WO2021112238A1 - Manufacturing method for semiconductor device with electromagnetic shield film, and terminal protection tape - Google Patents

Manufacturing method for semiconductor device with electromagnetic shield film, and terminal protection tape Download PDF

Info

Publication number
WO2021112238A1
WO2021112238A1 PCT/JP2020/045307 JP2020045307W WO2021112238A1 WO 2021112238 A1 WO2021112238 A1 WO 2021112238A1 JP 2020045307 W JP2020045307 W JP 2020045307W WO 2021112238 A1 WO2021112238 A1 WO 2021112238A1
Authority
WO
WIPO (PCT)
Prior art keywords
semiconductor device
terminal
layer
sensitive adhesive
pressure
Prior art date
Application number
PCT/JP2020/045307
Other languages
French (fr)
Japanese (ja)
Inventor
謙介 田村
沙也香 坂東
祐介 文田
Original Assignee
リンテック株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by リンテック株式会社 filed Critical リンテック株式会社
Priority to JP2021562753A priority Critical patent/JPWO2021112238A1/ja
Priority to KR1020227002752A priority patent/KR20220113345A/en
Priority to CN202080059202.7A priority patent/CN114270494A/en
Publication of WO2021112238A1 publication Critical patent/WO2021112238A1/en

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L23/00Details of semiconductor or other solid state devices
    • H01L23/552Protection against radiation, e.g. light or electromagnetic waves
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/04Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer
    • H01L21/18Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer the devices having semiconductor bodies comprising elements of Group IV of the Periodic Table or AIIIBV compounds with or without impurities, e.g. doping materials
    • H01L21/30Treatment of semiconductor bodies using processes or apparatus not provided for in groups H01L21/20 - H01L21/26
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/04Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer
    • H01L21/50Assembly of semiconductor devices using processes or apparatus not provided for in a single one of the subgroups H01L21/06 - H01L21/326, e.g. sealing of a cap to a base of a container
    • H01L21/56Encapsulations, e.g. encapsulation layers, coatings
    • H01L21/568Temporary substrate used as encapsulation process aid
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/67Apparatus specially adapted for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus specially adapted for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components ; Apparatus not specifically provided for elsewhere
    • H01L21/683Apparatus specially adapted for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus specially adapted for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components ; Apparatus not specifically provided for elsewhere for supporting or gripping
    • H01L21/6835Apparatus specially adapted for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus specially adapted for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components ; Apparatus not specifically provided for elsewhere for supporting or gripping using temporarily an auxiliary support
    • H01L21/6836Wafer tapes, e.g. grinding or dicing support tapes
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/70Manufacture or treatment of devices consisting of a plurality of solid state components formed in or on a common substrate or of parts thereof; Manufacture of integrated circuit devices or of parts thereof
    • H01L21/77Manufacture or treatment of devices consisting of a plurality of solid state components or integrated circuits formed in, or on, a common substrate
    • H01L21/78Manufacture or treatment of devices consisting of a plurality of solid state components or integrated circuits formed in, or on, a common substrate with subsequent division of the substrate into plural individual devices
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L23/00Details of semiconductor or other solid state devices
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L23/00Details of semiconductor or other solid state devices
    • H01L23/28Encapsulations, e.g. encapsulating layers, coatings, e.g. for protection
    • H01L23/29Encapsulations, e.g. encapsulating layers, coatings, e.g. for protection characterised by the material, e.g. carbon
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L23/00Details of semiconductor or other solid state devices
    • H01L23/28Encapsulations, e.g. encapsulating layers, coatings, e.g. for protection
    • H01L23/31Encapsulations, e.g. encapsulating layers, coatings, e.g. for protection characterised by the arrangement or shape
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K9/00Screening of apparatus or components against electric or magnetic fields
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2221/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof covered by H01L21/00
    • H01L2221/67Apparatus for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components; Apparatus not specifically provided for elsewhere
    • H01L2221/683Apparatus for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components; Apparatus not specifically provided for elsewhere for supporting or gripping
    • H01L2221/68304Apparatus for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components; Apparatus not specifically provided for elsewhere for supporting or gripping using temporarily an auxiliary support
    • H01L2221/68327Apparatus for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components; Apparatus not specifically provided for elsewhere for supporting or gripping using temporarily an auxiliary support used during dicing or grinding
    • H01L2221/68336Apparatus for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components; Apparatus not specifically provided for elsewhere for supporting or gripping using temporarily an auxiliary support used during dicing or grinding involving stretching of the auxiliary support post dicing
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2221/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof covered by H01L21/00
    • H01L2221/67Apparatus for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components; Apparatus not specifically provided for elsewhere
    • H01L2221/683Apparatus for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components; Apparatus not specifically provided for elsewhere for supporting or gripping
    • H01L2221/68304Apparatus for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components; Apparatus not specifically provided for elsewhere for supporting or gripping using temporarily an auxiliary support
    • H01L2221/6834Apparatus for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components; Apparatus not specifically provided for elsewhere for supporting or gripping using temporarily an auxiliary support used to protect an active side of a device or wafer

Definitions

  • the present invention relates to a method for manufacturing a semiconductor device with an electromagnetic wave shielding film and a tape for protecting terminals.
  • the present application claims priority based on Japanese Patent Application No. 2019-22146 filed in Japan on December 6, 2019, the contents of which are incorporated herein by reference.
  • connection pad portion is made of eutectic solder, high temperature solder, gold, etc.
  • a convex electrode hereinafter, referred to as a “terminal” in the present specification
  • a mounting method is adopted in which those terminals are brought into face-to-face contact with the corresponding terminal portions on the chip mounting substrate and melted / diffused.
  • Patent Document 1 In response to such measures against heat and noise, for example, as disclosed in Patent Document 1, a method of coating an electronic component module with a conductive material to form an electromagnetic wave shielding film is adopted.
  • the conductive resin applied to the top surface and the side surface of the individualized electronic component module is heated and cured to form an electromagnetic wave shielding film.
  • a conductive resin is applied to an external terminal electrode provided on the back surface of an assembly substrate in a state of being embedded in an adhesive sheet. Since the masking portion is provided at a predetermined position on the adhesive sheet, it is possible to prevent the external terminal electrode and the electromagnetic wave shielding film from being electrically short-circuited. On the other hand, providing a masking portion at a predetermined position on the pressure-sensitive adhesive sheet is complicated in terms of process.
  • an electrode surface provided with an electrode of an unshielded electronic component is attached to an adhesive layer of a film for manufacturing an electronic component having a base layer and an adhesive layer provided on one surface side thereof.
  • a method for manufacturing an electronic component to be provided is disclosed.
  • the present invention relates to a method for manufacturing a semiconductor device with an electromagnetic wave shield film, which can be easily peeled off from the terminal protection tape in a step of peeling the semiconductor device with a terminal on which an electromagnetic wave shield film is formed, and has high manufacturing efficiency.
  • An object of the present invention is to provide a terminal protection tape used in a manufacturing method.
  • the present invention provides the following method for manufacturing a semiconductor device with an electromagnetic wave shielding film and a terminal protection tape used in the manufacturing method.
  • a step of embedding terminals of a semiconductor device with terminals in the viscoelastic layer of a terminal protection tape having a viscoelastic layer A step of forming an electromagnetic wave shielding film on an exposed surface of the terminal-equipped semiconductor device that is not embedded in the viscoelastic layer of the terminal protection tape, and A step of peeling the terminal-equipped semiconductor device on which the electromagnetic wave shielding film is formed from the terminal protection tape by stretching the terminal protection tape.
  • a method for manufacturing a semiconductor device with an electromagnetic wave shielding film including.
  • a method for manufacturing a semiconductor device with an electromagnetic wave shielding film including.
  • the stretched amount of the terminal protection tape in the step of peeling the terminal-attached semiconductor device on which the electromagnetic wave shield film is formed from the terminal protection tape is 1.0 mm or more, [1] or [2].
  • the adhesive strength of the terminal protection tape to the terminal-equipped semiconductor device is 6.5 N / 25 mm after the step of burying the terminals of the terminal-equipped semiconductor device and before the step of forming the electromagnetic wave shield film.
  • the ratio of the thickness d1 of the viscoelastic layer to the terminal height h0 of the terminal-equipped semiconductor device or the terminal-equipped semiconductor device assembly satisfies 1.2 ⁇ d1 / h0 ⁇ 5.0 [1].
  • the method for manufacturing a semiconductor device with an electromagnetic wave shielding film according to any one of [5].
  • a method for manufacturing a semiconductor device with an electromagnetic wave shield film which can be easily peeled off and has high manufacturing efficiency, and the above. It becomes possible to provide a terminal protection tape used in a manufacturing method.
  • the method for manufacturing a semiconductor device with an electromagnetic wave shielding film according to the first embodiment of the present invention includes a step of embedding the terminals of the semiconductor device with terminals in the viscoelastic layer of the terminal protection tape having a viscoelastic layer, and the terminal protection.
  • the step of peeling the semiconductor device from the terminal protection tape is included.
  • the method for manufacturing a semiconductor device with an electromagnetic wave shielding film according to a second embodiment of the present invention includes a step of embedding terminals of a semiconductor device assembly with terminals in the viscoelastic layer of a terminal protection tape having a viscoelastic layer, and the above-mentioned.
  • the process of dicing the terminal-equipped semiconductor device assembly to make the terminal-equipped semiconductor device assembly into a terminal-equipped semiconductor device in which terminals are embedded in the viscoelastic layer of the terminal protection tape, and the terminal protection tape The step of forming an electromagnetic wave shielding film on the exposed surface of the terminal-equipped semiconductor device not embedded in the viscoelastic layer, and the terminal-attached semiconductor device on which the electromagnetic wave shielding film is formed by stretching the terminal protection tape.
  • the step of peeling from the terminal protection tape is included.
  • each step of the terminal protection tape used in the method for manufacturing the semiconductor device with the electromagnetic wave shielding film of the first embodiment and the second embodiment of the present invention and the method for manufacturing the semiconductor device with the electromagnetic wave shielding film of the present invention will be described. A detailed explanation will be given.
  • FIG. 1 is a cross-sectional view schematically showing an embodiment of the terminal protection tape of the present invention.
  • the main part may be enlarged and shown, and the dimensional ratio of each component is the same as the actual one. Is not always the case.
  • the terminal protection tape 1 shown in FIG. 1 is a terminal protection tape 1 used in a step of forming an electromagnetic wave shield film on a semiconductor device with terminals, and has a viscoelastic layer 12.
  • the viscoelastic layer 12 preferably includes the embedding layer 13 and the pressure-sensitive adhesive layer 14, and more preferably comprises the embedding layer 13 and the pressure-sensitive adhesive layer 14.
  • the terminal protection tape of the present embodiment may include a release film 21 on the outermost layer of the viscoelastic layer 12 on the side of the embedded layer 13, and the adhesive layer 14 of the viscoelastic layer 12 may be provided.
  • the release film 20 may be provided on the outermost layer on the side of the surface.
  • the terminal protection tape of the present embodiment is not limited to the one shown in FIG. 1, and a part of the configuration of the tape shown in FIG. 1 has been changed, deleted or added within the range not impairing the effect of the present invention. It may be a thing.
  • both release films 20 and 21 are peeled off, placed on a support, and a semiconductor device with terminals is pressed from above with the terminal side facing down. It can be used in a step of embedding a terminal in the viscoelastic layer 12 and further forming an electromagnetic wave shield film on the terminal.
  • the terminal protection tape of the present embodiment may have a structure in which the adhesive layer 14, the embedding layer 13, and the base material 11 are provided in this order.
  • the release film 20 may be provided on the outermost layer of the viscoelastic layer 12 on the side of the pressure-sensitive adhesive layer 14.
  • the release film 20 is peeled off, and the semiconductor device with terminals is pressed against the viscoelastic layer 12 on the base material 11 as a support with the terminals side down. It can be used in a step of burying a terminal in the viscoelastic layer 12 and further forming an electromagnetic wave shield film on the terminal.
  • the terminal protection tape of the present embodiment has a structure in which the adhesive layer 14, the embedding layer 13, and the base material 11 are provided in this order, and is sticky.
  • the release film 20 may be provided on the outermost surface layer of the elastic layer 12 on the side of the adhesive layer 14, and the second base material 11 is attached to the support on the side opposite to the adhesive layer 12.
  • a pressure-sensitive adhesive layer 15 (that is, a bonded pressure-sensitive adhesive layer) may be provided, or a double-sided tape having a release film 22 on the outermost layer on the side of the second pressure-sensitive adhesive layer 15 may be used.
  • the terminal protection tape 3 shown in FIG. 3 is obtained by peeling the release film 22 and fixing it to the support 30 as shown in FIG. 4, and further peeling the release film 20 to attach the terminals to the viscoelastic layer 12.
  • the attached semiconductor device can be used in a step of pressing the terminal side down, embedding the terminal in the viscoelastic layer 12, and further forming an electromagnetic wave shield film from above.
  • the breaking elongation of the terminal protection tape is preferably 10% or more, more preferably 15% or more, still more preferably 20% or more.
  • the breaking elongation of the terminal protection tape is at least the above lower limit value, the terminal protection tape can be sufficiently stretched, and the terminal-equipped semiconductor device on which the electromagnetic wave shielding film is formed is peeled off from the terminal protection tape.
  • the peelability in the above is improved.
  • the breaking elongation of the terminal protection tape may be less than 45%.
  • the breaking elongation of the terminal protection tape is, for example, preferably 10% or more and less than 45%, more preferably 15% or more and less than 45%, and further preferably 20% or more and less than 45%.
  • the breaking elongation of the terminal protection tape can be measured by the method described in Examples described later.
  • the breaking stress of the terminal protection tape is preferably 5 MPa or more, more preferably 10 MPa or more, and even more preferably 15 MPa or more. When the breaking stress of the terminal protection tape is at least the above lower limit value, the terminal protection tape can be uniformly stretched when it is stretched.
  • the breaking stress of the terminal protection tape may be less than 30 MPa.
  • the breaking stress of the terminal protection tape is, for example, preferably 5 MPa or more and less than 30 MPa, more preferably 10 MPa or more and less than 30 MPa, and further preferably 15 MPa or more and less than 30 MPa.
  • the breaking stress of the terminal protection tape can be measured by the method described in Examples described later.
  • the viscoelastic layer is used to protect the terminal forming surface (in other words, the circuit surface) of the semiconductor device with terminals and the terminals provided on the terminal forming surface. Used.
  • the viscoelastic layer preferably has an embedded layer and an adhesive layer.
  • the thickness of the viscoelastic layer is preferably 1 to 1000 ⁇ m, more preferably 5 to 800 ⁇ m, and even more preferably 10 to 600 ⁇ m.
  • the thickness of the viscoelastic layer is at least the above lower limit value, even a terminal electrode such as a solder ball, which tends to float, can be embedded.
  • the thickness of the viscoelastic layer is not more than the upper limit value, it is possible to prevent the terminal protection tape from becoming excessively thick.
  • the "thickness of the viscoelastic layer” means the thickness of the entire viscoelastic layer, and the thickness of the viscoelastic layer composed of a plurality of layers of the embedded layer and the adhesive layer is the thickness of the embedded layer and the adhesive layer.
  • the thickness of each layer can be measured by, for example, a constant pressure thickness measuring device (model number: "PG-02J") manufactured by Teclock Co., Ltd. in accordance with JIS K6783, Z1702, and Z1709.
  • PG-02J constant pressure thickness measuring device
  • the terminal forming surface of the terminal-equipped semiconductor device When the terminal forming surface of the terminal-equipped semiconductor device is brought into close contact with the viscoelastic layer 12, it is preferable that the terminal forming surface of the terminal-equipped semiconductor device is directly brought into close contact with the adhesive layer 14 in the viscoelastic layer 12. At this time, it is preferable that the pressure-sensitive adhesive layer 14 is set harder than the embedded layer 13 in order to prevent adhesive residue on the terminal forming surface and the terminals.
  • the terminals of the terminal-equipped semiconductor device and the outermost layer of the viscoelastic layer 12 (for example, an adhesive layer) It is preferable that the adhesion with is not more than a certain level.
  • the adhesion between the terminals of the semiconductor device with terminals and the outermost layer of the viscoelastic layer 12 can be quantitatively evaluated by, for example, the following method.
  • the diameter of the substantially circular shadow derived from the bubbles is preferably 0.30 mm or more, more preferably 0.32 mm or more, and further preferably 0.34 mm or more.
  • the diameter of the substantially circular shadow derived from the bubbles is equal to or greater than the lower limit, the adhesion between the terminal of the semiconductor device with a terminal and the outermost layer of the viscoelastic layer 12 does not become too high, and an electromagnetic wave shielding film is formed.
  • the peelability in the process of peeling the terminal-equipped semiconductor device from the terminal protection tape is improved. Since the diameter of the substantially circular shadow derived from the bubbles appears outside the terminal having a diameter of 0.25 mm, it is naturally larger than 0.25 mm.
  • the maximum diameter of the shadow can be adopted.
  • the upper limit of the diameter of the substantially circular shadow derived from the bubbles is not particularly limited as long as the effect of the present invention is shown, but may be, for example, 1.00 mm or less.
  • the diameter of the substantially circular shadow derived from the bubbles is, for example, preferably 0.30 mm or more and 0.95 mm or less, more preferably 0.32 mm or more and 0.90 mm or less, and 0.34 mm or more and 0. It is more preferably 85 mm or less.
  • the diameter of the substantially circular shadow derived from the bubbles can be measured by the method described in Examples described later.
  • the pressure-sensitive adhesive layer constituting the viscoelastic layer may be referred to as a "first pressure-sensitive adhesive layer" to distinguish it from the second pressure-sensitive adhesive layer for bonding to a support, which will be described later.
  • the first pressure-sensitive adhesive layer is in the form of a sheet or a film and contains a pressure-sensitive adhesive.
  • sheet-like or film-like means a thin film-like material having small in-plane thickness variation and flexibility.
  • the pressure-sensitive adhesive examples include an acrylic resin (a pressure-sensitive adhesive made of a resin having a (meth) acryloyl group), a urethane-based resin (a pressure-sensitive adhesive made of a resin having a urethane bond), and a rubber-based resin (a resin having a rubber structure).
  • acrylic resin a pressure-sensitive adhesive made of a resin having a (meth) acryloyl group
  • a urethane-based resin a pressure-sensitive adhesive made of a resin having a urethane bond
  • a rubber-based resin a resin having a rubber structure
  • silicone resin silicone resin
  • epoxy resin an epoxy resin having epoxy group
  • polyvinyl ether adhesive resin such as polycarbonate, etc.
  • a based resin is preferable.
  • the "adhesive resin” is a concept including both a resin having adhesiveness and a resin having adhesiveness.
  • a resin having adhesiveness for example, not only the resin itself has adhesiveness but also the resin itself has adhesiveness. It also includes a resin that exhibits adhesiveness when used in combination with other components such as additives, and a resin that exhibits adhesiveness due to the presence of a trigger such as heat or water.
  • the first pressure-sensitive adhesive layer may be only one layer (single layer), or may be a plurality of layers of two or more layers, and when there are a plurality of layers, the plurality of layers may be the same as or different from each other, and the plurality of layers may be used.
  • the combination is not particularly limited.
  • first pressure-sensitive adhesive layer not only in the case of the first pressure-sensitive adhesive layer, but also in the case of "a plurality of layers may be the same or different from each other", “all layers may be the same or all layers may be the same”. "The layers may be different, and only some of the layers may be the same", and “multiple layers are different from each other” means that "at least one of the constituent materials and thicknesses of each layer is different from each other". It means “different”.
  • the thickness of the first pressure-sensitive adhesive layer is preferably 1 to 1000 ⁇ m, more preferably 2 to 100 ⁇ m, and particularly preferably 8 to 20 ⁇ m.
  • the "thickness of the first pressure-sensitive adhesive layer” means the thickness of the entire first pressure-sensitive adhesive layer, and for example, the thickness of the first pressure-sensitive adhesive layer composed of a plurality of layers is the thickness of the first pressure-sensitive adhesive layer. Means the total thickness of all the layers that make up.
  • the first pressure-sensitive adhesive layer may be formed by using an energy ray-curable pressure-sensitive adhesive or may be formed by using a non-energy ray-curable pressure-sensitive adhesive.
  • the first pressure-sensitive adhesive layer formed by using the energy ray-curable pressure-sensitive adhesive is preferable because the physical properties before and after curing can be easily adjusted.
  • the "energy ray” means an electromagnetic wave or a charged particle beam having an energy quantum, and examples thereof include ultraviolet rays and electron beams. Ultraviolet rays can be irradiated by using, for example, a high-pressure mercury lamp, a fusion H lamp, a xenon lamp, or the like as an ultraviolet source.
  • the electron beam can be irradiated with an electron beam generated by an electron beam accelerator or the like.
  • energy ray curable means a property of being cured by irradiating with energy rays
  • non-energy ray curable means a property of not being cured by irradiating with energy rays. ..
  • the elastic modulus of the first pressure-sensitive adhesive layer before curing is preferably 0.01 to 0.50 MPa. It is more preferably 02 to 0.40 MPa, and even more preferably 0.03 to 0.35 MPa.
  • the elastic modulus of the first pressure-sensitive adhesive layer before curing is within the above range, the retention property of the semiconductor device can be obtained.
  • the elastic modulus of the first pressure-sensitive adhesive layer after curing is preferably 1.0 to 50 MPa, preferably 2.0 to 250 MPa. It is more preferably 45 MPa, further preferably 3.0 to 40 MPa.
  • the "elastic modulus” refers to an environment of a sample having a diameter of 8 mm and a thickness of 3 mm at 23 ° C.
  • the storage elastic modulus measured below by the torsional shear method.
  • the curing of the first pressure-sensitive adhesive layer may be performed by any step of the method for manufacturing a semiconductor device with an electromagnetic wave shielding film according to the first and second embodiments described above, but the curing of the semiconductor device with terminals (or the semiconductor device assembly) may be performed. It is preferable to perform this after the step of burying the terminals and before the step of peeling the terminal-equipped semiconductor device on which the electromagnetic wave shielding film is formed from the terminal protection tape.
  • the elastic modulus of the first pressure-sensitive adhesive layer is preferably 0.10 to 0.50 MPa, preferably 0.11 to 0.50 MPa. It is more preferably 0.40 MPa, and even more preferably 0.12 to 0.35 MPa.
  • the elastic modulus of the first pressure-sensitive adhesive layer is within the above range, the peelability in the step of peeling the terminal-equipped semiconductor device on which the electromagnetic wave shielding film is formed from the terminal protection tape is improved.
  • the first pressure-sensitive adhesive layer can be formed by using a first pressure-sensitive adhesive composition containing a pressure-sensitive adhesive.
  • the first pressure-sensitive adhesive layer can be formed on a target portion by applying the first pressure-sensitive adhesive composition to the surface to be formed of the first pressure-sensitive adhesive layer and drying it if necessary. Further, by applying the first pressure-sensitive adhesive composition to the release film and drying it as necessary, a first pressure-sensitive adhesive layer having a desired thickness can be formed, and the first pressure-sensitive adhesive layer can be formed at a target portion. Can also be transcribed. A more specific method for forming the first pressure-sensitive adhesive layer will be described in detail later together with a method for forming the other layers.
  • room temperature means a temperature which is not particularly cooled or heated, that is, a normal temperature, and examples thereof include a temperature of 15 to 25 ° C., for example, 25 ° C.
  • the coating of the first pressure-sensitive adhesive composition may be carried out by a known method, for example, an air knife coater, a blade coater, a bar coater, a gravure coater, a roll coater, a roll knife coater, a curtain coater, a die coater, a knife coater, and the like.
  • a known method for example, an air knife coater, a blade coater, a bar coater, a gravure coater, a roll coater, a roll knife coater, a curtain coater, a die coater, a knife coater, and the like.
  • Examples thereof include a method using various coaters such as a screen coater, a Meyer bar coater, and a kiss coater.
  • the drying conditions of the first pressure-sensitive adhesive composition are not particularly limited, but when the first pressure-sensitive adhesive composition contains a solvent described later, it is preferably heat-dried. In this case, for example, 70 to 130 ° C. It is preferable to dry under the condition of 10 seconds to 5 minutes.
  • the first pressure-sensitive adhesive composition containing the energy ray-curable pressure-sensitive adhesive that is, the energy ray-curable first pressure-sensitive adhesive composition is, for example, non-existent.
  • a first pressure-sensitive adhesive composition containing an energy ray-curable adhesive resin (I-1a) (hereinafter, may be abbreviated as "adhesive resin (I-1a)") and an energy ray-curable compound.
  • Object (I-1) Energy ray-curable adhesive resin (I-2a) in which an unsaturated group is introduced into the side chain of the non-energy ray-curable adhesive resin (I-1a) (hereinafter, "adhesive").
  • the first pressure-sensitive adhesive composition (I-2) containing (sometimes abbreviated as "sexual resin (I-2a)"); the pressure-sensitive adhesive resin (I-2a), an energy ray-curable low molecular weight compound, and the like.
  • the first pressure-sensitive adhesive composition (I-1) contains a non-energy ray-curable pressure-sensitive adhesive resin (I-1a) and an energy ray-curable compound.
  • the adhesive resin (I-1a) is preferably an acrylic resin.
  • the acrylic resin include acrylic polymers having at least a structural unit derived from (meth) acrylic acid alkyl ester.
  • the structural unit of the acrylic resin may be only one type, may be two or more types, and when there are two or more types, the combination and ratio thereof can be arbitrarily selected.
  • Examples of the (meth) acrylic acid alkyl ester include those in which the alkyl group constituting the alkyl ester has 1 to 20 carbon atoms, and the alkyl group is linear or branched. Is preferable. More specifically, as the (meth) acrylic acid alkyl ester, methyl (meth) acrylic acid, ethyl (meth) acrylic acid, n-propyl (meth) acrylic acid, isopropyl (meth) acrylic acid, (meth) acrylic acid.
  • n-butyl isobutyl (meth) acrylate, sec-butyl (meth) acrylate, tert-butyl (meth) acrylate, pentyl (meth) acrylate, hexyl (meth) acrylate, heptyl (meth) acrylate, 2-Ethylhexyl (meth) acrylate, isooctyl (meth) acrylate, n-octyl (meth) acrylate, n-nonyl (meth) acrylate, isononyl (meth) acrylate, decyl (meth) acrylate, (meth) ) Undecyl acrylate, dodecyl (meth) acrylate (also called lauryl (meth) acrylate), tridecyl (meth) acrylate, tetradecyl (meth) acrylate (also called myristyl (meth)
  • (meth) acrylic acid is a concept including both “acrylic acid” and “methacrylic acid”.
  • (meth) acrylate is a concept that includes both “acrylate” and “methacrylate”, and is a "(meth) acryloyl group”. Is a concept that includes both an "acryloyl group” and a “methacryloyl group”.
  • the acrylic polymer has a structural unit derived from a (meth) acrylic acid alkyl ester having 4 or more carbon atoms in the alkyl group.
  • the alkyl group preferably has 4 to 12 carbon atoms, and more preferably 4 to 8 carbon atoms, from the viewpoint of further improving the adhesive strength of the first pressure-sensitive adhesive layer.
  • the (meth) acrylic acid alkyl ester having 4 or more carbon atoms in the alkyl group is preferably an acrylic acid alkyl ester.
  • the acrylic polymer preferably has a structural unit derived from a functional group-containing monomer in addition to the structural unit derived from the (meth) acrylic acid alkyl ester.
  • the functional group-containing monomer may be, for example, acrylic when the functional group reacts with a cross-linking agent described later to become a starting point of cross-linking, or when the functional group reacts with a functional group in an unsaturated group-containing compound. Examples thereof include those capable of introducing an unsaturated group into the side chain of the system polymer.
  • Examples of the functional group in the functional group-containing monomer include a hydroxyl group, a carboxy group, an amino group, an epoxy group and the like. That is, examples of the functional group-containing monomer include a hydroxyl group-containing monomer, a carboxy group-containing monomer, an amino group-containing monomer, and an epoxy group-containing monomer.
  • hydroxyl group-containing monomer examples include hydroxymethyl (meth) acrylate, 2-hydroxyethyl (meth) acrylate, 2-hydroxypropyl (meth) acrylate, 3-hydroxypropyl (meth) acrylate, and (meth).
  • Hydroxyalkyl (meth) acrylates such as 2-hydroxybutyl acrylate, 3-hydroxybutyl (meth) acrylate, 4-hydroxybutyl (meth) acrylate; non- (meth) acrylic non-acrylic acids such as vinyl alcohol and allyl alcohol.
  • Saturated alcohol that is, unsaturated alcohol having no (meth) acryloyl skeleton
  • 2-hydroxyethyl (meth) acrylate being preferred
  • 2-hydroxyethyl acrylate being more preferred.
  • Examples of the carboxy group-containing monomer include ethylenically unsaturated monocarboxylic acids (monocarboxylic acids having ethylenically unsaturated bonds) such as (meth) acrylic acid and crotonic acid; fumaric acid, itaconic acid, maleic acid, and citracon.
  • Ethylene unsaturated dicarboxylic acids such as acids (dicarboxylic acids having ethylenically unsaturated bonds); anhydrides of the ethylenically unsaturated dicarboxylic acids; (meth) acrylic acid carboxyalkyl esters such as 2-carboxyethyl methacrylate and the like. Be done.
  • a hydroxyl group-containing monomer and a carboxy group-containing monomer are preferable, and a hydroxyl group-containing monomer is more preferable.
  • the functional group-containing monomer constituting the acrylic polymer may be only one type, may be two or more types, and when there are two or more types, the combination and ratio thereof can be arbitrarily selected.
  • the content of the structural unit derived from the functional group-containing monomer is preferably 1 to 35% by mass, more preferably 3 to 32% by mass, based on the total amount of the structural units. It is particularly preferably 5 to 30% by mass.
  • the acrylic polymer may further have a structural unit derived from another monomer in addition to the structural unit derived from the (meth) acrylic acid alkyl ester and the structural unit derived from the functional group-containing monomer.
  • the other monomer is not particularly limited as long as it can be copolymerized with a (meth) acrylic acid alkyl ester or the like.
  • Examples of the other monomer include styrene, ⁇ -methylstyrene, vinyltoluene, vinyl formate, vinyl acetate, acrylonitrile, acrylamide and the like.
  • the other monomer constituting the acrylic polymer may be only one type, may be two or more types, and when there are two or more types, the combination and ratio thereof can be arbitrarily selected.
  • the acrylic polymer can be used as the above-mentioned non-energy ray-curable adhesive resin (I-1a).
  • a product obtained by reacting a functional group in the acrylic polymer with an unsaturated group-containing compound having an energy ray-polymerizable unsaturated group (energy ray-polymerizable group) has the above-mentioned energy ray-curable adhesiveness. It can be used as a resin (I-2a).
  • "energy ray polymerizable" means the property of polymerizing by irradiating with energy rays.
  • the pressure-sensitive adhesive resin (I-1a) contained in the first pressure-sensitive adhesive composition (I-1) may be only one type, may be two or more types, and when there are two or more types, the combination and ratio thereof are It can be selected arbitrarily.
  • the content of the pressure-sensitive resin (I-1a) is 5 to 99% by mass with respect to the total mass of the first pressure-sensitive adhesive composition (I-1). It is preferably, more preferably 10 to 95% by mass, and particularly preferably 15 to 90% by mass.
  • Examples of the energy ray-curable compound contained in the first pressure-sensitive adhesive composition (I-1) include monomers or oligomers having an energy ray-polymerizable unsaturated group and curable by irradiation with energy rays.
  • examples of the monomer include trimethylpropantri (meth) acrylate, pentaerythritol (meth) acrylate, pentaerythritol tetra (meth) acrylate, dipentaerythritol hexa (meth) acrylate, 1,4.
  • Multivalent (meth) acrylates such as -butylene glycol di (meth) acrylate, 1,6-hexanediol (meth) acrylate; urethane (meth) acrylate; polyester (meth) acrylate; polyether (meth) acrylate; epoxy ( Meta) Acrylate and the like can be mentioned.
  • the energy ray-curable compounds examples include oligomers obtained by polymerizing the monomers exemplified above.
  • the energy ray-curable compound has a relatively large molecular weight, and urethane (meth) acrylate and urethane (meth) acrylate oligomer are preferable in that the storage elastic modulus of the first pressure-sensitive adhesive layer is unlikely to be lowered.
  • oligomer means a substance having a weight average molecular weight or formula weight of 5,000 or less (excluding monomers).
  • the energy ray-curable compound contained in the first pressure-sensitive adhesive composition (I-1) may be only one type, may be two or more types, and when there are two or more types, the combination and ratio thereof may be arbitrary. You can choose.
  • the content of the energy ray-curable compound is 1 to 95% by mass with respect to the total mass of the first pressure-sensitive adhesive composition (I-1). Is preferable, 5 to 90% by mass is more preferable, and 10 to 85% by mass is particularly preferable.
  • the first pressure-sensitive adhesive composition is used.
  • the product (I-1) preferably further contains a cross-linking agent.
  • the cross-linking agent for example, reacts with the functional group to cross-link the adhesive resins (I-1a) with each other.
  • the cross-linking agent include tolylene diisocyanate such as tolylen-2,6-diisocyanate, hexamethylene diisocyanate, xylylene diisocyanate, and isocyanate-based cross-linking agents such as adducts of these diisocyanates (cross-linking agents having an isocyanate group); ethylene glycol.
  • Epoxy-based cross-linking agents such as glycidyl ether, N, N'-(cyclohexane-1,3-diylbismethylene) bis (glycidylamine); hexa [1- (2-methyl) -aziridinyl) ]
  • Aziridine-based cross-linking agent such as trifoosphatriazine (cross-linking agent having an aziridinyl group); metal chelate-based cross-linking agent such as aluminum chelate (cross-linking agent having a metal chelate structure); isocyanurate-based cross-linking agent (having an isocyanurate skeleton) Cross-linking agent) and the like.
  • the cross-linking agent is preferably an isocyanate-based cross-linking agent from the viewpoints of improving the cohesive force of the pressure-sensitive adhesive to improve the adhesive force of the first pressure-sensitive adhesive layer and being easily available.
  • the cross-linking agent contained in the first pressure-sensitive adhesive composition (I-1) may be only one type, may be two or more types, and when there are two or more types, the combination and ratio thereof can be arbitrarily selected.
  • the content of the cross-linking agent is preferably 0.01 to 50 parts by mass with respect to 100 parts by mass of the content of the pressure-sensitive adhesive resin (I-1a). , 0.1 to 20 parts by mass is more preferable, and 1 to 10 parts by mass is particularly preferable.
  • the first pressure-sensitive adhesive composition (I-1) may further contain a photopolymerization initiator.
  • the first pressure-sensitive adhesive composition (I-1) containing a photopolymerization initiator sufficiently undergoes a curing reaction even when irradiated with relatively low-energy energy rays such as ultraviolet rays.
  • photopolymerization initiator examples include benzoin compounds such as benzoin, benzoin methyl ether, benzoin ethyl ether, benzoin isopropyl ether, benzoin isobutyl ether, benzoin benzoic acid, methyl benzoin benzoate, and benzoin dimethyl ketal; acetophenone and 2-hydroxy.
  • benzoin compounds such as benzoin, benzoin methyl ether, benzoin ethyl ether, benzoin isopropyl ether, benzoin isobutyl ether, benzoin benzoic acid, methyl benzoin benzoate, and benzoin dimethyl ketal; acetophenone and 2-hydroxy.
  • Acetphenone compounds such as -2-methyl-1-phenyl-propane-1-one, 2,2-dimethoxy-1,2-diphenylethane-1-one; bis (2,4,6-trimethylbenzoyl) phenylphosphine
  • Acylphosphine oxide compounds such as oxide, 2,4,6-trimethylbenzoyldiphenylphosphine oxide
  • sulfide compounds such as benzylphenyl sulfide and tetramethylthium monosulfide
  • ⁇ -ketol compounds such as 1-hydroxycyclohexylphenylketone
  • Azo compounds such as azobisisobutyronitrile
  • titanosen compounds such as titanosen
  • thioxanthone compounds such as thioxanthone
  • peroxide compounds diketone compounds such as diacetyl; benzyl, dibenzyl, benzophenone, 2,4-diethylthioxanthone,
  • the photopolymerization initiator contained in the first pressure-sensitive adhesive composition (I-1) may be only one type, may be two or more types, and when there are two or more types, the combination and ratio thereof can be arbitrarily selected. ..
  • the content of the photopolymerization initiator is preferably 0.01 to 20 parts by mass with respect to 100 parts by mass of the content of the energy ray-curable compound. , 0.03 to 10 parts by mass, and particularly preferably 0.05 to 5 parts by mass.
  • the first pressure-sensitive adhesive composition (I-1) may contain other additives that do not fall under any of the above-mentioned components as long as the effects of the present invention are not impaired.
  • the other additives include antioxidants, antioxidants, softeners (plasticizers), fillers (fillers), rust inhibitors, colorants (pigments, dyes), sensitizers, and tackifiers.
  • Known additives such as reaction retarders and cross-linking accelerators (catalysts).
  • the reaction delaying agent is used in the first pressure-sensitive adhesive composition (I-1) during storage due to the action of the catalyst mixed in the first pressure-sensitive adhesive composition (I-1). It suppresses the progress of the cross-linking reaction.
  • the other additives contained in the first pressure-sensitive adhesive composition (I-1) may be only one type, may be two or more types, and when there are two or more types, their combinations and ratios can be arbitrarily selected. ..
  • the content of other additives is not particularly limited and may be appropriately selected according to the type thereof.
  • the first pressure-sensitive adhesive composition (I-1) may contain a solvent. Since the first pressure-sensitive adhesive composition (I-1) contains a solvent, the coating suitability on the surface to be coated is improved.
  • the solvent is preferably an organic solvent
  • examples of the organic solvent include ketones such as methyl ethyl ketone and acetone; esters such as ethyl acetate (carboxylic acid esters); ethers such as tetrahydrofuran and dioxane; cyclohexane, n-hexane and the like.
  • ketones such as methyl ethyl ketone and acetone
  • esters such as ethyl acetate (carboxylic acid esters)
  • ethers such as
  • the solvent used in the production of the pressure-sensitive adhesive resin (I-1a) is used as it is in the first pressure-sensitive adhesive composition (I-1) without being removed from the pressure-sensitive adhesive resin (I-1a).
  • the same or different type of solvent as that used in the production of the adhesive resin (I-1a) may be added separately during the production of the first pressure-sensitive adhesive composition (I-1).
  • the solvent contained in the first pressure-sensitive adhesive composition (I-1) may be only one type, may be two or more types, and when there are two or more types, the combination and ratio thereof can be arbitrarily selected.
  • the content of the solvent is not particularly limited and may be appropriately adjusted.
  • the first pressure-sensitive adhesive composition (I-2) has an energy ray-curable adhesiveness in which an unsaturated group is introduced into the side chain of the non-energy ray-curable pressure-sensitive adhesive resin (I-1a). Contains resin (I-2a).
  • the adhesive resin (I-2a) can be obtained, for example, by reacting a functional group in the adhesive resin (I-1a) with an unsaturated group-containing compound having an energy ray-polymerizable unsaturated group.
  • the unsaturated group-containing compound can be bonded to the adhesive resin (I-1a) by further reacting with a functional group in the adhesive resin (I-1a) in addition to the energy ray-polymerizable unsaturated group.
  • a functional group in the adhesive resin (I-1a) in addition to the energy ray-polymerizable unsaturated group.
  • It is a compound having a group.
  • the energy ray-polymerizable unsaturated group include a (meth) acryloyl group, a vinyl group (also referred to as an ethenyl group), an allyl group (also referred to as a 2-propenyl group), and the like, and a (meth) acryloyl group. Is preferable.
  • Examples of the group capable of binding to the functional group in the adhesive resin (I-1a) include an isocyanate group and a glycidyl group capable of reacting with a hydroxyl group or an amino group, and a hydroxyl group and an amino group capable of reacting with a carboxy group or an epoxy group. And so on.
  • the unsaturated group-containing compound examples include (meth) acryloyloxyethyl isocyanate, (meth) acryloyl isocyanate, and glycidyl (meth) acrylate, and (meth) acryloyloxyethyl isocyanate is preferable, and 2-methacryloyl is preferable.
  • Oxyethyl isocyanate is particularly preferred.
  • the isocyanate compound can react with the hydroxyl groups in the adhesive resin (I-1a), and when the total hydroxyl groups in the adhesive resin (I-1a) are 100 mol, the amount of the isocyanate compound used is 10. It is preferably ⁇ 150 mol, more preferably 20 to 140 mol, and even more preferably 30 to 130 mol.
  • the pressure-sensitive adhesive resin (I-2a) contained in the first pressure-sensitive adhesive composition (I-2) may be only one type, may be two or more types, and when there are two or more types, the combination and ratio thereof are It can be selected arbitrarily.
  • the content of the pressure-sensitive resin (I-2a) is 5 to 99% by mass with respect to the total mass of the first pressure-sensitive adhesive composition (I-2). It is preferably 10 to 95% by mass, more preferably 10 to 90% by mass, and particularly preferably 10 to 90% by mass.
  • the product (I-2) may further contain a cross-linking agent.
  • Examples of the cross-linking agent in the first pressure-sensitive adhesive composition (I-2) include the same cross-linking agents as those in the first pressure-sensitive adhesive composition (I-1).
  • the cross-linking agent contained in the first pressure-sensitive adhesive composition (I-2) may be only one kind, two or more kinds, and when two or more kinds, the combination and ratio thereof can be arbitrarily selected.
