may be sending the indication information
  • mode A the position of the current time when the indication information is sent
  • mode B the location at a later time
  • the location at this time may be configured by the network device, or may be predefined according to the communication protocol, which is not specifically limited in this application.
  • An indication field is configured in the RRC signaling, and the field is used to indicate that the position of the start time of the continuous K time units is the position of the current time.
  • the field may be 0.
  • the indication field may be indicated by the network device, or may be specified by the communication protocol, which is not specifically limited in this application.
  • An indication field is configured in the RRC signaling. This field is used to indicate that the position of the starting time of the continuous K time units is the position of a time after the indication information is sent. For example, the field may be 00. To indicate that 1 time unit after the current time is the position of the starting time of the continuous K time units; for example, this field may be 01, which is used to indicate that 2 time units after the current time are the The position of the start time of the continuous K time units, the indication field may be indicated by the network device, or may be specified by the communication protocol, which is not specifically limited in this application.
  • the network device sends first indication information, and the method for indicating continuous K time units can be carried in RRC signaling.
  • An indication field is configured through RRC signaling to indicate the number of continuous K time units ( Hereinafter, referred to as mode 1); it can also be carried in DCI to indicate the number of consecutive K time units (hereinafter referred to as mode 2).
  • an indication field is configured in the DCI to indicate continuous K time units The number of units (hereinafter referred to as mode 2.1); it can also be a redundant field in the multiplexed DCI, which is used to indicate the number of consecutive K time units (hereinafter referred to as mode 2.2); it can also be through the existing DCI An implicit indication of the relevance is required.
  • An indication field is configured in the RRC signaling, the value of which indicates the number K of time units for the terminal device to perform SRS transmission.
  • the value of K may be 4 or 5 or other positive integers, which is not specifically limited in this application.
  • the number of K time units is indicated by the DCI.
  • the DCI can be indicated in the following two specific ways.
  • a 2bit field is added to DCI to indicate the value of K.
  • K the number of bits in DCI to indicate the value of K.
  • the new DCI field indicates the value of the number K of multiple time units
  • Multiplexing the redundancy status of the fields in the DCI is used to indicate the number of K time units, that is, the value of K.
  • the table 7.3.1.1.2-8 in the TR 38.213 protocol is used to indicate the use of SRS transmission
  • the value of MCS can be used to indicate the value of K
  • the value table of the correlation can be pre-configured.
  • Effective MCS index value Number of time units for joint channel estimation 0-9 4 10-16 2 17-27 1
  • the segments 0-9, 10-16, and 17-27 of the index value of the effective MCS in the above Table 3 are just examples, and can also be other segment values, which are not limited here.
  • the modulation order corresponding to MCS is 2
  • the current channel quality is average, and more time units are needed for joint channel estimation, and the value of K is indicated as 6;
  • the modulation order corresponding to the MCS is 6, it means that the current channel quality is good, and less time units are needed for joint channel estimation, and the value of K is indicated to be 2;
  • the terminal can first determine the modulation order indicated by the MCS index value according to the MCS index value, and then determine the joint operation corresponding to the modulation order indicated by the MCS index value according to the correspondence between the modulation order and the number of time units for joint channel estimation.
  • the number of time units for channel estimation For example, taking Table 2 as an example, assuming that the terminal receives the MCS index value contained in the DCI sent by the network-side device, the terminal determines the time for joint channel estimation corresponding to the MCS index value 11 according to the correspondence shown in Table 2. If the number of units is 2, the terminal performs SRS transmission according to the determined number of time units for joint channel estimation and the determined number of repeated transmissions.
  • RRC signaling configures the reference value of the number of time units K for joint channel estimation to be 5, and a field (for example, 2bit) in the DCI is used to indicate the number of changed values (for example, -2, -1, 1, 2) Determine the value of the number K of time units for the final joint estimation.
  • the field in the DCI may be a newly added field or a redundant field in the multiplexed DCI.
  • the signaling overhead of the DCI can be saved, thereby saving the power consumption of the terminal device.
  • the terminal device When the terminal device receives the first indication information, it performs joint uplink transmission in consecutive K time units, that is, guarantees the same transmission power, antenna port, frequency domain resources, etc., and enables the network side to receive K time units Compared with the uplink transmission channel estimation method of a single time unit, the joint channel estimation within K consecutive time units can estimate the channel parameters more accurately, so that the network equipment can be more reasonable The scheduling of uplink and downlink transmission resources improves the efficiency of uplink transmission.
  • S320 sends fourth indication information, which is used to indicate the first transmission power of the SRS.
  • the network device When performing channel joint estimation of continuous K time units of uplink transmission, the network device needs to instruct the terminal device to send the SRS to the network device at the same power (that is, the first transmission power) on the continuous K time units.
  • the way for the network equipment to configure the SRS transmission power of continuous K time units can be to configure the same power control parameters for the SRS of the continuous K time units; it can also be configured to configure the power control parameters for the SRS of the first time unit.
  • the SRS of subsequent K-1 adjacent time units are not configured with power control parameters, and the network device instructs the terminal device to reuse the power control parameters of the first time unit, which is not specifically limited in this application.
  • the fields related to power parameters in DCI are: TPC-command, used to indicate the closed-loop adjustment power of the uplink transmission of the current time unit; SRI field, used to indicate the current time unit terminal equipment from the target received power set configured by higher-layer signaling Determine the target received power, where the SRI field has a mapping relationship with the relevant index value of the target received power configured by the higher layer signaling.
  • the network device does not configure power control parameters for the subsequent K-1 continuous time unit SRS, which may be that the subsequent K-1 continuous time unit SRS does not configure the tpc-command field in the DCI, or it may be a network device
  • the tpc-command field in the DCI is configured, but this field is used to instruct the terminal device to perform other scheduling.
  • the network device does not configure power control parameters for the subsequent K-1 continuous time unit SRS, or the subsequent K-1 continuous time unit SRS does not configure the SRI field in the DCI, or it may be the subsequent K- The SRS of 1 continuous time unit configures the SRI field in the DCI, but this field is used to instruct the terminal device to perform other scheduling.
  • the corresponding power control indication field in the DCI can be greatly saved, and the network device receives the power on the continuous K time units.
  • the uplink transmission channel of consecutive K time units can be estimated, and the channel estimation value is more accurate than the uplink transmission channel estimation for a single time unit, so that more accurate uplink and downlink transmission scheduling can be performed.
  • S330 Send the fifth, sixth, and seventh indication information, which is used to indicate the space-time-frequency resources of the SRS.
  • the network equipment instructs the terminal equipment to use the same SRS for transmission on K consecutive time units, that is, the transmission power, frequency domain resource configuration and the associated antenna port of the SRS for the consecutive K time units are the same. Ensure that the SRS transmission links of consecutive K time units are the same.
  • the antenna port of the uplink reference signal can be indicated by the index in the SRI to select the transmission port of the uplink reference signal.
  • the DCI indicates that the SRS in each time unit of the K time units is transmitted using the first antenna port to ensure that the SRS transmission links of the consecutive K time units are the same.
  • the way for the network equipment to indicate the time-frequency resources of the SRS can be to directly configure the SRS of continuous K time units through RRC signaling (hereinafter referred to as mode 1), or to configure an SRS for reference through RRC signaling. Then, the DCI is used to dynamically indicate the SRS on the remaining K-1 time units (hereinafter referred to as mode two), or it may be the SRS with K consecutive time units configured through the DCI (hereinafter referred to as mode three).
  • the time-frequency resources, time-domain resources, and frequency-domain resources of the aforementioned SRS may be the number of time-domain symbols and the starting position of the time-domain symbols, and the frequency-domain resources may be the frequencies and/or sub-carriers of sub-carriers.
  • the frequency offset value may be the frequency offset value.
  • the parameters related to the configuration of SRS are:
  • SRS-Resource::resourceMapping::nrofSymbols which represents the number of time domain symbols occupied by SRS in the current time unit
  • SRS-Resource::resourceMapping::startPosition indicates the start position of the time domain symbol occupied by the SRS configured in the current time unit.
  • the time domain symbols occupied by the SRS are located within the last 6 symbols in a time slot.
  • the SRS of the 5 time units all occupy 2 time domain symbols, and the second and fourth time units are not configured with SRS;
  • SRS-Resource::resourceMapping:startPosition ⁇ 1, 0, 1, 0, 1 ⁇ , which means the first The time domain symbols occupied by the SRS of 1/3/5 time units start from the second time domain symbol of the last 6 time domain symbols, and the time domain symbols occupied by the SRS of the 2/4 time unit start from the last 6 time domain symbols.
  • the first time domain symbol of the domain symbol starts.
  • the network device uses the SRS of the 5 time units to estimate the wireless channel in the time period corresponding to the 5 time units.
  • frequency domain resource configuration needs to be performed.
  • the uplink SRS frequency domain resources of the 5 time units can be configured to be the same, or the frequency domain resources of the 5 time units can be configured.
  • the uplink SRS frequency domain resources are different.
  • the value of the network device configuration SRS-Resource::transmissionComb in any time unit can be configured as comb2, or comb4, or any subcarrier offset, or all of the values of the 5 time units
  • the configuration is comb2, or comb4, or any subcarrier offset, which is not specifically limited in this application.
  • SRS-Resource::resourceMapping::nrofSymbols is configured to 2
  • Resource::resourceMapping:startPosition is configured as 1;
  • the 3bit DCI index value is used to indicate the number of time domain symbols occupied by the SRS configured in the current time unit. Based on the RRC signaling configuration, the number of time domain symbols that should be added or reduced, as shown in the predefined table in Table 5 below, Exemplarily, the index value indicates the number of time domain symbols of the remaining K-1 time units.
  • the index value in the DCI when the index value in the DCI is 000, it means that the number of time domain symbols of the SRS of the current time unit is increased by 1 symbol compared to the number of time domain symbols of the SRS of the reference time unit; for example, the RRC signaling configuration
  • the number of time-domain symbols used to reference the SRS is 2, and the index value of the DCI of the current time unit is configured as 000 by the network device, which means that the number of SRS time-domain symbols of the current time unit is 3.
  • the index value in the DCI is 100, it means that the number of time-domain symbols of the SRS of the current time unit is reduced by 1 symbol compared to the number of time-domain symbols of the SRS of the reference time unit; for example, the RRC signaling configuration is used for With reference to the number of time domain symbols of the SRS being 2, and the index value of the DCI of the current time unit configured as 100 by the network device, it means that the number of SRS time domain symbols of the current time unit is 1.
  • the DCI index value indicates the number of time domain symbols increase or decrease
  • the field of the DCI index value may be a newly added field, or may be a redundant field in the multiplexed DCI. If the redundant field is multiplexed, the signaling overhead in the DCI will be smaller.
  • Configuring the number of time domain symbols of the SRS for consecutive K time units through DCI refers to configuring the number of symbols occupied by the SRS of the current time unit through the field of the DCI used to indicate the time domain symbols of the SRS.
  • This field can be 2 bits or It can be 3bit.
  • the network device configures the 2bit field indicating the time domain symbol of the SRS in the DCI of the first time unit to be 00, indicating that the current time unit does not configure SRS; the network device configures the time indicating the SRS in the second time unit DCI
  • the 2bit field of the domain symbol is 01, indicating that the number of SRS time domain symbols configured in the current time unit is 1; the network device configures the 2bit field of the second time unit DCI indicating the SRS time domain symbol to 10, indicating the current time unit configuration
  • the number of SRS time domain symbols is 2; the network device configures the 2bit field indicating the time domain symbols of the SRS in the second time unit DCI to be 11, indicating that the number of SRS time domain symbols configured in the current time unit is 3.
  • the field used to indicate the time domain symbol of the SRS in the DCI may be a newly added field, or may be a redundant field in the multiplexed DCI. Multiplexing redundant fields can save DCI instruction overhead.
  • the network device can configure the uplink reference signal for each time unit, and according to needs, the uplink reference signal may not be configured on part of the time unit to save the overhead of the uplink reference signal.
  • the terminal device After determining the sending parameters and time domain resources of the SRS, according to the instruction information, the terminal device sends the SRS to the network device, and after receiving the SRS, the network device performs joint channel estimation for the continuous K time units.
  • the network device can perform channel estimation on the uplink transmission channel of the continuous K time units, and the estimated value is more accurate than the uplink transmission channel estimation value for a single time unit, thus, Network equipment can perform more reasonable uplink and downlink transmission scheduling, which improves the uplink transmission efficiency of terminal equipment.
  • the network device can indicate the sending parameters of the uplink reference signal when performing joint channel estimation, or it can predefine the sending of uplink reference signal during joint channel estimation through a protocol.
  • the parameters are not specifically limited in this application.
  • Fig. 4 is a schematic block diagram of a wireless communication device provided by an embodiment of the present application.
  • the wireless communication device 400 includes a transceiver unit 410 and a processing unit 420.
  • the transceiver unit 410 can communicate with the outside, and the processing unit 420 is used for data processing.
  • the transceiving unit 410 may also be referred to as a communication interface or a communication unit.
  • the wireless positioning device 400 may further include a storage unit, and the storage unit may be used to store instructions or and/or data, and the processing unit 420 may read the instructions or and/or data in the storage unit.
  • the wireless positioning device 400 may be used to perform the actions performed by the terminal device in the above method embodiment.
  • the wireless positioning device 400 may be a terminal device or a component configurable in the terminal device, and the transceiver unit 410 is used to perform the above
  • the processing unit 420 is configured to perform the processing-related operations on the terminal device side in the above method embodiments for the operations related to receiving and sending on the terminal device side in the method embodiments.
  • the wireless positioning apparatus 400 may be used to perform the actions performed by the network equipment in the above method embodiments.
  • the wireless positioning apparatus 400 may be a network equipment or a component that can be configured in the network equipment, and the transceiver unit 410 is used for Performing operations related to receiving and sending on the network device side in the above method embodiments, and the processing unit 420 is configured to perform processing related operations on the network device side in the above method embodiments.
  • the wireless positioning device 400 is used to perform the actions of the network device in the embodiment shown in FIG. 2 or FIG. 3, and the transceiver unit 410 is used to send first instruction information to the terminal device, and the first instruction information is used Indicate continuous K time units, K is an integer greater than or equal to 2, and at least two of the K time units carry different uplink data; it is also used to pass at least one of the K time units , Receiving the first uplink reference signal from the terminal device; the processing unit 420 is configured to perform joint channel estimation on K time units according to the first uplink reference signal.
  • the first indication information includes information about the first modulation and coding scheme MCS, where the value of K is a value corresponding to the first MCS indicated by the first mapping relationship, and the first mapping relationship is used to indicate the value of the MCS and Correspondence of the value of K.
  • the transceiver unit 410 is further configured to: before sending the first indication information to the terminal device, the transceiver is further configured to: send second indication information to the terminal device, where the second indication information is used to indicate a value M, where M is greater than Or an integer equal to 2, the second indication information is carried in high-level signaling, and downlink control information DCI is sent to the terminal device, where the DCI includes the first offset information, and the value of K is based on the The first offset information is determined by the M.
  • the transceiver unit 410 is further configured to: send third indication information to the terminal device, the third indication information is used to indicate the time unit of the K time units that carries the uplink reference signal; or, the third indication information is used to indicate K The time unit that does not carry the uplink reference signal among the time units.
  • At least two of the K time units carry the first uplink reference signal
  • the transmission parameters of the uplink reference signals corresponding to at least two time units are the same, and the transmission parameters include at least one of the following parameters: transmission power, antenna port, and frequency domain resources.
  • the transceiver unit 410 is further configured to send fourth indication information to the terminal device, where the fourth indication information is used to indicate the first transmission power, and the first transmission power is the transmission power of the first uplink reference signal.
  • the transceiver unit 410 is further configured to send fifth indication information to the terminal device, where the fifth indication information is used to indicate the first antenna port, and the first antenna port is a transmission port of the first uplink reference signal.
  • the transceiver unit 410 is further configured to send sixth indication information to the terminal device, where the sixth indication information is used to indicate the first frequency domain resource, and the first frequency domain resource is a frequency domain resource that carries the first uplink reference signal.
  • the transceiving unit 410 is further configured to: send seventh indication information to the terminal device, where the seventh indication information is used to indicate the number of first symbols in the time unit carrying the first uplink reference signal, and the first symbol is used to Symbols that carry reference signals.
  • the positions of the K time units can be K consecutive time units after the first time unit, or K consecutive time units after the second unit, where the first time unit carries the first indication information
