WO2021112313A1 - 태양광 모듈용 전극 선재, 그 제조 방법 및 태양광 모듈 - Google Patents

태양광 모듈용 전극 선재, 그 제조 방법 및 태양광 모듈 Download PDF

Info

Publication number
WO2021112313A1
WO2021112313A1 PCT/KR2019/017261 KR2019017261W WO2021112313A1 WO 2021112313 A1 WO2021112313 A1 WO 2021112313A1 KR 2019017261 W KR2019017261 W KR 2019017261W WO 2021112313 A1 WO2021112313 A1 WO 2021112313A1
Authority
WO
WIPO (PCT)
Prior art keywords
solder layer
electrode wire
colored
solar module
conductive core
Prior art date
Application number
PCT/KR2019/017261
Other languages
English (en)
French (fr)
Inventor
하정원
조한민
지정은
하수봉
오주형
Original Assignee
고려특수선재 주식회사
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 고려특수선재 주식회사 filed Critical 고려특수선재 주식회사
Publication of WO2021112313A1 publication Critical patent/WO2021112313A1/ko

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/02Details
    • H01L31/0224Electrodes
    • H01L31/022408Electrodes for devices characterised by at least one potential jump barrier or surface barrier
    • H01L31/022425Electrodes for devices characterised by at least one potential jump barrier or surface barrier for solar cells
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L24/00Arrangements for connecting or disconnecting semiconductor or solid-state bodies; Methods or apparatus related thereto
    • H01L24/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L24/26Layer connectors, e.g. plate connectors, solder or adhesive layers; Manufacturing methods related thereto
    • H01L24/28Structure, shape, material or disposition of the layer connectors prior to the connecting process
    • H01L24/29Structure, shape, material or disposition of the layer connectors prior to the connecting process of an individual layer connector
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/02Details
    • H01L31/02002Arrangements for conducting electric current to or from the device in operations
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/18Processes or apparatus specially adapted for the manufacture or treatment of these devices or of parts thereof
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/50Photovoltaic [PV] energy
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P70/00Climate change mitigation technologies in the production process for final industrial or consumer products
    • Y02P70/50Manufacturing or production processes characterised by the final manufactured product