  • the content of the cross-linking agent is preferably 0.01 to 50 parts by mass with respect to 100 parts by mass of the content of the pressure-sensitive adhesive resin (I-2a). , 0.1 to 20 parts by mass is more preferable, and 1 to 10 parts by mass is particularly preferable.
  • the first pressure-sensitive adhesive composition (I-2) may further contain a photopolymerization initiator.
  • the first pressure-sensitive adhesive composition (I-2) containing the photopolymerization initiator sufficiently proceeds with the curing reaction even when irradiated with relatively low-energy energy rays such as ultraviolet rays.
  • Examples of the photopolymerization initiator in the first pressure-sensitive adhesive composition (I-2) include the same photopolymerization initiators in the first pressure-sensitive adhesive composition (I-1).
  • the photopolymerization initiator contained in the first pressure-sensitive adhesive composition (I-2) may be only one type, two or more types, and when two or more types, the combination and ratio thereof can be arbitrarily selected. ..
  • the content of the photopolymerization initiator is 0.01 to 20 parts by mass with respect to 100 parts by mass of the content of the pressure-sensitive adhesive resin (I-2a). Is preferable, 0.03 to 10 parts by mass is more preferable, and 0.05 to 5 parts by mass is particularly preferable.
  • the first pressure-sensitive adhesive composition (I-2) may contain other additives that do not fall under any of the above-mentioned components as long as the effects of the present invention are not impaired.
  • Examples of the other additive in the first pressure-sensitive adhesive composition (I-2) include the same as the other additives in the first pressure-sensitive adhesive composition (I-1).
  • the other additives contained in the first pressure-sensitive adhesive composition (I-2) may be only one kind, two or more kinds, and when there are two or more kinds, their combinations and ratios can be arbitrarily selected. ..
  • the content of other additives is not particularly limited and may be appropriately selected according to the type thereof.
  • the first pressure-sensitive adhesive composition (I-2) may contain a solvent for the same purpose as in the case of the first pressure-sensitive adhesive composition (I-1).
  • Examples of the solvent in the first pressure-sensitive adhesive composition (I-2) include the same solvents as those in the first pressure-sensitive adhesive composition (I-1).
  • the solvent contained in the first pressure-sensitive adhesive composition (I-2) may be only one type, may be two or more types, and when there are two or more types, the combination and ratio thereof can be arbitrarily selected.
  • the content of the solvent is not particularly limited and may be appropriately adjusted.
  • the first pressure-sensitive adhesive composition (I-3) contains the pressure-sensitive adhesive resin (I-2a) and an energy ray-curable low-molecular-weight compound.
  • the content of the pressure-sensitive resin (I-2a) is 5 to 99% by mass with respect to the total mass of the first pressure-sensitive adhesive composition (I-3). It is preferably, more preferably 10 to 95% by mass, and particularly preferably 15 to 90% by mass.
  • Examples of the energy ray-curable low molecular weight compound contained in the first pressure-sensitive adhesive composition (I-3) include monomers and oligomers having an energy ray-polymerizable unsaturated group and curable by irradiation with energy rays. , The same as the energy ray-curable compound contained in the first pressure-sensitive adhesive composition (I-1) can be mentioned.
  • the energy ray-curable low molecular weight compound contained in the first pressure-sensitive adhesive composition (I-3) may be only one kind, two or more kinds, and when there are two or more kinds, the combination and ratio thereof are It can be selected arbitrarily.
  • the content of the energy ray-curable low molecular weight compound is 0.01 to 300 mass by mass with respect to 100 parts by mass of the content of the pressure-sensitive adhesive resin (I-2a).
  • the amount is preferably 0.03 to 200 parts by mass, and particularly preferably 0.05 to 100 parts by mass.
  • the first pressure-sensitive adhesive composition (I-3) may further contain a photopolymerization initiator.
  • the first pressure-sensitive adhesive composition (I-3) containing the photopolymerization initiator sufficiently proceeds with the curing reaction even when irradiated with relatively low-energy energy rays such as ultraviolet rays.
  • Examples of the photopolymerization initiator in the first pressure-sensitive adhesive composition (I-3) include the same photopolymerization initiators in the first pressure-sensitive adhesive composition (I-1).
  • the photopolymerization initiator contained in the first pressure-sensitive adhesive composition (I-3) may be only one type, two or more types, and when two or more types, the combination and ratio thereof can be arbitrarily selected. ..
  • the content of the photopolymerization initiator is 100 parts by mass with respect to the total content of the pressure-sensitive adhesive resin (I-2a) and the energy ray-curable low molecular weight compound. It is preferably 0.01 to 20 parts by mass, more preferably 0.03 to 10 parts by mass, and particularly preferably 0.05 to 5 parts by mass.
  • the first pressure-sensitive adhesive composition (I-3) may contain other additives that do not fall under any of the above-mentioned components as long as the effects of the present invention are not impaired.
  • Examples of the other additive include the same as the other additive in the first pressure-sensitive adhesive composition (I-1).
  • the other additives contained in the first pressure-sensitive adhesive composition (I-3) may be only one type, may be two or more types, and when there are two or more types, their combinations and ratios can be arbitrarily selected. ..
  • the content of other additives is not particularly limited and may be appropriately selected according to the type thereof.
  • the first pressure-sensitive adhesive composition (I-3) may contain a solvent for the same purpose as in the case of the first pressure-sensitive adhesive composition (I-1).
  • Examples of the solvent in the first pressure-sensitive adhesive composition (I-3) include the same solvents as those in the first pressure-sensitive adhesive composition (I-1).
  • the solvent contained in the first pressure-sensitive adhesive composition (I-3) may be only one type, two or more types, and when two or more types, the combination and ratio thereof can be arbitrarily selected.
  • the content of the solvent is not particularly limited and may be appropriately adjusted.
  • first pressure-sensitive adhesive compositions other than the first pressure-sensitive adhesive compositions (I-1) to (I-3) Up to this point, the first pressure-sensitive adhesive composition (I-1), the first pressure-sensitive adhesive composition (I-2), and the first pressure-sensitive adhesive composition (I-3) have been mainly described, but the components contained therein.
  • the general first pressure-sensitive adhesive compositions other than these three types of first pressure-sensitive adhesive compositions in the present embodiment, "first pressure-sensitive adhesive compositions (I-1) to (I-)" are described as. It can also be used in the same manner with the first pressure-sensitive adhesive composition other than 3).
  • the first pressure-sensitive adhesive composition other than the first pressure-sensitive adhesive compositions (I-1) to (I-3) in addition to the energy ray-curable first pressure-sensitive adhesive composition, a non-energy ray-curable first pressure-sensitive adhesive composition is used.
  • Adhesive compositions are also mentioned.
  • the non-energy ray-curable first pressure-sensitive adhesive composition include an acrylic resin (resin having a (meth) acryloyl group), a urethane resin (resin having a urethane bond), and a rubber resin (having a rubber structure). Resin), silicone resin (resin having siloxane bond), epoxy resin (resin having epoxy group), polyvinyl ether, those containing adhesive resin such as polycarbonate, and those containing acrylic resin. Is preferable.
  • the first pressure-sensitive adhesive compositions other than the first pressure-sensitive adhesive compositions (I-1) to (I-3) preferably contain one or more cross-linking agents, and the content thereof is the above-mentioned content. The same can be applied to the case of the first pressure-sensitive adhesive composition (I-1) and the like.
  • the first pressure-sensitive adhesive composition such as the first pressure-sensitive adhesive compositions (I-1) to (I-3) is a first pressure-sensitive adhesive containing the pressure-sensitive adhesive and, if necessary, components other than the pressure-sensitive adhesive. It is obtained by blending each component for constituting the composition. The order of addition of each component at the time of blending is not particularly limited, and two or more kinds of components may be added at the same time. When a solvent is used, it may be used by mixing the solvent with any compounding component other than the solvent and diluting the compounding component in advance, or diluting any of the compounding components other than the solvent in advance. You may use it by mixing the solvent with these compounding components without leaving.
  • the method of mixing each component at the time of blending is not particularly limited, and from known methods such as a method of rotating a stirrer or a stirring blade to mix; a method of mixing using a mixer; a method of adding ultrasonic waves to mix. It may be selected as appropriate.
  • the temperature and time at the time of adding and mixing each component are not particularly limited as long as each compounding component does not deteriorate, and may be appropriately adjusted, but the temperature is preferably 15 to 30 ° C.
  • the composition of the first pressure-sensitive adhesive layer in the present embodiment is the composition obtained by removing the solvent from the above-mentioned first pressure-sensitive adhesive layer composition.
  • the content ratio of the adhesive resin (I-1a) to the adhesive resin (I-1a) is preferably 50 to 99% by mass, more preferably 55 to 95% by mass, and even more preferably 60 to 90% by mass.
  • the content ratio of the adhesive resin (I-1a) to the total mass of the first pressure-sensitive adhesive layer (I-1) may be 25 to 80% by mass, which is 30. It may be up to 75% by mass, or 35 to 70% by mass.
  • the content ratio of the energy ray-curable compound with respect to the total mass of the first pressure-sensitive adhesive layer (I-1) is preferably 1 to 50% by mass, more preferably 2 to 48% by mass, and 5 It is more preferably to 45% by mass.
  • the content ratio of the cross-linking agent to the total mass of the first pressure-sensitive adhesive layer (I-1) is preferably 0.1 to 10% by mass.
  • the content ratio of the photopolymerization initiator to the total mass of the first pressure-sensitive adhesive layer (I-1) is 0.5 to 18.0 mass. %, More preferably 0.7 to 17.5% by mass, and even more preferably 1.0 to 15.0% by mass.
  • the "content ratio" in the present specification means the content ratio of the monomer itself when the target is a monomer, or the content ratio of a constituent unit derived from the monomer when the monomer is polymerized.
  • the content ratio of the adhesive resin (I-2a) to the adhesive resin (I-2a) is preferably 70.0 to 99.0% by mass, more preferably 72.5 to 97.5% by mass, and 75.0 to 95% by mass. It is more preferably 0.0% by mass.
  • the first pressure-sensitive adhesive layer (I-2) contains a cross-linking agent
  • the content ratio of the cross-linking agent to the total mass of the first pressure-sensitive adhesive layer (I-2) is 0.1 to 3.0% by mass. It is preferably 0.2 to 2.5% by mass, more preferably 0.3 to 2.0% by mass.
  • the content ratio of the photopolymerization initiator to the total mass of the first pressure-sensitive adhesive layer (I-2) is 0.5 to 18.0 mass. %, More preferably 0.7 to 17.5% by mass, and even more preferably 1.0 to 17.0% by mass.
  • the content ratio of the adhesive resin (I-2a) to the adhesive resin (I-2a) is preferably 50 to 99% by mass, more preferably 55 to 95% by mass, and even more preferably 60 to 90% by mass.
  • the content ratio of the energy ray-curable low molecular weight compound with respect to the total mass of the first pressure-sensitive adhesive layer (I-3) is preferably 1 to 50% by mass, more preferably 2 to 48% by mass. It is more preferably 5 to 45% by mass.
  • the content ratio of the cross-linking agent to the total mass of the first pressure-sensitive adhesive layer (I-3) is preferably 0.1 to 10% by mass. , 0.2 to 9% by mass, more preferably 0.3 to 8% by mass.
  • the content ratio of the photopolymerization initiator to the total mass of the first pressure-sensitive adhesive layer (I-3) is 0.5 to 18.0 mass. %, More preferably 0.7 to 17.5% by mass, and even more preferably 1.0 to 17.0% by mass.
  • the first pressure-sensitive adhesive layer (I-2) contains a pressure-sensitive adhesive resin (1-2a) and a cross-linking agent.
  • the adhesive resin (1-2a) contains an isocyanate group and an energy ray-polymerizable unsaturated group in an acrylic polymer having a structural unit derived from a (meth) acrylic acid alkyl ester and a unit derived from a hydroxyl group-containing monomer. It is preferably an acrylic polymer obtained by reacting an unsaturated group-containing compound having an unsaturated group.
  • the compound exemplified in the first pressure-sensitive adhesive composition (I-1) can be used, and it is particularly preferable to use trilen-2.6-diisocyanate.
  • the photopolymerization initiator the compounds exemplified in the first pressure-sensitive adhesive composition (I-1) can be used, and it is particularly preferable to use 1-hydroxycyclohexylphenyl ketone.
  • the content ratio of the structural unit derived from the (meth) acrylic acid alkyl ester to the total mass of the adhesive resin (1-2a) is preferably 50 to 99% by mass, more preferably 60 to 98% by mass. , 70-97% by mass, more preferably.
  • the content ratio of the unit derived from the hydroxyl group-containing monomer to the total mass of the adhesive resin (1-2a) is preferably 0.5 to 15% by mass, more preferably 1.0 to 10% by mass. It is more preferably 2.0 to 10% by mass.
  • the (meth) acrylic acid alkyl ester in the adhesive resin (1-2a) preferably has an alkyl group having 1 to 12 carbon atoms, and more preferably 1 to 4 carbon atoms.
  • the adhesive resin (1-2a) preferably has a structural unit derived from two or more kinds of (meth) acrylic acid alkyl esters, and is a structural unit derived from methyl (meth) acrylate and n-butyl (meth) acrylic acid. It is more preferable to have a structural unit derived from methyl methacrylate and n-butyl acrylate.
  • the hydroxyl group-containing monomer in the adhesive resin (1-2a) those exemplified in the above-mentioned adhesive resin (I-1a) can be used, and it is particularly preferable to use 2-hydroxyethyl acrylate. ..
  • the unsaturated group-containing compound having an isocyanate group and an energy ray-polymerizable unsaturated group the compound exemplified in the first pressure-sensitive adhesive composition (I-2) can be used, and 2-methacryloyloxyethyl isocyanate is used. It is particularly preferable to do so.
  • the amount of the unsaturated group-containing compound having an isocyanate group and an energy ray-polymerizable unsaturated group is preferably 20 to 80 mol, more preferably 25 to 75 mol. It is preferable, and 30 to 70 mol is more preferable.
  • the embedded layer is a layer among viscoelastic layers that embeds and protects the terminals of a semiconductor device with terminals.
  • the embedded layer is in the form of a sheet or a film, and the constituent material thereof is not particularly limited as long as the above conditions are satisfied.
  • the purpose is to prevent the viscoelastic layer from being deformed by reflecting the shape of the terminals existing on the semiconductor surface on the viscoelastic layer covering the terminal forming surface of the semiconductor device with terminals to be protected.
  • preferable constituent materials of the embedded layer include urethane (meth) acrylate, acrylic resin and the like from the viewpoint of further improving the stickability of the embedded layer.
  • the embedded layer may be only one layer (single layer), or may be a plurality of layers of two or more layers, and when there are a plurality of layers, these multiple layers may be the same or different from each other, and the combination of these multiple layers is particularly suitable. Not limited.
  • the thickness of the embedded layer can be appropriately adjusted according to the height of the terminals on the terminal forming surface of the terminal-equipped semiconductor device to be protected so that the thickness of the viscoelastic layer falls within the above-mentioned preferable range, but is relatively It is preferably 50 to 600 ⁇ m, more preferably 70 to 550 ⁇ m, and even more preferably 80 to 500 ⁇ m, from the viewpoint that the influence of a terminal having a high height can be easily absorbed.
  • the thickness of the embedded layer is at least the above lower limit value, a viscoelastic layer having higher terminal protection performance can be formed. Further, when the thickness of the embedded layer is not more than the upper limit value, the productivity and the winding suitability in the roll shape are improved.
  • the "thickness of the embedded layer” means the thickness of the entire embedded layer, and for example, the thickness of the embedded layer composed of a plurality of layers is the total thickness of all the layers constituting the embedded layer. means.
  • the embedded layer preferably has a soft property suitable for embedding terminals, and is preferably softer than the first adhesive layer.
  • the embedded layer may be formed by using an energy ray-curable constituent material or may be formed by using a non-energy ray-curable constituent material.
  • An embedded layer formed using an energy ray-curable constituent material is preferable because its physical properties before and after curing can be easily adjusted.
  • the elastic modulus of the embedded layer before curing is preferably 0.01 to 1.0 MPa, preferably 0.02 to 0.9 MPa. It is more preferably 0.03 to 0.8 MPa. When the elastic modulus of the embedded layer before curing is within the above range, the retention of the semiconductor device can be obtained.
  • the elastic modulus of the embedded layer after curing is preferably 1.0 to 100 MPa, more preferably 2.0 to 95 MPa. It is preferably 3.0 to 90 MPa, more preferably 3.0 to 90 MPa. When the elastic modulus of the embedded layer after curing is within the above range, the retention of the semiconductor device can be obtained.
  • the embedded layer is the embedded layer (I) formed by using the embedded layer forming composition (I) containing the acrylic resin described later, the curing of the embedded layer (I) is performed in the first and second above-mentioned.
  • any step of the method for manufacturing a semiconductor device with an electromagnetic wave shielding film of the second embodiment may be performed, but the electromagnetic wave shielding film is formed after the step of embedding the terminals of the semiconductor device with terminals (or the semiconductor device assembly). It is preferable to perform this before the step of peeling the terminal-equipped semiconductor device from the terminal protection tape.
  • the embedded layer is the embedded layer (II) formed by using the embedded layer forming composition (II) containing the urethane (meth) acrylate described later
  • the curing of the embedded layer (II) is the above-mentioned first. It may be carried out in any step of the method for manufacturing a semiconductor device with an electromagnetic wave shielding film according to the second embodiment, but it is preferably carried out before the step of embedding the terminals of the semiconductor device with terminals (or the semiconductor device assembly).
  • the embedded layer can be formed by using an embedded layer forming composition containing the constituent material.
  • an embedded layer can be formed at a target site by applying a composition for forming an embedded layer to a surface to be formed of an embedded layer, drying the composition as necessary, and curing the surface by irradiating with energy rays. Further, by applying the composition for forming an embedded layer to the release film, drying it if necessary, and curing it by irradiation with energy rays, an embedded layer having a desired thickness can be formed, and the desired portion can be formed. The embedded layer can also be transferred. A more specific method for forming the embedded layer will be described in detail later together with other methods for forming the layer.
  • the ratio of the contents of the components that do not vaporize at room temperature in the composition for forming the embedded layer is usually the same as the ratio of the contents of the components of the embedded layer.
  • the composition for forming an embedded layer may be applied by a known method, for example, an air knife coater, a blade coater, a bar coater, a gravure coater, a roll coater, a roll knife coater, a curtain coater, a die coater, a knife coater, and the like.
  • a known method for example, an air knife coater, a blade coater, a bar coater, a gravure coater, a roll coater, a roll knife coater, a curtain coater, a die coater, a knife coater, and the like.
  • Examples thereof include a method using various coaters such as a screen coater, a Meyer bar coater, and a kiss coater.
  • the drying conditions of the composition for forming the embedded layer are not particularly limited, but the composition for forming the embedded layer is preferably heat-dried when it contains a solvent described later, and in this case, for example, 70 to 130 ° C. It is preferable to dry under the condition of 10 seconds to 5 minutes.
  • the composition for forming an embedded layer has energy ray curability, it is preferably cured by irradiation with energy rays.
  • composition for forming an embedded layer examples include a composition for forming an embedded layer (I) containing an acrylic resin, a composition for forming an embedded layer containing urethane (meth) acrylate (II), and the like.
  • the composition for forming an embedded layer (I) contains an acrylic resin.
  • the composition (I) for forming an embedded layer includes, among the above-mentioned first pressure-sensitive adhesive compositions (I-1), a pressure-sensitive adhesive resin (I-1a) which is an acrylic resin, an energy ray-curable compound, and the like.
  • the first pressure-sensitive adhesive composition (I-2) which contains the above, an energy ray-curable pressure-sensitive adhesive in which an unsaturated group is introduced into the side chain of the pressure-sensitive adhesive resin (I-1a) which is an acrylic resin.
  • a composition containing the sex resin (I-2a) can be used as the composition for forming an embedded layer (I).
  • the adhesive resin (I-1a) and the energy ray-curable compound used in the embedded layer forming composition (I) are the adhesive resin (I-1a) used in the above-mentioned first adhesive composition (I-1). And the description of the energy ray curable compound is the same.
  • the adhesive resin (I-2a) used in the embedded layer forming composition (I) is the same as the description of the adhesive resin (I-2a) used in the first adhesive composition (I-2) described above. ..
  • the composition for forming an embedded layer (I) preferably further contains a cross-linking agent.
  • the cross-linking agent used in the embedded layer forming composition (I) is the same as the description of the cross-linking agent used in the first pressure-sensitive adhesive composition (I-1) and the first pressure-sensitive adhesive composition (I-2) described above. ..
  • the composition for forming an embedded layer (I) may further contain a photopolymerization initiator and other additives.
  • the photopolymerization initiator and other additives used in the embedded layer forming composition (I) are the light used in the first pressure-sensitive adhesive composition (I-1) and the first pressure-sensitive adhesive composition (I-2) described above.
  • the description is the same as for the polymerization initiator and other additives.
  • the composition for forming an embedded layer (I) may contain a solvent.
  • the solvent used in the embedded layer forming composition (I) is the same as the description of the solvent used in the first pressure-sensitive adhesive composition (I-1) and the first pressure-sensitive adhesive composition (I-2) described above.
  • the embedded layer has a soft property suitable for embedding terminals.
  • the embedded layer can be designed as Further, by adjusting the content of the cross-linking agent in the composition for forming the embedded layer (I), the embedded layer can be designed to have a soft property suitable for embedding terminals.
  • the composition of the embedded layer in the present embodiment is the above-mentioned composition for forming an embedded layer (I) from which the solvent has been removed.
  • the composition (I) for forming an embedded layer is the above-mentioned first pressure-sensitive adhesive composition (I-1), which is an acrylic resin, a pressure-sensitive resin (I-1a), an energy ray-curable compound, and the like.
  • the content ratio of the adhesive resin (I-1a), which is an acrylic resin, to the total mass of the embedded layer (I) in the embedded layer (I) in the case of the composition containing the above is 50 to 99% by mass. Is more preferable, 55 to 95% by mass is more preferable, and 60 to 90% by mass is further preferable.
  • the content ratio of the adhesive resin (I-1a), which is an acrylic resin, to the total mass of the embedded layer (I) may be 45 to 90% by mass, and 50 to 85% by mass. May be%.
  • the content ratio of the energy ray-curable compound with respect to the total mass of the embedded layer (I) is preferably 0.5 to 50% by mass, and more preferably 5 to 45% by mass.
  • the content ratio of the cross-linking agent to the total mass of the embedded layer (I) is preferably 0.1 to 10% by mass, preferably 0.2 to 9% by mass. More preferably, it is more preferably 0.3 to 8% by mass.
  • the content ratio of the photopolymerization initiator to the total mass of the embedded layer (I) is preferably 0.5 to 18.0% by mass, preferably 0.7. It is more preferably to 17.5% by mass, and even more preferably 1.0 to 17.0% by mass.
  • the composition for forming an embedded layer (I) contains an energy ray-curable adhesive resin (1-2a) in which an unsaturated group is introduced into the side chain of the adhesive resin (I-1a) which is an acrylic resin.
  • the content ratio of the energy ray-curable adhesive resin (1-2a) in which an unsaturated group is introduced into the side chain with respect to the total mass of the embedded layer in the embedded layer (I) is 10 to 70. It is preferably by mass, more preferably 15 to 65% by mass, and even more preferably 20 to 60% by mass.
  • the content ratio of the cross-linking agent to the total mass of the embedded layer (I) is preferably 0.1 to 10% by mass, preferably 0.2 to 9% by mass.
  • the embedded layer (I) contains a photopolymerization initiator
  • the content ratio of the photopolymerization initiator to the total mass of the embedded layer (I) is preferably 0.5 to 18.0% by mass, preferably 0.7. It is more preferably to 17.5% by mass, and even more preferably 1.0 to 17.0% by mass.
  • the embedded layer (I) of the present embodiment may further contain the adhesive resin (I-1a) which is the acrylic resin.
  • the content ratio of the adhesive resin (I-1a), which is an acrylic resin, to the total mass of the embedded layer (I) is preferably 20.0 to 60.0% by mass, and 22.5 to 57.
  • the embedded layer (I) of the present embodiment further contains the adhesive resin (I-1a) which is the acrylic resin, the adhesive resin with respect to 100 parts by mass of the adhesive resin (1-2a).
  • the content of (1-1a) is preferably 70.0 to 99.0 parts by mass, more preferably 72.5 to 97.5 parts by mass, and 75.0 to 95.0 parts by mass. Is more preferable.
  • the composition of the curable adhesive resin (1-2a) includes the adhesive resin (I-1a), which is an acrylic resin used in the above-mentioned first pressure-sensitive adhesive composition (I-1), and an energy ray-curable compound. , The same as the description of the energy ray-curable adhesive resin (1-2a) in which an unsaturated group is introduced into the side chain of the adhesive resin (I-1a) may be used.
  • the embedded layer (I) containing the adhesive resin (1-2a), the adhesive resin (1-1a), the cross-linking agent, and the photopolymerization initiator is preferable.
  • the adhesive resin (1-1a) is preferably an acrylic polymer having a structural unit derived from a (meth) acrylic acid alkyl ester and a unit derived from a carboxy group-containing monomer.
  • the adhesive resin (1-2a) has an isocyanate group and an energy ray-polymerizable unsaturated group in an acrylic polymer having a structural unit derived from a (meth) acrylic acid alkyl ester and a unit derived from a hydroxyl group-containing monomer.
  • the cross-linking agent the compound exemplified in the above-mentioned first pressure-sensitive adhesive composition (I-1) can be used, and trilen-2,6-diisocyanate, N, N'-(cyclohexane-1,3-diyl) can be used. It is particularly preferred to use bismethylene) bis (glycidylamine).
  • the cross-linking agent the compound exemplified in the above-mentioned first pressure-sensitive adhesive composition (I-1) can be used, and it is particularly preferable to use 1-hydroxycyclohexylphenyl ketone.
  • the content ratio of the structural unit derived from the (meth) acrylic acid alkyl ester to the total mass of the adhesive resin (1-1a) is preferably 75 to 99% by mass, more preferably 80 to 98% by mass. , 85-97% by mass, more preferably.
  • the content ratio of the constituent unit of the carboxy group-containing monomer to the total mass of the adhesive resin (1-1a) is preferably 1.0 to 30% by mass, more preferably 2.0 to 25% by mass. , 3.0 to 20% by mass, more preferably 5.0 to 15% by mass.
  • the (meth) acrylic acid alkyl ester in the adhesive resin (1-1a) preferably has an alkyl group having 4 to 12 carbon atoms, and more preferably 4 to 8 carbon atoms.
  • the adhesive resin (1-1a) is preferably an acrylic acid alkyl ester.
  • the (meth) acrylic acid alkyl ester is particularly preferably n-butyl acrylate.
  • the carboxy-containing monomer in the adhesive resin (1-1a) include ethylenically unsaturated monocarboxylic acid, ethylenically unsaturated dicarboxylic acid, and anhydride of ethylenically unsaturated dicarboxylic acid, and among them, ethylenically unsaturated. Saturated monocarboxylic acids are preferred, (meth) acrylic acids are more preferred, and acrylic acids are particularly preferred.
  • the weight average molecular weight of the adhesive resin (1-1a) of the present embodiment is preferably 100,000 to 800,000, more preferably 150,000 to 700,000, and more preferably 200,000 to 600,000. It is more preferably 000.
  • the "weight average molecular weight” is a polystyrene-equivalent value measured by a gel permeation chromatography (GPC) method unless otherwise specified.
  • the content ratio of the structural unit derived from the (meth) acrylic acid alkyl ester to the total mass of the adhesive resin (1-2a) is preferably 1.0 to 95% by mass, preferably 2.0 to 90% by mass. More preferably, it is more preferably 3.0 to 85% by mass.
  • the content ratio of the unit derived from the hydroxyl group-containing monomer to the total mass of the adhesive resin (1-2a) is preferably 1.0 to 50% by mass, more preferably 2.0 to 45% by mass. It is more preferably 3.0 to 40% by mass.
  • the (meth) acrylic acid alkyl ester in the adhesive resin (1-2a) preferably has an alkyl group having 1 to 12 carbon atoms, and more preferably 1 to 4 carbon atoms.
  • the adhesive resin (1-2a) preferably has a structural unit derived from two or more kinds of (meth) acrylic acid alkyl esters, and is a structural unit derived from methyl (meth) acrylate and n-butyl (meth) acrylic acid. It is more preferable to have a structural unit derived from methyl methacrylate and n-butyl acrylate.
  • the hydroxyl group-containing monomer in the adhesive resin (1-2a) those exemplified in the first pressure-sensitive adhesive composition (I-1) described later can be used, and 2-hydroxyethyl acrylate is used. Is particularly preferable.
  • the unsaturated group-containing compound having an isocyanate group and an energy ray-polymerizable unsaturated group the compound exemplified in the first pressure-sensitive adhesive composition (I-2) described later can be used, and 2-methacryloyloxyethyl It is particularly preferred to use isocyanates.
  • the amount of the unsaturated group-containing compound having an isocyanate group and an energy ray-polymerizable unsaturated group is preferably 20 to 200 mol, more preferably 30 to 190 mol. It is preferable, and 30 to 180 mol is more preferable.
  • the weight average molecular weight of the adhesive resin (1-2a) of the present embodiment is preferably 50,000 to 1,000,000, more preferably 60,000 to 900,000, and 70,000. It is more preferably ⁇ 800,000.
  • composition for forming an embedded layer (II) contains urethane (meth) acrylate.
  • Urethane (meth) acrylate is a compound having at least a (meth) acryloyl group and a urethane bond in one molecule, and has energy ray polymerization property.
  • Urethane (meth) acrylate may be monofunctional (having only one (meth) acryloyl group in one molecule) or bifunctional or more ((meth) acryloyl group in one molecule). , That is, a polyfunctional one, but it is preferable to use at least a monofunctional one.
  • the compound or resin having at least a (meth) acryloyl group and urethane bond in one molecule is a compound or resin. It is excluded from the urethane (meth) acrylate in the embedded layer forming composition (II).
  • the urethane (meth) acrylate contained in the composition for forming an embedded layer includes, for example, a terminal isocyanate urethane prepolymer obtained by reacting a polyol compound with a polyvalent isocyanate compound, and further having a hydroxyl group and (meth). ) Examples thereof include those obtained by reacting a (meth) acrylic compound having an acryloyl group.
  • the "terminal isocyanate urethane prepolymer” means a prepolymer having a urethane bond and an isocyanate group at the terminal portion of the molecule.
  • the urethane (meth) acrylate contained in the composition for forming an embedded layer (II) may be only one type, may be two or more types, and when there are two or more types, the combination and ratio thereof can be arbitrarily selected.
  • the polyol compound is not particularly limited as long as it is a compound having two or more hydroxyl groups in one molecule.
  • one type may be used alone, two or more types may be used in combination, and when two or more types are used in combination, the combination and ratio thereof can be arbitrarily selected.
  • polyol compound examples include alkylene diols, polyether-type polyols, polyester-type polyols, polycarbonate-type polyols, and the like.
  • the polyol compound may be any of a bifunctional diol, a trifunctional triol, a tetrafunctional or higher functional polyol, etc., but the diol is preferable in terms of easy availability, excellent versatility, reactivity and the like. ..
  • the polyether-type polyol is not particularly limited, but is preferably a polyether-type diol, and examples of the polyether-type diol include a compound represented by the following formula (1). ..
  • n represents the number of repeating units of the group represented by the equation "-RO-", and is not particularly limited as long as it is an integer of 2 or more. Among them, n is preferably 10 to 250, more preferably 25 to 205, and particularly preferably 40 to 185.
  • R is not particularly limited as long as it is a divalent hydrocarbon group, but is preferably an alkylene group, more preferably an alkylene group having 1 to 6 carbon atoms, and an ethylene group. It is more preferably a propylene group or a tetramethylene group, and particularly preferably a propylene group or a tetramethylene group.
  • the compound represented by the above formula (1) is preferably polyethylene glycol, polypropylene glycol or polytetramethylene glycol, and more preferably polypropylene glycol or polytetramethylene glycol.
  • a terminal isocyanate urethane prepolymer having an ether bond portion represented by the following formula (1a) can be obtained as the terminal isocyanate urethane prepolymer. ..
  • the urethane (meth) acrylate can form a urethane (meth) acrylate having the ether bond portion, that is, a structural unit derived from the polyether type diol. It becomes a urethane (meth) acrylate having.
  • the polyester-type polyol is not particularly limited, and examples thereof include a polyester-type polyol obtained by carrying out an esterification reaction using a polybasic acid or a derivative thereof.
  • the term "derivative” means a compound in which one or more groups of the original compound are substituted with other groups (substituents) unless otherwise specified.
  • the "group” includes not only an atomic group formed by bonding a plurality of atoms but also one atom.
  • polybasic acid and its derivative examples include a polybasic acid and its derivative which are usually used as a raw material for producing polyester.
  • polybasic acid examples include saturated aliphatic polybasic acid, unsaturated aliphatic polybasic acid, aromatic polybasic acid and the like, and dimer acid corresponding to any of these may be used.
  • saturated aliphatic dibasic acid examples include saturated aliphatic dibasic acids such as oxalic acid, malonic acid, succinic acid, glutaric acid, adipic acid, pimelic acid, suberic acid, azelaic acid, and sebacic acid. ..
  • unsaturated aliphatic dibasic acid examples include unsaturated aliphatic dibasic acids such as maleic acid and fumaric acid.
  • aromatic polybasic acid include aromatic dibasic acids such as phthalic acid, isophthalic acid, terephthalic acid and 2,6-naphthalenedicarboxylic acid; aromatic tribasic acids such as trimellitic acid; pyromellitic acid and the like. Aromatic tetrabasic acid and the like.
  • Examples of the derivative of the polybasic acid include the above-mentioned saturated aliphatic polybasic acid, unsaturated aliphatic polybasic acid and acid anhydride of aromatic polybasic acid, hydrogenated dimer acid and the like.
  • polybasic acid or a derivative thereof one type may be used alone, two or more types may be used in combination, and when two or more types are used in combination, the combination and ratio thereof can be arbitrarily selected. ..
  • the polybasic acid is preferably an aromatic polybasic acid in that it is suitable for forming an embedded layer having an appropriate hardness.
  • a known catalyst may be used if necessary.
  • the catalyst include tin compounds such as dibutyltin oxide and stannous octylate; alkoxytitanium such as tetrabutyl titanate and tetrapropyl titanate.
  • the polycarbonate-type polyol is not particularly limited, and examples thereof include those obtained by reacting a glycol similar to the compound represented by the above formula (1) with an alkylene carbonate.
  • a glycol similar to the compound represented by the above formula (1) with an alkylene carbonate.
  • the glycol and the alkylene carbonate one type may be used alone, two or more types may be used in combination, and when two or more types are used in combination, the combination and ratio thereof can be arbitrarily selected. ..
  • the number average molecular weight calculated from the hydroxyl value of the polyol compound is preferably 1000 to 10000, more preferably 2000 to 9000, and particularly preferably 3000 to 7000.
  • the number average molecular weight calculated from the hydroxyl value of the polyol compound is a value calculated from the following formula.
  • the polyol compound is preferably a polyether-type polyol, and more preferably a polyether-type diol.
  • the polyisocyanate compound to be reacted with the polyol compound is not particularly limited as long as it has two or more isocyanate groups.
  • the polyisocyanate compound one type may be used alone, two or more types may be used in combination, and when two or more types are used in combination, the combination and ratio thereof can be arbitrarily selected.
  • polyvalent isocyanate compound examples include chain aliphatic diisocyanates such as tetramethylene diisocyanate, hexamethylene diisocyanate, and trimethylhexamethylene diisocyanate; isophorone diisocyanate, norbornan diisocyanate, dicyclohexylmethane-4,4'-diisocyanate, and dicyclohexylmethane-2.
  • chain aliphatic diisocyanates such as tetramethylene diisocyanate, hexamethylene diisocyanate, and trimethylhexamethylene diisocyanate
  • isophorone diisocyanate norbornan diisocyanate
  • dicyclohexylmethane-4,4'-diisocyanate dicyclohexylmethane-2.
  • the multivalent isocyanate compound is preferably isophorone diisocyanate, hexamethylene diisocyanate or xylylene diisocyanate from the viewpoint of handleability.
  • the (meth) acrylic compound to be reacted with the terminal isocyanate urethane prepolymer is not particularly limited as long as it is a compound having at least a hydroxyl group and a (meth) acryloyl group in one molecule. ..
  • the (meth) acrylic compound one type may be used alone, two or more types may be used in combination, and when two or more types are used in combination, the combination and ratio thereof can be arbitrarily selected.
  • Examples of the (meth) acrylic compound include 2-hydroxyethyl (meth) acrylate, 2-hydroxypropyl (meth) acrylate, 3-hydroxypropyl (meth) acrylate, and 2-hydroxy (meth) acrylate. Butyl, 3-hydroxybutyl (meth) acrylate, 4-hydroxybutyl (meth) acrylate, 4-hydroxycyclohexyl (meth) acrylate, 5-hydroxycyclooctyl (meth) acrylate, 2-hydroxycyclooctyl (meth) acrylate Hydroxyl-containing (meth) acrylic acid esters such as hydroxy-3-phenyloxypropyl, pentaerythritol tri (meth) acrylate, polyethylene glycol mono (meth) acrylate, polypropylene glycol mono (meth) acrylate; N-methylol (meth) acrylamide, etc.
  • Hydroxy group-containing (meth) acrylamide examples thereof include a reactant obtained by reacting vinyl alcohol, vinylphenol or bisphenol A diglycidyl ether with (meth) acrylic acid.
  • the (meth) acrylic compound is preferably a hydroxyl group-containing (meth) acrylic acid ester, more preferably a hydroxyl group-containing (meth) acrylic acid alkyl ester, and (meth) acrylic acid 2-. Hydroxyethyl is particularly preferred.
  • the reaction between the terminal isocyanate urethane prepolymer and the (meth) acrylic compound may be carried out using a solvent, a catalyst or the like, if necessary.
  • the conditions for reacting the terminal isocyanate urethane prepolymer with the (meth) acrylic compound may be appropriately adjusted.
  • the reaction temperature is preferably 60 to 100 ° C.
  • the reaction time is 1 to 1 to 1. It is preferably 4 hours.
  • the urethane (meth) acrylate may be any of an oligomer, a polymer, and a mixture of the oligomer and the polymer, but is preferably an oligomer.
  • the weight average molecular weight of the urethane (meth) acrylate is preferably 1000 to 100,000, more preferably 3000 to 80000, and particularly preferably 5000 to 65000.
  • the weight average molecular weight is 1000 or more, in the polymer of urethane (meth) acrylate and the polymerizable monomer described later, due to the intermolecular force between the structures derived from urethane (meth) acrylate, the embedded layer The hardness can be easily optimized.
  • the composition for forming an embedded layer (II) may contain a polymerizable monomer in addition to the urethane (meth) acrylate from the viewpoint of further improving the film-forming property.
  • the polymerizable monomer is preferably a compound having energy ray polymerizable property, having a weight average molecular weight of less than 1000, and having at least one (meth) acryloyl group in one molecule.
  • Examples of the polymerizable monomer include a (meth) acrylic acid alkyl ester in which the alkyl group constituting the alkyl ester has 1 to 30 carbon atoms and is chain-like; a hydroxyl group, an amide group, an amino group, an epoxy group, or the like.
  • Functional group-containing (meth) acrylic compound having a functional group of; (meth) acrylic acid ester having an aliphatic cyclic group; (meth) acrylic acid ester having an aromatic hydrocarbon group; having a heterocyclic group ( Meta) Acrylic acid ester; a compound having a vinyl group; a compound having an allyl group and the like can be mentioned.
  • Examples of the (meth) acrylic acid alkyl ester having a chain alkyl group having 1 to 30 carbon atoms include methyl (meth) acrylic acid, ethyl (meth) acrylic acid, and n-propyl (meth) acrylic acid.
  • Examples of the functional group-containing (meth) acrylic acid derivative include 2-hydroxyethyl (meth) acrylate, 2-hydroxypropyl (meth) acrylate, 3-hydroxypropyl (meth) acrylate, and (meth) acrylate.
  • Hydroxyl-containing (meth) acrylic acid esters such as 2-hydroxybutyl, 3-hydroxybutyl (meth) acrylate, 4-hydroxybutyl (meth) acrylate; (meth) acrylamide, N, N-dimethyl (meth) acrylamide, (Meta) acrylamides such as N-butyl (meth) acrylamide, N-methylol (meth) acrylamide, N-methylolpropane (meth) acrylamide, N-methoxymethyl (meth) acrylamide, N-butoxymethyl (meth) acrylamide, etc.
  • (meth) acrylic acid ester having an amino group hereinafter, may be referred to as "amino group-containing (meth) acrylic acid ester”
  • one hydrogen atom of the amino group is replaced with a group other than the hydrogen atom.
  • a (meth) acrylic acid ester having a mono-substituted amino group hereinafter, may be referred to as "mono-substituted amino group-containing (meth) acrylic acid ester”
  • the two hydrogen atoms of the amino group are other than hydrogen atoms.
  • a (meth) acrylic acid ester having a disubstituted amino group substituted with a group (hereinafter, may be referred to as "disubstituted amino group-containing (meth) acrylic acid ester”); glycidyl (meth) acrylate, (meth). ) (Meta) acrylic acid ester having an epoxy group such as methyl glycidyl acrylate (hereinafter, may be referred to as "epoxy group-containing (meth) acrylic acid ester"), etc., and 2-hydroxy (meth) acrylic acid. Butyl is preferred, and 2-hydroxypropyl acrylate is more preferred.