  • the time unit, the second time unit is separated from the first time unit by N time units, and N is predefined or configured by a network device, for example, configured by RRC signaling.
  • the first transmission power is the uplink signal transmission power used in all K time units.
  • the seventh indication information includes second offset information, and the second offset information is used to indicate the offset of the number of first symbols with respect to the number of reference symbols, where the number of reference symbols is determined by the network device. Indicate; or the number of reference symbols is specified by the communication protocol.
  • the number of reference symbols is the number of symbols used to carry the uplink reference signal in the j-th time unit among the K time units, and the j-th time unit is any time unit among the K time units.
  • part of the time units within the K time units carry the uplink reference signal.
  • the wireless positioning device 400 is used to perform the actions of the terminal device in the embodiment shown in FIG. 2 or FIG. 3, and the transceiver unit 410 is used to receive the first instruction information from the network device.
  • K is an integer greater than or equal to 2
  • at least one of the K time units is used to carry the uplink reference signal
  • the uplink reference signal is used for the joint channel estimation of the K time units;
  • the transceiving unit 410 is further configured to send the first uplink reference signal through at least one time unit of the K time units, where the uplink data carried by at least two time units of the K time units are different.
  • At least two of the K time units carry the first uplink reference signal, and the uplink reference signals carried by the at least two time units have the same sending parameters, and the sending The parameters include at least one of the following parameters: transmit power, antenna port, or frequency domain resources.
  • the K time units are consecutive K time units starting from the first time unit; or the K time units are consecutive K time units starting from a second time unit, and the first The second time unit is N time units separated from the first time unit.
  • the transceiver unit 410 is further configured to: before receiving the first instruction information from the network device, receive second instruction information from the network device, where the second instruction information is used to indicate a value M, where M is greater than or equal to 2.
  • M is greater than or equal to 2.
  • the second indication information is carried in high-level signaling
  • the first indication information includes first offset information
  • the value of K is determined according to the first offset information and the M.
  • the transceiving unit 410 is further configured to: receive third indication information from the network device, where the third indication information is used to indicate the time unit that carries the uplink reference signal among the K time units; or the third indication information is used to indicate K The time unit that does not carry the uplink reference signal among the time units.
  • the transceiver unit 410 is further configured to: receive fourth indication information from the network device, where the fourth indication information is used to indicate the first transmission power, and the first transmission power is the transmission power of the first uplink reference signal.
  • the transceiving unit 410 is further configured to: receive fifth indication information from the network device, where the fifth indication information is used to indicate the first antenna port, and the first antenna port is a transmission port of the first uplink reference signal.
  • the transceiver unit 410 is further configured to: receive sixth indication information from the network device, where the sixth indication information is used to indicate a first frequency domain resource, and the first frequency domain resource is a frequency domain resource that carries the first uplink reference signal .
  • the transceiving unit 410 is further configured to: receive seventh indication information from the network device, where the seventh indication information is used to indicate the number of first symbols in the time unit carrying the first uplink reference signal, and the first symbol is used It is the symbol that carries the reference signal.
  • the processing unit 420 in FIG. 4 may be implemented by a processor or processor-related circuits.
  • the transceiver unit 410 may be implemented by a transceiver or a transceiver-related circuit.
  • the transceiving unit 410 may also be referred to as a communication unit or a communication interface.
  • the storage unit can be realized by a memory.
  • an embodiment of the present application also provides a wireless communication device 500.
  • the wireless communication device 500 includes a processor 510, which is coupled to a memory 520.
  • the memory 520 is used to store computer programs or instructions or and/or data
  • the processor 510 is used to execute computer programs or instructions and/or data stored in the memory 520. Data so that the method in the above method embodiment is executed.
  • the wireless communication device 500 includes one or more processors 510.
  • the wireless communication device 500 may further include a memory 520.
  • the memory 520 included in the wireless communication device 500 may be one or more.
  • the memory 520 may be integrated with the processor 510 or provided separately.
  • the wireless communication device 500 may further include a transceiver 530, and the transceiver 530 is used for signal reception and/or transmission.
  • the processor 510 is configured to control the transceiver 530 to receive and/or send signals.
  • the wireless communication device 500 is used to implement the operations performed by the terminal device in the foregoing method embodiments.
  • the processor 510 is used to implement the processing-related operations performed by the terminal device in the above method embodiment
  • the transceiver 530 is used to implement the transceiving-related operations performed by the terminal device in the above method embodiment.
  • the wireless communication device 500 is used to implement the operations performed by the network device in the above method embodiments.
  • the processor 510 is used to implement the processing-related operations performed by the network device in the above method embodiment
  • the transceiver 530 is used to implement the transceiving-related operations performed by the network device in the above method embodiment.
  • the embodiment of the present application also provides a wireless communication device 600, and the wireless communication device 600 may be a terminal device or a chip.
  • the wireless communication apparatus 600 may be used to perform operations performed by the terminal device in the foregoing method embodiments.
  • FIG. 6 shows a simplified schematic diagram of the structure of the terminal device. It is easy to understand and easy to illustrate.
  • the terminal device uses a mobile phone as an example.
  • the terminal equipment includes a processor, a memory, a radio frequency circuit, an antenna, and an input and output device.
  • the processor is mainly used to process the communication protocol and communication data, and to control the terminal device, execute the software program, and process the data of the software program.
  • the memory is mainly used to store software programs and data.
  • the radio frequency circuit is mainly used for the conversion of baseband signals and radio frequency signals and the processing of radio frequency signals.
  • the antenna is mainly used to send and receive radio frequency signals in the form of electromagnetic waves.
  • Input and output devices such as touch screens, display screens, keyboards, etc., are mainly used to receive data input by users and output data to users. It should be noted that some types of terminal devices may not have input and output devices.
  • the processor When data needs to be sent, the processor performs baseband processing on the data to be sent, and then outputs the baseband signal to the radio frequency circuit.
  • the radio frequency circuit performs radio frequency processing on the baseband signal and sends the radio frequency signal to the outside in the form of electromagnetic waves through the antenna.
  • the radio frequency circuit receives the radio frequency signal through the antenna, converts the radio frequency signal into a baseband signal, and outputs the baseband signal to the processor, and the processor converts the baseband signal into data and processes the data.
  • FIG. 6 only one memory and processor are shown in FIG. 6. In an actual terminal device product, there may be one or more processors and one or more memories.
  • the memory may also be referred to as a storage medium or storage device.
  • the memory may be set independently of the processor, or may be integrated with the processor, which is not limited in the embodiment of the present application.
  • the antenna and radio frequency circuit with the transceiving function can be regarded as the transceiving unit of the terminal device, and the processor with the processing function can be regarded as the processing unit of the terminal device.
  • the terminal device includes a transceiving unit 610 and a processing unit 620.
  • the transceiving unit 610 may also be referred to as a transceiver, a transceiver, a transceiving device, and so on.
  • the processing unit 620 may also be referred to as a processor, a processing board, a processing module, a processing device, and the like.
  • the device for implementing the receiving function in the transceiving unit 610 can be regarded as the receiving unit, and the device for implementing the sending function in the transceiving unit 610 can be regarded as the sending unit, that is, the transceiving unit 610 includes a receiving unit and a sending unit.
  • the transceiver unit may sometimes be referred to as a transceiver, a transceiver, or a transceiver circuit.
  • the receiving unit may sometimes be called a receiver, a receiver, or a receiving circuit.
  • the transmitting unit may sometimes be called a transmitter, a transmitter, or a transmitting circuit.
  • the transceiver unit 610 is configured to perform the receiving operation of the terminal device in FIG. 2 to FIG. 3.
  • the processing unit 620 is configured to perform processing actions on the terminal device side in FIGS. 2 to 3.
  • FIG. 6 is only an example and not a limitation, and the foregoing terminal device including a transceiver unit and a processing unit may not rely on the structure shown in FIG. 6.
  • the chip When the wireless communication device 600 is a chip, the chip includes a transceiver unit and a processing unit.
  • the transceiver unit may be an input/output circuit or a communication interface;
  • the processing unit may be a processor, microprocessor, or integrated circuit integrated on the chip.
  • the embodiment of the present application also provides a wireless communication device 700, and the wireless communication device 700 may be a network device or a chip.
  • the wireless communication apparatus 700 may be used to perform operations performed by a network device in the foregoing method embodiments.
  • the wireless communication apparatus 700 When the wireless communication apparatus 700 is a network device, for example, it is a base station.
  • Figure 7 shows a simplified schematic diagram of the base station structure.
  • the base station includes 710 part and 720 part.
  • the 77 part is mainly used for receiving and sending radio frequency signals and the conversion between radio frequency signals and baseband signals; the 720 part is mainly used for baseband processing and controlling the base station.
  • the part 710 can generally be referred to as a transceiver unit, transceiver, transceiver circuit, or transceiver.
  • the 720 part is usually the control center of the base station, and may generally be referred to as a processing unit, which is used to control the base station to perform the processing operations on the network device side in the foregoing method embodiments.
  • the transceiver unit of part 710 may also be called a transceiver or a transceiver, etc., which includes an antenna and a radio frequency circuit, and the radio frequency circuit is mainly used for radio frequency processing.
  • the device for implementing the receiving function in part 710 can be regarded as the receiving unit, and the device for implementing the sending function as the sending unit, that is, the part 710 includes the receiving unit and the sending unit.
  • the receiving unit may also be called a receiver, a receiver, or a receiving circuit
  • the sending unit may be called a transmitter, a transmitter, or a transmitting circuit, etc.
  • the 720 part may include one or more single boards, and each single board may include one or more processors and one or more memories.
  • the processor is used to read and execute programs in the memory to implement baseband processing functions and control the base station. If there are multiple boards, each board can be interconnected to enhance processing capabilities. As an optional implementation, multiple single boards may share one or more processors, or multiple single boards may share one or more memories, or multiple single boards may share one or more processing at the same time. Device.
  • the transceiving unit of part 710 is used to perform the steps related to transceiving and receiving performed by the network device in the embodiment shown in Figures 2 to 3; the part 720 is used to perform the implementation shown in Figures 2 to 3 The steps related to the processing performed by the network device in the example.
  • FIG. 7 is only an example and not a limitation, and the foregoing network device including a transceiver unit and a processing unit may not rely on the structure shown in FIG. 7.
  • the chip When the wireless communication device 700 is a chip, the chip includes a transceiver unit and a processing unit.
  • the transceiver unit may be an input/output circuit or a communication interface;
  • the processing unit is a processor, microprocessor, or integrated circuit integrated on the chip.
  • the embodiment of the present application also provides a computer-readable storage medium on which is stored computer instructions for implementing the method executed by the terminal device or the method executed by the network device in the foregoing method embodiments.
  • the computer when the computer program is executed by a computer, the computer can implement the method executed by the terminal device in the foregoing method embodiments or the method executed by the network device.
  • the embodiments of the present application also provide a computer program product containing instructions that, when executed by a computer, cause the computer to implement the method executed by the terminal device in the foregoing method embodiments or the method executed by the network device.
  • An embodiment of the present application also provides a communication system, which includes the network device and the terminal device in the above embodiment.
  • the communication system includes: the network device and the terminal device in the embodiments described above with reference to FIG. 2 to FIG. 3.
  • the terminal device or the network device may include a hardware layer, an operating system layer running on the hardware layer, and an application layer running on the operating system layer.
  • the hardware layer may include hardware such as a central processing unit (CPU), a memory management unit (MMU), and memory (also referred to as main memory).
  • the operating system at the operating system layer can be any one or more computer operating systems that implement business processing through processes, such as Linux operating systems, Unix operating systems, Android operating systems, iOS operating systems, or windows operating systems.
  • the application layer can include applications such as browsers, address books, word processing software, and instant messaging software.
  • the embodiment of this application does not specifically limit the specific structure of the execution subject of the method provided in the embodiment of this application, as long as it can run a program that records the code of the method provided in the embodiment of this application, according to the method provided in the embodiment of this application.
  • the execution subject of the method provided in the embodiments of the present application may be a terminal device or a network device, or a functional module in the terminal device or the network device that can call and execute the program.
  • Computer-readable media may include, but are not limited to: magnetic storage devices (for example, hard disks, floppy disks, or tapes, etc.), optical disks (for example, compact discs (CD), digital versatile discs (digital versatile disc, DVD), etc.), etc. ), smart cards and flash memory devices (for example, erasable programmable read-only memory (EPROM), cards, sticks or key drives, etc.).
  • magnetic storage devices for example, hard disks, floppy disks, or tapes, etc.
  • optical disks for example, compact discs (CD), digital versatile discs (digital versatile disc, DVD), etc.
  • smart cards and flash memory devices for example, erasable programmable read-only memory (EPROM), cards, sticks or key drives, etc.
  • the various storage media described herein may represent one or more devices and/or other machine-readable media for storing information.
  • the term "machine-readable medium” may include, but is not limited to, wireless channels and various other media capable of storing, containing, and/or carrying instructions and/or data.
  • processors mentioned in the embodiments of this application may be a CPU, other general-purpose processors, digital signal processors (digital signal processors, DSP), application specific integrated circuits (ASICs), ready-made Field programmable gate array (FPGA) or other programmable logic devices, discrete gates or transistor logic devices, discrete hardware components, etc.
  • the general-purpose processor may be a microprocessor or the processor may also be any conventional processor or the like.
  • the memory mentioned in the embodiments of the present application may be a volatile memory or a non-volatile memory, or may include both volatile and non-volatile memory.
  • the non-volatile memory can be read-only memory (ROM), programmable read-only memory (programmable ROM, PROM), erasable programmable read-only memory (erasable PROM, EPROM), and electrically available Erase programmable read-only memory (electrically EPROM, EEPROM) or flash memory.
  • the volatile memory may be random access memory (RAM).
  • RAM can be used as an external cache.
  • RAM may include the following various forms: static random access memory (static RAM, SRAM), dynamic random access memory (dynamic RAM, DRAM), synchronous dynamic random access memory (synchronous DRAM, SDRAM) , Double data rate synchronous dynamic random access memory (double data rate SDRAM, DDR SDRAM), enhanced synchronous dynamic random access memory (enhanced SDRAM, ESDRAM), synchronous connection dynamic random access memory (synchlink DRAM, SLDRAM) and Direct RAM Bus RAM (DR RAM).
  • static random access memory static random access memory
  • dynamic RAM dynamic random access memory
  • DRAM synchronous dynamic random access memory
  • SDRAM synchronous DRAM
  • Double data rate synchronous dynamic random access memory double data rate SDRAM, DDR SDRAM
  • enhanced SDRAM enhanced synchronous dynamic random access memory
  • SLDRAM Direct RAM Bus RAM
  • the processor is a general-purpose processor, DSP, ASIC, FPGA or other programmable logic device, discrete gate or transistor logic device, or discrete hardware component
  • the memory storage module
  • memories described herein are intended to include, but are not limited to, these and any other suitable types of memories.
  • the disclosed system, device, and method can be implemented in other ways.
  • the device embodiments described above are merely illustrative, for example, the division of the units is only a logical function division, and there may be other divisions in actual implementation, for example, multiple units or components may be combined or It can be integrated into another system, or some features can be ignored or not implemented.
  • the displayed or discussed mutual coupling or direct coupling or communication connection may be indirect coupling or communication connection through some interfaces, devices or units, and may be in electrical, mechanical or other forms.
  • the units described as separate components may or may not be physically separated, and the components displayed as units may or may not be physical units, that is, they may be located in one place, or they may be distributed on multiple network units. Some or all of the units may be selected according to actual needs to achieve the objectives of the solutions of the embodiments.
  • the functional units in the various embodiments of the present application may be integrated into one processing unit, or each unit may exist alone physically, or two or more units may be integrated into one unit.
  • the function is implemented in the form of a software functional unit and sold or used as an independent product, it can be stored in a computer readable storage medium.
  • the technical solution of the present application essentially or the part that contributes to the existing technology or the part of the technical solution can be embodied in the form of a software product, and the computer software product is stored in a storage medium, including Several instructions are used to make a computer device (which may be a personal computer, a server, or a network device, etc.) execute all or part of the steps of the methods described in the various embodiments of the present application.
  • the aforementioned storage media include: U disk, mobile hard disk, read-only memory (Read-Only Memory, ROM), random access memory (random access memory, RAM), magnetic disks or optical disks and other media that can store program codes. .