Definitions

  • the present invention relates to a photovoltaic module, and more particularly, to an electrode wire for a photovoltaic module, a manufacturing method thereof, and a photovoltaic module.
  • Solar power generation is a series of technologies that convert solar energy such as sunlight or solar heat into electrical energy.
  • the configuration of the solar module is generally composed of a back sheet, a solar cell unit, a solar electrode wire, EVA, and glass.
  • TPT Tedlar/PET/Tedlar
  • the EVA serves to chemically combine elements of the solar cell
  • the glass plays a role in preventing light reflection.
  • the photovoltaic electrode wire is used as an electric current flowing wire, a material plated with tin and lead on a copper ribbon is mainly used.
  • the photovoltaic electrode wire is an electric wire that is a passage for photovoltaic power, and is used to manufacture a photovoltaic module by bonding it on a solar cell unit. Since such a solar electrode wire has a gray or silver color, it can reflect sunlight to reduce absorption efficiency, and since it is a different color from a black solar cell unit, there is a problem in deteriorating the environmental aesthetics.
  • An object to be achieved by the technical idea of the present invention is to provide a colored electrode wire for a solar module and a method of manufacturing the same to improve the environmental aesthetics of the solar module and increase the solar absorption efficiency.
  • An object to be achieved by the technical idea of the present invention is to provide a photovoltaic module including the colored electrode wire for a photovoltaic module.
  • the present invention is supported by the energy technology development project (development of solar cells and module manufacturing technology using kerf-loss free wafers) of the Korea Energy Technology Evaluation Institute of the Ministry of Trade, Industry and Energy and the energy international joint research project (high efficiency) of the Ministry of Trade, Industry and Energy Korea Energy Technology Evaluation Institute. It is based on the Republic of Korea Patent Application No. 10-2019-0161268 with the support of 24.5% efficiency charge-selective silicon solar cell and modularization technology development for mass production of solar cells.
  • Electrode wire for a solar module a conductive core; a first solder layer disposed on an upper side of the conductive core; a second solder layer disposed under the conductive core; and a first colored layer disposed on an upper side of the first solder layer and having a compressed colored film.
  • the first colored layer may include a colored film including a polyimide, a silicone-based adhesive, and a coloring material.
  • the coloring material may include carbon black.
  • a thickness of the first solder layer may be smaller than a thickness of the second solder layer.
  • the thickness of the first solder layer may be 1 ⁇ m to 80 ⁇ m.
  • the electrode wire for a photovoltaic module may be an interconnector connecting battery cells for a photovoltaic module or a bus bar connecting the interconnectors.
  • a width of the first colored layer may be greater than a width of the first solder layer to cover the first solder layer.
  • the first colored layer may cover a partial area of the first solder layer to form an exposed area of the first solder layer.
  • a second colored layer disposed below the second solder layer may further include.
  • a method for manufacturing an electrode wire for a photovoltaic module comprises the steps of heat-treating a conductive core; forming a solder layer on the outside of the conductive core by using hot-dip plating; disposing a colored film on the solder layer; and forming a colored layer by pressing the colored film.
  • a solar module a plurality of solar cell units; and an electrode wire for a photovoltaic module electrically connecting the solar cells, wherein the electrode wire for a photovoltaic module includes: a conductive core; a first solder layer disposed on an upper side of the conductive core; a second solder layer disposed under the conductive core; and a first colored layer disposed on an upper side of the first solder layer and having a compressed colored film.
  • the electrode wire for a photovoltaic module is manufactured by pressing the colored film on the solder layer formed on the surface of the conductive core to form the colored layer.
  • the electrode wire for the solar module has a color that reduces the reflection of light such as black instead of the solder layer that reflects light such as silver by the colored layer, and thus the absorption efficiency of sunlight can be increased
  • it exhibits a color almost similar to that of the solar cell unit, greatly increases the flatness of the surface of the colored layer, and can prevent fine irregularities or holes on the surface of the colored layer due to spraying of the colored material, thereby greatly improving the aesthetics of the environment. inhibition can be prevented.
  • FIG. 1 is a plan view illustrating a solar module according to an embodiment of the present invention.
  • FIG. 2 is a cross-sectional view illustrating a solar module according to an embodiment of the present invention.
  • FIG 3 is a cross-sectional view illustrating an electrode wire for a solar module according to an embodiment of the present invention.
  • FIG. 4 is a cross-sectional view showing an electrode wire for a solar module according to another embodiment of the present invention.
  • FIG. 5 is a cross-sectional view showing an electrode wire for a solar module according to another embodiment of the present invention.
  • FIG. 6 is an optical micrograph showing an experimental example of an electrode wire for a solar module according to an embodiment of the present invention.
  • FIG. 7 is a flowchart illustrating a method of manufacturing an electrode wire for a solar module according to an embodiment of the present invention.
  • FIG. 8 is a schematic diagram illustrating an apparatus for manufacturing an electrode wire for a solar module that implements a method for manufacturing an electrode wire for a solar module according to an embodiment of the present invention.
  • FIG. 1 is a plan view illustrating a solar module 30 according to an embodiment of the present invention.
  • a photovoltaic module 30 includes a plurality of solar cell units 20 and an electrode wire 10 for a photovoltaic module electrically connecting the solar cell units 20 .
  • the electrode wire 10 for a solar module may be used in an interconnecter and a bus bar connecting the interconnector. The configuration of the electrode wire 10 for a solar module will be described below.
  • FIG. 2 is a cross-sectional view illustrating a solar module 30 according to an embodiment of the present invention.
  • the solar module 30 includes a solar cell unit 20 including a semiconductor substrate formed on a silicon semiconductor having a PN junction, and a first electrode 90a and a second electrode 90b formed on the semiconductor substrate. ), and an electrode wire 10 for a solar module.
  • the solar module 30 further includes a sealing unit 40 , a cover film unit 50 , a sealing unit 60 , and a cover glass unit 70 .
  • One lower surface of the electrode wire 10 for a solar module is electrically in contact with the surface of the first electrode 90a, and the other upper surface of the electrode wire 10 for a solar module is electrically in contact with the second electrode 90b. do. This electrical contact is implemented by the solder layer of the electrode wire 10 for the solar module. Accordingly, the plurality of solar cell units 20 may be connected in series to generate a desired electromotive force.
  • FIG 3 is a cross-sectional view illustrating an electrode wire 10 for a solar module according to an embodiment of the present invention.
  • the electrode wire 10 for a solar module includes a conductive core 110 , a first solder layer 120 , a second solder layer 130 , and a first colored layer 140 . .
  • the electrode wire 10 for a photovoltaic module may have various shapes, such as a circular cross section, a rectangular shape, and a polygonal shape.
  • the electrode wire 10 for a solar module may have, for example, a cross-sectional diameter or thickness in the range of 0.1 mm to 8.0 mm.
  • the conductive core 110 may include a material having excellent conductivity and solderability, for example, a metal, for example, copper, silver, aluminum, nickel, palladium, or an alloy thereof. Also, the conductive core 110 may include one type of material or may include two or more types of materials. For example, it may include a plurality of cladding layers each made of a different material. The conductive core 110 may have, for example, a thickness in the range of 1 ⁇ m to 1000 ⁇ m. If the thickness of the conductive core 110 is less than 1 ⁇ m, electrical conductivity may be low. If the thickness of the conductive core 110 exceeds 1000 ⁇ m, the material cost may increase. However, the present invention is not limited thereto, and the conductive core 110 may have various thicknesses depending on the width or material of the conductive core 110 , and may preferably have a thickness in the range of 200 ⁇ m to 500 ⁇ m.
  • the first solder layer 120 is disposed on the upper surface of the conductive core 110
  • the second solder layer 130 is disposed on the lower surface of the conductive core 110 .
  • the first solder layer 120 and the second solder layer 130 physically fix the electrode wire 10 for a solar module, and at the same time perform a function of electrically connecting to the solar cell units.
  • the first solder layer 120 and the second solder layer 130 may include various metals that perform soldering and electrical conduction.
  • the first solder layer 120 and the second solder layer 130 may each comprise, for example, tin in the range of 30 wt% to 100 wt%, lead in the range of 0 wt% to 50 wt%, and 0 wt% to 20 wt% at least any one of silver (Ag) in the range of 0 wt % to 60 wt % bismuth (Bi) in the range of 0 wt % to 60 wt % zinc (Zn), and copper in the range of 0 wt % to 50 wt %.
  • silver Ag
  • Bi bismuth
  • Zn zinc
  • copper copper in the range of 0 wt % to 50 wt %.
  • these materials and compositions are exemplary and the technical spirit of the present invention is not limited thereto.
  • the first solder layer 120 and the second solder layer 130 may each have various thicknesses, for example, may have a thickness in the range of 1 ⁇ m to 50 ⁇ m, for example, in the range of 20 ⁇ m to 40 ⁇ m. may have a thickness.
  • the thickness of the first solder layer 120 and the second solder layer 130 is less than 1 ⁇ m, the adhesive force between the first solder layer 120 and the second solder layer 130 may not be sufficient.
  • the thickness of the first solder layer 120 and the second solder layer 130 exceeds 50 ⁇ m, material cost, process time, etc. may increase.
  • the thickness of the first solder layer 120 may be smaller than the thickness of the second solder layer 130 .
  • the first solder layer 120 facing the outside of the solar module is the second solder layer 130 electrically connected to the solar cell unit.
