WO2021128322A1 - 一种信息指示方法、信息获取方法、网络设备、终端设备 - Google Patents

一种信息指示方法、信息获取方法、网络设备、终端设备 Download PDF

Info

Publication number
WO2021128322A1
WO2021128322A1 PCT/CN2019/129385 CN2019129385W WO2021128322A1 WO 2021128322 A1 WO2021128322 A1 WO 2021128322A1 CN 2019129385 W CN2019129385 W CN 2019129385W WO 2021128322 A1 WO2021128322 A1 WO 2021128322A1
Authority
WO
WIPO (PCT)
Prior art keywords
mac
srs
srs resource
path loss
resource set
Prior art date
Application number
PCT/CN2019/129385
Other languages
English (en)
French (fr)
Inventor
尤心
石聪
Original Assignee
Oppo广东移动通信有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Oppo广东移动通信有限公司 filed Critical Oppo广东移动通信有限公司
Priority to CN201980101066.0A priority Critical patent/CN114467345A/zh
Priority to PCT/CN2019/129385 priority patent/WO2021128322A1/zh
Publication of WO2021128322A1 publication Critical patent/WO2021128322A1/zh

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/04Wireless resource allocation

Definitions

  • the present invention relates to the field of information processing technology, and in particular to an information indication method, information acquisition method, network equipment, terminal equipment, chip, computer readable storage medium, computer program product, and computer program.
  • the path loss update of PUSCH is related to the change of SRS (Sounding Reference Signal) spatial relationship.
  • SRS Sounding Reference Signal
  • the activation and update of the SRS path loss reference signal (RS, Reference Signal) and the activation and deactivation of the SRS space can be realized based on the MAC (Medium Access Control) CE (Control Element).
  • MAC Medium Access Control
  • Related functions activated.
  • no specific MAC CE format is provided.
  • how to save signaling overhead on the basis of ensuring richer content of the MAC CE indication has also become one of the problems that need to be solved.
  • embodiments of the present invention provide an information indication method, information acquisition method, network equipment, terminal equipment, chip, computer readable storage medium, computer program product, and computer program.
  • an information indication method including:
  • the network device sends the media access control MAC control element CE to the terminal device;
  • the MAC CE is used to indicate at least one of the following:
  • the SRI is an aperiodic AP SRI or a semi-static SP SRI;
  • an information acquisition method including:
  • the terminal device receives the media access control MAC control element CE sent by the network device;
  • the MAC CE is used to indicate at least one of the following:
  • the SRI is an aperiodic AP SRI or a semi-static SP SRI;
  • a network device including:
  • the first communication unit sends a media access control MAC control element CE to the terminal device;
  • the MAC CE is used to indicate at least one of the following:
  • the SRI is an aperiodic AP SRI or a semi-static SP SRI;
  • a terminal device including:
  • the second communication unit receives the media access control MAC control element CE sent by the network device;
  • the MAC CE is used to indicate at least one of the following:
  • the SRI is an aperiodic AP SRI or a semi-static SP SRI;
  • a network device including: a processor and a memory for storing a computer program that can run on the processor,
  • the memory is used to store a computer program
  • the processor is used to call and run the computer program stored in the memory to execute the steps of the above method.
  • a terminal device including: a processor and a memory for storing a computer program that can run on the processor,
  • the memory is used to store a computer program
  • the processor is used to call and run the computer program stored in the memory to execute the steps of the above method.
  • a chip including a processor, configured to call and run a computer program from a memory, so that a device installed with the chip executes the above method.
  • a computer-readable storage medium is provided, and the computer-readable storage medium is used to store a computer program that enables a computer to execute the steps of the above method.
  • a computer program product including computer program instructions that cause a computer to execute the above-mentioned method.
  • a computer program which causes a computer to execute the above-mentioned method.
  • a MAC CE can be used to indicate: the activation, update or deactivation of the channel sounding reference signal spatial relationship information SRI, the channel sounding reference signal SRS path loss update, and the physical uplink shared channel PUSCH path loss update At least one.
  • one MAC CE is involved for each of the foregoing contents, and multiple MAC CEs need to be sent to indicate the foregoing, which causes the problem that signaling cannot be saved.
  • FIG. 1 is a schematic diagram 1 of a communication system architecture provided by an embodiment of the present invention.
  • FIG. 2 is a schematic flowchart of an information indication method provided by an embodiment of the present invention.
  • FIG. 3 is a schematic flowchart of an information acquisition method provided by an embodiment of the present invention.
  • FIGS. 4 to 6 are schematic diagrams of three MAC CE formats provided by embodiments of the present invention.
  • FIG. 7 is a schematic diagram of the composition structure of a network device provided by an embodiment of the present invention.
  • FIG. 8 is a schematic diagram of the structure of a terminal device provided by an embodiment of the present invention.
  • FIG. 9 is a schematic diagram of the composition structure of a communication device provided by an embodiment of the present invention.
  • FIG. 10 is a schematic block diagram of a chip provided by an embodiment of the present application.
  • FIG. 11 is a second schematic diagram of a communication system architecture provided by an embodiment of the present application.
  • GSM Global System of Mobile Communication
  • CDMA Code Division Multiple Access
  • WCDMA Wideband Code Division Multiple Access
  • GSM Global System of Mobile Communication
  • GPRS General Packet Radio Service
  • LTE Long Term Evolution
  • FDD Frequency Division Duplex
  • TDD Time Division Duplex
  • UMTS Universal Mobile Telecommunication System
  • WiMAX Worldwide Interoperability for Microwave Access
  • the communication system 100 applied in the embodiment of the present application may be as shown in FIG. 1.
  • the communication system 100 may include a network device 110, and the network device 110 may be a device that communicates with a UE 120 (or referred to as a communication terminal device or a terminal device).
  • the network device 110 may provide communication coverage for a specific geographic area, and may communicate with UEs located in the coverage area.
  • the network equipment 110 may be a network equipment (Base Transceiver Station, BTS) in a GSM system or a CDMA system, a network equipment (NodeB, NB) in a WCDMA system, or an evolution in an LTE system Type network equipment (Evolutional Node B, eNB or eNodeB), or a wireless controller in the Cloud Radio Access Network (CRAN), or the network equipment may be a mobile switching center, a relay station, an access point, In-vehicle devices, wearable devices, hubs, switches, bridges, routers, network-side devices in 5G networks, or network devices in the future evolution of the Public Land Mobile Network (PLMN), etc.
  • BTS Base Transceiver Station
  • NodeB NodeB
  • NB network equipment
  • Evolutional Node B eNodeB
  • eNodeB LTE system Type network equipment
  • CRAN Cloud Radio Access Network
  • the network equipment may be a mobile switching center, a relay station, an access point, In-
  • the communication system 100 further includes at least one UE 120 located within the coverage area of the network device 110.
  • UE as used herein includes but is not limited to connection via wired lines, such as via Public Switched Telephone Networks (PSTN), Digital Subscriber Line (DSL), digital cable, and direct cable connection; And/or another data connection/network; and/or via a wireless interface, such as for cellular networks, wireless local area networks (WLAN), digital TV networks such as DVB-H networks, satellite networks, AM-FM Broadcast transmitter; and/or another UE's device configured to receive/send communication signals; and/or Internet of Things (IoT) equipment.
  • a UE set to communicate through a wireless interface may be referred to as a "wireless communication terminal device", a “wireless terminal device” or a "mobile terminal device”.
  • D2D communication may be performed between the UEs 120.
  • RRC configures an association relationship between sri-PUSCH-PowerControlId (SRI PUSCH-power control identifier) and PUSCH-PathlossReferenceRS-Id (PUSCH-path loss reference signal RS-identity).
  • SRI srs resource indicator (srsresourceindicator, sri)) indicated in the DCI (DownLink Control Information) is scheduled to implicitly indicate the PUSCH transmission (based on codebook or non-based) scheduled by DCI format 0_1.
  • Codebook path loss RS (reference signal).
  • the terminal device determines the path loss RS according to the value of PUSCH-pathlossReferenceRS-Id mapped to the SRI field in the DCI format 0_1.
  • an RRC reconfiguration message is required to update the mapping between sri-PUSCH-PowerControlId and PUSCH-PathlossReferenceRS-Id.
  • the information content in the RRC reconfiguration message can be as follows:
  • RAN 1 agrees (the relevant protocol is as follows) to introduce a new MAC CE to activate/update the value of PUSCH-PathlossReferenceRS-Id corresponding to sri-PUSCH-PowerControlId.
  • RAN1 also agreed to extend maxNrofPUSCH-PathlossReferenceRSs (that is, the number of PUSCH path loss reference signals) to 64, compared to 4 in version 15.
  • the PUSCH path loss update is related to the change of the SRS spatial relationship.
  • the PUSCH PL will be updated, which means that the SRS spatial relationship and PUSCH PL can be updated simultaneously through a single MAC CE.
  • the conclusion obtained in RAN1 may be the introduction of new MAC CE related to AP-SRS/SP-SRS path loss RS activation/update, and AP SRS spatial activation/deactivation.
  • the path loss reference RS of AP-SRS/SP-SRS can be activated/updated through MAC CE.
  • Multiple path loss RSs can be configured for the UE through RRC, and one of them can be activated/updated for the SRS resource set through MAC CE.
  • the related signaling details are provided in RAN 2.
  • the RSRP filtered by the higher layer is reused for path loss measurement, and the applicable timing is defined after the MAC CE.
  • the filtered RSRP value of the previous path loss RS will be used before the application time, which is the next time slot after the fifth measurement sample, where the first measurement sample corresponds to the first instance. 3 milliseconds after sending the ACK.
  • aperiodic SRS for each resource level is supported based on the spatial relationship update of MAC and CE.
  • the supported function of MAC CE-based spatial relationship update for aperiodic SRS at each resource level is applicable to at least 3 supported usages, such as codebook-based UL, non-codebook-based UL, Beam management.
  • the function supported by MAC CE-based aperiodic SRS spatial relationship update is applicable to antenna switching at each SRS resource level. In the case of antenna switching, the UE does not expect to configure different spatial relationships in the same set.
  • the embodiment of the present invention provides an information indication method, as shown in FIG. 2, including:
  • Step 21 The network device sends the MAC CE to the terminal device
  • the MAC CE is used to indicate at least one of the following:
  • SRI Channel sounding reference signal spatial relation information activation, update, or deactivation
  • SRI is an aperiodic (AP, aperiodic) SRI or a semi-static (SP, Semi-Persistent) SRI.
  • AP aperiodic
  • SP Semi-Persistent
  • the terminal device side also provides an information acquisition method, as shown in Figure 3, including:
  • Step 31 The terminal device receives the media access control MAC control element CE sent by the network device;
  • the MAC CE is used to indicate at least one of the following:
  • the MAC CE can be used for AP/SP SRI activation, update, or deactivation, and can indicate the pathloss RS ID of the SRS.
  • the configured usage is "codebook-based (codebook based) or non-codebookbased (non-base codebook)", and the MAC CE can also indicate the pathloss (path loss) RS ID of the PUSCH at the same time.
  • the MAC CE includes a first indication field used to indicate activation, update, or deactivation of an SRS resource set
  • the SRS resource set is an AP SRS resource set or an SP SRS resource set.
  • the first indication field may be "A/D" in MAC CE, with a length of 1 bit. Furthermore, when the first indication field is set to a first value, it can indicate that the SRS resource set is activated or updated, and when it is set to a second value, it can indicate that the SRS resource set is deactivated. Among them, the first value can be "1", and the second value can be "0". Of course, the reverse is also possible, and it can be set according to actual conditions.
  • the SRS resource set is the AP SRS resource set
  • the first indication field is set to the first value
  • the SRS resource set is the SP SRS resource set
  • the first indication field is the first value
  • it can be regarded as the activated SP SRS resource set
  • the second value it can be regarded as the deactivated SP SRS resource set.
  • SP SRS resource set the spatial relationship corresponding to SP SRS is activated through MAC CE, after which the spatial relationship corresponding to SP SRS resource set will be in an activated state, based on the corresponding The corresponding information is continuously sent periodically;
  • the difference between the AP SRS resource set is that the spatial relationship corresponding to the AP SRS resource set is updated through the MAC CE instruction, but the spatial relationship corresponding to the AP SRS resource set is not activated through the MAC CE, but Further dynamic scheduling is performed through other information (such as DCI (DownLink Control Information, DownLink Control Information)), and the SRS is sent after the DCI is activated.
  • DCI DownLink Control Information
  • DownLink Control Information DownLink Control Information
  • the MAC CE also includes a second indicator field for indicating the cell to which the SRS resource set belongs and a third indicator field for indicating the bandwidth part BWP to which the SRS resource set belongs.
  • the second indicator field may be "SRS Resource Set's Cell ID” (cell ID to which the SRS resource set belongs) in MAC CE
  • the third indicator field may be "SRS Resource Set's in MAC CE.
  • BWP ID BWP ID to which the SRS resource set belongs).
  • the second indication field namely "SRS Resource Set's Cell ID”
  • SRS Resource Set's Cell ID can be 5 bits in length, and can be used to indicate the identity of the serving cell, which corresponds to the activated, updated, or deactivated SRS resource set.