Landscapes

  • Engineering & Computer Science (AREA)
  • Signal Processing (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Power Engineering (AREA)
  • Mobile Radio Communication Systems (AREA)

Abstract

本申请提供了一种无线通信方法,该方法包括:向终端设备发送第一指示信息,所述第一指示信息用于指示连续的K个时间单元,K为大于或等于2的整数,所述K个时间单元中的至少两个时间单元承载的上行数据不同;通过所述K个时间单元中的至少一个时间单元,接收来自所述终端设备的第一上行参考信号;根据所述第一上行参考信号对所述K个时间单元进行联合信道估计。该方法通过对多个连续的时间单元进行联合信道估计,可以使通信过程中的信道估计更加准确,上行参考信号配置更加灵活,上行传输调度更加合理,从而提高通信系统的传输性能。

Description

无线通信方法和装置 技术领域
本申请涉及无线通信领域,更具体的涉及一种无线通信方法和装置。
背景技术
在无线通信中,终端设备向网络设备发送上行参考信号,网络设备基于接收到的上行参考信号进行上行信道估计,并为终端设备的上行传输配置合理的调度参数,因此,上行信道估计的准确性对于上行传输性能影响很大,示例性地,当上行参考信号是解调参考信号(demodulation reference signal,DMRS)时,如果信道估计不准确,会导致物理上行共享信道(physical uplink shared channel,PUSCH)上承载的数据无法被网络设备正确解调和接收,导致上行传输的吞吐量下降,频谱效率较低;当上行参考信号是探测参考信号(sounding reference signal,SRS)时,如果信道估计不准确,将导致网络设备为终端设备配置不合理的上行传输的调度参数,例如当信道质量较差时,网络设备给终端设备配置过高的调制方式或码率,导致上行传输的数据无法被网络设备正确的接收,或者,当信道质量较好时,网络设备给终端设备配置过低的调制方式或码率,导致上行传输的有效信息偏少,降低了上行传输的效率。因此,保证基于参考信号的准确信道估计对系统性能十分重要。
现有无线接入技术新空口(New Radio,NR)基于一个时间单元的上行参考信号进行上行信道估计,可能存在参考信号较少导致信道估计不准确的问题,且参考信号通过高层信令进行配置,无法灵活的适配上行传输信道的变化。因此,需要提出一种信道估计更准确、参考信号配置更灵活的方式。
发明内容
本申请提供一种无线通信方法和装置,以提高信道估计的准确性。
第一方面,提供了一种无线通信方法,包括:向终端设备发送第一指示信息,所述第一指示信息用于指示连续的K个时间单元,K为大于或等于2的整数,所述K个时间单元中的至少两个时间单元承载的上行数据不同;通过所述K个时间单元中的至少一个时间单元,接收来自所述终端设备的第一上行参考信号;根据所述第一上行参考信号对所述K个时间单元进行联合信道估计。
该技术方案由网络设备执行,通过对多个连续时间单元进行联合的信道估计,相比于单个时间单元的信道估计,在信道估计的过程中可用的参考信号更多,从而信道估计更加准确,网络设备根据联合的信道估计值,可以更加合理的调度上行传输资源。
结合第一方面,在第一方面的某些实现方式中,所述K个时间单元中的至少两个时间单元上承载有所述第一上行参考信号,所述至少两个时间单元对应的上行参考信号的发送参数相同,所述发送参数包括以下至少一种参数:发送功率、天线端口、或频域资源。
当上行参考信号的发送参数相同时,上行参考信号所对应的传输路径相同,即每一个 时间单元中的上行参考信号对应相同的传输路径,才能进行联合信道估计。
结合第一方面,在第一方面的某些实现方式中,所述K个时间单元的位置可以为从第一时间单元开始的连续K个时间单元,所述第一时间单元为承载第一指示信息的时间单元,本技术方案将第一时间单元作为联合信道估计的起始时间;所述K个时间单元的位置还可以为从第二时间单元开始的连续K个时间单元,所述第二时间单元与第一时间单元间隔N个时间单元,所述N的取值为预定义的取值,或者为网络侧设备配置的取值,例如可以通过RRC信令配置N的取值,本技术方案将第二时间单元作为联合信道估计的起始时间。
本技术方案通过联合多个时间单元进行信道估计,终端设备在接受到第一指示信息后,可以做出联合信道估计的响应,即发送用于联合信道估计的上行参考信号。
结合第一方面,在第一方面的某些实现方式中,所述第一指示信息包括第一调制编码方式MCS的信息,其中,所述K的值是第一映射关系指示的与所述第一MCS对应的值,所述第一映射关系用于指示MCS的取值与K的取值的对应关系。
本技术方案将用于指示K的个数的指示信息隐示的包含在MCS中,当终端设备收到第一指示信息指示的MCS索引值时,可以根据MCS索引值从第一映射关系中确定K的个数,节省通信过程中网络设备的信令开销。
结合第一方面,在第一方面的某些实现方式中,所述第一指示信息承载于下行控制信息DCI中,此外,所述方法还包括:在向终端设备发送第一指示信息之前,向终端设备发送第二指示信息,所述第二指示信息用于指示数值M,M为大于或等于2的整数,所述第二指示信息承载于高层信令,例如RRC信令,所述第一指示信息包括第一偏移量信息,所述第一偏移量信息用于指示所述K相对于所述M的偏移量。
本技术方案通过高层信令和DCI中的指示信息共同确定K的取值,网络设备预先配置一个M的值,在通信过程中,根据需要通过DCI动态配置K相对于M的偏移值,来灵活动态的配置需要进行联合的信道估计的时间单元数目K,且可以节省DCI的指示开销,改善系统传输效率。结合第一方面,在第一方面的某些实现方式中,所述方法还包括:所述K个时间单元内的部分时间单元承载上行参考信号。
本技术方案中,网络设备配置K个时间单元中的时域符号,可以通过一个基准符号数目和偏移量确定该时间单元中的时域符号的数目,该方式可以灵活的配置承载上行参考信号的时域符号,且可以配置部分时间单元承载上行参考信号,这样可以节省上行参考信号的开销。
结合第一方面,在第一方面的某些实现方式中,所述方法还包括:向所述终端设备发送第三指示信息,所述第三指示信息用于指示所述K个时间单元中承载上行参考信号的时间单元;或者所述第三指示信息用于指示所述K个时间单元中不承载上行参考信号的时间单元。
本技术方案中,网络设备可以指示不承载上行参考信号的时间单元,也可以指示承载上行参考信号的时间单元,网络设备可以灵活的配置时间单元的数目,用于节省信令开销。
结合第一方面,在第一方面的某些实现方式中,所述方法还包括:向所述终端设备发送第四指示信息,所述第四指示信息用于指示第一发送功率,所述第一发送功率是所有K个时间单元的所述第一上行参考信号的发送功率,即所有K个时间单元采用第一发送功 率,进行上行参考信号的发送。
结合第一方面,在第一方面的某些实现方式中,所述方法还包括:所述第四指示信息包括所述K个时间单元中的每个时间单元的发送功率的信息。
结合第一方面,在第一方面的某些实现方式中,所述方法还包括:向所述终端设备发送第五指示信息,所述第五指示信息用于指示第一天线端口,所述第一天线端口是所述第一上行参考信号的发送端口。
结合第一方面,在第一方面的某些实现方式中,所述方法还包括:向所述终端设备发送第六指示信息,所述第六指示信息用于指示第一频域资源,所述第一频域资源是承载所述第一上行参考信号的频域资源。
本技术方案中网络设备通过第五指示信息和第六指示信息指示终端设备的上行参考信号通过同一天线端口发送,且每个时间单元的上行参考信号的频域资源相同,以确保联合信道估计时,每个时间单元对应的传输链路相同。
结合第一方面,在第一方面的某些实现方式中,所述方法还包括:向所述终端设备发送第七指示信息,所述第七指示信息用于指示承载所述第一上行参考信号的时间单元中的第一符号的数目,所述第一符号是用于承载参考信号的符号。
结合第一方面,在第一方面的某些实现方式中,所述方法还包括:所述第七指示信息包括第二偏移量信息,所述第二偏移量信息用于指示所述第一符号的数目相对于基准符号的数目的偏移量,其中,所述基准符号的数目由网络设备指示;或者所述基准符号的数目由通信协议规定。
结合第一方面,在第一方面的某些实现方式中,所述方法还包括:所述基准符号是所述K个时间单元中的第j个时间单元内用于承载上行参考信号的符号,所述第j个时间单元是所述K个时间单元中的任意一个时间单元。
第二方面,提供了一种无线通信方法,包括:接收来自网络设备的第一指示信息,所述第一指示信息用于指示连续的K个时间单元,K为大于或等于2的整数,所述K个时间单元中的至少一个时间单元用于承载上行参考信号,所述上行参考信号用于所述K个时间单元的联合信道估计;通过所述K个时间单元中的至少一个时间单元,发送第一上行参考信号,所述K个时间单元中的至少两个时间单元承载的上行数据不同。
该方法由终端设备执行,当终端设备收到第一指示信息后,向网络设备发送用于信道联合估计的上行参考信号。
结合第二方面,在第二方面的某些实现方式中,所述K个时间单元中的至少两个时间单元上承载有所述第一上行参考信号,以及所述至少两个时间单元对应承载的上行参考信号对应的发送参数相同,所述发送参数包括以下至少一种参数:发送功率、天线端口、频域资源。
当上行参考信号的发送参数相同时,上行参考信号所对应的传输路径相同,即每一个时间单元中的上行参考信号对应相同的传输路径,才能进行联合信道估计。
结合第二方面,在第二方面的某些实现方式中,所述K个时间单元中的至少两个时间单元承载的上行数据不同。
结合第二方面,在第二方面的某些实现方式中,所述K个时间单元的位置可以为从第一时间单元开始的连续K个时间单元,所述第一时间单元为承载第一指示信息的时间单 元,本技术方案将第一时间单元作为联合信道估计的起始时间;所述K个时间单元的位置还可以为从第二时间单元开始的连续K个时间单元,所述第二时间单元与第一时间单元间隔N个时间单元,所述N的取值为预定义的取值,或者为网络侧设备配置的取值,例如可以通过RRC信令配置N的取值,本技术方案将第二时间单元作为联合信道估计的起始时间。
本技术方案将指示信息的时间作为联合信道估计的起始时间,本技术方案通过联合多个时间单元进行信道估计,当终端设备在接受到该第一指示信息后,可以做出联合信道估计的响应,即发送用于联合信道估计的上行参考信号。
结合第二方面,在第二方面的某些实现方式中,所述第一指示信息包括第一调制编码方式MCS的信息,其中,所述K的值是第一映射关系指示的与所述第一MCS对应的值,所述第一映射关系用于MCS的取值与K的取值之间的对应关系。。
本技术方案将用于指示K的取值的指示信息隐示的包含在MCS中,当终端设备收到第一指示信息指示的MCS索引值时,可以根据MCS索引值从第一映射关系中确定K的取值,节省通信过程中网络设备的信令开销。
结合第二方面,在第二方面的某些实现方式中,所述第一指示信息承载于下行控制信息DCI中,此外,所述方法还包括:
在接收来自网络设备的第一指示信息之前,接收来自网络设备的第二指示信息,所述第二指示信息用于指示数值M,M为大于或等于2的整数,所述第二指示信息承载于高层信令,所述接收来自网络设备的第一指示信息,包括:接收来自所述网络设备的下行控制信息DCI,其中,所述DCI包括第一偏移量信息,所述K的值是根据所述第一偏移量信息和所述M确定的。
本技术方案通过高层信令和DCI中的指示信息共同确定K的取值,网络设备预先配置一个M的值,在通信过程中,根据需要通过DCI动态配置K相对于M的偏移值,来灵活动态的配置需要进行联合的信道估计的时间单元数目K,且可以节省DCI的指示开销,改善系统传输效率。
结合第二方面,在第二方面的某些实现方式中,所述K个时间单元内的部分时间单元承载上行参考信号。
结合第二方面,在第二方面的某些实现方式中,所述方法还包括:接收来自所述网络设备的第三指示信息,其中,所述第三指示信息用于指示所述K个时间单元中承载上行参考信号的时间单元;或者所述第三指示信息用于指示所述K个时间单元中不承载上行参考信号的时间单元。结合第二方面,在第二方面的某些实现方式中,所述方法还包括:接收来自网络设备的第四指示信息,所述第四指示信息用于指示第一发送功率,所述第一发送功率是所述第一上行参考信号的发送功率,即所有K个时间单元采用第一发送功率,进行上行参考信号的发送。
结合第二方面,在第二方面的某些实现方式中,所述第四指示信息包括所述K个时间单元中的每个时间单元的发送功率的信息。
结合第二方面,在第二方面的某些实现方式中,所述方法还包括:接收来自网络设备的第五指示信息,所述第五指示信息用于指示第一天线端口,所述第一天线端口是所述第一上行参考信号的发送端口。
结合第二方面,在第二方面的某些实现方式中,所述方法还包括:接收来自网络设备的第六指示信息,所述第六指示信息用于指示第一频域资源,所述第一频域资源是承载所述第一上行参考信号的频域资源。
本技术方案中网络设备通过第五指示信息和第六指示信息指示终端设备的上行参考信号通过同一天线端口发送,且每个时间单元的上行参考信号的频域资源相同,以确保联合信道估计时,每个时间单元对应的传输链路相同。
结合第二方面,在第二方面的某些实现方式中,所述方法还包括:接收来自网络设备的第七指示信息,所述第七指示信息用于指示承载所述第一上行参考信号的时间单元中的第一符号的数目,所述第一符号是用于承载参考信号的符号。
结合第二方面,在第二方面的某些实现方式中,所述第七指示信息包括第二偏移量信息,所述第二偏移量信息用于指示所述第一符号的数目相对于基准符号的数目的偏移量,其中,所述基准符号的数目由网络设备指示;或者基准数目由通信协议规定。
结合第二方面,在第二方面的某些实现方式中,所述基准符号是所述K个时间单元中的第j个时间单元内用于承载上行参考信号的符号,所述第j个时间单元是所述K个时间单元中的任意一个时间单元。
第三方面,提供了一种无线通信装置,包括:收发单元,用于向终端设备发送第一指示信息,所述第一指示信息用于指示连续的K个时间单元,K为大于或等于2的整数,所述K个时间单元中的至少两个时间单元承载的上行数据不同。;
所述收发单元,还用于通过所述K个时间单元中的至少一个时间单元,接收来自所述终端设备的第一上行参考信号;处理单元,用于根据所述第一上行参考信号对所述K个时间单元进行联合信道估计。
结合第三方面,在第三方面的某些实现方式中,所述K个时间单元中的至少两个时间单元上承载有所述第一上行参考信号,以及所述至少两个时间单元对应的上行参考信号的发送参数相同,所述发送参数包括以下至少一种参数:发送功率、天线端口、或频域资源。
结合第三方面,在第三方面的某些实现方式中,所述K个时间单元的位置可以为从第一时间单元开始的连续K个时间单元,所述第一时间单元为承载第一指示信息的时间单元,本技术方案将第一时间单元作为联合信道估计的起始时间;所述K个时间单元的位置还可以为从第二时间单元开始的连续K个时间单元,所述第二时间单元与第一时间单元间隔N个时间单元,所述N的取值为预定义的取值,或者为网络侧设备配置的取值,例如可以通过RRC信令配置N的取值,本技术方案将第二时间单元作为联合信道估计的起始时间。
结合第三方面,在第三方面的某些实现方式中,所述K个时间单元内的部分时间单元承载上行参考信号。
结合第三方面,在第三方面的某些实现方式中,所述第一指示信息包括第一调制编码方式MCS的信息,其中,所述K的值是第一映射关系指示的与所述第一MCS对应的值,所述第一映射关系用于指示MCS的取值与K的取值之间的对应关系。
结合第三方面,在第三方面的某些实现方式中,所述第一指示信息承载于下行控制信息DCI中,以及在向终端设备发送第一指示信息之前,所述收发单元还用于:向终端设备发送第二指示信息,所述第二指示信息用于指示数值M,M为大于或等于2的整数,所 述第二指示信息承载于高层信令,向所述终端设备发送下行控制信息DCI,其中,所述DCI包括第一偏移量信息,所述K的值是根据所述第一偏移量信息和所述M确定的。
结合第三方面,在第三方面的某些实现方式中,所述收发单元还用于:向所述终端设备发送第三指示信息,所述第三指示信息用于指示所述K个时间单元中承载上行参考信号的时间单元;或者所述第三指示信息用于指示所述K个时间单元中不承载上行参考信号的时间单元。
结合第三方面,在第三方面的某些实现方式中,所述收发单元还用于:向所述终端设备发送第四指示信息,所述第四指示信息用于指示第一发送功率,所述第一发送功率是所述第一上行参考信号的发送功率。
结合第三方面,在第三方面的某些实现方式中,所述第四指示信息包括所述K个时间单元中的每个时间单元的发送功率的信息。
结合第三方面,在第三方面的某些实现方式中,所述收发单元还用于:向所述终端设备发送第五指示信息,所述第五指示信息用于指示第一天线端口,所述第一天线端口是所述第一上行参考信号的发送端口。
结合第三方面,在第三方面的某些实现方式中,所述收发单元还用于:向所述终端设备发送第六指示信息,所述第六指示信息用于指示第一频域资源,所述第一频域资源是承载所述第一上行参考信号的频域资源。
结合第三方面,在第三方面的某些实现方式中,所述收发单元还用于:向所述终端设备发送第七指示信息,所述第七指示信息用于指示承载所述第一上行参考信号的时间单元中的第一符号的数目,所述第一符号是用于承载参考信号的符号。
结合第三方面,在第三方面的某些实现方式中,所述第七指示信息包括第二偏移量信息,所述第二偏移量信息用于指示所述第一符号的数目相对于基准符号的数目的偏移量,其中,所述基准符号的数目由网络设备指示;或者所述基准符号的数目由通信协议规定。
结合第三方面,在第三方面的某些实现方式中,所述基准符号的数目是所述K个时间单元中的第j个时间单元内用于承载上行参考信号的符号的数目,所述第j个时间单元是所述K个时间单元中的任意一个时间单元。
结合第三方面,在第三方面的某些实现方式中,所述K个时间单元内的部分时间单元承载上行参考信号。
第四方面,提供了一种无线通信装置,包括:收发单元,用于接收来自网络设备的第一指示信息,所述第一指示信息用于指示连续的K个时间单元,K为大于或等于2的整数,所述K个时间单元中的至少一个时间单元用于承载上行参考信号,所述上行参考信号用于所述K个时间单元的联合信道估计;所述收发单元,还用于通过所述K个时间单元中的至少一个时间单元,发送第一上行参考信号,所述K个时间单元中的至少两个时间单元承载的上行数据不同。
结合第四方面,在第四方面的某些实现方式中,所述K个时间单元中的至少两个时间单元上承载有所述第一上行参考信号,以及所述至少两个时间单元对应的上行参考信号的发送参数相同,所述发送参数包括以下至少一种参数:发送功率、天线端口、或频域资源。
结合第四方面,在第四方面的某些实现方式中,所述K个时间单元的位置可以为从第一时间单元开始的连续K个时间单元,所述第一时间单元为承载第一指示信息的时间单 元,本技术方案将第一时间单元作为联合信道估计的起始时间;所述K个时间单元的位置还可以为从第二时间单元开始的连续K个时间单元,所述第二时间单元与第一时间单元间隔N个时间单元,所述N的取值为预定义的取值,或者为网络侧设备配置的取值,例如可以通过RRC信令配置N的取值,本技术方案将第二时间单元作为联合信道估计的起始时间。
结合第四方面,在第四方面的某些实现方式中,所述第一指示信息包括第一调制编码方式MCS的信息,其中,所述K的值是第一映射关系指示的与所述第一MCS对应的值,所述第一映射关系用于指示MCS的取值与K的取值的对应关系。
结合第四方面,在第四方面的某些实现方式中,所述第一指示信息承载于下行控制信息DCI中,以及在接收来自网络设备的第一指示信息之前,所述收发单元还用于:接收来自网络设备的第二指示信息,所述第二指示信息用于指示数值M,M为大于或等于2的整数,所述第二指示信息承载于高层信令,以及所述第一指示信息包括第一偏移量信息,所述第一偏移量信息用于指示所述K相对于所述M的偏移量。