  • the first colored layer 140 compressed with a colored film such as a tape on the upper side of the first solder layer 120 can also minimize the influence of heating. . Therefore, the first colored layer 140 stably maintains a state attached to the first solder layer 120 even when the solar electrode wire 10 is heated and connected to the solar cell unit.
  • the first solder layer 120 may have a thickness in the range of 1 ⁇ m to 20 ⁇ m, for example, it may have a thickness of 10 ⁇ m.
  • the thickness of the first solder layer 120 is less than 1 ⁇ m, the adhesion between the first solder layer 120 and the first colored layer 140 may not be sufficient.
  • the thickness of the first solder layer 120 exceeds 20 ⁇ m, when the solar electrode wire 10 is electrically connected to the solar cell unit by heating, the first solder layer 120 is significantly melted by heating, etc. Due to the influence, the adhesion of the first colored layer 140 attached to the upper side of the first solder layer 120 may be damaged or collapsed.
  • this thickness is exemplary and the technical spirit of the present invention is not limited thereto.
  • the first colored layer 140 may be disposed on the upper side of the first solder layer 120 and formed of a compressed colored film.
  • the first colored layer 140 may include a first base material layer 142 and a first adhesive layer 144 , and the first solder layer 120 and the first adhesive layer 144 may be adhered to each other.
  • the configuration of the first colored layer 140 in which the first base material layer 142 and the first adhesive layer 144 are formed as one layer is also included in the technical concept of the present invention.
  • the first colored layer 140 may be configured in the form of a film such as a tape, thus ensuring uniformity of thickness and flatness of the surface, and ensuring smoothness of the surface by preventing micropores on the surface due to spraying of the coloring material can do.
  • the first colored layer 140 may have a thickness in a range of 1 ⁇ m to 80 ⁇ m, for example, a thickness in a range of 20 ⁇ m to 40 ⁇ m. If the thickness of the first colored layer 140 is less than 1 ⁇ m, the effect by the first colored layer 140 may not be sufficient, and if it is more than 80 ⁇ m, materials, cost, process time, etc. may increase. However, this thickness is exemplary and the technical spirit of the present invention is not limited thereto.
  • the width of the first colored layer 140 may be equal to or greater than the width of the first solder layer 120 to cover the first solder layer 120 . Accordingly, since the first solder layer 120 is not exposed to the outside, reflection of light according to the external exposure of the first solder layer 120 can be suppressed, thereby improving the aesthetics.
  • the first colored layer 140 may include polyimide, a silicone-based adhesive (H 4 Si), and a coloring material.
  • the first base material layer 142 may be formed of polyimide and a colored material
  • the first adhesive layer 144 may be formed of a silicone-based adhesive.
  • the content ratio of the polyimide and the silicone-based adhesive may be in the range of 3:7 to 7:3, for example, 6.5:3.5.
  • these materials are exemplary, and the technical spirit of the present invention is not limited thereto.
  • various polymer materials may be used in place of the polyimide.
  • the coloring material may include a material exhibiting various colors.
  • the coloring material may include carbon black to exhibit black color.
  • carbon black is inexpensive, and has a fine particle diameter, for example, in the range of 100 nm to 200 nm, so it has a large surface area compared to its volume, and has excellent adhesion properties with a base material such as polyimide, so that it can be uniformly dispersed therein. .
  • the coloring material is aniline black, perylene black, iron manganese bis mass black, cobalt iron chrome black, copper chrome manganese black, iron chrome black, manganese bis mass black, manganese yttrium black, iron manganese oxide spinel black, copper chrome may include mite spinel black, hematite, magnetite, mica-type iron oxide, and titanium black.
  • the coloring material has a black color, and a case in which the first coloring layer 140 exhibits various colors as the coloring material has different colors is also included in the technical concept of the present invention.
  • the electrode wire 10 for a photovoltaic module according to this embodiment has been exemplarily described with respect to an interconnector for connecting the battery cells for a photovoltaic module, but is not limited thereto, and the electrode wire for a photovoltaic module according to this embodiment ( 10) may be a description of a bus bar connecting interconnectors connecting battery cells for a solar module.
  • FIG. 4 is a cross-sectional view illustrating an electrode wire 10a for a solar module according to another embodiment of the present invention.
  • FIG. 4 redundant descriptions of the components described above with reference to FIG. 3 will be omitted.
  • the electrode wire 10a for a solar module includes a conductive core 110 , a first solder layer 120 , a second solder layer 130 , and a first colored layer 140a.
  • the first colored layer 140a may cover a partial area of the first solder layer 120 , and thus an exposed area 190 of the first solder layer 120 may be formed.
  • the first solder layer 120 is directly connected to the lower surface of the second electrode 90b of FIG. 2 by the exposed region 190 to improve connectivity and conductivity.
  • FIG. 5 is a cross-sectional view showing an electrode wire 10b for a solar module according to another embodiment of the present invention.
  • FIG. 5 redundant descriptions of the components described above with reference to FIGS. 3 and 4 will be omitted.
  • the electrode wire 10b for a solar module includes a conductive core 110 , a first solder layer 120 , a second solder layer 130 , and a first colored layer 140 .
  • it may further include a second colored layer 150 disposed under the second solder layer 130 and pressed.
  • the second colored layer 150 may include the second base material layer 152 and the second adhesive layer 154 , and the second solder layer 130 and the second adhesive layer 154 may be adhered to each other.
  • the configuration of the second colored layer 150 in which the second base material layer 152 and the second adhesive layer 154 are formed as one layer is also included in the technical concept of the present invention.
  • the second colored layer 150 may be configured in the form of a film such as a tape, thus ensuring uniformity of thickness and flatness of the surface, and securing smoothness of the surface by preventing micropores on the surface due to spraying of the coloring material. can do.
  • the thickness and material of the second colored layer 150 may be the same as those of the first colored layer 140 .
  • the electrode wire 10b for a photovoltaic module including the second colored layer 150 may be applied to a bidirectional photovoltaic module that absorbs sunlight in both directions.
  • FIG. 6 is an optical micrograph showing an experimental example of an electrode wire for a solar module according to an embodiment of the present invention.
  • the conductive core 110 has a thickness of about 298.0 ⁇ m
  • the second solder layer 130 disposed below the conductive core 110 has a thickness of about 35.7 ⁇ m
  • the conductive core 110 has a thickness of about 35.7 ⁇ m.
  • the first solder layer 120 and the first colored layer 140 disposed on the upper side were combined to have a thickness of about 46.0 ⁇ m.
  • the first solder layer 120 has a thickness of about 10.0 ⁇ m
  • the first colored layer 140 has a thickness of about 36.0 ⁇ m.
  • the first colored layer 140 is applied in the form of a film such as a tape, it has a very uniform thickness, greatly improves the flatness of the surface, and has a very smooth surface by preventing micropores on the surface due to spraying of the coloring material. It can be seen that the aesthetics can be significantly improved.
  • FIG. 7 is a flowchart illustrating a method ( S100 ) of manufacturing an electrode wire for a solar module according to an embodiment of the present invention.
  • the method of manufacturing an electrode wire for a solar module includes heat-treating a conductive core (S110); forming a solder layer on the outside of the conductive core by hot-dip plating (S120); disposing a colored film on the solder layer (S130); and forming a colored layer by pressing the colored film (S140).
  • the heat treatment of the conductive core material (S110) may be performed at a temperature in the range of 500°C to 1000°C for 1 second to 5 minutes. Through this heat treatment, the conductive core material may obtain desired mechanical properties, and may be subjected to pretreatment such as washing for subsequent hot dip plating.
  • the conductive core is immersed in a molten solder made of a tin alloy or the like to form a solder layer on both outer sides of the conductive core.
  • the disposing of the colored film on the solder layer ( S130 ) may be performed by aligning and contacting the heat-treated conductive core material with the solder layer formed thereon and the colored film with each other.
  • Forming the colored layer by pressing the colored film may be performed by pressing the conductive core and the colored film with each other by a pressure roller or the like. Thereby, the process of forming the colored layer can be performed very simply and easily.
  • FIG. 8 is a schematic diagram illustrating an apparatus 200 for manufacturing an electrode wire for a solar module that implements a method for manufacturing an electrode wire for a solar module according to an embodiment of the present invention.
  • the apparatus 200 for manufacturing an electrode wire for a solar module includes a first spool 210 , a heat treatment unit 220 , a plating unit 230 , a second spool 240 , and a compression unit 250 . , and a third spool 260 .
  • the ribbon-shaped conductive core 310 wound around the first spool 210 is unwound and moved by a moving member (not shown).
  • the conductive core 310 is moved to the heat treatment unit 220 to be heat treated, and a solder layer is formed on the surface of the plating unit 230 .
  • the colored film in the form of a tape wound on the second spool 240 is unwound and moved, comes into contact with the conductive core 310, and is then compressed by the pressing unit 250 to form a colored layer on the conductive core 310 to finally form an electrode wire 330 for a solar module.
  • the electrode wire 330 for a solar module may be rewound on the third spool 260 .
  • the heat treatment process and the compression process are shown in a manner that is continuously performed, but this is exemplary and the technical spirit of the present invention is not limited thereto.
  • an additional spool may be disposed between the heat treatment unit 220 and the plating unit 230 to perform winding and unwinding, and an additional spool may be disposed between the plating unit 230 and the pressing unit 250 for winding. and unwinding.
  • Such intermittent process is also possible.
  • the present invention can be applied to an electrode wire for a solar module, a manufacturing method thereof, and a solar module.