  • amino group-containing (meth) acrylic acid ester means a compound in which one or more hydrogen atoms of the (meth) acrylic acid ester are substituted with an amino group (-NH 2). ..
  • the "mono-substituted amino group-containing (meth) acrylic acid ester” means a compound in which one or more hydrogen atoms of the (meth) acrylic acid ester are substituted with a mono-substituted amino group.
  • disubstituted amino group-containing (meth) acrylic acid ester means a compound in which one or more hydrogen atoms of the (meth) acrylic acid ester are substituted with a disubstituted amino group.
  • Examples of the group other than the hydrogen atom (that is, the substituent) in which the hydrogen atom is substituted in the "mono-substituted amino group" and the "di-substituted amino group” include an alkyl group and the like.
  • Examples of the (meth) acrylic acid ester having an aliphatic cyclic group include isobornyl (meth) acrylate, dicyclopentenyl (meth) acrylate, dicyclopentanyl (meth) acrylate, and (meth) acrylic acid. Examples thereof include dicyclopentenyloxyethyl, cyclohexyl (meth) acrylate, and adamantyl (meth) acrylate. Isobornyl (meth) acrylate is preferable, and isobornyl acrylate is more preferable.
  • Examples of the (meth) acrylic acid ester having an aromatic hydrocarbon group include phenylhydroxypropyl (meth) acrylate, benzyl (meth) acrylate, and 2-hydroxy-3-phenoxypropyl (meth) acrylate. Can be mentioned.
  • the heterocyclic group in the (meth) acrylic acid ester having a heterocyclic group may be either an aromatic heterocyclic group or an aliphatic heterocyclic group.
  • Examples of the (meth) acrylic acid ester having a heterocyclic group include tetrahydrofurfuryl (meth) acrylate and (meth) acryloyl morpholine.
  • Examples of the compound having a vinyl group include styrene, hydroxyethyl vinyl ether, hydroxybutyl vinyl ether, N-vinylformamide, N-vinylpyrrolidone, N-vinylcaprolactam and the like.
  • Examples of the compound having an allyl group include allyl glycidyl ether and the like.
  • the polymerizable monomer preferably has a relatively bulky group from the viewpoint of good compatibility with the urethane (meth) acrylate, and such a monomer has an aliphatic cyclic group (meth).
  • Acrylate ester, (meth) acrylic acid ester having an aromatic hydrocarbon group, (meth) acrylic acid ester having a heterocyclic group, and (meth) acrylic acid ester having an aliphatic cyclic group are more suitable. preferable.
  • the polymerizable monomer contained in the embedded layer forming composition (II) may be only one type, may be two or more types, and when there are two or more types, the combination and ratio thereof can be arbitrarily selected.
  • the content of the polymerizable monomer is preferably 10 to 99% by mass, more preferably 15 to 95% by mass, and 20 to 90% by mass. Is more preferable, and 25 to 80% by mass is particularly preferable.
  • the composition for forming an embedded layer (II) may contain a photopolymerization initiator in addition to the urethane (meth) acrylate and the polymerizable monomer.
  • the composition for forming an embedded layer (II) containing a photopolymerization initiator sufficiently promotes a curing reaction even when irradiated with relatively low-energy energy rays such as ultraviolet rays.
  • Examples of the photopolymerization initiator in the embedded layer forming composition (II) include the same photopolymerization initiator in the first pressure-sensitive adhesive composition (I-1).
  • the photopolymerization initiator contained in the embedded layer forming composition (II) may be only one type, may be two or more types, and when there are two or more types, the combination and ratio thereof can be arbitrarily selected.
  • the content of the photopolymerization initiator is 0.01 to 20 parts by mass with respect to 100 parts by mass of the total content of the urethane (meth) acrylate and the polymerizable monomer. It is preferably 0.03 to 10 parts by mass, and particularly preferably 0.05 to 5 parts by mass.
  • the composition for forming an embedded layer (II) may contain a resin component other than the urethane (meth) acrylate as long as the effects of the present invention are not impaired.
  • the type of the resin component and the content thereof in the composition for forming an embedded layer (II) may be appropriately selected depending on the intended purpose, and are not particularly limited.
  • the composition for forming an embedded layer (II) may contain other additives that do not correspond to any of the above-mentioned components as long as the effects of the present invention are not impaired.
  • the other additives include cross-linking agents, antistatic agents, antioxidants, chain transfer agents, softeners (plasticizers), fillers, rust inhibitors, colorants (pigments, dyes) and the like.
  • Additives can be mentioned.
  • examples of the chain transfer agent include thiol compounds having at least one thiol group (mercapto group) in one molecule.
  • thiol compound examples include nonyl mercaptan, 1-dodecanethiol, 1,2-ethanedithiol, 1,3-propanedithiol, triazinethiol, triazinedithiol, triazinetrithiol, 1,2,3-propanetrithiol, and the like.
  • the other additives contained in the composition for forming an embedded layer (II) may be only one type, may be two or more types, and when there are two or more types, their combinations and ratios can be arbitrarily selected.
  • the content of other additives is not particularly limited and may be appropriately selected according to the type thereof.
  • composition for forming an embedded layer (II) may contain a solvent. Since the composition for forming the embedded layer (II) contains a solvent, the suitability for coating on the surface to be coated is improved.
  • the composition of the embedded layer (II) in the present embodiment is the above-mentioned composition for forming an embedded layer (II) from which the solvent has been removed.
  • the content ratio of urethane (meth) acrylate with respect to the total mass of the embedded layer (II) is preferably 20.0 to 60.0% by mass, more preferably 22.5 to 57.5% by mass. It is more preferably 25.0 to 55.0% by mass.
  • the content ratio of the polymerizable monomer to the total mass of the embedded layer (II) is preferably 40.0 to 80.0% by mass, and 42.5 to 77.
  • the polymerizable monomer preferably contains either one or both of isobornyl acrylate and 2-hydroxypropyl acrylate.
  • the content ratio of the cross-linking agent to the total mass of the embedded layer (II) is preferably 0.1 to 5.0% by mass, preferably 0.2 to 4.5. It is more preferably mass%, and even more preferably 0.3 to 4.0 mass%.
  • the content ratio of the photopolymerization initiator with respect to the total mass of the embedded layer (II) is preferably 0.1 to 10.0% by mass, preferably 0.2. It is more preferably about 9.0% by mass, and even more preferably 0.3 to 8.0% by mass.
  • the photopolymerization initiator preferably contains 2-hydroxy-2-methyl-1-phenyl-propane-1-one.
  • the content ratio of the thiol compound with respect to the total mass of the embedded layer (II) is preferably 0.5 to 10.0% by mass, and 0.6 to 9.0. It is more preferably mass%, and even more preferably 0.7 to 8.0 mass%.
  • the thiol compound preferably contains pentaerythritol tetrakis (3-mercaptobutyrate).
  • the composition for forming an embedded layer such as the composition for forming an embedded layer (I) and (II) can be obtained by blending each component for forming the composition.
  • the order of addition of each component at the time of blending is not particularly limited, and two or more kinds of components may be added at the same time.
  • a solvent it may be used by mixing the solvent with any compounding component other than the solvent and diluting the compounding component in advance, or diluting any of the compounding components other than the solvent in advance. You may use it by mixing the solvent with these compounding components without leaving.
  • the method of mixing each component at the time of blending is not particularly limited, and from known methods such as a method of rotating a stirrer or a stirring blade to mix; a method of mixing using a mixer; a method of adding ultrasonic waves to mix. It may be selected as appropriate.
  • the temperature and time at the time of adding and mixing each component are not particularly limited as long as each compounding component does not deteriorate, and may be appropriately adjusted, but the temperature is preferably 15 to 30 ° C.
  • the base material is in the form of a sheet or a film, and examples of the constituent materials thereof include various resins.
  • the resin include polyethylene such as low density polyethylene (also referred to as LDPE), linear low density polyethylene (also referred to as LLDPE), and high density polyethylene (also referred to as HDPE); polypropylene, polybutene, polybutadiene, and polymethyl.
  • Polyethylene other than polyethylene such as penten and norbornene resin; ethylene-vinyl acetate copolymer (also referred to as EVA), ethylene- (meth) acrylic acid copolymer, ethylene- (meth) acrylic acid ester copolymer, ethylene- Ethylene-based copolymers such as norbornene copolymers (ie, copolymers obtained using ethylene as the monomer); vinyl chloride-based resins such as polyvinyl chloride and vinyl chloride copolymers (ie, vinyl chloride as the monomer) Resin obtained using); Polyethylene; Polycycloolefin; Polyethylene terephthalate (also referred to as PET), polyethylene naphthalate, polybutylene terephthalate, polyethylene isophthalate, polyethylene-2,6-naphthalenedicarboxylate, all constituents.
  • EVA ethylene-vinyl acetate copolymer
  • ethylene- (meth) acrylic acid copolymer ethylene
  • Polyethylene such as total aromatic polyester having an aromatic cyclic group as a unit; a copolymer of two or more kinds of the polyester; poly (meth) acrylic acid ester; polyurethane; polyurethane acrylate; polyimide; polyamide; polycarbonate; fluororesin; Examples thereof include polyacetal; modified polyphenylene oxide; polyphenylene sulfide; polysulfone; polyether ketone and the like.
  • the resin include polymer alloys such as a mixture of the polyester and other resins. The polymer alloy of the polyester and the resin other than the polyester preferably has a relatively small amount of the resin other than the polyester.
  • the resin for example, a crosslinked resin in which one or more of the resins exemplified above are crosslinked; modification of an ionomer or the like using one or more of the resins exemplified so far. Resin is also mentioned.
  • the resin constituting the base material may be only one type, may be two or more types, and when there are two or more types, the combination and ratio thereof can be arbitrarily selected.
  • the base material may be only one layer (single layer), may be a plurality of layers of two or more layers, and when there are a plurality of layers, the plurality of layers may be the same or different from each other, and the combination of these multiple layers is particularly suitable. Not limited.
  • the thickness of the base material is preferably 5 to 1000 ⁇ m, more preferably 10 to 500 ⁇ m, further preferably 15 to 300 ⁇ m, and particularly preferably 20 to 150 ⁇ m.
  • the "thickness of the base material” means the thickness of the entire base material, and for example, the thickness of the base material composed of a plurality of layers means the total thickness of all the layers constituting the base material. means.
  • the base material has a high thickness accuracy, that is, a base material in which the variation in thickness is suppressed regardless of the part.
  • a material that can be used to construct a base material having such a high accuracy of thickness for example, polyethylene, a polyolefin other than polyethylene, polyethylene terephthalate, and an ethylene-vinyl acetate copolymer ( EVA) and the like.
  • the base material contains various known additives such as fillers, colorants, antistatic agents, antioxidants, organic lubricants, catalysts, and softeners (plasticizers). You may.
  • the Young's modulus of the base material is preferably 100 to 2000 MPa, more preferably 150 to 1500 MPa, and even more preferably 200 to 1000 MPa.
  • the Young's modulus of the base material is at least the lower limit of the above range, dimensional stability can be ensured when the electromagnetic wave shielding film is formed.
  • the Young's modulus of the base material is not more than the upper limit of the above range, the stretchability of the terminal protection tape is improved.
  • the Young's modulus of the base material can be measured by the method described in Examples described later.
  • the elongation at break of the base material is preferably 50 to 2000%, more preferably 70 to 1600%, and even more preferably 90 to 1200%.
  • the elongation at break of the base material can be measured by the method described in Examples described later.
  • the breaking stress of the base material is preferably 10 to 300 MPa, more preferably 20 to 250 MPa, and even more preferably 30 to 200 MPa.
  • a method of grasping and stretching the outer peripheral portion of the terminal protection tape by using the gripping member or the like described in ⁇ Stretching method 1 of the terminal protection tape> described later (biaxial stretching). )
  • ⁇ Stretching method of terminal protection tape 2> can be stretched by the method using the ring frame.
  • the breaking stress of the base material can be measured by the method described in Examples described later.
  • the base material may be transparent, opaque, colored depending on the purpose, or another layer may be vapor-deposited.
  • the base material is preferably one that allows energy rays to pass through.
  • the base material can be produced by a known method.
  • a base material containing a resin can be produced by molding a resin composition containing the resin.
  • the release film may be one known in the art.
  • the preferred release film is, for example, one in which at least one surface of a resin film such as polyethylene terephthalate is peeled by a silicone treatment or the like; at least one surface of the film is a release surface made of polyolefin. And so on.
  • the thickness of the release film is preferably the same as the thickness of the base material.
  • the second pressure-sensitive adhesive layer (that is, the bonded pressure-sensitive adhesive layer) is a pressure-sensitive adhesive layer for bonding the terminal protection tape of the present embodiment to the support.
  • the second pressure-sensitive adhesive layer may be one known in the art, and can be appropriately selected from those described in the above-mentioned first pressure-sensitive adhesive layer according to the support.
  • the second pressure-sensitive adhesive composition for forming the second pressure-sensitive adhesive layer is the same as the first pressure-sensitive adhesive composition, and the method for producing the second pressure-sensitive adhesive composition is also the production of the first pressure-sensitive adhesive composition. Similar to the method.
  • the terminal protection tape can be manufactured by sequentially laminating the above-mentioned layers so as to have a corresponding positional relationship.
  • the method of forming each layer is as described above.
  • the embedded layer is laminated by applying the above-mentioned composition for forming an embedded layer on the peeled surface of the release film and drying it if necessary.
  • the first pressure-sensitive adhesive layer is laminated by applying the above-mentioned first pressure-sensitive adhesive composition on the peel-processed surface of another release film and drying it if necessary.
  • the terminal protection tape in which the embedding layer and the first pressure-sensitive adhesive layer are laminated on the base material in this order in the thickness direction can be produced by the method shown below. For example, by peeling off the release film on the side of the embedding layer of the terminal protection tape in which the release film, the embedding layer, the first adhesive layer, and the release film are laminated in this order, and sticking this to the base material. , A terminal protection tape in which an embedded layer, a first pressure-sensitive adhesive layer, and a release film are laminated in this order can be obtained. The release film may be removed when the terminal protection tape is used.
  • the method for manufacturing a semiconductor device with an electromagnetic wave shielding film includes a step of embedding the terminals of the semiconductor device with terminals in the viscoelastic layer of the terminal protection tape having a viscoelastic layer, and the terminal protection.
  • the step of peeling the semiconductor device from the terminal protection tape is included.
  • FIG. 5 shows a method for manufacturing a semiconductor device with an electromagnetic wave shielding film according to the present embodiment, in which a terminal protection tape 3 having an adhesive layer 14, an embedded layer 13, and a base material 11 in this order is shown. It is sectional drawing which shows typically the manufacturing method of the semiconductor device with an electromagnetic wave shielding film fixed to the support 30 as shown in 4.
  • the semiconductor device 65 with terminals is placed on the viscoelastic layer 12 of the terminal protection tape, and the terminal 91 side, that is, the terminal forming surface 63a of the circuit board 63 is below.
  • the terminal 91 is embedded in the viscoelastic layer 12 by pressing the terminal 91.
  • the viscoelastic layer 12 is brought into contact with the terminal 91 of the terminal-equipped semiconductor device 65, and the terminal-equipped semiconductor device 65 is pressed against the terminal protection tape.
  • the outermost surface of the viscoelastic layer 12 on the side of the adhesive layer 14 is sequentially crimped to the surface of the terminal 91 and the terminal forming surface 63a of the circuit board 63.
  • the viscoelastic layer 12 is softened, spreads between the terminals 91 so as to cover the terminals 91, adheres to the terminal forming surface 63a, and is in close contact with the surface of the terminals 91, particularly the terminals.
  • the terminal 91 is embedded by covering the surface of the portion near the forming surface 63a.
  • a known method of crimping and attaching various sheets to an object can be applied, and examples thereof include a method using a laminate roller and a vacuum laminator.
  • the pressure at which the semiconductor device 65 with terminals is crimped onto the terminal protection tape is not particularly limited, but is preferably 0.1 to 1.5 MPa, more preferably 0.3 to 1.3 MPa. ..
  • the heating temperature is preferably 30 to 70 ° C, more preferably 35 to 65 ° C, and particularly preferably 40 to 60 ° C. Further, it is preferable to attach the first adhesive layer 14 of the viscoelastic layer 12 to the terminal forming surface 63a.
  • the elastic modulus of the embedded layer 13 is preferably 0.05 to 20 MPa, preferably 0.07 to 18 MPa. More preferably, it is 0.09 to 16 MPa. When the elastic modulus is within the above range, it becomes easy to embed the semiconductor device with terminals in the terminal protection tape.
  • a conductive resin 101 is applied to the exposed surface of the semiconductor device 65 with terminals that is not embedded in the viscoelastic layer 12 of the terminal protection tape (FIG. 5 (c)), and further thermoset to form a conductive material.
  • the electromagnetic wave shield film 10 is formed (FIG. 5 (d)).
  • a method of forming the electromagnetic wave shielding film 10 by coating with a conductive material a method such as sputtering, ion plating, or spray coating can also be used.
  • the adhesive strength of the terminal protection tape 3 to the terminal-equipped semiconductor device 65 after the step of embedding the terminal-equipped semiconductor device 65 and before the step of forming the electromagnetic wave shield film is 1.0 to 6.5 N / 25 mm. It is preferably 1.1 to 6.0 N / 25 mm, more preferably 1.2 to 5.5 N / 25 mm, and even more preferably 1.2 to 5.5 N / 25 mm.
  • the adhesive strength is within the above range, the peelability in the step of peeling the terminal-equipped semiconductor device on which the electromagnetic wave shielding film is formed from the terminal protection tape is improved.
  • the method for measuring the adhesive strength will be described in detail in Examples.
  • the bonding area between the terminal-equipped semiconductor device on which the electromagnetic wave shield film is formed and the viscoelastic layer 12 is reduced, and the terminal-equipped semiconductor device on which the electromagnetic wave shield film is formed is terminal-protected. It is peeled off from the tape 3 (FIG. 5 (e)).
  • the push-up height u1 in picking is preferably higher than the height h1 of the terminal 91, and is preferably 2.0 ⁇ u1 / h1 ⁇ 10.
  • the "terminal height” means the height of the terminal at the highest position from the terminal forming surface.
  • the stretched amount of the terminal protection tape in stretching is preferably 1.0 mm or more, more preferably 2.0 mm or more, and further preferably 3.0 mm or more.
  • the stretching amount is equal to or greater than the lower limit, the bonding area between the terminal-equipped semiconductor device on which the electromagnetic wave shield film is formed and the viscoelastic layer 12 becomes sufficiently small, and the terminal-equipped semiconductor device on which the electromagnetic wave shield film is formed becomes available. It becomes easy to peel off from the terminal protection tape 3.
  • the upper limit of the stretching amount is not particularly limited as long as it shows the effect of the present invention, but may be, for example, 20.0 mm or less.
  • the stretching amount is, for example, preferably 1.0 mm or more and 19.0 mm or less, more preferably 2.0 mm or more and 18.0 mm or less, and further preferably 3.0 mm or more and 17.0 mm or less.
  • the "stretched amount” means "the length of the terminal protection tape in the stretching direction after stretching"-"the length of the terminal protecting tape in the stretching direction before stretching".
  • the semiconductor device 65 with terminals to be shielded by electromagnetic waves may be a semiconductor device 65 with terminals manufactured individually, and is individualized by a dicing method.
  • the semiconductor device 65 with terminals may be used.
  • a semiconductor device 65 with terminals which is separated into individual pieces and whose individual electronic components 61 and 62 are sealed with a sealing resin 64, is used with a terminal protection tape 3.
  • the method of electromagnetic wave shielding has been shown.
  • the terminal-equipped semiconductor device 65 is electromagnetically shielded from the terminal-equipped semiconductor device assembly 6 before being separated by using the terminal protection tape 2. You can also.
  • Another method of manufacturing a semiconductor device with an electromagnetic wave shielding film according to another embodiment of the present invention includes a step of embedding terminals of a semiconductor device assembly with terminals in the viscoelastic layer of a terminal protection tape having a viscoelastic layer, and the above-mentioned.
  • the process of dicing the terminal-equipped semiconductor device assembly to make the terminal-equipped semiconductor device assembly into a terminal-equipped semiconductor device in which terminals are embedded in the viscoelastic layer of the terminal protection tape, and the terminal protection tape The step of forming an electromagnetic wave shielding film on the exposed surface of the terminal-equipped semiconductor device not embedded in the viscoelastic layer, and the terminal-attached semiconductor device on which the electromagnetic wave shielding film is formed by stretching the terminal protection tape. The step of peeling from the terminal protection tape is included.
  • a method of manufacturing the semiconductor device with an electromagnetic wave shielding film of the present embodiment will be described with reference to FIG.
  • FIG. 6 shows a method for manufacturing a semiconductor device with an electromagnetic wave shielding film according to the present embodiment, in which a terminal protection tape 3 having an adhesive layer 14, an embedded layer 13, and a base material 11 in this order is shown. It is sectional drawing which shows typically the manufacturing method of the semiconductor device with an electromagnetic wave shielding film fixed to the support 30 as shown in 4.
  • the semiconductor device assembly 6 with terminals connected to the viscoelastic layer 12 of the terminal protection tape by the circuit board 63 is attached to the terminal 91 side, that is, the circuit.
  • the terminal 91 is embedded in the viscoelastic layer 12 by pressing the substrate 63 with the terminal forming surface 63a facing down, as in the cases of FIGS. 5A and 5B.
  • the terminals 91 are embedded in the viscoelastic layer 12 of the terminal protection tape as in the cases of FIGS. 5A and 5B. ..
  • the viscoelastic layer 12 can be softened and the viscoelastic layer 12 can be brought into close contact with the terminal forming surface 63a of the circuit board 63.
  • the pressure at which the semiconductor device assembly 6 with terminals is crimped onto the terminal protection tape is not particularly limited, but is preferably 0.1 to 1.5 MPa, preferably 0.3 to 1.3 MPa. More preferred.
  • the heating temperature is preferably 30 to 70 ° C, more preferably 35 to 65 ° C, and particularly preferably 40 to 60 ° C. Further, it is preferable to attach the first adhesive layer 14 of the viscoelastic layer 12 to the terminal forming surface 63a.
  • the terminal protection tape of the present invention used in the step of forming the electromagnetic wave shield film also serves as a dicing tape for the terminal-equipped semiconductor device assembly 6.
  • the dicing tape is used in the method for manufacturing the semiconductor device with an electromagnetic wave shielding film shown in FIG. 5 when the semiconductor device 65 with a terminal to be the target of the electromagnetic wave shielding is the semiconductor device 65 with a terminal separated by the dicing method. It is necessary to pick up the above semiconductor device with terminals and replace it with the terminal protection tape (FIG. 5 (a)). However, in the method of manufacturing the semiconductor device with electromagnetic wave shielding film shown in FIG. 6, the dicing tape is used. The work of replacing the terminal-equipped semiconductor device 65 with the terminal protection tape can be omitted.
  • the conductive resin 101 is applied to the exposed surface of the semiconductor device 65 with terminals that is not embedded in the viscoelastic layer 12 of the terminal protection tape (FIG. 6 (d)). At this time, if the conductive resin 101 is not sufficiently separated at the boundary portion of each terminal-equipped semiconductor device 65 of the terminal-equipped semiconductor device assembly 6, the terminal protection tape may be stretched using an expanding device or the like. Good. Individual terminal-equipped semiconductor devices 65 can be individualized with the conductive resin 101 coated on each side surface of the individualized terminal-equipped semiconductor device 65. Further, the conductive resin 101 applied to the top surface and the side surface of the fragmented semiconductor device 65 with terminals is heated and cured to be not embedded in the viscoelastic layer 12 of the terminal protection tape.
  • An electromagnetic wave shielding film 10 made of a conductive material is formed on the exposed surface of 65 (FIG. 6 (e)).
  • the electromagnetic wave shielding film 10 may be formed by directly sputtering the conductive material onto the semiconductor device 65 with terminals (FIG. 6 (c)) (FIG. 6 (e)).
  • the bonding area between the terminal-equipped semiconductor device on which the electromagnetic wave shield film is formed and the viscoelastic layer 12 is reduced, and the terminal-equipped semiconductor device on which the electromagnetic wave shield film is formed is terminal-protected. It is peeled off from the tape 3 (FIG. 6 (f)). When peeling, it is preferable to perform picking by pushing upward with a pin or the like from the base material 11 side of the terminal protection tape 3.
  • the semiconductor device 65 with terminals coated with the electromagnetic wave shield film 10 can be taken out (FIG. 6 (g)). ..
  • the embedded layer 13 and the adhesive layer 14 are energy ray-curable, before the step of embedding the terminals of the semiconductor assembly with terminals in the viscoelastic layer 12 of the terminal protection tape, or It is preferable to perform curing after the step of embedding the terminals of the semiconductor device assembly with terminals in the viscoelastic layer 12 of the end terminal protection tape and before dicing.
  • a step of stretching the terminal protection tape 3 during the steps of the above-mentioned manufacturing method 1 of the semiconductor device with the electromagnetic wave shielding film and the manufacturing method 2 of the semiconductor device with the electromagnetic wave shielding film (FIGS. 5 (e) and 6 (f)).
  • the method for stretching the terminal protection tape 3 in) is not particularly limited, and examples thereof include the following two methods.
  • the method of stretching the terminal protection tape of the present embodiment is a method of grasping and stretching the outer peripheral portion of the terminal protection tape using a gripping member or the like.
  • the terminal protection tape is preferably stretched by at least biaxial stretching.
  • the terminal protection tape is stretched by applying tension in four directions of, for example, the + X-axis direction, the ⁇ X-axis direction, the + Y-axis direction, and the ⁇ Y-axis direction in the X-axis and the Y-axis orthogonal to each other.
  • Biaxial stretching as described above can be performed, for example, by using a separation device that applies tension in the X-axis direction and the Y-axis direction.
  • the X-axis and the Y-axis are orthogonal to each other, one of the directions parallel to the X-axis is the + X-axis direction, the direction opposite to the + X-axis direction is the -X-axis direction, and the direction parallel to the Y-axis.
  • One of them is defined as the + Y-axis direction
  • the direction opposite to the + Y-axis direction is defined as the ⁇ Y-axis direction.
  • the separating device applies tension to the terminal protection tape in four directions of + X-axis direction, ⁇ X-axis direction, + Y-axis direction, and ⁇ Y-axis direction, and a plurality of holding means in each of the four directions. And, it is preferable to provide a plurality of tension applying means corresponding to them.
  • the number of holding means and tension applying means in each direction depends on the size of the terminal protection tape, but may be, for example, 3 or more and 10 or less.
  • the method of stretching the terminal protection tape of the present embodiment is a method of fixing the outer peripheral portion of the terminal protection tape with a fixing jig and pressing an expander to stretch the terminal protection tape.
  • An example of the method of stretching the terminal protection tape of the present embodiment will be described with reference to FIG. 7.
  • the viscoelastic layer 12 is attached to the ring frame 17 via the third pressure-sensitive adhesive layer 16.
  • the third pressure-sensitive adhesive layer may be known in the art, and can be appropriately selected from those described in the above-mentioned first pressure-sensitive adhesive layer and second pressure-sensitive adhesive layer according to the material of the ring frame 17. ..
  • the third pressure-sensitive adhesive composition for forming the third pressure-sensitive adhesive layer is the same as the first pressure-sensitive adhesive composition and the second pressure-sensitive adhesive composition, and the method for producing the third pressure-sensitive adhesive composition is also the same as the first pressure-sensitive adhesive composition. 1
  • the method for producing the pressure-sensitive adhesive composition and the second method for producing the pressure-sensitive adhesive composition are the same. In this way, the terminal protection tape whose outer peripheral portion is fixed by the ring frame is pressed against the cylindrical expander 18 from the base material 11 side and pushed upward to stretch the terminal protection tape.
  • the height h0 of the terminal 91 is preferably lower than the thickness d1 of the viscoelastic layer 12, and preferably 1.2 ⁇ d1 / h0 ⁇ 5.0.
  • the height of the terminal 91 is preferably 20 to 300 ⁇ m, more preferably 30 to 270 ⁇ m, and particularly preferably 40 to 240 ⁇ m.
  • the function of the terminal 91 can be further improved.
  • the height of the terminal 91 is not more than the upper limit value, the effect of suppressing the remaining of the viscoelastic layer 12 on the upper part of the terminal 91 becomes higher.
  • the "terminal height” means the height of the terminal at the highest position from the terminal forming surface.
  • the height h0 of the terminals 91 can be the average of them.
  • the height of the terminal can be measured by, for example, a non-contact three-dimensional optical interference type surface roughness meter (manufactured by Japan Veeco, trade name: Wyko NT1100).
  • the width of the terminal 91 is not particularly limited, but is preferably 170 to 350 ⁇ m, more preferably 200 to 320 ⁇ m, and particularly preferably 230 to 290 ⁇ m.
  • the width of the terminal 91 is equal to or larger than the lower limit value, the function of the terminal 91 can be further improved. Further, when the width of the terminal 91 is not more than the upper limit value, the effect of suppressing the remaining of the viscoelastic layer 12 on the upper part of the terminal 91 becomes higher.
  • the "terminal width” is obtained by connecting two different points on the terminal surface with a straight line when the terminal is viewed in a plan view from a direction perpendicular to the terminal forming surface. It means the maximum value of the line segment.
  • the terminal width means the maximum diameter (terminal diameter) of the terminal when the terminal is viewed in a plan view.
  • the distance between adjacent terminals 91 (that is, the pitch between terminals) is not particularly limited, but is preferably 250 to 800 ⁇ m, more preferably 300 to 600 ⁇ m, and particularly preferably 350 to 500 ⁇ m.
  • the distance is equal to or greater than the lower limit value, the embedding property of the terminal 91 can be further improved.
  • the distance is not more than the upper limit value, the effect of suppressing the remaining of the viscoelastic layer 12 on the upper part of the terminal 91 becomes higher.
  • the "distance between adjacent terminals" means the minimum value of the distance between the surfaces of adjacent terminals.
  • ⁇ Measurement method of physical properties Young's modulus of the base material, amount of air bubbles when terminals are embedded in the viscoelastic layer of the terminal protection tape, adhesive strength of the terminal protection tape to the semiconductor device with terminals, elastic modulus of the first adhesive layer and the embedded layer , The breaking stress of the base material and the terminal protection tape, and the breaking elongation of the base material and the terminal protection tape were measured by the following methods.
  • the tensile elastic modulus of the base material at 23 ° C. was measured according to JIS K7161: 2014 and used as Young's modulus.
  • the width of the base material at the time of measurement was 15 mm, the distance between the gripping tools was 10 mm, and the tensile speed was 50 mm / min.
  • a terminal having a diameter of 0.25 mm was embedded in a viscoelastic layer of a terminal protection tape.
  • the diameter of the circular void formed from the base material side to the outside of the terminal was measured using a digital optical microscope (manufactured by KEYENCE, product name "VHX-1000"). The measurement was performed when peeling after irradiation with ultraviolet rays in ⁇ evaluation of peelability> described later. That is, when the terminal protection tape was stretched at the time of peeling, the above measurement was performed on the stretched terminal protection tape.
  • the measurement was performed as follows according to JIS Z0237: 2009.
  • the terminal protection tape is cut to a width of 25 mm and a length of 250 mm, the release sheet is peeled off, and the exposed adhesive layer is placed on a semiconductor device as an adherend with a 2 kg rubber roller in an environment of 23 ° C. and 50% RH. It was affixed using and left in the same environment for 24 hours.
  • the base material or the terminal protection tape was cut out as a sample having a width of 10 mm and a length of 75 mm.
  • the above sample is set in a tensile tester (manufactured by Orientec, product name "Tencilon") so that the sample measurement site has a width of 10 mm and a length of 25 mm (extension direction), and is placed in an environment of 23 ° C. and 50% RH. It was stretched at a tensile speed of 200 mm / min using the tensile tester. The sample was stretched until it broke, and the elongation at break (%) and the stress at rupture (MPa) were measured.
  • HEA 2-Hydroxyethyl acrylate
  • BA n-butyl acrylate
  • MMA Methyl methacrylate
  • AAc Acrylic acid
  • a resin solution (adhesive base, solid) to which 2-methacryloyloxyethyl isocyanate (about 50 mol% with respect to HEA) was added to an acrylic copolymer consisting of 74 parts by mass of BA, 20 parts by mass of MMA, and 6 parts by mass of HEA. 35% by mass) was prepared.
  • 1-hydroxycyclohexylphenylketone (manufactured by BASF, product name "Irgacure 184", solid content concentration 100%) as a photopolymerization initiator, 3 parts by mass, and trilen as a cross-linking agent, based on 100 parts by mass of this pressure-sensitive adhesive base material.
  • the pressure-sensitive adhesive layer forming composition A was applied to the peeled surface of the peeled film (“SP-PET38131” manufactured by Lintec Corporation, thickness 38 ⁇ m) in which one side of the polyethylene terephthalate film was peeled by silicone treatment. By heating and drying at 100 ° C. for 1 minute, the pressure-sensitive adhesive layer A having a thickness of 10 ⁇ m and 20 ⁇ m, respectively, was produced.
  • the elastic modulus of the pressure-sensitive adhesive layer A before the energy ray curing was 0.05 MPa, and the elastic modulus after curing was 24 MPa.
  • composition B for Forming Embedded Layer 40 parts by mass of single-purpose urethane acrylate, 45 parts by mass of isobornyl acrylate (IBXA), 15 parts by mass of 2-hydroxypropyl acrylate (HPA), pentaerythritol tetrakis (3-mercaptobutyrate) (manufactured by Showa Denko Co., Ltd., product name) "Karens MT PE1", secondary tetrafunctional thiol-containing compound, solid content concentration 100% by mass) 3.5 parts by mass, cross-linking agent 1.8 parts by mass, and 2-hydroxy-2- as a photopolymerization initiator
  • a composition B for forming an embedded layer was prepared by blending 1.0 part by mass of methyl-1-phenyl-propane-1-one (manufactured by BASF, product name "DaroCure 1173", solid content concentration 100% by mass). ..
  • Base material A polyethylene film having a thickness of 80 ⁇ m was used as the base material A.
  • the Young's modulus of the base material A was 340 MPa, the elongation at break was 950%, and the stress at break was 45 MPa.
  • Example 1 The composition A for forming an embedded layer is applied to the peeled surface of a release film (“SP-PET38131” manufactured by Lintec Corporation, thickness 38 ⁇ m) in which one side of a polyethylene terephthalate film is peeled by silicone treatment, and at 100 ° C. After heating and drying for 1 minute, a release film (Lintec's "SP-PET382150", thickness 38 ⁇ m) in which one side of a polyethylene terephthalate film was peeled off by a silicone treatment on the composition A for forming an embedded layer was peeled off. The treated surface was laminated to produce an embedded layer having a thickness of 50 ⁇ m.
  • SP-PET38131 manufactured by Lintec Corporation, thickness 38 ⁇ m
  • the surfaces from which the laminated release film of the embedded layer was peeled off were pasted together to prepare an embedded layer having a thickness of 100 ⁇ m.
  • the embedded layers were laminated and laminated to prepare an embedded layer A having a thickness of 300 ⁇ m.
  • the elastic modulus of the embedded layer A before the energy ray curing was 0.06 MPa, and the elastic modulus after the curing was 65 MPa.
  • An embedded layer A having a thickness of 300 ⁇ m was bonded to the pressure-sensitive adhesive layer A having a thickness of 10 ⁇ m.
  • the release film on the side of the embedded layer A is peeled off and bonded to the easy-adhesion-treated side of the base material A, and the terminal protection tape in the form of the base material 11 / embedded layer 13 / adhesive layer 14 shown in FIG. 1 was manufactured.
  • the configuration and physical characteristics of the terminal protection tape 1 are shown in Tables 1 and 2 (the same applies hereinafter). The peelability was evaluated using the terminal protection tape 1.
  • Table 3 shows the peeling conditions and the evaluation results.
  • Example 2 The terminal protection tape 2 was manufactured in the same manner as in the production example except that the pressure-sensitive adhesive layer A having a thickness of 20 ⁇ m was used instead of the pressure-sensitive adhesive layer A having a thickness of 10 ⁇ m. The peelability was evaluated using the terminal protection tape 2. Table 3 shows the peeling conditions and the evaluation results.
  • composition A for forming an embedded layer is applied by a fountain die method to a peeling film (“SP-PET38131” manufactured by Lintec Corporation, thickness 38 ⁇ m) in which one side of a polyethylene terephthalate film is peeled by silicone treatment. Obtained a coating film. A semi-cured layer was formed by irradiating ultraviolet rays from the coating film side.
  • SP-PET38131 manufactured by Lintec Corporation, thickness 38 ⁇ m
  • a belt conveyor type ultraviolet irradiation device (manufactured by Eye Graphics Co., Ltd., product name "ECS-401GGX”) is used as the ultraviolet irradiation device, and a high-pressure mercury lamp (manufactured by Eye Graphics Co., Ltd., product name "H04") is used as the ultraviolet source.
  • -L41 "was used, and the irradiation conditions were an illuminance of 112 mW / cm 2 with a light wavelength of 365 nm and a light amount of 117 mJ / cm 2 (measured by the product name" UVPF-A1 "manufactured by Eye Graphics Co., Ltd.).
  • the base material A is laminated on the formed semi-cured layer, and further irradiated with ultraviolet rays (using the above-mentioned ultraviolet irradiation device and ultraviolet source, illuminance 271 mW / cm 2 and light intensity 1,200 mJ / cm 2 ). Then, the composition B for forming an embedded layer was completely cured to form an embedded layer B having a thickness of 300 ⁇ m on the base material A, and a laminate of the base material A and the embedded layer B was obtained.
  • the release film is peeled off, and the pressure-sensitive adhesive layer A having a thickness of 10 ⁇ m is attached to the surface of the embedded layer B opposite to the base material A, and the form of the base material 11 / embedded layer 13 / pressure-sensitive adhesive layer 14 shown in FIG.
  • the terminal protection tape 3 of the above was manufactured.
  • the peelability was evaluated using the terminal protection tape 3. Table 3 shows the peeling conditions and the evaluation results.
  • the method for manufacturing the semiconductor device with an electromagnetic wave shield film of the present invention can be easily peeled off in the step of peeling the semiconductor device with terminals on which the electromagnetic wave shield film is formed from the terminal protection tape. , It was confirmed that the manufacturing efficiency is improved.
  • the semiconductor device with terminals can be electromagnetically shielded, and the semiconductor device with an electromagnetic wave shielding film can be manufactured.
  • 1,2,3 ... Terminal protection tape 10 ... Electromagnetic shield film, 11 ... Base material, 12 ... Viscoelastic layer, 13 ... Embedded layer, 14 ... Adhesive layer , 15 ... 2nd adhesive layer (bonded adhesive layer), 16 ... 3rd adhesive layer, 17 ... ring frame, 18 ... expander, 30 ... support, 6 ... Semiconductor device assembly with terminals, 60 ... Semiconductor device assembly, 60a ... Terminal forming surface, 61, 62 ... Electronic components, 63 ... Circuit board, 63a ... Terminal forming surface , 64 ... Sealing resin layer, 65 ... Semiconductor device with terminal, 66 ... Semiconductor device with electromagnetic wave shielding film, 91 ... Terminal, 101 ... Conductive resin, 20, 21, 22, ... ⁇ ⁇ Release film

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Computer Hardware Design (AREA)
  • Power Engineering (AREA)
  • Manufacturing & Machinery (AREA)
  • Health & Medical Sciences (AREA)
  • Electromagnetism (AREA)
  • Toxicology (AREA)
  • Adhesive Tapes (AREA)

Abstract

The present invention relates to a manufacturing method for a semiconductor device (66) with an electromagnetic shield film, said method including: a step for embedding, in a viscoelastic layer (12) of a terminal protection tape, a terminal (91) of a terminal-equipped semiconductor device; a step for forming an electromagnetic shield film (10) on the exposed surfaces of the terminal-equipped semiconductor device which are not embedded in the viscoelastic layer (12) of the terminal protection tape; and a step for stretching the terminal protection tape so as to separate, from the terminal protection tape, the terminal-equipped semiconductor device on which the electromagnetic shield film (10) has been formed.

Description

電磁波シールド膜付き半導体装置の製造方法及び端子保護用テープManufacturing method of semiconductor device with electromagnetic wave shield film and tape for terminal protection
 本発明は、電磁波シールド膜付き半導体装置の製造方法及び端子保護用テープに関する。
 本願は、2019年12月6日に、日本に出願された特願2019-221466号に基づき優先権を主張し、その内容をここに援用する。
The present invention relates to a method for manufacturing a semiconductor device with an electromagnetic wave shielding film and a tape for protecting terminals.
The present application claims priority based on Japanese Patent Application No. 2019-22146 filed in Japan on December 6, 2019, the contents of which are incorporated herein by reference.
 従来、MPUやゲートアレー等に用いる多ピンのLSIパッケージをプリント配線基板に実装する場合には、複数の電子部品を備える半導体装置として、その接続パッド部に共晶ハンダ、高温ハンダ、金等からなる凸状電極(以下、本明細書においては「端子」と称する)が形成されたものを用いている。そして、それらの端子をチップ搭載用基板上の相対応する端子部に対面、接触させ、溶融/拡散接合する実装方法が採用されている。 Conventionally, when a multi-pin LSI package used for MPU, gate array, etc. is mounted on a printed wiring board, as a semiconductor device equipped with a plurality of electronic components, the connection pad portion is made of eutectic solder, high temperature solder, gold, etc. A convex electrode (hereinafter, referred to as a “terminal” in the present specification) is used. Then, a mounting method is adopted in which those terminals are brought into face-to-face contact with the corresponding terminal portions on the chip mounting substrate and melted / diffused.