结合第四方面,在第四方面的某些实现方式中,所述K个时间单元内的部分时间单元承载上行参考信号。
结合第四方面,在第四方面的某些实现方式中,所述收发单元还用于:接收来自网络设备的第三指示信息,所述第三指示信息用于指示所述K个时间单元中承载上行参考信号的时间单元;或者所述第三指示信息用于指示所述K个时间单元中不承载上行参考信号的时间单元。
结合第四方面,在第四方面的某些实现方式中,接收来自网络设备的第四指示信息,所述第四指示信息用于指示第一发送功率,所述第一发送功率是所述第一上行参考信号的发送功率。
结合第四方面,在第四方面的某些实现方式中,所述第四指示信息包括所述K个时间单元中的每个时间单元的发送功率的信息。
结合第四方面,在第四方面的某些实现方式中,所述收发单元还用于:接收来自网络设备的第五指示信息,所述第五指示信息用于指示第一天线端口,所述第一天线端口是所述第一上行参考信号的发送端口。
结合第四方面,在第四方面的某些实现方式中,所述收发单元还用于:接收来自网络设备的第六指示信息,所述第六指示信息用于指示第一频域资源,所述第一频域资源是承载所述第一上行参考信号的频域资源。
结合第四方面,在第四方面的某些实现方式中,所述收发单元还用于:接收来自网络设备的第七指示信息,所述第七指示信息用于指示承载所述第一上行参考信号的时间单元中的第一符号的数目,所述第一符号是用于承载参考信号的符号。
结合第四方面,在第四方面的某些实现方式中,所述第七指示信息包括第二偏移量信息,所述第二偏移量信息用于指示所述第一符号的数目相对于基准符号的数目的偏移量,其中,所述基准符号的数目由网络设备指示;或者所述基准符号的数目由通信协议规定。
结合第四方面,在第四方面的某些实现方式中,所述基准符号数目是所述K个时间单元中的第j个时间单元内用于承载上行参考信号的符号的数目,所述第j个时间单元是所述K个时间单元中的任意一个时间单元。
第五方面,提供了一种通信装置,包括用于执行第一方面或第三方面以及第一方面或第三方面中任一种可能实现方式中的方法的各个模块或单元。
第六方面,提供了一种无线通信装置,包括处理器,所述处理器与存储器耦合,可用于执行第一方面或第三方面以及第一方面或第三方面可能实现方式中的方法。可选地,该无线通信装置还包括存储器。可选地,该无线定位装置还包括通信接口,处理器与通信接口耦合。可选地,该装置还包括通信接口,处理器与通信接口耦合。
在一种实现方式中,该无线通信装置为网络设备。当该通信装置为网络设备时,所述通信接口可以是收发器,或,输入/输出接口。
在另一种实现方式中,该通信装置为芯片或芯片系统。当该通信装置为芯片或芯片系统时,所述通信接口可以是该芯片或芯片系统上的输入/输出接口、接口电路、输出电路、输入电路、管脚或相关电路等。所述处理器也可以体现为处理电路或逻辑电路。
第七方面,提供了一种通信装置,包括用于执行第二方面或第四方面以及第二方面或第四方面中任一种可能实现方式中的方法的各个模块或单元。
第八方面,提供了一种通信装置,包括处理器。该处理器与存储器耦合,可用于执行存储器中的指令,以实现上述第二方面或第四方面以及第二方面或第四方面中任一种可能实现方式中的方法。可选地,该通信装置还包括存储器。可选地,该通信装置还包括通信接口,处理器与通信接口耦合。可选地,所述收发器可以为收发电路。可选地,所述输入/输出接口可以为输入/输出电路。
在一种实现方式中,该通信装置为终端设备。当该通信装置为终端设备时,所述通信接口可以是收发器,或,输入/输出接口。可选地,所述收发器可以为收发电路。可选地,所述输入/输出接口可以为输入/输出电路。
在另一种实现方式中,该通信装置为芯片或芯片系统。当该通信装置为芯片或芯片系统时,所述通信接口可以是该芯片或芯片系统上的输入/输出接口、接口电路、输出电路、输入电路、管脚或相关电路等。所述处理器也可以体现为处理电路或逻辑电路。
第九方面,提供了一种处理器,包括:输入电路、输出电路和处理电路。所述处理电路用于通过所述输入电路接收信号,并通过所述输出电路发射信号,使得所述第一方面至第四方面中的任一方面,以及第一方面至第四方面中任一种可能实现方式中的方法被实现。
在具体实现过程中,上述处理器可以为芯片,输入电路可以为输入管脚,输出电路可以为输出管脚,处理电路可以为晶体管、门电路、触发器和各种逻辑电路等。输入电路所接收的输入的信号可以是由例如但不限于接收器接收并输入的,输出电路所输出的信号可以是例如但不限于输出给发射器并由发射器发射的,且输入电路和输出电路可以是同一电路,该电路在不同的时刻分别用作输入电路和输出电路。本申请实施例对处理器及各种电路的具体实现方式不做限定。
第十方面,提供了一种处理装置,包括处理器和存储器。该处理器用于读取存储器中存储的指令,并可通过接收器接收信号,通过发射器发射信号,以执行第一方面至第四方面以及第一方面至第四方面任一种可能实现方式中的方法。
可选地,所述处理器为一个或多个,所述存储器为一个或多个。
可选地,所述存储器可以与所述处理器集成在一起,或者所述存储器与处理器分离设 置。
在具体实现过程中,存储器可以为非瞬时性(non-transitory)存储器,例如只读存储器(read only memory,ROM),其可以与处理器集成在同一块芯片上,也可以分别设置在不同的芯片上,本申请实施例对存储器的类型以及存储器与处理器的设置方式不做限定。
应理解,相关的数据交互过程例如发送指示信息可以为从处理器输出指示信息的过程,接收能力信息可以为处理器接收输入能力信息的过程。具体地,处理输出的数据可以输出给发射器,处理器接收的输入数据可以来自接收器。其中,发射器和接收器可以统称为收发器。
上述第十方面中的处理器可以是一个芯片,该处理器可以通过硬件来实现也可以通过软件来实现,当通过硬件实现时,该处理器可以是逻辑电路、集成电路等;当通过软件来实现时,该处理器可以是一个通用处理器,通过读取存储器中存储的软件代码来实现,该存储器可以集成在处理器中,可以位于该处理器之外,独立存在。
第十一方面,提供了一种计算机程序产品,所述计算机程序产品包括:计算机程序(也可以称为代码,或指令),当所述计算机程序被运行时,使得计算机执行上述第一方面至第四方面以及第一方面至第四方面中任一种可能实现方式中的方法。
第十二方面,提供了一种计算机可读介质,所述计算机可读介质存储有计算机程序(也可以称为代码,或指令)当其在计算机上运行时,使得计算机执行上述第一方面至第四方面以及第一方面至第四方面中任一种可能实现方式中的方法。
第十三方面,提供了一种通信系统,包括前述的网络设备和终端设备。
附图说明
图1是本申请实施例的应用场景;
图2是本申请实施例的无线通信过程示意图;
图3是本申请实施例的无线通信过程又一示意图;
图4是本申请实施例的无线通信装置的示意性框图;
图5是本申请实施例的无线通信装置的另一示意性框图;
图6是本申请实施例的终端设备的示意性框图;
图7是本申请实施例的网络设备的示意性框图。
具体实施方式
下面将结合附图,对本申请中的技术方案进行描述。
本申请实施例的技术方案可以应用于各种通信系统,例如:全球移动通讯(global system for mobile communications,GSM)系统、码分多址(code division multiple access,CDMA)系统、宽带码分多址(wideband code division multiple access,WCDMA)系统、通用分组无线业务(general packet radio service,GPRS)、长期演进(Long Term Evolution,LTE)系统、LTE频分双工(frequency division duplex,FDD)系统、LTE时分双工(time division duplex,TDD)、通用移动通信系统(Universal Mobile Telecommunications System,UMTS)、全球互联微波接入(Worldwide Interoperability for Microwave Access,WiMAX) 通信系统、未来的第五代(5th Generation,5G)系统或新一代无线接入技术(new radio access technology,NR)等。
为便于理解本申请实施例,首先结合图1详细说明适用于本申请实施例的通信系统。图1是适用于本申请实施例的发送和接收参考信号的方法的通信系统100的示意图。如图1所示,该通信系统100可以包括网络设备102和终端设备104-114。
应理解,该网络设备102可以是任意一种具有无线收发功能的设备或可设置于该设备的芯片,该设备包括但不限于:基站(例如,基站NodeB、演进型基站eNodeB、第五代(5G)通信系统中的网络设备(如传输点(transmission point,TP)、发送接收点(transmission reception point,TRP)、基站、小基站设备等)、未来通信系统中的网络设备、无线保真(Wireless-Fidelity,WiFi)系统中的接入节点、无线中继节点、无线回传节点等。
网络设备102可以与多个终端设备(例如图中所示的终端设备104-114)通信。
应理解,终端设备也可以称为用户设备(user equipment,UE)、接入终端、用户单元、用户站、移动站、移动台、远方站、远程终端、移动设备、用户终端、终端、无线通信设备、用户代理或用户装置。本申请的实施例中的终端设备可以是手机(mobile phone)、平板电脑(Pad)、带无线收发功能的电脑、虚拟现实(virtual reality,VR)终端设备、增强现实(augmented reality,AR)终端设备、工业控制(industrial control)中的无线终端、无人驾驶(self driving)中的无线终端、远程医疗(remote medical)中的无线终端、智能电网(smart grid)中的无线终端、运输安全(transportation safety)中的无线终端、智慧城市(smart city)中的无线终端、智慧家庭(smart home)中的无线终端等等。本申请的实施例对应用场景不做限定。本申请中将前述终端设备及可设置于前述终端设备的芯片统称为终端设备。
此外,该通信系统100也可以是公共陆地移动网络(public land mobile network,PLMN)网络、设备到设备(device to device,D2D)网络、机器到机器(machine to machine,M2M)网络或者其他网络。图1仅为便于理解而示例的简化示意图,该通信系统100中还可以包括其他网络设备和终端设备,图1中未予以画出。
为了便于理解本申请实施例,下面简单介绍上行传输时的信道估计。
NR协议中定义了用于估计上行传输信道的上行参考信号,例如,解调参考信号(demodulation reference signal,DMRS)和探测参考信号(sounding reference signal,SRS),网络设备基于上行参考信号的信道估计对上行传输性能影响很大。
以DMRS和SRS为例,当DMRS估计不准确时,将导致网络设备无法正确解调接收到的上行物理共享信道(physical uplink shared channel,PUSCH)上承载的数据,使得上行传输的吞吐量下降,频谱效率较低;当网络设备基于SRS估计不准确时,将导致网络设备指示终端设备进行上行传输的调度参数可能不合理,例如调度PUSCH传输所使用的调制编码策略(modulation coding scheme,MCS)不准确,有可能在较差信道质量时指示终端设备采用了过高的调制方式/码率,导致网络设备接收PUSCH时译码和解调失败,或者在较好信道质量时采用了过低的调制方式/码率,导致PUSCH传输的有效信息偏少,降低了传输的效率。因此,保证基于参考信号的准确信道估计对系统性能十分重要。
在上行传输中,功率控制对于上行参考信号的传输十分重要,当上行传输的信道质量较差时,例如:终端设备进行上行传播的距离较远导致路损较大,或者网络设备接收上行 参考信号时干扰较大,此时,网络设备需要指示(以下,也可以称为配置)终端设备以较高的上行参考信号功率进行上行发送,才能有效接收上行参考信号。
一般地,网络设备进行上行参考信号的功率控制时,需要满足如下公式:
P=min{P cmax,{P 0(j)+α(j)*P L(p)}+{f(l)}+{10lgM+Δ}}
其中,{P 0(j)+α(j)*P L(p)}为开环工作点,{f(l)}为闭环偏移量,{10lgM+Δ}为其他调整量。
通常,开环工作点部分是通过高层信令配置,该高层信令可以是RRC信令,适用于多个时间单元,闭环偏移量是通过下行控制信息(downlink control information,DCI)配置,用于快速调节上行参考信号的功率。其他调整量中M表示的此次上行传输占用的物理资源块PRB的个数,此时默认上行参考信号为15KHz的子载波间隔。开环工作点包括终端设备对网络设备发送的下行参考信号进行信道估计后,获取的路损信息,网络设备对该路损值进行功率补偿,慢速半静态的进行功率调整;闭环偏移量为网络设备基于上一次传输过程中接收的上行信号质量进行快速的准确调整,示例性的,当网络设备上一次接收到的上行传输功率太小时,网络设备可以通过闭环调整量,指示终端设备在本次上行传输进行更高功率的发送。
示例性地,当上行参考信号是SRS时,开环工作点中的P L(p),即开环工作点的路损估计,一般的,通过高层参数pathlossReferenceSignal配置p的取值,索引到相关的参考信号进行路损的计算;当没有配置该高层参数时(例如终端设备还没有接入系统),终端设备直接采用同步信号块中的参考信号计算路损。
示例性的,当上行参考是DMRS时,开环工作点的P L(p),即开环工作点的路损估计,通过如下配置:当终端设备没有被配置高层参数pathlossReferenceSignal时,终端设备基于同步信号块中的参考信号进行路损计算;当终端设备配置了高层参数pathlossReferenceSignal,则直接通过高层参数pusch-pathlossReferenceSignal-Id索引到具体的参考信号进行路损的计算;当PUSCH是msg3传输时,终端设备采用和PRACH发送相同的参考信号进行路损计算;当终端设备配置了高层参数SRI-PUSCH-PowerControl和多个pusch-pathlossReferenceSignal-Id取值时,需要通过DCI中的SRI从配置的映射关系中,索引到相应的下行参考信号,进行路损计算。
对于非码本的PUSCH/DMRS传输,终端设备需要依据传输数据的层数和网络设备配置的SRS资源数目,通过SRI索引指示选择至少一个天线端口进行PUSCH的传输,并且根据该天线端口的路损取值进行路损计算。
如表1所示,以传输层数为1,DCI的格式是0_1为例,终端设备通过该索引表格,确定传输PUSCH/DMRS的天线端口。
例如,当N SRS=2时,终端设备可以通过两个天线端口发送PUSCH/DMRS。并且网络设备可以通过SRI的索引值,用以指示终端设备从某一天线端口发送PUSCH/DMRS,当SRI索引值为0时,终端设备从第一个SRS资源(SRS资源0)对应的天线端口发送PUSCH/DMRS,相对应的,终端设备以第一个天线端口的路损取值,进行路损计算;当SRI索引值为1时,终端设备从第二个SRS资源(SRS资源1)对应的天线端口发送PUSCH/DMRS,相对应的,终端设备以第二个天线端口的路损取值,进行路损计算。
表1非码本的PUSCH/DMRS传输的SRI索引表(传输层数=1)
SRI索引值 SRI,N SRS=2 SRI索引值 SRI,N SRS=3 SRI索引值 SRI,N SRS=4
0 0 0 0 0 0
1 1 1 1 1 1
    2 2 2 2
    3 保留(Reserved) 3 3
对于闭环偏移量的功率调整,当网络设备发现终端设备某个时间单元传输的上行信号功率过高时,网络设备在下一次调度同类型上行信号传输时,示例性地,用DCI通知终端设备将传输的上行信号功率降低1dB,该DCI中用于通知终端设备快速调整功率的信息称为传输功率控制命令(transmit power control command,TPC-command)。一般地,TPC-command有2个比特位,示例性地,当该字段为00时,且高层信令中TPC-Accumulation的取值为1,即TPC-Accumulation使能,则终端设备在上次同类型传输闭环调整量基础上降低1dB功率,TPC-Accumulation取值为0,即TPC-Accumulation不使能时,终端设备在当前时间单元的闭环调整量为降低4dB;类似的,当该字段为01、10和11时,闭环功率调整量的取值不同。
通常开环参数中P 0(j)和α(j)成对配置,共可以配32套,包含在高层信令的P0-PUSCH-AlphaSet参数中,P 0(j)和α(j)的取值通过p0-PUSCH-AlphaSetId索引从配置的P0-PUSCH-AlphaSet中选出。终端设备基于开环工作点的路损估计P L(p)中的索引值进行下行路损估计,该下行传输的路损估计即为当前时间单元的上行路损估计,与该路损估计有关的参数即为PUSCH-PathlossReferenceRS,示例性地,终端设备从SRI-PUSCH-PowerControl中的PUSCH-PathlossReferenceRS-Id获知p的取值,在索引值为p的参考信号上进行路损测量。
高层参数中TPC-Accumulation的取值决定了闭环功率参数{f(l)},示例性地,当TPC-Accumulation使能时,即为1时,如果开环工作点部分参数的索引值j=1,则通过高层参数powerControlLoopToUse来指示{f(l)}的取值。当TPC-Accumulation非使能时,即为0时,{f(l)}的取值通过TPC-command的指示获得。
除发送功率之外,NR中还通过高层信令配置上行参考信号的时频资源,也就是说,终端设备通过高层信令中的不同字段的配置取值确定上行参考信号的时频资源。该时频资源是指,在一个时间单元内,时域资源的分布和频域资源的分布,频域资源分布可以通过频域资源的起始位置,频域子载波的偏移,频域序列的偏移,频域序列是否跳频等参数确定。时域资源的分布可以通过时域符号的起始位置,时域符号个数等参数确定。
一般地,高层信令中的字段有:nrofSymbols,即时域符号数,以上行参考信号为SRS为例,每个时间单元内占用的时域符号数目可以为1个、2个或4个,startPosition,即时域符号的起始位置,freqDomainPosition,即频域符号的位置,freqDomainShift,即频域的子载波偏移,transmissionComb,即频域序列的偏移值,resourceType,即上行参考信号资源配置的类型,可以是周期的,也可以是非周期性的,也可以是半持续性的,groupOrSequenceHopping,即上行参考信号跳频的模式,可以是不跳频,也可以是按照时域顺序跳频等。
以上介绍了关于上行参考信号的发送参数,下面结合图2,详细说明本申请实施例提供的多个连续时间单元的联合信道估计的技术方案。
S210发送第一指示信息,用于指示连续的K个时间单元。
该步骤由网络设备执行,用于指示终端设备在接收到该指示信息后的连续的K个时间单元之内发送上行参考信号。
该指示信息可以是周期性的指示信息,也可以是触发性的指示信息。
所述指示信息可以包含该连续的K个时间单元的起始时刻的位置。
该起始时刻的位置可以是发送该指示信息的当前时刻。
或者,该起始时刻的位置也可以是发送该指示信息之后的一个时刻的位置。