Landscapes

  • Engineering & Computer Science (AREA)
  • Computer Hardware Design (AREA)
  • Power Engineering (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Electromagnetism (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Physics & Mathematics (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Sustainable Energy (AREA)
  • Sustainable Development (AREA)
  • Manufacturing & Machinery (AREA)
  • Photovoltaic Devices (AREA)

Abstract

본 발명은, 태양광 모듈의 환경 미관을 개선하고 태양광 흡수 효율을 증가시킬 수 있도록 착색된 태양광 모듈용 전극 선재를 제공하는 것이다. 본 발명의 일실시예에 따른 착색된 태양광 모듈용 전극 선재는, 전도성 심재; 상기 전도성 심재의 상측에 배치된 제1 솔더층; 상기 전도성 심재의 하측에 배치된 제2 솔더층; 및 상기 제1 솔더층의 상측에 배치되어 압착된 착색필름을 구비하는 제1 착색층;을 포함한다.

Description

태양광 모듈용 전극 선재, 그 제조 방법 및 태양광 모듈
본 발명은 태양광 모듈에 관한 것으로서, 보다 상세하게는 태양광 모듈용 전극 선재, 그 제조 방법 및 태양광 모듈에 관한 것이다.
석탄이나 석유와 같은 화학에너지의 고갈 및 화학에너지 사용에 따른 환경오염 문제로 인해 근자에 들어서는 대체에너지의 개발에 노력을 기울이고 있는데, 그 중에 하나가 태양에너지를 이용한 태양광 발전이다. 태양광 발전이라 함은 태양광 또는 태양열과 같은 태양에너지를 전기에너지로 변환시키는 일련의 기술이다.
태양광 발전의 기본 원리에 대해 간략하게 살펴보면, P-N 접합 반도체로 구성된 태양 전지(solar cell)에 태양광이 조사되면, 광 에너지에 의한 전하 및 정공이 생겨나고, 전자와 정공이 이동하여 N층과 P층을 가로질러 전류가 흐르게 되는 광기전력 효과에 의해 기전력이 발생함으로써 외부에 접속된 부하에 전류가 흐르는 결과를 이용한다. 이처럼 무한정, 무공해의 태양에너지를 전기에너지로 변환시키기 위해서는 무엇보다도 태양광을 집광하기 위한 태양광 모듈(photovoltaic module)에 대한 기술 개발이 요구된다. 일반적으로 태양광 발전을 위한 태양전지는 실리콘이나 각종 화합물에서 출발, 태양 전지 형태가 되면 전기를 생산해 낼 수 있게 된다. 그러나 하나의 전지로는 충분한 출력을 얻지 못하므로 각각의 셀을 직렬 혹은 병렬 상태로 연결해야 하는데 이렇게 연결된 상태를 태양광 모듈이라 지칭한다. 태양광 산업이 증대됨에 따라 태양광 모듈의 수요가 급증하고 있다.
태양광 모듈의 구성은 일반적으로 백 시트(back sheet), 태양 전지 유닛, 태양광 전극 선재, 에바(EVA), 유리로 구성된다. 백 시트는 모듈 맨 아래 깔리는 소재로 TPT(Tedlar/PET/Tedlar) 타입이 많이 사용되고 있으며, 에바는 태양전지의 각 요소들이 화학적으로 합쳐질 수 있는 역할을 하고, 유리는 빛의 반사를 방지하는 역할을 하도록 철분이 적게 들어간 것을 활용한다. 태양광 전극 선재는 전류를 흘려보내는 전선으로 사용되므로 구리 리본에 주석 및 납으로 도금된 소재가 주로 이용된다. 태양광 전극 선재는 태양광 전력의 통로인 전선으로서, 태양 전지 유닛 위에 접착하여 태양광 모듈을 제조하는데 사용된다. 이러한 태양광 전극 선재는 회색이나 은색을 가지므로 태양광을 반사하여 흡수 효율을 저하시킬 수 있고, 흑색의 태양 전지 유닛과는 다른 색상이므로 환경 미관을 해치는 문제점이 있다.
본 발명의 기술적 사상이 이루고자 하는 과제는 태양광 모듈의 환경 미관을 개선하고 태양광 흡수 효율을 증가시킬 수 있도록 착색된 태양광 모듈용 전극 선재 및 그 제조 방법을 제공하는 것이다.
본 발명의 기술적 사상이 이루고자 하는 과제는 상기 착색된 태양광 모듈용 전극 선재를 포함하는 태양광 모듈을 제공하는 것이다.
그러나 이러한 과제는 예시적인 것으로, 본 발명의 기술적 사상은 이에 한정되는 것은 아니다.
본 발명은 산업통상자원부 한국에너지기술평가원의 에너지기술개발사업(Kerf-loss free 웨이퍼를 활용한 태양전지 및 모듈 제조기술 개발)의 지원과 산업통상자원부 한국에너지기술평가원의 에너지국제공동연구사업(고효율 태양전지 양산화를 위한 효율 24.5%급 전하선택형 실리콘 태양전지 및 모듈화 기술 개발)의 지원을 받고 대한민국 특허출원 제10-2019-0161268호를 기초로 한다.
본 발명의 기술적 사상에 관한 태양광 모듈용 전극 선재는, 전도성 심재; 상기 전도성 심재의 상측에 배치된 제1 솔더층; 상기 전도성 심재의 하측에 배치된 제2 솔더층; 및 상기 제1 솔더층의 상측에 배치되어 압착된 착색필름을 구비하는 제1 착색층;을 포함한다.
본 발명의 일부 실시예들에 있어서, 상기 제1 착색층은 폴리이미드, 실리콘계 접착제, 및 착색 물질을 포함하는 착색 필름을 구비할 수 있다.
본 발명의 일부 실시예들에 있어서, 상기 착색 물질은 카본 블랙을 포함할 수 있다.
본 발명의 일부 실시예들에 있어서, 상기 제1 솔더층의 두께는 상기 제2 솔더층의 두께에 비하여 작을 수 있다.
본 발명의 일부 실시예들에 있어서, 상기 제1 솔더층의 두께는 1 μm 내지 80 μm일 수 있다.
본 발명의 일부 실시예들에 있어서, 상기 태양광 모듈용 전극 선재는 태양광 모듈용 전지셀들을 연결하는 인터커넥터 또는 인터커넥터들을 연결하는 버스 바일 수 있다.
본 발명의 일부 실시예들에 있어서, 상기 제1 착색층의 폭은 상기 제1 솔더층을 커버하도록 상기 제1 솔더층의 폭보다 클 수 있다.
본 발명의 일부 실시예들에 있어서, 상기 제1 착색층은 상기 제1 솔더층의 노출영역이 형성되도록 상기 제1 솔더층의 일부 영역을 커버할 수 있다.
본 발명의 일부 실시예들에 있어서, 상기 제2 솔더층의 하측에 배치된 제2 착색층;을 더 포함할 수 있다.
본 발명의 기술적 사상에 관한 태양광 모듈용 전극 선재의 제조 방법은, 전도성 심재를 열처리하는 단계; 상기 전도성 심재의 외측에 용융도금을 이용하여 솔더층을 형성하는 단계; 상기 솔더층 상에 착색 필름을 배치하는 단계; 및 상기 착색 필름을 압착하여 착색층을 형성하는 단계;를 포함한다.
본 발명의 기술적 사상에 관한 태양광 모듈은, 복수의 태양 전지 유닛들; 및 상기 태양전지들을 전기적으로 연결하는 태양광 모듈용 전극 선재;를 포함하고, 상기 태양광 모듈용 전극 선재는, 전도성 심재; 상기 전도성 심재의 상측에 배치된 제1 솔더층; 상기 전도성 심재의 하측에 배치된 제2 솔더층; 및 상기 제1 솔더층의 상측에 배치되어 압착된 착색필름을 구비하는 제1 착색층;을 포함한다.
본 발명의 기술적 사상에 관한 태양광 모듈용 전극 선재는, 전도성 심재의 표면에 형성된 솔더층 상에 착색 필름을 압착하여 착색층을 형성하여 제조된다. 상기 태양광 모듈용 전극 선재는, 상기 착색층에 의하여 은색과 같은 빛을 반사하는 솔더층을 대신하여 흑색과 같은 빛의 반사를 감소시킨 색상을 가지게 되며, 이에 따라 태양광의 흡수 효율을 증가시킬 수 있고, 또한, 태양 전지 유닛과 거의 유사한 색상을 나타내게 되고, 착색층 표면의 평탄도를 대폭 증가시키고 착색물질 분사로 인한 착색층 표면의 미세 요철이나 구멍을 방지할 수 있어서 심미감을 대폭 향상시킴으로써 환경 미관 저해를 방지할 수 있다.
상술한 본 발명의 효과들은 예시적으로 기재되었고, 이러한 효과들에 의해 본 발명의 범위가 한정되는 것은 아니다.
도 1은 본 발명의 일 실시예에 따른 태양광 모듈을 도시하는 평면도이다.
도 2는 본 발명의 일 실시예에 따른 태양광 모듈을 도시하는 단면도이다.
도 3은 본 발명의 일 실시예에 따른 태양광 모듈용 전극 선재를 도시하는 단면도이다.
도 4는 본 발명의 다른 실시예에 따른 태양광 모듈용 전극 선재를 도시하는 단면도이다.
도 5는 본 발명의 또 다른 실시예에 따른 태양광 모듈용 전극 선재를 도시하는 단면도이다.
도 6은 본 발명의 일 실시예에 따른 태양광 모듈용 전극 선재의 실험예를 나타내는 광학 현미경 사진이다.
도 7은 본 발명의 일 실시예에 따른 태양광 모듈용 전극 선재의 제조 방법을 도시하는 흐름도이다.
도 8은 본 발명의 일 실시예에 따른 태양광 모듈용 전극 선재의 제조 방법을 구현하는 태양광 모듈용 전극 선재의 제조 장치를 도시하는 개략도이다.