 パーソナルコンピュータの普及と共にインターネットは一般的となり、現在では、スマートフォンやタブレット端末もインターネットに接続され、デジタル化された映像、音楽、写真、文字情報などを無線通信技術によりインターネットを介して伝達されるシーンが益々増えている。更には、IoT(Internet of Things)が普及して、家電、自動車などの様々なアプリケーション分野でセンサー、RFID(Radio frequency identifier)、MEMS(Micro Electro Mechanical Systems)、ワイヤレスコンポーネント等の半導体デバイスをよりスマートに使用するためのパッケージ技術に革新的な変革がもたらされようとしている。 With the spread of personal computers, the Internet has become commonplace, and nowadays, smartphones and tablet terminals are also connected to the Internet, and digitized images, music, photos, text information, etc. are transmitted via the Internet using wireless communication technology. Is increasing more and more. Furthermore, IoT (Internet of Things) has become widespread, and semiconductor devices such as sensors, RFID (Radio Frequency Identification), MEMS (Micro Electrical Mechanical Systems), and wireless components have become smarter in various application fields such as home appliances and automobiles. Innovative changes are being made to packaging technology for use in RFID.
 このように電子機器の進化が続く中で、半導体デバイスへの要求水準は年々高まっている。特に、高性能化、小型化、高集積化、低消費電力化、低コスト化へのニーズに答えようとすると、熱対策、ノイズ対策の2つが重要なポイントとなる。 As electronic devices continue to evolve in this way, the level of demand for semiconductor devices is increasing year by year. In particular, when trying to meet the needs for higher performance, smaller size, higher integration, lower power consumption, and lower cost, two important points are measures against heat and noise.
 このような熱対策、ノイズ対策に対応して、例えば特許文献1に開示されるように、電子部品モジュールを導電材料で被覆して電磁波シールド膜を形成する方法が採用されている。特許文献1では、個片化された電子部品モジュールの天面及び側面に塗布された導電性樹脂を加熱し硬化させて、電磁波シールド膜を形成している。 In response to such measures against heat and noise, for example, as disclosed in Patent Document 1, a method of coating an electronic component module with a conductive material to form an electromagnetic wave shielding film is adopted. In Patent Document 1, the conductive resin applied to the top surface and the side surface of the individualized electronic component module is heated and cured to form an electromagnetic wave shielding film.
 特許文献1で開示されている電子部品の製造方法では、集合基板の裏面に設けられた外部端子電極は、粘着性シートに埋め込まれた状態で導電性樹脂が塗布される。粘着性シートの所定の位置にマスキング部が設けられているので、外部端子電極と電磁波シールド膜とが電気的にショートすることを防止することができる。一方、粘着シートの所定の位置にマスキング部を設けることは工程上煩雑である。 In the method for manufacturing an electronic component disclosed in Patent Document 1, a conductive resin is applied to an external terminal electrode provided on the back surface of an assembly substrate in a state of being embedded in an adhesive sheet. Since the masking portion is provided at a predetermined position on the adhesive sheet, it is possible to prevent the external terminal electrode and the electromagnetic wave shielding film from being electrically short-circuited. On the other hand, providing a masking portion at a predetermined position on the pressure-sensitive adhesive sheet is complicated in terms of process.
 特許文献2には、基層と、その一面側に設けられた粘着剤層とを有する電子部品製造用フィルムの粘着剤層に、未シールド電子部品の電極を備えた電極面を貼着して、電極面を保護する電極面保護工程と、電極面以外の非電極面に対して乾式成膜法を用いて非電極面上で一体にされた導電性のシールド膜を形成するシールド膜形成工程を備える電子部品の製造方法が開示されている。 In Patent Document 2, an electrode surface provided with an electrode of an unshielded electronic component is attached to an adhesive layer of a film for manufacturing an electronic component having a base layer and an adhesive layer provided on one surface side thereof. An electrode surface protection step for protecting the electrode surface and a shield film forming step for forming a conductive shield film integrated on the non-electrode surface by using a dry film forming method on a non-electrode surface other than the electrode surface. A method for manufacturing an electronic component to be provided is disclosed.
特開2011-151372号公報Japanese Unexamined Patent Publication No. 2011-151372 特開2017-54891号公報Japanese Unexamined Patent Publication No. 2017-54891
 特許文献2で開示されている電子部品の製造方法について本願の発明者らが検討した所、導電性のシールド膜の形成後に、前記電子部品を電子部品製造用フィルムから剥離することが困難であり、製造効率が低下することが判明した。 When the inventors of the present application examined the method for manufacturing an electronic component disclosed in Patent Document 2, it is difficult to peel the electronic component from the film for manufacturing the electronic component after forming the conductive shield film. , It was found that the manufacturing efficiency was reduced.
 そこで、本発明は、電磁波シールド膜が形成された端子付き半導体装置を端子保護用テープから剥離する工程において、容易に剥離可能であり、製造効率の高い電磁波シールド膜付き半導体装置の製造方法及び前記製造方法に用いられる端子保護用テープを提供することを課題とする。 Therefore, the present invention relates to a method for manufacturing a semiconductor device with an electromagnetic wave shield film, which can be easily peeled off from the terminal protection tape in a step of peeling the semiconductor device with a terminal on which an electromagnetic wave shield film is formed, and has high manufacturing efficiency. An object of the present invention is to provide a terminal protection tape used in a manufacturing method.
 すなわち、本発明は、以下の電磁波シールド膜付き半導体装置の製造方法及び前記製造方法に用いられる端子保護用テープを提供する。 That is, the present invention provides the following method for manufacturing a semiconductor device with an electromagnetic wave shielding film and a terminal protection tape used in the manufacturing method.
[1] 粘弾性層を有する端子保護用テープの前記粘弾性層に、端子付き半導体装置の端子を埋設させる工程と、
 前記端子保護用テープの粘弾性層に埋設されていない前記端子付き半導体装置の露出面に電磁波シールド膜を形成する工程と、
 前記端子保護用テープを延伸することにより、電磁波シールド膜が形成された前記端子付き半導体装置を前記端子保護用テープから剥離する工程と、
 を含む電磁波シールド膜付き半導体装置の製造方法。
[2] 粘弾性層を有する端子保護用テープの前記粘弾性層に、端子付き半導体装置集合体の端子を埋設させる工程と、
 前記端子付き半導体装置集合体をダイシングして、前記端子付き半導体装置集合体を、前記端子保護用テープの粘弾性層に端子が埋設された端子付き半導体装置とする工程と、
 前記端子保護用テープの粘弾性層に埋設されていない前記端子付き半導体装置の露出面に電磁波シールド膜を形成する工程と、
 前記端子保護用テープを延伸することにより、電磁波シールド膜が形成された前記端子付き半導体装置を前記端子保護用テープから剥離する工程と、
 を含む電磁波シールド膜付き半導体装置の製造方法。
[3] 電磁波シールド膜が形成された前記端子付き半導体装置を前記端子保護用テープから剥離する前記工程における前記端子保護用テープの延伸量が1.0mm以上である、[1]又は[2]に記載の電磁波シールド膜付き半導体装置の製造方法。
[4] 直径0.25mmの端子を前記端子保護用テープの前記粘弾性層に埋設したときに、前記端子保護用テープの厚さ方向から観察される前記埋設された端子の外側に現れる気泡に由来する略円状の影の直径が0.30mm以上である[1]~[3]のいずれか一項に記載の電磁波シールド膜付き半導体装置の製造方法。
[5] 前記端子付き半導体装置の端子を埋設させる前記工程後で、かつ電磁波シールド膜を形成する前記工程前における、前記端子付き半導体装置に対する前記端子保護用テープの粘着力が6.5N/25mm以下である[1]~[4]のいずれか一項に記載の電磁波シールド膜付き半導体装置の製造方法。
[6] 前記端子付き半導体装置又は端子付き半導体装置集合体の端子の高さh0に対する前記粘弾性層の厚さd1の割合が、1.2≦d1/h0≦5.0を満たす[1]~[5]のいずれか一項に記載の電磁波シールド膜付き半導体装置の製造方法。
[7] 前記粘弾性層が、埋め込み層及び粘着剤層を有する[1]~[6]のいずれか一項に記載の電磁波シールド膜付き半導体装置の製造方法。
[8] 粘弾性層を有する端子保護用テープの前記粘弾性層に、端子付き半導体装置又は端子付き半導体装置集合体の端子を埋設させる前記工程における、前記埋め込み層の弾性率が0.05~20MPaである、[7]に記載の電磁波シールド膜付き半導体装置の製造方法。
[9] 前記粘着剤層と、前記埋め込み層と、基材と、をこの順で有する、[7]又は[8]に記載の電磁波シールド膜付き半導体装置の製造方法。
[10] 前記基材のヤング率が100~2000MPaである[9]に記載の電磁波シールド膜付き半導体装置の製造方法。
[11] 前記埋め込み層は、エネルギー線硬化性の構成材料を用いて形成された埋め込み層である、[7]~[10]のいずれか一項に記載の電磁波シールド膜付き半導体装置の製造方法。
[12] 前記粘着剤層は、エネルギー線硬化性の粘着剤を用いて形成された粘着剤層である、[7]~[11]のいずれか一項に記載の電磁波シールド膜付き半導体装置の製造方法。
[13] [4]~[12]のいずれか一項に記載の電磁波シールド膜付き半導体装置の製造方法に用いられる端子保護用テープ。
[1] A step of embedding terminals of a semiconductor device with terminals in the viscoelastic layer of a terminal protection tape having a viscoelastic layer.
A step of forming an electromagnetic wave shielding film on an exposed surface of the terminal-equipped semiconductor device that is not embedded in the viscoelastic layer of the terminal protection tape, and
A step of peeling the terminal-equipped semiconductor device on which the electromagnetic wave shielding film is formed from the terminal protection tape by stretching the terminal protection tape.
A method for manufacturing a semiconductor device with an electromagnetic wave shielding film including.
[2] A step of embedding the terminals of the semiconductor device assembly with terminals in the viscoelastic layer of the terminal protection tape having the viscoelastic layer.
A step of dicing the semiconductor device assembly with terminals to make the semiconductor device assembly with terminals into a semiconductor device with terminals in which terminals are embedded in a viscoelastic layer of the terminal protection tape.
A step of forming an electromagnetic wave shielding film on an exposed surface of the terminal-equipped semiconductor device that is not embedded in the viscoelastic layer of the terminal protection tape, and
A step of peeling the terminal-equipped semiconductor device on which the electromagnetic wave shielding film is formed from the terminal protection tape by stretching the terminal protection tape.
A method for manufacturing a semiconductor device with an electromagnetic wave shielding film including.
[3] The stretched amount of the terminal protection tape in the step of peeling the terminal-attached semiconductor device on which the electromagnetic wave shield film is formed from the terminal protection tape is 1.0 mm or more, [1] or [2]. A method for manufacturing a semiconductor device with an electromagnetic wave shielding film according to.
[4] When a terminal having a diameter of 0.25 mm is embedded in the viscoelastic layer of the terminal protection tape, bubbles appearing outside the embedded terminal observed from the thickness direction of the terminal protection tape The method for manufacturing a semiconductor device with an electromagnetic wave shielding film according to any one of [1] to [3], wherein the diameter of the substantially circular shadow derived from the shadow is 0.30 mm or more.
[5] The adhesive strength of the terminal protection tape to the terminal-equipped semiconductor device is 6.5 N / 25 mm after the step of burying the terminals of the terminal-equipped semiconductor device and before the step of forming the electromagnetic wave shield film. The method for manufacturing a semiconductor device with an electromagnetic wave shielding film according to any one of [1] to [4] below.
[6] The ratio of the thickness d1 of the viscoelastic layer to the terminal height h0 of the terminal-equipped semiconductor device or the terminal-equipped semiconductor device assembly satisfies 1.2 ≦ d1 / h0 ≦ 5.0 [1]. The method for manufacturing a semiconductor device with an electromagnetic wave shielding film according to any one of [5].
[7] The method for manufacturing a semiconductor device with an electromagnetic wave shielding film according to any one of [1] to [6], wherein the viscoelastic layer has an embedded layer and an adhesive layer.
[8] The elastic modulus of the embedded layer in the step of embedding the terminal of the terminal-equipped semiconductor device or the terminal-equipped semiconductor device assembly in the viscoelastic layer of the terminal protection tape having the viscoelastic layer is 0.05 to The method for manufacturing a semiconductor device with an electromagnetic wave shielding film according to [7], which is 20 MPa.
[9] The method for manufacturing a semiconductor device with an electromagnetic wave shielding film according to [7] or [8], which comprises the pressure-sensitive adhesive layer, the embedded layer, and a base material in this order.
[10] The method for manufacturing a semiconductor device with an electromagnetic wave shielding film according to [9], wherein the Young's modulus of the base material is 100 to 2000 MPa.
[11] The method for manufacturing a semiconductor device with an electromagnetic wave shielding film according to any one of [7] to [10], wherein the embedded layer is an embedded layer formed by using an energy ray-curable constituent material. ..
[12] The semiconductor device with an electromagnetic wave shielding film according to any one of [7] to [11], wherein the pressure-sensitive adhesive layer is a pressure-sensitive adhesive layer formed by using an energy ray-curable pressure-sensitive adhesive. Production method.
[13] A terminal protection tape used in the method for manufacturing a semiconductor device with an electromagnetic wave shielding film according to any one of [4] to [12].
 本発明によれば、電磁波シールド膜が形成された端子付き半導体装置を端子保護用テープから剥離する工程において、容易に剥離可能であり、製造効率の高い電磁波シールド膜付き半導体装置の製造方法及び前記製造方法に用いられる端子保護用テープを提供することが可能となる。 According to the present invention, in the step of peeling a terminal-equipped semiconductor device on which an electromagnetic wave shield film is formed from a terminal protection tape, a method for manufacturing a semiconductor device with an electromagnetic wave shield film, which can be easily peeled off and has high manufacturing efficiency, and the above. It becomes possible to provide a terminal protection tape used in a manufacturing method.
本発明の端子保護用テープの一の実施形態を模式的に示す断面図である。It is sectional drawing which shows typically one Embodiment of the terminal protection tape of this invention. 本発明の端子保護用テープの他の実施形態を模式的に示す断面図である。It is sectional drawing which shows typically the other embodiment of the terminal protection tape of this invention. 本発明の端子保護用テープの他の実施形態を模式的に示す断面図である。It is sectional drawing which shows typically the other embodiment of the terminal protection tape of this invention. 本発明の端子保護用テープの使用方法の例を模式的に示す断面図である。It is sectional drawing which shows typically the example of the use method of the terminal protection tape of this invention. 本発明の電磁波シールド膜付き半導体装置の製造方法の一の実施形態を模式的に示す断面図である。It is sectional drawing which shows typically one Embodiment of the manufacturing method of the semiconductor device with an electromagnetic wave shielding film of this invention. 本発明の電磁波シールド膜付き半導体装置の製造方法の他の実施形態を模式的に示す断面図である。It is sectional drawing which shows typically another embodiment of the manufacturing method of the semiconductor device with an electromagnetic wave shielding film of this invention. 本発明の電磁波シールド膜付き半導体装置の製造方法における端子保護用テープの延伸方法の一の実施形態を模式的に示す断面図である。It is sectional drawing which shows typically one Embodiment of the stretching method of the terminal protection tape in the manufacturing method of the semiconductor device with an electromagnetic wave shielding film of this invention.
≪電磁波シールド膜付き半導体装置の製造方法≫
 本発明の第一実施形態の電磁波シールド膜付き半導体装置の製造方法は、粘弾性層を有する端子保護用テープの前記粘弾性層に、端子付き半導体装置の端子を埋設させる工程と、前記端子保護用テープの粘弾性層に埋設されていない前記端子付き半導体装置の露出面に電磁波シールド膜を形成する工程と、前記端子保護用テープを延伸することにより、電磁波シールド膜が形成された前記端子付き半導体装置を前記端子保護用テープから剥離する工程と、を含む。
≪Manufacturing method of semiconductor device with electromagnetic wave shield film≫
The method for manufacturing a semiconductor device with an electromagnetic wave shielding film according to the first embodiment of the present invention includes a step of embedding the terminals of the semiconductor device with terminals in the viscoelastic layer of the terminal protection tape having a viscoelastic layer, and the terminal protection. The step of forming an electromagnetic wave shielding film on the exposed surface of the terminal-attached semiconductor device that is not embedded in the viscoelastic layer of the tape for terminal, and the terminal attachment in which the electromagnetic wave shielding film is formed by stretching the terminal protection tape. The step of peeling the semiconductor device from the terminal protection tape is included.
 本発明の第二実施形態の電磁波シールド膜付き半導体装置の製造方法は、粘弾性層を有する端子保護用テープの前記粘弾性層に、端子付き半導体装置集合体の端子を埋設させる工程と、前記端子付き半導体装置集合体をダイシングして、前記端子付き半導体装置集合体を、前記端子保護用テープの粘弾性層に端子が埋設された端子付き半導体装置とする工程と、前記端子保護用テープの粘弾性層に埋設されていない前記端子付き半導体装置の露出面に電磁波シールド膜を形成する工程と、前記端子保護用テープを延伸することにより、電磁波シールド膜が形成された前記端子付き半導体装置を前記端子保護用テープから剥離する工程と、を含む。
 以下、本発明の第一実施形態及び第二実施形態の電磁波シールド膜付き半導体装置の製造方法で使用される端子保護用テープ、及び本発明の電磁波シールド膜付き半導体装置の製造方法の各工程について詳細に説明を行う。
The method for manufacturing a semiconductor device with an electromagnetic wave shielding film according to a second embodiment of the present invention includes a step of embedding terminals of a semiconductor device assembly with terminals in the viscoelastic layer of a terminal protection tape having a viscoelastic layer, and the above-mentioned. The process of dicing the terminal-equipped semiconductor device assembly to make the terminal-equipped semiconductor device assembly into a terminal-equipped semiconductor device in which terminals are embedded in the viscoelastic layer of the terminal protection tape, and the terminal protection tape The step of forming an electromagnetic wave shielding film on the exposed surface of the terminal-equipped semiconductor device not embedded in the viscoelastic layer, and the terminal-attached semiconductor device on which the electromagnetic wave shielding film is formed by stretching the terminal protection tape. The step of peeling from the terminal protection tape is included.
Hereinafter, each step of the terminal protection tape used in the method for manufacturing the semiconductor device with the electromagnetic wave shielding film of the first embodiment and the second embodiment of the present invention and the method for manufacturing the semiconductor device with the electromagnetic wave shielding film of the present invention will be described. A detailed explanation will be given.
<端子保護用テープ>
 図1は、本発明の端子保護用テープの一実施形態を模式的に示す断面図である。なお、以下の説明で用いる図は、本発明の特徴を分かり易くするために、便宜上、要部となる部分を拡大して示している場合があり、各構成要素の寸法比率等が実際と同じであるとは限らない。
<Terminal protection tape>
FIG. 1 is a cross-sectional view schematically showing an embodiment of the terminal protection tape of the present invention. In addition, in the figure used in the following description, in order to make it easy to understand the features of the present invention, the main part may be enlarged and shown, and the dimensional ratio of each component is the same as the actual one. Is not always the case.
 図1に示す端子保護用テープ1は、端子付き半導体装置に電磁波シールド膜を形成する工程に用いられる端子保護用テープ1であって、粘弾性層12を有する。粘弾性層12は、埋め込み層13及び粘着剤層14を含むことが好ましく、埋め込み層13及び粘着剤層14からなることがより好ましい。 The terminal protection tape 1 shown in FIG. 1 is a terminal protection tape 1 used in a step of forming an electromagnetic wave shield film on a semiconductor device with terminals, and has a viscoelastic layer 12. The viscoelastic layer 12 preferably includes the embedding layer 13 and the pressure-sensitive adhesive layer 14, and more preferably comprises the embedding layer 13 and the pressure-sensitive adhesive layer 14.
 本実施形態の端子保護用テープは、図1に示すように、粘弾性層12の埋め込み層13の側の最表層に剥離フィルム21を備えていてもよく、粘弾性層12の粘着剤層14の側の最表層に剥離フィルム20を備えていてもよい。
 本実施形態の端子保護用テープは、図1に示すものに限定されず、本発明の効果を損なわない範囲内において、図1に示すものにおいて、一部の構成が変更、削除又は追加されたものであってもよい。
As shown in FIG. 1, the terminal protection tape of the present embodiment may include a release film 21 on the outermost layer of the viscoelastic layer 12 on the side of the embedded layer 13, and the adhesive layer 14 of the viscoelastic layer 12 may be provided. The release film 20 may be provided on the outermost layer on the side of the surface.
The terminal protection tape of the present embodiment is not limited to the one shown in FIG. 1, and a part of the configuration of the tape shown in FIG. 1 has been changed, deleted or added within the range not impairing the effect of the present invention. It may be a thing.
 図1に示す端子保護用テープ1は、両方の剥離フィルム20、21を剥離して、支持体の上に載せて、その上から端子付き半導体装置を、端子の側を下にして押し付けて、粘弾性層12に端子を埋設し、更にその上から電磁波シールド膜を形成する工程に使用することができる。 In the terminal protection tape 1 shown in FIG. 1, both release films 20 and 21 are peeled off, placed on a support, and a semiconductor device with terminals is pressed from above with the terminal side facing down. It can be used in a step of embedding a terminal in the viscoelastic layer 12 and further forming an electromagnetic wave shield film on the terminal.
 本実施形態の端子保護用テープは、図2の端子保護用テープ2に示すように、粘着剤層14と、埋め込み層13と、基材11と、をこの順で有する構成であってもよく、粘弾性層12の粘着剤層14の側の最表層に剥離フィルム20を備えていてもよい。
 図2に示す端子保護用テープ2は、剥離フィルム20を剥離して、支持体としての基材11の上の粘弾性層12に、端子付き半導体装置を、端子の側を下にして押し付けて、粘弾性層12に端子を埋設し、更にその上から電磁波シールド膜を形成する工程に使用することができる。
As shown in the terminal protection tape 2 of FIG. 2, the terminal protection tape of the present embodiment may have a structure in which the adhesive layer 14, the embedding layer 13, and the base material 11 are provided in this order. The release film 20 may be provided on the outermost layer of the viscoelastic layer 12 on the side of the pressure-sensitive adhesive layer 14.
In the terminal protection tape 2 shown in FIG. 2, the release film 20 is peeled off, and the semiconductor device with terminals is pressed against the viscoelastic layer 12 on the base material 11 as a support with the terminals side down. It can be used in a step of burying a terminal in the viscoelastic layer 12 and further forming an electromagnetic wave shield film on the terminal.
 本実施形態の端子保護用テープは、図3の端子保護用テープ3に示すように、粘着剤層14と、埋め込み層13と、基材11と、をこの順で有する構成であって、粘弾性層12の粘着剤層14の側の最表層に剥離フィルム20を備えていてもよく、基材11の、粘弾性層12とは反対の側に、支持体に貼合するための第2粘着剤層15(すなわち、貼合粘着剤層)を備えていてもよく、第2粘着剤層15の側の最表層に剥離フィルム22を備える両面テープであってもよい。 As shown in the terminal protection tape 3 of FIG. 3, the terminal protection tape of the present embodiment has a structure in which the adhesive layer 14, the embedding layer 13, and the base material 11 are provided in this order, and is sticky. The release film 20 may be provided on the outermost surface layer of the elastic layer 12 on the side of the adhesive layer 14, and the second base material 11 is attached to the support on the side opposite to the adhesive layer 12. A pressure-sensitive adhesive layer 15 (that is, a bonded pressure-sensitive adhesive layer) may be provided, or a double-sided tape having a release film 22 on the outermost layer on the side of the second pressure-sensitive adhesive layer 15 may be used.
 図3に示す端子保護用テープ3は、剥離フィルム22を剥離して、図4に示すように、支持体30に固定し、更に、剥離フィルム20を剥離して、粘弾性層12に、端子付き半導体装置を、端子の側を下にして押し付けて、粘弾性層12に端子を埋設し、更にその上から電磁波シールド膜を形成する工程に使用することができる。 The terminal protection tape 3 shown in FIG. 3 is obtained by peeling the release film 22 and fixing it to the support 30 as shown in FIG. 4, and further peeling the release film 20 to attach the terminals to the viscoelastic layer 12. The attached semiconductor device can be used in a step of pressing the terminal side down, embedding the terminal in the viscoelastic layer 12, and further forming an electromagnetic wave shield film from above.
 端子保護用テープの破断伸度は、10%以上であることが好ましく、15%以上%であることがより好ましく、20%以上であることがさらに好ましい。端子保護用テープの破断伸度が前記下限値以上であると、端子保護用テープを十分に延伸することができ、電磁波シールド膜が形成された端子付き半導体装置を端子保護用テープから剥離する工程における剥離性が向上する。端子保護用テープの破断伸度は、45%未満であってもよい。端子保護用テープの破断伸度は、例えば、10%以上45%未満であることが好ましく、15%以上45%未満であることがより好ましく、20%以上45%未満であることがさらに好ましい。
 端子保護用テープの破断伸度は、後述の実施例に記載の方法により測定することができる。
The breaking elongation of the terminal protection tape is preferably 10% or more, more preferably 15% or more, still more preferably 20% or more. When the breaking elongation of the terminal protection tape is at least the above lower limit value, the terminal protection tape can be sufficiently stretched, and the terminal-equipped semiconductor device on which the electromagnetic wave shielding film is formed is peeled off from the terminal protection tape. The peelability in the above is improved. The breaking elongation of the terminal protection tape may be less than 45%. The breaking elongation of the terminal protection tape is, for example, preferably 10% or more and less than 45%, more preferably 15% or more and less than 45%, and further preferably 20% or more and less than 45%.
The breaking elongation of the terminal protection tape can be measured by the method described in Examples described later.
 端子保護用テープの破断応力は、5MPa以上であることが好ましく、10MPa以上であることがより好ましく、15MPa以上であることがさらに好ましい。端子保護用テープの破断応力が前記下限値以上であると、端子保護用テープを延伸した際、均一に延伸することができる。端子保護用テープの破断応力は、30MPa未満であってもよい。端子保護用テープの破断応力は、例えば、5MPa以上30MPa未満であることが好ましく、10MPa以上30MPa未満であることがより好ましく、15MPa以上30MPa未満であることがさらに好ましい。
 端子保護用テープの破断応力は、後述の実施例に記載の方法により測定することができる。
The breaking stress of the terminal protection tape is preferably 5 MPa or more, more preferably 10 MPa or more, and even more preferably 15 MPa or more. When the breaking stress of the terminal protection tape is at least the above lower limit value, the terminal protection tape can be uniformly stretched when it is stretched. The breaking stress of the terminal protection tape may be less than 30 MPa. The breaking stress of the terminal protection tape is, for example, preferably 5 MPa or more and less than 30 MPa, more preferably 10 MPa or more and less than 30 MPa, and further preferably 15 MPa or more and less than 30 MPa.
The breaking stress of the terminal protection tape can be measured by the method described in Examples described later.
 次に、本実施形態の端子保護用テープを構成する各層について説明する。 Next, each layer constituting the terminal protection tape of the present embodiment will be described.
◎粘弾性層
 本実施形態の端子保護用テープにおいて、粘弾性層は、端子付き半導体装置の端子形成面(換言すると回路面)、及びこの端子形成面上に設けられた端子を保護するために用いられる。
 粘弾性層は、埋め込み層及び粘着剤層を有することが好ましい。
◎ Viscoelastic layer In the terminal protection tape of the present embodiment, the viscoelastic layer is used to protect the terminal forming surface (in other words, the circuit surface) of the semiconductor device with terminals and the terminals provided on the terminal forming surface. Used.
The viscoelastic layer preferably has an embedded layer and an adhesive layer.
 粘弾性層の厚さは1~1000μmであることが好ましく、5~800μmであることがより好ましく、10~600μmであることがさらに好ましい。
 粘弾性層の厚さが前記下限値以上であることで、はんだボール等の浮きの生じやすい端子電極であっても埋め込むことができる。また、粘弾性層の厚さが前記上限値以下であることで、端子保護用テープが過剰な厚さとなることが抑制される。
 ここで、「粘弾性層の厚さ」とは、粘弾性層全体の厚さを意味し、埋め込み層及び粘着剤層の複数層からなる粘弾性層の厚さは、埋め込み層及び粘着剤層の合計の厚さを意味する。
 本明細書において、各層の厚みは例えば、JIS K6783、Z1702、Z1709に準拠して、株式会社テクロック製の定圧厚さ測定器(型番:「PG-02J」)によって測定することができる。
The thickness of the viscoelastic layer is preferably 1 to 1000 μm, more preferably 5 to 800 μm, and even more preferably 10 to 600 μm.
When the thickness of the viscoelastic layer is at least the above lower limit value, even a terminal electrode such as a solder ball, which tends to float, can be embedded. Further, when the thickness of the viscoelastic layer is not more than the upper limit value, it is possible to prevent the terminal protection tape from becoming excessively thick.
Here, the "thickness of the viscoelastic layer" means the thickness of the entire viscoelastic layer, and the thickness of the viscoelastic layer composed of a plurality of layers of the embedded layer and the adhesive layer is the thickness of the embedded layer and the adhesive layer. Means the total thickness of.
In the present specification, the thickness of each layer can be measured by, for example, a constant pressure thickness measuring device (model number: "PG-02J") manufactured by Teclock Co., Ltd. in accordance with JIS K6783, Z1702, and Z1709.
 端子付き半導体装置の端子形成面を粘弾性層12に密着させるに際しては、端子付き半導体装置の端子形成面を粘弾性層12中の粘着剤層14に直接密着させることが好ましい。このとき、端子形成面及び端子にのり残りを防ぐために、粘着剤層14は、埋め込み層13よりも硬く設定することが好ましい。 When the terminal forming surface of the terminal-equipped semiconductor device is brought into close contact with the viscoelastic layer 12, it is preferable that the terminal forming surface of the terminal-equipped semiconductor device is directly brought into close contact with the adhesive layer 14 in the viscoelastic layer 12. At this time, it is preferable that the pressure-sensitive adhesive layer 14 is set harder than the embedded layer 13 in order to prevent adhesive residue on the terminal forming surface and the terminals.
 電磁波シールド膜が形成された端子付き半導体装置を端子保護用テープから剥離する工程における剥離性の向上の観点から、端子付き半導体装置の端子と、粘弾性層12の最外層(例えば粘着剤層)との密着性が一定以下であることが好ましい。端子付き半導体装置の端子と、粘弾性層12の最外層との密着性は、例えば以下の方法により定量的に評価することができる。 From the viewpoint of improving the peelability in the process of peeling the terminal-equipped semiconductor device on which the electromagnetic wave shield film is formed from the terminal protection tape, the terminals of the terminal-equipped semiconductor device and the outermost layer of the viscoelastic layer 12 (for example, an adhesive layer) It is preferable that the adhesion with is not more than a certain level. The adhesion between the terminals of the semiconductor device with terminals and the outermost layer of the viscoelastic layer 12 can be quantitatively evaluated by, for example, the following method.
 端子を端子保護用テープの粘弾性層12に埋設し、前記端子保護用テープの厚さ方向から埋設された端子を観察すると、埋設された端子の外側に気泡に由来する略円状の影が確認されることがある。この気泡は、埋設された端子と粘弾性層12の最外層との間の空隙を表し、前記略円状の影の面積が大きいほど、埋設された端子と粘弾性層12の最外層との密着性が低いことを示す。本実施形態においては、径0.25mmの端子を端子保護用テープの粘弾性層12に埋設したときに、前記端子保護用テープの厚さ方向から観察される前記埋設された端子の外側に現れる気泡に由来する略円状の影の直径が0.30mm以上であることが好ましく、0.32mm以上であることがより好ましく、0.34mm以上であることがさらに好ましい。気泡に由来する略円状の影の直径が前記下限値以上であると、端子付き半導体装置の端子と、粘弾性層12の最外層との密着性が高くなりすぎず、電磁波シールド膜が形成された端子付き半導体装置を端子保護用テープから剥離する工程における剥離性が向上する。なお、気泡に由来する略円状の影の直径は、上述の径0.25mmの端子の外側に現れるため、当然0.25mmより大きくなる。気泡に由来する略円状の影の直径は、その影の最大径を採用することができる。気泡に由来する略円状の影の直径の上限値は、本発明の効果を示す限り、特に限定されないが、例えば、1.00mm以下であってもよい。気泡に由来する略円状の影の直径は、例えば、0.30mm以上0.95mm以下であることが好ましく、0.32mm以上0.90mm以下であることがより好ましく、0.34mm以上0.85mm以下であることがさらに好ましい。
 気泡に由来する略円状の影の直径は、後述の実施例に記載の方法により測定することができる。
When the terminals are embedded in the viscoelastic layer 12 of the terminal protection tape and the embedded terminals are observed from the thickness direction of the terminal protection tape, a substantially circular shadow derived from air bubbles appears on the outside of the embedded terminals. May be confirmed. These bubbles represent a gap between the embedded terminal and the outermost layer of the viscoelastic layer 12, and the larger the area of the substantially circular shadow, the more the embedded terminal and the outermost layer of the viscoelastic layer 12 are connected. Indicates low adhesion. In the present embodiment, when a terminal having a diameter of 0.25 mm is embedded in the viscoelastic layer 12 of the terminal protection tape, it appears outside the embedded terminal observed from the thickness direction of the terminal protection tape. The diameter of the substantially circular shadow derived from the bubbles is preferably 0.30 mm or more, more preferably 0.32 mm or more, and further preferably 0.34 mm or more. When the diameter of the substantially circular shadow derived from the bubbles is equal to or greater than the lower limit, the adhesion between the terminal of the semiconductor device with a terminal and the outermost layer of the viscoelastic layer 12 does not become too high, and an electromagnetic wave shielding film is formed. The peelability in the process of peeling the terminal-equipped semiconductor device from the terminal protection tape is improved. Since the diameter of the substantially circular shadow derived from the bubbles appears outside the terminal having a diameter of 0.25 mm, it is naturally larger than 0.25 mm. For the diameter of the substantially circular shadow derived from the bubble, the maximum diameter of the shadow can be adopted. The upper limit of the diameter of the substantially circular shadow derived from the bubbles is not particularly limited as long as the effect of the present invention is shown, but may be, for example, 1.00 mm or less. The diameter of the substantially circular shadow derived from the bubbles is, for example, preferably 0.30 mm or more and 0.95 mm or less, more preferably 0.32 mm or more and 0.90 mm or less, and 0.34 mm or more and 0. It is more preferably 85 mm or less.
The diameter of the substantially circular shadow derived from the bubbles can be measured by the method described in Examples described later.
〇粘着剤層
 以下、粘弾性層を構成する粘着剤層を、後述の、支持体に貼合するための第2粘着剤層と区別して、「第1粘着剤層」と称することがある。
 第1粘着剤層は、シート状又はフィルム状であり、粘着剤を含有する。本明細書において、「シート状又はフィルム状」とは、薄い膜状で、面内の厚さのばらつきが小さく、フレキシブル性を有するものを意味する。
 前記粘着剤としては、例えば、アクリル系樹脂((メタ)アクリロイル基を有する樹脂からなる粘着剤)、ウレタン系樹脂(ウレタン結合を有する樹脂からなる粘着剤)、ゴム系樹脂(ゴム構造を有する樹脂からなる粘着剤)、シリコーン系樹脂(シロキサン結合を有する樹脂からなる粘着剤)、エポキシ系樹脂(エポキシ基を有する樹脂からなる粘着剤)、ポリビニルエーテル、ポリカーボネート等の粘着性樹脂が挙げられ、アクリル系樹脂が好ましい。
〇 Adhesive layer Hereinafter, the pressure-sensitive adhesive layer constituting the viscoelastic layer may be referred to as a "first pressure-sensitive adhesive layer" to distinguish it from the second pressure-sensitive adhesive layer for bonding to a support, which will be described later.
The first pressure-sensitive adhesive layer is in the form of a sheet or a film and contains a pressure-sensitive adhesive. As used herein, the term "sheet-like or film-like" means a thin film-like material having small in-plane thickness variation and flexibility.
Examples of the pressure-sensitive adhesive include an acrylic resin (a pressure-sensitive adhesive made of a resin having a (meth) acryloyl group), a urethane-based resin (a pressure-sensitive adhesive made of a resin having a urethane bond), and a rubber-based resin (a resin having a rubber structure). (Adhesive made of), silicone resin (adhesive made of resin having siloxane bond), epoxy resin (adhesive made of resin having epoxy group), polyvinyl ether, adhesive resin such as polycarbonate, etc. A based resin is preferable.
 なお、本発明において、「粘着性樹脂」とは、粘着性を有する樹脂と、接着性を有する樹脂と、の両方を含む概念であり、例えば、樹脂自体が粘着性を有するものだけでなく、添加剤等の他の成分との併用により粘着性を示す樹脂や、熱又は水等のトリガーの存在によって接着性を示す樹脂等も含む。 In the present invention, the "adhesive resin" is a concept including both a resin having adhesiveness and a resin having adhesiveness. For example, not only the resin itself has adhesiveness but also the resin itself has adhesiveness. It also includes a resin that exhibits adhesiveness when used in combination with other components such as additives, and a resin that exhibits adhesiveness due to the presence of a trigger such as heat or water.
 第1粘着剤層は1層(単層)のみでもよいし、2層以上の複数層でもよく、複数層である場合、これら複数層は、互いに同一でも異なっていてもよく、これら複数層の組み合わせは特に限定されない。 The first pressure-sensitive adhesive layer may be only one layer (single layer), or may be a plurality of layers of two or more layers, and when there are a plurality of layers, the plurality of layers may be the same as or different from each other, and the plurality of layers may be used. The combination is not particularly limited.
 なお、本明細書においては、第1粘着剤層の場合に限らず、「複数層が互いに同一でも異なっていてもよい」とは、「すべての層が同一であってもよいし、すべての層が異なっていてもよく、一部の層のみが同一であってもよい」ことを意味し、さらに「複数層が互いに異なる」とは、「各層の構成材料及び厚さの少なくとも一方が互いに異なる」ことを意味する。 In the present specification, not only in the case of the first pressure-sensitive adhesive layer, but also in the case of "a plurality of layers may be the same or different from each other", "all layers may be the same or all layers may be the same". "The layers may be different, and only some of the layers may be the same", and "multiple layers are different from each other" means that "at least one of the constituent materials and thicknesses of each layer is different from each other". It means "different".
 第1粘着剤層の厚さは1~1000μmであることが好ましく、2~100μmであることがより好ましく、8~20μmであることが特に好ましい。
 ここで、「第1粘着剤層の厚さ」とは、第1粘着剤層全体の厚さを意味し、例えば、複数層からなる第1粘着剤層の厚さとは、第1粘着剤層を構成するすべての層の合計の厚さを意味する。
The thickness of the first pressure-sensitive adhesive layer is preferably 1 to 1000 μm, more preferably 2 to 100 μm, and particularly preferably 8 to 20 μm.
Here, the "thickness of the first pressure-sensitive adhesive layer" means the thickness of the entire first pressure-sensitive adhesive layer, and for example, the thickness of the first pressure-sensitive adhesive layer composed of a plurality of layers is the thickness of the first pressure-sensitive adhesive layer. Means the total thickness of all the layers that make up.
 第1粘着剤層は、エネルギー線硬化性の粘着剤を用いて形成されたものでもよいし、非エネルギー線硬化性の粘着剤を用いて形成されたものでもよい。エネルギー線硬化性の粘着剤を用いて形成された第1粘着剤層は、硬化前及び硬化後での物性を、容易に調節できるため、好ましい。
 本発明において、「エネルギー線」とは、電磁波又は荷電粒子線の中でエネルギー量子を有するものを意味し、その例として、紫外線、電子線等が挙げられる。
 紫外線は、例えば、紫外線源として高圧水銀ランプ、ヒュージョンHランプ又はキセノンランプ等を用いることで照射できる。電子線は、電子線加速器等によって発生させたものを照射できる。
 本発明において、「エネルギー線硬化性」とは、エネルギー線を照射することにより硬化する性質を意味し、「非エネルギー線硬化性」とは、エネルギー線を照射しても硬化しない性質を意味する。
The first pressure-sensitive adhesive layer may be formed by using an energy ray-curable pressure-sensitive adhesive or may be formed by using a non-energy ray-curable pressure-sensitive adhesive. The first pressure-sensitive adhesive layer formed by using the energy ray-curable pressure-sensitive adhesive is preferable because the physical properties before and after curing can be easily adjusted.
In the present invention, the "energy ray" means an electromagnetic wave or a charged particle beam having an energy quantum, and examples thereof include ultraviolet rays and electron beams.
Ultraviolet rays can be irradiated by using, for example, a high-pressure mercury lamp, a fusion H lamp, a xenon lamp, or the like as an ultraviolet source. The electron beam can be irradiated with an electron beam generated by an electron beam accelerator or the like.
In the present invention, "energy ray curable" means a property of being cured by irradiating with energy rays, and "non-energy ray curable" means a property of not being cured by irradiating with energy rays. ..