或者,该起始时刻的位置还可以是根据当前时刻的位置和偏移值,例如,该起始时刻的位置可以是自当前时刻在经过偏移值对应的时间后的时刻的位置,所述偏移值可以是该指示信息指示的,也可以是协议预先配置的,本申请不作具体限定,下文将结合具体的参考信号进行详细描述,在此不做赘述。
终端设备在该连续的K个时间单元的每个时间单元发送功率相同的上行参考信号,且每个时间单元的上行参考信号所关联的频域资源和天线端口都相同,保证连续的K个时间单元的上行参考信号对应于相同的上行传输信道,使得网络设备收到终端设备发送的连续的K个时间单元的上行参考信号后,能够对连续的K个时间单元的信道进行联合的估计。
网络设备通过指示信息指示连续的K个时间单元,可以对连续的K个时间单元内的上行传输的信道进行联合信道估计,相比于单个时间单元的上行传输信道估计方法,本申请实施例提供的技术方案网络设备能进行更加准确的信道估计,从而更合理的调度上行传输资源,提升上行传输的效率。此外,当上下行信道互易性满足时(即上行和下行传输信道的衰落特性相同),更准确的上行信道估计也有助于网络侧进行更合理的下行传输资源调度,提升下行传输的效率。
该步骤中,配置的方法可以有很多种,示例性地,可以通过高层信令中有关字段配置K,也可以是通过下行控制信息中的有关字段配置K,下文将结合具体的参考信号进行详细描述,在此不做赘述。该步骤中的时间单元可以是时隙slot,或者子时隙sub-slot,本申请不作具体限定。
S220确定K个时间单元内上行参考信号的发送参数。
在网络设备对上行传输的连续的K个时间单元进行信道联合估计时,在连续的K个时间单元中的每个时间单元上,终端设备需以同一发送功率(即,第一发送功率),同一天线端口(即,第一天线端口),和同一频域资源(即,第一频域资源)向网络设备发送上行参考信号,也就是说,当每个时间单元的上行参考信号的发送功率相同,发送天线端口相同,频域资源相同时,能够确保每个时间单元的上行参考信号对应同样的传输路径,这样才能保证网络设备对该连续的K个时间单元进行联合的信道估计。
例如,网络侧对K个时间单元的上行参考信号的发送,采用相同的发送功率,从相同的天线端口发送。可选的,K个时间单元的频域资源可以相同,即网络侧对K个时间单元、相同子载波/频域上的上行参考信号进行信道估计,提高信道估计的准确性;可选的,K个时间单元的频域资源可以不相同,即网络侧对K个时间单元、不同子载波的上行参考信号进行信道估计,进行更宽的带宽范围的信道估计,有助于基站在频率选择性衰落信道中对终端在较好质量的频域载波上进行上行调度传输。
应当理解,网络设备在进行联合信道估计时,网络设备可以发送指示信息,指示上行 参考信号的第一发送功率,第一天线端口和第一频域资源,网络设备也可以通过通信协议预先规定,当终端设备在接收到第一指示信息时,终端设备以同一发送功率(即,第一发送功率),同一天线端口(即,第一天线端口),和同一频域资源(即,第一频域资源)向网络设备发送上行参考信号。
网络设备指示连续的K个时间单元的上行参考信号的第一发送功率可以是通过高层信令指示,还可以是通过下行控制信息中的字段指示,网络设备指示连续的K个时间单元的上行参考信号的第一天线端口可以通过下行控制信息中的字段指示,网络设备指示连续的K个时间单元的上行参考信号的第一频域资源可以是通过高层信令指示。
网络设备还可以指示该连续的K个时间单元内的上行参考信号的时域资源,网络设备指示上行参考信号的时域资源方式有很多种,示例性地,网络设备可以通过高层信令配置该连续的K个时间单元的上行参考信号的时域资源,也可以是通过下行控制信息DCI中的与上行参考信号相关的字段配置,本申请不作具体限定。
需要说明的是,该K个时间单元内,可以在每一个时间单元承载上行参考信号,也可以在部分的时间单元承载上行参考信号,本申请不作具体限定。这里的所说的时域资源包含时域符号的数目,时域符号的起始位置,和时域符号的图样,示例性地,网络设备可以配置一个基准符号的数目,用于指示K个时间单元的时域符号中某一符号数目,在通过配置一个偏移值,用于指示K个时间单元所含的参考信号占用的时域符号的实际数目,该基准符号的数目可以是由网络设备配置,也可以是由通信协议预先规定。网络设备还可以指示终端设备在该K个时间单元中,某一时间单元不承载参考信号。
下文将结合具体的参考信号进行详细描述,在此不做赘述。本申请中所说的时间单元可以是时隙slot,或者子时隙sub-slot,在此不作具体限定。
S230发送上行参考信号,用于联合信道估计
终端设备收到网络设备的指示信息后,根据该指示信息或者通信协议的规定,向网络设备发送上行参考信号,网络设备根据该上行参考信号进行K个时间单元的联合信道估计
以上,详细说明了本申请提供的联合信道估计的技术方案,经过上述步骤,网络设备可以对连续的K个时间单元的上行传输信道进行联合信道估计,该信道估计值相比于针对单个时间单元的上行传输信道估计值更加准确,并且,K个时间单元内可以部分时间单元承载上行传输信号,配置方式相对灵活,因此,网络设备可以进行更合理的上下行传输调度,提升终端设备的上行传输效率。
下面结合图3,以上行参考信号为SRS,高层信令为RRC信令为例,详细说明本申请实施例的技术方案
S310,发送第一和/或第二指示信息,用于指示连续的K个时间单元。
该步骤由网络设备执行,用于指示终端设备在接收到该指示信息后的连续的K个时间单元之内发送上行参考信号,所述指示信息可以是周期性的指示信息,也可以是触发性的指示信息。
所述指示信息可以包含该连续的K个时间单元的起始时刻的位置,该起始时刻可以是发送该指示信息的当前时刻的位置(以下,简称方式A);也可以是发送该指示信息之后的一个时刻的位置(以下,简称方式B),该时刻的位置可以是网络设备配置的,也可以是根据通信协议预定义的,本申请不作具体限定。
方式A
在RRC信令配置一个指示的字段,该字段用于表示连续的K个时间单元的起始时刻的位置为当前时刻的位置,示例性地,该字段可以为0。需要说明的是,该指示字段可以是由网络设备指示,也可以由通信协议规定,本申请不作具体限定。
方式B
在RRC信令配置一个指示的字段,该字段用于表示连续的K个时间单元的起始时刻的位置为发送该指示信息之后的一个时刻的位置,示例性地,该字段可以是00,用于表示在当前时刻之后的1个时间单元是该连续的K个时间单元的起始时刻的位置;示例性地,该字段可以是01,用于表示在当前时刻之后的2个时间单元是该连续的K个时间单元的起始时刻的位置,该指示字段可以是由网络设备指示,也可以由通信协议规定,本申请不作具体限定。
此外,网络设备发送第一指示信息,用于指示连续的K个时间单元的方法可以承载在RRC信令中,通过RRC信令配置一个指示字段,用于指示连续的K个时间单元的数目(以下,简称方式1);也可以承载于DCI中,来指示连续的K个时间单元的数目(以下,简称方式2),例如,在DCI中配置一个指示字段,用于指示连续的K个时间单元的数目(以下,简称方式2.1);也可以是复用DCI中的冗余字段,用于指示连续的K个时间单元的数目(以下,简称方式2.2);还可以是通过DCI中现有的字段,进行关联性的隐式指示,此时需要一个额外的触发,即指示终端对现有的字段进行新的解读,该额外触发的信令可以是高层信令配置的一个参数,例如‘MultiSlotFlag=1’(以下,简称方式2.3);也可以是,先在RRC信令中配置一个指示字段,用于指示N个连续时间单元的数目,然后在DCI中配置一个指示字段,用于指示在N个连续时间单元数目的基准上增加或者减少的数目,确定连续的K个时间单元的数目(以下,简称方式3),需要说明的是,当DCI中有指示K的取值时,采用DCI中指示的K的取值;当DCI中没有指示K的取值时,采用RRC信令配置的取值K=N,该步骤中的时间单元可以是时隙slot,或者子时隙sub-slot,本申请不作具体限定。
方式1
在RRC信令配置一个指示的字段,其取值指示终端设备进行SRS传输的时间单元数目K,示例性地,K的取值可以为4或5或其他正整数,本申请不作具体限定。
方式2
通过DCI来指示K个时间单元数目,示例性地,DCI可以通过以下两种具体的方式指示。
方式2.1
在DCI中配置一个用于指示连续的K个时间单元的数目的指示字段,示例性地,在DCI中新增一个字段用于指示K的取值,当该DCI字段为11时,代表K=4,即4个连续时间单元,当该DCI字段为111时,代表K=8,即8个连续时间单元;
或者,如下表2,示例性地,在DCI中新增2bit字段用于指示K的值,当该DCI字段为00时,指示K=2,即2个连续时间单元;当该DCI字段为01时,指示K=4,即4个连续时间单元;当该DCI字段为10时,指示K=6,即6个连续时间单元;当该DCI字段为11时,指示K=8,即8个连续时间单元。
表2 DCI新增字段指示多个时间单元数目K的取值
DCI新增字段(2bit) K取值 DCI新增字段(2bit) K取值
00 2 10 6
01 4 11 8
方式2.2
复用DCI中的字段的冗余状态,用于指示K个时间单元的数目,即K的取值,示例性地,采用TR 38.213协议中Table 7.3.1.1.2-8的指示SRS发送所采用的天线端口的码分复用的6和7为冗余状态,利用该两个冗余状态,可以分别指示2个K的取值。示例性地,冗余状态为6时,指示K=2,即2个连续时间单元;冗余状态为7时,指示K=5,即5个连续时间单元。
方式2.3
复用DCI中现有的字段,指示K个时间单元的数目,示例性地,可以通过MCS的取值,关联性的指示K的取值,该关联性的取值表可以是预先配置的,例如:
有效MCS索引值与联合信道估计的时间单元数目的对应关系可为下表3所示。
表3
有效MCS索引值 联合进行信道估计的时间单元数目
0-9 4
10-16 2
17-27 1
上述表3中有效MCS的索引值取值的分段0-9,10-16,17-27只是举例,也可以是其他的分段取值,在此不做限定。
或者,终端内预设的对应关系为下表4所示。
当MCS对应的调制阶数为2时,表示当前信道质量一般,需要更多的时间单元进行联合的信道估计,则指示K取值为6;
当MCS对应的调制阶数为6时,表示当前信道质量较好,只需较少的时间单元进行联合信道估计,则指示K取值为2;
当MCS对应的调制阶数为4时,则指示K取值为4。
表4
调制阶数 联合进行信道估计的时间单元数目
2 4
4 2
6 1
即终端可以根据MCS索引值首先确定该MCS索引值指示的调制阶数,再根据调制阶数与联合进行信道估计的时间单元数目的对应关系,确定MCS索引值指示的调制阶数对应的联合进行信道估计的时间单元数目。例如,以表2为例,假设终端接收到网络侧设备发送的DCI包含的MCS索引值为11,则终端根据表2所示的对应关系,确定MCS索引值11对应的联合进行信道估计的时间单元数目为2,则终端根据确定的联合进行信道估计的时间单元数目,并按照确定的重复传输次数进行SRS的传输。
方式3
先在RRC信令中配置一个指示字段,用于指示连续的K个时间单元的取值,然后在DCI中配置一个指示字段,用于指示在该取值基础上需要变化的连续时间单元数目。例如: RRC信令配置进行联合信道估计的时间单元数目K的参考取值为5,通过DCI中的一个字段(例如2bit)来指示变化的取值数目(例如为-2,-1,1,2),确定最终联合估计的时间单元数目K的取值,该DCI中的字段可以是新增的字段也可以是复用DCI中的冗余字段。
通过复用DCI中的冗余字段可以节省DCI的信令开销,从而节省终端设备的功耗。
当终端设备收到该第一指示信息之后,在连续的K个时间单元进行联合的上行发送,即保证相同的发送功率、天线端口、频域资源等,使能网络侧对K个时间单元接收的参考信号进行联合的信道估计,相比于单个时间单元的上行传输信道估计方法,连续的K个时间单元之内进行联合的信道估计可以更准确的估计出信道参数,从而网络设备能够更合理的调度上下行传输资源,提升上行传输的效率。
S320发送第四指示信息,用于指示SRS的第一发送功率。
在进行上行传输的连续的K个时间单元的信道联合估计时,网络设备需要指示终端设备在连续的K个时间单元上,以相同的功率(即第一发送功率)向网络设备发送SRS。
网络设备配置连续的K个时间单元的SRS传输功率的方式可以是对连续的K个时间单元的SRS配置相同的功率控制参数;也可以是针对第一个时间单元的SRS配置功率控制参数,对于后续K-1相邻个时间单元的SRS不配置功率控制参数,网络设备指示终端设备复用第一个时间单元的功率控制参数,本申请不作具体限定。
DCI中与功率参数相关的字段有:TPC-command,用于指示当前时间单元的上行传输的闭环调整功率;SRI字段,用于指示当前时间单元终端设备从高层信令配置的目标接收功率集合中确定目标接收功率,其中SRI字段与高层信令配置的目标接收功率的相关索引值具有映射关系。
示例性地,网络设备对于后续K-1个连续时间单元的SRS不配置功率控制参数,可以是后续K-1个连续时间单元的SRS不配置DCI中tpc-command字段,或者,可以是网络设备对于后续K-1个连续时间单元的SRS配置DCI中tpc-command字段,但该字段于指示终端设备进行其他的调度。
示例性地,网络设备对于后续K-1个连续时间单元的SRS不配置功率控制参数,还可以是后续K-1个连续时间单元的SRS不配置DCI中SRI字段,或者,可以是后续K-1个连续时间单元的SRS配置DCI中SRI字段,但该字段于指示终端设备进行其他的调度。
通过上述网络设备对连续的K个时间单元的SRS的功率控制参数的配置方式,可以极大的节省DCI中对应的功率控制的指示字段,并且网络设备接收到连续的K个时间单元上的功率相同的SRS后,可以对连续的K个时间单元的上行传输信道进行估计,该信道估计值相比于对单个时间单元的上行传输信道估计更加准确,从而可以进行更加准确的上下行传输调度。
S330发送第五第六第七指示信息,用于指示SRS的空时频资源。
在上行传输时,网络设备指示终端设备在连续的K个时间单元上,采用相同的SRS进行传输,即连续的K个时间单元的SRS的发送功率、频域资源配置和关联的天线端口相同,确保连续的K个时间单元的SRS传输的链路相同。
如上所述,上行参考信号的天线端口可以通过SRI中的索引指示选择上行参考信号的发送端口。例如,在DCI中指示K个时间单元中每一个时间单元内的SRS都采用第一个 天线端口发送,以确保该连续的K个时间单元的SRS传输的链路相同。
网络设备指示SRS的时频资源的方式,可以是通过RRC信令直接配置连续的K个时间单元的SRS(以下,简称方式一),还可以是通过RRC信令配置一个用于参考的SRS,再通过DCI动态指示其余K-1个时间单元上的SRS(以下,简称方式二),还可以是通过DCI配置连续的K个时间单元的SRS(以下,简称方式三)。
上述SRS的时频资源,即时域资源和频域资源,该时域资源可以是时域符号的数目和时域符号的起始位置,该频域资源可以是子载波的频率和/或子载波频率的偏移值。
方式一
在RRC信令中,与SRS的配置相关的参数有:
SRS-Resource::resourceMapping::nrofSymbols,表示当前时间单元的SRS占用的时域符号数目;
SRS-Resource::resourceMapping::startPosition,表示当前时间单元配置的SRS占用的时域符号的起始位置。一般地,SRS占用的时域符号位于一个时隙中倒数6个符号内。
例如,配置K=5,即网络设备配置5个连续时间单元的上行SRS,示例性的,SRS-Resource::resourceMapping::nrofSymbols={2、0、2、0、2},即第1、3、5个时间单元的SRS均占用2个时域符号,第2、4个时间单元不配置SRS;SRS-Resource::resourceMapping:startPosition={1、0、1、0、1},表示第1/3/5个时间单元的SRS占用的时域符号从最后6个时域符号的第2个时域符号开始,第2/4个时间单元的SRS占用的时域符号从最后6个时域符号的第1个时域符号开始。网络设备利用该5个时间单元的SRS对5个时间单元对应的时段内的无线信道进行估计。
此外,对于该5个连续时间单元的上行SRS的频域资源需要进行频域资源的配置,例如,可以配置该5个时间单元的上行SRS频域资源相同,也可以配置该5个时间单元的上行SRS频域资源不同。示例性地,网络设备配置SRS-Resource::transmissionComb在任一时间单元中的取值可以配置为comb2,或comb4,或者任意子载波偏移量,也可以在该5个时间单元的取值中都配置为comb2,或comb4,或者任意子载波偏移量,本申请不做出具体限定。
方式二
在RRC信令中配置一个供参考的SRS的时频资源,再通过DCI动态指示其余K-1个时间单元上的SRS,例如:
SRS-Resource::resourceMapping::nrofSymbols配置为2
Resource::resourceMapping:startPosition配置为1;
再通过3bit的DCI索引值,指示当前时间单元配置的SRS占用的时域符号数目在RRC信令配置基础上,应该新增或者减少的时域符号数目,如下表5所示的预定义表格,示例性地,通过索引值指示其余K-1个时间单元的时域符号数。
示例性的,当DCI中的索引值为000时,表示当前时间单元的SRS的时域符号数相比于参考时间单元的SRS的时域符号数增加1个符号数目;例如,RRC信令配置的用于参考SRS的时域符号数为2,当前时间单元的DCI的索引值被网络设备配置为000,则表示,当前时间单元的SRS时域符号数为3。当DCI中的索引值为100时,表示当前时间单元的SRS的时域符号数相比于参考时间单元的SRS的时域符号数减小1个符号数目; 例如,RRC信令配置的用于参考SRS的时域符号数为2,当前时间单元的DCI的索引值被网络设备配置为100,则表示,当前时间单元的SRS时域符号数为1。
表5 DCI索引值指示时域符号增加或减少的数目
DCI索引 数目变化
000 1
001 2
010 3
011 4
100 -1
101 -2
110 -3
111 -4
其中,DCI索引值的字段可以是新增的字段,也可以是复用DCI中的冗余字段,如果复用冗余字段,则DCI中信令开销则会更小。
方式三
通过DCI配置连续的K个时间单元的SRS的时域符号数目,是指通过DCI中用于指示SRS的时域符号的字段配置当前时间单元的SRS占用的符号数目,该字段可以是2bit,也可以是3bit。
示例性地,网络设备配置第一个时间单元DCI中的指示SRS的时域符号的2bit字段为00,表示当前时间单元不配置SRS;网络设备配置第二个时间单元DCI中的指示SRS的时域符号的2bit字段为01,表示当前时间单元配置的SRS时域符号数为1;网络设备配置第二个时间单元DCI中的指示SRS的时域符号的2bit字段为10,表示当前时间单元配置的SRS时域符号数为2;网络设备配置第二个时间单元DCI中的指示SRS的时域符号的2bit字段为11,表示当前时间单元配置的SRS时域符号数为3。
其中,DCI中用于指示SRS的时域符号的字段可以是新增的字段,也可以是复用DCI中的冗余字段。复用冗余字段可以节省DCI的指令开销。
网络设备根据这种配置方式,可以针对每个时间单元配置上行参考信号,根据需要,可以再部分时间单元上不配置上行参考信号,用以节省上行参考信号的开销。
S340发送SRS,用于联合信道估计。
在确定SRS的发送参数和时域资源之后,根据指示信息,终端设备向网络设备发送SRS,网络设备接收到该SRS之后,对该连续的K个时间单元进行联合信道估计。
根据本申请实施例提供的技术方案,网络设备可以对该连续的K个时间单元的上行传输信道进行信道估计,该估计值相比于针对单个时间单元的上行传输信道估计值更加准确,从而,网络设备可以进行更合理的上下行传输调度,提升终端设备的上行传输效率。
需要说明的是,本申请对上述步骤的先后顺序不作具体限定,网络设备可以在进行联合信道估计时指示上行参考信号的发送参数,也可以通过协议预先定义联合信道估计时的上行参考信号的发送参数,本申请不作具体限定。