이하, 첨부된 도면을 참조하여 본 발명의 바람직한 실시예를 상세히 설명하기로 한다. 본 발명의 실시예들은 당해 기술 분야에서 통상의 지식을 가진 자에게 본 발명의 기술적 사상을 더욱 완전하게 설명하기 위하여 제공되는 것이며, 하기 실시예는 여러 가지 다른 형태로 변형될 수 있으며, 본 발명의 기술적 사상의 범위가 하기 실시예에 한정되는 것은 아니다. 오히려, 이들 실시예는 본 개시를 더욱 충실하고 완전하게 하고, 당업자에게 본 발명의 기술적 사상을 완전하게 전달하기 위하여 제공되는 것이다. 본 명세서에서 동일한 부호는 시종 동일한 요소를 의미한다. 나아가, 도면에서의 다양한 요소와 영역은 개략적으로 그려진 것이다. 따라서, 본 발명의 기술적 사상은 첨부한 도면에 그려진 상대적인 크기나 간격에 의해 제한되지 않는다.
도 1은 본 발명의 일 실시예에 따른 태양광 모듈(30)을 도시하는 평면도이다.
도 1을 참조하면, 태양광 모듈(30)는 복수의 태양 전지 유닛들(20) 및 태양 전지 유닛들(20)을 전기적으로 연결하는 태양광 모듈용 전극 선재(10)를 포함한다. 또한, 도시되지는 않았으나, 태양광 모듈용 전극 선재(10)는 인터커넥터(interconnecter)와 인터커넥터를 연결하는 버스 바(bus bar)에 사용될 수 있다. 태양광 모듈용 전극 선재(10)의 구성은 하기에 설명하기로 한다.
도 2는 본 발명의 일 실시예에 따른 태양광 모듈(30)을 도시하는 단면도이다.
도 2를 참조하면, 태양광 모듈(30)은 PN 접합을 가진 실리콘 반도체에 형성된 반도체기판을 포함하는 태양 전지 유닛(20), 상기 반도체기판에 형성된 제1 전극(90a)과 제2 전극(90b), 및 태양광 모듈용 전극 선재(10)를 포함한다. 또한, 태양광 모듈(30)은 봉합부(40), 커버 필름부(50), 밀봉부(60), 및 덮개 유리부(70)를 더 포함한다. 태양광 모듈용 전극 선재(10)의 일측 하면은 제1 전극(90a)의 표면에 전기적으로 접촉하고, 태양광 모듈용 전극 선재(10)의 타측 상면은 제2 전극(90b)에 전기적으로 접촉한다. 이러한 전기적 접촉은 상기 태양광 모듈용 전극 선재(10)의 솔더층에 의하여 구현된다. 이에 따라, 복수의 태양 전지 유닛(20)이 직렬로 연결되어 원하는 기전력을 발생시킬 수 있다.
도 3은 본 발명의 일 실시예에 따른 태양광 모듈용 전극 선재(10)를 도시하는 단면도이다.
도 3을 참조하면, 태양광 모듈용 전극 선재(10)는, 전도성 심재(110), 제1 솔더층(120), 제2 솔더층(130), 및 제1 착색층(140)을 포함한다.
태양광 모듈용 전극 선재(10)는 그 단면이 원형, 직사각형, 다각형 등 다양한 형상을 가질 수 있다. 태양광 모듈용 전극 선재(10)는, 예를 들어 0.1 mm 내지 8.0 mm 범위의 횡단면 직경 내지 두께를 가질 수 있다.
전도성 심재(110)는 도전성과 납땜성이 우수한 물질, 예를 들어 금속을 포함할 수 있고, 예를 들어 구리, 은, 알루미늄, 니켈, 팔라듐, 또는 이들의 합금을 포함할 수 있다. 또한, 전도성 심재(110)는 한 종류의 물질을 포함하여 구성되거나 또는 2종 이상의 물질을 포함하여 구성될 수 있다. 예를 들어, 서로 다른 물질로 각각 구성된 복수의 클래드 층들을 포함할 수 있다. 전도성 심재(110)는, 예를 들어 1 μm 내지 1000 μm 범위의 두께를 가질 수 있다. 전도성 심재(110)의 두께가 1 μm 미만이면, 전기 전도성이 낮을 수 있다. 전도성 심재(110)의 두께가 1000 μm를 초과하면, 재료 비용이 증가할 수 있다. 그러나 본 발명이 이에 한정되는 것은 아니며, 전도성 심재(110)는 전도성 심재(110)의 폭이나 물질 등에 따라 다양한 두께를 가질 수 있으며, 바람직하게는 200 μm 내지 500 μm 범위의 두께를 가질 수 있다.
제1 솔더층(120)은 전도성 심재(110)의 상측 표면에 배치되고, 제2 솔더층(130)은 전도성 심재(110)의 하측 표면에 배치된다. 제1 솔더층(120)과 제2 솔더층(130)은 태양광 모듈용 전극 선재(10)를 물리적으로 고정하며, 동시에 태양 전지 유닛들에 전기적으로 연결하는 기능을 수행한다. 제1 솔더층(120)과 제2 솔더층(130)은 솔더링과 전기전도를 수행하는 다양한 금속을 포함할 수 있다. 제1 솔더층(120)과 제2 솔더층(130)은 각각, 예를 들어 30 wt% 내지 100 wt% 범위의 주석, 0 wt% 내지 50 wt% 범위의 납, 0 wt% 내지 20 wt% 범위의 은(Ag), 0 wt% 내지 60 wt% 범위의 비스무스(Bi), 0 wt% 내지 60 wt% 범위의 아연(Zn), 및 0 wt% 내지 50 wt% 범위의 구리 중 적어도 어느 하나를 포함할 수 있다. 그러나, 이러한 물질과 조성은 예시적이며 본 발명의 기술적 사상은 이에 한정되는 것은 아니다.
제1 솔더층(120)과 제2 솔더층(130)은 각각 다양한 두께를 가질 수 있고, 예를 들어 1 μm 내지 50 μm 범위의 두께를 가질 수 있고, 예를 들어 20 μm 내지 40 μm 범위의 두께를 가질 수 있다. 제1 솔더층(120)과 제2 솔더층(130)의 두께가 1 μm 미만이면, 제1 솔더층(120)과 제2 솔더층(130)에 의한 접착력이 충분하지 않을 수 있다. 반면, 제1 솔더층(120)과 제2 솔더층(130)의 두께가 50 μm를 초과하면, 재료 비용, 공정 시간 등이 증가할 수 있다. 특히, 제1 솔더층(120)의 상측에 제1 착색층(140)이 배치되는 경우에는, 제1 솔더층(120)의 두께는 제2 솔더층(130)의 두께에 비하여 작을 수 있다. 이 경우 태양광 전극 선재(10)를 가열에 의하여 태양 전지 유닛에 전기적으로 접속할 때에 태양광 모듈의 외부를 향하는 제1 솔더층(120)은 태양 전지 유닛에 전기적으로 접속하는 제2 솔더층(130)에 비하여 가열에 의한 영향을 상대적으로 덜 받게 되므로 제1 솔더층(120)의 상측에 테이프와 같은 착색필름으로 압착된 제1 착색층(140)도 또한 가열에 의한 영향을 최소화할 수 있게 된다. 따라서 제1 착색층(140)은 태양광 전극 선재(10)를 태양 전지 유닛에 가열 접속하더라도 안정적으로 제1 솔더층(120)에 부착된 상태를 유지하게 된다. 예를 들어 제1 솔더층(120)은 1 μm 내지 20 μm 범위의 두께를 가질 수 있고, 예를 들어 10 μm 두께를 가질 수 있다. 제1 솔더층(120)의 두께가 1 μm 미만이면, 제1 솔더층(120)과 제1 착색층(140)의 접착력이 충분하지 않을 수 있다. 제1 솔더층(120)의 두께가 20 μm를 초과하면 태양광 전극 선재(10)를 가열에 의해 태양 전지 유닛에 전기적으로 접속할 때에 제1 솔더층(120)이 가열에 의해 대폭 용융되는 등의 영향을 받아 제1 솔더층(120) 상측에 부착된 제1 착색층(140)의 부착이 손상 내지 붕괴될 수 있다. 그러나 이러한 두께는 예시적이며 본 발명의 기술적 사상은 이에 한정되는 것은 아니다.
제1 착색층(140)은 제1 솔더층(120)의 상측에 배치되어 압착된 착색 필름으로 이루어질 수 있다. 예를 들어, 제1 착색층(140)은 제1 모재층(142)과 제1 접착층(144)으로 구성될 수 있고, 제1 솔더층(120)과 제1 접착층(144)이 서로 접착될 수 있다. 반면, 제1 모재층(142)과 제1 접착층(144)이 하나의 층으로 형성된 제1 착색층(140)의 구성도 본 발명의 기술적 사상에 포함된다. 제1 착색층(140)은 테이프와 같은 필름 형태로 구성될 수 있고, 따라서 두께의 균일성 및 표면의 평탄성을 확보할 수 있고 착색물질 분사로 인한 표면의 미세 구멍을 방지하여 표면의 매끄러움을 확보할 수 있다. 제1 착색층(140)은 1 μm 내지 80 μm 범위의 두께를 가질 수 있고, 예를 들어 20 μm 내지 40 μm 범위의 두께를 가질 수 있다. 제1 착색층(140)의 두께가 1 μm 미만이면, 제1 착색층(140)에 의한 효과가 충분하지 않을 수 있고, 80 μm 초과이면, 재료, 비용, 공정 시간 등이 증가할 수 있다. 그러나, 이러한 두께는 예시적이며 본 발명의 기술적 사상은 이에 한정되는 것은 아니다.
제1 착색층(140)의 폭은 제1 솔더층(120)을 커버하도록 제1 솔더층(120)의 폭과 동일하거나 그보다 더 크게 될 수 있다. 이에 의하여 제1 솔더층(120)은 외부로 노출되지 않게 됨으로써 제1 솔더층(120)의 외부 노출에 따른 빛의 반사를 억제할 수 있어서 심미감을 향상시킬 수 있게 된다.
