WO2021112268A1 - Method for producing porous thermoelectric material, and thermoelectric element comprising porous thermoelectric material - Google Patents

Method for producing porous thermoelectric material, and thermoelectric element comprising porous thermoelectric material Download PDF

Info

Publication number
WO2021112268A1
WO2021112268A1 PCT/KR2019/016865 KR2019016865W WO2021112268A1 WO 2021112268 A1 WO2021112268 A1 WO 2021112268A1 KR 2019016865 W KR2019016865 W KR 2019016865W WO 2021112268 A1 WO2021112268 A1 WO 2021112268A1
Authority
WO
WIPO (PCT)
Prior art keywords
thermoelectric
thermoelectric material
porous
electrode
polymer
Prior art date
Application number
PCT/KR2019/016865
Other languages
French (fr)
Korean (ko)
Inventor
양승진
박주현
양승호
황병진
연병훈
손경현
박정구
장봉중
이태희
Original Assignee
엘티메탈 주식회사
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 엘티메탈 주식회사 filed Critical 엘티메탈 주식회사
Priority to PCT/KR2019/016865 priority Critical patent/WO2021112268A1/en
Publication of WO2021112268A1 publication Critical patent/WO2021112268A1/en

Links

Images

Classifications

    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10NELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10N10/00Thermoelectric devices comprising a junction of dissimilar materials, i.e. devices exhibiting Seebeck or Peltier effects
    • H10N10/01Manufacture or treatment
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10NELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10N10/00Thermoelectric devices comprising a junction of dissimilar materials, i.e. devices exhibiting Seebeck or Peltier effects
    • H10N10/80Constructional details
    • H10N10/85Thermoelectric active materials
    • H10N10/851Thermoelectric active materials comprising inorganic compositions
    • H10N10/852Thermoelectric active materials comprising inorganic compositions comprising tellurium, selenium or sulfur
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10NELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10N10/00Thermoelectric devices comprising a junction of dissimilar materials, i.e. devices exhibiting Seebeck or Peltier effects
    • H10N10/80Constructional details
    • H10N10/85Thermoelectric active materials
    • H10N10/851Thermoelectric active materials comprising inorganic compositions
    • H10N10/853Thermoelectric active materials comprising inorganic compositions comprising arsenic, antimony or bismuth
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10NELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10N10/00Thermoelectric devices comprising a junction of dissimilar materials, i.e. devices exhibiting Seebeck or Peltier effects
    • H10N10/80Constructional details
    • H10N10/85Thermoelectric active materials
    • H10N10/856Thermoelectric active materials comprising organic compositions