  • the content contained in the second indication field can be determined in conjunction with the value of the indication field "C". For example, if the indication field "C" is set to a second value (for example, 0), then the second indication field can also be used for Indicate a serving cell containing all resources, where all resources are indicated by the "Resource (Resource) identification (ID)" indication field.
  • the third indicator field may be the SRS Resource Set's BWP ID in FIG. 4, and its length may be 2 bits.
  • the third indication field indicates the uplink (UL) bandwidth part (BWP, BandWidth Part) as the code point of the DCI bandwidth part indicator field specified in TS 38.212 [9]. Among them, it includes the activated/deactivated SP SRS resource set.
  • the third indicator field is used to indicate the identity of the BWP, and the BWP includes all resources indicated by the Resource IDi field.
  • the above C indicator field (or C field) has a length of 1 bit. This field indicates whether the octet of the MAC CE includes the resource serving cell ID field and the resource BWP ID field. For example, if this field is set to 1, there is an octet containing the resource serving cell ID field and the resource BWP ID field, otherwise it does not exist.
  • the MAC CE also includes a fourth indication field of the identifier of the SRS resource set.
  • the fourth indication field may be SRS Resource Set ID (SRS Resource Set ID) in FIG. 4.
  • the length of the field is 4 bits.
  • the fourth indication field may indicate the identifier of the SRS resource set; the identifier may be the SRS-ResourceSetId identifier specified in TS 38.331 [5].
  • the fourth indicator field does not distinguish between AP SRS and SP SRS, the two can be distinguished by ID.
  • resources 1 to 3 are allocated to an AP SRS resource set, resources 4-10 It is the SP SRS resource set that uses different IDs to distinguish, then the fourth indication field can be used to indicate which SRS resource set the MAC CE is targeting, and the corresponding is distinguished based on the ID (or can be identified by the terminal device).
  • AP or SP SRS resource set can be used to indicate which SRS resource set the MAC CE is targeting, and the corresponding is distinguished based on the ID (or can be identified by the terminal device).
  • the MAC CE includes M fifth indication fields for indicating the identities of the M resources in the SRS resource set; M is an integer greater than or equal to 1.
  • the M fifth indication fields may be Resource ID i in FIG. 4, where i is greater than or equal to 0 and less than or equal to M-1.
  • each fifth indicator field that is, each Resource ID i, may have a length of 7 bits.
  • This field contains the identifier of the resource used to derive the spatial relationship of the SRS resource i.
  • Resource ID0 refers to the first SRS resource in the resource set
  • resource ID1 refers to the second resource, and so on.
  • the MAC CE further includes: M sixth indication fields; in the M sixth indication fields, each sixth indication field is used to indicate the type of the resource in the corresponding fifth indication field;
  • the type of the resource is one of the following: SSB, SRS, CSI-RS.
  • the sixth indication field may be Fi in FIG. 4. Similarly, i is greater than or equal to 0 and less than or equal to M-1; its length may be 1 bit.
  • the sixth indication domain may or may not exist, and the manner of determining whether it exists may be determined according to the first indication domain, that is, A/D. Specifically, only when the MAC CE is used to activate the SRS resource set, that is, when the A/D field is set to 1, the sixth indication field and the fifth indication field exist.
  • Each sixth indication field indicates the resource type of the SRS resource used as the spatial relationship of the SRS resource.
  • F0 refers to the first SRS resource in the resource set
  • F1 refers to the second resource
  • the sixth indication field is set to a first value (for example, 1), it means that the NZP CSI-RS resource index is used, and when it is set to a second value (for example, 0), it means that the SSB index or SRS resource index is used.
  • a first value for example, 1
  • a second value for example, 0
  • the fifth indicator field and the sixth indicator field are combined, that is, Fi and Resource ID i are combined. If Fi is set to 0 and the first bit of Resource ID i is set to 1, then the rest of Resource ID i Part of it contains (specified in TS 38.331 [5]) SSB-Index. If Fi is set to 0, and the first bit of Resource ID i is set to 0, the remaining part of Resource ID i includes (specified in TS 38.331 [5]) SRS-Resource Id. Only when the MAC CE is used to activate the SRS resource set, that is, when the A/D field is set to 1, the Resource ID i indication field exists.
  • the MAC CE also includes: M seventh indicator fields for indicating the identity of the cell where the SRI corresponding to the SRS resource is located, and M eighth indicators for indicating the identity of the BWP where the SRI corresponding to the SRS resource is located area.
  • the seventh indicator field may be Resource Serving Cell ID i in MAC CE, and its length is 5 bits.
  • the seventh indication field is used to indicate the identity of the serving cell, and the spatial relationship of the SRS resource i is derived from the resource located in the serving cell.
  • the eighth indicator field is Resource BWP ID i in Figure 4, and the length is 2 bits.
  • the indicator field indicates that the resource used for deriving the spatial relationship of the SRS resource i is located on the UL BWP ID indicated by the indicator field.
  • the UL BWP is used as the code point (CodePoint) of the DCI BWP indication area in TS38.212 [9].
  • the network device instructs to activate, update or deactivate the SRS resource set through the first indication field of the MAC CE.
  • the fourth indicator field carried in the MAC CE indicates the corresponding SRS resource set; then the second indicator field and the third indicator field are used to indicate the cell to which the SRS resource set belongs and BWP.
  • the fifth indicator field and the sixth indicator field are used to indicate the SRS resource identifier and the SRS resource type, and the seventh indicator field and the eighth indicator field are used to indicate the identity of the cell where the SRI corresponds to the SRS resource and the BWP.
  • the terminal device parses the MAC CE, and obtains the indication of activating, updating or deactivating the SRS resource set from the first indication field of the MAC CE; in the case of activating or updating the SRS resource set, determining the SRS based on the fourth indication field Identify the resource set, and determine the cell and BWP to which the SRS resource set belongs based on the second indicator field and the third indicator field; determine the M resources corresponding to the indicator based on the M fifth indicator fields, and determine the corresponding M resources based on the sixth indicator field For each resource type; according to the seventh indicator field and the eighth indicator field, determine the cell and BWP of the SRS corresponding to the resource.
  • instructing to activate, update or deactivate the SRS resource set through the first indication field may be:
  • the first indication field in the MAC CE is set to the first value, indicating to update the AP SRS resource set, and if it is set to the second value, it indicates to deactivate the AP SRS resource set;
  • the network device sets the first indication field in the MAC CE to the first value, then activates the SP SRS resource set, sets it to the second value, and deactivates the SP SRS resource set.
  • the network equipment uses the MAC CE instruction to activate or update the SPS resource set; and then through the corresponding instruction of each resource, provide the specific cell and BWP corresponding to the SRI, so as to control the activation, update or deactivation of the SRI.
  • the terminal device configures the SRS resource set as the AP SRS resource set, if it receives the MAC CE, where the first indication field indicates the first value, then it is determined to update the AP SRS resource set, otherwise, deactivate the AP SRS resource set; when the SRS resource set is configured as the SP SRS resource set, if a MAC CE is received and the first indication field indicates the first value, then it is determined to activate the SP SRS resource set, otherwise, the SP SRS is deactivated Resource set.
  • the spatial relationship corresponding to the SRS is processed based on the foregoing, that is, when the SRI is updated or activated, the corresponding SRS path loss RS will also be updated accordingly.
  • the indication of the SRS path loss reference signal RS is further described in conjunction with FIG. 4, and the details are as follows:
  • the MAC CE also includes: a ninth indication field carrying an SRS path loss reference signal RS.
  • the ninth indication field may be an SRS pathloss (path loss) RS field therein.
  • the length can be 6bit.
  • the granularity of the SRS path loss RS is an SRS resource set or SRS resource.
  • the MAC CE when the granularity of the SRS path loss RS is an SRS resource, the MAC CE carries M ninth indication fields of the SRS path loss RS corresponding to the M SRS resources.
  • each ninth indicator field is used to indicate the path loss RS corresponding to an SRS resource.
  • the ninth indicator field is the SRS pathloss RS, which is respectively denoted as SRS pathloss (Path loss) RS 0 ⁇ SRS pathloss (path loss) RS M-1.
  • Figure 5 is only an example, that is, the ninth indicator field is before the sixth indicator field "Resource ID0 ⁇ M-1"; if the other case shown in the figure is not passed, it can also be for each The ninth indicator field is before the corresponding sixth indicator field, that is, the ninth indicator field and the sixth indicator field are distributed at intervals.
  • the ninth indicator field is before the corresponding sixth indicator field, that is, the ninth indicator field and the sixth indicator field are distributed at intervals.
  • MAC CE there may be other setting methods in MAC CE, which will not be exhaustive here.
  • the method further includes: when the granularity of the SRS path loss RS is the SRS resource set, the terminal device obtains the path loss RS for the SRS resource set from the ninth indication field of the MAC CE; When the granularity of the path loss RS is the SRS resource, the terminal device obtains the SRS path loss RS corresponding to the N SRS resources from the M ninth indication fields of the MAC CE.
  • the MAC CE also includes: a tenth indication field used to indicate the PUSCH path loss RS.
  • the MAC CE carries an eleventh indication field, which is used to indicate whether the MAC CE carries the tenth indication field.
  • the eleventh indication field can be the "PL" field in the MAC CE format, with a length of 1 bit.
  • PL is set to the first value (0)
  • the MAC CE omits the PUSCH pathLossReferenceRS-IF field, that is, it does not need to carry the tenth indicator field; otherwise, the PUSCH pathLossReferenceRS-ID field (that is, it needs to carry The tenth indicator field).
  • the manner of determining the indication value of the eleventh indication field may include:
  • the MAC CE carries the tenth indication field.
  • the MAC CE indicates that the MAC CE carries the tenth indication field through the eleventh indication field.
  • the MAC CE When the granularity of the PUSCH path loss RS is an SRS resource set, the MAC CE carries a tenth indication field;
  • the MAC CE When the granularity of the PUSCH path loss RS is an SRS resource, the MAC CE carries M tenth indication fields.
  • the MAC CE carries M tenth indication fields, as shown in FIG. 4, which includes multiple "PUSCH pathloss RSs".
  • the pattern of a tenth indicator field carried in the MAC CE can be seen in FIG. 6, where one PUSCH pathloss RS can be used to correspond to a resource set, so one PUSCH pathloss RS can indicate the pathloss RS of all resources in the near future.
  • the MAC CE format may also include other indication fields, such as the SUL and R fields shown in the figure.
  • the SUL field is used to indicate whether the MAC CE is applied to the NUL carrier or the SUL carrier configuration. This field is set to 1 to indicate that it is suitable for SUL carrier configuration, and set to 0 to indicate that it is suitable for NUL carrier configuration.
  • R is a reserved bit, which is not limited in this embodiment.
  • a MAC CE can be used to indicate: the activation, update or deactivation of the channel sounding reference signal spatial relationship information SRI, the path loss update of the channel sounding reference signal SRS, and the path loss of the physical uplink shared channel PUSCH At least one of the updates.
  • one MAC CE is involved for each of the foregoing contents, and multiple MAC CEs need to be sent to indicate the foregoing, which causes the problem that signaling cannot be saved.
  • the embodiment of the present invention provides a network device, as shown in FIG. 7, including:
  • the first communication unit 41 sends the MAC CE to the terminal device
  • the MAC CE is used to indicate at least one of the following:
  • SRI Channel sounding reference signal spatial relation information activation, update, or deactivation
  • SRI is an aperiodic (AP, aperiodic) SRI or a semi-static (SP, Semi-Persistent) SRI.
  • AP aperiodic
  • SP Semi-Persistent
  • the terminal equipment includes:
  • the second communication unit 51 receives the media access control MAC control element CE sent by the network device;
  • the MAC CE is used to indicate at least one of the following:
  • the MAC CE can be used for AP/SP SRI activation, update, or deactivation, and can indicate the pathloss RS ID of the SRS.
  • the configured usage is "codebook-based (codebook based) or non-codebookbased (non-base codebook)", and the MAC CE can also indicate the pathloss (path loss) RS ID of the PUSCH at the same time.
  • the MAC CE includes a first indication field used to indicate activation, update, or deactivation of an SRS resource set
  • the SRS resource set is an AP SRS resource set or an SP SRS resource set.
  • the MAC CE also includes a second indicator field for indicating the cell to which the SRS resource set belongs and a third indicator field for indicating the bandwidth part BWP to which the SRS resource set belongs.
  • the MAC CE also includes a fourth indication field of the identifier of the SRS resource set.
  • the MAC CE includes M fifth indication fields for indicating the identities of the M resources in the SRS resource set; M is an integer greater than or equal to 1.
  • the MAC CE further includes: M sixth indication fields; in the M sixth indication fields, each sixth indication field is used to indicate the type of the resource in the corresponding fifth indication field;
  • the type of the resource is one of the following: SSB, SRS, CSI-RS.
  • the MAC CE also includes: M seventh indicator fields for indicating the identity of the cell where the SRI corresponding to the SRS resource is located, and M eighth indicators for indicating the identity of the BWP where the SRI corresponding to the SRS resource is located area.
  • the network device instructs to activate, update or deactivate the SRS resource set through the first indication field of the MAC CE.