 第1粘着剤層がエネルギー線硬化性の粘着剤を用いて形成されている場合、硬化前の第1粘着剤層の弾性率は、0.01~0.50MPaであることが好ましく、0.02~0.40MPaであることがより好ましく、0.03~0.35MPaであることがさらに好ましい。硬化前の第1粘着剤層の弾性率が前記範囲内であると、半導体装置の保持性が得られる。
 第1粘着剤層がエネルギー線硬化性の粘着剤を用いて形成されている場合、硬化後の第1粘着剤層の弾性率は、1.0~50MPaであることが好ましく、2.0~45MPaであることがより好ましく、3.0~40MPaであることがさらに好ましい。硬化後の第1粘着剤層の弾性率が前記範囲内であると、半導体装置の保持性が得られる。
 本明細書において「弾性率」は、粘弾性測定装置(例えば、Rheometrics社製、装置名「DYNAMIC ANALYZER RDAII」)を用いて、直径8mm×厚さ3mmサイズのサンプルを、1Hzで23℃の環境下でねじりせん断法により測定される貯蔵弾性率である。
 第1粘着剤層の硬化は、上述の第一及び第二実施形態の電磁波シールド膜付き半導体装置の製造方法のどの工程で行ってもよいが、端子付き半導体装置(又は半導体装置集合体)の端子を埋設させる工程後でかつ、電磁波シールド膜が形成された前記端子付き半導体装置を前記端子保護用テープから剥離する工程前に行うことが好ましい。
When the first pressure-sensitive adhesive layer is formed by using an energy ray-curable pressure-sensitive adhesive, the elastic modulus of the first pressure-sensitive adhesive layer before curing is preferably 0.01 to 0.50 MPa. It is more preferably 02 to 0.40 MPa, and even more preferably 0.03 to 0.35 MPa. When the elastic modulus of the first pressure-sensitive adhesive layer before curing is within the above range, the retention property of the semiconductor device can be obtained.
When the first pressure-sensitive adhesive layer is formed by using an energy ray-curable pressure-sensitive adhesive, the elastic modulus of the first pressure-sensitive adhesive layer after curing is preferably 1.0 to 50 MPa, preferably 2.0 to 250 MPa. It is more preferably 45 MPa, further preferably 3.0 to 40 MPa. When the elastic modulus of the first pressure-sensitive adhesive layer after curing is within the above range, the retention property of the semiconductor device can be obtained.
In the present specification, the "elastic modulus" refers to an environment of a sample having a diameter of 8 mm and a thickness of 3 mm at 23 ° C. The storage elastic modulus measured below by the torsional shear method.
The curing of the first pressure-sensitive adhesive layer may be performed by any step of the method for manufacturing a semiconductor device with an electromagnetic wave shielding film according to the first and second embodiments described above, but the curing of the semiconductor device with terminals (or the semiconductor device assembly) may be performed. It is preferable to perform this after the step of burying the terminals and before the step of peeling the terminal-equipped semiconductor device on which the electromagnetic wave shielding film is formed from the terminal protection tape.
 第1粘着剤層が非エネルギー線硬化性の粘着剤を用いて形成されている場合、第1粘着剤層の弾性率は、0.10~0.50MPaであることが好ましく、0.11~0.40MPaであることがより好ましく、0.12~0.35MPaであることがさらに好ましい。第1粘着剤層の弾性率が前記範囲内であると、電磁波シールド膜が形成された端子付き半導体装置を端子保護用テープから剥離する工程における剥離性が向上する。 When the first pressure-sensitive adhesive layer is formed by using a non-energy ray-curable pressure-sensitive adhesive, the elastic modulus of the first pressure-sensitive adhesive layer is preferably 0.10 to 0.50 MPa, preferably 0.11 to 0.50 MPa. It is more preferably 0.40 MPa, and even more preferably 0.12 to 0.35 MPa. When the elastic modulus of the first pressure-sensitive adhesive layer is within the above range, the peelability in the step of peeling the terminal-equipped semiconductor device on which the electromagnetic wave shielding film is formed from the terminal protection tape is improved.
{第1粘着剤組成物}
 第1粘着剤層は、粘着剤を含有する第1粘着剤組成物を用いて形成できる。例えば、第1粘着剤層の形成対象面に第1粘着剤組成物を塗工し、必要に応じて乾燥させることで、目的とする部位に第1粘着剤層を形成できる。また、剥離フィルムに第1粘着剤組成物を塗工し、必要に応じて乾燥させることで、目的とする厚さの第1粘着剤層を形成でき、目的とする部位に第1粘着剤層を転写することもできる。第1粘着剤層のより具体的な形成方法は、他の層の形成方法とともに、後ほど詳細に説明する。第1粘着剤組成物中の、常温で気化しない成分同士の含有量の比率は、通常、第1粘着剤層の前記成分同士の含有量の比率と同じとなる。なお、本明細書において、「常温」とは、特に冷やしたり、熱したりしない温度、即ち平常の温度を意味し、15~25℃の温度等が挙げられ、例えば25℃である。
{First adhesive composition}
The first pressure-sensitive adhesive layer can be formed by using a first pressure-sensitive adhesive composition containing a pressure-sensitive adhesive. For example, the first pressure-sensitive adhesive layer can be formed on a target portion by applying the first pressure-sensitive adhesive composition to the surface to be formed of the first pressure-sensitive adhesive layer and drying it if necessary. Further, by applying the first pressure-sensitive adhesive composition to the release film and drying it as necessary, a first pressure-sensitive adhesive layer having a desired thickness can be formed, and the first pressure-sensitive adhesive layer can be formed at a target portion. Can also be transcribed. A more specific method for forming the first pressure-sensitive adhesive layer will be described in detail later together with a method for forming the other layers. The ratio of the contents of the components that do not vaporize at room temperature in the first pressure-sensitive adhesive composition is usually the same as the ratio of the contents of the components in the first pressure-sensitive adhesive layer. In addition, in this specification, "room temperature" means a temperature which is not particularly cooled or heated, that is, a normal temperature, and examples thereof include a temperature of 15 to 25 ° C., for example, 25 ° C.
 第1粘着剤組成物の塗工は、公知の方法で行えばよく、例えば、エアーナイフコーター、ブレードコーター、バーコーター、グラビアコーター、ロールコーター、ロールナイフコーター、カーテンコーター、ダイコーター、ナイフコーター、スクリーンコーター、マイヤーバーコーター、キスコーター等の各種コーターを用いる方法が挙げられる。 The coating of the first pressure-sensitive adhesive composition may be carried out by a known method, for example, an air knife coater, a blade coater, a bar coater, a gravure coater, a roll coater, a roll knife coater, a curtain coater, a die coater, a knife coater, and the like. Examples thereof include a method using various coaters such as a screen coater, a Meyer bar coater, and a kiss coater.
 第1粘着剤組成物の乾燥条件は、特に限定されないが、第1粘着剤組成物は、後述する溶媒を含有している場合、加熱乾燥させることが好ましく、この場合、例えば、70~130℃で10秒間~5分間の条件で乾燥させることが好ましい。 The drying conditions of the first pressure-sensitive adhesive composition are not particularly limited, but when the first pressure-sensitive adhesive composition contains a solvent described later, it is preferably heat-dried. In this case, for example, 70 to 130 ° C. It is preferable to dry under the condition of 10 seconds to 5 minutes.
 第1粘着剤層がエネルギー線硬化性である場合、エネルギー線硬化性の粘着剤を含有する第1粘着剤組成物、即ち、エネルギー線硬化性の第1粘着剤組成物としては、例えば、非エネルギー線硬化性の粘着性樹脂(I-1a)(以下、「粘着性樹脂(I-1a)」と略記することがある)と、エネルギー線硬化性化合物と、を含有する第1粘着剤組成物(I-1);非エネルギー線硬化性の粘着性樹脂(I-1a)の側鎖に不飽和基が導入されたエネルギー線硬化性の粘着性樹脂(I-2a)(以下、「粘着性樹脂(I-2a)」と略記することがある)を含有する第1粘着剤組成物(I-2);前記粘着性樹脂(I-2a)と、エネルギー線硬化性低分子化合物と、を含有する第1粘着剤組成物(I-3)等が挙げられる。 When the first pressure-sensitive adhesive layer is energy ray-curable, the first pressure-sensitive adhesive composition containing the energy ray-curable pressure-sensitive adhesive, that is, the energy ray-curable first pressure-sensitive adhesive composition is, for example, non-existent. A first pressure-sensitive adhesive composition containing an energy ray-curable adhesive resin (I-1a) (hereinafter, may be abbreviated as "adhesive resin (I-1a)") and an energy ray-curable compound. Object (I-1); Energy ray-curable adhesive resin (I-2a) in which an unsaturated group is introduced into the side chain of the non-energy ray-curable adhesive resin (I-1a) (hereinafter, "adhesive"). The first pressure-sensitive adhesive composition (I-2) containing (sometimes abbreviated as "sexual resin (I-2a)"); the pressure-sensitive adhesive resin (I-2a), an energy ray-curable low molecular weight compound, and the like. First pressure-sensitive adhesive composition (I-3) and the like containing the above.
{第1粘着剤組成物(I-1)}
 第1粘着剤組成物(I-1)は、上述の様に、非エネルギー線硬化性の粘着性樹脂(I-1a)と、エネルギー線硬化性化合物と、を含有する。
{First Adhesive Composition (I-1)}
As described above, the first pressure-sensitive adhesive composition (I-1) contains a non-energy ray-curable pressure-sensitive adhesive resin (I-1a) and an energy ray-curable compound.
(粘着性樹脂(I-1a))
 前記粘着性樹脂(I-1a)は、アクリル系樹脂であることが好ましい。
 前記アクリル系樹脂としては、例えば、少なくとも(メタ)アクリル酸アルキルエステル由来の構成単位を有するアクリル系重合体が挙げられる。
 前記アクリル系樹脂が有する構成単位は、1種のみでもよいし、2種以上でもよく、2種以上である場合、それらの組み合わせ及び比率は任意に選択できる。
(Adhesive resin (I-1a))
The adhesive resin (I-1a) is preferably an acrylic resin.
Examples of the acrylic resin include acrylic polymers having at least a structural unit derived from (meth) acrylic acid alkyl ester.
The structural unit of the acrylic resin may be only one type, may be two or more types, and when there are two or more types, the combination and ratio thereof can be arbitrarily selected.
 前記(メタ)アクリル酸アルキルエステルとしては、例えば、アルキルエステルを構成するアルキル基の炭素数が1~20であるのものが挙げられ、前記アルキル基は、直鎖状又は分岐鎖状であることが好ましい。
 (メタ)アクリル酸アルキルエステルとして、より具体的には、(メタ)アクリル酸メチル、(メタ)アクリル酸エチル、(メタ)アクリル酸n-プロピル、(メタ)アクリル酸イソプロピル、(メタ)アクリル酸n-ブチル、(メタ)アクリル酸イソブチル、(メタ)アクリル酸sec-ブチル、(メタ)アクリル酸tert-ブチル、(メタ)アクリル酸ペンチル、(メタ)アクリル酸ヘキシル、(メタ)アクリル酸ヘプチル、(メタ)アクリル酸2-エチルヘキシル、(メタ)アクリル酸イソオクチル、(メタ)アクリル酸n-オクチル、(メタ)アクリル酸n-ノニル、(メタ)アクリル酸イソノニル、(メタ)アクリル酸デシル、(メタ)アクリル酸ウンデシル、(メタ)アクリル酸ドデシル((メタ)アクリル酸ラウリルともいう。)、(メタ)アクリル酸トリデシル、(メタ)アクリル酸テトラデシル((メタ)アクリル酸ミリスチルともいう。)、(メタ)アクリル酸ペンタデシル、(メタ)アクリル酸ヘキサデシル((メタ)アクリル酸パルミチルともいう。)、(メタ)アクリル酸ヘプタデシル、(メタ)アクリル酸オクタデシル((メタ)アクリル酸ステアリルともいう。)、(メタ)アクリル酸ノナデシル、(メタ)アクリル酸イコシル等が挙げられる。
Examples of the (meth) acrylic acid alkyl ester include those in which the alkyl group constituting the alkyl ester has 1 to 20 carbon atoms, and the alkyl group is linear or branched. Is preferable.
More specifically, as the (meth) acrylic acid alkyl ester, methyl (meth) acrylic acid, ethyl (meth) acrylic acid, n-propyl (meth) acrylic acid, isopropyl (meth) acrylic acid, (meth) acrylic acid. n-butyl, isobutyl (meth) acrylate, sec-butyl (meth) acrylate, tert-butyl (meth) acrylate, pentyl (meth) acrylate, hexyl (meth) acrylate, heptyl (meth) acrylate, 2-Ethylhexyl (meth) acrylate, isooctyl (meth) acrylate, n-octyl (meth) acrylate, n-nonyl (meth) acrylate, isononyl (meth) acrylate, decyl (meth) acrylate, (meth) ) Undecyl acrylate, dodecyl (meth) acrylate (also called lauryl (meth) acrylate), tridecyl (meth) acrylate, tetradecyl (meth) acrylate (also called myristyl (meth) acrylate), (meth) ) Pentadecyl acrylate, hexadecyl (meth) acrylate (also called palmityl (meth) acrylate), heptadecyl (meth) acrylate, octadecyl (meth) acrylate (also called stearyl (meth) acrylate), (meth) ) Nonadecil acrylate, icosyl (meth) acrylate and the like can be mentioned.
 なお、本明細書において、「(メタ)アクリル酸」とは、「アクリル酸」及び「メタクリル酸」の両方を包含する概念とする。(メタ)アクリル酸と類似の用語につても同様であり、例えば、「(メタ)アクリレート」とは、「アクリレート」及び「メタクリレート」の両方を包含する概念であり、「(メタ)アクリロイル基」とは、「アクリロイル基」及び「メタクリロイル基」の両方を包含する概念である。 In addition, in this specification, "(meth) acrylic acid" is a concept including both "acrylic acid" and "methacrylic acid". The same applies to terms similar to (meth) acrylic acid, for example, "(meth) acrylate" is a concept that includes both "acrylate" and "methacrylate", and is a "(meth) acryloyl group". Is a concept that includes both an "acryloyl group" and a "methacryloyl group".
 第1粘着剤層の粘着力が向上する点から、前記アクリル系重合体は、前記アルキル基の炭素数が4以上である(メタ)アクリル酸アルキルエステル由来の構成単位を有することが好ましい。そして、第1粘着剤層の粘着力がより向上する点から、前記アルキル基の炭素数は、4~12であることが好ましく、4~8であることがより好ましい。また、前記アルキル基の炭素数が4以上である(メタ)アクリル酸アルキルエステルは、アクリル酸アルキルエステルであることが好ましい。 From the viewpoint of improving the adhesive strength of the first pressure-sensitive adhesive layer, it is preferable that the acrylic polymer has a structural unit derived from a (meth) acrylic acid alkyl ester having 4 or more carbon atoms in the alkyl group. The alkyl group preferably has 4 to 12 carbon atoms, and more preferably 4 to 8 carbon atoms, from the viewpoint of further improving the adhesive strength of the first pressure-sensitive adhesive layer. The (meth) acrylic acid alkyl ester having 4 or more carbon atoms in the alkyl group is preferably an acrylic acid alkyl ester.
 前記アクリル系重合体は、(メタ)アクリル酸アルキルエステル由来の構成単位以外に、さらに、官能基含有モノマー由来の構成単位を有することが好ましい。
 前記官能基含有モノマーとしては、例えば、前記官能基が後述する架橋剤と反応することで架橋の起点となったり、前記官能基が不飽和基含有化合物中の官能基と反応することで、アクリル系重合体の側鎖に不飽和基の導入を可能とするものが挙げられる。
The acrylic polymer preferably has a structural unit derived from a functional group-containing monomer in addition to the structural unit derived from the (meth) acrylic acid alkyl ester.
The functional group-containing monomer may be, for example, acrylic when the functional group reacts with a cross-linking agent described later to become a starting point of cross-linking, or when the functional group reacts with a functional group in an unsaturated group-containing compound. Examples thereof include those capable of introducing an unsaturated group into the side chain of the system polymer.
 官能基含有モノマー中の前記官能基としては、例えば、水酸基、カルボキシ基、アミノ基、エポキシ基等が挙げられる。
 即ち、官能基含有モノマーとしては、例えば、水酸基含有モノマー、カルボキシ基含有モノマー、アミノ基含有モノマー、エポキシ基含有モノマー等が挙げられる。
Examples of the functional group in the functional group-containing monomer include a hydroxyl group, a carboxy group, an amino group, an epoxy group and the like.
That is, examples of the functional group-containing monomer include a hydroxyl group-containing monomer, a carboxy group-containing monomer, an amino group-containing monomer, and an epoxy group-containing monomer.
 前記水酸基含有モノマーとしては、例えば、(メタ)アクリル酸ヒドロキシメチル、(メタ)アクリル酸2-ヒドロキシエチル、(メタ)アクリル酸2-ヒドロキシプロピル、(メタ)アクリル酸3-ヒドロキシプロピル、(メタ)アクリル酸2-ヒドロキシブチル、(メタ)アクリル酸3-ヒドロキシブチル、(メタ)アクリル酸4-ヒドロキシブチル等の(メタ)アクリル酸ヒドロキシアルキル;ビニルアルコール、アリルアルコール等の非(メタ)アクリル系不飽和アルコール(すなわち、(メタ)アクリロイル骨格を有しない不飽和アルコール)等が挙げられ、(メタ)アクリル酸2-ヒドロキシエチルが好ましく、アクリル酸2-ヒドロキシエチルがより好ましい。 Examples of the hydroxyl group-containing monomer include hydroxymethyl (meth) acrylate, 2-hydroxyethyl (meth) acrylate, 2-hydroxypropyl (meth) acrylate, 3-hydroxypropyl (meth) acrylate, and (meth). Hydroxyalkyl (meth) acrylates such as 2-hydroxybutyl acrylate, 3-hydroxybutyl (meth) acrylate, 4-hydroxybutyl (meth) acrylate; non- (meth) acrylic non-acrylic acids such as vinyl alcohol and allyl alcohol. Saturated alcohol (that is, unsaturated alcohol having no (meth) acryloyl skeleton) and the like can be mentioned, with 2-hydroxyethyl (meth) acrylate being preferred, and 2-hydroxyethyl acrylate being more preferred.
 前記カルボキシ基含有モノマーとしては、例えば、(メタ)アクリル酸、クロトン酸等のエチレン性不飽和モノカルボン酸(エチレン性不飽和結合を有するモノカルボン酸);フマル酸、イタコン酸、マレイン酸、シトラコン酸等のエチレン性不飽和ジカルボン酸(エチレン性不飽和結合を有するジカルボン酸);前記エチレン性不飽和ジカルボン酸の無水物;2-カルボキシエチルメタクリレート等の(メタ)アクリル酸カルボキシアルキルエステル等が挙げられる。 Examples of the carboxy group-containing monomer include ethylenically unsaturated monocarboxylic acids (monocarboxylic acids having ethylenically unsaturated bonds) such as (meth) acrylic acid and crotonic acid; fumaric acid, itaconic acid, maleic acid, and citracon. Ethylene unsaturated dicarboxylic acids such as acids (dicarboxylic acids having ethylenically unsaturated bonds); anhydrides of the ethylenically unsaturated dicarboxylic acids; (meth) acrylic acid carboxyalkyl esters such as 2-carboxyethyl methacrylate and the like. Be done.
 官能基含有モノマーは、水酸基含有モノマー、カルボキシ基含有モノマーが好ましく、水酸基含有モノマーがより好ましい。 As the functional group-containing monomer, a hydroxyl group-containing monomer and a carboxy group-containing monomer are preferable, and a hydroxyl group-containing monomer is more preferable.
 前記アクリル系重合体を構成する官能基含有モノマーは、1種のみでもよいし、2種以上でもよく、2種以上である場合、それらの組み合わせ及び比率は任意に選択できる。 The functional group-containing monomer constituting the acrylic polymer may be only one type, may be two or more types, and when there are two or more types, the combination and ratio thereof can be arbitrarily selected.
 前記アクリル系重合体において、官能基含有モノマー由来の構成単位の含有量は、構成単位の全量に対して、1~35質量%であることが好ましく、3~32質量%であることがより好ましく、5~30質量%であることが特に好ましい。 In the acrylic polymer, the content of the structural unit derived from the functional group-containing monomer is preferably 1 to 35% by mass, more preferably 3 to 32% by mass, based on the total amount of the structural units. It is particularly preferably 5 to 30% by mass.
 前記アクリル系重合体は、(メタ)アクリル酸アルキルエステル由来の構成単位、及び官能基含有モノマー由来の構成単位以外に、さらに、他のモノマー由来の構成単位を有していてもよい。
 前記他のモノマーは、(メタ)アクリル酸アルキルエステル等と共重合可能なものであれば特に限定されない。
 前記他のモノマーとしては、例えば、スチレン、α-メチルスチレン、ビニルトルエン、ギ酸ビニル、酢酸ビニル、アクリロニトリル、アクリルアミド等が挙げられる。
The acrylic polymer may further have a structural unit derived from another monomer in addition to the structural unit derived from the (meth) acrylic acid alkyl ester and the structural unit derived from the functional group-containing monomer.
The other monomer is not particularly limited as long as it can be copolymerized with a (meth) acrylic acid alkyl ester or the like.
Examples of the other monomer include styrene, α-methylstyrene, vinyltoluene, vinyl formate, vinyl acetate, acrylonitrile, acrylamide and the like.
 前記アクリル系重合体を構成する前記他のモノマーは、1種のみでもよいし、2種以上でもよく、2種以上である場合、それらの組み合わせ及び比率は任意に選択できる。 The other monomer constituting the acrylic polymer may be only one type, may be two or more types, and when there are two or more types, the combination and ratio thereof can be arbitrarily selected.
 前記アクリル系重合体は、上述の非エネルギー線硬化性の粘着性樹脂(I-1a)として使用できる。
 一方、前記アクリル系重合体中の官能基に、エネルギー線重合性不飽和基(エネルギー線重合性基)を有する不飽和基含有化合物を反応させたものは、上述のエネルギー線硬化性の粘着性樹脂(I-2a)として使用できる。
 なお、本発明において、「エネルギー線重合性」とは、エネルギー線を照射することにより重合する性質を意味する。
The acrylic polymer can be used as the above-mentioned non-energy ray-curable adhesive resin (I-1a).
On the other hand, a product obtained by reacting a functional group in the acrylic polymer with an unsaturated group-containing compound having an energy ray-polymerizable unsaturated group (energy ray-polymerizable group) has the above-mentioned energy ray-curable adhesiveness. It can be used as a resin (I-2a).
In the present invention, "energy ray polymerizable" means the property of polymerizing by irradiating with energy rays.
 第1粘着剤組成物(I-1)が含有する粘着性樹脂(I-1a)は、1種のみでもよいし、2種以上でもよく、2種以上である場合、それらの組み合わせ及び比率は任意に選択できる。 The pressure-sensitive adhesive resin (I-1a) contained in the first pressure-sensitive adhesive composition (I-1) may be only one type, may be two or more types, and when there are two or more types, the combination and ratio thereof are It can be selected arbitrarily.
 第1粘着剤組成物(I-1)において、粘着性樹脂(I-1a)の含有量は、第1粘着剤組成物(I-1)の総質量に対して、5~99質量%であることが好ましく、10~95質量%であることがより好ましく、15~90質量%であることが特に好ましい。 In the first pressure-sensitive adhesive composition (I-1), the content of the pressure-sensitive resin (I-1a) is 5 to 99% by mass with respect to the total mass of the first pressure-sensitive adhesive composition (I-1). It is preferably, more preferably 10 to 95% by mass, and particularly preferably 15 to 90% by mass.
(エネルギー線硬化性化合物)
 第1粘着剤組成物(I-1)が含有する前記エネルギー線硬化性化合物としては、エネルギー線重合性不飽和基を有し、エネルギー線の照射により硬化可能なモノマー又はオリゴマーが挙げられる。
 エネルギー線硬化性化合物のうち、モノマーとしては、例えば、トリメチロールプロパントリ(メタ)アクリレート、ペンタエリスリトール(メタ)アクリレート、ペンタエリスリトールテトラ(メタ)アクリレート、ジペンタエリスリトールヘキサ(メタ)アクリレート、1,4-ブチレングリコールジ(メタ)アクリレート、1,6-へキサンジオール(メタ)アクリレート等の多価(メタ)アクリレート;ウレタン(メタ)アクリレート;ポリエステル(メタ)アクリレート;ポリエーテル(メタ)アクリレート;エポキシ(メタ)アクリレート等が挙げられる。
 エネルギー線硬化性化合物のうち、オリゴマーとしては、例えば、上記で例示したモノマーが重合したオリゴマー等が挙げられる。
 エネルギー線硬化性化合物は、分子量が比較的大きく、第1粘着剤層の貯蔵弾性率を低下させにくいという点では、ウレタン(メタ)アクリレート、ウレタン(メタ)アクリレートオリゴマーが好ましい。
 本明細書において、「オリゴマー」とは、重量平均分子量又は式量が5,000以下の物質を意味する(但し、モノマーは除く)。
(Energy ray curable compound)
Examples of the energy ray-curable compound contained in the first pressure-sensitive adhesive composition (I-1) include monomers or oligomers having an energy ray-polymerizable unsaturated group and curable by irradiation with energy rays.
Among the energy ray-curable compounds, examples of the monomer include trimethylpropantri (meth) acrylate, pentaerythritol (meth) acrylate, pentaerythritol tetra (meth) acrylate, dipentaerythritol hexa (meth) acrylate, 1,4. Multivalent (meth) acrylates such as -butylene glycol di (meth) acrylate, 1,6-hexanediol (meth) acrylate; urethane (meth) acrylate; polyester (meth) acrylate; polyether (meth) acrylate; epoxy ( Meta) Acrylate and the like can be mentioned.
Among the energy ray-curable compounds, examples of the oligomer include oligomers obtained by polymerizing the monomers exemplified above.
The energy ray-curable compound has a relatively large molecular weight, and urethane (meth) acrylate and urethane (meth) acrylate oligomer are preferable in that the storage elastic modulus of the first pressure-sensitive adhesive layer is unlikely to be lowered.
As used herein, the term "oligomer" means a substance having a weight average molecular weight or formula weight of 5,000 or less (excluding monomers).
 第1粘着剤組成物(I-1)が含有する前記エネルギー線硬化性化合物は、1種のみでもよいし、2種以上でもよく、2種以上である場合、それらの組み合わせ及び比率は任意に選択できる。 The energy ray-curable compound contained in the first pressure-sensitive adhesive composition (I-1) may be only one type, may be two or more types, and when there are two or more types, the combination and ratio thereof may be arbitrary. You can choose.
 第1粘着剤組成物(I-1)において、前記エネルギー線硬化性化合物の含有量は、第1粘着剤組成物(I-1)の総質量に対して、1~95質量%であることが好ましく、5~90質量%であることがより好ましく、10~85質量%であることが特に好ましい。 In the first pressure-sensitive adhesive composition (I-1), the content of the energy ray-curable compound is 1 to 95% by mass with respect to the total mass of the first pressure-sensitive adhesive composition (I-1). Is preferable, 5 to 90% by mass is more preferable, and 10 to 85% by mass is particularly preferable.
(架橋剤)
 粘着性樹脂(I-1a)として、(メタ)アクリル酸アルキルエステル由来の構成単位以外に、さらに、官能基含有モノマー由来の構成単位を有する前記アクリル系重合体を用いる場合、第1粘着剤組成物(I-1)は、さらに架橋剤を含有することが好ましい。
(Crosslinking agent)
When the acrylic polymer having a structural unit derived from a functional group-containing monomer is used as the adhesive resin (I-1a) in addition to the structural unit derived from the (meth) acrylic acid alkyl ester, the first pressure-sensitive adhesive composition is used. The product (I-1) preferably further contains a cross-linking agent.
 前記架橋剤は、例えば、前記官能基と反応して、粘着性樹脂(I-1a)同士を架橋するものである。
 架橋剤としては、例えば、トリレン-2,6-ジイソシアネート等のトリレンジイソシアネート、ヘキサメチレンジイソシアネート、キシリレンジイソシアネート、これらジイソシアネートのアダクト体等のイソシアネート系架橋剤(イソシアネート基を有する架橋剤);エチレングリコールグリシジルエーテル、N,N’-(シクロヘキサン-1,3-ジイルビスメチレン)ビス(グリシジルアミン)等のエポキシ系架橋剤(グリシジル基を有する架橋剤);ヘキサ[1-(2-メチル)-アジリジニル]トリフオスファトリアジン等のアジリジン系架橋剤(アジリジニル基を有する架橋剤);アルミニウムキレート等の金属キレート系架橋剤(金属キレート構造を有する架橋剤);イソシアヌレート系架橋剤(イソシアヌル酸骨格を有する架橋剤)等が挙げられる。
 粘着剤の凝集力を向上させて第1粘着剤層の粘着力を向上させる点、及び入手が容易である等の点から、架橋剤はイソシアネート系架橋剤であることが好ましい。
The cross-linking agent, for example, reacts with the functional group to cross-link the adhesive resins (I-1a) with each other.
Examples of the cross-linking agent include tolylene diisocyanate such as tolylen-2,6-diisocyanate, hexamethylene diisocyanate, xylylene diisocyanate, and isocyanate-based cross-linking agents such as adducts of these diisocyanates (cross-linking agents having an isocyanate group); ethylene glycol. Epoxy-based cross-linking agents (cross-linking agents having a glycidyl group) such as glycidyl ether, N, N'-(cyclohexane-1,3-diylbismethylene) bis (glycidylamine); hexa [1- (2-methyl) -aziridinyl) ] Aziridine-based cross-linking agent such as trifoosphatriazine (cross-linking agent having an aziridinyl group); metal chelate-based cross-linking agent such as aluminum chelate (cross-linking agent having a metal chelate structure); isocyanurate-based cross-linking agent (having an isocyanurate skeleton) Cross-linking agent) and the like.
The cross-linking agent is preferably an isocyanate-based cross-linking agent from the viewpoints of improving the cohesive force of the pressure-sensitive adhesive to improve the adhesive force of the first pressure-sensitive adhesive layer and being easily available.
 第1粘着剤組成物(I-1)が含有する架橋剤は、1種のみでもよいし、2種以上でもよく、2種以上である場合、それらの組み合わせ及び比率は任意に選択できる。 The cross-linking agent contained in the first pressure-sensitive adhesive composition (I-1) may be only one type, may be two or more types, and when there are two or more types, the combination and ratio thereof can be arbitrarily selected.
 第1粘着剤組成物(I-1)において、架橋剤の含有量は、粘着性樹脂(I-1a)の含有量100質量部に対して、0.01~50質量部であることが好ましく、0.1~20質量部であることがより好ましく、1~10質量部であることが特に好ましい。 In the first pressure-sensitive adhesive composition (I-1), the content of the cross-linking agent is preferably 0.01 to 50 parts by mass with respect to 100 parts by mass of the content of the pressure-sensitive adhesive resin (I-1a). , 0.1 to 20 parts by mass is more preferable, and 1 to 10 parts by mass is particularly preferable.
(光重合開始剤)
 第1粘着剤組成物(I-1)は、さらに光重合開始剤を含有していてもよい。光重合開始剤を含有する第1粘着剤組成物(I-1)は、紫外線等の比較的低エネルギーのエネルギー線を照射しても、十分に硬化反応が進行する。
(Photopolymerization initiator)
The first pressure-sensitive adhesive composition (I-1) may further contain a photopolymerization initiator. The first pressure-sensitive adhesive composition (I-1) containing a photopolymerization initiator sufficiently undergoes a curing reaction even when irradiated with relatively low-energy energy rays such as ultraviolet rays.
 前記光重合開始剤としては、例えば、ベンゾイン、ベンゾインメチルエーテル、ベンゾインエチルエーテル、ベンゾインイソプロピルエーテル、ベンゾインイソブチルエーテル、ベンゾイン安息香酸、ベンゾイン安息香酸メチル、ベンゾインジメチルケタール等のベンゾイン化合物;アセトフェノン、2-ヒドロキシ-2-メチル-1-フェニル-プロパン-1-オン、2,2-ジメトキシ-1,2-ジフェニルエタン-1-オン等のアセトフェノン化合物;ビス(2,4,6-トリメチルベンゾイル)フェニルフォスフィンオキサイド、2,4,6-トリメチルベンゾイルジフェニルフォスフィンオキサイド等のアシルフォスフィンオキサイド化合物;ベンジルフェニルスルフィド、テトラメチルチウラムモノスルフィド等のスルフィド化合物;1-ヒドロキシシクロヘキシルフェニルケトン等のα-ケトール化合物;、アゾビスイソブチロニトリル等のアゾ化合物;チタノセン等のチタノセン化合物;チオキサントン等のチオキサントン化合物;パーオキサイド化合物;ジアセチル等のジケトン化合物;ベンジル、ジベンジル、ベンゾフェノン、2,4-ジエチルチオキサントン、1,2-ジフェニルメタン、2-ヒドロキシ-2-メチル-1-[4-(1-メチルビニル)フェニル]プロパノン、2-クロロアントラキノン等が挙げられる。
 また、前記光重合開始剤としては、例えば、1-クロロアントラキノン等のキノン化合物;アミン等の光増感剤等を用いることもできる。
Examples of the photopolymerization initiator include benzoin compounds such as benzoin, benzoin methyl ether, benzoin ethyl ether, benzoin isopropyl ether, benzoin isobutyl ether, benzoin benzoic acid, methyl benzoin benzoate, and benzoin dimethyl ketal; acetophenone and 2-hydroxy. Acetphenone compounds such as -2-methyl-1-phenyl-propane-1-one, 2,2-dimethoxy-1,2-diphenylethane-1-one; bis (2,4,6-trimethylbenzoyl) phenylphosphine Acylphosphine oxide compounds such as oxide, 2,4,6-trimethylbenzoyldiphenylphosphine oxide; sulfide compounds such as benzylphenyl sulfide and tetramethylthium monosulfide; α-ketol compounds such as 1-hydroxycyclohexylphenylketone; Azo compounds such as azobisisobutyronitrile; titanosen compounds such as titanosen; thioxanthone compounds such as thioxanthone; peroxide compounds; diketone compounds such as diacetyl; benzyl, dibenzyl, benzophenone, 2,4-diethylthioxanthone, 1,2- Examples thereof include diphenylmethane, 2-hydroxy-2-methyl-1- [4- (1-methylvinyl) phenyl] propanone, 2-chloroanthraquinone and the like.
Further, as the photopolymerization initiator, for example, a quinone compound such as 1-chloroanthraquinone; a photosensitizer such as amine can also be used.
 第1粘着剤組成物(I-1)が含有する光重合開始剤は、1種のみでもよいし、2種以上でもよく、2種以上である場合、それらの組み合わせ及び比率は任意に選択できる。 The photopolymerization initiator contained in the first pressure-sensitive adhesive composition (I-1) may be only one type, may be two or more types, and when there are two or more types, the combination and ratio thereof can be arbitrarily selected. ..
 第1粘着剤組成物(I-1)において、光重合開始剤の含有量は、前記エネルギー線硬化性化合物の含有量100質量部に対して、0.01~20質量部であることが好ましく、0.03~10質量部であることがより好ましく、0.05~5質量部であることが特に好ましい。 In the first pressure-sensitive adhesive composition (I-1), the content of the photopolymerization initiator is preferably 0.01 to 20 parts by mass with respect to 100 parts by mass of the content of the energy ray-curable compound. , 0.03 to 10 parts by mass, and particularly preferably 0.05 to 5 parts by mass.
(その他の添加剤)
 第1粘着剤組成物(I-1)は、本発明の効果を損なわない範囲内において、上述のいずれの成分にも該当しない、その他の添加剤を含有していてもよい。
 前記その他の添加剤としては、例えば、帯電防止剤、酸化防止剤、軟化剤(可塑剤)、充填剤(フィラー)、防錆剤、着色剤(顔料、染料)、増感剤、粘着付与剤、反応遅延剤、架橋促進剤(触媒)等の公知の添加剤が挙げられる。
 なお、反応遅延剤とは、例えば、第1粘着剤組成物(I-1)中に混入している触媒の作用によって、保存中の第1粘着剤組成物(I-1)において、目的としない架橋反応が進行するのを抑制するものである。反応遅延剤としては、例えば、触媒に対するキレートによってキレート錯体を形成するものが挙げられ、より具体的には、1分子中にカルボニル基(-C(=O)-)を2個以上有するものが挙げられる。
(Other additives)
The first pressure-sensitive adhesive composition (I-1) may contain other additives that do not fall under any of the above-mentioned components as long as the effects of the present invention are not impaired.
Examples of the other additives include antioxidants, antioxidants, softeners (plasticizers), fillers (fillers), rust inhibitors, colorants (pigments, dyes), sensitizers, and tackifiers. , Known additives such as reaction retarders and cross-linking accelerators (catalysts).
The reaction delaying agent is used in the first pressure-sensitive adhesive composition (I-1) during storage due to the action of the catalyst mixed in the first pressure-sensitive adhesive composition (I-1). It suppresses the progress of the cross-linking reaction. Examples of the reaction retarder include those that form a chelate complex by chelating to a catalyst, and more specifically, those having two or more carbonyl groups (-C (= O)-) in one molecule. Can be mentioned.
 第1粘着剤組成物(I-1)が含有するその他の添加剤は、1種のみでもよいし、2種以上でもよく、2種以上である場合、それらの組み合わせ及び比率は任意に選択できる。 The other additives contained in the first pressure-sensitive adhesive composition (I-1) may be only one type, may be two or more types, and when there are two or more types, their combinations and ratios can be arbitrarily selected. ..
 第1粘着剤組成物(I-1)において、その他の添加剤の含有量は特に限定されず、その種類に応じて適宜選択すればよい。 In the first pressure-sensitive adhesive composition (I-1), the content of other additives is not particularly limited and may be appropriately selected according to the type thereof.
(溶媒)
 第1粘着剤組成物(I-1)は、溶媒を含有していてもよい。第1粘着剤組成物(I-1)は、溶媒を含有していることで、塗工対象面への塗工適性が向上する。
(solvent)
The first pressure-sensitive adhesive composition (I-1) may contain a solvent. Since the first pressure-sensitive adhesive composition (I-1) contains a solvent, the coating suitability on the surface to be coated is improved.
 前記溶媒は有機溶媒であることが好ましく、前記有機溶媒としては、例えば、メチルエチルケトン、アセトン等のケトン;酢酸エチル等のエステル(カルボン酸エステル);テトラヒドロフラン、ジオキサン等のエーテル;シクロヘキサン、n-ヘキサン等の脂肪族炭化水素;トルエン、キシレン等の芳香族炭化水素;1-プロパノール、2-プロパノール等のアルコール等が挙げられる。 The solvent is preferably an organic solvent, and examples of the organic solvent include ketones such as methyl ethyl ketone and acetone; esters such as ethyl acetate (carboxylic acid esters); ethers such as tetrahydrofuran and dioxane; cyclohexane, n-hexane and the like. Aliphatic hydrocarbons; aromatic hydrocarbons such as toluene and xylene; alcohols such as 1-propanol and 2-propanol.
 前記溶媒としては、例えば、粘着性樹脂(I-1a)の製造時に用いたものを粘着性樹脂(I-1a)から取り除かずに、そのまま第1粘着剤組成物(I-1)において用いてもよいし、粘着性樹脂(I-1a)の製造時に用いたものと同一又は異なる種類の溶媒を、第1粘着剤組成物(I-1)の製造時に別途添加してもよい。 As the solvent, for example, the solvent used in the production of the pressure-sensitive adhesive resin (I-1a) is used as it is in the first pressure-sensitive adhesive composition (I-1) without being removed from the pressure-sensitive adhesive resin (I-1a). Alternatively, the same or different type of solvent as that used in the production of the adhesive resin (I-1a) may be added separately during the production of the first pressure-sensitive adhesive composition (I-1).
 第1粘着剤組成物(I-1)が含有する溶媒は、1種のみでもよいし、2種以上でもよく、2種以上である場合、それらの組み合わせ及び比率は任意に選択できる。 The solvent contained in the first pressure-sensitive adhesive composition (I-1) may be only one type, may be two or more types, and when there are two or more types, the combination and ratio thereof can be arbitrarily selected.
 第1粘着剤組成物(I-1)において、溶媒の含有量は特に限定されず、適宜調節すればよい。 In the first pressure-sensitive adhesive composition (I-1), the content of the solvent is not particularly limited and may be appropriately adjusted.
{第1粘着剤組成物(I-2)}
 第1粘着剤組成物(I-2)は、上述の様に、非エネルギー線硬化性の粘着性樹脂(I-1a)の側鎖に不飽和基が導入されたエネルギー線硬化性の粘着性樹脂(I-2a)を含有する。
{First Adhesive Composition (I-2)}
As described above, the first pressure-sensitive adhesive composition (I-2) has an energy ray-curable adhesiveness in which an unsaturated group is introduced into the side chain of the non-energy ray-curable pressure-sensitive adhesive resin (I-1a). Contains resin (I-2a).
(粘着性樹脂(I-2a))
 前記粘着性樹脂(I-2a)は、例えば、粘着性樹脂(I-1a)中の官能基に、エネルギー線重合性不飽和基を有する不飽和基含有化合物を反応させることで得られる。
(Adhesive resin (I-2a))
The adhesive resin (I-2a) can be obtained, for example, by reacting a functional group in the adhesive resin (I-1a) with an unsaturated group-containing compound having an energy ray-polymerizable unsaturated group.