Definitions

  • the present invention relates to a porous thermoelectric material including micropores, a manufacturing method thereof, and a thermoelectric device having improved thermoelectric performance including the porous thermoelectric material.
  • Thermoelectric technology is generally a technology that directly converts thermal energy into electrical energy and electrical energy into thermal energy in a solid state, and is applied in thermoelectric power generation that converts thermal energy into electrical energy and thermoelectric cooling that converts electrical energy into thermal energy.
  • the thermoelectric material used for such thermoelectric power generation and thermoelectric cooling improves the performance of the thermoelectric element as the thermoelectric characteristics increase.
  • the dimensionless figure of merit (ZT) is an important factor in determining the thermoelectric conversion energy efficiency.
  • thermoelectric materials are generally manufactured by dissolving and solidifying raw materials constituting the thermoelectric material to prepare a master alloy, then press-molding and sintering the same. These thermoelectric materials have only some differences in manufacturing methods and conditions, and it is difficult to secure desired levels of Seebeck coefficient, electrical conductivity, thermal conductivity, and the like.
  • the present invention has been devised to solve the above-described problems, and a novel manufacturing method of a thermoelectric material capable of simultaneously realizing performance improvement and reduced usage by reducing thermal conductivity while maintaining electrical conductivity by securing porosity in the thermoelectric material, and the method It is a technical task to provide a porous thermoelectric material manufactured by
  • thermoelectric device including the aforementioned porous thermoelectric material.
  • the present invention comprises the steps of (i) dissolving and solidifying a raw material for a thermoelectric material to form a master alloy; (ii) rapidly cooling the mother alloy to form a metal ribbon; (iii) mixing the metal ribbon with a polymer that is thermally decomposed at a predetermined temperature or higher and pulverizing it in an inert atmosphere; and (iv) sintering the pulverized product of step (iii) at a temperature higher than the thermal decomposition temperature of the polymer.
  • the thermally decomposable polymer may be pyrolyzed by sintering to form a plurality of pores and removed.
  • the thermally decomposable polymer may be selected from the group consisting of a thermoplastic polymer having a thermal decomposition temperature of 200 to 500 °C, a natural polymer, and a water-soluble polymer.
  • the thermally decomposable polymer may have a residual carbon content of 5.0% or less after thermal decomposition.
  • the thermally decomposable polymer is polymethyl methacrylate (PMMA), polybutyl methacrylate (PBMA), polybromonietide biphenyl (PBB), polyvinyl alcohol (PVA), And it may be at least one selected from the group consisting of ethyl cellulose (EC).
  • PMMA polymethyl methacrylate
  • PBMA polybutyl methacrylate
  • PBB polybromonietide biphenyl
  • PVA polyvinyl alcohol
  • EC ethyl cellulose
  • the thermally decomposable polymer may be a spherical particle having an average particle diameter (D 50 ) of 5 to 50 ⁇ m.
  • the thermally decomposable polymer may be added in an amount of 0.1 to 2 parts by weight based on the total weight of the metal ribbon.
  • step (iv) the pulverized product of step (iii) may be put into a molding mold and sintered by hot pressing.
  • the thermoelectric material may be at least one of a Bi-Te-based thermoelectric material and a Skuttrudite-based thermoelectric material.
  • the porous thermoelectric material may have a porosity of 0.1 to 10%, a pore size of 5 to 50 ⁇ m, and a density of 90 to 99.9%.
  • the present invention provides a porous thermoelectric material manufactured by the above-described method.
  • the present invention is a first substrate; a second substrate facing the first substrate; a first electrode and a second electrode respectively disposed between the first substrate and the second substrate; a plurality of thermoelectric legs interposed between the first electrode and the second electrode; and a bonding material disposed between at least one of the first electrode and the thermoelectric leg and between the thermoelectric leg and the second electrode, wherein at least one of the plurality of thermoelectric legs includes the aforementioned porous thermoelectric material.
  • the bonding material is Sn-based solder; Alternatively, it may have a composition including the Sn-based solder and a metal dendrite having an average branch length of 5 to 50 ⁇ m.
  • thermoelectric element may be applied to at least one of cooling, power generation, and a thin film sensor.
  • a porous thermoelectric material uniformly containing micropore size and workability can be easily manufactured by using a pyrolyzable polymer as a pore former by a sintering process when manufacturing a thermoelectric material.
  • thermoelectric material used it is economical by reducing the amount of thermoelectric material used compared to non-porous thermoelectric materials, and the thermal conductivity is reduced without significantly lowering the electrical conductivity and Seebeck coefficient due to the regular pores contained in the thermoelectric material. performance can be improved.
  • the effect according to the present invention is not limited by the contents exemplified above, and more various effects are included in the present specification.
  • FIG. 1 is a process flowchart of a manufacturing method according to an embodiment of the present invention.
  • thermoelectric material 2 is a schematic diagram of a thermoelectric material according to the manufacturing method of the present invention.
  • thermoelectric element 4 is a perspective view illustrating a thermoelectric element according to an embodiment of the present invention.
  • thermoelectric device 5 is a cross-sectional view of a thermoelectric device according to an embodiment of the present invention.
  • thermoelectric device 7 is a power factor graph using the thermoelectric devices of Examples 1 to 12 and Comparative Example 1.
  • FIG. 7 is a power factor graph using the thermoelectric devices of Examples 1 to 12 and Comparative Example 1.
  • thermoelectric figure of merit graph using the thermoelectric devices of Examples 1 to 12 and Comparative Example 1.
  • FIG. 8 is a thermoelectric figure of merit graph using the thermoelectric devices of Examples 1 to 12 and Comparative Example 1.
  • planar when referred to as “planar”, it means when the target part is viewed from above, and “in cross-section” means when viewed from the side when the cross-section of the target part is vertically cut.
  • thermoelectric element when manufacturing a thermoelectric element, a pore former having a high thermal decomposition rate and easy particle size control is mixed with a thermoelectric material to improve thermoelectric properties using a thermoelectric material porous with a predetermined pore size and porosity. do.
  • thermoelectric performance index (ZT) value when some pores are included in the thermoelectric material, it does not significantly affect the electrical conductivity, but may induce a decrease in thermal conductivity, thereby improving the thermoelectric performance index (ZT) value. Accordingly, it is possible to manufacture a superior thermoelectric element, and to reduce the amount of thermoelectric material used, thereby reducing costs.
  • a thermally decomposable polymer of an organic component that is thermally decomposed in the application temperature range of the sintering process is used as a pore former instead of the conventional complex pore former containing inorganic and organic components.
  • a thermally decomposable polymer is mixed with a thermoelectric material powder (eg, a metal ribbon) and pulverized by a ball mill, and then the pulverized product is sintered through a hot press (HP).
  • the thermally decomposable polymer is an organic component having a high thermal decomposition rate, the diameter, porosity, etc. of the pores after sintering can be easily controlled by adjusting the particle diameter, content, shape, etc.
  • thermoelectric element due to the residue and improved thermoelectric performance.
  • thermoelectric material a porous thermoelectric material according to an embodiment of the present invention
  • it is not limited only by the following manufacturing method, and the steps of each process may be modified or selectively mixed as needed.
  • the present invention is to porousize a conventional thermoelectric material used as a thermoelectric material for thermoelectric power generation and cooling.
  • the raw material for a thermoelectric material is subjected to rapid solidification (RSP) to form a metal ribbon and then pulverized (e.g., ball mill method) and sintering (eg, hot press), but using a polymer that can be thermally decomposed within the application temperature range of the sintering process as a pore former to prepare a porous thermoelectric material.
  • RSP rapid solidification
  • pulverized e.g., ball mill method
  • sintering e.g, hot press
  • step' dissolving and solidifying a raw material for a thermoelectric material to form a master alloy
  • step'S10 step' dissolving and solidifying a raw material for a thermoelectric material to form a master alloy
  • step'S20 step' forming a metal ribbon by rapidly cooling the master alloy
  • step'S30 step' mixing the metal ribbon and the thermally decomposable polymer and pulverizing them in an inert atmosphere
  • step (iii) sintering the pulverized product of step (iii) at a temperature higher than the thermal decomposition temperature of the polymer ('S40 step').
  • FIG. 1 is a conceptual diagram illustrating a method of manufacturing a porous thermoelectric material according to the present invention in each step.
  • the manufacturing method is divided into each process step and described as follows.
  • This step is a step of mixing, dissolving and solidifying the raw materials of the thermoelectric material according to the stoichiometric ratio constituting the porous thermoelectric material to form a master alloy.
  • thermoelectric material As the thermoelectric material according to the present invention, a conventional thermoelectric material known in the art may be used, and the thermoelectric material is not particularly limited.
  • Non-limiting examples of usable thermoelectric materials include Bi-Te-based, Co-Sb-based, Pb-Te-based, Ge-Tb-based, Si-Ge-based, Sb-Te-based, Sm-Co-based, and transition metal silicide-based materials. , Skuttrudite, Silicide, Half heusler, or a combination thereof.
  • it may be a Bi-Te-based or Skuttrudite-based thermoelectric material.
  • Bi, Te, Sb and Se may be used as raw materials for the thermoelectric material in step S10, which may be different depending on the composition for cooling/power generation.
  • Bi and Te are the main components, and depending on the n-type and the p-type, each may have a composition additionally including a Se or Sb component.
  • the Bi and Te raw material is, may be mixed in a ratio according to the stoichiometric composition of Bi 2 Te 3 Wh 0.2, and preferably be a Bi 2 Te 3 Wh 0.15.
  • the raw material for a thermoelectric material may include (i) at least one first element selected from the group consisting of Bi and Sb; and a raw material having a composition including one or more second elements selected from the group consisting of Te and Se. More specifically, when the raw material for the n-type thermoelectric material has a Bi-Te-Se-based alloy composition, 50 to 55 wt% of Bi, 40 to 45 wt% of Te, and 3 to 4 wt% of Se based on 100 wt% of the total It may be a composition comprising.
  • the raw material for the p-type thermoelectric material is a Bi-Sb-Te alloy composition
  • the composition may include 10 to 15 wt% of Bi, 25 to 30 wt% of Sb, and 55 to 60 wt% of Te based on 100 wt% of the total. have.
  • a doping element powder may be added to the composition of the thermoelectric material to be manufactured.
  • the dopant is introduced to allow the Bi-Te-based thermoelectric material to have n-type or p-type characteristics
  • conventional components in the art that can be used for the n-type or p-type thermoelectric material may be used without limitation.
  • it may be one or more metals selected from the group consisting of Al, Sn, Mn, Ag, Cu, and Ga.
  • the content of the at least one metal to be doped is not particularly limited, and may be, for example, in the range of 0.001 to 1% by weight based on the total weight.
  • the size and shape of the thermoelectric material is not particularly limited, but may be in the form of a mass of about 2 to 5 mm in size.
  • the purity of the thermoelectric material is preferably 5N or more high purity.
  • step S10 after the above-described raw material for thermoelectric material is charged into a quartz tube, a quartz tube in a vacuum state is charged into a furnace at a temperature of 600 to 1000° C. for 1-10 hours for 10 hours. Stir and dissolve at a rate of ⁇ 15 times/min to form the master alloy.
  • the master alloy In order to manufacture a ribbon using the rapid solidification method (RSP), it is necessary to prepare a master alloy of a uniform thermoelectric material (eg, Bi 2 -Te 3 system). Accordingly, the master alloy may be manufactured in a size of ⁇ 30 * 100 mm or approximately ⁇ 20 ⁇ 30 * 100 ⁇ 150 mm. It may be a Bi-Te-based alloy or a Skuttrudite-based alloy having a high purity of 5N or higher manufactured through the step S10.
  • a uniform thermoelectric material eg, Bi 2 -Te 3 system
  • the master alloy may be manufactured in a size of ⁇ 30 * 100 mm or approximately ⁇ 20 ⁇ 30 * 100 ⁇ 150 mm. It may be a Bi-Te-based alloy or a Skuttrudite-based alloy having a high purity of 5N or higher manufactured through the step S10.
  • a metal ribbon eg, Bi-Te-based
  • R.S.P rapid solidification method
  • step S20 after charging the master alloy ingot into a nozzle installed in the melt spinning equipment, it is completely dissolved using a heating element that can supply heat and continuously maintain it to form a melt, and then to the melt By pressurizing and spraying an inert gas, the melt is brought into contact with the surface of a rotating high-speed rotating wheel to rapidly cool it. Through this, a metal ribbon of a thermoelectric material (eg, Bi-Te-based) is formed.
  • a thermoelectric material eg, Bi-Te-based
  • the heating element is not particularly limited as long as it can continuously supply and maintain heat, and a conventional resistance heating element known in the art may be used.
  • a resistance heating element that generates heat by receiving a current may be used.
  • the temperature may be controlled by an electric furnace type heater, for example, a graphite heater.
  • the temperature range at which the resistance heating element generates heat is not particularly limited as long as it is a range capable of completely dissolving the master alloy of the thermoelectric material (Bi-Te type), for example, 500 to 800°C, preferably 600 to 700°C. will become
  • the type or pressurization range of the inert gas is also not particularly limited, and for example, it is preferable to pressurize the inert gas in the range of 0.1 to 0.5 MPa using argon gas or the like.
  • the high-speed rotating wheel in contact with the melt may use a conventional wheel known in the art, for example, a copper wheel (Cu wheel).
  • the rotation speed of the high-speed rotating wheel is not particularly limited, and for example, the linear speed of the wheel may be in the range of 5 to 50 m/s.
  • the alloy ribbon of the thermoelectric material having a thin thickness and a microstructure may be formed while the melt in contact with the surface of the wheel is rapidly cooled.
  • the cooling rate of the dissolved master alloy by controlling the cooling rate of the dissolved master alloy, uniform particle size control is possible, and when the cooling rate is generally slow, nano-sized amorphous powder can be prepared, or fine particle powder can be prepared. .
  • the concentration and type of the raw material it can be manufactured under different manufacturing conditions.
  • the master alloy that has undergone the above-described process does not become crystalline through a rapid cooling (RSP) process, but is solidified in a state in which an amorphous structure and a crystalline structure are mixed.
  • RSP rapid cooling
  • the rapid cooling rate is very fast, it is manufactured in the form of a ribbon, but if the cooling rate is adjusted, powder having a size of several hundred nanometers can be prepared in the form of a half-ribbon simply connected.
  • thermoelectric material eg, Bi-Te-based
  • the length of the prepared metal ribbon is 5 to 15 mm
  • the width is 0.5 to 5 mm
  • the thickness may be 10 ⁇ m or less.
  • a predetermined thermally decomposable polymer is added to form a nano-sized amorphous fine powder having a fine particle size and shape and thermal decomposition A pulverized product in which the polymer is uniformly mixed is prepared.
  • a pyrolytic polymer that is thermally decomposed at a predetermined temperature together with the above-described metal ribbon is added as a pore former and pulverized.
  • a conventional pore former uses a complex component including both an organic component and an inorganic component. Since the organic component is removed from the pore former after heat treatment to form a pore structure, while the inorganic component remains in the final thermoelectric material, the performance of the thermoelectric material may be deteriorated due to unwanted metal residues. In addition, since the conventional pore former contains inorganic components, it is difficult to control the desired pore size or pore size.
  • the thermally decomposable polymer employed in the present invention is an organic component that is thermally decomposed by forming and sintering processes to be described later without performing a separate heat treatment process to form a plurality of pores and removed at the same time.
  • This thermally decomposable polymer is a pore former that forms a predetermined pore size and pore size in the thermoelectric material, and since the content of residual carbon after sintering is minimized, degradation of the performance of the thermoelectric material due to the residue can be fundamentally prevented. have.
  • the thermally decomposable polymer is an organic component that is 100% thermally decomposed during thermal decomposition, the size, shape and porosity of the pores after sintering can be easily controlled by adjusting the average particle diameter, content, shape, etc. of the polymer used.
  • the thermally decomposable polymer is a material that is thermally decomposed and carbonized and removed by the application temperature of the sintering process to be described later, its components, content, shape, etc. are not particularly limited, and conventional polymers, copolymers, resins, etc. known in the art Can be used. In addition, the use of a monomolecular compound also falls within the scope of the present invention.
  • the thermally decomposable polymer may be selected from the group consisting of a thermoplastic polymer having a thermal decomposition temperature of 200 to 500°C, a natural polymer, and a water-soluble polymer.
  • the thermally decomposable polymer may have a residual carbon content of 5.0% or less after thermal decomposition by sintering, specifically 0 to 1.0% or less, more specifically 0 to 0.5% or less based on 100% of the total of the thermally decomposable polymer. .
  • thermally degradable polymers that can be used include polymethyl methacrylate (PMMA), polybutyl methacrylate (PBMA), polybromonietide biphenyl (PBB), polyvinyl alcohol (PVA), ethyl cellulose. (EC), or a mixture thereof.
  • PMMA polymethyl methacrylate
  • PBMA polybutyl methacrylate
  • PBB polybromonietide biphenyl
  • PVA polyvinyl alcohol
  • EC ethyl cellulose.
  • polyethylene, polypropylene, glucose, fructose, sucrose, xylose, starch, cellulose, etc. can also be used.
  • PMMA, PBMA, or a mixture thereof having a relatively low decomposition temperature and no residual carbon is preferred.
  • PMMA, PBMA, etc. are 100% pyrolyzed at about 400 °C, so almost no residue is generated.
  • the pore diameter, porosity, pore shape, etc. formed after sintering can be easily adjusted according to the particle diameter, shape, and content thereof of the thermally decomposable polymer used.
  • the size of the thermally decomposable polymer is not particularly limited, and may be appropriately adjusted in consideration of the porosity and pore size to be formed.
  • the average particle diameter (D 50 ) of the thermally decomposable polymer may be 5 to 50 ⁇ m, specifically 5 to 30 ⁇ m.
  • the shape of the thermally decomposable polymer is not particularly limited, and may be, for example, a spherical shape, a triangular or more polygonal shape, a needle shape, a plate shape, or an amorphous shape. It is preferably a spherical particle, and more preferably a spherical particle having excellent sphericity.
  • the amount of the thermally decomposable polymer is not particularly limited, and may be added in an amount of 0.1 to 2 parts by weight based on the total weight of the pulverized metal ribbon, for example.
  • the pulverization process of step S30 may be performed without limitation, and may be pulverized using a ball mill method, for example, a conventional pulverization/pulverization process known in the art.
  • the particle size of the pulverized powder is not particularly limited, and may be appropriately adjusted within a range known in the art.
  • the average particle diameter of the pulverized product in which the thermoelectric material (eg, Bi-Te-based) and the thermally decomposable polymer are mixed may be adjusted to 100 ⁇ m or less, preferably in the range of 10 to 100 ⁇ m.
  • the above-described crushing/grinding process is performed in an inert atmosphere.
  • the type or pressure range of the inert gas is not particularly limited, and for example, nitrogen gas, argon gas, or a mixture thereof may be used.
  • the oxygen content in the pulverized powder may be reduced to control the oxidation degree to be low.
  • the pulverized product according to the present invention can reduce the oxygen content by about 30% or more, specifically 30 to 45%, compared to the pulverized product carried out under atmospheric conditions containing oxygen, preferably the The oxygen content in the pulverized product may be controlled to 0.03% or less, preferably in the range of 0.02 to 0.03%.
  • a preform is manufactured by extruding a mixture of the pulverized material of the metal ribbon obtained in the above step and a thermally decomposable polymer, and then, a high-density thermoelectric material is manufactured through pressure sintering.
  • a molded body having a predetermined shape is manufactured to ensure high density in the pressure sintering process.
  • the compression process may use a conventional method known in the art, for example, it is preferable to use a cold press or a compressor.
  • the compression conditions are not particularly limited, and may be appropriately adjusted under conventional compression conditions known in the art.
  • thermoelectric material having high density and porosity.
  • the pressure sintering method that can be used in the present invention, there is a hot press (HP) or the like.
  • the pressure sintering conditions are not particularly limited, and for example, sintering can be carried out using a Hot Press device under a pressure of 20 to 80 MPa, specifically, a pressure of 40 to 70 MPa, at a temperature of 200 to 500° C. for 40 to 80 minutes. have. If it is smaller than the above-mentioned conditions, it is impossible to have the desired pore size and porosity, and if it exceeds the above-mentioned conditions, the vapor pressure of Te is high and volatilized, making it unsuitable for the intended composition. high.
  • FIG. 2 is a schematic diagram showing the structural change of a thermoelectric material including a thermally decomposable polymer according to the molding and sintering steps.
  • FIG. 2(a) is a preform manufactured to a predetermined standard through an extrusion process, wherein the preform has a predetermined particle size and shape in a matrix made of a thermoelectric material. It shows a structure in which the polymer is randomly distributed.
  • the volume of the polymer is decreased as the thermally decomposable polymer is gradually thermally decomposed and/or carbonized as the temperature rises (see Fig. 2(b)), As a result, when the thermal decomposition of the polymer is completed, a porous structure having a plurality of pores is formed at the location where the polymer is removed (see FIG. 2(c)).
  • the plurality of pores may be regularly distributed or randomly formed, and may have a closed type that is not connected to each other or an open pore structure that is three-dimensionally connected to each other.
  • the porous thermoelectric material of the present invention prepared through the above-described manufacturing method may have a micropore size and uniform porosity.
  • the porosity of the porous thermoelectric material may be 0.1 to 10%, specifically 0.5 to 5%.
  • the pore size included in the porous thermoelectric material can be easily adjusted according to the average particle diameter of the thermally decomposable polymer used. As an example, the pore size may be 5 to 50 ⁇ m.
  • the porous thermoelectric material may have a relative density of 90 to 99.9%, specifically 92% to 99.9%.
  • the degree of oxidation is controlled, so that the oxygen content in the thermoelectric material can be controlled to a predetermined range or less.
  • thermoelectric element of the present invention is provided with the above-described porous thermoelectric material, and includes all elements for thermoelectric power generation and/or cooling.
  • thermoelectric element includes two substrates facing each other; conductive electrodes and a plurality of thermoelectric materials (thermoelectric legs) respectively disposed on upper and lower portions of the two substrates; and a bonding layer disposed between the thermoelectric material and the conductive electrode, wherein at least one of the plurality of thermoelectric legs includes the aforementioned porous thermoelectric material.
  • thermoelectric element according to the present invention.
  • the embodiment of the present invention may be modified in various other forms, and the scope of the present invention is not limited to the embodiments described below.
  • thermoelectric element 100 is a perspective view schematically showing the structure of the thermoelectric element 100 according to an embodiment of the present invention
  • FIG. 5 is a cross-sectional view of the thermoelectric element 100 .
  • the thermoelectric element 100 includes: a first substrate 11; a second substrate 11 facing the first substrate 11; a first electrode 20a and a second electrode 20b respectively disposed between the first substrate 11 and the second substrate 11; a plurality of thermoelectric legs 30 interposed between the first electrode 20a and the second electrode 20b; and a bonding material 40 disposed between the first electrode 20a and the thermoelectric leg 30 and between the thermoelectric leg 30 and the second electrode 20b.
  • thermoelectric element As in this specification, each configuration of the thermoelectric element will be described in detail as follows.
  • the first substrate 11 and the second substrate 11 each generate an exothermic or endothermic reaction when power is applied to the thermoelectric element 100 , and may be made of a conventional electrically insulating material known in the art.
  • each of the first substrate 11 and the second substrate 11 may be a ceramic substrate composed of one or more compositions of Al 2 O 3 , AlN, SiC, and ZrO 2 .
  • it may be composed of a high heat-resistance insulating resin or engineering plastic.
  • first substrate 11 and the second substrate 11 may be a metal substrate made of a conventional conductive metal material known in the art.
  • the first substrate 11 and the second substrate 11 may be formed of at least one metal among aluminum (Al), zinc (Zn), copper (Cu), nickel (Ni), and cobalt (Co), respectively. may include.
  • a first insulating layer (not shown) is formed on one surface of the first substrate 11 on which the first electrode 20a is disposed, and the second substrate 11 on which the second electrode 20b is disposed.
  • a second insulating layer (not shown) is formed on one surface, and the first insulating layer and the second insulating layer are disposed to face each other.
  • the first insulating layer and the second insulating layer may be the same as or different from each other, and an electrically insulating material that is easy to form a film may be used.
  • the insulating resin may be used alone or a mixture of the insulating resin and the ceramic filler (powder) may be included.
  • each of the first insulating layer and the second insulating layer may be an epoxy resin layer including a ceramic filler.
  • Each of the first substrate 11 and the second substrate 11 may have a flat plate shape, and the size or thickness thereof is not particularly limited.
  • the thickness of each of the first substrate 11 and the second substrate 11 may be 0.5 to 2 mm, preferably 0.5 to 1.5 mm, more preferably 0.6 to 0.8 mm.
  • the positions of the heat absorption and heat generation of the substrate can be changed according to the direction of the current.
  • One of the two substrates is a cold side substrate on which an endothermic reaction occurs, and a heat dissipation pad may be applied to this substrate.
  • the heat dissipation pad may be formed of a silicone polymer or an acrylic polymer, and has a thermal conductivity in the range of 0.5 to 5.0 W/mk, thereby maximizing heat transfer efficiency. It can also act as an insulator.
  • the other one of the two substrates may be a heating part substrate (hot side).
  • a first electrode 20a and a second electrode 20b are respectively disposed on the first substrate 11 and the second substrate 11 disposed to face each other. That is, the second electrode 20b is disposed at a position opposite to the first electrode 20a.
  • the material of the first electrode 20a and the second electrode 20b is not particularly limited, and a material used as an electrode in the art may be used without limitation.
  • the first electrode 20a and the second electrode 20b are the same as or different from each other, and each independently aluminum (Al), zinc (Zn), copper (Cu), nickel (Ni), and cobalt. At least one metal of (Co) can be used.
  • nickel, gold, silver, titanium, etc. may be further included. Its size can also be adjusted in various ways.
  • it may be a copper (Cu) electrode.
  • the first electrode 20a and the second electrode 20b may be patterned in a predetermined shape, and the shape is not particularly limited.
  • a method for patterning the first electrode 20a and the second electrode 20b a conventionally known patterning method may be used without limitation. For example, a lift-off semiconductor process, a deposition method, a photolithography method, etc. may be used.
  • thermoelectric legs 30 are interposed between the first electrode 20a and the second electrode 20b.
  • the thermoelectric leg 30 includes a plurality of P-type thermoelectric legs 30a and N-type thermoelectric legs 30b, respectively, which are alternately disposed in one direction. As described above, the P-type thermoelectric leg 30a and the N-type thermoelectric leg 30b adjacent in one direction are electrically connected in series with the first electrode 20a and the second electrode 20b, respectively. Each of these thermoelectric legs 30a and 30b includes a thermoelectric semiconductor substrate.
  • thermoelectric semiconductor included in the thermoelectric leg 30 may be formed of a conventional thermoelectric material in the art that generates electricity when a temperature difference occurs at both ends when electricity is applied, or when a temperature difference occurs at both ends, and the thermoelectric As long as the material has a regular pore size and porosity having a porosity, it is not particularly limited to a component thereof.
  • thermoelectric semiconductors including at least one element selected from the group consisting of a transition metal, a rare earth element, a group 13 element, a group 14 element, a group 15 element, and a group 16 element may be used.
  • examples of rare earth elements include Y, Ce, La, and the like
  • examples of transition metals include Ti, Zr, Hf, V, Nb, Ta, Cr, Mo, W, Mn, Fe, Co, Ni, Cu
  • It may be one or more of Zn, Ag, and Re
  • examples of the group 13 element may include at least one of B, Al, Ga, and In
  • examples of the group 14 element include C, Si, Ge, Sn, and Pb.
  • examples of the group 15 elements may be at least one of P, As, Sb, and Bi
  • examples of the group 16 elements may include one or more of S, Se, and Te.
  • thermoelectric semiconductors include bismuth (Bi), telerium (Te), cobalt (Co), samarium (Sb), indium (In), and cerium (Ce) having a composition containing at least two or more of cerium (Ce). and, non-limiting examples thereof include Bi-Te-based, Co-Sb-based, Pb-Te-based, Ge-Tb-based, Si-Ge-based, Sb-Te-based, Sm-Co-based, transition metal silicide-based, and Suku. Terdite (Skuttrudite)-based, silicide (Silicide)-based, half whistler (Half heusler), or a combination thereof, and the like.
  • thermoelectric semiconductor a (Bi,Sb) 2 (Te, Se) 3 thermoelectric semiconductor in which Sb and Se are used as dopants may be exemplified, and as the Co-Sb-based thermoelectric semiconductor, CoSb may be exemplified.
  • Three -type thermoelectric semiconductor can be exemplified, and AgSbTe 2 and CuSbTe 2 can be exemplified as the Sb-Te-based thermoelectric semiconductor, and PbTe, (PbTe)mAgSbTe 2 and the like can be exemplified as the Pb-Te-based thermoelectric semiconductor.
  • it may be composed of a Bi-Te-based or CoSb-based thermoelectric material.
  • thermoelectric leg 30 including the P-type thermoelectric leg 30a and the N-type thermoelectric leg 30b may be formed in a predetermined shape, for example, a rectangular parallelepiped shape by a method such as cutting, and applied to a thermoelectric element.
  • thermoelectric element 100 includes: between the first electrode 20a and the thermoelectric leg 30 ; and a bonding material 40 disposed between at least one, preferably both, of the thermoelectric leg 30 and the second electrode 20b.
  • bonding material 40 conventional bonding material components known in the art may be used without limitation, and Sn-based solder may be used as an example.
  • the bonding material 40 may include Sn; A first Sn-based solder composition comprising at least one of Pb, Al, and Zn as a first metal;
  • the first solder may be formed of a Sn-based second solder composition including a second metal of at least one of Ni, Co, and Ag.
  • the bonding material 40 may include a metal powder having a dendrite shape in a conventional Sn-based solder known in the art.
  • Such a metal dendrite is a conductive metal particle having a single main axis and having a shape in which a plurality of branched phases branch vertically or obliquely from the main axis and grow two-dimensionally or three-dimensionally.
  • shaft represents the rod-shaped part used as the base from which several branches branch.
  • the average branched length of these metal dendrites is not particularly limited, and may be, for example, 5 to 50 ⁇ m, preferably 5 to 30 ⁇ m.
  • the length of the major axis of the main axis means the total length of the main axis, and may be 5 to 50 ⁇ m, specifically 5 to 30 ⁇ m.
  • the longest branching length among the plurality of branched phases may be 5 to 30 ⁇ m, and specifically, 10 to 25 ⁇ m.
  • the number of branches (number of branches/long diameter) with respect to the major axis of the main axis may be 0.5 to 10 pieces/ ⁇ m, specifically 1 to 8 pieces/ ⁇ m.
  • the average particle diameter (D 50 ) of the metal dendrites refers to a two-dimensional size including the major axis length of the dendrites, and may be, for example, 5 to 50 ⁇ m, specifically 5 to 30 ⁇ m.
  • the main axis thickness of the dendrite may be 0.3 to 5.0 ⁇ m.
  • the metal dendrite has a higher specific surface area than the spherical metal particles as it has the above-described structural characteristics.
  • the metal dendrite may have a specific surface area measured by BET measurement of 0.4 to 3.0 m 2 /g, specifically 0.5 to 2.0 m 2 /g.
  • the apparent density of the metal dendrite may be 0.5 to 1.5 g/cm 3 , and an oxygen content of 0.35% or less is suitable.
  • the metal dendrite is not particularly limited to the metal material to be used as long as the above-described structural characteristics and physical properties are satisfied.
  • copper dendrite (Cu dendrite), silver (Ag) coated copper dendrite (Ag coated Cu dendrite), or a mixture thereof may be used.
  • copper (Cu) is preferable because it is economical as well as similar in electrical conductivity to silver (Ag).
  • the content of the metal dendrite is not particularly limited, and may be included, for example, in an amount of 1 to 40% by weight, preferably 5 to 30% by weight, based on the total weight of the bonding material.
  • the content of such copper dendrite is 1 to 40 weight based on the total weight of the bonding material. %, preferably 5 to 30% by weight.
  • metal dendrites can be used alone as a bonding material component, and in addition, metal powders having various materials, particle sizes, and/or shapes are further included and mixed as a bonding material component also falls within the scope of the present invention.
  • metal powders such as the above-described metal dendrite and spherical shape, needle shape, flake shape, and amorphous shape may be mixed.
  • Sn-based solder mixed with the above-described metal dendrite may use a conventional Sn-based solder component known in the art.
  • the Sn-based solder is Sn; It may have a composition including at least one metal among Pb, Al, and Zn. .
  • thermoelectric element 100 of the present invention may be disposed between the first electrode 20a and the thermoelectric leg 30; and a diffusion barrier layer (not shown) disposed between the thermoelectric leg 30 and the second electrode 20b.
  • a diffusion barrier layer can be used without limitation, a conventional component known in the art, for example, tantalum (Ta), tungsten (W), molybdenum (Mo), and includes at least one selected from the group consisting of titanium (Ti) can do.
  • the first electrode 20a and the second electrode 20b may be electrically connected to a power supply source.
  • a DC voltage When a DC voltage is applied from the outside, the holes of the p-type thermoelectric leg 30a and the electrons of the n-type thermoelectric leg 30b move, thereby generating heat and endothermic heat at both ends of the thermoelectric leg.
  • thermoelectric element 100 in the thermoelectric element 100 according to another embodiment of the present invention, at least one of the first electrode 20a and the second electrode 20b may be exposed to a heat source. When heat is supplied by an external heat source, electrons and holes move and current flows in the thermoelectric element to generate electricity.
  • thermoelectric element may be manufactured according to a method known in the art.
  • a manufacturing method For an embodiment of such a manufacturing method, (a) preparing two insulating substrates; (b) forming a first electrode and a second electrode on one surface of the two insulating substrates, respectively; and (c) disposing the first electrode and the second electrode to face each other, arranging a plurality of porous thermoelectric legs between them, and bonding them using the bonding material.
  • the manufacturing method is not limited only by the following method or sequence, and steps of each process may be modified or selectively mixed as needed.
  • thermoelectric leg using a thermoelectric material As an example of a method of manufacturing a thermoelectric leg using a thermoelectric material in the manufacturing method, a Bi-Te or Skuttrudite-based thermoelectric material is melted using RSP, then a metal ribbon is manufactured, and the metal The ribbon and the thermally decomposable polymer are mixed in a predetermined range and then pulverized, and the pulverized product is molded and hot press sintered to form a porous sintered body. Then, slicing is performed according to the target thickness, and lapping is performed according to the final thickness to adjust the height of the material to within 1/100. After surface coating of Co, Ni, Cr, and W is performed on the surface of the thermoelectric material whose step is controlled, dicing is finally performed according to the size of the material to manufacture the thermoelectric leg.
  • a ceramic substrate or a metal substrate is used as the substrate, and a Cu electrode pattern is formed on one surface of the substrate, and then is fixed by heat treatment.
  • an insulating resin or a mixture of the insulating resin and a ceramic filler (powder) is applied on one surface of the metal substrate on which the electrode is disposed to prevent conduction.
  • thermoelectric legs are disposed and bonded between the first electrode and the second electrode using the thermoelectric legs and the substrate prepared as described above.
  • a bonding material include Sn-based solder; Alternatively, a Sn-based solder paste including the Sn solder and metal dendrite in a predetermined mixing ratio is applied.
  • a bonding material paste is applied to a predetermined thickness according to the pattern of the first electrode 20a, and n-type and p-type thermoelectric legs are arranged thereon.
  • the final configuration is completed by placing the previously manufactured n-type and p-type thermoelectric legs in an arrangement in a state where only the bonding material is applied. Then, after heat treatment at 300 to 500 °C final bonding, the wire is connected to complete the manufacture of the thermoelectric element.
  • thermoelectric leg and/or a thermoelectric element including the same may be provided in a thermoelectric cooling system, a thermoelectric power generation system, and/or a thin-film sensor, and may be applied to at least one of cooling, power generation, and thin-film sensor.
  • thermoelectric power generation system refers to a conventional system that generates power using a temperature difference, and for example, a waste heat furnace, a vehicle thermoelectric power generation system, a solar thermoelectric power generation system, and the like.
  • thermoelectric cooling system may include, but is not limited to, a micro cooling system, a general-purpose cooling device, an air conditioner, a waste heat power generation system, and the like.
  • the thin-film sensor includes all sensor fields using micro-power, such as a thin-film thermoelectric element.
  • thermoelectric power generation system the thermoelectric cooling system, and/or the thin film type sensor
  • thermoelectric cooling system the thermoelectric cooling system
  • thin film type sensor the thermoelectric cooling system
  • thermoelectric cooling system the thermoelectric cooling system
  • thin film type sensor the thermoelectric cooling system
  • the thin film type sensor the thermoelectric cooling system
  • thermoelectric material containing Bi, Te, Sb, and Se having a high purity of 4N or higher was prepared in the form of a mass of about 2-5 mm. In the case of p-type, it was made to have a ternary system such as Bi, Te, and Sb.
  • a ⁇ 30 * 100 mm master alloy ingot was prepared by charging the thermoelectric material with a quartz tube (Quartz) into the locking furnace, stirring and dissolving at 650 to 750 ° C for 2 to 4 hours at a rate of 10 times/min. After that, the master alloy ingot is charged into a nozzle installed in the melt spinning equipment and completely melted at a temperature of about 700 ° C.
  • a Bi-Te-based metal ribbon was formed as it was rapidly cooled in contact with the surface of a rotating copper wheel (Cu wheel). At this time, the rotational speed of the copper wheel proceeded to 1000 rpm. Thereafter, the formed metal ribbon and a thermally decomposable polymer [polymethyl methacrylate (PMMA) having an average particle diameter of 5 ⁇ m] were mixed and pulverized to an average particle diameter of 100 ⁇ m or less using a ball mill method in an argon (Ar) atmosphere. The pulverized product was heated to about 525° C.
  • PMMA polymethyl methacrylate
  • thermoelectric material having a high density of 99% or more was manufactured.
  • thermoelectric material was prepared.
  • Example 1 pyrolytic polymer Addition amount (parts by weight) Average particle size ( ⁇ m) Comparative Example 1 0.00 - Example 1 0.10 5.00
  • Example 2 20.00
  • Example 3 50.00
  • Example 4 0.50
  • Example 5 20.00
  • Example 6 50.00
  • Example 7 1.00 5.00
  • Example 8 20.00
  • Example 9 50.00
  • Example 10 2.00 5.00
  • Example 11 20.00
  • Example 12 50.00
  • thermoelectric material containing Bi, Te, Sb, and Se having a high purity of 4N or higher was prepared in the form of a mass of about 2-5 mm. In the case of p-type, it was made to have a ternary system such as Bi, Te, and Sb.
  • a ⁇ 30 * 100 mm master alloy ingot was prepared by charging the thermoelectric material with a quartz tube (Quartz) into a locking furnace, and then stirring and dissolving at 650 to 750 ° C for 2 to 4 hours at a rate of 10 times/min. After that, the master alloy ingot is charged into a nozzle installed in the melt spinning equipment and completely melted at a temperature of about 700 ° C.
  • a resistance heating element a structure that surrounds the nozzle as a graphite heater
  • a Bi-Te-based metal ribbon was formed as it was rapidly cooled in contact with the surface of a rotating copper wheel (Cu wheel). At this time, the rotational speed of the copper wheel proceeded to 1000rpm.
  • the formed metal ribbon was pulverized to have an average particle diameter of 100 ⁇ m or less by using a ball mill method in an argon (Ar) atmosphere.
  • FIG. 3 is an electron micrograph of the thermally decomposable polymer used in Examples 3, 6, 9, and 12 of the present application. It was confirmed that the average particle diameter was about 50 ⁇ m class spherical particles.
  • thermoelectric material prepared in Examples 1 to 12 and Comparative Example 1 were measured by Archimedes' method, respectively, and the results are shown in Table 2.
  • Example 1 pyrolytic polymer Density after sintering (g/cm 3 ) Relative density (%) Addition amount (parts by weight) Average particle size ( ⁇ m) Comparative Example 1 0.00 - 6.84 - Example 1 0.10 5.00 6.82 99.71 Example 2 20.00 6.81 99.56 Example 3 50.00 6.81 99.56 Example 4 0.50 5.00 6.79 99.27 Example 5 20.00 6.78 99.12 Example 6 50.00 6.76 98.83 Example 7 1.00 5.00 6.77 98.98 Example 8 20.00 6.76 98.83 Example 9 50.00 6.72 98.25 Example 10 2.00 5.00 6.50 95.03 Example 11 20.00 6.47 94.59 Example 12 50.00 6.31 92.25
  • thermoelectric materials prepared in Examples 1 to 12 and Comparative Example 1 were measured as follows, and the results are shown in Table 3 and FIGS. 7 to 8, respectively.
  • thermoelectric figure of merit The thermoelectric figure of merit ZT values were compared, and the results are shown in FIG. 8 below. The measured value was compared with the value of 150°C where the power factor and ZT value had the highest value.
  • thermoelectric element of the present invention including the porous thermoelectric material reduces the thermal conductivity without significantly lowering the electrical conductivity and Seebeck coefficient due to the regular pore structure contained in the thermoelectric material, thereby improving the thermoelectric performance. It was found that further improvement was possible. Specifically, the decrease in electrical resistance and Seebeck coefficient was not significant until the addition amount of the thermally decomposable polymer was 1 part by weight, whereas the decrease in thermal conductivity was relatively large, so that the thermoelectric performance index (ZT) value was 1 The maximum value was shown when adding parts by weight. In addition, it was found that when particles having an average particle diameter of about 50 ⁇ m were used as the thermally decomposable polymer, the maximum value of the thermoelectric performance index compared to the same amount added was shown.