  • the fourth indicator field carried in the MAC CE indicates the corresponding SRS resource set; then the second indicator field and the third indicator field are used to indicate the cell to which the SRS resource set belongs and BWP.
  • the fifth indicator field and the sixth indicator field are used to indicate the SRS resource identifier and the SRS resource type, and the seventh indicator field and the eighth indicator field are used to indicate the identity of the cell where the SRI corresponds to the SRS resource and the BWP.
  • the terminal device further includes: a second processing unit 52, which parses the MAC CE, and obtains an indication of activating, updating or deactivating the SRS resource set from the first indication field of the MAC CE; in the case of activating or updating the SRS resource set Next, determine the identity of the SRS resource set based on the fourth indicator field, and determine the cell and BWP to which the SRS resource set belongs based on the second indicator field and the third indicator field; determine the M corresponding indicators based on the M fifth indicator fields Resource, and determine each resource type according to the sixth indication field; according to the seventh indication field and the eighth indication field, determine the cell and BWP of the SRS corresponding to the resource.
  • a second processing unit 52 which parses the MAC CE, and obtains an indication of activating, updating or deactivating the SRS resource set from the first indication field of the MAC CE.
  • the spatial relationship corresponding to the SRS is processed based on the foregoing, that is, when the SRI is updated or activated, the corresponding SRS path loss RS will also be updated accordingly.
  • the indication of the SRS path loss reference signal RS is further described in conjunction with FIG. 4, and the details are as follows:
  • the MAC CE also includes: a ninth indication field carrying an SRS path loss reference signal RS.
  • the ninth indication field may be an SRS pathloss (path loss) RS field therein.
  • the length can be 6bit.
  • the granularity of the SRS path loss RS is an SRS resource set or SRS resource.
  • the second processing unit 52 obtains the path loss RS for the SRS resource set from the ninth indication field of the MAC CE when the granularity of the SRS path loss RS is the SRS resource set;
  • the SRS path loss RS corresponding to the N SRS resources is obtained from the M ninth indication fields of the MAC CE.
  • the MAC CE also includes: a tenth indication field used to indicate the PUSCH path loss RS.
  • the MAC CE carries an eleventh indication field, which is used to indicate whether the MAC CE carries the tenth indication field.
  • the eleventh indication field can be the "PL" field in the MAC CE format, with a length of 1 bit.
  • PL is set to the first value (0)
  • the MAC CE omits the PUSCH pathLossReferenceRS-IF field, that is, it does not need to carry the tenth indicator field; otherwise, the PUSCH pathLossReferenceRS-ID field (that is, it needs to carry The tenth indicator field).
  • the network device further includes: a first processing unit 42.
  • the network device When the usage configured by the SRS is codebook-based or non-codebook-based, the network device The tenth indication field is carried in the MAC CE.
  • the MAC CE When the granularity of the PUSCH path loss RS is an SRS resource set, the MAC CE carries a tenth indication field;
  • the MAC CE When the granularity of the PUSCH path loss RS is an SRS resource, the MAC CE carries M tenth indication fields.
  • a MAC CE can be used to indicate: the activation, update or deactivation of the channel sounding reference signal spatial relationship information SRI, the path loss update of the channel sounding reference signal SRS, and the path loss of the physical uplink shared channel PUSCH At least one of the updates.
  • one MAC CE is involved for each of the foregoing contents, and multiple MAC CEs need to be sent to indicate the foregoing, which causes the problem that signaling cannot be saved.
  • FIG. 9 is a schematic structural diagram of a communication device 900 provided by an embodiment of the present invention.
  • the communication device in this embodiment may be specifically one of the terminal device, the access network node, and the core network device in the foregoing embodiment.
  • the communication device 900 shown in FIG. 9 includes a processor 910, and the processor 910 can call and run a computer program from the memory to implement the method in the embodiment of the present invention.
  • the communication device 900 may further include a memory 920.
  • the processor 910 can call and run a computer program from the memory 920 to implement the method in the embodiment of the present invention.
  • the memory 920 may be a separate device independent of the processor 910, or may be integrated in the processor 910.
  • the communication device 900 may further include a transceiver 930, and the processor 910 may control the transceiver 930 to communicate with other devices. Specifically, it may send information or data to other devices, or receive other devices. Information or data sent by the device.
  • the transceiver 930 may include a transmitter and a receiver.
  • the transceiver 930 may further include an antenna, and the number of antennas may be one or more.
  • the communication device 900 may specifically be a network device in an embodiment of the present invention, and the communication device 900 may implement the corresponding processes implemented by the network device in each method of the embodiment of the present invention. For brevity, details are not repeated here. .
  • the communication device 900 may specifically be a terminal device or a network device in an embodiment of the present invention, and the communication device 900 may implement the corresponding processes implemented by the mobile terminal/terminal device in each method of the embodiment of the present invention. It's concise, so I won't repeat it here.
  • Fig. 10 is a schematic structural diagram of a chip according to an embodiment of the present invention.
  • the chip 1000 shown in FIG. 10 includes a processor 1010, and the processor 1010 can call and run a computer program from the memory to implement the method in the embodiment of the present invention.
  • the chip 1000 may further include a memory 1020.
  • the processor 1010 can call and run a computer program from the memory 1020 to implement the method in the embodiment of the present invention.
  • the memory 1020 may be a separate device independent of the processor 1010, or may be integrated in the processor 1010.
  • the chip 1000 may further include an input interface 1030.
  • the processor 1010 can control the input interface 1030 to communicate with other devices or chips, and specifically, can obtain information or data sent by other devices or chips.
  • the chip 1000 may further include an output interface 1040.
  • the processor 1010 can control the output interface 1040 to communicate with other devices or chips, and specifically, can output information or data to other devices or chips.
  • the chip can be applied to one of the terminal device, the access network node, and the core network device in the embodiment of the present invention, and the chip can implement the corresponding process implemented by the terminal device in each method of the embodiment of the present invention , For the sake of brevity, I won’t repeat it here.
  • the chip mentioned in the embodiment of the present invention may also be referred to as a system-on-chip, a system-on-chip, a system-on-chip, or a system-on-chip, etc.
  • the processor in the embodiment of the present invention may be an integrated circuit chip with signal processing capability.
  • the steps of the foregoing method embodiments may be completed by hardware integrated logic circuits in the processor or instructions in the form of software.
  • the above-mentioned processor may be a general-purpose processor, a digital signal processor (Digital Signal Processor, DSP), an application specific integrated circuit (ASIC), a ready-made programmable gate array (Field Programmable Gate Array, FPGA) or other Programming logic devices, discrete gates or transistor logic devices, discrete hardware components.
  • DSP Digital Signal Processor
  • ASIC application specific integrated circuit
  • FPGA Field Programmable Gate Array
  • the methods, steps, and logical block diagrams disclosed in the embodiments of the present invention can be implemented or executed.
  • the general-purpose processor may be a microprocessor or the processor may also be any conventional processor or the like.
  • the steps of the method disclosed in combination with the embodiments of the present invention may be directly embodied as being executed and completed by a hardware decoding processor, or executed by a combination of hardware and software modules in the decoding processor.
  • the software module can be located in a mature storage medium in the field, such as random access memory, flash memory, read-only memory, programmable read-only memory, or electrically erasable programmable memory, registers.
  • the storage medium is located in the memory, and the processor reads the information in the memory and completes the steps of the above method in combination with its hardware.
  • the memory in the embodiment of the present invention may be a volatile memory or a non-volatile memory, or may include both volatile and non-volatile memory.
  • the non-volatile memory can be read-only memory (Read-Only Memory, ROM), programmable read-only memory (Programmable ROM, PROM), erasable programmable read-only memory (Erasable PROM, EPROM), and electrically available Erase programmable read-only memory (Electrically EPROM, EEPROM) or flash memory.
  • the volatile memory may be a random access memory (Random Access Memory, RAM), which is used as an external cache.
  • RAM random access memory
  • SRAM static random access memory
  • DRAM dynamic random access memory
  • DRAM synchronous dynamic random access memory
  • DDR SDRAM Double Data Rate Synchronous Dynamic Random Access Memory
  • Enhanced SDRAM, ESDRAM Enhanced Synchronous Dynamic Random Access Memory
  • Synchronous Link Dynamic Random Access Memory Synchronous Link Dynamic Random Access Memory
  • DR RAM Direct Rambus RAM
  • the memory in the embodiment of the present invention may also be static random access memory (static RAM, SRAM), dynamic random access memory (dynamic RAM, DRAM), Synchronous dynamic random access memory (synchronous DRAM, SDRAM), double data rate synchronous dynamic random access memory (double data rate SDRAM, DDR SDRAM), enhanced synchronous dynamic random access memory (enhanced SDRAM, ESDRAM), synchronous connection Dynamic random access memory (synch link DRAM, SLDRAM) and direct memory bus random access memory (Direct Rambus RAM, DR RAM) and so on. That is, the memory in the embodiment of the present invention is intended to include, but is not limited to, these and any other suitable types of memory.
  • FIG. 11 is a schematic block diagram of a communication system 1100 according to an embodiment of the present application. As shown in FIG. 11, the communication system 1100 includes a terminal device 1110 and a network device 1120.
  • the terminal device 1110 can be used to implement the corresponding function implemented by the UE in the above method
  • the network device 1120 can be used to implement the corresponding function implemented by the network device in the above method.
  • the network device may be one of the aforementioned access network node and core network device.
  • the embodiment of the present invention also provides a computer-readable storage medium for storing computer programs.
  • the computer-readable storage medium can be applied to the network device or the terminal device in the embodiment of the present invention, and the computer program causes the computer to execute the corresponding process implemented by the network device in each method of the embodiment of the present invention, for the sake of brevity , I won’t repeat it here.
  • the embodiment of the present invention also provides a computer program product, including computer program instructions.
  • the computer program product can be applied to the network device or the terminal device in the embodiment of the present invention, and the computer program instructions cause the computer to execute the corresponding process implemented by the network device in each method of the embodiment of the present invention.
  • the computer program instructions cause the computer to execute the corresponding process implemented by the network device in each method of the embodiment of the present invention.
  • the embodiment of the present invention also provides a computer program.
  • the computer program can be applied to the network device or the terminal device in the embodiment of the present invention.
  • the computer program runs on the computer, the computer is caused to execute the corresponding process implemented by the network device in each method of the embodiment of the present invention. , For the sake of brevity, I won’t repeat it here.
  • the disclosed system, device, and method may be implemented in other ways.
  • the device embodiments described above are merely illustrative, for example, the division of the units is only a logical function division, and there may be other divisions in actual implementation, for example, multiple units or components may be combined or It can be integrated into another system, or some features can be ignored or not implemented.
  • the displayed or discussed mutual coupling or direct coupling or communication connection may be indirect coupling or communication connection through some interfaces, devices or units, and may be in electrical, mechanical or other forms.
  • the units described as separate components may or may not be physically separated, and the components displayed as units may or may not be physical units, that is, they may be located in one place, or they may be distributed on multiple network units. Some or all of the units may be selected according to actual needs to achieve the objectives of the solutions of the embodiments.
  • the functional units in the various embodiments of the present invention may be integrated into one processing unit, or each unit may exist alone physically, or two or more units may be integrated into one unit.
  • the function is implemented in the form of a software functional unit and sold or used as an independent product, it can be stored in a computer readable storage medium.
  • the technical solution of the present invention essentially or the part that contributes to the prior art or the part of the technical solution can be embodied in the form of a software product, and the computer software product is stored in a storage medium, including Several instructions are used to make a computer device (which may be a personal computer, a server, or a network device, etc.) execute all or part of the steps of the methods described in the various embodiments of the present invention.
  • the aforementioned storage media include: U disk, mobile hard disk, read-only memory (Read-Only Memory,) ROM, random access memory (Random Access Memory, RAM), magnetic disks or optical disks and other media that can store program codes. .