图4是本申请实施例提供的无线通信装置的示意性框图。该无线通信装置400包括收发单元410和处理单元420。收发单元410可以与外部进行通信,处理单元420用于进行数据处理。收发单元410还可以称为通信接口或通信单元。
可选地,该无线定位装置400还可以包括存储单元,该存储单元可以用于存储指令或者和/或数据,处理单元420可以读取存储单元中的指令或者和/或数据。
该无线定位装置400可以用于执行上文方法实施例中终端设备所执行的动作,这时,该无线定位装置400可以为终端设备或者可配置于终端设备的部件,收发单元410用于执行上文方法实施例中终端设备侧的收发相关的操作,处理单元420用于执行上文方法实施例中终端设备侧的处理相关的操作。
或者,该无线定位装置400可以用于执行上文方法实施例中网络设备所执行的动作,这时,该无线定位装置400可以为网络设备或者可配置于网络设备的部件,收发单元410用于执行上文方法实施例中网络设备侧的收发相关的操作,处理单元420用于执行上文方法实施例中网络设备侧的处理相关的操作。
作为一种设计,该无线定位装置400用于执行上文图2或图3所示实施例中网络设备的动作,收发单元410用于向终端设备发送第一指示信息,第一指示信息用于指示连续的K个时间单元,K为大于或等于2的整数,所述K个时间单元中的至少两个时间单元承载的上行数据不同;还用于通过K个时间单元中的至少一个时间单元,接收来自终端设备的第一上行参考信号;处理单元420用于根据第一上行参考信号对K个时间单元进行联合信道估计。
可选地,第一指示信息包括第一调制编码方式MCS的信息,其中,K的值是第一映射关系指示的与第一MCS对应的值,第一映射关系用于指示MCS的取值与K的取值的对应关系。
可选地,收发单元410还用于:在向终端设备发送第一指示信息之前,收发器还用于:向终端设备发送第二指示信息,第二指示信息用于指示数值M,M为大于或等于2的整数,第二指示信息承载于高层信令,以及向所述终端设备发送下行控制信息DCI,其中,所述DCI包括第一偏移量信息,所述K的值是根据所述第一偏移量信息和所述M确定的。
可选地,收发单元410还用于:向终端设备发送第三指示信息,第三指示信息用于指示K个时间单元中承载上行参考信号的时间单元;或者,第三指示信息用于指示K个时间单元中不承载上行参考信号的时间单元。
可选地,K个时间单元中的至少两个时间单元上承载有第一上行参考信号,以及
至少两个时间单元对应的上行参考信号的发送参数相同,发送参数包括以下至少一种参数:发送功率、天线端口、频域资源。
可选地,收发单元410还用于:向终端设备发送第四指示信息,第四指示信息用于指示第一发送功率,第一发送功率是第一上行参考信号的发送功率。
可选地,收发单元410还用于:向终端设备发送第五指示信息,第五指示信息用于指示第一天线端口,第一天线端口是第一上行参考信号的发送端口。
可选地,收发单元410还用于:向终端设备发送第六指示信息,第六指示信息用于指示第一频域资源,第一频域资源是承载第一上行参考信号的频域资源。
可选地,收发单元410还用于:向终端设备发送第七指示信息,第七指示信息用于指 示承载第一上行参考信号的时间单元中的第一符号的数目,第一符号是用于承载参考信号的符号。
可选地,K个时间单元的位置可以是第一时间单元后连续的K个时间单元,也可以是第二单元后连续的K个时间单元,其中第一时间单元是承载第一指示信息的时间单元,第二时间单元与第一时间单元间隔N个时间单元,N是预定义的或者通过网络设备配置的,例如通过RRC信令配置。
可选地,第一发送功率是K个时间单元均采用的上行信号发送功率。
可选地,第七指示信息包括第二偏移量信息,第二偏移量信息用于指示第一符号的数目相对于基准符号的数目的偏移量,其中,基准符号的数目由网络设备指示;或者基准符号的数目由通信协议规定。
可选地,基准符号的数目是K个时间单元中的第j个时间单元内用于承载上行参考信号的符号的数目,第j个时间单元是K个时间单元中的任意一个时间单元。
可选地,K个时间单元内的部分时间单元承载上行参考信号。
作为另一种设计,该无线定位装置400用于执行上文图2或图3所示实施例中终端设备的动作,收发单元410用于接收来自网络设备的第一指示信息,第一指示信息用于指示连续的K个时间单元,K为大于或等于2的整数,K个时间单元中的至少一个时间单元用于承载上行参考信号,上行参考信号用于K个时间单元的联合信道估计;收发单元410,还用于通过K个时间单元中的至少一个时间单元,发送第一上行参考信号,所述K个时间单元中的至少两个时间单元承载的上行数据不同。
可选地,所述K个时间单元中的至少两个时间单元上承载有所述第一上行参考信号,以及所述至少两个时间单元承载的上行参考信号对应的发送参数相同,所述发送参数包括以下至少一种参数:发送功率、天线端口、或频域资源。
可选地,所述K个时间单元为从所述第一时间单元开始的连续K个时间单元;或者所述K个时间单元为从第二时间单元开始的连续K个时间单元,所述第二时间单元为与所述第一时间单元间隔N个时间单元。
可选地,收发单元410还用于:在接收来自网络设备的第一指示信息之前,接收来自网络设备的第二指示信息,第二指示信息用于指示数值M,M为大于或等于2的整数,第二指示信息承载于高层信令,以及第一指示信息包括第一偏移量信息,所述K的值是根据所述第一偏移量信息和所述M确定的。
可选地,收发单元410还用于:接收来自网络设备的第三指示信息,第三指示信息用于指示K个时间单元中承载上行参考信号的时间单元;或者第三指示信息用于指示K个时间单元中不承载上行参考信号的时间单元。
可选地,收发单元410还用于:接收来自网络设备的第四指示信息,第四指示信息用于指示第一发送功率,第一发送功率是第一上行参考信号的发送功率。
可选地,收发单元410还用于:接收来自网络设备的第五指示信息,第五指示信息用于指示第一天线端口,第一天线端口是第一上行参考信号的发送端口。
可选地,收发单元410还用于:接收来自网络设备的第六指示信息,第六指示信息用于指示第一频域资源,第一频域资源是承载第一上行参考信号的频域资源。
可选地,收发单元410还用于:接收来自网络设备的第七指示信息,第七指示信息用于指示承载第一上行参考信号的时间单元中的第一符号的数目,第一符号是用于承载参考信号的符号。
图4中的处理单元420可以由处理器或处理器相关电路实现。收发单元410可以由收发器或收发器相关电路实现。收发单元410还可称为通信单元或通信接口。存储单元可以通过存储器实现。
如图5所示,本申请实施例还提供一种无线通信装置500。该无线通信装置500包括处理器510,处理器510与存储器520耦合,存储器520用于存储计算机程序或指令或者和/或数据,处理器510用于执行存储器520存储的计算机程序或指令和/或者数据,使得上文方法实施例中的方法被执行。
可选地,该无线通信装置500包括的处理器510为一个或多个。
可选地,如图5所示,该无线通信装置500还可以包括存储器520。
可选地,该无线通信装置500包括的存储器520可以为一个或多个。
可选地,该存储器520可以与该处理器510集成在一起,或者分离设置。
可选地,如图5所示,该无线通信装置500还可以包括收发器530,收发器530用于信号的接收和/或发送。例如,处理器510用于控制收发器530进行信号的接收和/或发送。
作为一种方案,该无线通信装置500用于实现上文方法实施例中由终端设备执行的操作。
例如,处理器510用于实现上文方法实施例中由终端设备执行的处理相关的操作,收发器530用于实现上文方法实施例中由终端设备执行的收发相关的操作。
作为另一种方案,该无线通信装置500用于实现上文方法实施例中由网络设备执行的操作。
例如,处理器510用于实现上文方法实施例中由网络设备执行的处理相关的操作,收发器530用于实现上文方法实施例中由网络设备执行的收发相关的操作。
本申请实施例还提供一种无线通信装置600,该无线通信装置600可以是终端设备也可以是芯片。该无线通信装置600可以用于执行上述方法实施例中由终端设备所执行的操作。当该无线通信装置600为终端设备时,图6示出了一种简化的终端设备的结构示意图。便于理解和图示方便,图6中,终端设备以手机作为例子。如图6所示,终端设备包括处理器、存储器、射频电路、天线以及输入输出装置。处理器主要用于对通信协议以及通信数据进行处理,以及对终端设备进行控制,执行软件程序,处理软件程序的数据等。存储器主要用于存储软件程序和数据。射频电路主要用于基带信号与射频信号的转换以及对射频信号的处理。天线主要用于收发电磁波形式的射频信号。输入输出装置,例如触摸屏、显示屏,键盘等主要用于接收用户输入的数据以及对用户输出数据。需要说明的是,有些种类的终端设备可以不具有输入输出装置。
当需要发送数据时,处理器对待发送的数据进行基带处理后,输出基带信号至射频电路,射频电路将基带信号进行射频处理后将射频信号通过天线以电磁波的形式向外发送。当有数据发送到终端设备时,射频电路通过天线接收到射频信号,将射频信号转换为基带信号,并将基带信号输出至处理器,处理器将基带信号转换为数据并对该数据进行处理。为便于说明,图6中仅示出了一个存储器和处理器,在实际的终端设备产品中,可以存在 一个或多个处理器和一个或多个存储器。存储器也可以称为存储介质或者存储设备等。存储器可以是独立于处理器设置,也可以是与处理器集成在一起,本申请实施例对此不做限制。
在本申请实施例中,可以将具有收发功能的天线和射频电路视为终端设备的收发单元,将具有处理功能的处理器视为终端设备的处理单元。
如图6所示,终端设备包括收发单元610和处理单元620。收发单元610也可以称为收发器、收发机、收发装置等。处理单元620也可以称为处理器,处理单板,处理模块、处理装置等。
可选地,可以将收发单元610中用于实现接收功能的器件视为接收单元,将收发单元610中用于实现发送功能的器件视为发送单元,即收发单元610包括接收单元和发送单元。收发单元有时也可以称为收发机、收发器、或收发电路等。接收单元有时也可以称为接收机、接收器、或接收电路等。发送单元有时也可以称为发射机、发射器或者发射电路等。
例如,在一种实现方式中,收发单元610用于执行图2至图3中的终端设备的接收操作。处理单元620用于执行图2至图3中终端设备侧的处理动作。
应理解,图6仅为示例而非限定,上述包括收发单元和处理单元的终端设备可以不依赖于图6所示的结构。
当该无线通信装置600为芯片时,该芯片包括收发单元和处理单元。其中,收发单元可以是输入输出电路或通信接口;处理单元可以为该芯片上集成的处理器或者微处理器或者集成电路。
本申请实施例还提供一种无线通信装置700,该无线通信装置700可以是网络设备也可以是芯片。该无线通信装置700可以用于执行上述方法实施例中由网络设备所执行的操作。
当该无线通信装置700为网络设备时,例如为基站。图7示出了一种简化的基站结构示意图。基站包括710部分以及720部分。77部分主要用于射频信号的收发以及射频信号与基带信号的转换;720部分主要用于基带处理,对基站进行控制等。710部分通常可以称为收发单元、收发机、收发电路、或者收发器等。720部分通常是基站的控制中心,通常可以称为处理单元,用于控制基站执行上述方法实施例中网络设备侧的处理操作。
710部分的收发单元,也可以称为收发机或收发器等,其包括天线和射频电路,其中射频电路主要用于进行射频处理。可选地,可以将710部分中用于实现接收功能的器件视为接收单元,将用于实现发送功能的器件视为发送单元,即710部分包括接收单元和发送单元。接收单元也可以称为接收机、接收器、或接收电路等,发送单元可以称为发射机、发射器或者发射电路等。
720部分可以包括一个或多个单板,每个单板可以包括一个或多个处理器和一个或多个存储器。处理器用于读取和执行存储器中的程序以实现基带处理功能以及对基站的控制。若存在多个单板,各个单板之间可以互联以增强处理能力。作为一种可选的实施方式,也可以是多个单板共用一个或多个处理器,或者是多个单板共用一个或多个存储器,或者是多个单板同时共用一个或多个处理器。
例如,在一种实现方式中,710部分的收发单元用于执行图2至图3所示实施例中由网络设备执行的收发相关的步骤;720部分用于执行图2至图3所示实施例中由网络设备 执行的处理相关的步骤。
应理解,图7仅为示例而非限定,上述包括收发单元和处理单元的网络设备可以不依赖于图7所示的结构。
当该无线通信装置700为芯片时,该芯片包括收发单元和处理单元。其中,收发单元可以是输入输出电路、通信接口;处理单元为该芯片上集成的处理器或者微处理器或者集成电路。
本申请实施例还提供一种计算机可读存储介质,其上存储有用于实现上述方法实施例中由终端设备执行的方法,或由网络设备执行的方法的计算机指令。
例如,该计算机程序被计算机执行时,使得该计算机可以实现上述方法实施例中由终端设备执行的方法,或由网络设备执行的方法。
本申请实施例还提供一种包含指令的计算机程序产品,该指令被计算机执行时使得该计算机实现上述方法实施例中由终端设备执行的方法,或由网络设备执行的方法。
本申请实施例还提供一种通信系统,该通信系统包括上文实施例中的网络设备与终端设备。
作为一个示例,该通信系统包括:上文结合图2至图3描述的实施例中的网络设备与终端设备。
上述提供的任一种无线通信装置中相关内容的解释及有益效果均可参考上文提供的对应的方法实施例,此处不再赘述。
在本申请实施例中,终端设备或网络设备可以包括硬件层、运行在硬件层之上的操作系统层,以及运行在操作系统层上的应用层。其中,硬件层可以包括中央处理器(central processing unit,CPU)、内存管理单元(memory management unit,MMU)和内存(也称为主存)等硬件。操作系统层的操作系统可以是任意一种或多种通过进程(process)实现业务处理的计算机操作系统,例如,Linux操作系统、Unix操作系统、Android操作系统、iOS操作系统或windows操作系统等。应用层可以包含浏览器、通讯录、文字处理软件、即时通信软件等应用。
本申请实施例并未对本申请实施例提供的方法的执行主体的具体结构进行特别限定,只要能够通过运行记录有本申请实施例提供的方法的代码的程序,以根据本申请实施例提供的方法进行通信即可。例如,本申请实施例提供的方法的执行主体可以是终端设备或网络设备,或者,是终端设备或网络设备中能够调用程序并执行程序的功能模块。
本申请的各个方面或特征可以实现成方法、装置或使用标准编程和/或工程技术的制品。本文中使用的术语“制品”可以涵盖可从任何计算机可读器件、载体或介质访问的计算机程序。例如,计算机可读介质可以包括但不限于:磁存储器件(例如,硬盘、软盘或磁带等),光盘(例如,压缩盘(compact disc,CD)、数字通用盘(digital versatile disc,DVD)等),智能卡和闪存器件(例如,可擦写可编程只读存储器(erasable programmable read-only memory,EPROM)、卡、棒或钥匙驱动器等)。
本文描述的各种存储介质可代表用于存储信息的一个或多个设备和/或其它机器可读介质。术语“机器可读介质”可以包括但不限于:无线信道和能够存储、包含和/或承载指令和/或数据的各种其它介质。
应理解,本申请实施例中提及的处理器可以是CPU,还可以是其他通用处理器、数字 信号处理器(digital signal processor,DSP)、专用集成电路(application specific integrated circuit,ASIC)、现成可编程门阵列(field programmable gate array,FPGA)或者其他可编程逻辑器件、分立门或者晶体管逻辑器件、分立硬件组件等。通用处理器可以是微处理器或者该处理器也可以是任何常规的处理器等。
还应理解,本申请实施例中提及的存储器可以是易失性存储器或非易失性存储器,或可包括易失性和非易失性存储器两者。其中,非易失性存储器可以是只读存储器(read-only memory,ROM)、可编程只读存储器(programmable ROM,PROM)、可擦除可编程只读存储器(erasable PROM,EPROM)、电可擦除可编程只读存储器(electrically EPROM,EEPROM)或闪存。易失性存储器可以是随机存取存储器(random access memory,RAM)。例如,RAM可以用作外部高速缓存。作为示例而非限定,RAM可以包括如下多种形式:静态随机存取存储器(static RAM,SRAM)、动态随机存取存储器(dynamic RAM,DRAM)、同步动态随机存取存储器(synchronous DRAM,SDRAM)、双倍数据速率同步动态随机存取存储器(double data rate SDRAM,DDR SDRAM)、增强型同步动态随机存取存储器(enhanced SDRAM,ESDRAM)、同步连接动态随机存取存储器(synchlink DRAM,SLDRAM)和直接内存总线随机存取存储器(direct rambus RAM,DR RAM)。
需要说明的是,当处理器为通用处理器、DSP、ASIC、FPGA或者其他可编程逻辑器件、分立门或者晶体管逻辑器件、分立硬件组件时,存储器(存储模块)可以集成在处理器中。
还需要说明的是,本文描述的存储器旨在包括但不限于这些和任意其它适合类型的存储器。
本领域普通技术人员可以意识到,结合本文中所公开的实施例描述的各示例的单元及算法步骤,能够以电子硬件、或者计算机软件和电子硬件的结合来实现。这些功能究竟以硬件还是软件方式来执行,取决于技术方案的特定应用和设计约束条件。专业技术人员可以对每个特定的应用来使用不同方法来实现所描述的功能,但是这种实现不应认为超出本申请的范围。
所属领域的技术人员可以清楚地了解到,为描述的方便和简洁,上述描述的系统、装置和单元的具体工作过程,可以参考前述方法实施例中的对应过程,在此不再赘述。
在本申请所提供的几个实施例中,应该理解到,所揭露的系统、装置和方法,可以通过其它的方式实现。例如,以上所描述的装置实施例仅仅是示意性的,例如,所述单元的划分,仅仅为一种逻辑功能划分,实际实现时可以有另外的划分方式,例如多个单元或组件可以结合或者可以集成到另一个系统,或一些特征可以忽略,或不执行。另一点,所显示或讨论的相互之间的耦合或直接耦合或通信连接可以是通过一些接口,装置或单元的间接耦合或通信连接,可以是电性,机械或其它的形式。
所述作为分离部件说明的单元可以是或者也可以不是物理上分开的,作为单元显示的部件可以是或者也可以不是物理单元,即可以位于一个地方,或者也可以分布到多个网络单元上。可以根据实际的需要选择其中的部分或者全部单元来实现本实施例方案的目的。
另外,在本申请各个实施例中的各功能单元可以集成在一个处理单元中,也可以是各个单元单独物理存在,也可以两个或两个以上单元集成在一个单元中。
所述功能如果以软件功能单元的形式实现并作为独立的产品销售或使用时,可以存储 在一个计算机可读取存储介质中。基于这样的理解,本申请的技术方案本质上或者说对现有技术做出贡献的部分或者该技术方案的部分可以以软件产品的形式体现出来,该计算机软件产品存储在一个存储介质中,包括若干指令用以使得一台计算机设备(可以是个人计算机,服务器,或者网络设备等)执行本申请各个实施例所述方法的全部或部分步骤。而前述的存储介质包括:U盘、移动硬盘、只读存储器(Read-Only Memory,ROM)、随机存取存储器(random access memory,RAM)、磁碟或者光盘等各种可以存储程序代码的介质。
以上所述,仅为本申请的具体实施方式,但本申请的保护范围并不局限于此,任何熟悉本技术领域的技术人员在本申请揭露的技术范围内,可轻易想到变化或替换,都应涵盖在本申请的保护范围之内。因此,本申请的保护范围应以所述权利要求的保护范围为准。