Abstract

The present invention relates to a porous thermoelectric material including fine pores, a method for producing same, and a thermoelectric element comprising the porous thermoelectric material and thus having improved thermoelectric performance. The present invention allows the size of pores included in a thermoelectric material and the porosity thereof to be easily controlled and, due to the regular pores included in the produced thermoelectric material, does not significantly decrease the electrical conductivity and Seebeck coefficient and yet significantly reduces the thermal conductivity, and thus can improve thermoelectric performance.

Description

다공성 열전재료의 제조방법 및 상기 다공성 열전재료를 포함하는 열전 소자 Method for manufacturing porous thermoelectric material and thermoelectric device including the porous thermoelectric material
본 발명은 미세 기공을 포함하는 다공성 열전재료 및 이의 제조방법, 상기 다공성 열전재료를 포함하여 열전 성능이 개선된 열전 소자에 관한 것이다. The present invention relates to a porous thermoelectric material including micropores, a manufacturing method thereof, and a thermoelectric device having improved thermoelectric performance including the porous thermoelectric material.
열전기술은 일반적으로 열에너지를 전기에너지로, 전기에너지를 열에너지로 고체 상태에서 직접 변환하는 기술로서, 열에너지를 전기에너지로 변환하는 열전발전 및 전기에너지를 열에너지로 변환하는 열전냉각 분야에 응용되고 있다. 이러한 열전발전 및 열전냉각을 위해 사용되는 열전재료는 열전특성이 증가할수록 열전소자의 성능이 향상된다. 그 열전성능을 결정하는 것은, 열기전력(V), 제벡 계수(α), 펠티어 계수(π), 톰슨 계수(τ), 네른스트 계수(Q), 에팅스하우젠 계수(P), 전기 전도율(σ), 출력 인자(PF), 성능 지수(Z), 무차원성능지수(ZT=α2σT/κ (여기에서, T는 절대온도이다)), 열전도율(κ), 로렌츠수(L), 전기 저항율(ρ) 등의 물성이다. 특히, 무차원 성능지수(ZT)는 열전 변환 에너지 효율을 결정하는 중요한 요소로서, 성능 지수(Z=α2σ/κ)의 값이 큰 열전 재료를 사용하여 열전 소자를 제조함으로써, 냉각 및 발전의 효율을 높일 수 있게 된다. 즉, 열전재료는 제벡 계수와 전기전도도가 높을수록, 열전도도가 낮을수록, 우수한 열전성능을 가지게 된다.Thermoelectric technology is generally a technology that directly converts thermal energy into electrical energy and electrical energy into thermal energy in a solid state, and is applied in thermoelectric power generation that converts thermal energy into electrical energy and thermoelectric cooling that converts electrical energy into thermal energy. The thermoelectric material used for such thermoelectric power generation and thermoelectric cooling improves the performance of the thermoelectric element as the thermoelectric characteristics increase. The thermoelectric performance is determined by thermoelectromotive force (V), Seebeck coefficient (α), Peltier coefficient (π), Thomson coefficient (τ), Nernst coefficient (Q), Ettingshausen coefficient (P), and electrical conductivity (σ) ), output factor (PF), figure of merit (Z), dimensionless figure of merit (ZT=α2σT/κ (where T is absolute temperature)), thermal conductivity (κ), Lorentz number (L), electrical resistivity ( ρ) and the like. In particular, the dimensionless figure of merit (ZT) is an important factor in determining the thermoelectric conversion energy efficiency. By manufacturing a thermoelectric device using a thermoelectric material having a high figure of merit (Z=α2σ/κ), the efficiency of cooling and power generation can be increased That is, the thermoelectric material has excellent thermoelectric performance as the Seebeck coefficient and electrical conductivity are high and the thermal conductivity is low.
한편 열전재료는 일반적으로 열전재료를 구성하는 원료를 용해 및 응고시켜 모합금을 제조한 후, 이를 가압 성형하고 소결하여 제조된다. 이러한 열전재료들은 제조방법이나 조건 등에 일부 차이가 있을 뿐, 원하는 수준의 제벡계수, 전기전도도, 열전도도 등을 확보하기가 어려웠다. On the other hand, thermoelectric materials are generally manufactured by dissolving and solidifying raw materials constituting the thermoelectric material to prepare a master alloy, then press-molding and sintering the same. These thermoelectric materials have only some differences in manufacturing methods and conditions, and it is difficult to secure desired levels of Seebeck coefficient, electrical conductivity, thermal conductivity, and the like.
본 발명은 전술한 문제점을 해결하기 위해 안출된 것으로서, 열전 재료 내에 다공성을 확보하여 전기전도도는 유지하면서 열전도도를 감소시켜 성능 향상 및 사용량 감소를 동시에 구현할 수 있는 열전재료의 신규 제조방법 및 상기 방법에 의해 제조된 다공성 열전재료를 제공하는 것을 기술적 과제로 한다. The present invention has been devised to solve the above-described problems, and a novel manufacturing method of a thermoelectric material capable of simultaneously realizing performance improvement and reduced usage by reducing thermal conductivity while maintaining electrical conductivity by securing porosity in the thermoelectric material, and the method It is a technical task to provide a porous thermoelectric material manufactured by
또한 본 발명은 전술한 다공성 열전재료를 포함하는 열전소자를 제공하는 것을 또 다른 기술적 과제로 한다.Another technical object of the present invention is to provide a thermoelectric device including the aforementioned porous thermoelectric material.
본 발명의 다른 목적 및 이점은 하기 발명의 상세한 설명 및 청구범위에 의해 보다 명확하게 설명될 수 있다.Other objects and advantages of the present invention may be more clearly explained by the following detailed description and claims.
상기한 기술적 과제를 달성하기 위해, 본 발명은 (i) 열전재료용 원료를 용해 및 응고시켜 모합금을 형성하는 단계; (ii) 상기 모합금을 급속냉각시켜 금속 리본을 형성하는 단계; (iii) 상기 금속리본과 소정 온도 이상에서 열분해되는 고분자를 혼합하여 비활성 분위기하에서 분쇄하는 단계; 및 (iv) 상기 단계 (iii)의 분쇄물을 상기 고분자의 열분해 온도보다 높은 온도로 소결하는 단계;를 포함하는 다공성 열전재료의 제조방법을 제공한다. In order to achieve the above technical object, the present invention comprises the steps of (i) dissolving and solidifying a raw material for a thermoelectric material to form a master alloy; (ii) rapidly cooling the mother alloy to form a metal ribbon; (iii) mixing the metal ribbon with a polymer that is thermally decomposed at a predetermined temperature or higher and pulverizing it in an inert atmosphere; and (iv) sintering the pulverized product of step (iii) at a temperature higher than the thermal decomposition temperature of the polymer.
본 발명의 일 구현예에 따르면, 상기 열분해성 고분자는 소결에 의해 열분해되어 복수 개의 기공을 형성하고 제거될 수 있다.According to one embodiment of the present invention, the thermally decomposable polymer may be pyrolyzed by sintering to form a plurality of pores and removed.
본 발명의 일 구현예에 따르면, 상기 열분해성 고분자는 200 내지 500℃의 열분해 온도를 갖는 열가소성 고분자, 천연 고분자 및 수용성 고분자로 구성된 군에서 선택될 수 있다. According to one embodiment of the present invention, the thermally decomposable polymer may be selected from the group consisting of a thermoplastic polymer having a thermal decomposition temperature of 200 to 500 °C, a natural polymer, and a water-soluble polymer.
본 발명의 일 구현예에 따르면, 상기 열분해성 고분자는 열분해 후 잔류탄소 함량이 5.0% 이하일 수 있다. According to one embodiment of the present invention, the thermally decomposable polymer may have a residual carbon content of 5.0% or less after thermal decomposition.
본 발명의 일 구현예에 따르면, 상기 열분해성 고분자는 폴리메틸메타크릴레이트(PMMA), 폴리부틸메타크릴레이트(PBMA), 폴리브로모니에티드 바이페닐(PBB), 폴리비닐알콜(PVA), 및 에틸셀룰로오스(EC)로 구성된 군에서 선택되는 1종 이상일 수 있다. According to an embodiment of the present invention, the thermally decomposable polymer is polymethyl methacrylate (PMMA), polybutyl methacrylate (PBMA), polybromonietide biphenyl (PBB), polyvinyl alcohol (PVA), And it may be at least one selected from the group consisting of ethyl cellulose (EC).
본 발명의 일 구현예에 따르면, 상기 열분해성 고분자는 5 내지 50㎛의 평균 입경(D50)을 갖는 구형 입자일 수 있다. According to one embodiment of the present invention, the thermally decomposable polymer may be a spherical particle having an average particle diameter (D 50 ) of 5 to 50 μm.
본 발명의 일 구현예에 따르면, 상기 열분해성 고분자는 당해 금속 리본의 전체 중량을 기준으로 0.1 내지 2 중량부로 첨가될 수 있다. According to one embodiment of the present invention, the thermally decomposable polymer may be added in an amount of 0.1 to 2 parts by weight based on the total weight of the metal ribbon.
본 발명의 일 구현예에 따르면, 상기 단계 (iv)는 상기 단계 (iii)의 분쇄물을 성형몰드에 투입하고 핫프레스(Hot Press)하여 소결되는 것일 수 있다. According to one embodiment of the present invention, in step (iv), the pulverized product of step (iii) may be put into a molding mold and sintered by hot pressing.
본 발명의 일 구현예에 따르면, 상기 열전재료는 Bi-Te계 열전재료 및 스쿠테르다이트(Skuttrudite)계 열전재료 중 적어도 하나일 수 있다.According to one embodiment of the present invention, the thermoelectric material may be at least one of a Bi-Te-based thermoelectric material and a Skuttrudite-based thermoelectric material.
본 발명의 일 구현예에 따르면, 상기 다공성 열전재료의 기공율은 0.1 내지 10%이며, 기공 크기는 5 내지 50 ㎛이며, 밀도는 90 내지 99.9%일 수 있다. According to one embodiment of the present invention, the porous thermoelectric material may have a porosity of 0.1 to 10%, a pore size of 5 to 50 μm, and a density of 90 to 99.9%.
또한 본 발명은 전술한 방법에 의해 제조된 다공성 열전재료를 제공한다.In addition, the present invention provides a porous thermoelectric material manufactured by the above-described method.
아울러, 본 발명은 제1 기판; 상기 제1 기판과 대향 배치된 제2 기판; 상기 제1 기판과 제2 기판 사이에 각각 배치된 제1 전극과 제2 전극; 상기 제1 전극과 상기 제2 전극 사이에 개재된 복수의 열전 레그; 상기 제1 전극과 상기 열전 레그 사이, 및 상기 열전 레그와 상기 제2 전극 사이 중 적어도 하나에 배치되는 접합재를 포함하며, 상기 복수의 열전 레그 중 적어도 하나는 전술한 다공성 열전재료를 포함하는 열전 소자를 제공한다. In addition, the present invention is a first substrate; a second substrate facing the first substrate; a first electrode and a second electrode respectively disposed between the first substrate and the second substrate; a plurality of thermoelectric legs interposed between the first electrode and the second electrode; and a bonding material disposed between at least one of the first electrode and the thermoelectric leg and between the thermoelectric leg and the second electrode, wherein at least one of the plurality of thermoelectric legs includes the aforementioned porous thermoelectric material. provides
본 발명의 일 구현예에 따르면, 상기 접합재는 Sn계 솔더; 또는 상기 Sn계 솔더 및 평균 가지상 길이가 5 내지 50 ㎛인 금속 덴드라이트(dendrite)를 포함하는 조성을 가질 수 있다.According to one embodiment of the present invention, the bonding material is Sn-based solder; Alternatively, it may have a composition including the Sn-based solder and a metal dendrite having an average branch length of 5 to 50 μm.
본 발명의 일 구현예에 따르면, 상기 열전 소자는 냉각, 발전, 및 박막형 센서 중 적어도 하나의 용도에 적용될 수 있다. According to one embodiment of the present invention, the thermoelectric element may be applied to at least one of cooling, power generation, and a thin film sensor.
본 발명의 일 실시예에 따르면, 열전소재 제조시 소결공정에 의해 열분해 가능한 고분자를 기공 형성제로 사용함으로써 미세 기공 크기와 가공도를 균일하게 함유하는 다공성 열전재료를 용이하게 제조할 수 있다.According to an embodiment of the present invention, a porous thermoelectric material uniformly containing micropore size and workability can be easily manufactured by using a pyrolyzable polymer as a pore former by a sintering process when manufacturing a thermoelectric material.
또한 본 발명에서는 비(非)다공성 열전재료에 비해 열전재료의 사용량을 절감하여 경제적이며, 열전 재료 내 함유된 규칙적인 기공으로 인해 전기전도도와 제백계수를 크게 저하시키지 않으면서 열전도도를 감소시켜 열전 성능을 향상시킬 수 있다.In addition, in the present invention, it is economical by reducing the amount of thermoelectric material used compared to non-porous thermoelectric materials, and the thermal conductivity is reduced without significantly lowering the electrical conductivity and Seebeck coefficient due to the regular pores contained in the thermoelectric material. performance can be improved.
본 발명에 따른 효과는 이상에서 예시된 내용에 의해 제한되지 않으며, 보다 다양한 효과들이 본 명세서 내에 포함되어 있다. The effect according to the present invention is not limited by the contents exemplified above, and more various effects are included in the present specification.
도 1은 본 발명의 일 실시예에 따른 제조방법의 공정 순서도이다.1 is a process flowchart of a manufacturing method according to an embodiment of the present invention.
도 2는 본 발명의 제조방법에 따른 열전재료의 모식도이다. 2 is a schematic diagram of a thermoelectric material according to the manufacturing method of the present invention.
도 3은 열분해성 고분자의 전자 현미경 사진이다. 3 is an electron micrograph of a thermally decomposable polymer.
도 4는 본 발명의 일 실시예에 따른 열전 소자를 나타낸 사시도이다.4 is a perspective view illustrating a thermoelectric element according to an embodiment of the present invention.
도 5는 본 발명의 일 실시예에 따른 열전 소자의 단면도이다. 5 is a cross-sectional view of a thermoelectric device according to an embodiment of the present invention.
도 6은 열분해성 고분자의 온도에 따른 열분해율 그래프이다. 6 is a graph of the thermal decomposition rate according to the temperature of the thermally decomposable polymer.
도 7은 실시예 1 내지 12, 및 비교예 1의 열전 소자를 이용한 파워팩터 그래프이다.7 is a power factor graph using the thermoelectric devices of Examples 1 to 12 and Comparative Example 1. FIG.
도 8은 실시예 1 내지 12, 및 비교예 1의 열전 소자를 이용한 열전성능 지수 그래프이다.8 is a thermoelectric figure of merit graph using the thermoelectric devices of Examples 1 to 12 and Comparative Example 1. FIG.
<부호의 간단한 설명><Short description of symbols>
100: 열전 소자100: thermoelectric element
11: 절연성 기판11: insulating substrate
10a: 제1 금속적층판10a: first metal laminate
11a: 도전성 제1 기판11a: conductive first substrate
12a: 제1 절연층12a: first insulating layer
20a: 제1전극20a: first electrode
30: 다공성 열전 레그30: porous thermoelectric leg
30a: P형 열전 레그30a: P-type thermoelectric leg
30b: N형 열전 레그30b: N-type thermoelectric leg
20b: 제2전극20b: second electrode
10b: 제2 금속적층판10b: second metal laminate
11b: 도전성 제2기판11b: conductive second substrate
12b: 제2 절연층12b: second insulating layer
40: 접합재40: bonding material
이하, 첨부된 도면을 참조하여 본 발명의 바람직한 실시예를 상세히 설명하기로 한다. 본 발명의 실시예들은 당해 기술분야에서 통상의 지식을 가진 자에게 본 발명을 더욱 완전하게 설명하기 위하여 제공되는 것이며, 하기 실시예는 여러가지 다른 형태로 변형될 수 있으며, 본 발명의 범위가 하기 실시예에 한정되는 것은 아니다. 이때 본 명세서 전체 걸쳐 동일 참조 부호는 동일 구조를 지칭한다. Hereinafter, preferred embodiments of the present invention will be described in detail with reference to the accompanying drawings. Examples of the present invention are provided to more completely explain the present invention to those of ordinary skill in the art, and the following examples may be modified in various other forms, and the scope of the present invention is not limited to the following examples It is not limited to an example. In this case, like reference numerals refer to like structures throughout this specification.
다른 정의가 없다면, 본 명세서에서 사용되는 모든 용어(기술 및 과학적 용어를 포함)는 본 발명이 속하는 기술분야에서 통상의 지식을 가진 자에게 공통적으로 이해될 수 있는 의미로 사용될 수 있을 것이다. 또 일반적으로 사용되는 사전에 정의되어 있는 용어들은 명백하게 특별히 정의되어 있지 않은 한 이상적으로 또는 과도하게 해석되지 않는다.Unless otherwise defined, all terms (including technical and scientific terms) used herein may be used in the meaning commonly understood by those of ordinary skill in the art to which the present invention belongs. In addition, terms defined in a commonly used dictionary are not to be interpreted ideally or excessively unless clearly specifically defined.
또한, 도면에서 나타난 각 구성의 크기 및 두께는 설명의 편의를 위해 임의로 나타내었으므로, 본 발명이 반드시 도시된 바에 한정되지 않는다. 도면에서 여러 층 및 영역을 명확하게 표현하기 위하여 두께를 확대하여 나타내었다. 그리고 도면에서, 설명의 편의를 위해, 일부 층 및 영역의 두께를 과장되게 나타내었다.In addition, since the size and thickness of each component shown in the drawings are arbitrarily indicated for convenience of description, the present invention is not necessarily limited to the illustrated bar. In order to clearly express various layers and regions in the drawings, the thicknesses are enlarged. And in the drawings, for convenience of description, the thickness of some layers and regions are exaggerated.
또한, 명세서 전체에서, 어떤 부분이 어떤 구성요소를 "포함" 한다고 할 때, 이는 특별히 반대되는 기재가 없는 한, 다른 구성요소를 제외하는 것이 아니라 다른 구성요소를 더 포함할 수 있는 것을 의미한다. 또한, 명세서 전체에서, "위에" 또는 "상에"라 함은 대상 부분의 위 또는 아래에 위치하는 경우 뿐만 아니라 그 중간에 또 다른 부분이 있는 경우도 포함함을 의미하는 것이며, 반드시 중력 방향을 기준으로 위쪽에 위치하는 것을 의미하는 것은 아니다. 그리고, 본원 명세서에서 "제1", "제2" 등의 용어는 임의의 순서 또는 중요도를 나타내는 것이 아니라 구성요소들을 서로 구별하고자 사용된 것이다.In addition, throughout the specification, when a part "includes" a certain component, this means that other components may be further included, rather than excluding other components, unless otherwise stated. In addition, throughout the specification, "on" or "on" means that it includes not only the case where it is located above or below the target part, but also the case where there is another part in the middle, and the direction of gravity must be It does not mean that it is positioned above the reference. And, in the present specification, terms such as “first” and “second” do not indicate any order or importance, but are used to distinguish components from each other.
아울러, 명세서 전체에서, "평면상"이라 할 때, 이는 대상 부분을 위에서 보았을 때를 의미하며, "단면상"이라 할 때, 이는 대상 부분을 수직으로 자른 단면을 옆에서 보았을 때를 의미한다.In addition, throughout the specification, when referred to as "planar", it means when the target part is viewed from above, and "in cross-section" means when viewed from the side when the cross-section of the target part is vertically cut.
본 발명에서는 열전 소자 제조시 열분해율이 높고 입자 사이즈 조절이 용이한 기공 형성제를 열전재료와 혼용(混用)함으로써, 소정의 기공 크기와 기공도로 다공질화된 열전재료를 이용하여 열전 특성을 개선하고자 한다. In the present invention, when manufacturing a thermoelectric element, a pore former having a high thermal decomposition rate and easy particle size control is mixed with a thermoelectric material to improve thermoelectric properties using a thermoelectric material porous with a predetermined pore size and porosity. do.
상기와 같이 열전 재료 내 일부 기공(pore)이 함유될 경우, 전기전도도에는 큰 영향을 주지 않지만 열전도도 감소를 유도할 수 있어 열전 성능 지수(ZT)값이 향상될 수 있다. 이에 따라 보다 우수한 열전소자의 제작이 가능해질 뿐만 아니라 열전 재료의 사용량을 감소시켜 비용을 절감시킬 수 있다. As described above, when some pores are included in the thermoelectric material, it does not significantly affect the electrical conductivity, but may induce a decrease in thermal conductivity, thereby improving the thermoelectric performance index (ZT) value. Accordingly, it is possible to manufacture a superior thermoelectric element, and to reduce the amount of thermoelectric material used, thereby reducing costs.
특히, 본 발명에서는 종래 무기와 유기 성분이 포함된 복합형 기공 형성제 대신 소결공정의 적용온도 범위에서 열분해되는 유기 성분의 열분해성 고분자를 기공 형성제로 채택하여 사용한다. 이러한 열분해성 고분자는 열전소재 분말(예, 금속 리본)와 혼합되어 볼밀로 분쇄한 후 상기 분쇄물을 핫 프레스(HP)를 통해 소결을 실시하게 된다. 이때 상기 열분해성 고분자는 열분해율이 높은 유기 성분이므로, 사용하는 열분해성 고분자의 입자 직경, 함량, 형상 등을 조절함에 따라 소결 후 기공의 직경, 기공도 등을 용이하게 제어할 수 있다. 또한 열분해시 잔류 탄소가 거의 존재하지 않기 때문에, 소결 공정에 의해 열분해 및/또는 탄화에 의해 제거될 경우, 잔류물에 의한 열전소자의 제반특성 저하 없이, 미세 기공(pore) 형성을 통한 열전도도 감소 및 열전 성능 향상을 확보할 수 있다. In particular, in the present invention, a thermally decomposable polymer of an organic component that is thermally decomposed in the application temperature range of the sintering process is used as a pore former instead of the conventional complex pore former containing inorganic and organic components. Such a thermally decomposable polymer is mixed with a thermoelectric material powder (eg, a metal ribbon) and pulverized by a ball mill, and then the pulverized product is sintered through a hot press (HP). At this time, since the thermally decomposable polymer is an organic component having a high thermal decomposition rate, the diameter, porosity, etc. of the pores after sintering can be easily controlled by adjusting the particle diameter, content, shape, etc. of the thermally decomposable polymer used. In addition, since residual carbon hardly exists during thermal decomposition, when it is removed by thermal decomposition and/or carbonization by the sintering process, thermal conductivity is reduced through formation of micropores without deterioration of all properties of the thermoelectric element due to the residue and improved thermoelectric performance.
<다공성 열전재료의 제조방법><Manufacturing method of porous thermoelectric material>
이하, 본 발명의 일 실시형태에 따른 다공성 열전재료의 제조방법에 대해 설명한다. 그러나 하기 제조방법에 의해서만 한정되는 것은 아니며, 필요에 따라 각 공정의 단계가 변형되거나 또는 선택적으로 혼용되어 수행될 수 있다. Hereinafter, a method for manufacturing a porous thermoelectric material according to an embodiment of the present invention will be described. However, it is not limited only by the following manufacturing method, and the steps of each process may be modified or selectively mixed as needed.
본 발명은 열전 발전 및 냉각용 열전소재로 사용되는 통상적인 열전재료를 다공질화하는 것으로서, 구체적으로 열전재료용 원료를 급속응고법(RSP)을 통해 금속리본을 형성한 후 분쇄(예, 볼밀법) 및 소결(예, Hot Press)하되, 상기 소결공정의 적용온도 범위에서 열분해 가능한 고분자를 기공 형성제로 사용하여 다공성(多孔性) 열전재료를 제조한다.The present invention is to porousize a conventional thermoelectric material used as a thermoelectric material for thermoelectric power generation and cooling. Specifically, the raw material for a thermoelectric material is subjected to rapid solidification (RSP) to form a metal ribbon and then pulverized (e.g., ball mill method) and sintering (eg, hot press), but using a polymer that can be thermally decomposed within the application temperature range of the sintering process as a pore former to prepare a porous thermoelectric material.
상기 제조방법의 바람직한 일 실시예를 들면, (i) 열전재료용 원료를 용해 및 응고시켜 모합금을 형성하는 단계('S10 단계'); (ii) 상기 모합금을 급속냉각시켜 금속 리본을 형성하는 단계('S20 단계'); (iii) 상기 금속리본과 열분해성 고분자를 혼합하여 비활성 분위기하에서 분쇄하는 단계('S30 단계'); 및 (iv) 상기 단계 (iii)의 분쇄물을 상기 고분자의 열분해 온도보다 높은 온도로 소결하는 단계('S40 단계')를 포함하여 구성될 수 있다. For a preferred embodiment of the manufacturing method, (i) dissolving and solidifying a raw material for a thermoelectric material to form a master alloy ('S10 step'); (ii) forming a metal ribbon by rapidly cooling the master alloy ('S20 step'); (iii) mixing the metal ribbon and the thermally decomposable polymer and pulverizing them in an inert atmosphere ('S30 step'); and (iv) sintering the pulverized product of step (iii) at a temperature higher than the thermal decomposition temperature of the polymer ('S40 step').
한편 도 1은 본 발명에 따른 다공성 열전재료의 제조방법을 각 단계별로 도시한 개념도이다. 이하, 도 1을 참고하여 상기 제조방법을 각 공정 단계별로 나누어 설명하면 다음과 같다.Meanwhile, FIG. 1 is a conceptual diagram illustrating a method of manufacturing a porous thermoelectric material according to the present invention in each step. Hereinafter, with reference to FIG. 1, the manufacturing method is divided into each process step and described as follows.
(i) 모합금 형성 단계('S10 단계')(i) master alloy formation step ('S10 step')
본 단계는 다공성 열전재료를 구성하는 화학양론적 비율에 맞게 열전 재료의 원료를 혼합하고 용해 및 응고시켜 모합금을 형성하는 단계이다.This step is a step of mixing, dissolving and solidifying the raw materials of the thermoelectric material according to the stoichiometric ratio constituting the porous thermoelectric material to form a master alloy.
본 발명에 따른 열전재료는 당 분야에 알려진 통상의 열전재료를 사용할 수 있으며, 특별히 제한되지 않는다. 사용 가능한 열전재료의 비제한적인 예로는, Bi-Te계, Co-Sb계, Pb-Te계, Ge-Tb계, Si-Ge계, Sb-Te계, Sm-Co계, 전이금속 규화물계, 스쿠테르다이트(Skuttrudite)계, 규화물(Silicide)계, 하프휘슬러(Half heusler) 또는 이들의 조합 등이 있다. 바람직하게는 Bi-Te계 또는 스쿠테르다이트(Skuttrudite)계 열전재료일 수 있다. As the thermoelectric material according to the present invention, a conventional thermoelectric material known in the art may be used, and the thermoelectric material is not particularly limited. Non-limiting examples of usable thermoelectric materials include Bi-Te-based, Co-Sb-based, Pb-Te-based, Ge-Tb-based, Si-Ge-based, Sb-Te-based, Sm-Co-based, and transition metal silicide-based materials. , Skuttrudite, Silicide, Half heusler, or a combination thereof. Preferably, it may be a Bi-Te-based or Skuttrudite-based thermoelectric material.