Landscapes

  • Engineering & Computer Science (AREA)
  • Signal Processing (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Mobile Radio Communication Systems (AREA)

Abstract

本发明公开了一种信息指示方法、信息获取方法、终端设备、网络设备、芯片、计算机可读存储介质、计算机程序产品以及计算机程序,所述方法包括:网络设备向终端设备发送媒体访问控制MAC控制元素CE;其中,所述MAC CE,用于指示以下内容中至少之一:信道探测参考信号空间关系信息SRI的激活、更新或去激活;所述SRI为非周期性AP SRI、或者半静态SP SRI;信道探测参考信号SRS的路径损耗的更新;物理上行共享信道PUSCH路径损耗的更新。

Description

一种信息指示方法、信息获取方法、网络设备、终端设备 技术领域
本发明涉及信息处理技术领域,尤其涉及一种信息指示方法、信息获取方法、网络设备、终端设备、芯片、计算机可读存储介质、计算机程序产品以及计算机程序。
背景技术
在相关技术中,PUSCH(物理上行共享信道,Physical UpLink Share CHannel)的路径损耗的更新,与SRS(信道探测参考信号,Sounding Reference Signal)空间关系的改变有关,这种情况下,如果SRS空间参数改变,那么PUSCH路径损耗需要进行更新。在RAN1的相关结论中,可以基于MAC(媒体访问控制,Medium Access Control)CE(控制元素,Control Element)实现SRS路径损耗参考信号(RS,Reference Signal)的激活以及更新和SRS空间的激活以及去激活的相关功能。但是并没提供具体的MAC CE格式。进一步地,如何在保证MAC CE指示更丰富内容的基础上,节省信令开销,也成为需要解决的问题之一。
发明内容
为解决上述技术问题,本发明实施例提供了一种信息指示方法、信息获取方法、网络设备、终端设备、芯片、计算机可读存储介质、计算机程序产品以及计算机程序。
第一方面,提供了一种信息指示方法,包括:
网络设备向终端设备发送媒体访问控制MAC控制元素CE;
其中,所述MAC CE,用于指示以下内容中至少之一:
信道探测参考信号空间关系信息SRI的激活、更新或去激活;所述SRI为非周期性AP SRI、或者半静态SP SRI;
信道探测参考信号SRS的路径损耗的更新;
物理上行共享信道PUSCH路径损耗的更新。
第二方面,提供了一种信息获取方法,包括:
终端设备接收网络设备发送的媒体访问控制MAC控制元素CE;
其中,所述MAC CE,用于指示以下内容中至少之一:
信道探测参考信号空间关系信息SRI的激活、更新或去激活;所述SRI为非周期性AP SRI、或者半静态SP SRI;
信道探测参考信号SRS的路径损耗的更新;
物理上行共享信道PUSCH路径损耗的更新。
第三方面,提供了一种网络设备,包括:
第一通信单元,向终端设备发送媒体访问控制MAC控制元素CE;
其中,所述MAC CE,用于指示以下内容中至少之一:
信道探测参考信号空间关系信息SRI的激活、更新或去激活;所述SRI为非周期性AP SRI、或者半静态SP SRI;
信道探测参考信号SRS的路径损耗的更新;
物理上行共享信道PUSCH路径损耗的更新。
第四方面,提供了一种终端设备,包括:
第二通信单元,接收网络设备发送的媒体访问控制MAC控制元素CE;
其中,所述MAC CE,用于指示以下内容中至少之一:
信道探测参考信号空间关系信息SRI的激活、更新或去激活;所述SRI为非周期性AP SRI、或者半静态SP SRI;
信道探测参考信号SRS的路径损耗的更新;
物理上行共享信道PUSCH路径损耗的更新。
第五方面,提供了一种网络设备,包括:处理器和用于存储能够在处理器上运行的计算机程序的存储器,
其中,该存储器用于存储计算机程序,所述处理器用于调用并运行所述存储器中存储的计算机程序,执行上述方法的步骤。
第六方面,提供了一种终端设备,包括:处理器和用于存储能够在处理器上运行的计算机程序的存储器,
其中,该存储器用于存储计算机程序,所述处理器用于调用并运行所述存储器中存储的计算机程序,执行上述方法的步骤。
第七方面,提供了一种芯片,包括:处理器,用于从存储器中调用并运行计算机程序,使得安装有所述芯片的设备执行上述的方法。
第八方面,提供了一种计算机可读存储介质,所述计算机可读存储介质用于存储计算机程序,所述计算机程序使得计算机执行上述方法的步骤。
第九方面,提供了一种计算机程序产品,包括计算机程序指令,该计算机程序指令使得计算机执行上述的方法。
第九方面,提供了一种计算机程序,所述计算机程序使得计算机执行上述的方法。
通过采用上述方案,就能够通过一个MAC CE指示:信道探测参考信号空间关系信息SRI的激活、更新或去激活,信道探测参考信号SRS的路径损耗的更新,物理上行共享信道PUSCH路径损耗的更新中至少之一。如此,可以避免针对前述每一种内容涉及一个MAC CE,从而需要发送多个MAC CE对上述进行指示,所带来的无法节省信令的问题。
附图说明
图1是本发明实施例提供的一种通信系统架构的示意性图一;
图2为本发明实施例提供的一种信息指示方法流程示意图;
图3为本发明实施例提供的一种信息获取方法流程示意图;
图4-图6为本发明实施例提供的三种MAC CE的格式示意图;
图7为本发明实施例提供的网络设备组成结构示意图;
图8为本发明实施例提供的终端设备组成结构示意图;
图9为本发明实施例提供的一种通信设备组成结构示意图;
图10是本申请实施例提供的一种芯片的示意性框图;
图11是本申请实施例提供的一种通信系统架构的示意性图二。
具体实施方式
为了能够更加详尽地了解本发明实施例的特点与技术内容,下面结合附图对本发明实施例的实现进行详细阐述,所附附图仅供参考说明之用,并非用来限定本发明实施例。
下面将结合本申请实施例中的附图,对本申请实施例中的技术方案进行描述,显然,所描述的实施例是本申请一部分实施例,而不是全部的实施例。基于本申请中的实施例, 本领域普通技术人员在没有做出创造性劳动前提下所获得的所有其他实施例,都属于本申请保护的范围。
本申请实施例的技术方案可以应用于各种通信系统,例如:全球移动通讯(Global System of Mobile communication,GSM)系统、码分多址(Code Division Multiple Access,CDMA)系统、宽带码分多址(Wideband Code Division Multiple Access,WCDMA)系统、通用分组无线业务(General Packet Radio Service,GPRS)、长期演进(Long Term Evolution,LTE)系统、LTE频分双工(Frequency Division Duplex,FDD)系统、LTE时分双工(Time Division Duplex,TDD)、通用移动通信系统(Universal Mobile Telecommunication System,UMTS)、全球互联微波接入(Worldwide Interoperability for Microwave Access,WiMAX)通信系统或5G系统等。
示例性的,本申请实施例应用的通信系统100可以如图1所示。该通信系统100可以包括网络设备110,网络设备110可以是与UE120(或称为通信终端设备、终端设备)通信的设备。网络设备110可以为特定的地理区域提供通信覆盖,并且可以与位于该覆盖区域内的UE进行通信。可选地,该网络设备110可以是GSM系统或CDMA系统中的网络设备(Base Transceiver Station,BTS),也可以是WCDMA系统中的网络设备(NodeB,NB),还可以是LTE系统中的演进型网络设备(Evolutional Node B,eNB或eNodeB),或者是云无线接入网络(Cloud Radio Access Network,CRAN)中的无线控制器,或者该网络设备可以为移动交换中心、中继站、接入点、车载设备、可穿戴设备、集线器、交换机、网桥、路由器、5G网络中的网络侧设备或者未来演进的公共陆地移动网络(Public Land Mobile Network,PLMN)中的网络设备等。
该通信系统100还包括位于网络设备110覆盖范围内的至少一个UE120。作为在此使用的“UE”包括但不限于经由有线线路连接,如经由公共交换电话网络(Public Switched Telephone Networks,PSTN)、数字用户线路(Digital Subscriber Line,DSL)、数字电缆、直接电缆连接;和/或另一数据连接/网络;和/或经由无线接口,如,针对蜂窝网络、无线局域网(Wireless Local Area Network,WLAN)、诸如DVB-H网络的数字电视网络、卫星网络、AM-FM广播发送器;和/或另一UE的被设置成接收/发送通信信号的装置;和/或物联网(Internet of Things,IoT)设备。被设置成通过无线接口通信的UE可以被称为“无线通信终端设备”、“无线终端设备”或“移动终端设备”。
可选地,UE120之间可以进行终端设备直连(Device to Device,D2D)通信。
应理解,本文中术语“系统”和“网络”在本文中常被可互换使用。本文中术语“和/或”,仅仅是一种描述关联对象的关联关系,表示可以存在三种关系,例如,A和/或B,可以表示:单独存在A,同时存在A和B,单独存在B这三种情况。另外,本文中字符“/”,一般表示前后关联对象是一种“或”的关系。
为了能够更加详尽地了解本发明实施例的特点与技术内容,下面结合附图对本发明实施例的实现进行详细阐述,所附附图仅供参考说明之用,并非用来限定本发明实施例。
相关技术中,在版本15中,RRC配置sri-PUSCH-PowerControlId(SRI PUSCH-功率控制标识)和PUSCH-PathlossReferenceRS-Id(PUSCH-路径损耗参考信号RS-标识)之间的关联关系。此外,通过调度DCI(下行控制信息,DownLink Control Information)中指示的SRI(srs资源指示(srsresourceindicator,sri),)来隐式指示用于由DCI格式0_1调度的PUSCH传输(基于码本或基于非码本)的路径损耗RS(参考信号)。然后,终端设备根据以DCI格式0_1映射到SRI字段的PUSCH-pathlossReferenceRS-Id的值,来确定路径损耗RS。
这种情况下,需要RRC重新配置消息来更新sri-PUSCH-PowerControlId和PUSCH-PathlossReferenceRS-Id之间的映射。
RRC重配置消息中的信息内容可以如下所示:
Figure PCTCN2019129385-appb-000001
进一步地,为了减少由RRC重新配置消息引起的等待时间,RAN 1同意(相关协议如下)引入新的MAC CE来激活/更新与sri-PUSCH-PowerControlId相对应的PUSCH-PathlossReferenceRS-Id的值。RAN1中还同意将maxNrofPUSCH-PathlossReferenceRSs(也就是PUSCH路径损耗参考信号的数量)扩展到64,而版本15中则是4。
如果将SRS资源集的使用配置为“基于码本或基于非码本”,则PUSCH路径损耗更新与SRS空间关系的改变有关。在这种情况下,如果相应的SRS空间关系改变,则PUSCH PL将被更新,这意味着可以通过单个MAC CE同时更新SRS空间关系和PUSCH PL。
在RAN1中得到的结论,可以应引入有关AP-SRS/SP-SRS路径损耗RS激活/更新、以及AP SRS空间激活/去激活的新MAC CE。
关于RAN 1得到的结论可以如下所示:
可以通过MAC CE激活/更新AP-SRS/SP-SRS的路径损耗参考RS。
可以通过RRC为UE配置多个路径损耗RS,并且可以通过MAC CE为SRS资源集激活/更新其中之一。相关的信令细节在RAN 2中提供。
将高层过滤的RSRP重新用于路径损耗测量,并在MAC CE之后定义适用的时序。
前一个路径损耗RS的滤波后RSRP值将在应用时间之前使用,该时间是在第5个测量样本之后的下一个时隙,其中第一个测量样本对应于第一个实例,在为MAC CE发送ACK后3毫秒。
这仅适用于支持大于4的RRC可配置路径损耗RS数量的UE,并且仅适用于未跟踪MAC CE激活的PL RS的情况。仅当RRC配置的PL RS大于4时,才需要UE跟踪激活的PL RS。
在发送针对MAC CE的ACK后3ms,UE是否要更新先前PL RS的过滤后的RSRP值,取决于UE。向RAN4发送LS,以征求对此工作假设的意见。
对于UL波束管理等待时间和开销减少,支持针对每个资源级别的非周期性SRS基于MAC CE的空间关系更新。
在RAN1#97中,每个资源级别针对非周期性SRS的基于MAC CE的空间关系更新的受支持功能适用于至少3种支持的用法,例如基于码本的UL,基于非码本的UL,波束管理。
在RAN1#98中,修改后确认以下工作假设:
基于MAC CE的非周期性SRS空间关系更新支持的功能适用于每个SRS资源级别的天线切换。在天线切换的情况下,UE不会期望在同一集合内配置有不同的空间关系。
由此可以看出,基于前述分析,若要实现用于AP/SP SRI(SRI(SRS spatial relation info))的激活去激活,并且可以指示该SRS的pathloss RS ID,同时,指示所述PUSCH的pathloss RS ID,就可能需要设计两个或三个MAC CE才能够实现,这样就会产生多个MAC CE,这样就无法节省信令。
本发明实施例提供了一种信息指示方法,如图2所示,包括:
步骤21:网络设备向终端设备发送MAC CE;
其中,所述MAC CE,用于指示以下内容中至少之一:
信道探测参考信号空间关系信息(SRI,SRS Spatial Relation Info)的激活、更新或去激活;所述SRI为非周期性(AP,aperiodic)SRI、或者半静态(SP,Semi-Persistent)SRI。
信道探测参考信号SRS的路径损耗的更新;
物理上行共享信道PUSCH路径损耗的更新。
相应的,终端设备侧也提供一种信息获取方法,如图3所示,包括:
步骤31:终端设备接收网络设备发送的媒体访问控制MAC控制元素CE;
其中,所述MAC CE,用于指示以下内容中至少之一:
信道探测参考信号空间关系信息SRI的激活、更新或去激活;所述SRI为非周期性AP SRI、或者半静态SP SRI。
本实施例提供上述方案,能够提供一种新的MAC CE格式,该MAC CE可以用于AP/SP SRI的激活、更新或去激活,并且可以指示该SRS的pathloss RS ID,同时,若该SRS所配置的用法(usage)为“codebook-based(基于码本)或non-codebookbased(非基码本)”,该MAC CE还可以同时指示所述PUSCH的pathloss(路径损耗)RS ID。
下面结合图4,对本实施例提供的MAC CE的格式进行详细说明。
首先,针对AP/SP SRI的激活、更新或去激活的相关指示域进行说明:
所述MAC CE中,包含有用于指示激活、更新或去激活SRS资源集的第一指示域;
其中,所述SRS资源集为AP SRS资源集、或者SP SRS资源集。
结合图4来看,所述第一指示域可以为MAC CE中的“A/D”,长度为1bit。进一步来说,该第一指示域,如果设置为第一值的时候,可以表示激活或更新SRS资源集,设置为第二值的时候,可以表示去激活SRS资源集。其中,第一值可以为“1”,第二值可以为“0”,当然,反之亦可,根据实际情况进行设置即可。
再进一步地,当SRS资源集为AP SRS资源集的情况下,若第一指示域设置为第一值,那么可以认为是更新AP SRS资源集,设置为第二值,可以认为去激活AP SRS资源集;
当SRS资源集为SP SRS资源集的情况下,若第一指示域为第一值,那么可以认为是激活SP SRS资源集,设置为第二值,可以认为是去激活SP SRS资源集。
关于前述SP SRS以及AP SRS之间的区别,可以为:SP SRS资源集,通过MAC CE激活SP SRS对应的空间关系,此后SP SRS资源集对应的空间关系之后会处于激活的状态,基于对应的周期持续发送对应的信息;AP SRS资源集的不同之处在于,通过MAC CE指示更新AP SRS资源集所对应的空间关系,但是并不通过MAC CE激活AP SRS资源集对应的空间关系,而是进一步通过其他信息(比如DCI(下行控制信息,DownLink Control Information))进行动态调度,通过DCI激活之后再发送SRS。
所述MAC CE中,还包含有用于指示所述SRS资源集所属的小区的第二指示域、以及用于指示所述SRS资源集所属的带宽部分BWP的第三指示域。
结合图4来看,所述第二指示域,可以为MAC CE中的“SRS Resource Set's Cell ID”(SRS资源集所属的小区标识),第三指示域可以为MAC CE中的“SRS Resource Set's BWP ID”(SRS资源集所属的BWP标识)。
其中,第二指示域,即“SRS Resource Set's Cell ID”,长度可以为5bit,可以用于指示服务小区的标识,该小区对应激活、更新或去激活的SRS资源集。
另外,该第二指示域包含的内容,可以结合指示域“C”的值确定,比如,如果指示域“C”设置为第二值(比如为0),那么第二指示域还可以用于指示包含全部资源的 服务小区,其中,全部资源由“资源(Resource)标识(ID)”指示域来指示。
所述第三指示域,可以为图4中的SRS Resource Set's BWP ID,其长度可以为2bit。
具体来说,所述第三指示域,指示上行(UL)带宽部分(BWP,BandWidth Part)作为TS 38.212[9]中指定的DCI带宽部分指示符字段的代码点。其中,包含已激活/已禁用的SP SRS资源集。
另外,如果C字段(C指示域)设置为0,则第三指示域用于指示BWP的标识,该BWP包含由Resource IDi字段指示的所有资源。
上述C指示域(或C字段),长度为1bit。该字段指示MAC CE的八位位组中是否存在包含资源服务小区ID字段和资源BWP ID字段的。比如,如果此字段设置为1,则存在包含资源服务小区ID字段和资源BWP ID字段的八位字节,否则不存在。
所述MAC CE中,还包含有所述SRS资源集的标识的第四指示域。
所述第四指示域可以为图4中的SRS Resource Set ID(SRS资源集ID)。字段的长度为4bit。该第四指示域,可以指示SRS资源集的标识;该标识可以为由TS 38.331[5]中指定的SRS-ResourceSetId标识。
需要指出的是,第四指示域这里虽然并未区分针对了AP SRS或SP SRS,但是,两者可以通过ID来区分,比如,资源1~3分给一个AP SRS资源集,资源4-10为SP SRS资源集,分别采用不同的ID来区分,那么可以通过第四指示域来指示MAC CE针对的SRS资源集为哪一个,并且基于ID来区分(或终端设备能够识别出)对应的为AP或SP SRS资源集。
所述MAC CE中,包含有用于指示所述SRS资源集中的M个资源的标识的M个第五指示域;M为大于等于1的整数。
比如,M个第五指示域可以为图4中的Resource(资源)ID i,这里,i大于等于0且小于等于M-1。
具体的,每一个第五指示域,也就是每一个Resource ID i,长度可以为7bit。该字段包含用于SRS资源i的空间关系推导的资源的标识符。资源ID0指资源集中的第一个SRS资源,资源ID1指第二个资源,依此类推。
所述MAC CE中,还包括:M个第六指示域;所述M个第六指示域中,每一个第六指示域用于指示对应的所述第五指示域中的资源的类型;
其中,所述资源的类型为以下之一:SSB、SRS、CSI-RS。
第六指示域可以为图4中的Fi,同样的,i大于等于0,且小于等于M-1;其长度可以为1bit。
该第六指示域可能存在也可以不存在,确定其是否存在的方式可以根据第一指示域,也就是A/D来确定。具体为,仅当使用MAC CE进行SRS资源集激活时,即A/D字段设置为1时,此第六指示域、以及第五指示域才存在。
每一个第六指示域,指示被用为SRS资源的空间关系的SRS资源的资源的类型。
其中,F0指资源集中的第一个SRS资源,F1指第二个资源,以此类推。
第六指示域设置为第一值(比如1)时,表示使用NZP CSI-RS资源索引,设置为第二值(比如0)时,表示使用SSB索引或SRS资源索引。
第五指示域、以及第六指示域结合来说,也就是Fi以及Resource ID i结合来说,如果Fi设置为0,并且Resource ID i的第一bit位设置为1,则Resource ID i的其余部分包含(TS 38.331[5]中指定的)SSB-Index。如果Fi设置为0,并且Resource ID i的第一bit位设置为0,则Resource ID i的其余部分包含(TS 38.331[5]中指定的)SRS-Resource Id。仅当使用MAC CE进行SRS资源集激活时,即A/D字段设置为1时,此Resource ID i指示域才存在。
所述MAC CE中,还包括:用于指示SRS资源对应的SRI所在的小区的标识的M个第七指示域、以及用于指示SRS资源对应的SRI所在的BWP的标识的M个第八指示域。
结合图4,第七指示域可以为MAC CE中的Resource Serving Cell ID i,其长度为5bit。该第七指示域,用于指示服务小区标识,并且SRS资源i的空间关系推导资源位于该服务小区。
第八指示域,为图4中的Resource BWP ID i,长度为2bit。该指示域表征用于SRS资源i的空间关系推导的资源位于该指示域指示的UL BWP ID上。该UL BWP作为TS38.212[9]中的DCI BWP指示区的代码点(CodePoint)。
基于前述第一指示域至第八指示域,就能够实现SRI的激活、更新以及去激活。
具体来说,网络设备通过MAC CE的第一指示域来指示激活、更新或去激活该SRS资源集。在激活或更新SRS资源集的情况下,通过MAC CE中携带的第四指示域指示对应的SRS资源集;再通过第二指示域以及第三指示域,指示所述SRS资源集所属的小区以及BWP。通过第五指示域以及第六指示域,指示SRS资源标识以及SRS资源类型,再通过第七指示域以及第八指示域,指示SRS资源对应的SRI所在小区以及BWP的标识。相应的,所述终端设备解析MAC CE,从MAC CE的第一指示域获取激活、更新或去激活SRS资源集的指示;在激活或更新SRS资源集的情况下,基于第四指示域确定SRS资源集的标识,并基于第二指示域以及第三指示域,确定所述SRS资源集所属小区以及BWP;基于M个第五指示域确定指示对应的M个资源,并且根据第六指示域确定每一个资源类型;根据第七指示域以及第八指示域,确定资源对应的SRS所在小区以及BWP。
其中,通过第一指示域来指示激活、更新或去激活该SRS资源集,可以为:
当SRS资源集为AP SRS资源集的情况下,MAC CE中的第一指示域设置为第一值,指示更新AP SRS资源集,如果设置为第二值,则指示去激活AP SRS资源集;
当SRS资源集为SP SRS资源集的情况下,所述网络设备设置MAC CE中第一指示域为第一值,那么激活SP SRS资源集,设置为第二值,去激活SP SRS资源集。
总的来说,网络设备通过MAC CE指示激活或更新SPS资源集;进而通过每一个资源相对应的指示,提供SRI对应的具体小区以及BWP,从而控制激活、更新或去激活SRI。
相应的,终端设备在配置SRS资源集为AP SRS资源集的情况下,如果接收到MAC CE,其中第一指示域指示为第一值,那么确定为更新AP SRS资源集,否则,去激活AP SRS资源集;在配置SRS资源集为SP SRS资源集的情况下,如果接收到MAC CE,其中第一指示域指示为第一值,那么确定为激活SP SRS资源集,否则,去激活SP SRS资源集。
在前述基础上,如果基于前述处理SRS对应的空间关系,也就是SRI更新或激活的情况下,那么其对应的SRS路径损耗RS也会存在相应的更新。接下来进一步结合图4进行SRS路径损耗参考信号RS的指示进行说明,具体如下:
所述MAC CE中,还包括:携带SRS路径损耗参考信号RS的第九指示域。
如图4中所示,所述第九指示域可以为其中的SRS pathloss(路径损耗)RS字段。长度可以为6bit。
需要指出的是,所述SRS路径损耗RS的粒度为SRS资源集、或者、SRS资源。
其中,当所述SRS路径损耗RS的粒度为SRS资源时,所述MAC CE中携带与M个SRS资源对应的SRS路径损耗RS的M个第九指示域。
比如,参见图5,仅以MAC CE中的一部分进行说明,剩余部分与图4相同,因此 不再重复描述。如果有M个第九指示域,那么每一个第九指示域用于指示一个SRS资源对应的路径损耗RS,图中将第九指示域也就是SRS pathloss(路径损耗)RS,分别记为SRS pathloss(路径损耗)RS 0~SRS pathloss(路径损耗)RS M-1。
需要指出的是图5仅为一种示例,也就是第九指示域在第六指示域“Resource ID0~M-1”之前;未通过图中示出的另一种情况,还可以为每一个第九指示域均在相应的一个第六指示域之前,即第九指示域以及第六指示域间隔分布。当然,可能在MAC CE中还可以存在其他设置方式,这里不再进行穷举。
在终端设备侧,所述方法还包括:在SRS路径损耗RS的粒度为SRS资源集的情况下,所述终端设备从MAC CE的第九指示域获取针对SRS资源集的路径损耗RS;在SRS路径损耗RS的粒度为SRS资源的情况下,所述终端设备从MAC CE的M个第九指示域分别获取N个SRS资源对应的SRS路径损耗RS。
在前述基础上,接下来进一步结合图4进行PUSCH路径损耗RS的指示进行进一步说明,具体如下:
所述MAC CE中,还包括:用于指示PUSCH路径损耗RS的第十指示域。
所述MAC CE中,携带第十一指示域,用于指示MAC CE中是否携带所述第十指示域。
结合图4来说,第十一指示域可以为MAC CE格式中的“PL”字段,长度为1bit。比如,PL设置为第一值(0)时,可以认为MAC CE省略PUSCH pathLossReferenceRS-IF字段,也就是不需要携带第十指示域;否则MAC CE中应存在PUSCH pathLossReferenceRS-ID字段(也就是需要携带第十指示域)。
再进一步地,确定第十一指示域的指示值的方式,可以包括:
在SRS所配置的用法为基于码本或非基于码本的情况下,所述MAC CE中携带所述第十指示域。
具体来说,为:在SRS所配置的用法为基于码本或非基于码本的情况下,所述MAC CE中通过第十一指示域指示MAC CE中携带所述第十指示域。
当所述PUSCH路径损耗RS的粒度为SRS资源集时,所述MAC CE中携带1个第十指示域;
当所述PUSCH路径损耗RS的粒度为SRS资源时,所述MAC CE中携带M个第十指示域。
其中,所述MAC CE中携带M个第十指示域,可以如图4所示,其中包含有多个“PUSCH pathloss RS”。MAC CE中携带1个第十指示域的样式,可以参见图6,其中,由于可以通过一个PUSCH pathloss RS用于对应一个资源集,那么近需要一个PUSCH pathloss RS就可以指示全部资源的pathloss RS。
此外,如图4所示,MAC CE格式中还可以包括其他指示域,比如,图中所示SUL以及R字段。其中,SUL字段,用于指示MAC CE是应用于NUL载波还是SUL载波配置。该字段设置为1表示它适用于SUL载波配置,设置为0表示它适用于NUL载波配置。R则作为保留位,本实施例中不对其进行限定。
可见,通过采用上述方案,就能够通过一个MAC CE指示:信道探测参考信号空间关系信息SRI的激活、更新或去激活,信道探测参考信号SRS的路径损耗的更新,物理上行共享信道PUSCH路径损耗的更新中至少之一。如此,可以避免针对前述每一种内容涉及一个MAC CE,从而需要发送多个MAC CE对上述进行指示,所带来的无法节省信令的问题。
本发明实施例提供了一种网络设备,如图7所示,包括:
第一通信单元41,向终端设备发送MAC CE;
其中,所述MAC CE,用于指示以下内容中至少之一:
信道探测参考信号空间关系信息(SRI,SRS Spatial Relation Info)的激活、更新或去激活;所述SRI为非周期性(AP,aperiodic)SRI、或者半静态(SP,Semi-Persistent)SRI。
信道探测参考信号SRS的路径损耗的更新;
物理上行共享信道PUSCH路径损耗的更新。
相应的,终端设备,如图8所示,包括:
第二通信单元51,接收网络设备发送的媒体访问控制MAC控制元素CE;
其中,所述MAC CE,用于指示以下内容中至少之一:
信道探测参考信号空间关系信息SRI的激活、更新或去激活;所述SRI为非周期性AP SRI、或者半静态SP SRI。
本实施例提供上述方案,能够提供一种新的MAC CE格式,该MAC CE可以用于AP/SP SRI的激活、更新或去激活,并且可以指示该SRS的pathloss RS ID,同时,若该SRS所配置的用法(usage)为“codebook-based(基于码本)或non-codebookbased(非基码本)”,该MAC CE还可以同时指示所述PUSCH的pathloss(路径损耗)RS ID。
下面结合图4,对本实施例提供的MAC CE的格式进行详细说明。
首先,针对AP/SP SRI的激活、更新或去激活的相关指示域进行说明:
所述MAC CE中,包含有用于指示激活、更新或去激活SRS资源集的第一指示域;
其中,所述SRS资源集为AP SRS资源集、或者SP SRS资源集。
所述MAC CE中,还包含有用于指示所述SRS资源集所属的小区的第二指示域、以及用于指示所述SRS资源集所属的带宽部分BWP的第三指示域。
所述MAC CE中,还包含有所述SRS资源集的标识的第四指示域。
所述MAC CE中,包含有用于指示所述SRS资源集中的M个资源的标识的M个第五指示域;M为大于等于1的整数。
所述MAC CE中,还包括:M个第六指示域;所述M个第六指示域中,每一个第六指示域用于指示对应的所述第五指示域中的资源的类型;
其中,所述资源的类型为以下之一:SSB、SRS、CSI-RS。
所述MAC CE中,还包括:用于指示SRS资源对应的SRI所在的小区的标识的M个第七指示域、以及用于指示SRS资源对应的SRI所在的BWP的标识的M个第八指示域。
基于前述第一指示域至第八指示域,就能够实现SRI的激活、更新以及去激活。
具体来说,网络设备通过MAC CE的第一指示域来指示激活、更新或去激活该SRS资源集。在激活或更新SRS资源集的情况下,通过MAC CE中携带的第四指示域指示对应的SRS资源集;再通过第二指示域以及第三指示域,指示所述SRS资源集所属的小区以及BWP。通过第五指示域以及第六指示域,指示SRS资源标识以及SRS资源类型,再通过第七指示域以及第八指示域,指示SRS资源对应的SRI所在小区以及BWP的标识。相应的,所述终端设备还包括:第二处理单元52,解析MAC CE,从MAC CE的第一指示域获取激活、更新或去激活SRS资源集的指示;在激活或更新SRS资源集的情况下,基于第四指示域确定SRS资源集的标识,并基于第二指示域以及第三指示域,确定所述SRS资源集所属小区以及BWP;基于M个第五指示域确定指示对应的M个资源,并且根据第六指示域确定每一个资源类型;根据第七指示域以及第八指示域,确定资源对应的SRS所在小区以及BWP。
在前述基础上,如果基于前述处理SRS对应的空间关系,也就是SRI更新或激活的 情况下,那么其对应的SRS路径损耗RS也会存在相应的更新。接下来进一步结合图4进行SRS路径损耗参考信号RS的指示进行说明,具体如下:
所述MAC CE中,还包括:携带SRS路径损耗参考信号RS的第九指示域。
如图4中所示,所述第九指示域可以为其中的SRS pathloss(路径损耗)RS字段。长度可以为6bit。
需要指出的是,所述SRS路径损耗RS的粒度为SRS资源集、或者、SRS资源。
在终端设备侧,第二处理单元52,在SRS路径损耗RS的粒度为SRS资源集的情况下,从MAC CE的第九指示域获取针对SRS资源集的路径损耗RS;在SRS路径损耗RS的粒度为SRS资源的情况下,,从MAC CE的M个第九指示域分别获取N个SRS资源对应的SRS路径损耗RS。
在前述基础上,接下来进一步结合图4进行PUSCH路径损耗RS的指示进行进一步说明,具体如下:
所述MAC CE中,还包括:用于指示PUSCH路径损耗RS的第十指示域。
所述MAC CE中,携带第十一指示域,用于指示MAC CE中是否携带所述第十指示域。
结合图4来说,第十一指示域可以为MAC CE格式中的“PL”字段,长度为1bit。比如,PL设置为第一值(0)时,可以认为MAC CE省略PUSCH pathLossReferenceRS-IF字段,也就是不需要携带第十指示域;否则MAC CE中应存在PUSCH pathLossReferenceRS-ID字段(也就是需要携带第十指示域)。
再进一步地,确定第十一指示域的指示值的方式,所述网络设备还包括:第一处理单元42,在SRS所配置的用法为基于码本或非基于码本的情况下,所述MAC CE中携带所述第十指示域。
当所述PUSCH路径损耗RS的粒度为SRS资源集时,所述MAC CE中携带1个第十指示域;
当所述PUSCH路径损耗RS的粒度为SRS资源时,所述MAC CE中携带M个第十指示域。
可见,通过采用上述方案,就能够通过一个MAC CE指示:信道探测参考信号空间关系信息SRI的激活、更新或去激活,信道探测参考信号SRS的路径损耗的更新,物理上行共享信道PUSCH路径损耗的更新中至少之一。如此,可以避免针对前述每一种内容涉及一个MAC CE,从而需要发送多个MAC CE对上述进行指示,所带来的无法节省信令的问题。
图9是本发明实施例提供的一种通信设备900示意性结构图,本实施例中的通信设备可以具体为前述实施例中的终端设备、接入网节点、核心网设备中之一。图9所示的通信设备900包括处理器910,处理器910可以从存储器中调用并运行计算机程序,以实现本发明实施例中的方法。
可选地,图9所示,通信设备900还可以包括存储器920。其中,处理器910可以从存储器920中调用并运行计算机程序,以实现本发明实施例中的方法。
其中,存储器920可以是独立于处理器910的一个单独的器件,也可以集成在处理器910中。
可选地,如图9所示,通信设备900还可以包括收发器930,处理器910可以控制该收发器930与其他设备进行通信,具体地,可以向其他设备发送信息或数据,或接收其他设备发送的信息或数据。
其中,收发器930可以包括发射机和接收机。收发器930还可以进一步包括天线, 天线的数量可以为一个或多个。
可选地,该通信设备900具体可为本发明实施例的网络设备,并且该通信设备900可以实现本发明实施例的各个方法中由网络设备实现的相应流程,为了简洁,在此不再赘述。
可选地,该通信设备900具体可为本发明实施例的终端设备、或者网络设备,并且该通信设备900可以实现本发明实施例的各个方法中由移动终端/终端设备实现的相应流程,为了简洁,在此不再赘述。
图10是本发明实施例的芯片的示意性结构图。图10所示的芯片1000包括处理器1010,处理器1010可以从存储器中调用并运行计算机程序,以实现本发明实施例中的方法。
可选地,如图10所示,芯片1000还可以包括存储器1020。其中,处理器1010可以从存储器1020中调用并运行计算机程序,以实现本发明实施例中的方法。
其中,存储器1020可以是独立于处理器1010的一个单独的器件,也可以集成在处理器1010中。
可选地,该芯片1000还可以包括输入接口1030。其中,处理器1010可以控制该输入接口1030与其他设备或芯片进行通信,具体地,可以获取其他设备或芯片发送的信息或数据。
可选地,该芯片1000还可以包括输出接口1040。其中,处理器1010可以控制该输出接口1040与其他设备或芯片进行通信,具体地,可以向其他设备或芯片输出信息或数据。
可选地,该芯片可应用于本发明实施例中的终端设备、接入网节点、核心网设备中之一,并且该芯片可以实现本发明实施例的各个方法中由终端设备实现的相应流程,为了简洁,在此不再赘述。
应理解,本发明实施例提到的芯片还可以称为系统级芯片,系统芯片,芯片系统或片上系统芯片等。
应理解,本发明实施例的处理器可能是一种集成电路芯片,具有信号的处理能力。在实现过程中,上述方法实施例的各步骤可以通过处理器中的硬件的集成逻辑电路或者软件形式的指令完成。上述的处理器可以是通用处理器、数字信号处理器(Digital Signal Processor,DSP)、专用集成电路(Application Specific Integrated Circuit,ASIC)、现成可编程门阵列(Field Programmable Gate Array,FPGA)或者其他可编程逻辑器件、分立门或者晶体管逻辑器件、分立硬件组件。可以实现或者执行本发明实施例中的公开的各方法、步骤及逻辑框图。通用处理器可以是微处理器或者该处理器也可以是任何常规的处理器等。结合本发明实施例所公开的方法的步骤可以直接体现为硬件译码处理器执行完成,或者用译码处理器中的硬件及软件模块组合执行完成。软件模块可以位于随机存储器,闪存、只读存储器,可编程只读存储器或者电可擦写可编程存储器、寄存器等本领域成熟的存储介质中。该存储介质位于存储器,处理器读取存储器中的信息,结合其硬件完成上述方法的步骤。
可以理解,本发明实施例中的存储器可以是易失性存储器或非易失性存储器,或可包括易失性和非易失性存储器两者。其中,非易失性存储器可以是只读存储器(Read-Only Memory,ROM)、可编程只读存储器(Programmable ROM,PROM)、可擦除可编程只读存储器(Erasable PROM,EPROM)、电可擦除可编程只读存储器(Electrically EPROM,EEPROM)或闪存。易失性存储器可以是随机存取存储器(Random Access Memory,RAM),其用作外部高速缓存。通过示例性但不是限制性说明,许多形式的RAM可用,例如静态随机存取存储器(Static RAM,SRAM)、动态随机存取存 储器(Dynamic RAM,DRAM)、同步动态随机存取存储器(Synchronous DRAM,SDRAM)、双倍数据速率同步动态随机存取存储器(Double Data Rate SDRAM,DDR SDRAM)、增强型同步动态随机存取存储器(Enhanced SDRAM,ESDRAM)、同步连接动态随机存取存储器(Synchlink DRAM,SLDRAM)和直接内存总线随机存取存储器(Direct Rambus RAM,DR RAM)。应注意,本文描述的系统和方法的存储器旨在包括但不限于这些和任意其它适合类型的存储器。
应理解,上述存储器为示例性但不是限制性说明,例如,本发明实施例中的存储器还可以是静态随机存取存储器(static RAM,SRAM)、动态随机存取存储器(dynamic RAM,DRAM)、同步动态随机存取存储器(synchronous DRAM,SDRAM)、双倍数据速率同步动态随机存取存储器(double data rate SDRAM,DDR SDRAM)、增强型同步动态随机存取存储器(enhanced SDRAM,ESDRAM)、同步连接动态随机存取存储器(synch link DRAM,SLDRAM)以及直接内存总线随机存取存储器(Direct Rambus RAM,DR RAM)等等。也就是说,本发明实施例中的存储器旨在包括但不限于这些和任意其它适合类型的存储器。
图11是本申请实施例提供的一种通信系统1100的示意性框图。如图11所示,该通信系统1100包括终端设备1110和网络设备1120。
其中,该终端设备1110可以用于实现上述方法中由UE实现的相应的功能,以及该网络设备1120可以用于实现上述方法中由网络设备实现的相应的功能为了简洁,在此不再赘述。所述网络设备可以为前述接入网节点、核心网设备中之一。
本发明实施例还提供了一种计算机可读存储介质,用于存储计算机程序。
可选的,该计算机可读存储介质可应用于本发明实施例中的网络设备或终端设备,并且该计算机程序使得计算机执行本发明实施例的各个方法中由网络设备实现的相应流程,为了简洁,在此不再赘述。
本发明实施例还提供了一种计算机程序产品,包括计算机程序指令。
可选的,该计算机程序产品可应用于本发明实施例中的网络设备或终端设备,并且该计算机程序指令使得计算机执行本发明实施例的各个方法中由网络设备实现的相应流程,为了简洁,在此不再赘述。
本发明实施例还提供了一种计算机程序。
可选的,该计算机程序可应用于本发明实施例中的网络设备或终端设备,当该计算机程序在计算机上运行时,使得计算机执行本发明实施例的各个方法中由网络设备实现的相应流程,为了简洁,在此不再赘述。
本领域普通技术人员可以意识到,结合本文中所公开的实施例描述的各示例的单元及算法步骤,能够以电子硬件、或者计算机软件和电子硬件的结合来实现。这些功能究竟以硬件还是软件方式来执行,取决于技术方案的特定应用和设计约束条件。专业技术人员可以对每个特定的应用来使用不同方法来实现所描述的功能,但是这种实现不应认为超出本发明的范围。
所属领域的技术人员可以清楚地了解到,为描述的方便和简洁,上述描述的系统、装置和单元的具体工作过程,可以参考前述方法实施例中的对应过程,在此不再赘述。
在本发明所提供的几个实施例中,应该理解到,所揭露的系统、装置和方法,可以通过其它的方式实现。例如,以上所描述的装置实施例仅仅是示意性的,例如,所述单元的划分,仅仅为一种逻辑功能划分,实际实现时可以有另外的划分方式,例如多个单元或组件可以结合或者可以集成到另一个系统,或一些特征可以忽略,或不执行。另一点,所显示或讨论的相互之间的耦合或直接耦合或通信连接可以是通过一些接口,装置或单元的间接耦合或通信连接,可以是电性,机械或其它的形式。
所述作为分离部件说明的单元可以是或者也可以不是物理上分开的,作为单元显示的部件可以是或者也可以不是物理单元,即可以位于一个地方,或者也可以分布到多个网络单元上。可以根据实际的需要选择其中的部分或者全部单元来实现本实施例方案的目的。
另外,在本发明各个实施例中的各功能单元可以集成在一个处理单元中,也可以是各个单元单独物理存在,也可以两个或两个以上单元集成在一个单元中。
所述功能如果以软件功能单元的形式实现并作为独立的产品销售或使用时,可以存储在一个计算机可读取存储介质中。基于这样的理解,本发明的技术方案本质上或者说对现有技术做出贡献的部分或者该技术方案的部分可以以软件产品的形式体现出来,该计算机软件产品存储在一个存储介质中,包括若干指令用以使得一台计算机设备(可以是个人计算机,服务器,或者网络设备等)执行本发明各个实施例所述方法的全部或部分步骤。而前述的存储介质包括:U盘、移动硬盘、只读存储器(Read-Only Memory,)ROM、随机存取存储器(Random Access Memory,RAM)、磁碟或者光盘等各种可以存储程序代码的介质。
以上所述,仅为本发明的具体实施方式,但本发明的保护范围并不局限于此,任何熟悉本技术领域的技术人员在本发明揭露的技术范围内,可轻易想到变化或替换,都应涵盖在本发明的保护范围之内。因此,本发明的保护范围应所述以权利要求的保护范围为准。