Claims (31)

  1. 一种无线通信方法,其特征在于,包括:
    向终端设备发送第一指示信息,所述第一指示信息用于指示连续的K个时间单元,K为大于或等于2的整数,所述K个时间单元中的至少两个时间单元承载的上行数据不同;
    通过所述K个时间单元中的至少一个时间单元,接收来自所述终端设备的第一上行参考信号;
    根据所述第一上行参考信号对所述K个时间单元进行联合信道估计。
  2. 如权利要求1所述的无线通信方法,其特征在于,所述K个时间单元中的至少两个时间单元上承载有所述第一上行参考信号,以及
    所述至少两个时间单元对应的上行参考信号的发送参数相同,所述发送参数包括以下至少一种参数:
    发送功率、天线端口、或频域资源。
  3. 如权利要求1或2所述的无线通信方法,其特征在于,所述向终端设备发送第一指示信息,包括:
    在第一时间单元上向终端设备发送第一指示信息,其中,
    所述K个时间单元为从所述第一时间单元开始的连续K个时间单元;或者
    所述K个时间单元为从第二时间单元开始的连续K个时间单元,所述第二时间单元为与所述第一时间单元间隔N个时间单元。
  4. 如权利要求1至3中任一项所述的无线通信方法,其特征在于,所述向终端设备发送第一指示信息,包括:
    向所述终端设备发送下行控制信息,所述下行控制信息包括第一调制编码方式MCS的信息,所述第一MCS的信息为所述第一指示信息,所述第一MCS对应于所述K的值。
  5. 如权利要求1至4中任一项所述的无线通信方法,其特征在于,
    在向终端设备发送第一指示信息之前,所述方法还包括:
    通过高层信令向终端设备发送第二指示信息,所述第二指示信息用于指示数值M,M为大于或等于2的整数,以及
    所述向终端设备发送第一指示信息,包括:
    向所述终端设备发送下行控制信息DCI,其中,所述DCI包括第一偏移量信息,所述K的值是根据所述第一偏移量信息和所述M确定的。
  6. 如权利要求1至5中任一项所述的无线通信方法,其特征在于,所述K个时间单元内的部分时间单元承载上行参考信号。
  7. 如权利要求1至6中任一项所述的无线通信方法,其特征在于,所述方法还包括:
    向所述终端设备发送第三指示信息,其中,
    所述第三指示信息用于指示所述K个时间单元中承载上行参考信号的时间单元;或者
    所述第三指示信息用于指示所述K个时间单元中不承载上行参考信号的时间单元。
  8. 一种无线通信方法,其特征在于,包括:
    接收来自网络设备的第一指示信息,所述第一指示信息用于指示连续的K个时间单 元,K为大于或等于2的整数,所述K个时间单元中的至少一个时间单元用于承载上行参考信号,所述上行参考信号用于所述K个时间单元的联合信道估计;
    通过所述K个时间单元中的至少一个时间单元,发送第一上行参考信号,所述K个时间单元中的至少两个时间单元承载的上行数据不同。
  9. 如权利要求8所述的无线通信方法,其特征在于,所述K个时间单元中的至少两个时间单元上承载有所述第一上行参考信号,以及
    所述至少两个时间单元承载的上行参考信号对应的发送参数相同,所述发送参数包括以下至少一种参数:
    发送功率、天线端口、或频域资源。
  10. 如权利要求8或9所述的无线通信方法,其特征在于,
    所述接收来自网络设备的第一指示信息,包括:
    在第一时间单元上接收来自网络设备的第一指示信息,其中,
    所述K个时间单元为从所述第一时间单元开始的连续K个时间单元;或者
    所述K个时间单元为从第二时间单元开始的连续K个时间单元,所述第二时间单元与所述第一时间单元间隔N个时间单元。
  11. 如权利要求8至10中任一项所述的无线通信方法,其特征在于,所述接收来自网络设备的第一指示信息,包括:
    接收来自网络设备的下行控制信息,所述下行控制信息包括第一调制编码方式MCS的信息,所述第一MCS的信息为所述第一指示信息,所述第一MCS对应于所述K的值。
  12. 如权利要求8至11中任一项所述的无线通信方法,其特征在于,
    在接收来自网络设备的第一指示信息之前,所述方法还包括:
    通过高层信令接收来自所述网络设备的第二指示信息,所述第二指示信息用于指示数值M,M为大于或等于2的整数,以及
    所述接收来自网络设备的第一指示信息,包括:接收来自所述网络设备的下行控制信息DCI,其中,所述DCI包括第一偏移量信息,所述K的值是根据所述第一偏移量信息和所述M确定的。
  13. 如权利要求8至12中任一项所述的无线通信方法,其特征在于,所述K个时间单元内的部分时间单元承载上行参考信号。
  14. 如权利要求8至13中任一项所述的无线通信方法,其特征在于,所述方法还包括:
    接收来自所述网络设备的第三指示信息,其中,
    所述第三指示信息用于指示所述K个时间单元中承载上行参考信号的时间单元;或者
    所述第三指示信息用于指示所述K个时间单元中不承载上行参考信号的时间单元。、
  15. 一种无线通信装置,其特征在于,包括:
    收发单元,用于向终端设备发送第一指示信息,所述第一指示信息用于指示连续的K个时间单元,K为大于或等于2的整数,所述K个时间单元中的至少两个时间单元承载的上行数据不同;
    所述收发单元,还用于通过所述K个时间单元中的至少一个时间单元,接收来自所述终端设备的第一上行参考信号;
    处理单元,用于根据所述第一上行参考信号对所述K个时间单元进行联合信道估计。
  16. 如权利要求15所述的无线通信装置,其特征在于,所述K个时间单元中的至少两个时间单元上承载有所述第一上行参考信号,以及
    所述至少两个时间单元对应的上行参考信号的发送参数相同,所述发送参数包括以下至少一种参数:
    发送功率、天线端口、或频域资源。
  17. 如权利要求15或16所述的无线通信装置,其特征在于,所述向终端设备发送第一指示信息,包括:
    在第一时间单元上向终端设备发送第一指示信息,其中,
    所述K个时间单元为从所述第一时间单元开始的连续K个时间单元;或者
    所述K个时间单元为从第二时间单元开始的连续K个时间单元,所述第二时间单元为与所述第一时间单元间隔N个时间单元。
  18. 如权利要求15至17中任一项所述的无线通信装置,其特征在于,所述向终端设备发送第一指示信息,包括:
    向所述终端设备发送下行控制信息,所述下行控制信息包括第一调制编码方式MCS的信息,所述第一MCS的信息为所述第一指示信息,所述第一MCS对应于所述K的值。
  19. 如权利要求15至18中任一项所述的无线通信装置,其特征在于,
    在向终端设备发送第一指示信息之前,所述收发单元还用于:
    通过高层信令向终端设备发送第二指示信息,所述第二指示信息用于指示数值M,M为大于或等于2的整数,以及
    所述向终端设备发送第一指示信息,包括:
    向所述终端设备发送下行控制信息DCI,其中,所述DCI包括第一偏移量信息,所述K的值是根据所述第一偏移量信息和所述M确定的。
  20. 如权利要求15至19中任一项所述的无线通信装置,其特征在于,所述K个时间单元内的部分时间单元承载上行参考信号。
  21. 如权利要求15至20中任一项所述的无线通信装置,其特征在于,所述收发单元还用于:
    向所述终端设备发送第三指示信息,其中,
    所述第三指示信息用于指示所述K个时间单元中承载上行参考信号的时间单元;或者
    所述第三指示信息用于指示所述K个时间单元中不承载上行参考信号的时间单元。
  22. 一种无线通信装置,其特征在于,包括:
    收发单元,用于接收来自网络设备的第一指示信息,所述第一指示信息用于指示连续的K个时间单元,K为大于或等于2的整数,所述K个时间单元中的至少一个时间单元用于承载上行参考信号,所述上行参考信号用于所述K个时间单元的联合信道估计;
    所述收发单元,还用于通过所述K个时间单元中的至少一个时间单元,发送第一上行参考信号,所述K个时间单元中的至少两个时间单元承载的上行数据不同。
  23. 如权利要求22所述的无线通信装置,其特征在于,所述K个时间单元中的至少两个时间单元上承载有所述第一上行参考信号,以及
    所述至少两个时间单元承载的上行参考信号对应的发送参数相同,所述发送参数包括 以下至少一种参数:
    发送功率、天线端口、或频域资源。
  24. 如权利要求22或23所述的无线通信装置,其特征在于,
    所述接收来自网络设备的第一指示信息,包括:
    在第一时间单元上接收来自网络设备的第一指示信息,其中,
    所述K个时间单元为从所述第一时间单元开始的连续K个时间单元;或者
    所述K个时间单元为从第二时间单元开始的连续K个时间单元,所述第二时间单元为与所述第一时间单元间隔N个时间单元。
  25. 如权利要求22至24中任一项所述的无线通信装置,其特征在于,所述接收来自网络设备的第一指示信息,包括:
    接收来自网络设备的下行控制信息,所述下行控制信息包括第一调制编码方式MCS的信息,所述第一MCS的信息为所述第一指示信息,所述第一MCS对应于所述K的值。
  26. 如权利要求22至25中任一项所述的无线通信装置,其特征在于,
    在接收来自网络设备的第一指示信息之前,所述收发单元还用于:
    通过高层信令接收来自所述网络设备的第二指示信息,所述第二指示信息用于指示数值M,M为大于或等于2的整数,以及
    所述接收来自网络设备的第一指示信息,包括:接收来自所述网络设备的下行控制信息DCI,其中,所述DCI包括第一偏移量信息,所述K的值是根据所述第一偏移量信息和所述M确定的。
  27. 如权利要求22至26中任一项所述的无线通信装置,其特征在于,所述K个时间单元内的部分时间单元承载上行参考信号。
  28. 如权利要求27所述的无线通信装置,其特征在于,所述收发单元还用于:
    接收来自网络设备的第三指示信息,其中,
    所述第三指示信息用于指示所述K个时间单元中承载上行参考信号的时间单元;或者
    所述第三指示信息用于指示所述K个时间单元中不承载上行参考信号的时间单元。
  29. 一种无线通信装置,其特征在于,包括处理器,所述处理器与存储器耦合,所述存储器用于存储计算机程序或指令,所述处理器用于执行存储器中的所述计算机程序或指令,使得
    权利要求1至7中任一项所述的方法被执行,或
    权利要求8至14中任一项所述的方法被执行。
  30. 一种计算机可读存储介质,其特征在于,存储有计算机程序或指令,所述计算机程序或指令用于实现
    权利要求1至7中任一项所述的方法,或
    权利要求8至14中任一项所述的方法。
  31. 一种芯片系统,其特征在于,包括:处理器,用于从存储器中调用并运行计算机程序,
    使得安装有所述芯片系统的通信设备执行
    权利要求1至7中任一项所述的方法,或
    权利要求8至14中任一项所述的方法。
PCT/CN2019/124834 2019-12-12 2019-12-12 无线通信方法和装置 WO2021114173A1 (zh)