일례로 Bi-Te계 열전재료를 제조할 경우, 상기 S10 단계에서 열전재료용 원료는 Bi, Te, Sb 및 Se 등을 사용할 수 있으며, 이는 냉각/발전용의 조성에 따라 상이할 수 있다.For example, in the case of manufacturing a Bi-Te-based thermoelectric material, Bi, Te, Sb and Se may be used as raw materials for the thermoelectric material in step S10, which may be different depending on the composition for cooling/power generation.
사용 가능한 열전재료용 원료로는, Bi 및 Te를 주재로 하고, 여기에 n형과 p형에 따라 각각 Se 또는 Sb 성분을 추가로 포함하는 조성일 수 있다. 일례로, 상기 Bi 원료와 Te 원료는, Bi2Te3ㅁ0.2의 화학양론 조성에 따른 비율로 혼합될 수 있으며, 바람직하게는 Bi2Te3ㅁ0.15일 수 있다. As a usable raw material for a thermoelectric material, Bi and Te are the main components, and depending on the n-type and the p-type, each may have a composition additionally including a Se or Sb component. In one example, the Bi and Te raw material is, may be mixed in a ratio according to the stoichiometric composition of Bi 2 Te 3 Wh 0.2, and preferably be a Bi 2 Te 3 Wh 0.15.
본 발명의 일 구체예를 들면, 상기 열전재료용 원료는, (i) Bi 및 Sb로 구성된 군에서 선택되는 1종 이상의 제1원소; 및 Te 및 Se로 구성된 군에서 선택되는 1종 이상의 제2원소를 포함하는 조성의 원료를 포함하는 조성일 수 있다. 보다 구체적으로, 상기 n형 열전재료용 원료가 Bi-Te-Se계 합금 조성일 경우, 전체 100 중량%를 기준으로 Bi 50~55 중량%, Te 40~45 중량%, 및 Se 3~4 중량%를 포함하는 조성일 수 있다. 또한 p형 열전재료용 원료가 Bi-Sb-Te계 합금 조성일 경우, 전체 100 중량%를 기준으로 Bi 10~15 중량%, Sb 25~30 중량%, Te 55~60 중량%를 포함하는 조성일 수 있다. In one embodiment of the present invention, the raw material for a thermoelectric material may include (i) at least one first element selected from the group consisting of Bi and Sb; and a raw material having a composition including one or more second elements selected from the group consisting of Te and Se. More specifically, when the raw material for the n-type thermoelectric material has a Bi-Te-Se-based alloy composition, 50 to 55 wt% of Bi, 40 to 45 wt% of Te, and 3 to 4 wt% of Se based on 100 wt% of the total It may be a composition comprising. In addition, when the raw material for the p-type thermoelectric material is a Bi-Sb-Te alloy composition, the composition may include 10 to 15 wt% of Bi, 25 to 30 wt% of Sb, and 55 to 60 wt% of Te based on 100 wt% of the total. have.
본 발명에서는 제조하고자 하는 열전재료의 조성에, 도핑원소 분말을 첨가할 수 있다. In the present invention, a doping element powder may be added to the composition of the thermoelectric material to be manufactured.
도핑 원소(dopant)는 Bi-Te계 열전재료가 n형 또는 p형 특성을 갖도록 하기 위해 도입된 것이므로, n형 또는 p형 열전 재료에 사용될 수 있는 당 분야의 통상적인 성분을 제한 없이 사용할 수 있다. 일례로 Al, Sn, Mn, Ag, Cu 및 Ga로 이루어진 군에서 선택되는 1종 이상의 금속일 수 있다. 전술한 금속 성분을 도핑함으로써, 열전 성능을 향상시킬 수 있다. 이때 도핑되는 상기 1종 이상의 금속 함량은 특별히 한정되지 않으며, 일례로 전체 중량 대비 0.001~1 중량% 범위일 수 있다. Since the dopant is introduced to allow the Bi-Te-based thermoelectric material to have n-type or p-type characteristics, conventional components in the art that can be used for the n-type or p-type thermoelectric material may be used without limitation. . For example, it may be one or more metals selected from the group consisting of Al, Sn, Mn, Ag, Cu, and Ga. By doping the aforementioned metal component, thermoelectric performance may be improved. At this time, the content of the at least one metal to be doped is not particularly limited, and may be, for example, in the range of 0.001 to 1% by weight based on the total weight.
본 발명에서, 열전재료의 크기와 형태는 특별히 한정되지 않으나, 약 2 내지 5mm 크기의 괴상 형태일 수 있다. 또한 상기 열전재료의 순도는 5N 이상의 고순도인 것이 바람직하다. In the present invention, the size and shape of the thermoelectric material is not particularly limited, but may be in the form of a mass of about 2 to 5 mm in size. In addition, the purity of the thermoelectric material is preferably 5N or more high purity.
상기 S10 단계의 일 구체예를 들면, 전술한 열전재료용 원료를 석영관(Quartz)에 장입한 후, 진공상태의 석영관을 퍼니스에 장입하여 600~1000℃의 온도에서 1-10시간 동안 10~15회/분 속도로 교반 및 용해시켜 모합금을 형성한다.For a specific example of step S10, after the above-described raw material for thermoelectric material is charged into a quartz tube, a quartz tube in a vacuum state is charged into a furnace at a temperature of 600 to 1000° C. for 1-10 hours for 10 hours. Stir and dissolve at a rate of ~15 times/min to form the master alloy.
급속응고법(R.S.P)을 이용하여 리본(Ribbon)을 제조하기 위해서는, 균일한 열전재료(예, Bi2-Te3계)의 모합금을 제조하여야 한다. 이에 따라, 상기 모합금은 Φ 30 * 100㎜ 이나 대략 Φ 20~30 * 100~150㎜ 크기로 제조될 수 있다. 상기 S10 단계를 통해 제조된 5N 이상의 고순도를 갖는 Bi-Te계이거나 또는 스쿠테르다이트(Skuttrudite)계 합금일 수 있다. In order to manufacture a ribbon using the rapid solidification method (RSP), it is necessary to prepare a master alloy of a uniform thermoelectric material (eg, Bi 2 -Te 3 system). Accordingly, the master alloy may be manufactured in a size of Φ 30 * 100 mm or approximately Φ 20 ~ 30 * 100 ~ 150 mm. It may be a Bi-Te-based alloy or a Skuttrudite-based alloy having a high purity of 5N or higher manufactured through the step S10.
(ii) 금속리본 형성단계 ('S20 단계')(ii) metal ribbon forming step ('S20 step')
본 단계에서는 이전 단계에서 수득된 열전재료의 모합금을 급속응고법(R.S.P)을 통해 복합 미세구조를 갖는 금속리본(예, Bi-Te계)을 제조한다.In this step, a metal ribbon (eg, Bi-Te-based) having a complex microstructure is prepared through the rapid solidification method (R.S.P) of the mother alloy of the thermoelectric material obtained in the previous step.
상기 S20 단계의 일 구체예를 들면, 상기 모합금 잉곳을 용융 방사 장비에 설치된 노즐에 장입한 후 열을 공급하고 지속적으로 유지할 수 있는 발열체를 이용하여 완전히 용해시켜 용융물을 형성하고, 이후 상기 용융물에 불활성 가스를 가압하고 분사시켜, 회전하는 고속회전 휠(wheel) 표면에 용융물을 접촉시켜 급속냉각시키는 것이다. 이를 통해 열전재료(예, Bi-Te계)의 금속 리본이 형성된다. For one specific example of step S20, after charging the master alloy ingot into a nozzle installed in the melt spinning equipment, it is completely dissolved using a heating element that can supply heat and continuously maintain it to form a melt, and then to the melt By pressurizing and spraying an inert gas, the melt is brought into contact with the surface of a rotating high-speed rotating wheel to rapidly cool it. Through this, a metal ribbon of a thermoelectric material (eg, Bi-Te-based) is formed.
여기서, 상기 발열체는 열을 지속적으로 공급하고 유지시킬 수 있다면 특별히 한정되지 않으며, 당 분야에 알려진 통상적인 저항 발열체를 사용할 수 있다. 일례로, 전류를 공급받아 발열하는 저항 발열체를 사용할 수 있다. 사용 가능한 저항 발열체의 비제한적인 예를 들면, 전기로 타입의 히터, 예컨대 그래파이트(Graphite) 히터로 온도를 제어할 수 있다.Here, the heating element is not particularly limited as long as it can continuously supply and maintain heat, and a conventional resistance heating element known in the art may be used. As an example, a resistance heating element that generates heat by receiving a current may be used. As a non-limiting example of the usable resistance heating element, the temperature may be controlled by an electric furnace type heater, for example, a graphite heater.
이때 저항 발열체가 발열하는 온도 범위는 열전 재료(Bi-Te계)의 모합금을 완전히 용해시킬 수 있는 범위이기만 하면 특별히 한정되지 않으며, 일례로 500 내지 800℃ 바람직하게는 600 내지 700℃ 범위로 유지되는 것이다. At this time, the temperature range at which the resistance heating element generates heat is not particularly limited as long as it is a range capable of completely dissolving the master alloy of the thermoelectric material (Bi-Te type), for example, 500 to 800°C, preferably 600 to 700°C. will become
또한 비활성 가스의 종류나 가압 범위 역시 특별히 한정되지 않으며, 일례로 아르곤 가스 등을 이용하여 0.1~0.5 MPa 범위로 가압 분사시키는 것이 바람직하다.In addition, the type or pressurization range of the inert gas is also not particularly limited, and for example, it is preferable to pressurize the inert gas in the range of 0.1 to 0.5 MPa using argon gas or the like.
상기 S20 단계에서, 상기 용융물과 접촉하는 고속회전 휠은 당 분야에 알려진 통상적인 휠을 사용할 수 있으며, 일례로 구리 휠(Cu wheel) 등이 있다. 여기서 고속회전 휠의 회전 속도는 특별히 한정되지 않으며, 일례로 휠 선속도는 5~50m/s 범위 일 수 있다. 전술한 조건을 만족할 경우 휠의 표면과 접촉하는 용융물이 급속 냉각됨과 동시에 두께가 얇고 미세구조를 갖는 열전소재의 합금 리본이 형성될 수 있다.In the step S20, the high-speed rotating wheel in contact with the melt may use a conventional wheel known in the art, for example, a copper wheel (Cu wheel). Here, the rotation speed of the high-speed rotating wheel is not particularly limited, and for example, the linear speed of the wheel may be in the range of 5 to 50 m/s. When the above conditions are satisfied, the alloy ribbon of the thermoelectric material having a thin thickness and a microstructure may be formed while the melt in contact with the surface of the wheel is rapidly cooled.
본 발명에서는, 용해된 모합금의 냉각속도를 조절함으로써, 균일 입도 제어가 가능하며, 일반적으로 냉각속도가 느린 경우 나노 크기의 비결정성 분말을 제조할 수 있으며, 또는 미립자 분말의 제조가 가능하게 된다. 또한, 원료의 농도와 종류에 따라 제조 조건을 달리하여 제조할 수 있다.In the present invention, by controlling the cooling rate of the dissolved master alloy, uniform particle size control is possible, and when the cooling rate is generally slow, nano-sized amorphous powder can be prepared, or fine particle powder can be prepared. . In addition, according to the concentration and type of the raw material, it can be manufactured under different manufacturing conditions.
전술한 공정을 거친 모합금은 급속냉각(RSP) 공정을 통해 결정질이 되는 것이 아니라 비결정성 조직과 결정성 조직이 혼재(婚材)된 상태로 응고되게 된다. 이때, 급속냉각 속도가 매우 빠른 경우에는 리본 형태로 제조가 되지만, 냉각속도를 조절하면 수백 나노미터 크기를 가지는 분말이 단순 연결된 반리본 상으로도 제조할 수도 있다. The master alloy that has undergone the above-described process does not become crystalline through a rapid cooling (RSP) process, but is solidified in a state in which an amorphous structure and a crystalline structure are mixed. At this time, if the rapid cooling rate is very fast, it is manufactured in the form of a ribbon, but if the cooling rate is adjusted, powder having a size of several hundred nanometers can be prepared in the form of a half-ribbon simply connected.
전술한 S20 단계의 급속냉각을 통해 두께가 얇은 열전재료(예, Bi-Te계) 리본이 형성될 수 있다. 일례로, 제조된 금속리본의 길이는 5 내지 15mm이며, 폭은 0.5 내지 5mm이며, 두께가 10 ㎛ 이하일 수 있다. A thin-thick thermoelectric material (eg, Bi-Te-based) ribbon may be formed through the rapid cooling in step S20 described above. As an example, the length of the prepared metal ribbon is 5 to 15 mm, the width is 0.5 to 5 mm, and the thickness may be 10 μm or less.
(iii) 금속리본의 파쇄/분쇄 단계 ('S30 단계')(iii) crushing / crushing step of metal ribbon ('S30 step')
본 단계에서는, 용해된 모합금의 직접 분사에 의해 급속 응고되어 취성이 높은 리본상 원료를 파쇄시, 소정의 열분해성 고분자를 투입하여 미세 입도와 형상을 가지는 나노 크기의 비결정성 미세분말과 열분해성 고분자가 균일하게 혼합된 분쇄물을 제조한다. In this step, when the brittle ribbon-like raw material that is rapidly solidified by direct spraying of the dissolved master alloy is crushed, a predetermined thermally decomposable polymer is added to form a nano-sized amorphous fine powder having a fine particle size and shape and thermal decomposition A pulverized product in which the polymer is uniformly mixed is prepared.
이때 본 발명에서는 다공성 열전재료를 제조하기 위해서, 전술한 금속 리본과 함께 소정의 온도에서 열분해되는 열분해성 고분자를 기공 형성제로 첨가하여 분쇄를 실시한다. At this time, in the present invention, in order to manufacture a porous thermoelectric material, a pyrolytic polymer that is thermally decomposed at a predetermined temperature together with the above-described metal ribbon is added as a pore former and pulverized.
종래 기공 형성제는 유기 성분과 무기 성분을 모두 포함하는 복합 성분을 사용하였다. 이러한 기공 형성제는 열처리 이후 유기 성분이 제거되어 기공 구조가 형성되는 반면, 무기 성분이 최종 열전 재료에 잔류하게 되므로, 원치 않는 금속 잔류물로 인해 열전 재료의 성능 저하가 초래될 수 있다. 또한 종래 기공 형성제는 무기 성분이 포함되어 있기 때문에, 원하는 기공 크기나 기공 크기 등을 조절하기가 어려웠다. A conventional pore former uses a complex component including both an organic component and an inorganic component. Since the organic component is removed from the pore former after heat treatment to form a pore structure, while the inorganic component remains in the final thermoelectric material, the performance of the thermoelectric material may be deteriorated due to unwanted metal residues. In addition, since the conventional pore former contains inorganic components, it is difficult to control the desired pore size or pore size.
이에 비해, 본 발명에서 채택하는 열분해성 고분자는 별도의 열처리 공정의 실시 없이, 후술되는 성형 및 소결공정에 의해 열분해되어 복수 개의 기공을 형성함과 동시에 제거되는 유기 성분이다. 이러한 열분해성 고분자는 열전 재료에 소정의 기공 크기와 기공크기를 형성하는 기공 형성제이면서, 소결 이후 잔류 탄소의 함량이 최소화되는 물질이므로, 잔류물에 의한 열전재료의 성능 저하가 근본적으로 방지될 수 있다. 또한 상기 열분해성 고분자는 열분해에 100% 열분해되는 유기 성분이므로, 사용되는 고분자의 평균 입경, 함량, 형상 등을 조절함으로써 소결 후 기공의 크기, 형상 및 기공도를 용이하게 제어할 수 있다. In contrast, the thermally decomposable polymer employed in the present invention is an organic component that is thermally decomposed by forming and sintering processes to be described later without performing a separate heat treatment process to form a plurality of pores and removed at the same time. This thermally decomposable polymer is a pore former that forms a predetermined pore size and pore size in the thermoelectric material, and since the content of residual carbon after sintering is minimized, degradation of the performance of the thermoelectric material due to the residue can be fundamentally prevented. have. In addition, since the thermally decomposable polymer is an organic component that is 100% thermally decomposed during thermal decomposition, the size, shape and porosity of the pores after sintering can be easily controlled by adjusting the average particle diameter, content, shape, etc. of the polymer used.
상기 열분해성 고분자는 후술되는 소결 공정의 적용온도에 의해 열분해 및 탄화되어 제거되는 물질이라면, 이의 성분, 함량, 형상 등에 특별히 제한되지 않으며, 당 분야에 공지된 통상의 고분자, 공중합체, 수지 등을 사용할 수 있다. 그 외, 단분자 화합물을 사용하는 것도 본 발명의 범주에 속한다. As long as the thermally decomposable polymer is a material that is thermally decomposed and carbonized and removed by the application temperature of the sintering process to be described later, its components, content, shape, etc. are not particularly limited, and conventional polymers, copolymers, resins, etc. known in the art Can be used. In addition, the use of a monomolecular compound also falls within the scope of the present invention.
일 구체예를 들면, 상기 열분해성 고분자는 200 내지 500℃의 열분해 온도를 갖는 열가소성 고분자, 천연 고분자 및 수용성 고분자로 구성된 군에서 선택될 수 있다. 또한 상기 열분해성 고분자는 소결에 의해 열분해 후 잔류탄소 함량이 5.0% 이하일 수 있으며, 구체적으로 당해 열분해성 고분자의 전체 100%를 기준으로 0 내지 1.0% 이하, 보다 구체적으로 0 내지 0.5% 이하일 수 있다. For example, the thermally decomposable polymer may be selected from the group consisting of a thermoplastic polymer having a thermal decomposition temperature of 200 to 500°C, a natural polymer, and a water-soluble polymer. In addition, the thermally decomposable polymer may have a residual carbon content of 5.0% or less after thermal decomposition by sintering, specifically 0 to 1.0% or less, more specifically 0 to 0.5% or less based on 100% of the total of the thermally decomposable polymer. .
사용 가능한 열분해성 고분자의 비제한적인 예로는, 폴리메틸메타크릴레이트(PMMA), 폴리부틸메타크릴레이트(PBMA), 폴리브로모니에티드 바이페닐(PBB), 폴리비닐알콜(PVA), 에틸 셀룰로오스(EC), 또는 이들의 혼합물 등이 있다. 그 외, 폴리에틸렌, 폴리프로필렌, 글루코스, 프럭토스, 수크로오스, 크실로스, 전분, 셀룰로스 등을 사용할 수도 있다. 분해온도가 상대적으로 낮으며 잔류 탄소가 존재하지 않는 PMMA, PBMA 또는 이들의 혼합물이 바람직하다. 특히 PMMA, PBMA 등은 대략 400℃에서 100% 열분해가 진행되므로, 잔류물이 거의 발생되지 않는다. Non-limiting examples of thermally degradable polymers that can be used include polymethyl methacrylate (PMMA), polybutyl methacrylate (PBMA), polybromonietide biphenyl (PBB), polyvinyl alcohol (PVA), ethyl cellulose. (EC), or a mixture thereof. In addition, polyethylene, polypropylene, glucose, fructose, sucrose, xylose, starch, cellulose, etc. can also be used. PMMA, PBMA, or a mixture thereof having a relatively low decomposition temperature and no residual carbon is preferred. In particular, PMMA, PBMA, etc. are 100% pyrolyzed at about 400 ℃, so almost no residue is generated.
본 발명에서는 사용되는 열분해성 고분자의 입자 직경, 형상 및 이의 함량에 따라 소결 이후 형성되는 기공 직경이나 기공도, 기공 형상 등을 용이하게 조절할 수 있다. In the present invention, the pore diameter, porosity, pore shape, etc. formed after sintering can be easily adjusted according to the particle diameter, shape, and content thereof of the thermally decomposable polymer used.
이에 따라, 상기 열분해성 고분자의 크기는 특별히 제한되지 않으며, 형성되는 기공도와 기공 크기를 고려하여 적절히 조절할 수 있다. 일례로, 상기 열분해성 고분자의 평균 입경(D50)은 5 내지 50 ㎛일 수 있으며, 구체적으로 5 내지 30 ㎛일 수 있다. 그리고 열분해성 고분자의 형상은 특별히 제한되지 않으며, 일례로 구형, 삼각형 이상의 다각형 형상, 침상형, 판형, 또는 무정형일 수 있다. 바람직하게는 구형(spherical)의 입자이며, 보다 바람직하게는 구형도가 우수한 진구형일 수 있다. Accordingly, the size of the thermally decomposable polymer is not particularly limited, and may be appropriately adjusted in consideration of the porosity and pore size to be formed. For example, the average particle diameter (D 50 ) of the thermally decomposable polymer may be 5 to 50 μm, specifically 5 to 30 μm. And the shape of the thermally decomposable polymer is not particularly limited, and may be, for example, a spherical shape, a triangular or more polygonal shape, a needle shape, a plate shape, or an amorphous shape. It is preferably a spherical particle, and more preferably a spherical particle having excellent sphericity.
또한 열분해성 고분자의 첨가량은 특별히 제한되지 않으며, 일례로 당해 금속리본 분쇄물의 전체 중량을 기준으로 0.1 내지 2 중량부로 첨가될 수 있다. In addition, the amount of the thermally decomposable polymer is not particularly limited, and may be added in an amount of 0.1 to 2 parts by weight based on the total weight of the pulverized metal ribbon, for example.
상기 S30 단계의 분쇄공정은 당 분야에 알려진 통상적인 파쇄/분쇄 공정을 제한 없이 실시할 수 있으며, 일례로 볼밀법을 이용하여 분쇄할 수 있다. 이때 분쇄되는 분말의 입경은 특별히 제한되지 않으며, 당 분야에 공지된 범위 내에서 적절히 조절할 수 있다. 일례로, 열전재료(예, Bi-Te계)와 열분해성 고분자가 혼합된 분쇄물의 평균 입경은 100 ㎛ 이하, 바람직하게는 10 내지 100 ㎛ 범위로 조절될 수 있다. The pulverization process of step S30 may be performed without limitation, and may be pulverized using a ball mill method, for example, a conventional pulverization/pulverization process known in the art. At this time, the particle size of the pulverized powder is not particularly limited, and may be appropriately adjusted within a range known in the art. For example, the average particle diameter of the pulverized product in which the thermoelectric material (eg, Bi-Te-based) and the thermally decomposable polymer are mixed may be adjusted to 100 μm or less, preferably in the range of 10 to 100 μm.
금속리본의 산화도 제어를 위해서, 전술한 파쇄/분쇄 공정을 비활성 분위기하에서 실시하게 된다. 이때 비활성 가스의 종류나 압력 범위는 특별히 제한되지 않으며, 일례로 질소 가스, 아르곤 가스 또는 이들이 혼합된 분위기일 수 있다. In order to control the oxidation degree of the metal ribbon, the above-described crushing/grinding process is performed in an inert atmosphere. At this time, the type or pressure range of the inert gas is not particularly limited, and for example, nitrogen gas, argon gas, or a mixture thereof may be used.
상기와 같이 산소가 비포함된 조건에서 분쇄를 실시함에 따라, 분쇄된 분말 내 산소 함량을 감소시켜 산화도를 낮게 제어할 수 있다. 일례로, 본 발명에 따른 분쇄물은, 산소가 포함된 대기 조건하에서 실시된 분쇄물에 비해, 대략 30% 이상, 구체적으로 30~45% 범위로 산소 함량을 감소시킬 수 있으며, 바람직하게는 당해 분쇄물 내 산소 함량을 0.03% 이하, 바람직하게는 0.02 내지 0.03% 범위로 제어할 수 있다.As described above, as the pulverization is carried out under the condition in which oxygen is not included, the oxygen content in the pulverized powder may be reduced to control the oxidation degree to be low. For example, the pulverized product according to the present invention can reduce the oxygen content by about 30% or more, specifically 30 to 45%, compared to the pulverized product carried out under atmospheric conditions containing oxygen, preferably the The oxygen content in the pulverized product may be controlled to 0.03% or less, preferably in the range of 0.02 to 0.03%.
(iv) 성형 및 소결 단계 ('S40 단계')(iv) forming and sintering step ('S40 step')
본 단계에서는 상기 단계에서 얻은 금속 리본의 분쇄물과 열분해성 고분자의 혼합물을 압출 공정을 예비 성형체를 제조한 후, 가압 소결을 통해 고밀도의 열전 소재를 제조한다. In this step, a preform is manufactured by extruding a mixture of the pulverized material of the metal ribbon obtained in the above step and a thermally decomposable polymer, and then, a high-density thermoelectric material is manufactured through pressure sintering.
본 S40 단계에서는, 가압소결 공정에서의 고밀도를 확보하기 위해 일정 형상의 성형체를 제조한다. In this step S40, a molded body having a predetermined shape is manufactured to ensure high density in the pressure sintering process.
상기 압축 공정은 당 분야에 알려진 통상적인 방법을 사용할 수 있으며, 일례로 냉간 프레스 또는 압축기를 이용하는 것이 바람직하다. 또한 상기 압축 조건은 특별히 제한되지 않으며, 당 분야에 알려진 통상적인 압축 조건하에서 적절히 조절할 수 있다. The compression process may use a conventional method known in the art, for example, it is preferable to use a cold press or a compressor. In addition, the compression conditions are not particularly limited, and may be appropriately adjusted under conventional compression conditions known in the art.
이어서, 상기 예비 성형체를 소결하여 고밀도 및 다공성을 가진 열전 재료를 제조한다. Then, the green body is sintered to prepare a thermoelectric material having high density and porosity.
본 발명에서 사용 가능한 가압소결법으로는 핫 프레스(Hot Press, HP) 등이 있다. As the pressure sintering method that can be used in the present invention, there is a hot press (HP) or the like.
여기서, 가압 소결 조건은 특별히 제한되지 않으며, 일례로 200 내지 500℃의 온도에서 40 내지 80분 동안 20 내지 80 MPa 압력, 구체적으로 40 내지 70 MPa의 압력 하에서 Hot Press 장치를 이용하여 소결을 진행할 수 있다. 전술한 조건보다 작을 경우 원하는 기공크기와 기공도를 가질 수가 없게 되며, 전술한 조건을 초과할 경우 Te의 증기압이 높아 휘발되어 목적 조성에 적합하지 않게 되며, 이로 인해 열전 성능 지수가 저하될 가능성이 높다.Here, the pressure sintering conditions are not particularly limited, and for example, sintering can be carried out using a Hot Press device under a pressure of 20 to 80 MPa, specifically, a pressure of 40 to 70 MPa, at a temperature of 200 to 500° C. for 40 to 80 minutes. have. If it is smaller than the above-mentioned conditions, it is impossible to have the desired pore size and porosity, and if it exceeds the above-mentioned conditions, the vapor pressure of Te is high and volatilized, making it unsuitable for the intended composition. high.
한편 도 2는 성형 및 소결 단계에 따라 열분해성 고분자가 포함된 열전재료의 구조 변화를 나타내는 모식도이다. Meanwhile, FIG. 2 is a schematic diagram showing the structural change of a thermoelectric material including a thermally decomposable polymer according to the molding and sintering steps.
도 2를 참조하여 S40 단계를 설명하면, 도 2(a)는 압출 공정을 통해 소정의 규격으로 제조된 예비 성형체로서, 상기 예비 성형체는 열전재료로 이루어진 매트릭스 내에 소정의 입경과 형상을 갖는 열분해성 고분자가 랜덤하게 분포되어 있는 구조를 나타낸다. When the step S40 is described with reference to FIG. 2, FIG. 2(a) is a preform manufactured to a predetermined standard through an extrusion process, wherein the preform has a predetermined particle size and shape in a matrix made of a thermoelectric material. It shows a structure in which the polymer is randomly distributed.