제1 착색층(140)은 폴리이미드, 실리콘계 접착제(H4Si), 및 착색 물질을 포함하여 구성될 수 있다. 예를 들어 제1 모재층(142)은 폴리이미드 및 착색 물질로 구성되고, 제1 접착층(144)은 실리콘계 접착제로 구성될 수 있다. 그러나, 이는 예시적이며 제1 착색층(140)이 폴리이미드, 실리콘계 접착제(H4Si), 및 착색 물질을 함께 포함한 단일 층인 경우도 본 발명의 기술적 사상에 포함된다. 상기 폴리이미드와 상기 실리콘계 접착제의 함량 비율은 3:7 내지 7:3의 범위일 수 있고, 예를 들어 6.5: 3.5의 범위일 수 있다. 그러나 이러한 물질은 예시적이며, 본 발명의 기술적 사상은 이에 한정되는 것은 아니다. 예를 들어, 상기 폴리이미드를 대신하여 다양한 폴리머 물질을 사용할 수 있다.
상기 착색 물질은 다양한 색상을 나타내는 물질을 포함할 수 있다. 예를 들어, 상기 착색 물질이 카본 블랙을 포함하여 흑색을 나타낼 수 있다. 이러한 카본 블랙은 가격이 저렴하며, 입경이, 예를 들어 100 nm 내지 200 nm 범위로 미세하여 체적에 비하여 표면적이 넓어 폴리이미드와 같은 모재와의 접착 특성이 우수하여 내부에 균일하게 분산될 수 있다. 또한, 상기 착색 물질은 아닐린 블랙, 페릴렌 블랙, 철 망간비스 매스 블랙, 코발트철 크롬 블랙, 구리 크롬 망간 블랙, 철 크롬 블랙, 망간비스 매스 블랙, 망간 이트륨 블랙, 철 망간 산화물 스피넬 블랙, 구리 크로마이트 스피넬 블랙, 헤마타이트, 마그네타이트, 운모형 산화철 및 티탄블랙 등을 포함할 수 있다. 그러나, 상기 착색 물질이 흑색을 가지는 것은 예시적이며, 상기 착색 물질이 다른 색상을 가짐으로써, 제1 착색층(140)이 다양한 색상을 나타내는 경우도 본 발명의 기술적 사상에 포함된다.
본 실시예에 관한 태양광 모듈용 전극 선재(10)는 예시적으로 태양광 모듈용 전지셀들을 연결하는 인터커넥터에 관하여 설명되었으나, 이에 한정되지 않으며 본 실시예에 관한 태양광 모듈용 전극 선재(10)는 태양광 모듈용 전지셀들을 연결하는 인터커넥터들을 연결하는 버스 바에 관한 설명일 수 있다.
도 4는 본 발명의 다른 실시예에 따른 태양광 모듈용 전극 선재(10a)를 도시하는 단면도이다. 도 4에서, 도 3을 참조하여 상술한 구성 요소에 대한 중복된 설명은 생략하기로 한다.
도 4를 참조하면, 태양광 모듈용 전극 선재(10a)는 전도성 심재(110), 제1 솔더층(120), 제2 솔더층(130), 및 제1 착색층(140a)을 포함한다. 제1 착색층(140a)은 제1 솔더층(120)의 일부 영역을 커버하며, 이에 따라 제1 솔더층(120)의 노출 영역(190)이 형성될 수 있다. 이러한 노출 영역(190)에 의하여 제1 솔더층(120) 이 도 2의 제2 전극(90b)의 하면에 직접적으로 접속되어 접속성 및 전도성을 향상시킬 수 있게 된다.
도 5는 본 발명의 또 다른 실시예에 따른 태양광 모듈용 전극 선재(10b)를 도시하는 단면도이다. 도 5에서, 도 3 및 도 4를 참조하여 상술한 구성 요소에 대한 중복된 설명은 생략하기로 한다.
도 5를 참조하면, 태양광 모듈용 전극 선재(10b)는 전도성 심재(110), 제1 솔더층(120), 제2 솔더층(130), 및 제1 착색층(140)을 포함한다. 또한, 제2 솔더층(130)의 하측에 배치되어 압착된 제2 착색층(150)을 더 포함할 수 있다. 예를 들어, 제2 착색층(150)은 제2 모재층(152)과 제2 접착층(154)으로 구성될 수 있고, 제2 솔더층(130)과 제2 접착층(154)이 서로 접착될 수 있다. 반면, 제2 모재층(152)과 제2 접착층(154)이 하나의 층으로 형성된 제2 착색층(150)의 구성도 본 발명의 기술적 사상에 포함된다. 제2 착색층(150)은 테이프와 같은 필름 형태로 구성될 수 있고, 따라서 두께의 균일성 및 표면의 평탄성을 확보할 수 있고 착색물질 분사로 인한 표면의 미세 구멍을 방지하여 표면의 매끄러움을 확보할 수 있다. 제2 착색층(150)의 두께와 재질은 제1 착색층(140)과 동일할 수 있다. 이러한 제2 착색층(150)을 포함하는 태양광 모듈용 전극 선재(10b)는 양방향으로 태양광을 흡수하는 양방향 태양광 모듈에 적용될 수 있다.
도 6은 본 발명의 일 실시예에 따른 태양광 모듈용 전극 선재의 실험예를 나타내는 광학 현미경 사진이다.
도 6을 참조하면, 전도성 심재(110)는 약 298.0 μm의 두께를 가지고, 전도성 심재(110)의 하측에 배치된 제2 솔더층(130)은 약 35.7 μm의 두께를 가지고, 전도성 심재(110)의 상측에 배치된 제1 솔더층(120) 및 제1 착색층(140)은 합하여 약 46.0 μm의 두께로 나타났다. 예를 들어 제1 솔더층(120)은 약 10.0 μm의 두께를 가지고, 제1 착색층(140)은 약 36.0 μm의 두께로 나타났다. 제1 착색층(140)은 테이프와 같은 필름 형태로 적용되므로, 매우 균일한 두께를 가지며, 표면의 평탄도를 대폭 향상시키고, 착색물질 분사로 인한 표면의 미세 구멍을 방지함으로써 매우 매끄러운 표면을 가져서 심미감을 대폭 향상시킬 수 있음을 알 수 있다.
도 7은 본 발명의 일실시예에 따른 태양광 모듈용 전극 선재의 제조 방법(S100)을 도시하는 흐름도이다.
도 7을 참조하면, 태양광 모듈용 전극 선재의 제조 방법(S100)은, 전도성 심재를 열처리하는 단계(S110); 상기 전도성 심재의 외측에 용융도금을 이용하여 솔더층을 형성하는 단계(S120); 상기 솔더층 상에 착색 필름을 배치하는 단계(S130); 및 상기 착색 필름을 압착하여 착색층을 형성하는 단계(S140);를 포함한다.
상기 전도성 심재를 열처리하는 단계(S110)는, 500℃ 내지 1000℃ 범위의 온도에서 1초 내지 5분의 범위 동안 수행될 수 있다. 이러한 열처리에 의하여 상기 전도성 심재는 원하는 기계적 특성을 얻을 수 있고, 또한, 후속의 용융도금을 위한 세정 등의 전처리가 수행될 수 있다.
상기 전도성 심재의 외측에 용융도금을 이용하여 솔더층을 형성하는 단계(S120)는 주석 합금 등으로 구성된 솔더 용탕에 상기 전도성 심재를 침지하여 상기 전도성 심재의 양쪽 외측에 솔더층을 형성할 수 있다.
상기 솔더층 상에 착색 필름을 배치하는 단계(S130)는 상기 열처리되고 솔더층이 형성된 전도성 심재와 착색 필름을 서로 정렬하여 접촉시킴으로서 수행될 수 있다.
상기 착색 필름을 압착하여 착색층을 형성하는 단계(S140)는, 가압 롤러 등에 의하여 상기 전도성 심재와 착색 필름을 서로 가압하여 수행될 수 있다. 이에 의하여 착색층 형성 공정이 매우 간단하고 용이하게 이루어질 수 있다.
도 8은 본 발명의 일실시예에 따른 태양광 모듈용 전극 선재의 제조 방법을 구현하는 태양광 모듈용 전극 선재의 제조 장치(200)를 도시하는 개략도이다.
도 8을 참조하면, 태양광 모듈용 전극 선재의 제조 장치(200)는 제1 스풀(210), 열처리부(220), 도금부(230), 제2 스풀(240), 압착부(250), 및 제3 스풀(260)을 포함한다.
제1 스풀(210)에 권취된 리본 형상의 전도성 심재(310)가 권출되어 이동부재(미도시)에 의하여 이동한다. 전도성 심재(310)는 열처리부(220)로 이동되어 열처리되고, 도금부(230)에서 그 표면에 솔더층이 형성된다. 제2 스풀(240)에 권취된 테이프 형태의 착색 필름이 권출되어 이동하여, 전도성 심재(310)와 접촉하고, 이어서 압착부(250)에서 압착되어 전도성 심재(310) 상에 착색층을 형성하게 되어, 최종적으로 태양광 모듈용 전극 선재(330)를 형성한다. 태양광 모듈용 전극 선재330)는 제3 스풀(260)에 재권취될 수 있다. 도 8에서는, 열처리 공정부터 압착 공정이 연속으로 수행되는 방식으로 도시되어 있으나, 이는 예시적이며 본 발명의 기술적 사상은 이에 한정되는 것은 아니다.
예를 들어, 열처리부(220)와 도금부(230) 사이에 추가적인 스풀이 배치되어 권취 및 권출을 수행할 수 있고, 도금부(230)와 압착부(250) 사이에 추가적인 스풀이 배치되어 권취 및 권출을 수행할 수 있다. 이와 같은 단속적인 방식의 공정도 가능하다.
이상에서 설명한 본 발명의 기술적 사상이 전술한 실시예 및 첨부된 도면에 한정되지 않으며, 본 발명의 기술적 사상을 벗어나지 않는 범위 내에서 여러 가지 치환, 변형 및 변경이 가능하다는 것은, 본 발명의 기술적 사상이 속하는 기술분야에서 통상의 지식을 가진 자에게 있어 명백할 것이다.
본 발명은 태양광 모듈용 전극 선재, 그 제조 방법 및 태양광 모듈에 이용할 수 있다.