Priority Applications (4)

Application Number Priority Date Filing Date Title
CN201980102529.5A CN114731646A (zh) 2019-12-12 2019-12-12 无线通信方法和装置
EP19955528.5A EP4061075A4 (en) 2019-12-12 2019-12-12 WIRELESS COMMUNICATION METHOD AND APPARATUS
PCT/CN2019/124834 WO2021114173A1 (zh) 2019-12-12 2019-12-12 无线通信方法和装置
US17/837,845 US20220303989A1 (en) 2019-12-12 2022-06-10 Wireless communication method and apparatus

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/CN2019/124834 WO2021114173A1 (zh) 2019-12-12 2019-12-12 无线通信方法和装置

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US17/837,845 Continuation US20220303989A1 (en) 2019-12-12 2022-06-10 Wireless communication method and apparatus

Publications (1)

Publication Number Publication Date
WO2021114173A1 true WO2021114173A1 (zh) 2021-06-17

Family

ID=76329304

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2019/124834 WO2021114173A1 (zh) 2019-12-12 2019-12-12 无线通信方法和装置

Country Status (4)

Country Link
US (1) US20220303989A1 (zh)
EP (1) EP4061075A4 (zh)
CN (1) CN114731646A (zh)
WO (1) WO2021114173A1 (zh)

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106788926A (zh) * 2015-11-25 2017-05-31 上海朗帛通信技术有限公司 一种降低网络延迟的无线通信方法和装置
WO2017172036A1 (en) * 2016-03-29 2017-10-05 Ofinno Technologies, Llc Sounding reference signal transmission in a wireless network
CN110138525A (zh) * 2018-02-09 2019-08-16 维沃移动通信有限公司 解调参考信号的配置方法、传输方法、终端及网络侧设备

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2018031623A1 (en) * 2016-08-11 2018-02-15 Intel Corporation Flexible transmission time interval and on slot aggregation for data transmission for new radio
CN108173633B (zh) * 2016-12-07 2020-04-28 华为技术有限公司 接收上行参考信号的方法和装置
US11101950B2 (en) * 2018-01-12 2021-08-24 Qualcomm Incorporated Demodulation reference signal (DMRS) bundling in slot aggregation and slot format considerations for new radio
CN110191071B (zh) * 2019-06-17 2022-01-28 武汉虹信科技发展有限责任公司 一种窄带物联网系统中基于信道估计的测量方法及装置

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106788926A (zh) * 2015-11-25 2017-05-31 上海朗帛通信技术有限公司 一种降低网络延迟的无线通信方法和装置
WO2017172036A1 (en) * 2016-03-29 2017-10-05 Ofinno Technologies, Llc Sounding reference signal transmission in a wireless network
CN110138525A (zh) * 2018-02-09 2019-08-16 维沃移动通信有限公司 解调参考信号的配置方法、传输方法、终端及网络侧设备

Non-Patent Citations (3)

* Cited by examiner, † Cited by third party
Title
CHINA TELECOM,: ""Summary of Phase 2 email discussion on NR coverage enhancement",", 3GPP TSG RAN MEETING #86 RP-192562, 2 December 2019 (2019-12-02), XP051834209 *
PANASONIC: ""Discussion and performance evaluation on PUSCH coverage enhancement",", 3GPP TSG RAN WG1 MEETING #80 R1-150312, 18 February 2015 (2015-02-18), XP050948612 *
See also references of EP4061075A4 *

Also Published As

Publication number Publication date
CN114731646A (zh) 2022-07-08
US20220303989A1 (en) 2022-09-22
EP4061075A1 (en) 2022-09-21
EP4061075A4 (en) 2022-11-30

Similar Documents

Publication Publication Date Title
US11463994B2 (en) Method of sending transmission configuration indication TCI, network-side device, and terminal device
US20230239098A1 (en) Joint resource map design of dm-rs and pt-rs
CN110691405B (zh) 功率控制方法及装置
US9882662B2 (en) Systems and methods for license assisted access
WO2018028570A1 (zh) 参考信号发送方法和参考信号发送装置
WO2018082544A1 (zh) 无线通信的方法和装置
CN113615280B (zh) 功率控制方法及相关装置
WO2019127199A1 (zh) 用于上行数据传输的方法和终端设备
US11218999B2 (en) Method and apparatus for sending uplink control channel
WO2019047828A1 (zh) 一种数据传输的方法、装置及系统
CN110351822B (zh) 无线通信的方法和装置
US20230361960A1 (en) Dmrs configuration method and device
CN116057882A (zh) 补充上行链路的峰均功率比降低
EP4216610A1 (en) Wireless communication method, terminal device, and network device
CN111436129B (zh) 数据传输方法和通信装置
WO2018228465A1 (zh) 一种发送功率的确定方法、处理芯片及通信设备
WO2021114173A1 (zh) 无线通信方法和装置
WO2022147735A1 (zh) 确定发送功率的方法及装置
US20230308234A1 (en) Signal transmission method and apparatus, and storage medium
US11184885B2 (en) Information transmission method, terminal device, and network device
WO2021138895A1 (zh) 上行信道解调方法和上行信道解调装置
WO2021128322A1 (zh) 一种信息指示方法、信息获取方法、网络设备、终端设备
CN114828237A (zh) 一种调度请求的传输方法及装置
WO2024020822A1 (zh) 上行功率控制方法、装置、设备及存储介质
CN114731257B (zh) 上行信道解调方法和上行信道解调装置

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 19955528

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2019955528

Country of ref document: EP

Effective date: 20220614

NENP Non-entry into the national phase

Ref country code: DE