 前記不飽和基含有化合物は、前記エネルギー線重合性不飽和基以外に、さらに粘着性樹脂(I-1a)中の官能基と反応することで、粘着性樹脂(I-1a)と結合可能な基を有する化合物である。
 前記エネルギー線重合性不飽和基としては、例えば、(メタ)アクリロイル基、ビニル基(エテニル基ともいう。)、アリル基(2-プロペニル基ともいう。)等が挙げられ、(メタ)アクリロイル基が好ましい。
 粘着性樹脂(I-1a)中の官能基と結合可能な基としては、例えば、水酸基又はアミノ基と反応可能なイソシアネート基及びグリシジル基、並びにカルボキシ基又はエポキシ基と反応可能な水酸基及びアミノ基等が挙げられる。
The unsaturated group-containing compound can be bonded to the adhesive resin (I-1a) by further reacting with a functional group in the adhesive resin (I-1a) in addition to the energy ray-polymerizable unsaturated group. It is a compound having a group.
Examples of the energy ray-polymerizable unsaturated group include a (meth) acryloyl group, a vinyl group (also referred to as an ethenyl group), an allyl group (also referred to as a 2-propenyl group), and the like, and a (meth) acryloyl group. Is preferable.
Examples of the group capable of binding to the functional group in the adhesive resin (I-1a) include an isocyanate group and a glycidyl group capable of reacting with a hydroxyl group or an amino group, and a hydroxyl group and an amino group capable of reacting with a carboxy group or an epoxy group. And so on.
 前記不飽和基含有化合物としては、例えば、(メタ)アクリロイルオキシエチルイソシアネート、(メタ)アクリロイルイソシアネート、グリシジル(メタ)アクリレート等が挙げられ、(メタ)アクリロイルオキシエチルイソシアネートが好ましく、その中でも2-メタクリロイルオキシエチルイソシアネートが特に好ましい。
 前記イソシアネート化合物は、粘着性樹脂(I-1a)中の水酸基と反応可能であり、粘着性樹脂(I-1a)中の全水酸基を100molとしたときの、前記イソシアネート化合物の使用量は、10~150molが好ましく、20~140molがより好ましく、30~130molがさらに好ましい。
Examples of the unsaturated group-containing compound include (meth) acryloyloxyethyl isocyanate, (meth) acryloyl isocyanate, and glycidyl (meth) acrylate, and (meth) acryloyloxyethyl isocyanate is preferable, and 2-methacryloyl is preferable. Oxyethyl isocyanate is particularly preferred.
The isocyanate compound can react with the hydroxyl groups in the adhesive resin (I-1a), and when the total hydroxyl groups in the adhesive resin (I-1a) are 100 mol, the amount of the isocyanate compound used is 10. It is preferably ~ 150 mol, more preferably 20 to 140 mol, and even more preferably 30 to 130 mol.
 第1粘着剤組成物(I-2)が含有する粘着性樹脂(I-2a)は、1種のみでもよいし、2種以上でもよく、2種以上である場合、それらの組み合わせ及び比率は任意に選択できる。 The pressure-sensitive adhesive resin (I-2a) contained in the first pressure-sensitive adhesive composition (I-2) may be only one type, may be two or more types, and when there are two or more types, the combination and ratio thereof are It can be selected arbitrarily.
 第1粘着剤組成物(I-2)において、粘着性樹脂(I-2a)の含有量は、第1粘着剤組成物(I-2)の総質量に対して、5~99質量%であることが好ましく、10~95質量%であることがより好ましく、10~90質量%であることが特に好ましい。 In the first pressure-sensitive adhesive composition (I-2), the content of the pressure-sensitive resin (I-2a) is 5 to 99% by mass with respect to the total mass of the first pressure-sensitive adhesive composition (I-2). It is preferably 10 to 95% by mass, more preferably 10 to 90% by mass, and particularly preferably 10 to 90% by mass.
(架橋剤)
 粘着性樹脂(I-2a)として、例えば、粘着性樹脂(I-1a)におけるものと同様な、官能基含有モノマー由来の構成単位を有する前記アクリル系重合体を用いる場合、第1粘着剤組成物(I-2)は、さらに架橋剤を含有していてもよい。
(Crosslinking agent)
When the acrylic polymer having a structural unit derived from a functional group-containing monomer similar to that in the adhesive resin (I-1a) is used as the adhesive resin (I-2a), for example, the first pressure-sensitive adhesive composition. The product (I-2) may further contain a cross-linking agent.
 第1粘着剤組成物(I-2)における前記架橋剤としては、第1粘着剤組成物(I-1)における架橋剤と同じものが挙げられる。
 第1粘着剤組成物(I-2)が含有する架橋剤は、1種のみでもよいし、2種以上でもよく、2種以上である場合、それらの組み合わせ及び比率は任意に選択できる。
Examples of the cross-linking agent in the first pressure-sensitive adhesive composition (I-2) include the same cross-linking agents as those in the first pressure-sensitive adhesive composition (I-1).
The cross-linking agent contained in the first pressure-sensitive adhesive composition (I-2) may be only one kind, two or more kinds, and when two or more kinds, the combination and ratio thereof can be arbitrarily selected.
 第1粘着剤組成物(I-2)において、架橋剤の含有量は、粘着性樹脂(I-2a)の含有量100質量部に対して、0.01~50質量部であることが好ましく、0.1~20質量部であることがより好ましく、1~10質量部であることが特に好ましい。 In the first pressure-sensitive adhesive composition (I-2), the content of the cross-linking agent is preferably 0.01 to 50 parts by mass with respect to 100 parts by mass of the content of the pressure-sensitive adhesive resin (I-2a). , 0.1 to 20 parts by mass is more preferable, and 1 to 10 parts by mass is particularly preferable.
(光重合開始剤)
 第1粘着剤組成物(I-2)は、さらに光重合開始剤を含有していてもよい。光重合開始剤を含有する第1粘着剤組成物(I-2)は、紫外線等の比較的低エネルギーのエネルギー線を照射しても、十分に硬化反応が進行する。
(Photopolymerization initiator)
The first pressure-sensitive adhesive composition (I-2) may further contain a photopolymerization initiator. The first pressure-sensitive adhesive composition (I-2) containing the photopolymerization initiator sufficiently proceeds with the curing reaction even when irradiated with relatively low-energy energy rays such as ultraviolet rays.
 第1粘着剤組成物(I-2)における前記光重合開始剤としては、第1粘着剤組成物(I-1)における光重合開始剤と同じものが挙げられる。
 第1粘着剤組成物(I-2)が含有する光重合開始剤は、1種のみでもよいし、2種以上でもよく、2種以上である場合、それらの組み合わせ及び比率は任意に選択できる。
Examples of the photopolymerization initiator in the first pressure-sensitive adhesive composition (I-2) include the same photopolymerization initiators in the first pressure-sensitive adhesive composition (I-1).
The photopolymerization initiator contained in the first pressure-sensitive adhesive composition (I-2) may be only one type, two or more types, and when two or more types, the combination and ratio thereof can be arbitrarily selected. ..
 第1粘着剤組成物(I-2)において、光重合開始剤の含有量は、粘着性樹脂(I-2a)の含有量100質量部に対して、0.01~20質量部であることが好ましく、0.03~10質量部であることがより好ましく、0.05~5質量部であることが特に好ましい。 In the first pressure-sensitive adhesive composition (I-2), the content of the photopolymerization initiator is 0.01 to 20 parts by mass with respect to 100 parts by mass of the content of the pressure-sensitive adhesive resin (I-2a). Is preferable, 0.03 to 10 parts by mass is more preferable, and 0.05 to 5 parts by mass is particularly preferable.
(その他の添加剤)
 第1粘着剤組成物(I-2)は、本発明の効果を損なわない範囲内において、上述のいずれの成分にも該当しない、その他の添加剤を含有していてもよい。
 第1粘着剤組成物(I-2)における前記その他の添加剤としては、第1粘着剤組成物(I-1)におけるその他の添加剤と同じものが挙げられる。
 第1粘着剤組成物(I-2)が含有するその他の添加剤は、1種のみでもよいし、2種以上でもよく、2種以上である場合、それらの組み合わせ及び比率は任意に選択できる。
(Other additives)
The first pressure-sensitive adhesive composition (I-2) may contain other additives that do not fall under any of the above-mentioned components as long as the effects of the present invention are not impaired.
Examples of the other additive in the first pressure-sensitive adhesive composition (I-2) include the same as the other additives in the first pressure-sensitive adhesive composition (I-1).
The other additives contained in the first pressure-sensitive adhesive composition (I-2) may be only one kind, two or more kinds, and when there are two or more kinds, their combinations and ratios can be arbitrarily selected. ..
 第1粘着剤組成物(I-2)において、その他の添加剤の含有量は特に限定されず、その種類に応じて適宜選択すればよい。 In the first pressure-sensitive adhesive composition (I-2), the content of other additives is not particularly limited and may be appropriately selected according to the type thereof.
(溶媒)
 第1粘着剤組成物(I-2)は、第1粘着剤組成物(I-1)の場合と同様の目的で、溶媒を含有していてもよい。
 第1粘着剤組成物(I-2)における前記溶媒としては、第1粘着剤組成物(I-1)における溶媒と同じものが挙げられる。
 第1粘着剤組成物(I-2)が含有する溶媒は、1種のみでもよいし、2種以上でもよく、2種以上である場合、それらの組み合わせ及び比率は任意に選択できる。
 第1粘着剤組成物(I-2)において、溶媒の含有量は特に限定されず、適宜調節すればよい。
(solvent)
The first pressure-sensitive adhesive composition (I-2) may contain a solvent for the same purpose as in the case of the first pressure-sensitive adhesive composition (I-1).
Examples of the solvent in the first pressure-sensitive adhesive composition (I-2) include the same solvents as those in the first pressure-sensitive adhesive composition (I-1).
The solvent contained in the first pressure-sensitive adhesive composition (I-2) may be only one type, may be two or more types, and when there are two or more types, the combination and ratio thereof can be arbitrarily selected.
In the first pressure-sensitive adhesive composition (I-2), the content of the solvent is not particularly limited and may be appropriately adjusted.
{第1粘着剤組成物(I-3)}
 第1粘着剤組成物(I-3)は、上述の様に、前記粘着性樹脂(I-2a)と、エネルギー線硬化性低分子化合物と、を含有する。
{First Adhesive Composition (I-3)}
As described above, the first pressure-sensitive adhesive composition (I-3) contains the pressure-sensitive adhesive resin (I-2a) and an energy ray-curable low-molecular-weight compound.
 第1粘着剤組成物(I-3)において、粘着性樹脂(I-2a)の含有量は、第1粘着剤組成物(I-3)の総質量に対して、5~99質量%であることが好ましく、10~95質量%であることがより好ましく、15~90質量%であることが特に好ましい。 In the first pressure-sensitive adhesive composition (I-3), the content of the pressure-sensitive resin (I-2a) is 5 to 99% by mass with respect to the total mass of the first pressure-sensitive adhesive composition (I-3). It is preferably, more preferably 10 to 95% by mass, and particularly preferably 15 to 90% by mass.
(エネルギー線硬化性低分子化合物)
 第1粘着剤組成物(I-3)が含有する前記エネルギー線硬化性低分子化合物としては、エネルギー線重合性不飽和基を有し、エネルギー線の照射により硬化可能なモノマー及びオリゴマーが挙げられ、第1粘着剤組成物(I-1)が含有するエネルギー線硬化性化合物と同じものが挙げられる。
 第1粘着剤組成物(I-3)が含有する前記エネルギー線硬化性低分子化合物は、1種のみでもよいし、2種以上でもよく、2種以上である場合、それらの組み合わせ及び比率は任意に選択できる。
(Energy ray curable low molecular weight compound)
Examples of the energy ray-curable low molecular weight compound contained in the first pressure-sensitive adhesive composition (I-3) include monomers and oligomers having an energy ray-polymerizable unsaturated group and curable by irradiation with energy rays. , The same as the energy ray-curable compound contained in the first pressure-sensitive adhesive composition (I-1) can be mentioned.
The energy ray-curable low molecular weight compound contained in the first pressure-sensitive adhesive composition (I-3) may be only one kind, two or more kinds, and when there are two or more kinds, the combination and ratio thereof are It can be selected arbitrarily.
 第1粘着剤組成物(I-3)において、前記エネルギー線硬化性低分子化合物の含有量は、粘着性樹脂(I-2a)の含有量100質量部に対して、0.01~300質量部であることが好ましく、0.03~200質量部であることがより好ましく、0.05~100質量部であることが特に好ましい。 In the first pressure-sensitive adhesive composition (I-3), the content of the energy ray-curable low molecular weight compound is 0.01 to 300 mass by mass with respect to 100 parts by mass of the content of the pressure-sensitive adhesive resin (I-2a). The amount is preferably 0.03 to 200 parts by mass, and particularly preferably 0.05 to 100 parts by mass.
(光重合開始剤)
 第1粘着剤組成物(I-3)は、さらに光重合開始剤を含有していてもよい。光重合開始剤を含有する第1粘着剤組成物(I-3)は、紫外線等の比較的低エネルギーのエネルギー線を照射しても、十分に硬化反応が進行する。
(Photopolymerization initiator)
The first pressure-sensitive adhesive composition (I-3) may further contain a photopolymerization initiator. The first pressure-sensitive adhesive composition (I-3) containing the photopolymerization initiator sufficiently proceeds with the curing reaction even when irradiated with relatively low-energy energy rays such as ultraviolet rays.
 第1粘着剤組成物(I-3)における前記光重合開始剤としては、第1粘着剤組成物(I-1)における光重合開始剤と同じものが挙げられる。
 第1粘着剤組成物(I-3)が含有する光重合開始剤は、1種のみでもよいし、2種以上でもよく、2種以上である場合、それらの組み合わせ及び比率は任意に選択できる。
Examples of the photopolymerization initiator in the first pressure-sensitive adhesive composition (I-3) include the same photopolymerization initiators in the first pressure-sensitive adhesive composition (I-1).
The photopolymerization initiator contained in the first pressure-sensitive adhesive composition (I-3) may be only one type, two or more types, and when two or more types, the combination and ratio thereof can be arbitrarily selected. ..
 第1粘着剤組成物(I-3)において、光重合開始剤の含有量は、粘着性樹脂(I-2a)及び前記エネルギー線硬化性低分子化合物の総含有量100質量部に対して、0.01~20質量部であることが好ましく、0.03~10質量部であることがより好ましく、0.05~5質量部であることが特に好ましい。 In the first pressure-sensitive adhesive composition (I-3), the content of the photopolymerization initiator is 100 parts by mass with respect to the total content of the pressure-sensitive adhesive resin (I-2a) and the energy ray-curable low molecular weight compound. It is preferably 0.01 to 20 parts by mass, more preferably 0.03 to 10 parts by mass, and particularly preferably 0.05 to 5 parts by mass.
(その他の添加剤)
 第1粘着剤組成物(I-3)は、本発明の効果を損なわない範囲内において、上述のいずれの成分にも該当しない、その他の添加剤を含有していてもよい。
 前記その他の添加剤としては、第1粘着剤組成物(I-1)におけるその他の添加剤と同じものが挙げられる。
 第1粘着剤組成物(I-3)が含有するその他の添加剤は、1種のみでもよいし、2種以上でもよく、2種以上である場合、それらの組み合わせ及び比率は任意に選択できる。
(Other additives)
The first pressure-sensitive adhesive composition (I-3) may contain other additives that do not fall under any of the above-mentioned components as long as the effects of the present invention are not impaired.
Examples of the other additive include the same as the other additive in the first pressure-sensitive adhesive composition (I-1).
The other additives contained in the first pressure-sensitive adhesive composition (I-3) may be only one type, may be two or more types, and when there are two or more types, their combinations and ratios can be arbitrarily selected. ..
 第1粘着剤組成物(I-3)において、その他の添加剤の含有量は特に限定されず、その種類に応じて適宜選択すればよい。 In the first pressure-sensitive adhesive composition (I-3), the content of other additives is not particularly limited and may be appropriately selected according to the type thereof.
(溶媒)
 第1粘着剤組成物(I-3)は、第1粘着剤組成物(I-1)の場合と同様の目的で、溶媒を含有していてもよい。
 第1粘着剤組成物(I-3)における前記溶媒としては、第1粘着剤組成物(I-1)における溶媒と同じものが挙げられる。
 第1粘着剤組成物(I-3)が含有する溶媒は、1種のみでもよいし、2種以上でもよく、2種以上である場合、それらの組み合わせ及び比率は任意に選択できる。
 第1粘着剤組成物(I-3)において、溶媒の含有量は特に限定されず、適宜調節すればよい。
(solvent)
The first pressure-sensitive adhesive composition (I-3) may contain a solvent for the same purpose as in the case of the first pressure-sensitive adhesive composition (I-1).
Examples of the solvent in the first pressure-sensitive adhesive composition (I-3) include the same solvents as those in the first pressure-sensitive adhesive composition (I-1).
The solvent contained in the first pressure-sensitive adhesive composition (I-3) may be only one type, two or more types, and when two or more types, the combination and ratio thereof can be arbitrarily selected.
In the first pressure-sensitive adhesive composition (I-3), the content of the solvent is not particularly limited and may be appropriately adjusted.
{第1粘着剤組成物(I-1)~(I-3)以外の第1粘着剤組成物}
 ここまでは、第1粘着剤組成物(I-1)、第1粘着剤組成物(I-2)及び第1粘着剤組成物(I-3)について主に説明したが、これらの含有成分として説明したものは、これら3種の第1粘着剤組成物以外の全般的な第1粘着剤組成物(本実施形態においては、「第1粘着剤組成物(I-1)~(I-3)以外の第1粘着剤組成物」と称する)でも、同様に用いることができる。
{First pressure-sensitive adhesive compositions other than the first pressure-sensitive adhesive compositions (I-1) to (I-3)}
Up to this point, the first pressure-sensitive adhesive composition (I-1), the first pressure-sensitive adhesive composition (I-2), and the first pressure-sensitive adhesive composition (I-3) have been mainly described, but the components contained therein. The general first pressure-sensitive adhesive compositions other than these three types of first pressure-sensitive adhesive compositions (in the present embodiment, "first pressure-sensitive adhesive compositions (I-1) to (I-)" are described as. It can also be used in the same manner with the first pressure-sensitive adhesive composition other than 3).
 第1粘着剤組成物(I-1)~(I-3)以外の第1粘着剤組成物としては、エネルギー線硬化性の第1粘着剤組成物以外に、非エネルギー線硬化性の第1粘着剤組成物も挙げられる。
 非エネルギー線硬化性の第1粘着剤組成物としては、例えば、アクリル系樹脂((メタ)アクリロイル基を有する樹脂)、ウレタン系樹脂(ウレタン結合を有する樹脂)、ゴム系樹脂(ゴム構造を有する樹脂)、シリコーン系樹脂(シロキサン結合を有する樹脂)、エポキシ系樹脂(エポキシ基を有する樹脂)、ポリビニルエーテル、又はポリカーボネート等の粘着性樹脂を含有するものが挙げられ、アクリル系樹脂を含有するものが好ましい。
As the first pressure-sensitive adhesive composition other than the first pressure-sensitive adhesive compositions (I-1) to (I-3), in addition to the energy ray-curable first pressure-sensitive adhesive composition, a non-energy ray-curable first pressure-sensitive adhesive composition is used. Adhesive compositions are also mentioned.
Examples of the non-energy ray-curable first pressure-sensitive adhesive composition include an acrylic resin (resin having a (meth) acryloyl group), a urethane resin (resin having a urethane bond), and a rubber resin (having a rubber structure). Resin), silicone resin (resin having siloxane bond), epoxy resin (resin having epoxy group), polyvinyl ether, those containing adhesive resin such as polycarbonate, and those containing acrylic resin. Is preferable.
 第1粘着剤組成物(I-1)~(I-3)以外の第1粘着剤組成物は、1種又は2種以上の架橋剤を含有することが好ましく、その含有量は、上述の第1粘着剤組成物(I-1)等の場合と同様とすることができる。 The first pressure-sensitive adhesive compositions other than the first pressure-sensitive adhesive compositions (I-1) to (I-3) preferably contain one or more cross-linking agents, and the content thereof is the above-mentioned content. The same can be applied to the case of the first pressure-sensitive adhesive composition (I-1) and the like.
<第1粘着剤組成物の製造方法>
 第1粘着剤組成物(I-1)~(I-3)等の前記第1粘着剤組成物は、前記粘着剤と、必要に応じて前記粘着剤以外の成分等の、第1粘着剤組成物を構成するための各成分を配合することで得られる。
 各成分の配合時における添加順序は特に限定されず、2種以上の成分を同時に添加してもよい。
 溶媒を用いる場合には、溶媒を溶媒以外のいずれかの配合成分と混合してこの配合成分を予め希釈しておくことで用いてもよいし、溶媒以外のいずれかの配合成分を予め希釈しておくことなく、溶媒をこれら配合成分と混合することで用いてもよい。
 配合時に各成分を混合する方法は特に限定されず、撹拌子又は撹拌翼等を回転させて混合する方法;ミキサーを用いて混合する方法;超音波を加えて混合する方法等、公知の方法から適宜選択すればよい。
 各成分の添加及び混合時の温度並びに時間は、各配合成分が劣化しない限り特に限定されず、適宜調節すればよいが、温度は15~30℃であることが好ましい。
<Manufacturing method of the first pressure-sensitive adhesive composition>
The first pressure-sensitive adhesive composition such as the first pressure-sensitive adhesive compositions (I-1) to (I-3) is a first pressure-sensitive adhesive containing the pressure-sensitive adhesive and, if necessary, components other than the pressure-sensitive adhesive. It is obtained by blending each component for constituting the composition.
The order of addition of each component at the time of blending is not particularly limited, and two or more kinds of components may be added at the same time.
When a solvent is used, it may be used by mixing the solvent with any compounding component other than the solvent and diluting the compounding component in advance, or diluting any of the compounding components other than the solvent in advance. You may use it by mixing the solvent with these compounding components without leaving.
The method of mixing each component at the time of blending is not particularly limited, and from known methods such as a method of rotating a stirrer or a stirring blade to mix; a method of mixing using a mixer; a method of adding ultrasonic waves to mix. It may be selected as appropriate.
The temperature and time at the time of adding and mixing each component are not particularly limited as long as each compounding component does not deteriorate, and may be appropriately adjusted, but the temperature is preferably 15 to 30 ° C.
{第1粘着剤層の組成}
 本実施形態における、第1粘着剤層の組成は、上述の第1粘着剤層組成物から溶媒を除いたものである。
 第1粘着剤層組成物が、前記第1粘着剤組成物(I-1)である場合の第1粘着剤層(I-1)における、第1粘着剤層(I-1)の総質量に対する粘着性樹脂(I-1a)の含有割合は、50~99質量%であることが好ましく、55~95質量%であることがより好ましく、60~90質量%であることがさらに好ましい。また、本発明の別の側面としては、第1粘着剤層(I-1)の総質量に対する粘着性樹脂(I-1a)の含有割合は、25~80質量%であってもよく、30~75質量%であってもよく、35~70質量%であってもよい。また、第1粘着剤層(I-1)の総質量に対するエネルギー線硬化性化合物の含有割合は、1~50質量%であることが好ましく、2~48質量%であることがより好ましく、5~45質量%であることがさらに好ましい。第1粘着剤層(I-1)が架橋剤を含有する場合、第1粘着剤層(I-1)の総質量に対する架橋剤の含有割合は0.1~10質量%であることが好ましく、0.2~9質量%であることがより好ましく、0.3~8質量%であることがさらに好ましい。第1粘着剤層(I-1)が光重合開始剤を含有する場合、第1粘着剤層(I-1)の総質量に対する光重合開始剤の含有割合は0.5~18.0質量%であることが好ましく、0.7~17.5質量%であることがより好ましく、1.0~15.0質量%であることがさらに好ましい。
 以下、本明細書において「含有割合」とは、その対象がモノマーの場合、モノマー自体の含有割合、又はモノマーが重合している場合にはモノマー由来の構成単位の含有割合を意味する。
{Composition of the first pressure-sensitive adhesive layer}
The composition of the first pressure-sensitive adhesive layer in the present embodiment is the composition obtained by removing the solvent from the above-mentioned first pressure-sensitive adhesive layer composition.
The total mass of the first pressure-sensitive adhesive layer (I-1) in the first pressure-sensitive adhesive layer (I-1) when the first pressure-sensitive adhesive layer composition is the first pressure-sensitive adhesive composition (I-1). The content ratio of the adhesive resin (I-1a) to the adhesive resin (I-1a) is preferably 50 to 99% by mass, more preferably 55 to 95% by mass, and even more preferably 60 to 90% by mass. Further, as another aspect of the present invention, the content ratio of the adhesive resin (I-1a) to the total mass of the first pressure-sensitive adhesive layer (I-1) may be 25 to 80% by mass, which is 30. It may be up to 75% by mass, or 35 to 70% by mass. The content ratio of the energy ray-curable compound with respect to the total mass of the first pressure-sensitive adhesive layer (I-1) is preferably 1 to 50% by mass, more preferably 2 to 48% by mass, and 5 It is more preferably to 45% by mass. When the first pressure-sensitive adhesive layer (I-1) contains a cross-linking agent, the content ratio of the cross-linking agent to the total mass of the first pressure-sensitive adhesive layer (I-1) is preferably 0.1 to 10% by mass. , 0.2 to 9% by mass, more preferably 0.3 to 8% by mass. When the first pressure-sensitive adhesive layer (I-1) contains a photopolymerization initiator, the content ratio of the photopolymerization initiator to the total mass of the first pressure-sensitive adhesive layer (I-1) is 0.5 to 18.0 mass. %, More preferably 0.7 to 17.5% by mass, and even more preferably 1.0 to 15.0% by mass.
Hereinafter, the "content ratio" in the present specification means the content ratio of the monomer itself when the target is a monomer, or the content ratio of a constituent unit derived from the monomer when the monomer is polymerized.
 第1粘着剤層組成物が、前記第1粘着剤組成物(I-2)である場合の第1粘着剤層(I-2)における、第1粘着剤層(I-2)の総質量に対する粘着性樹脂(I-2a)の含有割合は、70.0~99.0質量%であることが好ましく、72.5~97.5質量%であることがより好ましく、75.0~95.0質量%であることがさらに好ましい。第1粘着剤層(I-2)が架橋剤を含有する場合、第1粘着剤層(I-2)の総質量に対する架橋剤の含有割合は、0.1~3.0質量%であることが好ましく、0.2~2.5質量%であることがより好ましく、0.3~2.0質量%であることがさらに好ましい。第1粘着剤層(I-2)が光重合開始剤を含有する場合、第1粘着剤層(I-2)の総質量に対する光重合開始剤の含有割合は0.5~18.0質量%であることが好ましく、0.7~17.5質量%であることがより好ましく、1.0~17.0質量%であることがさらに好ましい。 The total mass of the first pressure-sensitive adhesive layer (I-2) in the first pressure-sensitive adhesive layer (I-2) when the first pressure-sensitive adhesive layer composition is the first pressure-sensitive adhesive composition (I-2). The content ratio of the adhesive resin (I-2a) to the adhesive resin (I-2a) is preferably 70.0 to 99.0% by mass, more preferably 72.5 to 97.5% by mass, and 75.0 to 95% by mass. It is more preferably 0.0% by mass. When the first pressure-sensitive adhesive layer (I-2) contains a cross-linking agent, the content ratio of the cross-linking agent to the total mass of the first pressure-sensitive adhesive layer (I-2) is 0.1 to 3.0% by mass. It is preferably 0.2 to 2.5% by mass, more preferably 0.3 to 2.0% by mass. When the first pressure-sensitive adhesive layer (I-2) contains a photopolymerization initiator, the content ratio of the photopolymerization initiator to the total mass of the first pressure-sensitive adhesive layer (I-2) is 0.5 to 18.0 mass. %, More preferably 0.7 to 17.5% by mass, and even more preferably 1.0 to 17.0% by mass.
 第1粘着剤層組成物が、前記第1粘着剤組成物(I-3)である場合の第1粘着剤層(I-3)における、第1粘着剤層(I-3)の総質量に対する粘着性樹脂(I-2a)の含有割合は、50~99質量%であることが好ましく、55~95質量%であることがより好ましく、60~90質量%であることがさらに好ましい。また、第1粘着剤層(I-3)の総質量に対するエネルギー線硬化性低分子化合物の含有割合は、1~50質量%であることが好ましく、2~48質量%であることがより好ましく、5~45質量%であることがさらに好ましい。第1粘着剤層(I-3)が架橋剤を含有する場合、第1粘着剤層(I-3)の総質量に対する架橋剤の含有割合は0.1~10質量%であることが好ましく、0.2~9質量%であることがより好ましく、0.3~8質量%であることがさらに好ましい。第1粘着剤層(I-3)が光重合開始剤を含有する場合、第1粘着剤層(I-3)の総質量に対する光重合開始剤の含有割合は0.5~18.0質量%であることが好ましく、0.7~17.5質量%であることがより好ましく、1.0~17.0質量%であることがさらに好ましい。 The total mass of the first pressure-sensitive adhesive layer (I-3) in the first pressure-sensitive adhesive layer (I-3) when the first pressure-sensitive adhesive layer composition is the first pressure-sensitive adhesive composition (I-3). The content ratio of the adhesive resin (I-2a) to the adhesive resin (I-2a) is preferably 50 to 99% by mass, more preferably 55 to 95% by mass, and even more preferably 60 to 90% by mass. The content ratio of the energy ray-curable low molecular weight compound with respect to the total mass of the first pressure-sensitive adhesive layer (I-3) is preferably 1 to 50% by mass, more preferably 2 to 48% by mass. It is more preferably 5 to 45% by mass. When the first pressure-sensitive adhesive layer (I-3) contains a cross-linking agent, the content ratio of the cross-linking agent to the total mass of the first pressure-sensitive adhesive layer (I-3) is preferably 0.1 to 10% by mass. , 0.2 to 9% by mass, more preferably 0.3 to 8% by mass. When the first pressure-sensitive adhesive layer (I-3) contains a photopolymerization initiator, the content ratio of the photopolymerization initiator to the total mass of the first pressure-sensitive adhesive layer (I-3) is 0.5 to 18.0 mass. %, More preferably 0.7 to 17.5% by mass, and even more preferably 1.0 to 17.0% by mass.
 本実施形態においては、粘着性樹脂(1-2a)、及び架橋剤を含む第1粘着剤層(I-2)であることが好ましい。この場合、粘着性樹脂(1-2a)は、(メタ)アクリル酸アルキルエステル由来の構成単位、水酸基含有モノマー由来の単位を有するアクリル系重合体に、イソシアネート基及びエネルギー線重合性不飽和基を有する不飽和基含有化合物を反応させて得られたアクリル系重合体であることが好ましい。架橋剤は、第1粘着剤組成物(I-1)において例示した化合物を使用することができ、トリレン-2.6-ジイソシアネートを使用することが特に好ましい。光重合開始剤は、第1粘着剤組成物(I-1)において例示した化合物を使用することができ、1-ヒドロキシシクロヘキシルフェニルケトンを使用することが特に好ましい。 In the present embodiment, it is preferable that the first pressure-sensitive adhesive layer (I-2) contains a pressure-sensitive adhesive resin (1-2a) and a cross-linking agent. In this case, the adhesive resin (1-2a) contains an isocyanate group and an energy ray-polymerizable unsaturated group in an acrylic polymer having a structural unit derived from a (meth) acrylic acid alkyl ester and a unit derived from a hydroxyl group-containing monomer. It is preferably an acrylic polymer obtained by reacting an unsaturated group-containing compound having an unsaturated group. As the cross-linking agent, the compound exemplified in the first pressure-sensitive adhesive composition (I-1) can be used, and it is particularly preferable to use trilen-2.6-diisocyanate. As the photopolymerization initiator, the compounds exemplified in the first pressure-sensitive adhesive composition (I-1) can be used, and it is particularly preferable to use 1-hydroxycyclohexylphenyl ketone.
 粘着性樹脂(1-2a)の総質量に対する(メタ)アクリル酸アルキルエステル由来の構成単位の含有割合は、50~99質量%であることが好ましく、60~98質量%であることがより好ましく、70~97質量%であることがさらに好ましい。粘着性樹脂(1-2a)の総質量に対する水酸基含有モノマー由来の単位の含有割合は、0.5~15質量%であることが好ましく、1.0~10質量%であることがより好ましく、2.0~10質量%であることがさらに好ましい。粘着性樹脂(1-2a)における(メタ)アクリル酸アルキルエステルは、アルキル基の炭素数が1~12であることが好ましく、1~4であることがより好ましい。粘着性樹脂(1-2a)は、2種以上の(メタ)アクリル酸アルキルエステル由来の構成単位を有することが好ましく、(メタ)アクリル酸メチル及び(メタ)アクリル酸n-ブチル由来の構成単位を有することがより好ましく、メタクリル酸メチル及びアクリル酸n-ブチル由来の構成単位を有することがさらに好ましい。粘着性樹脂(1-2a)における水酸基含有モノマーとしては、上述の粘着性樹脂(I-1a)において例示されるものを使用することができ、アクリル酸2-ヒドロキシエチルを使用することが特に好ましい。イソシアネート基及びエネルギー線重合性不飽和基を有する不飽和基含有化合物としては、第1粘着剤組成物(I-2)において例示した化合物を使用することができ、2-メタクリロイルオキシエチルイソシアネートを使用することが特に好ましい。前記水酸基含有モノマーに由来する全水酸基を100molとしたときの、前記イソシアネート基及びエネルギー線重合性不飽和基を有する不飽和基含有化合物の使用量は、20~80molが好ましく、25~75molがより好ましく、30~70molがさらに好ましい。 The content ratio of the structural unit derived from the (meth) acrylic acid alkyl ester to the total mass of the adhesive resin (1-2a) is preferably 50 to 99% by mass, more preferably 60 to 98% by mass. , 70-97% by mass, more preferably. The content ratio of the unit derived from the hydroxyl group-containing monomer to the total mass of the adhesive resin (1-2a) is preferably 0.5 to 15% by mass, more preferably 1.0 to 10% by mass. It is more preferably 2.0 to 10% by mass. The (meth) acrylic acid alkyl ester in the adhesive resin (1-2a) preferably has an alkyl group having 1 to 12 carbon atoms, and more preferably 1 to 4 carbon atoms. The adhesive resin (1-2a) preferably has a structural unit derived from two or more kinds of (meth) acrylic acid alkyl esters, and is a structural unit derived from methyl (meth) acrylate and n-butyl (meth) acrylic acid. It is more preferable to have a structural unit derived from methyl methacrylate and n-butyl acrylate. As the hydroxyl group-containing monomer in the adhesive resin (1-2a), those exemplified in the above-mentioned adhesive resin (I-1a) can be used, and it is particularly preferable to use 2-hydroxyethyl acrylate. .. As the unsaturated group-containing compound having an isocyanate group and an energy ray-polymerizable unsaturated group, the compound exemplified in the first pressure-sensitive adhesive composition (I-2) can be used, and 2-methacryloyloxyethyl isocyanate is used. It is particularly preferable to do so. When the total number of hydroxyl groups derived from the hydroxyl group-containing monomer is 100 mol, the amount of the unsaturated group-containing compound having an isocyanate group and an energy ray-polymerizable unsaturated group is preferably 20 to 80 mol, more preferably 25 to 75 mol. It is preferable, and 30 to 70 mol is more preferable.
〇埋め込み層
 本実施形態の端子保護用テープにおいて、埋め込み層は、粘弾性層のうち端子付き半導体装置の端子を埋め込んで保護する層である。
 埋め込み層は、シート状又はフィルム状であり、前記条件の関係を満たす限り、その構成材料は、特に限定されない。
-Embedded layer In the terminal protection tape of the present embodiment, the embedded layer is a layer among viscoelastic layers that embeds and protects the terminals of a semiconductor device with terminals.
The embedded layer is in the form of a sheet or a film, and the constituent material thereof is not particularly limited as long as the above conditions are satisfied.
 例えば、保護対象となる端子付き半導体装置の端子形成面を覆う粘弾性層に、半導体表面に存在する端子の形状が反映されることによって、粘弾性層が変形してしまうことの抑制を目的とする場合、前記埋め込み層の好ましい構成材料としては、埋め込み層の貼付性がより向上する点から、ウレタン(メタ)アクリレート、アクリル系樹脂等が挙げられる。 For example, the purpose is to prevent the viscoelastic layer from being deformed by reflecting the shape of the terminals existing on the semiconductor surface on the viscoelastic layer covering the terminal forming surface of the semiconductor device with terminals to be protected. In this case, preferable constituent materials of the embedded layer include urethane (meth) acrylate, acrylic resin and the like from the viewpoint of further improving the stickability of the embedded layer.
 埋め込み層は1層(単層)のみでもよいし、2層以上の複数層でもよく、複数層である場合、これら複数層は、互いに同一でも異なっていてもよく、これら複数層の組み合わせは特に限定されない。 The embedded layer may be only one layer (single layer), or may be a plurality of layers of two or more layers, and when there are a plurality of layers, these multiple layers may be the same or different from each other, and the combination of these multiple layers is particularly suitable. Not limited.
 埋め込み層の厚さは、粘弾性層の厚さが上述の好ましい範囲となるように、保護対象となる端子付き半導体装置の端子形成面の端子の高さに応じて適宜調節できるが、比較的高さが高い端子の影響も容易に吸収できる点から、50~600μmであることが好ましく、70~550μmであることがより好ましく、80~500μmであることがさらに好ましい。埋め込み層の厚さが前記下限値以上であることで、端子の保護性能がより高い粘弾性層を形成できる。また、埋め込み層の厚さが前記上限値以下であることで、生産性とロール形状での巻取り適性が向上する。
 ここで、「埋め込み層の厚さ」とは、埋め込み層全体の厚さを意味し、例えば、複数層からなる埋め込み層の厚さとは、埋め込み層を構成するすべての層の合計の厚さを意味する。
The thickness of the embedded layer can be appropriately adjusted according to the height of the terminals on the terminal forming surface of the terminal-equipped semiconductor device to be protected so that the thickness of the viscoelastic layer falls within the above-mentioned preferable range, but is relatively It is preferably 50 to 600 μm, more preferably 70 to 550 μm, and even more preferably 80 to 500 μm, from the viewpoint that the influence of a terminal having a high height can be easily absorbed. When the thickness of the embedded layer is at least the above lower limit value, a viscoelastic layer having higher terminal protection performance can be formed. Further, when the thickness of the embedded layer is not more than the upper limit value, the productivity and the winding suitability in the roll shape are improved.
Here, the "thickness of the embedded layer" means the thickness of the entire embedded layer, and for example, the thickness of the embedded layer composed of a plurality of layers is the total thickness of all the layers constituting the embedded layer. means.
 埋め込み層は、端子を埋め込むに相応しい、柔らかい性質を有することが好ましく、第1粘着剤層よりも柔らかいことが好ましい。 The embedded layer preferably has a soft property suitable for embedding terminals, and is preferably softer than the first adhesive layer.
 埋め込み層は、エネルギー線硬化性の構成材料を用いて形成されたものでもよいし、非エネルギー線硬化性の構成材料を用いて形成されたものでもよい。エネルギー線硬化性の構成材料を用いて形成された埋め込み層は、硬化前及び硬化後での物性を、容易に調節できるため、好ましい。
 埋め込み層がエネルギー線硬化性の構成材料を用いて形成されている場合、硬化前の埋め込み層の弾性率は、0.01~1.0MPaであることが好ましく、0.02~0.9MPaであることがより好ましく、0.03~0.8MPaであることがさらに好ましい。硬化前の埋め込み層の弾性率が前記範囲内であると、半導体装置の保持性が得られる。
 埋め込み層がエネルギー線硬化性の構成材料を用いて形成されている場合、硬化後の埋め込み層の弾性率は、1.0~100MPaであることが好ましく、2.0~95MPaであることがより好ましく、3.0~90MPaであることがさらに好ましい。硬化後の埋め込み層の弾性率が前記範囲内であると、半導体装置の保持性が得られる。
 埋め込み層が、後述のアクリル系樹脂を含有する埋め込み層形成用組成物(I)を用いて形成された埋め込み層(I)の場合、埋め込み層(I)の硬化は、上述の第一及び第二実施形態の電磁波シールド膜付き半導体装置の製造方法のどの工程で行ってもよいが、端子付き半導体装置(又は半導体装置集合体)の端子を埋設させる工程後でかつ、電磁波シールド膜が形成された前記端子付き半導体装置を前記端子保護用テープから剥離する工程前に行うことが好ましい。
 埋め込み層が、後述のウレタン(メタ)アクリレートを含有する埋め込み層形成用組成物(II)を用いて形成された埋め込み層(II)の場合、埋め込み層(II)の硬化は、上述の第一及び第二実施形態の電磁波シールド膜付き半導体装置の製造方法のどの工程で行ってもよいが、端子付き半導体装置(又は半導体装置集合体)の端子を埋設させる工程前に行うことが好ましい。
The embedded layer may be formed by using an energy ray-curable constituent material or may be formed by using a non-energy ray-curable constituent material. An embedded layer formed using an energy ray-curable constituent material is preferable because its physical properties before and after curing can be easily adjusted.
When the embedded layer is formed using an energy ray-curable constituent material, the elastic modulus of the embedded layer before curing is preferably 0.01 to 1.0 MPa, preferably 0.02 to 0.9 MPa. It is more preferably 0.03 to 0.8 MPa. When the elastic modulus of the embedded layer before curing is within the above range, the retention of the semiconductor device can be obtained.
When the embedded layer is formed using an energy ray-curable constituent material, the elastic modulus of the embedded layer after curing is preferably 1.0 to 100 MPa, more preferably 2.0 to 95 MPa. It is preferably 3.0 to 90 MPa, more preferably 3.0 to 90 MPa. When the elastic modulus of the embedded layer after curing is within the above range, the retention of the semiconductor device can be obtained.