이어서 핫프레스(HP) 장치를 이용하여 상기 예비 성형체를 소결할 경우 온도가 상승함에 따라 열분해성 고분자가 서서히 열분해 및/또는 탄화됨에 따라 고분자의 부피가 감소하게 되고(도 2(b) 참조), 결과적으로 고분자의 열분해가 완료되면 고분자가 제거된 자리에 복수의 기공(pore)이 존재하는 다공성 구조가 형성된다(도 2(c) 참조). 이러한 복수의 기공은 규칙적으로 분포하거나 또는 불규칙(random)하게 형성될 수 있으며, 서로 연결되지 않는 폐쇄형이거나 또는 3차원적으로 서로 연결된 개방형 기공 구조일 수도 있다. Then, when the preform is sintered using a hot press (HP) device, the volume of the polymer is decreased as the thermally decomposable polymer is gradually thermally decomposed and/or carbonized as the temperature rises (see Fig. 2(b)), As a result, when the thermal decomposition of the polymer is completed, a porous structure having a plurality of pores is formed at the location where the polymer is removed (see FIG. 2(c)). The plurality of pores may be regularly distributed or randomly formed, and may have a closed type that is not connected to each other or an open pore structure that is three-dimensionally connected to each other.
전술한 제조방법을 통해 제조된 본 발명의 다공성 열전재료는 미세 기공 크기와 균일한 기공도를 가질 수 있다. The porous thermoelectric material of the present invention prepared through the above-described manufacturing method may have a micropore size and uniform porosity.
일 구체예를 들면, 상기 다공성 열전재료의 기공율은 0.1 내지 10%이며, 구체적으로 0.5 내지 5%일 수 있다. 또한 상기 다공성 열전재료에 포함된 기공 크기는 사용되는 열분해성 고분자의 평균 입경에 따라 용이하게 조절될 수 있다. 일례로, 기공 크기는 5 내지 50 ㎛일 수 있다. For example, the porosity of the porous thermoelectric material may be 0.1 to 10%, specifically 0.5 to 5%. In addition, the pore size included in the porous thermoelectric material can be easily adjusted according to the average particle diameter of the thermally decomposable polymer used. As an example, the pore size may be 5 to 50 μm.
다른 일 구체예를 들면, 상기 다공성 열전재료는 상대 밀도가 90 내지 99.9%일 수 있으며, 구체적으로 92% 내지 99.9%일 수 있다. 또한 비활성 가스 분위기 하에서 분쇄공정을 수행하였으므로, 산화도가 조절되어 당해 열전재료 내 산소 함량을 소정 범위 이하로 제어할 수 있다.In another embodiment, the porous thermoelectric material may have a relative density of 90 to 99.9%, specifically 92% to 99.9%. In addition, since the pulverization process was performed under an inert gas atmosphere, the degree of oxidation is controlled, so that the oxygen content in the thermoelectric material can be controlled to a predetermined range or less.
<열전 소자> <Thermoelectric element>
본 발명의 열전 소자는 전술한 다공성 열전 재료를 구비하는 것으로서, 열전 발전 및/또는 냉각용 소자를 모두 포함한다. The thermoelectric element of the present invention is provided with the above-described porous thermoelectric material, and includes all elements for thermoelectric power generation and/or cooling.
본 발명의 일 실시형태에 따른 열전 소자는, 서로 대향하는 2개의 기판; 상기 2개의 기판의 상부 및 하부에 각각 배치된 도전성 전극 및 복수 개의 열전 재료(열전 레그); 및 상기 열전재료와 도전성 전극 사이에 배치된 접합층을 포함하며, 상기 복수 개의 열전 레그 중 적어도 하나는 전술한 다공성 열전재료를 포함한다. A thermoelectric element according to an embodiment of the present invention includes two substrates facing each other; conductive electrodes and a plurality of thermoelectric materials (thermoelectric legs) respectively disposed on upper and lower portions of the two substrates; and a bonding layer disposed between the thermoelectric material and the conductive electrode, wherein at least one of the plurality of thermoelectric legs includes the aforementioned porous thermoelectric material.
이하, 첨부된 도면을 참조하여 본 발명에 따른 열전 소자의 바람직한 실시형태를 설명한다. 그러나 본 발명의 실시형태는 여러 가지 다른 형태로 변형될 수 있으며, 본 발명의 범위가 하기 설명되는 실시형태로 한정되는 것은 아니다. Hereinafter, preferred embodiments of the thermoelectric element according to the present invention will be described with reference to the accompanying drawings. However, the embodiment of the present invention may be modified in various other forms, and the scope of the present invention is not limited to the embodiments described below.
도 4는 본 발명의 일 실시예에 따른 열전 소자(100)의 구조를 개략적으로 나타낸 사시도이며, 도 5는 상기 열전 소자(100)의 단면도이다. 4 is a perspective view schematically showing the structure of the thermoelectric element 100 according to an embodiment of the present invention, and FIG. 5 is a cross-sectional view of the thermoelectric element 100 .
도 4 및 5를 참조하면, 상기 열전 소자(100)는, 제1 기판(11); 상기 제1 기판(11)과 대향 배치된 제2 기판(11); 상기 제1 기판(11)과 제2 기판(11) 사이에 각각 배치된 제1 전극(20a)과 제2 전극(20b); 상기 제1 전극(20a)과 상기 제2 전극(20b) 사이에 개재된 복수의 열전 레그(30); 및 상기 제1 전극(20a)과 상기 열전 레그(30) 사이와, 상기 열전 레그(30)와 제2 전극(20b) 사이 중 적어도 하나에 배치되는 접합재(40)를 포함한다. 4 and 5 , the thermoelectric element 100 includes: a first substrate 11; a second substrate 11 facing the first substrate 11; a first electrode 20a and a second electrode 20b respectively disposed between the first substrate 11 and the second substrate 11; a plurality of thermoelectric legs 30 interposed between the first electrode 20a and the second electrode 20b; and a bonding material 40 disposed between the first electrode 20a and the thermoelectric leg 30 and between the thermoelectric leg 30 and the second electrode 20b.
이하, 열전 소자의 각 구성에 대하여 구체적으로 살펴보면 다음과 같다.Hereinafter, each configuration of the thermoelectric element will be described in detail as follows.
제1기판(11)과 제2기판(11)은 각각 열전 소자(100)에 전원이 인가될 때 발열 또는 흡열 반응을 일으키는 것으로, 당 분야에 공지된 통상의 전기 절연성 재질로 구성될 수 있다. 일례를 들면, 제1기판(11)과 제2기판(11)은 각각 Al2O3, AlN, SiC 및 ZrO2 중 하나 또는 그 이상의 조성으로 구성되는 세라믹 기판일 수 있다. 또는 고내열성 절연성 수지나 엔지니어링 플라스틱 등으로 구성될 수도 있다. The first substrate 11 and the second substrate 11 each generate an exothermic or endothermic reaction when power is applied to the thermoelectric element 100 , and may be made of a conventional electrically insulating material known in the art. For example, each of the first substrate 11 and the second substrate 11 may be a ceramic substrate composed of one or more compositions of Al 2 O 3 , AlN, SiC, and ZrO 2 . Alternatively, it may be composed of a high heat-resistance insulating resin or engineering plastic.
또한 상기 제1기판(11)과 제2기판(11)은 당 분야에 공지된 통상의 도전성 금속 재질로 구성된 금속 기판일 수 있다. 일례를 들면, 제1기판(11)과 제2기판(11)은 각각 알루미늄(Al), 아연(Zn), 구리(Cu), 니켈(Ni), 및 코발트(Co) 중 적어도 1종의 금속을 포함할 수 있다. In addition, the first substrate 11 and the second substrate 11 may be a metal substrate made of a conventional conductive metal material known in the art. For example, the first substrate 11 and the second substrate 11 may be formed of at least one metal among aluminum (Al), zinc (Zn), copper (Cu), nickel (Ni), and cobalt (Co), respectively. may include.
이때 상기 제1기판(11)과 제2기판(11) 상에 전극(20a, 20b)이 직접적으로 배치될 경우 전기적으로 도통하게 되므로, 이들 사이에는 전기절연성 물질이 개재(介在)되어야 한다. 이에 따라, 제1 전극(20a)이 배치되는 제1기판(11)의 일면 상에 제1절연층(미도시)이 형성되고, 제2 전극(20b)이 배치되는 제2기판(11)의 일면 상에 제2절연층(미도시)이 형성되며, 상기 제1절연층과 제2절연층은 서로 마주보도록 대향 배치된다.In this case, when the electrodes 20a and 20b are directly disposed on the first substrate 11 and the second substrate 11, they become electrically conductive, so an electrically insulating material must be interposed therebetween. Accordingly, a first insulating layer (not shown) is formed on one surface of the first substrate 11 on which the first electrode 20a is disposed, and the second substrate 11 on which the second electrode 20b is disposed. A second insulating layer (not shown) is formed on one surface, and the first insulating layer and the second insulating layer are disposed to face each other.
제1절연층과 제2절연층는 서로 동일하거나 또는 상이하며, 성막이 용이한 전기절연성 물질을 사용할 수 있다. 일례로, 절연성 수지를 단독 사용하거나 또는 상기 절연성 수지와 세라믹 필러(분말)의 혼합물을 포함할 수 있다. 일 구체예를 들면, 제1절연층과 제2절연층은 각각 세라믹 필러가 포함된 에폭시 수지층일 수 있다The first insulating layer and the second insulating layer may be the same as or different from each other, and an electrically insulating material that is easy to form a film may be used. For example, the insulating resin may be used alone or a mixture of the insulating resin and the ceramic filler (powder) may be included. For example, each of the first insulating layer and the second insulating layer may be an epoxy resin layer including a ceramic filler.
상기 제1 기판(11)과 제2 기판(11)은 각각 평판 형상일 수 있으며, 그 크기나 두께 등에 특별히 제한되지 않는다. 일례로, 제1 기판(11)과 제2 기판(11) 각각의 두께는 0.5 내지 2mm일 수 있으며, 바람직하게는 0.5 내지 1.5mm, 보다 바람직하게는 0.6 내지 0.8mm일 수 있다. Each of the first substrate 11 and the second substrate 11 may have a flat plate shape, and the size or thickness thereof is not particularly limited. For example, the thickness of each of the first substrate 11 and the second substrate 11 may be 0.5 to 2 mm, preferably 0.5 to 1.5 mm, more preferably 0.6 to 0.8 mm.
이때 기판의 흡열과 발열의 발생 위치는 전류의 방향에 따라 변경 가능하다. 2개의 기판 중 하나는 흡열반응이 발생하는 흡열부(cold side) 기판이며, 이러한 기판에 방열패드가 적용될 수도 있다. 방열 패드는 실리콘 고분자 또는 아크릴 고분자로 형성될 수 있으며, 0.5 내지 5.0 W/mk 범위의 열 전도도를 가짐으로써 열 전달 효율을 극대화시킬 수 있다. 또한 절연체 역할을 할 수 있다. 또한 2개의 기판 중 다른 하나는 발열부 기판(hot side)일 수 있다. In this case, the positions of the heat absorption and heat generation of the substrate can be changed according to the direction of the current. One of the two substrates is a cold side substrate on which an endothermic reaction occurs, and a heat dissipation pad may be applied to this substrate. The heat dissipation pad may be formed of a silicone polymer or an acrylic polymer, and has a thermal conductivity in the range of 0.5 to 5.0 W/mk, thereby maximizing heat transfer efficiency. It can also act as an insulator. Also, the other one of the two substrates may be a heating part substrate (hot side).
서로 마주보도록 대향 배치된 제1 기판(11)과 제2 기판(11) 상에 각각 제1 전극(20a)과 제2 전극(20b)이 배치된다. 즉, 제1 전극(20a)과 대향하는 위치에 제2 전극(20b)이 배치된다.A first electrode 20a and a second electrode 20b are respectively disposed on the first substrate 11 and the second substrate 11 disposed to face each other. That is, the second electrode 20b is disposed at a position opposite to the first electrode 20a.
제1 전극(20a)과 제2 전극(20b)의 재질은 특별히 제한되지 않으며, 당 분야에서 전극으로 사용되는 재질을 제한 없이 사용할 수 있다. 일례로, 상기 제1전극(20a)과 제2전극(20b)은 서로 동일하거나 또는 상이하며, 각각 독립적으로 알루미늄(Al), 아연(Zn), 구리(Cu), 니켈(Ni), 및 코발트(Co) 중 적어도 1종의 금속을 사용할 수 있다. 그 외 니켈, 금, 은, 티타늄 등을 더 포함할 수 있다. 그 크기 또한 다양하게 조절할 수 있다. 바람직하게는 구리(Cu) 전극일 수 있다. The material of the first electrode 20a and the second electrode 20b is not particularly limited, and a material used as an electrode in the art may be used without limitation. For example, the first electrode 20a and the second electrode 20b are the same as or different from each other, and each independently aluminum (Al), zinc (Zn), copper (Cu), nickel (Ni), and cobalt. At least one metal of (Co) can be used. In addition, nickel, gold, silver, titanium, etc. may be further included. Its size can also be adjusted in various ways. Preferably, it may be a copper (Cu) electrode.
상기 제1 전극(20a)과 제2 전극(20b)은 소정의 형상으로 패턴화될 수 있으며, 그 형상은 특별히 제한되지 않는다. 또한 제1 전극(20a)과 제2 전극(20b)이 패터닝되는 방법은 종래 알려져 있는 패터닝 방법을 제한 없이 사용할 수 있다. 예를 들어 리프트 오프 반도체 공정, 증착 방법, 포토리소그래피법 등을 사용할 수 있다.The first electrode 20a and the second electrode 20b may be patterned in a predetermined shape, and the shape is not particularly limited. In addition, as a method for patterning the first electrode 20a and the second electrode 20b, a conventionally known patterning method may be used without limitation. For example, a lift-off semiconductor process, a deposition method, a photolithography method, etc. may be used.
상기 제1 전극(20a)과 제2 전극(20b) 사이에 복수의 열전 레그(30)가 개재된다.A plurality of thermoelectric legs 30 are interposed between the first electrode 20a and the second electrode 20b.
도 1을 참조하여 설명하면, 열전 레그(30)는 복수의 P형 열전 레그(30a)와 N형 열전 레그(30b)를 각각 포함하며, 이들이 일방향으로 교번하여 배치된다. 이와 같이 일방향으로 이웃하는 P형 열전 레그(30a) 및 N형 열전 레그(30b)는 그 상면 및 하면이 각각 제1전극(20a) 및 제2전극(20b)과 전기적으로 직렬 연결된다. 이러한 각각의 열전 레그(30a, 30b)는 열전반도체 기재를 포함한다.Referring to FIG. 1 , the thermoelectric leg 30 includes a plurality of P-type thermoelectric legs 30a and N-type thermoelectric legs 30b, respectively, which are alternately disposed in one direction. As described above, the P-type thermoelectric leg 30a and the N-type thermoelectric leg 30b adjacent in one direction are electrically connected in series with the first electrode 20a and the second electrode 20b, respectively. Each of these thermoelectric legs 30a and 30b includes a thermoelectric semiconductor substrate.
상기 열전 레그(30)에 포함되는 열전반도체는 전기가 인가되면 양단에 온도차가 발생하거나, 또는 그 양단에 온도차가 발생하면 전기가 발생하는 당 업계의 통상적인 열전 재료로 형성될 수 있으며, 상기 열전 재료 내 규칙적인 기공크기와 기공도를 갖는 다공성(Porosity)이기만 하면, 이의 성분 등에 특별히 제한되지 않는다. 일례로, 전이금속, 희토류 원소, 13족 원소, 14족 원소, 15족 원소 및 16족 원소로 이루어진 군으로부터 선택되는 적어도 하나의 원소를 포함하는 열전반도체를 하나 이상 사용할 수 있다. 여기서, 희토류 원소의 예로는 Y, Ce, La 등이 있으며, 상기 전이금속의 예로는 Ti, Zr, Hf, V, Nb, Ta, Cr, Mo, W, Mn, Fe, Co, Ni, Cu, Zn, Ag, 및 Re 중 하나 이상일 수 있으며, 상기 13족 원소의 예로는 B, Al, Ga, 및 In 중 하나 이상일 수 있으며, 상기 14족 원소의 예로는 C, Si, Ge, Sn, 및 Pb 중 하나 이상일 수 있으며, 상기 15족 원소의 예로는 P, As, Sb, 및 Bi 중 하나 이상일 수 있고, 상기 16족 원소의 예로는 S, Se, 및 Te 중 하나 이상을 사용할 수 있다. The thermoelectric semiconductor included in the thermoelectric leg 30 may be formed of a conventional thermoelectric material in the art that generates electricity when a temperature difference occurs at both ends when electricity is applied, or when a temperature difference occurs at both ends, and the thermoelectric As long as the material has a regular pore size and porosity having a porosity, it is not particularly limited to a component thereof. For example, one or more thermoelectric semiconductors including at least one element selected from the group consisting of a transition metal, a rare earth element, a group 13 element, a group 14 element, a group 15 element, and a group 16 element may be used. Here, examples of rare earth elements include Y, Ce, La, and the like, and examples of transition metals include Ti, Zr, Hf, V, Nb, Ta, Cr, Mo, W, Mn, Fe, Co, Ni, Cu, It may be one or more of Zn, Ag, and Re, and examples of the group 13 element may include at least one of B, Al, Ga, and In, and examples of the group 14 element include C, Si, Ge, Sn, and Pb. may be one or more of the group 15 elements, and examples of the group 15 elements may be at least one of P, As, Sb, and Bi, and examples of the group 16 elements may include one or more of S, Se, and Te.
사용 가능한 열전 반도체로는 비스무트(Bi), 텔레륨(Te), 코발트(Co), 사마륨(Sb), 인듐(In), 및 세륨(Ce) 중 적어도 2개 이상을 포함하는 조성으로 이루어진 질 수 있으며, 이의 비제한적인 예로는, Bi-Te계, Co-Sb계, Pb-Te계, Ge-Tb계, Si-Ge계, Sb-Te계, Sm-Co계, 전이금속 규화물계, 스쿠테르다이트(Skuttrudite)계, 규화물(Silicide)계, 하프휘슬러(Half heusler) 또는 이들의 조합 등이 있다. 구체적인 일례를 들면, Bi-Te계 열전반도체로는 Sb 및 Se가 도펀트로서 사용된 (Bi,Sb)2(Te,Se)3계 열전반도체를 예시할 수 있으며, Co-Sb계 열전반도체로서는 CoSb3계 열전반도체를 예시할 수 있으며, Sb-Te계 열전반도체로서는 AgSbTe2, CuSbTe2를 예시할 수 있고, Pb-Te계 열전반도체로서는 PbTe, (PbTe)mAgSbTe2 등을 예시할 수 있다. 바람직하게는 Bi-Te계 또는 CoSb계 열전 재료로 구성될 수 있다.Usable thermoelectric semiconductors include bismuth (Bi), telerium (Te), cobalt (Co), samarium (Sb), indium (In), and cerium (Ce) having a composition containing at least two or more of cerium (Ce). and, non-limiting examples thereof include Bi-Te-based, Co-Sb-based, Pb-Te-based, Ge-Tb-based, Si-Ge-based, Sb-Te-based, Sm-Co-based, transition metal silicide-based, and Suku. Terdite (Skuttrudite)-based, silicide (Silicide)-based, half whistler (Half heusler), or a combination thereof, and the like. As a specific example, as the Bi-Te-based thermoelectric semiconductor, a (Bi,Sb) 2 (Te, Se) 3 thermoelectric semiconductor in which Sb and Se are used as dopants may be exemplified, and as the Co-Sb-based thermoelectric semiconductor, CoSb may be exemplified. Three -type thermoelectric semiconductor can be exemplified, and AgSbTe 2 and CuSbTe 2 can be exemplified as the Sb-Te-based thermoelectric semiconductor, and PbTe, (PbTe)mAgSbTe 2 and the like can be exemplified as the Pb-Te-based thermoelectric semiconductor. Preferably, it may be composed of a Bi-Te-based or CoSb-based thermoelectric material.
상기 열전 레그를 구성하는 다공성 열전 재료의 성분 및 구조 등은 이미 도 1에 도시된 다공성 열전 재료의 설명이 그대로 적용될 수 있으므로, 별도의 설명은 생략한다. 이러한 P형 열전 레그(30a) 및 N형 열전 레그(30b)를 포함하는 열전 레그(30)는 절단 가공 등의 방법으로 소정의 형상, 일례로 직육면체의 형상으로 형성하여 열전 소자에 적용될 수 있다.As for the components and structures of the porous thermoelectric material constituting the thermoelectric leg, the description of the porous thermoelectric material shown in FIG. 1 may be applied as it is, and thus a separate description thereof will be omitted. The thermoelectric leg 30 including the P-type thermoelectric leg 30a and the N-type thermoelectric leg 30b may be formed in a predetermined shape, for example, a rectangular parallelepiped shape by a method such as cutting, and applied to a thermoelectric element.
본 발명에 따른 열전 소자(100)는, 제1전극(20a)과 열전 레그(30) 사이; 및 상기 열전 레그(30)와 제2전극(20b) 사이 중 적어도 하나, 바람직하게는 이들 모두의 사이에 배치되는 접합재(40)를 포함한다.The thermoelectric element 100 according to the present invention includes: between the first electrode 20a and the thermoelectric leg 30 ; and a bonding material 40 disposed between at least one, preferably both, of the thermoelectric leg 30 and the second electrode 20b.
이러한 접합재(40)는 당 분야에 공지된 통상의 접합재 성분을 제한 없이 사용할 수 있으며, 일례로 Sn계 솔더를 사용할 수 있다. As the bonding material 40, conventional bonding material components known in the art may be used without limitation, and Sn-based solder may be used as an example.
일 구체예를 들면, 상기 접합재(40)는 Sn과; Pb, Al, 및 Zn 중 적어도 하나의 제1금속을 포함하는 Sn계 제1 솔더 조성; 또는 상기 제1 솔더;와 Ni, Co, 및 Ag 중 적어도 하나의 제2금속을 포함하는 Sn계 제2 솔더 조성으로 이루어질 수 있다. For example, the bonding material 40 may include Sn; A first Sn-based solder composition comprising at least one of Pb, Al, and Zn as a first metal; Alternatively, the first solder may be formed of a Sn-based second solder composition including a second metal of at least one of Ni, Co, and Ag.
다른 일 구체예를 들면, 상기 접합재(40)는 당 분야에 공지된 통상의 Sn계 솔더에, 덴드라이트(dendrite) 형상의 금속 분말을 포함하는 것을 사용할 수 있다. For another example, the bonding material 40 may include a metal powder having a dendrite shape in a conventional Sn-based solder known in the art.
이러한 금속 덴드라이트는 1개의 주축을 구비하고 있으며 당해 주축으로부터 복수의 가지상이 수직 또는 비스듬히 분기해서, 이차원적 또는 삼차원적으로 성장한 형상을 갖는 도전성 금속 입자이다. 이때, 주축이란 복수의 가지가 분기해 있는 기초가 되는 봉상 부분을 나타낸다. 이러한 금속 덴드라이트의 평균 가지상 길이는 특별히 제한되지 않으며, 일례로 5 내지 50 ㎛이며, 바람직하게는 5 내지 30 ㎛일 수 있다.Such a metal dendrite is a conductive metal particle having a single main axis and having a shape in which a plurality of branched phases branch vertically or obliquely from the main axis and grow two-dimensionally or three-dimensionally. At this time, a main axis|shaft represents the rod-shaped part used as the base from which several branches branch. The average branched length of these metal dendrites is not particularly limited, and may be, for example, 5 to 50 µm, preferably 5 to 30 µm.
일 구체예를 들면, 상기 금속 덴드라이트에서 주축의 장경(長徑) 길이는, 주축의 총 길이를 의미하는 것으로, 5 내지 50 ㎛일 수 있으며, 구체적으로 5 내지 30 ㎛ 일 수 있다. 또한 상기 금속 덴드라이트에서 복수의 가지상 중 최장 가지상 길이는 5 내지 30 ㎛일 수 있으며, 구체적으로 10 내지 25 ㎛일 수 있다. 그리고 주축의 장경에 대한 가지의 개수(가지 개수/장경)는 0.5 내지 10 개/㎛, 구체적으로 1 내지 8 개/㎛일 수 있다. 상기 금속 덴드라이트의 평균 입경(D50)은 덴드라이트의 장경 길이를 포함하는 2차원적 크기를 의미하며, 일례로 5 내지 50 ㎛일 수 있으며, 구체적으로 5 내지 30㎛ 일 수 있다. 그 외, 덴드라이트의 주축 굵기는 0.3 내지 5.0 ㎛일 수 있다. 상기 금속 덴드라이트는 전술한 구조적 특징을 가짐에 따라 구형의 금속 입자보다 높은 비표면적을 갖게 된다. 본 발명의 다른 일 구체예를 들면, 상기 금속 덴드라이트는 BET 측정법에 의해 측정된 비표면적이 0.4 내지 3.0 m2/g일 수 있으며, 구체적으로 0.5 내지 2.0 m2/g일 수 있다. 또한 금속 덴드라이트의 겉보기 밀도는 0.5 내지 1.5 g/㎤ 일 수 있으며, 산소 함량은 0.35 % 이하가 적합하다.For example, in the metal dendrite, the length of the major axis of the main axis means the total length of the main axis, and may be 5 to 50 µm, specifically 5 to 30 µm. Also, in the metal dendrite, the longest branching length among the plurality of branched phases may be 5 to 30 μm, and specifically, 10 to 25 μm. And the number of branches (number of branches/long diameter) with respect to the major axis of the main axis may be 0.5 to 10 pieces/μm, specifically 1 to 8 pieces/μm. The average particle diameter (D 50 ) of the metal dendrites refers to a two-dimensional size including the major axis length of the dendrites, and may be, for example, 5 to 50 µm, specifically 5 to 30 µm. In addition, the main axis thickness of the dendrite may be 0.3 to 5.0 ㎛. The metal dendrite has a higher specific surface area than the spherical metal particles as it has the above-described structural characteristics. In another embodiment of the present invention, the metal dendrite may have a specific surface area measured by BET measurement of 0.4 to 3.0 m 2 /g, specifically 0.5 to 2.0 m 2 /g. In addition, the apparent density of the metal dendrite may be 0.5 to 1.5 g/cm 3 , and an oxygen content of 0.35% or less is suitable.
상기 금속 덴드라이트는 전술한 구조적 특징과 물성을 만족한다면, 사용하고자 하는 금속 재질에 특별히 제한되지 않는다. 바람직한 일례를 들면, 구리 덴드라이트(Cu dendrite), 은(Ag) 코팅된 구리 덴드라이트(Ag coated Cu dendrite), 또는 이들의 혼합물을 사용할 수 있다. 특히 구리(Cu)는 은(Ag)과 전기 전도도가 유사할 뿐만 아니라 경제적이므로 바람직하다. The metal dendrite is not particularly limited to the metal material to be used as long as the above-described structural characteristics and physical properties are satisfied. As a preferred example, copper dendrite (Cu dendrite), silver (Ag) coated copper dendrite (Ag coated Cu dendrite), or a mixture thereof may be used. In particular, copper (Cu) is preferable because it is economical as well as similar in electrical conductivity to silver (Ag).
본 발명에 따른 접합재에서, 금속 덴드라이트의 함량은 특별히 제한되지 않으며, 일례로 당해 접합재의 총 중량 대비 1 내지 40 중량%로 포함될 수 있으며, 바람직하게는 5 내지 30 중량%일 수 있다. In the bonding material according to the present invention, the content of the metal dendrite is not particularly limited, and may be included, for example, in an amount of 1 to 40% by weight, preferably 5 to 30% by weight, based on the total weight of the bonding material.
일 구체예를 들면, 상기 금속 덴드라이트로서 평균 가지상 길이가 5 내지 20 ㎛인 구리 덴드라이트(Cu dendrite)를 사용하는 경우, 이러한 구리 덴드라이트의 함량은 당해 접합재의 총 중량 대비 1 내지 40 중량%, 바람직하게는 5 내지 30 중량%로 포함되는 것이 바람직하다. For example, when copper dendrite having an average branch length of 5 to 20 μm is used as the metal dendrite, the content of such copper dendrite is 1 to 40 weight based on the total weight of the bonding material. %, preferably 5 to 30% by weight.
다른 일 구체예를 들면, 상기 금속 덴드라이트로서 평균 가지상 길이가 5 내지 20㎛, 바람직하게는 10 내지 30 ㎛의 은(Ag) 코팅된 구리 덴드라이트를 사용하는 경우, 당해 접합재의 총 중량 대비 10 내지 30 중량% 범위로 포함되는 것이 바람직하다. In another embodiment, when using a silver (Ag)-coated copper dendrite having an average branch length of 5 to 20 μm, preferably 10 to 30 μm, as the metal dendrite, relative to the total weight of the bonding material It is preferably included in the range of 10 to 30% by weight.