Claims (71)

  1. 一种信息指示方法,包括:
    网络设备向终端设备发送媒体访问控制MAC控制元素CE;
    其中,所述MAC CE,用于指示以下内容中至少之一:
    信道探测参考信号空间关系信息SRI的激活、更新或去激活;所述SRI为非周期性AP SRI、或者半静态SP SRI;
    信道探测参考信号SRS的路径损耗的更新;
    物理上行共享信道PUSCH路径损耗的更新。
  2. 根据权利要求1所述的方法,其中,所述MAC CE中,包含有用于指示激活、更新或去激活SRS资源集的第一指示域;
    其中,所述SRS资源集为AP SRS资源集、或者SP SRS资源集。
  3. 根据权利要求1所述的方法,其中,所述MAC CE中,包含有用于指示所述SRS资源集所属的小区的第二指示域、以及用于指示所述SRS资源集所属的带宽部分BWP的第三指示域。
  4. 根据权利要求1所述的方法,其中,所述MAC CE中,还包含有所述SRS资源集的标识的第四指示域。
  5. 根据权利要求1所述的方法,其中,所述MAC CE中,包含有用于指示所述SRS资源集中的M个资源的标识的M个第五指示域;M为大于等于1的整数。
  6. 根据权利要求1所述的方法,其中,所述MAC CE中,还包括:M个第六指示域;所述M个第六指示域中,每一个第六指示域用于指示对应的所述第五指示域中的资源的类型;
    其中,所述资源的类型为以下之一:SSB、SRS、CSI-RS;M为大于等于1的整数。
  7. 根据权利要求1所述的方法,其中,所述MAC CE中,还包括:用于指示SRS资源对应的SRI所在的小区的标识的M个第七指示域、以及用于指示SRS资源对应的SRI所在的BWP的标识的M个第八指示域;M为大于等于1的整数。
  8. 根据权利要求1-7任一项所述的方法,其中,所述MAC CE中,还包括:携带SRS路径损耗参考信号RS的第九指示域。
  9. 根据权利要求8所述的方法,其中,所述SRS路径损耗RS的粒度为SRS资源集、或者、SRS资源。
  10. 根据权利要求9所述的方法,其中,当所述SRS路径损耗RS的粒度为SRS资源时,所述MAC CE中携带与M个SRS资源对应的SRS路径损耗RS的M个第九指示域;M为大于等于1的整数。
  11. 根据权利要求1-10任一项所述的方法,其中,所述MAC CE中,还包括:用于指示PUSCH路径损耗RS的第十指示域。
  12. 根据权利要求11所述的方法,其中,所述MAC CE中,携带第十一指示域,用于指示MAC CE中是否携带所述第十指示域。
  13. 根据权利要求11所述的方法,其中,所述PUSCH路径损耗RS的粒度为SRS资源集、或SRS资源。
  14. 根据权利要求13所述的方法,其中,当所述PUSCH路径损耗RS的粒度为SRS资源集时,所述MAC CE中携带1个第十指示域;
    当所述PUSCH路径损耗RS的粒度为SRS资源时,所述MAC CE中携带M个第十指示域。
  15. 根据权利要求11所述的方法,其中,所述方法还包括:
    在SRS所配置的用法为基于码本或非基于码本的情况下,所述MAC CE中携带所述第十指示域。
  16. 一种信息获取方法,包括:
    终端设备接收网络设备发送的媒体访问控制MAC控制元素CE;
    其中,所述MAC CE,用于指示以下内容中至少之一:
    信道探测参考信号空间关系信息SRI的激活、更新或去激活;所述SRI为非周期性AP SRI、或者半静态SP SRI;
    信道探测参考信号SRS的路径损耗的更新;
    物理上行共享信道PUSCH路径损耗的更新。
  17. 根据权利要求16所述的方法,其中,所述MAC CE中,包含有用于指示激活、更新或去激活SRS资源集的第一指示域;
    其中,所述SRS资源集为AP SRS资源集、或者SP SRS资源集。
  18. 根据权利要求16所述的方法,其中,所述MAC CE中,包含有用于指示所述SRS资源集所属的小区的第二指示域、以及用于指示所述SRS资源集所属的带宽部分BWP的第三指示域。
  19. 根据权利要求16所述的方法,其中,所述MAC CE中,包含有所述SRS资源集的标识的第四指示域。
  20. 根据权利要求16所述的方法,其中,所述MAC CE中,包含有用于指示所述SRS资源集中的M个资源的标识的M个第五指示域;M为大于等于1的整数。
  21. 根据权利要求16所述的方法,其中,所述MAC CE中,还包括:M个第六指示域;所述M个第六指示域中,每一个第六指示域用于指示对应的所述第五指示域中的资源的类型;
    其中,所述资源的类型为以下之一:SSB、SRS、CSI-RS;M为大于等于1的整数。
  22. 根据权利要求16所述的方法,其中,所述MAC CE中,还包括:用于指示SRS资源对应的SRI所在的小区的标识的M个第七指示域、以及用于指示SRS资源对应的SRI所在的BWP的标识的M个第八指示域;M为大于等于1的整数。
  23. 根据权利要求16-22任一项所述的方法,其中,所述方法还包括:
    所述终端设备解析MAC CE,从MAC CE的第一指示域获取激活、更新或去激活SRS资源集的指示;在激活或更新SRS资源集的情况下,基于第四指示域确定SRS资源集的标识,并基于第二指示域以及第三指示域,确定所述SRS资源集所属小区以及BWP;基于M个第五指示域确定指示对应的M个资源,并且根据第六指示域确定每一个资源类型;根据第七指示域以及第八指示域,确定资源对应的SRS所在小区以及BWP。
  24. 根据权利要求16-23任一项所述的方法,其中,所述MAC CE中,还包括:携带SRS路径损耗参考信号RS的第九指示域。
  25. 根据权利要求24所述的方法,其中,所述SRS路径损耗RS的粒度为SRS资源集、或者、SRS资源。
  26. 根据权利要求25所述的方法,其中,当所述SRS路径损耗RS的粒度为SRS资源时,所述MAC CE中携带与M个SRS资源对应的SRS路径损耗RS的M个第九指示域。
  27. 根据权利要求24-26任一项所述的方法,其中,所述方法还包括:
    在SRS路径损耗RS的粒度为SRS资源集的情况下,所述终端设备从MAC CE的第九指示域获取针对SRS资源集的路径损耗RS;
    在SRS路径损耗RS的粒度为SRS资源的情况下,所述终端设备从MAC CE的M个第九指示域分别获取M个SRS资源对应的SRS路径损耗RS。
  28. 根据权利要求16-27任一项所述的方法,其中,所述MAC CE中,还包括:用于指示PUSCH路径损耗RS的第十指示域。
  29. 根据权利要求28所述的方法,其中,所述MAC CE中,携带第十一指示域,用于指示MAC CE中是否携带所述第十指示域。
  30. 根据权利要求28所述的方法,其中,所述PUSCH路径损耗RS的粒度为SRS资源集、或SRS资源。
  31. 根据权利要求30所述的方法,其中,当所述PUSCH路径损耗RS的粒度为SRS资源集时,所述MAC CE中携带1个第十指示域;
    当所述PUSCH路径损耗RS的粒度为SRS资源时,所述MAC CE中携带M个第十指示域。
  32. 根据权利要求28-31任一项所述的方法,其中,所述方法还包括:
    所述终端设备基于MAC CE的第十指示域获取PUSCH路径损耗RS;
    或者,
    在所述PUSCH路径损耗RS的粒度为SRS资源时,所述终端设备基于MAC CE的M个第十指示域,分别获取SRS资源所对应的PUSCH路径损耗RS。
  33. 一种网络设备,包括:
    第一通信单元,向终端设备发送媒体访问控制MAC控制元素CE;
    其中,所述MAC CE,用于指示以下内容中至少之一:
    信道探测参考信号空间关系信息SRI的激活、更新或去激活;所述SRI为非周期性AP SRI、或者半静态SP SRI;
    信道探测参考信号SRS的路径损耗的更新;
    物理上行共享信道PUSCH路径损耗的更新。
  34. 根据权利要求33所述的网络设备,其中,所述MAC CE中,包含有用于指示激活、更新或去激活SRS资源集的第一指示域;
    其中,所述SRS资源集为AP SRS资源集、或者SP SRS资源集。
  35. 根据权利要求33所述的网络设备,其中,所述MAC CE中,包含有用于指示所述SRS资源集所属的小区的第二指示域、以及用于指示所述SRS资源集所属的带宽部分BWP的第三指示域。
  36. 根据权利要求33所述的网络设备,其中,所述MAC CE中,还包含有所述SRS资源集的标识的第四指示域。
  37. 根据权利要求33所述的网络设备,其中,所述MAC CE中,包含有用于指示所述SRS资源集中的M个资源的标识的M个第五指示域;M为大于等于1的整数。
  38. 根据权利要求33所述的网络设备,其中,所述MAC CE中,还包括:M个第六指示域;所述M个第六指示域中,每一个第六指示域用于指示对应的所述第五指示域中的资源的类型;
    其中,所述资源的类型为以下之一:SSB、SRS、CSI-RS;M为大于等于1的整数。
  39. 根据权利要求33所述的网络设备,其中,所述MAC CE中,还包括:用于指示SRS资源对应的SRI所在的小区的标识的M个第七指示域、以及用于指示SRS资源对应的SRI所在的BWP的标识的M个第八指示域;M为大于等于1的整数。
  40. 根据权利要求33-39任一项所述的网络设备,其中,所述MAC CE中,还包括:携带SRS路径损耗参考信号RS的第九指示域。
  41. 根据权利要求40所述的网络设备,其中,所述SRS路径损耗RS的粒度为SRS资源集、或者、SRS资源。
  42. 根据权利要求41所述的网络设备,其中,当所述SRS路径损耗RS的粒度为 SRS资源时,所述MAC CE中携带与M个SRS资源对应的SRS路径损耗RS的M个第九指示域。
  43. 根据权利要求33-42任一项所述的网络设备,其中,所述MAC CE中,还包括:用于指示PUSCH路径损耗RS的第十指示域。
  44. 根据权利要求43所述的网络设备,其中,所述MAC CE中,携带第十一指示域,用于指示MAC CE中是否携带所述第十指示域。
  45. 根据权利要求43所述的网络设备,其中,所述PUSCH路径损耗RS的粒度为SRS资源集、或SRS资源。
  46. 根据权利要求45所述的网络设备,其中,当所述PUSCH路径损耗RS的粒度为SRS资源集时,所述MAC CE中携带1个第十指示域;
    当所述PUSCH路径损耗RS的粒度为SRS资源时,所述MAC CE中携带M个第十指示域。
  47. 根据权利要求43所述的网络设备,其中,所述网络设备,还包括:
    第一处理单元,在SRS所配置的用法为基于码本或非基于码本的情况下,所述MACCE中携带所述第十指示域。
  48. 一种终端设备,包括:
    第二通信单元,接收网络设备发送的媒体访问控制MAC控制元素CE;
    其中,所述MAC CE,用于指示以下内容中至少之一:
    信道探测参考信号空间关系信息SRI的激活、更新或去激活;所述SRI为非周期性AP SRI、或者半静态SP SRI;
    信道探测参考信号SRS的路径损耗的更新;
    物理上行共享信道PUSCH路径损耗的更新。
  49. 根据权利要求48所述的终端设备,其中,所述MAC CE中,包含有用于指示激活、更新或去激活SRS资源集的第一指示域;
    其中,所述SRS资源集为AP SRS资源集、或者SP SRS资源集。
  50. 根据权利要求48所述的终端设备,其中,所述MAC CE中,包含有用于指示所述SRS资源集所属的小区的第二指示域、以及用于指示所述SRS资源集所属的带宽部分BWP的第三指示域。
  51. 根据权利要求48所述的终端设备,其中,所述MAC CE中,包含有所述SRS资源集的标识的第四指示域。
  52. 根据权利要求48所述的终端设备,其中,所述MAC CE中,包含有用于指示所述SRS资源集中的M个资源的标识的M个第五指示域;M为大于等于1的整数。
  53. 根据权利要求48所述的终端设备,其中,所述MAC CE中,还包括:M个第六指示域;所述M个第六指示域中,每一个第六指示域用于指示对应的所述第五指示域中的资源的类型;
    其中,所述资源的类型为以下之一:SSB、SRS、CSI-RS。
  54. 根据权利要求48所述的终端设备,其中,所述MAC CE中,还包括:用于指示SRS资源对应的SRI所在的小区的标识的M个第七指示域、以及用于指示SRS资源对应的SRI所在的BWP的标识的M个第八指示域。
  55. 根据权利要求48-54任一项所述的终端设备,其中,所述终端设备,还包括:
    第二处理单元,解析MAC CE,从MAC CE的第一指示域获取激活、更新或去激活SRS资源集的指示;在激活或更新SRS资源集的情况下,基于第四指示域确定SRS资源集的标识,并基于第二指示域以及第三指示域,确定所述SRS资源集所属小区以及BWP;基于M个第五指示域确定指示对应的M个资源,并且根据第六指示域确定每一 个资源类型;根据第七指示域以及第八指示域,确定资源对应的SRS所在小区以及BWP。
  56. 根据权利要求48-55任一项所述的终端设备,其中,所述MAC CE中,还包括:携带SRS路径损耗参考信号RS的第九指示域。
  57. 根据权利要求56所述的终端设备,其中,所述SRS路径损耗RS的粒度为SRS资源集、或者、SRS资源。
  58. 根据权利要求57所述的终端设备,其中,当所述SRS路径损耗RS的粒度为SRS资源时,所述MAC CE中携带与M个SRS资源对应的SRS路径损耗RS的M个第九指示域。
  59. 根据权利要求56-58任一项所述的终端设备,其中,所述终端设备,还包括:
    第二处理单元,在SRS路径损耗RS的粒度为SRS资源集的情况下,从MAC CE的第九指示域获取针对SRS资源集的路径损耗RS;
    在SRS路径损耗RS的粒度为SRS资源的情况下,从MAC CE的M个第九指示域分别获取M个SRS资源对应的SRS路径损耗RS。
  60. 根据权利要求48-59任一项所述的终端设备,其中,所述MAC CE中,还包括:用于指示PUSCH路径损耗RS的第十指示域。
  61. 根据权利要求60所述的终端设备,其中,所述MAC CE中,携带第十一指示域,用于指示MAC CE中是否携带所述第十指示域。
  62. 根据权利要求61所述的终端设备,其中,所述PUSCH路径损耗RS的粒度为SRS资源集、或SRS资源。
  63. 根据权利要求62所述的终端设备,其中,当所述PUSCH路径损耗RS的粒度为SRS资源集时,所述MAC CE中携带1个第十指示域;
    当所述PUSCH路径损耗RS的粒度为SRS资源时,所述MAC CE中携带M个第十指示域。
  64. 根据权利要求60-63任一项所述的终端设备,其中,所述终端设备,还包括:
    第二处理单元,基于MAC CE的第十指示域获取PUSCH路径损耗RS;
    或者,
    在所述PUSCH路径损耗RS的粒度为SRS资源时,基于MAC CE的M个第十指示域,分别获取SRS资源所对应的PUSCH路径损耗RS。
  65. 一种网络设备,包括:处理器和用于存储能够在处理器上运行的计算机程序的存储器,
    其中,该存储器用于存储计算机程序,所述处理器用于调用并运行所述存储器中存储的计算机程序,执行如权利要求1-15任一项所述方法的步骤。
  66. 一种终端设备,包括:处理器和用于存储能够在处理器上运行的计算机程序的存储器,
    其中,该存储器用于存储计算机程序,所述处理器用于调用并运行所述存储器中存储的计算机程序,执行如权利要求16-32任一项所述方法的步骤。
  67. 一种芯片,包括:处理器,用于从存储器中调用并运行计算机程序,使得安装有所述芯片的设备执行如权利要求1-15中任一项所述的方法。
  68. 一种芯片,包括:处理器,用于从存储器中调用并运行计算机程序,使得安装有所述芯片的设备执行如权利要求16-32中任一项所述的方法。
  69. 一种计算机可读存储介质,所述计算机可读存储介质用于存储计算机程序,所述计算机程序使得计算机执行如权利要求1-32任一项所述方法的步骤。
  70. 一种计算机程序产品,包括计算机程序指令,该计算机程序指令使得计算机执行如权利要求1-32中任一项所述的方法。
  71. 一种计算机程序,所述计算机程序使得计算机执行如权利要求1-32中任一项所述的方法。
PCT/CN2019/129385 2019-12-27 2019-12-27 一种信息指示方法、信息获取方法、网络设备、终端设备 WO2021128322A1 (zh)