Claims (11)

  1. 전도성 심재;
    상기 전도성 심재의 상측에 배치된 제1 솔더층;
    상기 전도성 심재의 하측에 배치된 제2 솔더층; 및
    상기 제1 솔더층의 상측에 배치되어 압착된 착색필름을 구비하는 제1 착색층;
    을 포함하는, 태양광 모듈용 전극 선재.
  2. 청구항 1에 있어서,
    상기 제1 착색층은 폴리이미드, 실리콘계 접착제, 및 착색 물질을 포함하는 착색필름을 구비하는, 태양광 모듈용 전극 선재.
  3. 청구항 2에 있어서,
    상기 착색 물질은 카본 블랙을 포함하는, 태양광 모듈용 전극 선재.
  4. 청구항 1에 있어서,
    상기 제1 솔더층의 두께는 상기 제2 솔더층의 두께에 비하여 작은, 태양광 모듈용 전극 선재.
  5. 청구항 1에 있어서,
    상기 제1 솔더층의 두께는 1 μm 내지 80 μm인, 태양광 모듈용 전극 선재.
  6. 청구항 1에 있어서,
    상기 태양광 모듈용 전극 선재는 태양광 모듈용 전지셀들을 연결하는 인터커넥터 또는 인터커넥터들을 연결하는 버스 바인, 태양광 모듈용 전극 선재.
  7. 청구항 1에 있어서,
    상기 제1 착색층의 폭은 상기 제1 솔더층을 커버하도록 상기 제1 솔더층의 폭보다 큰, 태양광 모듈용 전극 선재.
  8. 청구항 1에 있어서,
    상기 제1 착색층은 상기 제1 솔더층의 노출영역이 형성되도록 상기 제1 솔더층의 일부 영역을 커버하는, 태양광 모듈용 전극 선재.
  9. 청구항 1에 있어서,
    상기 제2 솔더층의 하측에 배치된 제2 착색층;을 더 포함하는, 태양광 모듈용 전극 선재.
  10. 전도성 심재를 열처리하는 단계;
    상기 전도성 심재의 외측에 용융도금을 이용하여 솔더층을 형성하는 단계;
    상기 솔더층 상에 착색 필름을 배치하는 단계; 및
    상기 착색 필름을 압착하여 착색층을 형성하는 단계;
    를 포함하는, 태양광 모듈용 전극 선재의 제조 방법.
  11. 복수의 태양 전지 유닛들; 및
    상기 태양전지들을 전기적으로 연결하는 태양광 모듈용 전극 선재;를 포함하고,
    상기 태양광 모듈용 전극 선재는, 전도성 심재; 상기 전도성 심재의 상측에 배치된 제1 솔더층; 상기 전도성 심재의 하측에 배치된 제2 솔더층; 및 상기 제1 솔더층의 상측에 배치되어 압착된 착색필름을 구비하는 제1 착색층;을 포함하는, 태양광 모듈.
PCT/KR2019/017261 2019-12-06 2019-12-09 태양광 모듈용 전극 선재, 그 제조 방법 및 태양광 모듈 WO2021112313A1 (ko)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
KR1020190161268A KR102186805B1 (ko) 2019-12-06 2019-12-06 태양광 모듈용 전극 선재, 그 제조 방법 및 태양광 모듈
KR10-2019-0161268 2019-12-06