본 발명에서는 접합재 성분으로 금속 덴드라이트를 단독 사용할 수 있으며, 그 외에 다양한 재질, 입경, 및/또는 형상을 갖는 금속 분말을 더 포함하여 접합재 성분으로 혼용하는 것도 본 발명의 범주에 속한다. 일례로, 전술한 금속 덴드라이트와, 구형, 침상형, 플레이크상, 무정형 등의 금속 분말을 1종 이상 혼용할 수 있다. In the present invention, metal dendrites can be used alone as a bonding material component, and in addition, metal powders having various materials, particle sizes, and/or shapes are further included and mixed as a bonding material component also falls within the scope of the present invention. For example, one or more types of metal powder such as the above-described metal dendrite and spherical shape, needle shape, flake shape, and amorphous shape may be mixed.
전술한 금속 덴드라이트와 혼용되는 Sn계 솔더는 당 분야에 공지된 통상의 Sn계 솔더 성분을 사용할 수 있다. 바람직한 일례를 들면, 상기 Sn계 솔더는 Sn과; Pb, Al, 및 Zn 중 적어도 하나의 금속을 포함하는 조성을 가질 수 있다. . Sn-based solder mixed with the above-described metal dendrite may use a conventional Sn-based solder component known in the art. For a preferred example, the Sn-based solder is Sn; It may have a composition including at least one metal among Pb, Al, and Zn. .
선택적으로, 본 발명의 열전 소자(100)는 상기 제1 전극(20a)과 열전 레그(30) 사이; 및 상기 열전 레그(30)와 제2 전극(20b) 사이에 배치되는 확산방지층(미도시)을 더 포함할 수 있다. 이러한 확산방지층은 당 분야에 공지된 통상의 성분을 제한 없이 사용할 수 있으며, 일례로 탄탈늄(Ta), 텅스텐(W), 몰리브덴(Mo) 및 티타늄(Ti)으로 이루어진 군에서 선택된 적어도 하나를 포함할 수 있다.Optionally, the thermoelectric element 100 of the present invention may be disposed between the first electrode 20a and the thermoelectric leg 30; and a diffusion barrier layer (not shown) disposed between the thermoelectric leg 30 and the second electrode 20b. Such a diffusion barrier layer can be used without limitation, a conventional component known in the art, for example, tantalum (Ta), tungsten (W), molybdenum (Mo), and includes at least one selected from the group consisting of titanium (Ti) can do.
본 발명에 일 실시예에 따른 열전 소자(100)에서, 제1 전극(20a) 및 제2 전극(20b)은 전력 공급원에 전기적으로 연결될 수 있다. 외부에서 DC 전압을 인가했을 때 p형 열전 레그(30a)의 정공과 n형 열전 레그(30b)의 전자가 이동함으로써 열전 레그 양단에서 발열과 흡열이 일어날 수 있다.In the thermoelectric element 100 according to an embodiment of the present invention, the first electrode 20a and the second electrode 20b may be electrically connected to a power supply source. When a DC voltage is applied from the outside, the holes of the p-type thermoelectric leg 30a and the electrons of the n-type thermoelectric leg 30b move, thereby generating heat and endothermic heat at both ends of the thermoelectric leg.
본 발명의 다른 일 실시예에 따른 열전 소자(100)에서, 제1전극(20a) 및 제2 전극(20b) 중 적어도 하나는 열 공급원에 노출될 수 있다. 외부 열 공급원에 의하여 열을 공급받으면 전자와 정공이 이동하면서 열전소자에 전류의 흐름이 생겨 발전(發電)을 일으킬 수 있다.In the thermoelectric element 100 according to another embodiment of the present invention, at least one of the first electrode 20a and the second electrode 20b may be exposed to a heat source. When heat is supplied by an external heat source, electrons and holes move and current flows in the thermoelectric element to generate electricity.
전술한 일 실시예에 따른 열전소자는 당 분야에 공지된 방법에 따라 제조될 수 있다. 이러한 제조방법의 일 실시예를 들면, (a) 2개의 절연성 기판을 준비하는 단계; (b) 상기 2개의 절연성 기판의 일면 상에 각각 제1전극과 제2전극을 형성하는 단계; 및 (c) 상기 제1전극과 제2전극이 서로 대향하도록 배치한 후, 이들 사이에 복수 개의 다공질화된 열전 레그를 배치하고 상기 접합재를 이용하여 접합하는 단계를 포함하여 구성될 수 있다. 이때, 상기 제조방법은 하기 방법이나 순서에 의해서만 한정되는 것은 아니며, 필요에 따라 각 공정의 단계가 변형되거나 또는 선택적으로 혼용되어 수행될 수 있다.The thermoelectric element according to the above-described embodiment may be manufactured according to a method known in the art. For an embodiment of such a manufacturing method, (a) preparing two insulating substrates; (b) forming a first electrode and a second electrode on one surface of the two insulating substrates, respectively; and (c) disposing the first electrode and the second electrode to face each other, arranging a plurality of porous thermoelectric legs between them, and bonding them using the bonding material. In this case, the manufacturing method is not limited only by the following method or sequence, and steps of each process may be modified or selectively mixed as needed.
상기 제조방법에서 열전 재료를 이용하여 열전레그를 제조하는 방법의 일례를 들면, Bi-Te 또는 스쿠테르다이트(Skuttrudite)계 열전재료를 RSP를 이용하여 용융시킨 후 금속 리본을 제조하고, 상기 금속 리본과 열분해성 고분자를 소정 범위로 혼합한 후 분쇄하고, 상기 분쇄물을 성형 및 핫 프레스(Hot press) 소결 등을 실시하여 다공성 소결체를 형성한다. 이어서, 목적 두께에 맞게 슬라이싱을 진행하고, 최종 두께에 맞게 랩핑(lapping)을 진행하여 소재의 높이를 1/100 이내로 조절한다. 단차가 제어된 열전 소재의 표면에 Co, Ni, Cr, 및 W 등의 표면 코팅을 진행한 후, 최종적으로 재료의 크기에 맞게 다이싱(dicing)을 실시하여 열전 레그가 제조된다. As an example of a method of manufacturing a thermoelectric leg using a thermoelectric material in the manufacturing method, a Bi-Te or Skuttrudite-based thermoelectric material is melted using RSP, then a metal ribbon is manufactured, and the metal The ribbon and the thermally decomposable polymer are mixed in a predetermined range and then pulverized, and the pulverized product is molded and hot press sintered to form a porous sintered body. Then, slicing is performed according to the target thickness, and lapping is performed according to the final thickness to adjust the height of the material to within 1/100. After surface coating of Co, Ni, Cr, and W is performed on the surface of the thermoelectric material whose step is controlled, dicing is finally performed according to the size of the material to manufacture the thermoelectric leg.
또한 기판으로는 세라믹 기판이나 금속 기판을 사용하고, 상기 기판의 일면 상에 Cu 전극 패턴을 구성한 후, 열처리하여 고착화시킨다. 이때 금속 기판을 사용할 경우, 전극이 배치되는 금속 기판의 일면 상에 절연성 수지나 또는 상기 절연성 수지와 세라믹 필러(분말)의 혼합물을 도포하여 통전(通電)을 방지한다. In addition, a ceramic substrate or a metal substrate is used as the substrate, and a Cu electrode pattern is formed on one surface of the substrate, and then is fixed by heat treatment. In this case, when a metal substrate is used, an insulating resin or a mixture of the insulating resin and a ceramic filler (powder) is applied on one surface of the metal substrate on which the electrode is disposed to prevent conduction.
상기와 같이 준비된 열전 레그와 기판을 이용하여 제1전극과 제2전극 사이에 복수의 열전 레그를 배치 및 접합한다. 이러한 접합재로는, Sn계 솔더; 또는 상기 Sn 솔더와 금속 덴드라이트(dendrite)가 소정의 혼합비로 포함된 Sn계 솔더 페이스트를 적용한다. 상기 접합 단계의 구체적인 일례를 들면, 제1전극(20a)의 패턴에 맞게 접합재 페이스트를 일정 두께로 도포하고, 그 위에 n형 및 p형의 열전 레그를 배열한다. 이후 반대쪽인 대향전극(제2전극)의 경우 접합재만 도포한 상태에서 기존에 제작되어 있는 n형 및 p형 열전 레그가 배열된 부분에 배치하여 최종 구성을 완료한다. 이어서, 300 내지 500℃로 열처리하여 최종 접합한 후 전선을 연결하여 열전 소자의 제작을 완료한다.A plurality of thermoelectric legs are disposed and bonded between the first electrode and the second electrode using the thermoelectric legs and the substrate prepared as described above. Examples of such a bonding material include Sn-based solder; Alternatively, a Sn-based solder paste including the Sn solder and metal dendrite in a predetermined mixing ratio is applied. As a specific example of the bonding step, a bonding material paste is applied to a predetermined thickness according to the pattern of the first electrode 20a, and n-type and p-type thermoelectric legs are arranged thereon. After that, in the case of the opposite electrode (second electrode), the final configuration is completed by placing the previously manufactured n-type and p-type thermoelectric legs in an arrangement in a state where only the bonding material is applied. Then, after heat treatment at 300 to 500 ℃ final bonding, the wire is connected to complete the manufacture of the thermoelectric element.
전술한 열전 레그 및/또는 이를 포함하는 열전 소자는 열전냉각시스템, 열전발전시스템, 및/또는 박막형 센서에 구비되어, 냉각, 발전 및 박막형 센서 중 적어도 하나의 용도에 적용될 수 있다. The above-described thermoelectric leg and/or a thermoelectric element including the same may be provided in a thermoelectric cooling system, a thermoelectric power generation system, and/or a thin-film sensor, and may be applied to at least one of cooling, power generation, and thin-film sensor.
일례로 이러한 열전발전 시스템은 온도차를 이용하여 발전을 일으키는 통상의 시스템을 의미하며, 일례로 폐열로, 차량용 열전발전 시스템, 태양광 열전발전 시스템 등을 들 수 있다. 또한 열전냉각 시스템은 마이크로 냉각시스템, 범용냉각기기, 공조기, 폐열 발전 시스템 등을 들 수 있으며, 이에 한정되는 것은 아니다. 또한 박막형 센서는 박막형 열전소자 등과 같이 미소전력을 이용한 센서 분야를 모두 포함하는 것이다. For example, such a thermoelectric power generation system refers to a conventional system that generates power using a temperature difference, and for example, a waste heat furnace, a vehicle thermoelectric power generation system, a solar thermoelectric power generation system, and the like. In addition, the thermoelectric cooling system may include, but is not limited to, a micro cooling system, a general-purpose cooling device, an air conditioner, a waste heat power generation system, and the like. In addition, the thin-film sensor includes all sensor fields using micro-power, such as a thin-film thermoelectric element.
상기 열전발전 시스템, 열전냉각 시스템, 및/또는 박막형 센서 분야의 각 구성 및 제조방법에 대해서는 당 분야에 공지되어 있는 바, 본 명세서에서는 구체적인 기재를 생략한다. 또한 본 발명에서는 동일한 도면 부호로 표시되더라도, 이들은 서로 상이한 구성을 가질 수 있다. Each configuration and manufacturing method in the field of the thermoelectric power generation system, the thermoelectric cooling system, and/or the thin film type sensor is known in the art, and detailed description thereof will be omitted herein. Also, in the present invention, even though they are denoted by the same reference numerals, they may have different configurations.
이하, 본 발명을 실시예를 통하여 상세히 설명하면 다음과 같다. 단, 하기 실시예는 본 발명을 예시하는 것일 뿐, 본 발명이 하기 실시예에 의해 한정되는 것은 아니다.Hereinafter, the present invention will be described in detail through examples. However, the following examples are merely illustrative of the present invention, and the present invention is not limited by the following examples.
[실시예 1] 다공성 열전재료의 제조[Example 1] Preparation of porous thermoelectric material
약 2~5mm의 괴상형태이며, 4N 이상의 고순도를 갖는 Bi, Te, Sb 및 Se를 함유하는 열전재료를 준비하였다. p형의 경우, Bi, Te, Sb 등의 3원계를 갖도록 하였다. 해당 열전재료를 석영관(Quartz)를 Locking Furnace에 장입한 후 650~750℃에서 2~4 시간, 10회/min 속도로 교반 및 용해하여 Φ 30 * 100㎜ 모합금 잉곳을 제조하였다. 이후 모합금 잉곳을 용융 방사 장비에 설치된 노즐에 장입하여 저항 발열체(그라파이트 히터로서 노즐을 감싸는 구조)를 이용하여 약 700℃ 온도로 완전히 용해시켜 용융물을 형성한 후, 상기 용융물에 불활성 가스를 0.1~0.5 MPa로 가압하여 분사시킴으로써, 회전하는 구리 휠(Cu wheel) 표면에 접촉하여 급속 냉각됨에 따라 Bi-Te계 금속 리본을 형성하였다. 이때 구리 휠의 회전 속도는 1000 rpm으로 진행하였다. 이후 형성된 금속리본과 열분해성 고분자[평균 입경 5㎛의 폴리메틸메타아크릴레이트(PMMA)]를 혼합하고 아르곤(Ar) 분위기 하에서 볼밀법을 이용하여 평균입경이 100㎛ 이하가 되도록 분쇄하였다. 상기 분쇄물을 핫 프레스 소결을 이용하여 약 525℃까지 7℃/min의 승온 속도로 승온한 후 1시간 유지, 20 MPa 압력을 유지하여 소결하였다. 그 결과, 99% 이상의 고밀도를 가진 다공성 열전재료를 제조하였다. A thermoelectric material containing Bi, Te, Sb, and Se having a high purity of 4N or higher was prepared in the form of a mass of about 2-5 mm. In the case of p-type, it was made to have a ternary system such as Bi, Te, and Sb. A Φ 30 * 100 mm master alloy ingot was prepared by charging the thermoelectric material with a quartz tube (Quartz) into the locking furnace, stirring and dissolving at 650 to 750 ° C for 2 to 4 hours at a rate of 10 times/min. After that, the master alloy ingot is charged into a nozzle installed in the melt spinning equipment and completely melted at a temperature of about 700 ° C. using a resistance heating element (a structure that surrounds the nozzle as a graphite heater) to form a melt, and then 0.1 ~ By spraying under pressure at 0.5 MPa, a Bi-Te-based metal ribbon was formed as it was rapidly cooled in contact with the surface of a rotating copper wheel (Cu wheel). At this time, the rotational speed of the copper wheel proceeded to 1000 rpm. Thereafter, the formed metal ribbon and a thermally decomposable polymer [polymethyl methacrylate (PMMA) having an average particle diameter of 5 μm] were mixed and pulverized to an average particle diameter of 100 μm or less using a ball mill method in an argon (Ar) atmosphere. The pulverized product was heated to about 525° C. using hot press sintering at a temperature increase rate of 7° C./min, and then sintered by holding for 1 hour and maintaining a pressure of 20 MPa. As a result, a porous thermoelectric material having a high density of 99% or more was manufactured.
[실시예 2 ~ 12] 다공성 열전재료의 제조[Examples 2 to 12] Preparation of porous thermoelectric material
핫 프레스 소결시, 하기 표 1과 같은 조성으로 열전재료의 분쇄물과 폴리메틸메타아크릴레이트(PMMA)을 혼합하여 사용한 것을 제외하고는, 상기 실시예 1과 동일하게 실시하여 실시예 2 내지 12의 열전재료를 각각 제조하였다. Examples 2 to 12 were carried out in the same manner as in Example 1, except that during hot press sintering, the pulverized product of the thermoelectric material and polymethyl methacrylate (PMMA) were mixed and used in the composition shown in Table 1 below. Each thermoelectric material was prepared.
열분해성 고분자pyrolytic polymer
첨가량 (중량부)Addition amount (parts by weight) 평균 입경(㎛)Average particle size (㎛)
비교예 1Comparative Example 1 0.000.00 --
실시예 1Example 1 0.100.10 5.005.00
실시예 2Example 2 20.0020.00
실시예 3Example 3 50.0050.00
실시예 4Example 4 0.500.50 5.005.00
실시예 5Example 5 20.0020.00
실시예 6Example 6 50.0050.00
실시예 7Example 7 1.001.00 5.005.00
실시예 8Example 8 20.0020.00
실시예 9Example 9 50.0050.00
실시예 10Example 10 2.002.00 5.005.00
실시예 11Example 11 20.0020.00
실시예 12Example 12 50.0050.00
열분해성 고분자: PMMA (비중: 1.20 g/cm3)Thermally degradable polymer: PMMA (specific gravity: 1.20 g/cm 3 )
[비교예 1] 비(非)다공성 열전재료의 제조[Comparative Example 1] Preparation of non-porous thermoelectric material
약 2~5mm의 괴상형태이며, 4N 이상의 고순도를 갖는 Bi, Te, Sb 및 Se를 함유하는 열전재료를 준비하였다. p형의 경우, Bi, Te, Sb 등의 3원계를 갖도록 하였다. 해당 열전재료를 석영관(Quartz)를 Locking Furnace에 장입한 후 650~750℃에서 2~4시간, 10회/min 속도로 교반 및 용해하여 Φ 30 * 100㎜ 모합금 잉곳을 제조하였다. 이후 모합금 잉곳을 용융 방사 장비에 설치된 노즐에 장입하여 저항 발열체(그라파이트 히터로서 노즐을 감싸는 구조)를 이용하여 약 700℃ 온도로 완전히 용해시켜 용융물을 형성한 후, 상기 용융물에 불활성 가스를 0.1~0.5MPa로 가압하여 분사시킴으로써, 회전하는 구리 휠(Cu wheel) 표면에 접촉하여 급속 냉각됨에 따라 Bi-Te계 금속 리본을 형성하였다. 이때 구리 휠의 회전 속도는 1000rpm으로 진행하였다.A thermoelectric material containing Bi, Te, Sb, and Se having a high purity of 4N or higher was prepared in the form of a mass of about 2-5 mm. In the case of p-type, it was made to have a ternary system such as Bi, Te, and Sb. A Φ 30 * 100 mm master alloy ingot was prepared by charging the thermoelectric material with a quartz tube (Quartz) into a locking furnace, and then stirring and dissolving at 650 to 750 ° C for 2 to 4 hours at a rate of 10 times/min. After that, the master alloy ingot is charged into a nozzle installed in the melt spinning equipment and completely melted at a temperature of about 700 ° C. using a resistance heating element (a structure that surrounds the nozzle as a graphite heater) to form a melt, and then 0.1 ~ By spraying under pressure at 0.5 MPa, a Bi-Te-based metal ribbon was formed as it was rapidly cooled in contact with the surface of a rotating copper wheel (Cu wheel). At this time, the rotational speed of the copper wheel proceeded to 1000rpm.
이후 형성된 금속리본을 아르곤(Ar) 분위기 하에서 볼밀법을 이용하여 평균입경이 100㎛ 이하가 되도록 분쇄하였다. 상기 분쇄된 분말을 핫 프레스 소결을 이용하여 약 525℃까지 7℃/min의 승온속도로 승온 후 1시간 유지, 20MPa 압력을 유지하여 소결한 결과 99% 이상의 고밀도를 가진 비(非)다공성 열전재료를 제조하였다. Thereafter, the formed metal ribbon was pulverized to have an average particle diameter of 100 μm or less by using a ball mill method in an argon (Ar) atmosphere. A non-porous thermoelectric material having a high density of 99% or more as a result of sintering the pulverized powder by heating the pulverized powder at a temperature increase rate of 7°C/min to about 525°C using hot press sintering, maintaining it for 1 hour and maintaining a pressure of 20MPa was prepared.
[실험예 1] 열분해성 고분자의 물성 평가[Experimental Example 1] Evaluation of physical properties of thermally decomposable polymers
한편 도 3은 본원 실시예 3, 6, 9, 및 12에서 사용된 열분해성 고분자의 전자 현미경 사진이다. 평균 입경이 대략 50 ㎛ 급의 진구형 입자라는 것을 확인할 수 있었다. Meanwhile, FIG. 3 is an electron micrograph of the thermally decomposable polymer used in Examples 3, 6, 9, and 12 of the present application. It was confirmed that the average particle diameter was about 50 μm class spherical particles.
또한 본 발명에서 열분해성 고분자로 사용되는 PMMA, PBMA, PVB, EC에 대하여 온도에 따른 열분해 특성을 각각 평가하였으며, 그 결과를 하기 도 6에 나타내었다. In addition, PMMA, PBMA, PVB, and EC used as thermally decomposable polymers in the present invention were evaluated for thermal decomposition characteristics according to temperature, respectively, and the results are shown in FIG. 6 below.
실험 결과, PMMA와 PBMA는 대락 400℃ 정도로 승온시 잔류탄소 없이 열분해가 완료되는 것을 확인할 수 있었다(하기 도 6 참조).As a result of the experiment, it was confirmed that the thermal decomposition of PMMA and PBMA was completed without residual carbon when the temperature was raised to about 400°C (see FIG. 6 below).
[실험예 2] 열전재료의 밀도평가[Experimental Example 2] Density evaluation of thermoelectric materials
실시예 1~12 및 비교예 1에서 제조된 각 열전재료에 대하여, 소결 전과 후 밀도를 각각 아르키메데스법으로 측정하였으며, 그 결과를 표 2에 나타내었다.For each thermoelectric material prepared in Examples 1 to 12 and Comparative Example 1, the densities before and after sintering were measured by Archimedes' method, respectively, and the results are shown in Table 2.
열분해성 고분자pyrolytic polymer 소결후 밀도(g/cm3)Density after sintering (g/cm 3 ) 상대밀도(%)Relative density (%)
첨가량 (중량부)Addition amount (parts by weight) 평균 입경 (㎛)Average particle size (㎛)
비교예 1Comparative Example 1 0.000.00 -- 6.846.84 --
실시예 1Example 1 0.100.10 5.005.00 6.826.82 99.7199.71
실시예 2Example 2 20.0020.00 6.816.81 99.5699.56
실시예 3Example 3 50.0050.00 6.816.81 99.5699.56
실시예 4Example 4 0.500.50 5.005.00 6.796.79 99.2799.27
실시예 5Example 5 20.0020.00 6.786.78 99.1299.12
실시예 6Example 6 50.0050.00 6.766.76 98.8398.83
실시예 7Example 7 1.001.00 5.005.00 6.776.77 98.9898.98
실시예 8Example 8 20.0020.00 6.766.76 98.8398.83
실시예 9Example 9 50.0050.00 6.726.72 98.2598.25
실시예 10Example 10 2.002.00 5.005.00 6.506.50 95.0395.03
실시예 11Example 11 20.0020.00 6.476.47 94.5994.59
실시예 12Example 12 50.0050.00 6.316.31 92.2592.25
상기 표 2에 나타난 바와 같이, 열분해성 고분자의 첨가량이 1 중량부까지는 소결 후 밀도 저하가 크지 않다는 것을 알 수 있었다. As shown in Table 2, it was found that the density decrease after sintering was not significant up to 1 part by weight of the thermally decomposable polymer.
[실험예 3] 열전재료 물성 평가[Experimental Example 3] Evaluation of thermoelectric material properties
실시예 1~12 및 비교예 1에서 제조된 열전재료의 물성을 하기와 같이 측정하였으며, 그 결과를 하기 표 3과 도 7~8에 각각 기재하였다.The physical properties of the thermoelectric materials prepared in Examples 1 to 12 and Comparative Example 1 were measured as follows, and the results are shown in Table 3 and FIGS. 7 to 8, respectively.
(1) 제백계수 및 전기전도도 측정: JISK 7194에 준거하여, ZEM-3 (Ulvac-Riko社 제조)를 이용하여 측정하였다. (1) Measurement of Seebeck coefficient and electrical conductivity: In accordance with JISK 7194, it was measured using ZEM-3 (manufactured by Ulvac-Riko).
(2) 파워 팩터: 측정된 제벡계수(S)와 전기전도도(σ)를 이용하여 Power factor를 계산하였으며, 그 결과를 도 7에 도시하였다. (2) Power factor: The power factor was calculated using the measured Seebeck coefficient (S) and electrical conductivity (σ), and the results are shown in FIG. 7 .
[수학식 1] Power factor = (제백계수)2 * 전기전도도[Equation 1] Power factor = (seebeck coefficient)2 * electrical conductivity
(3) 열전성능지수: 열전성능지수 ZT값을 비교하였으며, 그 결과를 하기 도 8에 나타내었다. 측정된 값은 power factor와 ZT값이 최고값을 갖는 150℃의 값을 비교하였다.(3) Thermoelectric figure of merit: The thermoelectric figure of merit ZT values were compared, and the results are shown in FIG. 8 below. The measured value was compared with the value of 150℃ where the power factor and ZT value had the highest value.
[수학식 2] ZT = (제백계수) 2 *전기전도도/열전도도 * 온도 [Equation 2] ZT = (Seebeck coefficient) 2 *Electrical conductivity/thermal conductivity * Temperature
(4) 열전도도 측정: JIS R 1611과, JIS R 1650-3에 준거하여 레이저 플래쉬법에 의한 비열용량 측정 및 열전도도를 계산하였다. 보다 구체적으로, 직경 10 mm x 1mm의 원판 형태로 절단하여 레이저 플래쉬법으로 열확산도(D), 비열(Cp) 및 밀도(d)를 측정한 후, 하기 수학식 3을 이용하여 열전도도를 측정하였다. (4) Measurement of thermal conductivity: Measurement of specific heat capacity and thermal conductivity by laser flash method were calculated in accordance with JIS R 1611 and JIS R 1650-3. More specifically, after measuring the thermal diffusivity (D), specific heat (Cp), and density (d) by laser flash method by cutting a disk having a diameter of 10 mm x 1 mm, the thermal conductivity is measured using Equation 3 below did.
[수학식 3] κ = DCpd[Equation 3] κ = DCpd
  열전도도(W/mK)Thermal Conductivity (W/mK) 전기전도도(/Ωcm)Electrical Conductivity (/Ωcm) 제벡계수(μV/K)Seebeck coefficient (μV/K) 파워팩터(W/mK^2)Power factor (W/mK^2) ZTZT
비교예 1Comparative Example 1 1.48 1.48 932.19 932.19 182.09 182.09 30.91 30.91 0.87 0.87
실시예 1Example 1 1.47 1.47 932.26 932.26 181.92 181.92 30.85 30.85 0.89 0.89
실시예 2Example 2 1.46 1.46 930.97 930.97 181.48 181.48 30.66 30.66 0.89 0.89
실시예 3Example 3 1.45 1.45 929.68 929.68 181.05 181.05 30.47 30.47 0.89 0.89
실시예 4Example 4 1.43 1.43 930.32 930.32 180.27 180.27 30.23 30.23 0.90 0.90
실시예 5Example 5 1.40 1.40 929.60 929.60 179.23 179.23 29.86 29.86 0.90 0.90
실시예 6Example 6 1.37 1.37 926.16 926.16 177.67 177.67 29.24 29.24 0.91 0.91
실시예 7Example 7 1.31 1.31 927.80 927.80 176.21 176.21 28.81 28.81 0.93 0.93
실시예 8Example 8 1.26 1.26 928.08 928.08 174.50 174.50 28.26 28.26 0.95 0.95
실시예 9Example 9 1.20 1.20 922.94 922.94 171.79 171.79 27.24 27.24 0.96 0.96
실시예 10Example 10 1.11 1.11 877.06 877.06 158.09 158.09 21.92 21.92 0.83 0.83
실시예 11Example 11 1.03 1.03 829.62 829.62 144.80 144.80 17.39 17.39 0.71 0.71
실시예 12Example 12 0.93 0.93 765.33 765.33 129.24 129.24 12.78 12.78 0.58 0.58
상기 표 3에 나타난 바와 같이, 다공성 열전재료를 포함하는 본 발명의 열전소자는 열전 재료 내 함유된 규칙적인 기공 구조로 인하여 전기전도도와 제백계수를 크게 저하시키지 않으면서 열전도도를 감소시켜 열전 성능을 보다 향상시킬 수 있다는 것을 알 수 있었다.구체적으로 열분해성 고분자의 첨가량이 1 중량부까지는 전기저항 및 제백계수의 감소가 크지 않은 반면 열전도도의 감소량이 상대적으로 커서 열전성능지수(ZT) 값은 1 중량부 첨가시 최대값을 나타내었다. 또한 열분해성 고분자로서 평균 입경이 50 ㎛ 정도의 입자를 사용할 경우, 동일 첨가량 대비 열전성능 지수의 최대값을 나타낸다는 것을 알 수 있었다.As shown in Table 3 above, the thermoelectric element of the present invention including the porous thermoelectric material reduces the thermal conductivity without significantly lowering the electrical conductivity and Seebeck coefficient due to the regular pore structure contained in the thermoelectric material, thereby improving the thermoelectric performance. It was found that further improvement was possible. Specifically, the decrease in electrical resistance and Seebeck coefficient was not significant until the addition amount of the thermally decomposable polymer was 1 part by weight, whereas the decrease in thermal conductivity was relatively large, so that the thermoelectric performance index (ZT) value was 1 The maximum value was shown when adding parts by weight. In addition, it was found that when particles having an average particle diameter of about 50 μm were used as the thermally decomposable polymer, the maximum value of the thermoelectric performance index compared to the same amount added was shown.