When the embedded layer is the embedded layer (I) formed by using the embedded layer forming composition (I) containing the acrylic resin described later, the curing of the embedded layer (I) is performed in the first and second above-mentioned. (Ii) Any step of the method for manufacturing a semiconductor device with an electromagnetic wave shielding film of the second embodiment may be performed, but the electromagnetic wave shielding film is formed after the step of embedding the terminals of the semiconductor device with terminals (or the semiconductor device assembly). It is preferable to perform this before the step of peeling the terminal-equipped semiconductor device from the terminal protection tape.
When the embedded layer is the embedded layer (II) formed by using the embedded layer forming composition (II) containing the urethane (meth) acrylate described later, the curing of the embedded layer (II) is the above-mentioned first. It may be carried out in any step of the method for manufacturing a semiconductor device with an electromagnetic wave shielding film according to the second embodiment, but it is preferably carried out before the step of embedding the terminals of the semiconductor device with terminals (or the semiconductor device assembly).
(埋め込み層形成用組成物)
 埋め込み層は、その構成材料を含有する埋め込み層形成用組成物を用いて形成できる。
 例えば、埋め込み層の形成対象面に埋め込み層形成用組成物を塗工し、必要に応じて乾燥させ、エネルギー線の照射によって硬化させることで、目的とする部位に埋め込み層を形成できる。また、剥離フィルムに埋め込み層形成用組成物を塗工し、必要に応じて乾燥させ、エネルギー線の照射によって硬化させることで、目的とする厚さの埋め込み層を形成でき、目的とする部位に埋め込み層を転写することもできる。埋め込み層のより具体的な形成方法は、他の層の形成方法とともに、後ほど詳細に説明する。埋め込み層形成用組成物中の、常温で気化しない成分同士の含有量の比率は、通常、埋め込み層の前記成分同士の含有量の比率と同じとなる。
(Composition for forming an embedded layer)
The embedded layer can be formed by using an embedded layer forming composition containing the constituent material.
For example, an embedded layer can be formed at a target site by applying a composition for forming an embedded layer to a surface to be formed of an embedded layer, drying the composition as necessary, and curing the surface by irradiating with energy rays. Further, by applying the composition for forming an embedded layer to the release film, drying it if necessary, and curing it by irradiation with energy rays, an embedded layer having a desired thickness can be formed, and the desired portion can be formed. The embedded layer can also be transferred. A more specific method for forming the embedded layer will be described in detail later together with other methods for forming the layer. The ratio of the contents of the components that do not vaporize at room temperature in the composition for forming the embedded layer is usually the same as the ratio of the contents of the components of the embedded layer.
 埋め込み層形成用組成物の塗工は、公知の方法で行えばよく、例えば、エアーナイフコーター、ブレードコーター、バーコーター、グラビアコーター、ロールコーター、ロールナイフコーター、カーテンコーター、ダイコーター、ナイフコーター、スクリーンコーター、マイヤーバーコーター、キスコーター等の各種コーターを用いる方法が挙げられる。 The composition for forming an embedded layer may be applied by a known method, for example, an air knife coater, a blade coater, a bar coater, a gravure coater, a roll coater, a roll knife coater, a curtain coater, a die coater, a knife coater, and the like. Examples thereof include a method using various coaters such as a screen coater, a Meyer bar coater, and a kiss coater.
 埋め込み層形成用組成物の乾燥条件は、特に限定されないが、埋め込み層形成用組成物は、後述する溶媒を含有している場合、加熱乾燥させることが好ましく、この場合、例えば、70~130℃で10秒間~5分間の条件で乾燥させることが好ましい。
 埋め込み層形成用組成物は、エネルギー線硬化性を有する場合、エネルギー線の照射により硬化させることが好ましい。
The drying conditions of the composition for forming the embedded layer are not particularly limited, but the composition for forming the embedded layer is preferably heat-dried when it contains a solvent described later, and in this case, for example, 70 to 130 ° C. It is preferable to dry under the condition of 10 seconds to 5 minutes.
When the composition for forming an embedded layer has energy ray curability, it is preferably cured by irradiation with energy rays.
 埋め込み層形成用組成物としては、例えば、アクリル系樹脂を含有する埋め込み層形成用組成物(I)、ウレタン(メタ)アクリレートを含有する埋め込み層形成用組成物(II)等が挙げられる。 Examples of the composition for forming an embedded layer include a composition for forming an embedded layer (I) containing an acrylic resin, a composition for forming an embedded layer containing urethane (meth) acrylate (II), and the like.
{埋め込み層形成用組成物(I)}
 埋め込み層形成用組成物(I)は、アクリル系樹脂を含有する。
 埋め込み層形成用組成物(I)としては、上述の第1粘着剤組成物(I-1)のうち、アクリル系樹脂である粘着性樹脂(I-1a)と、エネルギー線硬化性化合物と、を含有する組成物、第1粘着剤組成物(I-2)のうち、アクリル系樹脂である粘着性樹脂(I-1a)の側鎖に不飽和基が導入されたエネルギー線硬化性の粘着性樹脂(I-2a)を含有する組成物を、埋め込み層形成用組成物(I)として用いることができる。
{Composition for forming an embedded layer (I)}
The composition for forming an embedded layer (I) contains an acrylic resin.
The composition (I) for forming an embedded layer includes, among the above-mentioned first pressure-sensitive adhesive compositions (I-1), a pressure-sensitive adhesive resin (I-1a) which is an acrylic resin, an energy ray-curable compound, and the like. Of the first pressure-sensitive adhesive composition (I-2), which contains the above, an energy ray-curable pressure-sensitive adhesive in which an unsaturated group is introduced into the side chain of the pressure-sensitive adhesive resin (I-1a) which is an acrylic resin. A composition containing the sex resin (I-2a) can be used as the composition for forming an embedded layer (I).
 埋め込み層形成用組成物(I)において用いる粘着性樹脂(I-1a)及びエネルギー線硬化性化合物は、上述の第1粘着剤組成物(I-1)で用いる粘着性樹脂(I-1a)及びエネルギー線硬化性化合物の説明と同じである。
 埋め込み層形成用組成物(I)において用いる粘着性樹脂(I-2a)は、上述の第1粘着剤組成物(I-2)で用いる粘着性樹脂(I-2a)の説明と同じである。
 埋め込み層形成用組成物(I)は、さらに架橋剤を含有することが好ましい。埋め込み層形成用組成物(I)において用いる架橋剤は、上述の第1粘着剤組成物(I-1)、第1粘着剤組成物(I-2)で用いる架橋剤の説明と同じである。
 埋め込み層形成用組成物(I)は、さらに光重合開始剤、その他の添加剤を含有していてもよい。埋め込み層形成用組成物(I)において用いる光重合開始剤、その他の添加剤は、上述の第1粘着剤組成物(I-1)、第1粘着剤組成物(I-2)で用いる光重合開始剤、その他の添加剤の説明と同じである。
 埋め込み層形成用組成物(I)は、溶媒を含有していてもよい。埋め込み層形成用組成物(I)において用いる溶媒は、上述の第1粘着剤組成物(I-1)、第1粘着剤組成物(I-2)で用いる溶媒の説明と同じである。
The adhesive resin (I-1a) and the energy ray-curable compound used in the embedded layer forming composition (I) are the adhesive resin (I-1a) used in the above-mentioned first adhesive composition (I-1). And the description of the energy ray curable compound is the same.
The adhesive resin (I-2a) used in the embedded layer forming composition (I) is the same as the description of the adhesive resin (I-2a) used in the first adhesive composition (I-2) described above. ..
The composition for forming an embedded layer (I) preferably further contains a cross-linking agent. The cross-linking agent used in the embedded layer forming composition (I) is the same as the description of the cross-linking agent used in the first pressure-sensitive adhesive composition (I-1) and the first pressure-sensitive adhesive composition (I-2) described above. ..
The composition for forming an embedded layer (I) may further contain a photopolymerization initiator and other additives. The photopolymerization initiator and other additives used in the embedded layer forming composition (I) are the light used in the first pressure-sensitive adhesive composition (I-1) and the first pressure-sensitive adhesive composition (I-2) described above. The description is the same as for the polymerization initiator and other additives.
The composition for forming an embedded layer (I) may contain a solvent. The solvent used in the embedded layer forming composition (I) is the same as the description of the solvent used in the first pressure-sensitive adhesive composition (I-1) and the first pressure-sensitive adhesive composition (I-2) described above.
 埋め込み層形成用組成物(I)のうち、粘着性樹脂(I-1a)及び/又はエネルギー線硬化性化合物の分子量を調整することで、埋め込み層が、端子を埋め込むに相応しい、柔らかい性質を有するよう設計することができる。
 また、埋め込み層形成用組成物(I)のうち、架橋剤の含有量を調整することで、埋め込み層が、端子を埋め込むに相応しい、柔らかい性質を有するよう設計することができる。
By adjusting the molecular weight of the adhesive resin (I-1a) and / or the energy ray-curable compound in the composition for forming the embedded layer (I), the embedded layer has a soft property suitable for embedding terminals. Can be designed as
Further, by adjusting the content of the cross-linking agent in the composition for forming the embedded layer (I), the embedded layer can be designed to have a soft property suitable for embedding terminals.
{埋め込み層(I)の組成}
 本実施形態における、埋め込み層の組成は、上述の埋め込み層形成用組成物(I)から溶媒を除いたものである。
 埋め込み層形成用組成物(I)が、上述の、第1粘着剤組成物(I-1)のうち、アクリル系樹脂である粘着性樹脂(I-1a)と、エネルギー線硬化性化合物と、を含有する組成物である場合の埋め込み層(I)における、埋め込み層(I)の総質量に対するアクリル系樹脂である粘着性樹脂(I-1a)の含有割合は50~99質量%であることが好ましく、55~95質量%であることがより好ましく、60~90質量%であることがさらに好ましい。本発明の別の側面としては、埋め込み層(I)の総質量に対するアクリル系樹脂である粘着性樹脂(I-1a)の含有割合は45~90質量%であってもよく、50~85質量%であってもよい。また、埋め込み層(I)の総質量に対するエネルギー線硬化性化合物の含有割合は0.5~50質量%であることが好ましく、5~45質量%であることがさらに好ましい。埋め込み層(I)が架橋剤を含有する場合、埋め込み層(I)の総質量に対する架橋剤の含有割合は0.1~10質量%であることが好ましく、0.2~9質量%であることがより好ましく、0.3~8質量%であることがさらに好ましい。埋め込み層(I)が光重合開始剤を含有する場合、埋め込み層(I)の総質量に対する光重合開始剤の含有割合は0.5~18.0質量%であることが好ましく、0.7~17.5質量%であることがより好ましく、1.0~17.0質量%であることがさらに好ましい。
{Composition of embedded layer (I)}
The composition of the embedded layer in the present embodiment is the above-mentioned composition for forming an embedded layer (I) from which the solvent has been removed.
The composition (I) for forming an embedded layer is the above-mentioned first pressure-sensitive adhesive composition (I-1), which is an acrylic resin, a pressure-sensitive resin (I-1a), an energy ray-curable compound, and the like. The content ratio of the adhesive resin (I-1a), which is an acrylic resin, to the total mass of the embedded layer (I) in the embedded layer (I) in the case of the composition containing the above is 50 to 99% by mass. Is more preferable, 55 to 95% by mass is more preferable, and 60 to 90% by mass is further preferable. As another aspect of the present invention, the content ratio of the adhesive resin (I-1a), which is an acrylic resin, to the total mass of the embedded layer (I) may be 45 to 90% by mass, and 50 to 85% by mass. May be%. The content ratio of the energy ray-curable compound with respect to the total mass of the embedded layer (I) is preferably 0.5 to 50% by mass, and more preferably 5 to 45% by mass. When the embedded layer (I) contains a cross-linking agent, the content ratio of the cross-linking agent to the total mass of the embedded layer (I) is preferably 0.1 to 10% by mass, preferably 0.2 to 9% by mass. More preferably, it is more preferably 0.3 to 8% by mass. When the embedded layer (I) contains a photopolymerization initiator, the content ratio of the photopolymerization initiator to the total mass of the embedded layer (I) is preferably 0.5 to 18.0% by mass, preferably 0.7. It is more preferably to 17.5% by mass, and even more preferably 1.0 to 17.0% by mass.
 埋め込み層形成用組成物(I)が、アクリル系樹脂である粘着性樹脂(I-1a)の側鎖に不飽和基が導入されたエネルギー線硬化性の粘着性樹脂(1-2a)を含有する組成物である場合の埋め込み層(I)における、埋め込み層の総質量に対する側鎖に不飽和基が導入されたエネルギー線硬化性の粘着性樹脂(1-2a)の含有割合は10~70質量%であることが好ましく、15~65質量%であることがより好ましく、20~60質量%であることがさらに好ましい。埋め込み層(I)が架橋剤を含有する場合、埋め込み層(I)の総質量に対する架橋剤の含有割合は0.1~10質量%であることが好ましく、0.2~9質量%であることがより好ましく、0.3~8質量%であることがさらに好ましい。埋め込み層(I)が光重合開始剤を含有する場合、埋め込み層(I)の総質量に対する光重合開始剤の含有割合は0.5~18.0質量%であることが好ましく、0.7~17.5質量%であることがより好ましく、1.0~17.0質量%であることがさらに好ましい。本実施形態の埋め込み層(I)はさらに前記アクリル系樹脂である粘着性樹脂(I-1a)を含有していてもよい。この場合、埋め込み層(I)の総質量に対するアクリル系樹脂である粘着性樹脂(I-1a)の含有割合は、20.0~60.0質量%であることが好ましく、22.5~57.5質量%であることがより好ましく、25.0~55.0質量%であることがさらに好ましい。また、本実施形態の埋め込み層(I)がさらに前記アクリル系樹脂である粘着性樹脂(I-1a)を含有する場合、前記粘着性樹脂(1-2a)100質量部に対する、前記粘着性樹脂(1-1a)の含有量は、70.0~99.0質量部であることが好ましく、72.5~97.5質量部であることがより好ましく、75.0~95.0質量部であることがさらに好ましい。 The composition for forming an embedded layer (I) contains an energy ray-curable adhesive resin (1-2a) in which an unsaturated group is introduced into the side chain of the adhesive resin (I-1a) which is an acrylic resin. The content ratio of the energy ray-curable adhesive resin (1-2a) in which an unsaturated group is introduced into the side chain with respect to the total mass of the embedded layer in the embedded layer (I) is 10 to 70. It is preferably by mass, more preferably 15 to 65% by mass, and even more preferably 20 to 60% by mass. When the embedded layer (I) contains a cross-linking agent, the content ratio of the cross-linking agent to the total mass of the embedded layer (I) is preferably 0.1 to 10% by mass, preferably 0.2 to 9% by mass. More preferably, it is more preferably 0.3 to 8% by mass. When the embedded layer (I) contains a photopolymerization initiator, the content ratio of the photopolymerization initiator to the total mass of the embedded layer (I) is preferably 0.5 to 18.0% by mass, preferably 0.7. It is more preferably to 17.5% by mass, and even more preferably 1.0 to 17.0% by mass. The embedded layer (I) of the present embodiment may further contain the adhesive resin (I-1a) which is the acrylic resin. In this case, the content ratio of the adhesive resin (I-1a), which is an acrylic resin, to the total mass of the embedded layer (I) is preferably 20.0 to 60.0% by mass, and 22.5 to 57. It is more preferably 5.5% by mass, and even more preferably 25.0 to 55.0% by mass. Further, when the embedded layer (I) of the present embodiment further contains the adhesive resin (I-1a) which is the acrylic resin, the adhesive resin with respect to 100 parts by mass of the adhesive resin (1-2a). The content of (1-1a) is preferably 70.0 to 99.0 parts by mass, more preferably 72.5 to 97.5 parts by mass, and 75.0 to 95.0 parts by mass. Is more preferable.
 埋め込み層(I)に含まれるアクリル系樹脂である粘着性樹脂(I-1a)、エネルギー線硬化性化合物、又は粘着性樹脂(I-1a)の側鎖に不飽和基が導入されたエネルギー線硬化性の粘着性樹脂(1-2a)の組成等は、上述の第1粘着剤組成物(I-1)で用いるアクリル系樹脂である粘着性樹脂(I-1a)、エネルギー線硬化性化合物、粘着性樹脂(I-1a)の側鎖に不飽和基が導入されたエネルギー線硬化性の粘着性樹脂(1-2a)の説明と同じでもよい。 An energy ray in which an unsaturated group is introduced into the side chain of an adhesive resin (I-1a), an energy ray-curable compound, or an adhesive resin (I-1a), which is an acrylic resin contained in the embedded layer (I). The composition of the curable adhesive resin (1-2a) includes the adhesive resin (I-1a), which is an acrylic resin used in the above-mentioned first pressure-sensitive adhesive composition (I-1), and an energy ray-curable compound. , The same as the description of the energy ray-curable adhesive resin (1-2a) in which an unsaturated group is introduced into the side chain of the adhesive resin (I-1a) may be used.
 本実施形態においては、粘着性樹脂(1-2a)、粘着性樹脂(1-1a)、架橋剤、及び光重合開始剤を含む埋め込み層(I)であることが好ましい。この場合、粘着性樹脂(1-1a)は、(メタ)アクリル酸アルキルエステル由来の構成単位と、カルボキシ基含有モノマー由来の単位を有するアクリル系重合体であることが好ましい。また、粘着性樹脂(1-2a)は、(メタ)アクリル酸アルキルエステル由来の構成単位、水酸基含有モノマー由来の単位を有するアクリル系重合体に、イソシアネート基及びエネルギー線重合性不飽和基を有する不飽和基含有化合物を反応させて得られたアクリル系重合体であることが好ましい。架橋剤は、上述の第1粘着剤組成物(I-1)において例示される化合物を使用することができ、トリレン-2,6-ジイソシアネート、N,N’-(シクロヘキサン-1,3-ジイルビスメチレン)ビス(グリシジルアミン)を使用することが特に好ましい。架橋剤は、上述の第1粘着剤組成物(I-1)において例示される化合物を使用することができ、1-ヒドロキシシクロヘキシルフェニルケトンを使用することが特に好ましい。 In the present embodiment, the embedded layer (I) containing the adhesive resin (1-2a), the adhesive resin (1-1a), the cross-linking agent, and the photopolymerization initiator is preferable. In this case, the adhesive resin (1-1a) is preferably an acrylic polymer having a structural unit derived from a (meth) acrylic acid alkyl ester and a unit derived from a carboxy group-containing monomer. Further, the adhesive resin (1-2a) has an isocyanate group and an energy ray-polymerizable unsaturated group in an acrylic polymer having a structural unit derived from a (meth) acrylic acid alkyl ester and a unit derived from a hydroxyl group-containing monomer. It is preferably an acrylic polymer obtained by reacting an unsaturated group-containing compound. As the cross-linking agent, the compound exemplified in the above-mentioned first pressure-sensitive adhesive composition (I-1) can be used, and trilen-2,6-diisocyanate, N, N'-(cyclohexane-1,3-diyl) can be used. It is particularly preferred to use bismethylene) bis (glycidylamine). As the cross-linking agent, the compound exemplified in the above-mentioned first pressure-sensitive adhesive composition (I-1) can be used, and it is particularly preferable to use 1-hydroxycyclohexylphenyl ketone.
 粘着性樹脂(1-1a)の総質量に対する(メタ)アクリル酸アルキルエステル由来の構成単位の含有割合は、75~99質量%であることが好ましく、80~98質量%であることがより好ましく、85~97質量%であることがさらに好ましい。粘着性樹脂(1-1a)の総質量に対するカルボキシ基含有モノマーの構成単位の含有割合は、1.0~30質量%であることが好ましく、2.0~25質量%であることがより好ましく、3.0~20質量%であることがさらに好ましく、5.0~15質量%であることが特に好ましい。粘着性樹脂(1-1a)における(メタ)アクリル酸アルキルエステルは、アルキル基の炭素数が4~12であることが好ましく、4~8であることがより好ましい。また、粘着性樹脂(1-1a)においては、アクリル酸アルキルエステルであることが好ましい。中でも前記(メタ)アクリル酸アルキルエステルは、アクリル酸n-ブチルであることが特に好ましい。また、粘着性樹脂(1-1a)におけるカルボキシ含有モノマーとしては、エチレン性不飽和モノカルボン酸、エチレン性不飽和ジカルボン酸、エチレン性不飽和ジカルボン酸の無水物等が挙げられ、中でもエチレン性不飽和モノカルボン酸が好ましく、(メタ)アクリル酸がより好ましく、アクリル酸が特に好ましい。
 本実施形態の粘着性樹脂(1-1a)の重量平均分子量は、100,000~800,000であることが好ましく、150,000~700,000であることがより好ましく、200,000~600,000であることがさらに好ましい。
 なお、本明細書において、「重量平均分子量」とは、特に断りのない限り、ゲル・パーミエーション・クロマトグラフィー(GPC)法により測定されるポリスチレン換算値である。
The content ratio of the structural unit derived from the (meth) acrylic acid alkyl ester to the total mass of the adhesive resin (1-1a) is preferably 75 to 99% by mass, more preferably 80 to 98% by mass. , 85-97% by mass, more preferably. The content ratio of the constituent unit of the carboxy group-containing monomer to the total mass of the adhesive resin (1-1a) is preferably 1.0 to 30% by mass, more preferably 2.0 to 25% by mass. , 3.0 to 20% by mass, more preferably 5.0 to 15% by mass. The (meth) acrylic acid alkyl ester in the adhesive resin (1-1a) preferably has an alkyl group having 4 to 12 carbon atoms, and more preferably 4 to 8 carbon atoms. Further, the adhesive resin (1-1a) is preferably an acrylic acid alkyl ester. Above all, the (meth) acrylic acid alkyl ester is particularly preferably n-butyl acrylate. Examples of the carboxy-containing monomer in the adhesive resin (1-1a) include ethylenically unsaturated monocarboxylic acid, ethylenically unsaturated dicarboxylic acid, and anhydride of ethylenically unsaturated dicarboxylic acid, and among them, ethylenically unsaturated. Saturated monocarboxylic acids are preferred, (meth) acrylic acids are more preferred, and acrylic acids are particularly preferred.
The weight average molecular weight of the adhesive resin (1-1a) of the present embodiment is preferably 100,000 to 800,000, more preferably 150,000 to 700,000, and more preferably 200,000 to 600,000. It is more preferably 000.
In the present specification, the "weight average molecular weight" is a polystyrene-equivalent value measured by a gel permeation chromatography (GPC) method unless otherwise specified.
 粘着性樹脂(1-2a)の総質量に対する(メタ)アクリル酸アルキルエステル由来の構成単位の含有割合は、1.0~95質量%であることが好ましく、2.0~90質量%であることがより好ましく、3.0~85質量%であることがさらに好ましい。粘着性樹脂(1-2a)の総質量に対する水酸基含有モノマー由来の単位の含有割合は、1.0~50質量%であることが好ましく、2.0~45質量%であることがより好ましく、3.0~40質量%であることがさらに好ましい。粘着性樹脂(1-2a)における(メタ)アクリル酸アルキルエステルは、アルキル基の炭素数が1~12であることが好ましく、1~4であることがより好ましい。粘着性樹脂(1-2a)は、2種以上の(メタ)アクリル酸アルキルエステル由来の構成単位を有することが好ましく、(メタ)アクリル酸メチル及び(メタ)アクリル酸n-ブチル由来の構成単位を有することがより好ましく、メタクリル酸メチル及びアクリル酸n-ブチル由来の構成単位を有することがさらに好ましい。粘着性樹脂(1-2a)における水酸基含有モノマーとしては、後述の第1粘着剤組成物(I-1)において例示されるものを使用することができ、アクリル酸2-ヒドロキシエチルを使用することが特に好ましい。イソシアネート基及びエネルギー線重合性不飽和基を有する不飽和基含有化合物としては、後述の第1粘着剤組成物(I-2)において例示される化合物を使用することができ、2-メタクリロイルオキシエチルイソシアネートを使用することが特に好ましい。前記水酸基含有モノマーに由来する全水酸基を100molとしたときの、前記イソシアネート基及びエネルギー線重合性不飽和基を有する不飽和基含有化合物の使用量は、20~200molが好ましく、30~190molがより好ましく、30~180molがさらに好ましい。
 本実施形態の粘着性樹脂(1-2a)の重量平均分子量は、50,000~1,000,000であることが好ましく、60,000~900,000であることがより好ましく、70,000~800,000であることがさらに好ましい。
The content ratio of the structural unit derived from the (meth) acrylic acid alkyl ester to the total mass of the adhesive resin (1-2a) is preferably 1.0 to 95% by mass, preferably 2.0 to 90% by mass. More preferably, it is more preferably 3.0 to 85% by mass. The content ratio of the unit derived from the hydroxyl group-containing monomer to the total mass of the adhesive resin (1-2a) is preferably 1.0 to 50% by mass, more preferably 2.0 to 45% by mass. It is more preferably 3.0 to 40% by mass. The (meth) acrylic acid alkyl ester in the adhesive resin (1-2a) preferably has an alkyl group having 1 to 12 carbon atoms, and more preferably 1 to 4 carbon atoms. The adhesive resin (1-2a) preferably has a structural unit derived from two or more kinds of (meth) acrylic acid alkyl esters, and is a structural unit derived from methyl (meth) acrylate and n-butyl (meth) acrylic acid. It is more preferable to have a structural unit derived from methyl methacrylate and n-butyl acrylate. As the hydroxyl group-containing monomer in the adhesive resin (1-2a), those exemplified in the first pressure-sensitive adhesive composition (I-1) described later can be used, and 2-hydroxyethyl acrylate is used. Is particularly preferable. As the unsaturated group-containing compound having an isocyanate group and an energy ray-polymerizable unsaturated group, the compound exemplified in the first pressure-sensitive adhesive composition (I-2) described later can be used, and 2-methacryloyloxyethyl It is particularly preferred to use isocyanates. When the total number of hydroxyl groups derived from the hydroxyl group-containing monomer is 100 mol, the amount of the unsaturated group-containing compound having an isocyanate group and an energy ray-polymerizable unsaturated group is preferably 20 to 200 mol, more preferably 30 to 190 mol. It is preferable, and 30 to 180 mol is more preferable.
The weight average molecular weight of the adhesive resin (1-2a) of the present embodiment is preferably 50,000 to 1,000,000, more preferably 60,000 to 900,000, and 70,000. It is more preferably ~ 800,000.
{埋め込み層形成用組成物(II)}
 埋め込み層形成用組成物(II)は、ウレタン(メタ)アクリレートを含有する。
{Composition for forming an embedded layer (II)}
The composition for forming an embedded layer (II) contains urethane (meth) acrylate.
(ウレタン(メタ)アクリレート)
 ウレタン(メタ)アクリレートは、1分子中に少なくとも(メタ)アクリロイル基及びウレタン結合を有する化合物であり、エネルギー線重合性を有する。
 ウレタン(メタ)アクリレートは、単官能のもの(1分子中に(メタ)アクリロイル基を1個のみ有するもの)であってもよいし、二官能以上のもの(1分子中に(メタ)アクリロイル基を2個以上有するもの)、即ち多官能のものであってもよいが、少なくとも単官能のものを用いることが好ましい。
 なお、上述の粘着性樹脂(1-2a)、エネルギー線硬化性化合物、エネルギー線硬化性低分子化合物の中で、1分子中に少なくとも(メタ)アクリロイル基及びウレタン結合を有する化合物又は樹脂は、埋め込み層形成用組成物(II)におけるウレタン(メタ)アクリレートからは除かれる。
(Urethane (meth) acrylate)
Urethane (meth) acrylate is a compound having at least a (meth) acryloyl group and a urethane bond in one molecule, and has energy ray polymerization property.
Urethane (meth) acrylate may be monofunctional (having only one (meth) acryloyl group in one molecule) or bifunctional or more ((meth) acryloyl group in one molecule). , That is, a polyfunctional one, but it is preferable to use at least a monofunctional one.
Among the above-mentioned adhesive resin (1-2a), energy ray-curable compound, and energy ray-curable low-molecular-weight compound, the compound or resin having at least a (meth) acryloyl group and urethane bond in one molecule is a compound or resin. It is excluded from the urethane (meth) acrylate in the embedded layer forming composition (II).
 埋め込み層形成用組成物が含有する前記ウレタン(メタ)アクリレートとしては、例えば、ポリオール化合物と、多価イソシアネート化合物と、を反応させて得られた、末端イソシアネートウレタンプレポリマーに、さらに水酸基及び(メタ)アクリロイル基を有する(メタ)アクリル系化合物を反応させて得られたものが挙げられる。ここで、「末端イソシアネートウレタンプレポリマー」とは、ウレタン結合を有するとともに、分子の末端部にイソシアネート基を有するプレポリマーを意味する。 The urethane (meth) acrylate contained in the composition for forming an embedded layer includes, for example, a terminal isocyanate urethane prepolymer obtained by reacting a polyol compound with a polyvalent isocyanate compound, and further having a hydroxyl group and (meth). ) Examples thereof include those obtained by reacting a (meth) acrylic compound having an acryloyl group. Here, the "terminal isocyanate urethane prepolymer" means a prepolymer having a urethane bond and an isocyanate group at the terminal portion of the molecule.
 埋め込み層形成用組成物(II)が含有するウレタン(メタ)アクリレートは、1種のみでもよいし、2種以上でもよく、2種以上である場合、それらの組み合わせ及び比率は任意に選択できる。 The urethane (meth) acrylate contained in the composition for forming an embedded layer (II) may be only one type, may be two or more types, and when there are two or more types, the combination and ratio thereof can be arbitrarily selected.
(ア)ポリオール化合物
 前記ポリオール化合物は、1分子中に水酸基を2個以上有する化合物であれば、特に限定されない。
 前記ポリオール化合物は、1種を単独で用いてもよいし、2種以上を併用してもよく、2種以上を併用する場合、それらの組み合わせ及び比率は任意に選択できる。
(A) Polyol compound The polyol compound is not particularly limited as long as it is a compound having two or more hydroxyl groups in one molecule.
As the polyol compound, one type may be used alone, two or more types may be used in combination, and when two or more types are used in combination, the combination and ratio thereof can be arbitrarily selected.
 前記ポリオール化合物としては、例えば、アルキレンジオール、ポリエーテル型ポリオール、ポリエステル型ポリオール、ポリカーボネート型ポリオール等が挙げられる。
 前記ポリオール化合物は、2官能のジオール、3官能のトリオール、4官能以上のポリオール等のいずれであってもよいが、入手が容易であり、汎用性及び反応性等に優れる点では、ジオールが好ましい。
Examples of the polyol compound include alkylene diols, polyether-type polyols, polyester-type polyols, polycarbonate-type polyols, and the like.
The polyol compound may be any of a bifunctional diol, a trifunctional triol, a tetrafunctional or higher functional polyol, etc., but the diol is preferable in terms of easy availability, excellent versatility, reactivity and the like. ..
・ポリエーテル型ポリオール
 前記ポリエーテル型ポリオールは、特に限定されないが、ポリエーテル型ジオールであることが好ましく、前記ポリエーテル型ジオールとしては、例えば、下記式(1)で表される化合物が挙げられる。
-Polyether-type polyol The polyether-type polyol is not particularly limited, but is preferably a polyether-type diol, and examples of the polyether-type diol include a compound represented by the following formula (1). ..
Figure JPOXMLDOC01-appb-C000001
(但し、上記(1)式中、nは2以上の整数であり;Rは2価の炭化水素基であり、複数個のRは互いに同一であっても異なっていてもよい。)
Figure JPOXMLDOC01-appb-C000001
(However, in the above equation (1), n is an integer of 2 or more; R is a divalent hydrocarbon group, and a plurality of Rs may be the same or different from each other.)
 上記(1)式中、nは、式「-R-O-」で表される基の繰り返し単位数を表し、2以上の整数であれば特に限定されない。なかでも、nは、10~250であることが好ましく、25~205であることがより好ましく、40~185であることが特に好ましい。 In the above equation (1), n represents the number of repeating units of the group represented by the equation "-RO-", and is not particularly limited as long as it is an integer of 2 or more. Among them, n is preferably 10 to 250, more preferably 25 to 205, and particularly preferably 40 to 185.
 上記(1)式中、Rは、2価の炭化水素基であれば特に限定されないが、アルキレン基であることが好ましく、炭素数1~6のアルキレン基であることがより好ましく、エチレン基、プロピレン基又はテトラメチレン基であることがさらに好ましく、プロピレン基又はテトラメチレン基であることが特に好ましい。 In the above formula (1), R is not particularly limited as long as it is a divalent hydrocarbon group, but is preferably an alkylene group, more preferably an alkylene group having 1 to 6 carbon atoms, and an ethylene group. It is more preferably a propylene group or a tetramethylene group, and particularly preferably a propylene group or a tetramethylene group.
 上記(1)式で表される化合物は、ポリエチレングリコール、ポリプロピレングリコール又はポリテトラメチレングリコールであることが好ましく、ポリプロピレングリコール又はポリテトラメチレングリコールであることがより好ましい。 The compound represented by the above formula (1) is preferably polyethylene glycol, polypropylene glycol or polytetramethylene glycol, and more preferably polypropylene glycol or polytetramethylene glycol.
 前記ポリエーテル型ジオールと、前記多価イソシアネート化合物と、を反応させることにより、前記末端イソシアネートウレタンプレポリマーとして、下記式(1a)で表されるエーテル結合部を有する末端イソシアネートウレタンプレポリマーが得られる。そして、このような前記末端イソシアネートウレタンプレポリマーを用いることで、前記ウレタン(メタ)アクリレートは、前記エーテル結合部を有するウレタン(メタ)アクリレート、即ち、前記ポリエーテル型ジオールから誘導された構成単位を有するウレタン(メタ)アクリレートとなる。 By reacting the polyether type diol with the polyhydric isocyanate compound, a terminal isocyanate urethane prepolymer having an ether bond portion represented by the following formula (1a) can be obtained as the terminal isocyanate urethane prepolymer. .. Then, by using such a terminal isocyanate urethane prepolymer, the urethane (meth) acrylate can form a urethane (meth) acrylate having the ether bond portion, that is, a structural unit derived from the polyether type diol. It becomes a urethane (meth) acrylate having.
Figure JPOXMLDOC01-appb-C000002
(但し、上記(1a)式中、R及びnは前記と同じである。)
Figure JPOXMLDOC01-appb-C000002
(However, in the above equation (1a), R and n are the same as described above.)
・ポリエステル型ポリオール
 前記ポリエステル型ポリオールは、特に限定されないが、例えば、多塩基酸又はその誘導体を用いて、エステル化反応を行うことで得られたポリエステル型ポリオール等が挙げられる。なお、本実施形態において「誘導体」とは、特に断りのない限り、元の化合物の1個以上の基がそれ以外の基(置換基)で置換されてなるものを意味する。ここで、「基」とは、複数個の原子が結合してなる原子団だけでなく、1個の原子も包含する。
-Polyester-type polyol The polyester-type polyol is not particularly limited, and examples thereof include a polyester-type polyol obtained by carrying out an esterification reaction using a polybasic acid or a derivative thereof. In the present embodiment, the term "derivative" means a compound in which one or more groups of the original compound are substituted with other groups (substituents) unless otherwise specified. Here, the "group" includes not only an atomic group formed by bonding a plurality of atoms but also one atom.
 前記多塩基酸及びその誘導体としては、ポリエステルの製造原料として通常使用される多塩基酸及びその誘導体が挙げられる。
 前記多塩基酸としては、例えば、飽和脂肪族多塩基酸、不飽和脂肪族多塩基酸、芳香族多塩基酸等が挙げられ、これらのいずれかに該当するダイマー酸を用いてもよい。
Examples of the polybasic acid and its derivative include a polybasic acid and its derivative which are usually used as a raw material for producing polyester.
Examples of the polybasic acid include saturated aliphatic polybasic acid, unsaturated aliphatic polybasic acid, aromatic polybasic acid and the like, and dimer acid corresponding to any of these may be used.
 前記飽和脂肪族多塩基酸としては、例えば、シュウ酸、マロン酸、コハク酸、グルタル酸、アジピン酸、ピメリン酸、スベリン酸、アゼライン酸、セバシン酸等の飽和脂肪族二塩基酸等が挙げられる。
 前記不飽和脂肪族多塩基酸としては、例えば、マレイン酸、フマル酸等の不飽和脂肪族二塩基酸等が挙げられる。
 前記芳香族多塩基酸としては、例えば、フタル酸、イソフタル酸、テレフタル酸、2,6-ナフタレンジカルボン酸等の芳香族二塩基酸;トリメリット酸等の芳香族三塩基酸;ピロメリット酸等の芳香族四塩基酸等が挙げられる。
Examples of the saturated aliphatic dibasic acid include saturated aliphatic dibasic acids such as oxalic acid, malonic acid, succinic acid, glutaric acid, adipic acid, pimelic acid, suberic acid, azelaic acid, and sebacic acid. ..
Examples of the unsaturated aliphatic dibasic acid include unsaturated aliphatic dibasic acids such as maleic acid and fumaric acid.
Examples of the aromatic polybasic acid include aromatic dibasic acids such as phthalic acid, isophthalic acid, terephthalic acid and 2,6-naphthalenedicarboxylic acid; aromatic tribasic acids such as trimellitic acid; pyromellitic acid and the like. Aromatic tetrabasic acid and the like.
 前記多塩基酸の誘導体としては、例えば、上述の飽和脂肪族多塩基酸、不飽和脂肪族多塩基酸及び芳香族多塩基酸の酸無水物、並びに水添ダイマー酸等が挙げられる。 Examples of the derivative of the polybasic acid include the above-mentioned saturated aliphatic polybasic acid, unsaturated aliphatic polybasic acid and acid anhydride of aromatic polybasic acid, hydrogenated dimer acid and the like.
 前記多塩基酸又はその誘導体は、いずれも1種を単独で用いてもよいし、2種以上を併用してもよく、2種以上を併用する場合、それらの組み合わせ及び比率は任意に選択できる。 As for the polybasic acid or a derivative thereof, one type may be used alone, two or more types may be used in combination, and when two or more types are used in combination, the combination and ratio thereof can be arbitrarily selected. ..
 前記多塩基酸は、適度な硬度を有する埋め込み層の形成に適している点では、芳香族多塩基酸であることが好ましい。 The polybasic acid is preferably an aromatic polybasic acid in that it is suitable for forming an embedded layer having an appropriate hardness.
 ポリエステル型ポリオールを得るためのエステル化反応においては、必要に応じて公知の触媒を用いてもよい。
 前記触媒としては、例えば、ジブチルスズオキサイド、オクチル酸第一スズ等のスズ化合物;テトラブチルチタネート、テトラプロピルチタネート等のアルコキシチタン等が挙げられる。
In the esterification reaction for obtaining a polyester-type polyol, a known catalyst may be used if necessary.
Examples of the catalyst include tin compounds such as dibutyltin oxide and stannous octylate; alkoxytitanium such as tetrabutyl titanate and tetrapropyl titanate.
・ポリカーボネート型ポリオール
 ポリカーボネート型ポリオールは、特に限定されないが、例えば、上記(1)式で表される化合物と同様のグリコールと、アルキレンカーボネートと、を反応させて得られたもの等が挙げられる。
 ここで、グリコール及びアルキレンカーボネートは、いずれも1種を単独で用いてもよいし、2種以上を併用してもよく、2種以上を併用する場合、それらの組み合わせ及び比率は任意に選択できる。
-Polycarbonate-type polyol The polycarbonate-type polyol is not particularly limited, and examples thereof include those obtained by reacting a glycol similar to the compound represented by the above formula (1) with an alkylene carbonate.
Here, as the glycol and the alkylene carbonate, one type may be used alone, two or more types may be used in combination, and when two or more types are used in combination, the combination and ratio thereof can be arbitrarily selected. ..
 前記ポリオール化合物の水酸基価から算出した数平均分子量は、1000~10000であることが好ましく、2000~9000であることがより好ましく、3000~7000であることが特に好ましい。前記数平均分子量が1000以上であることで、ウレタン結合の過剰な生成が抑制されて、埋め込み層の粘弾性特性の制御がより容易となる。また、前記数平均分子量が10000以下であることで、埋め込み層の過度な軟化が抑制される。
 ポリオール化合物の水酸基価から算出した前記数平均分子量とは、下記式から算出された値である。
 [ポリオール化合物の数平均分子量]=[ポリオール化合物の官能基数]×56.11×1000/[ポリオール化合物の水酸基価(単位:mgKOH/g)]
The number average molecular weight calculated from the hydroxyl value of the polyol compound is preferably 1000 to 10000, more preferably 2000 to 9000, and particularly preferably 3000 to 7000. When the number average molecular weight is 1000 or more, excessive formation of urethane bonds is suppressed, and it becomes easier to control the viscoelastic properties of the embedded layer. Further, when the number average molecular weight is 10,000 or less, excessive softening of the embedded layer is suppressed.
The number average molecular weight calculated from the hydroxyl value of the polyol compound is a value calculated from the following formula.
[Number average molecular weight of polyol compound] = [Number of functional groups of polyol compound] × 56.11 × 1000 / [Hydroxy group value of polyol compound (unit: mgKOH / g)]
 前記ポリオール化合物は、ポリエーテル型ポリオールであることが好ましく、ポリエーテル型ジオールであることがより好ましい。 The polyol compound is preferably a polyether-type polyol, and more preferably a polyether-type diol.