Publications (1)

Publication Number Publication Date
WO2021112313A1 true WO2021112313A1 (ko) 2021-06-10

Family

ID=73776706

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/KR2019/017261 WO2021112313A1 (ko) 2019-12-06 2019-12-09 태양광 모듈용 전극 선재, 그 제조 방법 및 태양광 모듈

Country Status (2)

Country Link
KR (1) KR102186805B1 (ko)
WO (1) WO2021112313A1 (ko)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR102592958B1 (ko) * 2021-10-22 2023-10-23 (주)호전에이블 흡광성 에폭시 플럭스 필름 및 이의 제조방법
KR102612746B1 (ko) * 2021-11-24 2023-12-12 주식회사 제이에이치머티리얼즈 블랙 버스바 및 그 제조방법

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2013033848A (ja) * 2011-08-02 2013-02-14 Jx Nippon Oil & Energy Corp 太陽電池モジュール及びその製造方法
KR20140070665A (ko) * 2011-10-18 2014-06-10 데쿠세리아루즈 가부시키가이샤 도전성 접착제, 및 그를 사용한 태양 전지 모듈, 및 그의 제조 방법
KR101614166B1 (ko) * 2010-04-29 2016-04-20 엘지전자 주식회사 태양 전지 모듈 및 그 제조 방법
KR101694553B1 (ko) * 2011-01-05 2017-01-09 엘지전자 주식회사 태양 전지 모듈
KR101824523B1 (ko) * 2017-01-11 2018-02-01 엘지전자 주식회사 태양 전지 모듈 및 이를 구비하는 휴대용 충전기

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101614166B1 (ko) * 2010-04-29 2016-04-20 엘지전자 주식회사 태양 전지 모듈 및 그 제조 방법
KR101694553B1 (ko) * 2011-01-05 2017-01-09 엘지전자 주식회사 태양 전지 모듈
JP2013033848A (ja) * 2011-08-02 2013-02-14 Jx Nippon Oil & Energy Corp 太陽電池モジュール及びその製造方法
KR20140070665A (ko) * 2011-10-18 2014-06-10 데쿠세리아루즈 가부시키가이샤 도전성 접착제, 및 그를 사용한 태양 전지 모듈, 및 그의 제조 방법
KR101824523B1 (ko) * 2017-01-11 2018-02-01 엘지전자 주식회사 태양 전지 모듈 및 이를 구비하는 휴대용 충전기

Also Published As

Publication number Publication date
KR102186805B1 (ko) 2020-12-04

Similar Documents

Publication Publication Date Title
DE69534582T2 (de) Photovoltaisches Bauelement, Elektrodenstruktur desselben und Herstellungsverfahren
KR100325952B1 (ko) 광기전력소자와이를제조하는방법
US5759291A (en) Photovoltaic cell and method of making the same
KR100325955B1 (ko) 태양전지모듈및태양전지모듈용보강부재
US20160284894A1 (en) Method for Producing a Solar Cell and the Solar Cell
US9236512B2 (en) Collector grid and interconnect structures for photovoltaic arrays and modules
KR100288861B1 (ko) 내습성및투명성이우수한특수표면피복재를갖는태양전지모듈
US8884155B2 (en) Collector grid and interconnect structures for photovoltaic arrays and modules
US20140141559A1 (en) Collector grid and interconnect structures for photovoltaic arrays and modules
US20110290296A1 (en) Flexible tiled photovoltaic module
JP3164183B2 (ja) 光起電力素子及びモジュール
EP2106619A2 (en) Structures for low cost, reliable solar modules
WO2021112313A1 (ko) 태양광 모듈용 전극 선재, 그 제조 방법 및 태양광 모듈
CN108922973A (zh) 一种基于钙钛矿太阳能电池的光伏组件及其封装方法
US9865758B2 (en) Collector grid and interconnect structures for photovoltaic arrays and modules
WO2013147517A1 (en) Solar cell and method of fabricating the same
WO2012015150A1 (ko) 태양광 발전장치 및 이의 제조방법
WO2013055004A1 (en) Solar cell apparatus and method of fabricating the same
CN214411224U (zh) 太阳能电池串
WO2013077673A1 (en) Solar cell apparatus
JP3548379B2 (ja) 光起電力デバイスおよびその製造方法
JP3680490B2 (ja) 可撓性太陽電池モジュール
WO2013042965A1 (en) Solar cell
WO2013051849A2 (en) Solar apparatus and method of fabricating the same
JPH0918040A (ja) 集電電極および光起電力素子

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 19954730

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 19954730

Country of ref document: EP

Kind code of ref document: A1