Claims (14)

  1. (i) 열전재료용 원료를 용해 및 응고시켜 모합금을 형성하는 단계;(i) dissolving and solidifying a raw material for a thermoelectric material to form a master alloy;
    (ii) 상기 모합금을 급속냉각시켜 금속 리본을 형성하는 단계;(ii) rapidly cooling the mother alloy to form a metal ribbon;
    (iii) 상기 금속리본과 소정 온도 이상에서 열분해되는 고분자를 혼합하여 비활성 분위기하에서 분쇄하는 단계; 및 (iii) mixing the metal ribbon with a polymer that is thermally decomposed at a predetermined temperature or higher and pulverizing it in an inert atmosphere; and
    (iv) 상기 단계 (iii)의 분쇄물을 상기 고분자의 열분해 온도보다 높은 온도로 소결하는 단계;(iv) sintering the pulverized product of step (iii) at a temperature higher than the thermal decomposition temperature of the polymer;
    를 포함하는 다공성 열전재료의 제조방법. A method of manufacturing a porous thermoelectric material comprising a.
  2. 제1항에 있어서, According to claim 1,
    상기 열분해성 고분자는 소결에 의해 열분해되어 복수 개의 기공을 형성하고 제거되는, 다공성 열전재료의 제조방법. The thermally decomposable polymer is thermally decomposed by sintering to form a plurality of pores and is removed, a method of manufacturing a porous thermoelectric material.
  3. 제1항에 있어서, According to claim 1,
    상기 열분해성 고분자는 200 내지 500℃의 열분해 온도를 갖는 열가소성 고분자, 천연 고분자 및 수용성 고분자로 구성된 군에서 선택되는, 다공성 열전재료의 제조방법. The thermally decomposable polymer is selected from the group consisting of a thermoplastic polymer having a thermal decomposition temperature of 200 to 500 °C, a natural polymer, and a water-soluble polymer, a method for producing a porous thermoelectric material.
  4. 제1항에 있어서, According to claim 1,
    상기 열분해성 고분자는 열분해 후 잔류탄소 함량이 5 % 이하인 다공성 열전재료의 제조방법. The method for producing a porous thermoelectric material in which the thermally decomposable polymer has a residual carbon content of 5% or less after thermal decomposition.
  5. 제1항에 있어서, According to claim 1,
    상기 열분해성 고분자는 폴리메틸메타크릴레이트(PMMA), 폴리부틸메타크릴레이트(PBMA), 폴리브로모니에티드 바이페닐(PBB), 폴리비닐알콜(PVA), 및 에틸셀룰로오스(EC)로 구성된 군에서 선택되는 1종 이상인, 다공성 열전재료의 제조방법. The thermally decomposable polymer is a group consisting of polymethyl methacrylate (PMMA), polybutyl methacrylate (PBMA), polybromonietide biphenyl (PBB), polyvinyl alcohol (PVA), and ethyl cellulose (EC). At least one selected from, a method for producing a porous thermoelectric material.
  6. 제1항에 있어서, According to claim 1,
    상기 열분해성 고분자는 5 내지 50㎛의 평균 입경(D50)을 갖는 구형 입자인, 다공성 열전재료의 제조방법. The thermally decomposable polymer is a spherical particle having an average particle diameter (D 50 ) of 5 to 50 μm, a method for producing a porous thermoelectric material.
  7. 제1항에 있어서, According to claim 1,
    상기 열분해성 고분자는 당해 금속 리본의 전체 중량을 기준으로 0.1 내지 2 중량부로 첨가되는, 다공성 열전재료의 제조방법.The method for producing a porous thermoelectric material, wherein the thermally decomposable polymer is added in an amount of 0.1 to 2 parts by weight based on the total weight of the metal ribbon.
  8. 제1항에 있어서, According to claim 1,
    상기 단계 (iv)는 상기 단계 (iii)의 분쇄물을 성형몰드에 투입하고 핫프레스(Hot Press)하여 소결되는 것인, 다공성 열전재료의 제조방법. In the step (iv), the pulverized product of step (iii) is put into a molding mold and sintered by hot pressing, the method for producing a porous thermoelectric material.
  9. 제1항에 있어서, According to claim 1,
    상기 열전재료는 Bi-Te계 열전재료 및 스쿠테르다이트(Skuttrudite)계 열전재료 중 적어도 하나인 다공성 열전재료의 제조방법. The method of manufacturing a porous thermoelectric material, wherein the thermoelectric material is at least one of a Bi-Te-based thermoelectric material and a Skuttrudite-based thermoelectric material.
  10. 제1항에 있어서, According to claim 1,
    상기 다공성 열전재료의 기공율은 0.1 내지 10%이며, The porosity of the porous thermoelectric material is 0.1 to 10%,
    기공 크기는 5 내지 50 ㎛이며, The pore size is 5 to 50 μm,
    밀도는 90 내지 99.9%인, 다공성 열전재료의 제조방법. The density is 90 to 99.9%, the method of manufacturing a porous thermoelectric material.
  11. 제1항 내지 제10항 중 어느 한 항의 방법에 의해 제조된 다공성 열전재료. A porous thermoelectric material manufactured by the method of any one of claims 1 to 10.
  12. 제1 기판; a first substrate;
    상기 제1 기판과 대향 배치된 제2 기판;a second substrate facing the first substrate;
    상기 제1 기판과 제2 기판 사이에 각각 배치된 제1 전극과 제2 전극; 및a first electrode and a second electrode respectively disposed between the first substrate and the second substrate; and
    상기 제1 전극과 상기 제2 전극 사이에 개재된 복수의 열전 레그; a plurality of thermoelectric legs interposed between the first electrode and the second electrode;
    상기 제1 전극과 상기 열전 레그 사이, 및 상기 열전 레그와 상기 제2 전극 사이 중 적어도 하나에 배치되는 접합재를 포함하되, a bonding material disposed between the first electrode and the thermoelectric leg and between the thermoelectric leg and the second electrode;
    상기 복수의 열전 레그 중 적어도 하나는 제11항에 기재된 다공성 열전재료를 포함하는 열전 소자. At least one of the plurality of thermoelectric legs is a thermoelectric element including the porous thermoelectric material according to claim 11 .
  13. 제12항에 있어서, 13. The method of claim 12,
    상기 접합재는 Sn계 솔더; 또는 상기 Sn계 솔더 및 평균 가지상 길이가 5 내지 50 ㎛인 금속 덴드라이트(dendrite)를 포함하는 조성을 갖는 열전 소자.The bonding material is Sn-based solder; or a thermoelectric element having a composition including the Sn-based solder and a metal dendrite having an average branch length of 5 to 50 μm.
  14. 제12항에 있어서, 13. The method of claim 12,
    냉각, 발전, 및 박막형 센서 중 적어도 하나의 용도에 적용되는 열전 소자.A thermoelectric element applied to at least one of cooling, power generation, and thin film type sensors.
PCT/KR2019/016865 2019-12-02 2019-12-02 Method for producing porous thermoelectric material, and thermoelectric element comprising porous thermoelectric material WO2021112268A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
PCT/KR2019/016865 WO2021112268A1 (en) 2019-12-02 2019-12-02 Method for producing porous thermoelectric material, and thermoelectric element comprising porous thermoelectric material