Priority Applications (2)

Application Number Priority Date Filing Date Title
CN201980101066.0A CN114467345A (zh) 2019-12-27 2019-12-27 一种信息指示方法、信息获取方法、网络设备、终端设备
PCT/CN2019/129385 WO2021128322A1 (zh) 2019-12-27 2019-12-27 一种信息指示方法、信息获取方法、网络设备、终端设备

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/CN2019/129385 WO2021128322A1 (zh) 2019-12-27 2019-12-27 一种信息指示方法、信息获取方法、网络设备、终端设备

Publications (1)

Publication Number Publication Date
WO2021128322A1 true WO2021128322A1 (zh) 2021-07-01

Family

ID=76575419

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2019/129385 WO2021128322A1 (zh) 2019-12-27 2019-12-27 一种信息指示方法、信息获取方法、网络设备、终端设备

Country Status (2)

Country Link
CN (1) CN114467345A (zh)
WO (1) WO2021128322A1 (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2024103409A1 (zh) * 2022-11-18 2024-05-23 北京小米移动软件有限公司 Pucch-sri指示方法、装置

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109803415A (zh) * 2017-11-17 2019-05-24 华为技术有限公司 一种带宽指示方法、网络设备及终端设备
CN110035505A (zh) * 2018-01-11 2019-07-19 维沃移动通信有限公司 半静态srs资源指示、处理方法、网络侧设备、用户终端

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109803415A (zh) * 2017-11-17 2019-05-24 华为技术有限公司 一种带宽指示方法、网络设备及终端设备
CN110035505A (zh) * 2018-01-11 2019-07-19 维沃移动通信有限公司 半静态srs资源指示、处理方法、网络侧设备、用户终端

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
OPPO: "MAC CE design for eMIMO", 3GPP DRAFT; R2-1915158, 3RD GENERATION PARTNERSHIP PROJECT (3GPP), MOBILE COMPETENCE CENTRE ; 650, ROUTE DES LUCIOLES ; F-06921 SOPHIA-ANTIPOLIS CEDEX ; FRANCE, vol. RAN WG2, no. Reno, USA; 20191118 - 20191122, 8 November 2019 (2019-11-08), Mobile Competence Centre ; 650, route des Lucioles ; F-06921 Sophia-Antipolis Cedex ; France, XP051817056 *
VIVO: "Discussion on eMIMO MAC CE", 3GPP DRAFT; R2-1916259, 3RD GENERATION PARTNERSHIP PROJECT (3GPP), MOBILE COMPETENCE CENTRE ; 650, ROUTE DES LUCIOLES ; F-06921 SOPHIA-ANTIPOLIS CEDEX ; FRANCE, vol. RAN WG2, no. Reno, USA; 20191118 - 20191122, 12 November 2019 (2019-11-12), Mobile Competence Centre ; 650, route des Lucioles ; F-06921 Sophia-Antipolis Cedex ; France, XP051824772 *

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2024103409A1 (zh) * 2022-11-18 2024-05-23 北京小米移动软件有限公司 Pucch-sri指示方法、装置

Also Published As

Publication number Publication date
CN114467345A (zh) 2022-05-10

Similar Documents

Publication Publication Date Title
EP3549380B1 (en) System and method for allocating resource blocks
CN110035426B (zh) 上报用户设备能力和资源调度方法、用户设备和网络设备
CN112703779B (zh) 一种上行传输的功率控制方法及终端设备
US20210120572A1 (en) Method and apparatus for resource indication
US20210360647A1 (en) Resource configuration method, terminal device, and network device
US20210337483A1 (en) Method for information processing and terminal device
WO2022006729A1 (en) Method of sound reference signal time bundling
US20210377952A1 (en) Resource indication method and terminal device
WO2021128322A1 (zh) 一种信息指示方法、信息获取方法、网络设备、终端设备
US20220330321A1 (en) Signaling solution for fast beam diversity
US20220361223A1 (en) Method and device for sounding reference signal flexibility enhancement
WO2018082173A1 (zh) 传输上行控制信号的方法和装置
US11218936B2 (en) Method and device for handover
US11943780B2 (en) Physical downlink control channel detection method and device and storage medium
WO2022147828A1 (en) Systems and methods for managing transmission indication in multicast and broadcast communications
US20240172293A1 (en) Systems and methods for reference signaling design and configuration
US20220086949A1 (en) Signal reception method and terminal device
WO2022073179A1 (en) Method and device for signal transmission
WO2023201453A1 (en) Methods and systems of uplink cell and scell activation
US20220159734A1 (en) Systems and methods of enhanced random access procedure
WO2022205441A1 (en) Method and system for applying a unified transmission configuration indicator (tci) state to a target signal
WO2022022190A1 (en) Method for sounding reference signal resrouce transmission and terminal devices
WO2021232208A1 (zh) 一种srs的配置方法及装置、网络设备、终端设备
WO2020073173A1 (zh) 通信方法和通信设备
CN115190507A (zh) 辅小区激活方法及装置、存储介质、终端、网络设备

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 19957879

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 19957879

Country of ref document: EP

Kind code of ref document: A1