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/KR2019/016865 WO2021112268A1 (en) 2019-12-02 2019-12-02 Method for producing porous thermoelectric material, and thermoelectric element comprising porous thermoelectric material

Publications (1)

Publication Number Publication Date
WO2021112268A1 true WO2021112268A1 (en) 2021-06-10

Family

ID=76221927

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/KR2019/016865 WO2021112268A1 (en) 2019-12-02 2019-12-02 Method for producing porous thermoelectric material, and thermoelectric element comprising porous thermoelectric material

Country Status (1)

Country Link
WO (1) WO2021112268A1 (en)

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004225118A (en) * 2003-01-23 2004-08-12 Yamaha Corp Thermoelectric material ingot, method of producing the same, and method of producing thermoelectric module
KR101090868B1 (en) * 2004-12-24 2011-12-08 재단법인 포항산업과학연구원 Manufacturing method of porous thermoelectric material
JP2015053466A (en) * 2013-08-07 2015-03-19 株式会社Nttファシリティーズ Thermoelectric material, process of manufacturing the same, and thermoelectric conversion device
KR20180016717A (en) * 2016-08-05 2018-02-19 한국전자통신연구원 Manufacturing method of thermoelectric device
KR20190013468A (en) * 2017-07-31 2019-02-11 삼성전자주식회사 Thermoelectric material ink, thermoelectric element and device, and method for manufacturing the thermoelectric device

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004225118A (en) * 2003-01-23 2004-08-12 Yamaha Corp Thermoelectric material ingot, method of producing the same, and method of producing thermoelectric module
KR101090868B1 (en) * 2004-12-24 2011-12-08 재단법인 포항산업과학연구원 Manufacturing method of porous thermoelectric material
JP2015053466A (en) * 2013-08-07 2015-03-19 株式会社Nttファシリティーズ Thermoelectric material, process of manufacturing the same, and thermoelectric conversion device
KR20180016717A (en) * 2016-08-05 2018-02-19 한국전자통신연구원 Manufacturing method of thermoelectric device
KR20190013468A (en) * 2017-07-31 2019-02-11 삼성전자주식회사 Thermoelectric material ink, thermoelectric element and device, and method for manufacturing the thermoelectric device

Similar Documents

Publication Publication Date Title
US5929351A (en) Co-Sb based thermoelectric material and a method of producing the same
EP2308109A2 (en) Thermoelectric materials and chalcogenide compounds
WO2016171346A1 (en) Method for manufacturing bi-te-based thermoelectric material using resistance-heating element
JP4876501B2 (en) Thermoelectric conversion material and manufacturing method thereof
WO2011122888A2 (en) Thermoelectric material, and thermoelectric module and thermoelectric device including the thermoelectric material
WO2016167525A1 (en) Thermoelectric materials, and thermoelectric element and thermoelectric module comprising the same
WO2017014583A1 (en) Compound semiconductor thermoelectric material and method for manufacturing same
JPH054950B2 (en)
WO2018110794A1 (en) Thermoelectric element restrained from oxidation and volatilization and fabrication method therefor
WO2020149464A1 (en) Thermoelectric material and preparation method therefor
JP3458587B2 (en) Thermoelectric conversion material and its manufacturing method
EP0390499B1 (en) Process for producing bismuth-based superconducting material
WO2021112268A1 (en) Method for producing porous thermoelectric material, and thermoelectric element comprising porous thermoelectric material
Park et al. Thermoelectric properties of p-type Te doped Bi0. 5Sb1. 5Te3 fabricated by powder extrusion
KR20180022384A (en) Manufacturing method of Bi-Sb-Te alloy-sintered body for thermoelectric material
JP3572939B2 (en) Thermoelectric material and method for manufacturing the same
WO2016099155A1 (en) Thermoelectric powder and thermoelectric materials manufactured using same
KR102248813B1 (en) Method for manufacturing porous thermoelectric material and thermoelectric device comprising porous thermoelectric material
EP4212476A1 (en) Thermoelectric material, method for proudcing same, and thermoelectric power generation element
JP2019149523A (en) Thin film including strontium and manufacturing method thereof
WO2015034321A1 (en) Method for manufacturing thermoelectric material
JPH09321347A (en) Thermoelectric conversion material and manufacture thereof
WO2020184762A1 (en) Method for manufacturing bi-te-based thermoelectric material by using microwave sintering
JP3523600B2 (en) Thermoelectric element manufacturing method
WO2018143780A1 (en) Thermoelectric element

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 19954840

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 19954840

Country of ref document: EP

Kind code of ref document: A1