(イ)多価イソシアネート化合物
 ポリオール化合物と反応させる前記多価イソシアネート化合物は、イソシアネート基を2個以上有するものであれば、特に限定されない。
 多価イソシアネート化合物は、1種を単独で用いてもよいし、2種以上を併用してもよく、2種以上を併用する場合、それらの組み合わせ及び比率は任意に選択できる。
(B) Multivalent Isocyanate Compound The polyisocyanate compound to be reacted with the polyol compound is not particularly limited as long as it has two or more isocyanate groups.
As the polyisocyanate compound, one type may be used alone, two or more types may be used in combination, and when two or more types are used in combination, the combination and ratio thereof can be arbitrarily selected.
 前記多価イソシアネート化合物としては、例えば、テトラメチレンジイソシアネート、ヘキサメチレンジイソシアネート、トリメチルヘキサメチレンジイソシアネート等の鎖状脂肪族ジイソシアネート;イソホロンジイソシアネート、ノルボルナンジイソシアネート、ジシクロヘキシルメタン-4,4’-ジイソシアネート、ジシクロヘキシルメタン-2,4’-ジイソシアネート、ω,ω’-ジイソシアネートジメチルシクロヘキサン等の環状脂肪族ジイソシアネート;4,4’-ジフェニルメタンジイソシアネート、トリレンジイソシアネート、キシリレンジイソシアネート、トリジンジイソシアネート、テトラメチレンキシリレンジイソシアネート、ナフタレン-1,5-ジイソシアネート等の芳香族ジイソシアネート等が挙げられる。
 これらの中でも、多価イソシアネート化合物は、取り扱い性の点から、イソホロンジイソシアネート、ヘキサメチレンジイソシアネート又はキシリレンジイソシアネートであることが好ましい。
Examples of the polyvalent isocyanate compound include chain aliphatic diisocyanates such as tetramethylene diisocyanate, hexamethylene diisocyanate, and trimethylhexamethylene diisocyanate; isophorone diisocyanate, norbornan diisocyanate, dicyclohexylmethane-4,4'-diisocyanate, and dicyclohexylmethane-2. , 4'-diisocyanate, ω, ω'-diisocyanate Diisocyanate Diisocyanate such as dimethylcyclohexane; 4,4'-diphenylmethane diisocyanate, tolylene diisocyanate, xylylene diisocyanate, trizine diisocyanate, tetramethylene xylylene diisocyanate, naphthalene-1, Examples thereof include aromatic diisocyanates such as 5-diisocyanate.
Among these, the multivalent isocyanate compound is preferably isophorone diisocyanate, hexamethylene diisocyanate or xylylene diisocyanate from the viewpoint of handleability.
(ウ)(メタ)アクリル系化合物
 前記末端イソシアネートウレタンプレポリマーと反応させる、前記(メタ)アクリル系化合物は、1分子中に少なくとも水酸基及び(メタ)アクリロイル基を有する化合物であれば、特に限定されない。
 前記(メタ)アクリル系化合物は、1種を単独で用いてもよいし、2種以上を併用してもよく、2種以上を併用する場合、それらの組み合わせ及び比率は任意に選択できる。
(C) (Meta) Acrylic Compound The (meth) acrylic compound to be reacted with the terminal isocyanate urethane prepolymer is not particularly limited as long as it is a compound having at least a hydroxyl group and a (meth) acryloyl group in one molecule. ..
As the (meth) acrylic compound, one type may be used alone, two or more types may be used in combination, and when two or more types are used in combination, the combination and ratio thereof can be arbitrarily selected.
 前記(メタ)アクリル系化合物としては、例えば、(メタ)アクリル酸2-ヒドロキシエチル、(メタ)アクリル酸2-ヒドロキシプロピル、(メタ)アクリル酸3-ヒドロキシプロピル、(メタ)アクリル酸2-ヒドロキシブチル、(メタ)アクリル酸3-ヒドロキシブチル、(メタ)アクリル酸4-ヒドロキシブチル、(メタ)アクリル酸4-ヒドロキシシクロヘキシル、(メタ)アクリル酸5-ヒドロキシシクロオクチル、(メタ)アクリル酸2-ヒドロキシ-3-フェニルオキシプロピル、ペンタエリスリトールトリ(メタ)アクリレート、ポリエチレングリコールモノ(メタ)アクリレート、ポリプロピレングリコールモノ(メタ)アクリレート等の水酸基含有(メタ)アクリル酸エステル;N-メチロール(メタ)アクリルアミド等の水酸基含有(メタ)アクリルアミド;ビニルアルコール、ビニルフェノール又はビスフェノールAジグリシジルエーテルに(メタ)アクリル酸を反応させて得られた反応物等が挙げられる。
 これらの中でも、前記(メタ)アクリル系化合物は、水酸基含有(メタ)アクリル酸エステルであることが好ましく、水酸基含有(メタ)アクリル酸アルキルエステルであることがより好ましく、(メタ)アクリル酸2-ヒドロキシエチルであることが特に好ましい。
Examples of the (meth) acrylic compound include 2-hydroxyethyl (meth) acrylate, 2-hydroxypropyl (meth) acrylate, 3-hydroxypropyl (meth) acrylate, and 2-hydroxy (meth) acrylate. Butyl, 3-hydroxybutyl (meth) acrylate, 4-hydroxybutyl (meth) acrylate, 4-hydroxycyclohexyl (meth) acrylate, 5-hydroxycyclooctyl (meth) acrylate, 2-hydroxycyclooctyl (meth) acrylate Hydroxyl-containing (meth) acrylic acid esters such as hydroxy-3-phenyloxypropyl, pentaerythritol tri (meth) acrylate, polyethylene glycol mono (meth) acrylate, polypropylene glycol mono (meth) acrylate; N-methylol (meth) acrylamide, etc. Hydroxy group-containing (meth) acrylamide; Examples thereof include a reactant obtained by reacting vinyl alcohol, vinylphenol or bisphenol A diglycidyl ether with (meth) acrylic acid.
Among these, the (meth) acrylic compound is preferably a hydroxyl group-containing (meth) acrylic acid ester, more preferably a hydroxyl group-containing (meth) acrylic acid alkyl ester, and (meth) acrylic acid 2-. Hydroxyethyl is particularly preferred.
 前記末端イソシアネートウレタンプレポリマーと前記(メタ)アクリル系化合物との反応は、必要に応じて、溶媒、触媒等を用いて行ってもよい。 The reaction between the terminal isocyanate urethane prepolymer and the (meth) acrylic compound may be carried out using a solvent, a catalyst or the like, if necessary.
 前記末端イソシアネートウレタンプレポリマーと前記(メタ)アクリル系化合物とを反応させるときの条件は、適宜調節すればよいが、例えば、反応温度は60~100℃であることが好ましく、反応時間は1~4時間であることが好ましい。 The conditions for reacting the terminal isocyanate urethane prepolymer with the (meth) acrylic compound may be appropriately adjusted. For example, the reaction temperature is preferably 60 to 100 ° C., and the reaction time is 1 to 1 to 1. It is preferably 4 hours.
 前記ウレタン(メタ)アクリレートは、オリゴマー、ポリマー、並びにオリゴマー及びポリマーの混合物のいずれであってもよいが、オリゴマーであることが好ましい。
 例えば、前記ウレタン(メタ)アクリレートの重量平均分子量は、1000~100000であることが好ましく、3000~80000であることがより好ましく、5000~65000であることが特に好ましい。前記重量平均分子量が1000以上であることで、ウレタン(メタ)アクリレートと後述する重合性モノマーとの重合物において、ウレタン(メタ)アクリレート由来の構造同士の分子間力に起因して、埋め込み層の硬さの最適化が容易となる。
The urethane (meth) acrylate may be any of an oligomer, a polymer, and a mixture of the oligomer and the polymer, but is preferably an oligomer.
For example, the weight average molecular weight of the urethane (meth) acrylate is preferably 1000 to 100,000, more preferably 3000 to 80000, and particularly preferably 5000 to 65000. When the weight average molecular weight is 1000 or more, in the polymer of urethane (meth) acrylate and the polymerizable monomer described later, due to the intermolecular force between the structures derived from urethane (meth) acrylate, the embedded layer The hardness can be easily optimized.
(重合性モノマー)
 埋め込み層形成用組成物(II)は、製膜性をより向上させる点から、前記ウレタン(メタ)アクリレート以外に、重合性モノマーを含有していてもよい。
 前記重合性モノマーは、エネルギー線重合性を有し、重量平均分子量が1000未満である、1分子中に少なくとも1個の(メタ)アクリロイル基を有する化合物であることが好ましい。
(Polymerizable monomer)
The composition for forming an embedded layer (II) may contain a polymerizable monomer in addition to the urethane (meth) acrylate from the viewpoint of further improving the film-forming property.
The polymerizable monomer is preferably a compound having energy ray polymerizable property, having a weight average molecular weight of less than 1000, and having at least one (meth) acryloyl group in one molecule.
 前記重合性モノマーとしては、例えば、アルキルエステルを構成するアルキル基が、炭素数が1~30で鎖状のものである(メタ)アクリル酸アルキルエステル;水酸基、アミド基、アミノ基又はエポキシ基等の官能基を有する官能基含有(メタ)アクリル系化合物;脂肪族環式基を有する(メタ)アクリル酸エステル;芳香族炭化水素基を有する(メタ)アクリル酸エステル;複素環式基を有する(メタ)アクリル酸エステル;ビニル基を有する化合物;アリル基を有する化合物等が挙げられる。 Examples of the polymerizable monomer include a (meth) acrylic acid alkyl ester in which the alkyl group constituting the alkyl ester has 1 to 30 carbon atoms and is chain-like; a hydroxyl group, an amide group, an amino group, an epoxy group, or the like. Functional group-containing (meth) acrylic compound having a functional group of; (meth) acrylic acid ester having an aliphatic cyclic group; (meth) acrylic acid ester having an aromatic hydrocarbon group; having a heterocyclic group ( Meta) Acrylic acid ester; a compound having a vinyl group; a compound having an allyl group and the like can be mentioned.
 炭素数が1~30の鎖状アルキル基を有する前記(メタ)アクリル酸アルキルエステルとしては、例えば、(メタ)アクリル酸メチル、(メタ)アクリル酸エチル、(メタ)アクリル酸n-プロピル、(メタ)アクリル酸イソプロピル、(メタ)アクリル酸n-ブチル、(メタ)アクリル酸イソブチル、(メタ)アクリル酸sec-ブチル、(メタ)アクリル酸tert-ブチル、(メタ)アクリル酸ペンチル、(メタ)アクリル酸ヘキシル、(メタ)アクリル酸ヘプチル、(メタ)アクリル酸n-オクチル、(メタ)アクリル酸イソオクチル、(メタ)アクリル酸2-エチルヘキシル、(メタ)アクリル酸n-ノニル、(メタ)アクリル酸イソノニル、(メタ)アクリル酸デシル、(メタ)アクリル酸ウンデシル、(メタ)アクリル酸ドデシル((メタ)アクリル酸ラウリル)、(メタ)アクリル酸トリデシル、(メタ)アクリル酸テトラデシル((メタ)アクリル酸ミリスチル)、(メタ)アクリル酸ペンタデシル基、(メタ)アクリル酸ヘキサデシル((メタ)アクリル酸パルミチル)、(メタ)アクリル酸ヘプタデシル、(メタ)アクリル酸オクタデシル((メタ)アクリル酸ステアリル)、(メタ)アクリル酸イソオクタデシル((メタ)アクリル酸イソステアリル)、(メタ)アクリル酸ノナデシル、(メタ)アクリル酸イコシル等が挙げられる。 Examples of the (meth) acrylic acid alkyl ester having a chain alkyl group having 1 to 30 carbon atoms include methyl (meth) acrylic acid, ethyl (meth) acrylic acid, and n-propyl (meth) acrylic acid. Isopropyl acrylate, n-butyl (meth) acrylate, isobutyl (meth) acrylate, sec-butyl (meth) acrylate, tert-butyl (meth) acrylate, pentyl (meth) acrylate, (meth) Hexyl acrylate, heptyl (meth) acrylate, n-octyl acrylate, isooctyl (meth) acrylate, 2-ethylhexyl (meth) acrylate, n-nonyl (meth) acrylate, (meth) acrylate Isononyl, decyl (meth) acrylate, undecyl (meth) acrylate, dodecyl (meth) acrylate (lauryl (meth) acrylate), tridecyl (meth) acrylate, tetradecyl (meth) acrylate ((meth) acrylate) Myristyl), pentadecyl (meth) acrylate, hexadecyl (meth) acrylate (palmityl (meth) acrylate), heptadecyl (meth) acrylate, octadecyl (meth) acrylate (stearyl (meth) acrylate), (meth) ) Isooctadecyl acrylate (isostearyl (meth) acrylate), nonadecil (meth) acrylate, icosyl (meth) acrylate and the like can be mentioned.
 前記官能基含有(メタ)アクリル酸誘導体としては、例えば、(メタ)アクリル酸2-ヒドロキシエチル、(メタ)アクリル酸2-ヒドロキシプロピル、(メタ)アクリル酸3-ヒドロキシプロピル、(メタ)アクリル酸2-ヒドロキシブチル、(メタ)アクリル酸3-ヒドロキシブチル、(メタ)アクリル酸4-ヒドロキシブチル等の水酸基含有(メタ)アクリル酸エステル;(メタ)アクリルアミド、N,N-ジメチル(メタ)アクリルアミド、N-ブチル(メタ)アクリルアミド、N-メチロール(メタ)アクリルアミド、N-メチロールプロパン(メタ)アクリルアミド、N-メトキシメチル(メタ)アクリルアミド、N-ブトキシメチル(メタ)アクリルアミド等の(メタ)アクリルアミド及びその誘導体;アミノ基を有する(メタ)アクリル酸エステル(以下、「アミノ基含有(メタ)アクリル酸エステル」と称することがある);アミノ基の1個の水素原子が水素原子以外の基で置換されてなる1置換アミノ基を有する(メタ)アクリル酸エステル(以下、「1置換アミノ基含有(メタ)アクリル酸エステル」と称することがある);アミノ基の2個の水素原子が水素原子以外の基で置換されてなる2置換アミノ基を有する(メタ)アクリル酸エステル(以下、「2置換アミノ基含有(メタ)アクリル酸エステル」と称することがある);(メタ)アクリル酸グリシジル、(メタ)アクリル酸メチルグリシジル等のエポキシ基を有する(メタ)アクリル酸エステル(以下、「エポキシ基含有(メタ)アクリル酸エステル」と称することがある)等が挙げられ、(メタ)アクリル酸2-ヒドロキシプロピルが好ましく、アクリル酸2-ヒドロキシプロピルがより好ましい。 Examples of the functional group-containing (meth) acrylic acid derivative include 2-hydroxyethyl (meth) acrylate, 2-hydroxypropyl (meth) acrylate, 3-hydroxypropyl (meth) acrylate, and (meth) acrylate. Hydroxyl-containing (meth) acrylic acid esters such as 2-hydroxybutyl, 3-hydroxybutyl (meth) acrylate, 4-hydroxybutyl (meth) acrylate; (meth) acrylamide, N, N-dimethyl (meth) acrylamide, (Meta) acrylamides such as N-butyl (meth) acrylamide, N-methylol (meth) acrylamide, N-methylolpropane (meth) acrylamide, N-methoxymethyl (meth) acrylamide, N-butoxymethyl (meth) acrylamide, etc. Derivatives; (meth) acrylic acid ester having an amino group (hereinafter, may be referred to as "amino group-containing (meth) acrylic acid ester"); one hydrogen atom of the amino group is replaced with a group other than the hydrogen atom. A (meth) acrylic acid ester having a mono-substituted amino group (hereinafter, may be referred to as "mono-substituted amino group-containing (meth) acrylic acid ester"); the two hydrogen atoms of the amino group are other than hydrogen atoms. A (meth) acrylic acid ester having a disubstituted amino group substituted with a group (hereinafter, may be referred to as "disubstituted amino group-containing (meth) acrylic acid ester"); glycidyl (meth) acrylate, (meth). ) (Meta) acrylic acid ester having an epoxy group such as methyl glycidyl acrylate (hereinafter, may be referred to as "epoxy group-containing (meth) acrylic acid ester"), etc., and 2-hydroxy (meth) acrylic acid. Butyl is preferred, and 2-hydroxypropyl acrylate is more preferred.
 ここで、「アミノ基含有(メタ)アクリル酸エステル」とは、(メタ)アクリル酸エステルの1個又は2個以上の水素原子がアミノ基(-NH)で置換されてなる化合物を意味する。同様に、「1置換アミノ基含有(メタ)アクリル酸エステル」とは、(メタ)アクリル酸エステルの1個又は2個以上の水素原子が1置換アミノ基で置換されてなる化合物を意味し、「2置換アミノ基含有(メタ)アクリル酸エステル」とは、(メタ)アクリル酸エステルの1個又は2個以上の水素原子が2置換アミノ基で置換されてなる化合物を意味する。
 「1置換アミノ基」及び「2置換アミノ基」における、水素原子が置換される水素原子以外の基(即ち、置換基)としては、例えば、アルキル基等が挙げられる。
Here, the "amino group-containing (meth) acrylic acid ester" means a compound in which one or more hydrogen atoms of the (meth) acrylic acid ester are substituted with an amino group (-NH 2). .. Similarly, the "mono-substituted amino group-containing (meth) acrylic acid ester" means a compound in which one or more hydrogen atoms of the (meth) acrylic acid ester are substituted with a mono-substituted amino group. The "disubstituted amino group-containing (meth) acrylic acid ester" means a compound in which one or more hydrogen atoms of the (meth) acrylic acid ester are substituted with a disubstituted amino group.
Examples of the group other than the hydrogen atom (that is, the substituent) in which the hydrogen atom is substituted in the "mono-substituted amino group" and the "di-substituted amino group" include an alkyl group and the like.
 前記脂肪族環式基を有する(メタ)アクリル酸エステルとしては、例えば、(メタ)アクリル酸イソボルニル、(メタ)アクリル酸ジシクロペンテニル、(メタ)アクリル酸ジシクロペンタニル、(メタ)アクリル酸ジシクロペンテニルオキシエチル、(メタ)アクリル酸シクロヘキシル、(メタ)アクリル酸アダマンチル等が挙げられ、(メタ)アクリル酸イソボルニルが好ましく、アクリル酸イソボルニルがより好ましい。 Examples of the (meth) acrylic acid ester having an aliphatic cyclic group include isobornyl (meth) acrylate, dicyclopentenyl (meth) acrylate, dicyclopentanyl (meth) acrylate, and (meth) acrylic acid. Examples thereof include dicyclopentenyloxyethyl, cyclohexyl (meth) acrylate, and adamantyl (meth) acrylate. Isobornyl (meth) acrylate is preferable, and isobornyl acrylate is more preferable.
 前記芳香族炭化水素基を有する(メタ)アクリル酸エステルとしては、例えば、(メタ)アクリル酸フェニルヒドロキシプロピル、(メタ)アクリル酸ベンジル、(メタ)アクリル酸2-ヒドロキシ-3-フェノキシプロピル等が挙げられる。 Examples of the (meth) acrylic acid ester having an aromatic hydrocarbon group include phenylhydroxypropyl (meth) acrylate, benzyl (meth) acrylate, and 2-hydroxy-3-phenoxypropyl (meth) acrylate. Can be mentioned.
 前記複素環式基を有する(メタ)アクリル酸エステルにおける複素環式基は、芳香族複素環式基及び脂肪族複素環式基のいずれでもよい。
 前記複素環式基を有する(メタ)アクリル酸エステルとしては、例えば、(メタ)アクリル酸テトラヒドロフルフリル、(メタ)アクリロイルモルホリン等が挙げられる。
The heterocyclic group in the (meth) acrylic acid ester having a heterocyclic group may be either an aromatic heterocyclic group or an aliphatic heterocyclic group.
Examples of the (meth) acrylic acid ester having a heterocyclic group include tetrahydrofurfuryl (meth) acrylate and (meth) acryloyl morpholine.
 前記ビニル基を有する化合物としては、例えば、スチレン、ヒドロキシエチルビニルエーテル、ヒドロキシブチルビニルエーテル、N-ビニルホルムアミド、N-ビニルピロリドン、N-ビニルカプロラクタム等が挙げられる。 Examples of the compound having a vinyl group include styrene, hydroxyethyl vinyl ether, hydroxybutyl vinyl ether, N-vinylformamide, N-vinylpyrrolidone, N-vinylcaprolactam and the like.
 前記アリル基を有する化合物としては、例えば、アリルグリシジルエーテル等が挙げられる。 Examples of the compound having an allyl group include allyl glycidyl ether and the like.
 前記重合性モノマーは、前記ウレタン(メタ)アクリレートとの相溶性が良好である点から、比較的嵩高い基を有するものが好ましく、このようなものとしては、脂肪族環式基を有する(メタ)アクリル酸エステル、芳香族炭化水素基を有する(メタ)アクリル酸エステル、複素環式基を有する(メタ)アクリル酸エステルが挙げられ、脂肪族環式基を有する(メタ)アクリル酸エステルがより好ましい。 The polymerizable monomer preferably has a relatively bulky group from the viewpoint of good compatibility with the urethane (meth) acrylate, and such a monomer has an aliphatic cyclic group (meth). ) Acrylate ester, (meth) acrylic acid ester having an aromatic hydrocarbon group, (meth) acrylic acid ester having a heterocyclic group, and (meth) acrylic acid ester having an aliphatic cyclic group are more suitable. preferable.
 埋め込み層形成用組成物(II)が含有する重合性モノマーは、1種のみでもよいし、2種以上でもよく、2種以上である場合、それらの組み合わせ及び比率は任意に選択できる。 The polymerizable monomer contained in the embedded layer forming composition (II) may be only one type, may be two or more types, and when there are two or more types, the combination and ratio thereof can be arbitrarily selected.
 埋め込み層形成用組成物(II)において、重合性モノマーの含有量は、10~99質量%であることが好ましく、15~95質量%であることがより好ましく、20~90質量%であることがさらに好ましく、25~80質量%であることが特に好ましい。 In the composition for forming an embedded layer (II), the content of the polymerizable monomer is preferably 10 to 99% by mass, more preferably 15 to 95% by mass, and 20 to 90% by mass. Is more preferable, and 25 to 80% by mass is particularly preferable.
(光重合開始剤)
 埋め込み層形成用組成物(II)は、前記ウレタン(メタ)アクリレート及び重合性モノマー以外に、光重合開始剤を含有していてもよい。光重合開始剤を含有する埋め込み層形成用組成物(II)は、紫外線等の比較的低エネルギーのエネルギー線を照射しても、十分に硬化反応が進行する。
(Photopolymerization initiator)
The composition for forming an embedded layer (II) may contain a photopolymerization initiator in addition to the urethane (meth) acrylate and the polymerizable monomer. The composition for forming an embedded layer (II) containing a photopolymerization initiator sufficiently promotes a curing reaction even when irradiated with relatively low-energy energy rays such as ultraviolet rays.
 埋め込み層形成用組成物(II)における光重合開始剤としては、第1粘着剤組成物(I-1)における光重合開始剤と同じものが挙げられる。 Examples of the photopolymerization initiator in the embedded layer forming composition (II) include the same photopolymerization initiator in the first pressure-sensitive adhesive composition (I-1).
 埋め込み層形成用組成物(II)が含有する光重合開始剤は、1種のみでもよいし、2種以上でもよく、2種以上である場合、それらの組み合わせ及び比率は任意に選択できる。 The photopolymerization initiator contained in the embedded layer forming composition (II) may be only one type, may be two or more types, and when there are two or more types, the combination and ratio thereof can be arbitrarily selected.
 埋め込み層形成用組成物(II)において、光重合開始剤の含有量は、前記ウレタン(メタ)アクリレート及び重合性モノマーの総含有量100質量部に対して、0.01~20質量部であることが好ましく、0.03~10質量部であることがより好ましく、0.05~5質量部であることが特に好ましい。 In the composition for forming an embedded layer (II), the content of the photopolymerization initiator is 0.01 to 20 parts by mass with respect to 100 parts by mass of the total content of the urethane (meth) acrylate and the polymerizable monomer. It is preferably 0.03 to 10 parts by mass, and particularly preferably 0.05 to 5 parts by mass.
(ウレタン(メタ)アクリレート以外の樹脂成分)
 埋め込み層形成用組成物(II)は、本発明の効果を損なわない範囲内において、前記ウレタン(メタ)アクリレート以外の樹脂成分を含有していてもよい。
 前記樹脂成分の種類と、その埋め込み層形成用組成物(II)における含有量は、目的に応じて適宜選択すればよく、特に限定されない。
(Resin components other than urethane (meth) acrylate)
The composition for forming an embedded layer (II) may contain a resin component other than the urethane (meth) acrylate as long as the effects of the present invention are not impaired.
The type of the resin component and the content thereof in the composition for forming an embedded layer (II) may be appropriately selected depending on the intended purpose, and are not particularly limited.
(その他の添加剤)
 埋め込み層形成用組成物(II)は、本発明の効果を損なわない範囲内において、上述のいずれの成分にも該当しない、その他の添加剤を含有していてもよい。
 前記その他の添加剤としては、例えば、架橋剤、帯電防止剤、酸化防止剤、連鎖移動剤、軟化剤(可塑剤)、充填剤、防錆剤、着色剤(顔料、染料)等の公知の添加剤が挙げられる。
 例えば、前記連鎖移動剤としては、1分子中に少なくとも1個のチオール基(メルカプト基)を有するチオール化合物が挙げられる。
(Other additives)
The composition for forming an embedded layer (II) may contain other additives that do not correspond to any of the above-mentioned components as long as the effects of the present invention are not impaired.
Known examples of the other additives include cross-linking agents, antistatic agents, antioxidants, chain transfer agents, softeners (plasticizers), fillers, rust inhibitors, colorants (pigments, dyes) and the like. Additives can be mentioned.
For example, examples of the chain transfer agent include thiol compounds having at least one thiol group (mercapto group) in one molecule.
 前記チオール化合物としては、例えば、ノニルメルカプタン、1-ドデカンチオール、1,2-エタンジチオール、1,3-プロパンジチオール、トリアジンチオール、トリアジンジチオール、トリアジントリチオール、1,2,3-プロパントリチオール、テトラエチレングリコール-ビス(3-メルカプトプロピオネート)、トリメチロールプロパントリス(3-メルカプトプロピオネート)、ペンタエリスリトールテトラキス(3-メルカプトプロピオネート)、ペンタエリスリトールテトラキスチオグルコレート、ジペンタエリスリトールヘキサキス(3-メルカプトプロピオネート)、トリス[(3-メルカプトプロピオニロキシ)-エチル]-イソシアヌレート、1,4-ビス(3-メルカプトブチリルオキシ)ブタン、ペンタエリスリトールテトラキス(3-メルカプトブチレート)、1,3,5-トリス(3-メルカプトブチルオキシエチル)-1,3,5-トリアジン-2,4,6-(1H,3H,5H)-トリオン等が挙げれ、ペンタエリスリトールテトラキス(3-メルカプトブチレート)が好ましい。 Examples of the thiol compound include nonyl mercaptan, 1-dodecanethiol, 1,2-ethanedithiol, 1,3-propanedithiol, triazinethiol, triazinedithiol, triazinetrithiol, 1,2,3-propanetrithiol, and the like. Tetraethylene glycol-bis (3-mercaptopropionate), trimethylolpropanthris (3-mercaptopropionate), pentaerythritol tetrakis (3-mercaptopropionate), pentaerythritol tetraxthioglucolate, dipentaerythritol hexa Kiss (3-mercaptopropionate), Tris [(3-mercaptopropioniroxy) -ethyl] -isocyanurate, 1,4-bis (3-mercaptobutyryloxy) butane, pentaerythritol tetrakis (3-mercaptobuty) Rate), 1,3,5-tris (3-mercaptobutyloxyethyl) -1,3,5-triazine-2,4,6- (1H, 3H, 5H) -trione and the like, and pentaerythritol tetrakis ( 3-Mercaptobutyrate) is preferred.
 埋め込み層形成用組成物(II)が含有するその他の添加剤は、1種のみでもよいし、2種以上でもよく、2種以上である場合、それらの組み合わせ及び比率は任意に選択できる。 The other additives contained in the composition for forming an embedded layer (II) may be only one type, may be two or more types, and when there are two or more types, their combinations and ratios can be arbitrarily selected.
 埋め込み層形成用組成物(II)において、その他の添加剤の含有量は特に限定されず、その種類に応じて適宜選択すればよい。 In the composition for forming an embedded layer (II), the content of other additives is not particularly limited and may be appropriately selected according to the type thereof.
(溶媒)
 埋め込み層形成用組成物(II)は、溶媒を含有していてもよい。埋め込み層形成用組成物(II)は、溶媒を含有していることで、塗工対象面への塗工適性が向上する。
(solvent)
The composition for forming an embedded layer (II) may contain a solvent. Since the composition for forming the embedded layer (II) contains a solvent, the suitability for coating on the surface to be coated is improved.
{埋め込み層(II)の組成}
 本実施形態における、埋め込み層(II)の組成は、上述の埋め込み層形成用組成物(II)から溶媒を除いたものである。
 埋め込み層(II)の総質量に対するウレタン(メタ)アクリレートの含有割合は、20.0~60.0質量%であることが好ましく、22.5~57.5質量%であることがより好ましく、25.0~55.0質量%であることがさらに好ましい。
 埋め込み層(II)が重合性モノマーを含む場合、埋め込み層(II)の総質量に対する重合性モノマーの含有割合は、40.0~80.0質量%であることが好ましく、42.5~77.5質量%であることがより好ましく、45.0~75.0質量%であることがさらに好ましい。重合性モノマーとしては、アクリル酸イソボルニル及びアクリル酸2-ヒドロキシプロピルのいずれか一方又は両方を含むことが好ましい。
 埋め込み層(II)が架橋剤を含む場合、埋め込み層(II)の総質量に対する架橋剤の含有割合は、0.1~5.0質量%であることが好ましく、0.2~4.5質量%であることがより好ましく、0.3~4.0質量%であることがさらに好ましい。
 埋め込み層(II)が光重合開始剤を含む場合、埋め込み層(II)の総質量に対する光重合開始剤の含有割合は、0.1~10.0質量%であることが好ましく、0.2~9.0質量%であることがより好ましく、0.3~8.0質量%であることがさらに好ましい。光重合開始剤としては、2-ヒドロキシ-2-メチル-1-フェニル-プロパン-1-オンを含むことが好ましい。
 埋め込み層(II)がチオール化合物を含む場合、埋め込み層(II)の総質量に対するチオール化合物の含有割合は、0.5~10.0質量%であることが好ましく、0.6~9.0質量%であることがより好ましく、0.7~8.0質量%であることがさらに好ましい。チオール化合物としては、ペンタエリスリトールテトラキス(3-メルカプトブチレート)を含むことが好ましい。
{Composition of embedded layer (II)}
The composition of the embedded layer (II) in the present embodiment is the above-mentioned composition for forming an embedded layer (II) from which the solvent has been removed.
The content ratio of urethane (meth) acrylate with respect to the total mass of the embedded layer (II) is preferably 20.0 to 60.0% by mass, more preferably 22.5 to 57.5% by mass. It is more preferably 25.0 to 55.0% by mass.
When the embedded layer (II) contains a polymerizable monomer, the content ratio of the polymerizable monomer to the total mass of the embedded layer (II) is preferably 40.0 to 80.0% by mass, and 42.5 to 77. It is more preferably 5.5% by mass, and even more preferably 45.0 to 75.0% by mass. The polymerizable monomer preferably contains either one or both of isobornyl acrylate and 2-hydroxypropyl acrylate.
When the embedded layer (II) contains a cross-linking agent, the content ratio of the cross-linking agent to the total mass of the embedded layer (II) is preferably 0.1 to 5.0% by mass, preferably 0.2 to 4.5. It is more preferably mass%, and even more preferably 0.3 to 4.0 mass%.
When the embedded layer (II) contains a photopolymerization initiator, the content ratio of the photopolymerization initiator with respect to the total mass of the embedded layer (II) is preferably 0.1 to 10.0% by mass, preferably 0.2. It is more preferably about 9.0% by mass, and even more preferably 0.3 to 8.0% by mass. The photopolymerization initiator preferably contains 2-hydroxy-2-methyl-1-phenyl-propane-1-one.
When the embedded layer (II) contains a thiol compound, the content ratio of the thiol compound with respect to the total mass of the embedded layer (II) is preferably 0.5 to 10.0% by mass, and 0.6 to 9.0. It is more preferably mass%, and even more preferably 0.7 to 8.0 mass%. The thiol compound preferably contains pentaerythritol tetrakis (3-mercaptobutyrate).
<<埋め込み層形成用組成物の製造方法>>
 埋め込み層形成用組成物(I)、(II)等の埋め込み層形成用組成物は、これを構成するための各成分を配合することで得られる。
 各成分の配合時における添加順序は特に限定されず、2種以上の成分を同時に添加してもよい。
 溶媒を用いる場合には、溶媒を溶媒以外のいずれかの配合成分と混合してこの配合成分を予め希釈しておくことで用いてもよいし、溶媒以外のいずれかの配合成分を予め希釈しておくことなく、溶媒をこれら配合成分と混合することで用いてもよい。
 配合時に各成分を混合する方法は特に限定されず、撹拌子又は撹拌翼等を回転させて混合する方法;ミキサーを用いて混合する方法;超音波を加えて混合する方法等、公知の方法から適宜選択すればよい。
 各成分の添加及び混合時の温度並びに時間は、各配合成分が劣化しない限り特に限定されず、適宜調節すればよいが、温度は15~30℃であることが好ましい。
<< Manufacturing method of composition for forming embedded layer >>
The composition for forming an embedded layer such as the composition for forming an embedded layer (I) and (II) can be obtained by blending each component for forming the composition.
The order of addition of each component at the time of blending is not particularly limited, and two or more kinds of components may be added at the same time.
When a solvent is used, it may be used by mixing the solvent with any compounding component other than the solvent and diluting the compounding component in advance, or diluting any of the compounding components other than the solvent in advance. You may use it by mixing the solvent with these compounding components without leaving.
The method of mixing each component at the time of blending is not particularly limited, and from known methods such as a method of rotating a stirrer or a stirring blade to mix; a method of mixing using a mixer; a method of adding ultrasonic waves to mix. It may be selected as appropriate.
The temperature and time at the time of adding and mixing each component are not particularly limited as long as each compounding component does not deteriorate, and may be appropriately adjusted, but the temperature is preferably 15 to 30 ° C.
◎基材
 基材は、シート状又はフィルム状であり、その構成材料としては、例えば、各種樹脂が挙げられる。
 前記樹脂としては、例えば、低密度ポリエチレン(LDPEともいう。)、直鎖低密度ポリエチレン(LLDPEともいう。)、高密度ポリエチレン(HDPEともいう。)等のポリエチレン;ポリプロピレン、ポリブテン、ポリブタジエン、ポリメチルペンテン、ノルボルネン樹脂等のポリエチレン以外のポリオレフィン;エチレン-酢酸ビニル共重合体(EVAともいう。)、エチレン-(メタ)アクリル酸共重合体、エチレン-(メタ)アクリル酸エステル共重合体、エチレン-ノルボルネン共重合体等のエチレン系共重合体(すなわち、モノマーとしてエチレンを用いて得られた共重合体);ポリ塩化ビニル、塩化ビニル共重合体等の塩化ビニル系樹脂(すなわち、モノマーとして塩化ビニルを用いて得られた樹脂);ポリスチレン;ポリシクロオレフィン;ポリエチレンテレフタレート(PETともいう。)、ポリエチレンナフタレート、ポリブチレンテレフタレート、ポリエチレンイソフタレート、ポリエチレン-2,6-ナフタレンジカルボキシレート、すべての構成単位が芳香族環式基を有する全芳香族ポリエステル等のポリエステル;2種以上の前記ポリエステルの共重合体;ポリ(メタ)アクリル酸エステル;ポリウレタン;ポリウレタンアクリレート;ポリイミド;ポリアミド;ポリカーボネート;フッ素樹脂;ポリアセタール;変性ポリフェニレンオキシド;ポリフェニレンスルフィド;ポリスルホン;ポリエーテルケトン等が挙げられる。
 また、前記樹脂としては、例えば、前記ポリエステルとそれ以外の樹脂との混合物等のポリマーアロイも挙げられる。前記ポリエステルとそれ以外の樹脂とのポリマーアロイは、ポリエステル以外の樹脂の量が比較的少量であるものが好ましい。
 また、前記樹脂としては、例えば、ここまでに例示した前記樹脂の1種又は2種以上が架橋した架橋樹脂;ここまでに例示した前記樹脂の1種又は2種以上を用いたアイオノマー等の変性樹脂も挙げられる。
◎ Base material The base material is in the form of a sheet or a film, and examples of the constituent materials thereof include various resins.
Examples of the resin include polyethylene such as low density polyethylene (also referred to as LDPE), linear low density polyethylene (also referred to as LLDPE), and high density polyethylene (also referred to as HDPE); polypropylene, polybutene, polybutadiene, and polymethyl. Polyethylene other than polyethylene such as penten and norbornene resin; ethylene-vinyl acetate copolymer (also referred to as EVA), ethylene- (meth) acrylic acid copolymer, ethylene- (meth) acrylic acid ester copolymer, ethylene- Ethylene-based copolymers such as norbornene copolymers (ie, copolymers obtained using ethylene as the monomer); vinyl chloride-based resins such as polyvinyl chloride and vinyl chloride copolymers (ie, vinyl chloride as the monomer) Resin obtained using); Polyethylene; Polycycloolefin; Polyethylene terephthalate (also referred to as PET), polyethylene naphthalate, polybutylene terephthalate, polyethylene isophthalate, polyethylene-2,6-naphthalenedicarboxylate, all constituents. Polyethylene such as total aromatic polyester having an aromatic cyclic group as a unit; a copolymer of two or more kinds of the polyester; poly (meth) acrylic acid ester; polyurethane; polyurethane acrylate; polyimide; polyamide; polycarbonate; fluororesin; Examples thereof include polyacetal; modified polyphenylene oxide; polyphenylene sulfide; polysulfone; polyether ketone and the like.
Further, examples of the resin include polymer alloys such as a mixture of the polyester and other resins. The polymer alloy of the polyester and the resin other than the polyester preferably has a relatively small amount of the resin other than the polyester.
Further, as the resin, for example, a crosslinked resin in which one or more of the resins exemplified above are crosslinked; modification of an ionomer or the like using one or more of the resins exemplified so far. Resin is also mentioned.
 基材を構成する樹脂は、1種のみでもよいし、2種以上でもよく、2種以上である場合、それらの組み合わせ及び比率は任意に選択できる。 The resin constituting the base material may be only one type, may be two or more types, and when there are two or more types, the combination and ratio thereof can be arbitrarily selected.
 基材は1層(単層)のみでもよいし、2層以上の複数層でもよく、複数層である場合、これら複数層は、互いに同一でも異なっていてもよく、これら複数層の組み合わせは特に限定されない。 The base material may be only one layer (single layer), may be a plurality of layers of two or more layers, and when there are a plurality of layers, the plurality of layers may be the same or different from each other, and the combination of these multiple layers is particularly suitable. Not limited.
 基材の厚さは、5~1000μmであることが好ましく、10~500μmであることがより好ましく、15~300μmであることがさらに好ましく、20~150μmであることが特に好ましい。
 ここで、「基材の厚さ」とは、基材全体の厚さを意味し、例えば、複数層からなる基材の厚さとは、基材を構成するすべての層の合計の厚さを意味する。
The thickness of the base material is preferably 5 to 1000 μm, more preferably 10 to 500 μm, further preferably 15 to 300 μm, and particularly preferably 20 to 150 μm.
Here, the "thickness of the base material" means the thickness of the entire base material, and for example, the thickness of the base material composed of a plurality of layers means the total thickness of all the layers constituting the base material. means.
 基材は、厚さの精度が高いもの、すなわち、部位によらず厚さのばらつきが抑制されたものが好ましい。上述の構成材料のうち、このような厚さの精度が高い基材を構成するのに使用可能な材料としては、例えば、ポリエチレン、ポリエチレン以外のポリオレフィン、ポリエチレンテレフタレート、エチレン-酢酸ビニル共重合体(EVA)等が挙げられる。 It is preferable that the base material has a high thickness accuracy, that is, a base material in which the variation in thickness is suppressed regardless of the part. Among the above-mentioned constituent materials, as a material that can be used to construct a base material having such a high accuracy of thickness, for example, polyethylene, a polyolefin other than polyethylene, polyethylene terephthalate, and an ethylene-vinyl acetate copolymer ( EVA) and the like.
 基材は、前記樹脂等の主たる構成材料以外に、充填材、着色剤、帯電防止剤、酸化防止剤、有機滑剤、触媒、軟化剤(可塑剤)等の公知の各種添加剤を含有していてもよい。 In addition to the main constituent materials such as the resin, the base material contains various known additives such as fillers, colorants, antistatic agents, antioxidants, organic lubricants, catalysts, and softeners (plasticizers). You may.
 基材のヤング率は、100~2000MPaであることが好ましく、150~1500MPaであることがより好ましく、200~1000MPaであることがさらに好ましい。基材のヤング率が前記範囲の下限値以上であると、電磁波シールド膜が形成される際に寸法安定性が確保できる。基材のヤング率が前記範囲の上限値以下であると、端子保護用テープの延伸性が向上する。
 基材のヤング率は、後述の実施例に記載の方法により測定することができる。
The Young's modulus of the base material is preferably 100 to 2000 MPa, more preferably 150 to 1500 MPa, and even more preferably 200 to 1000 MPa. When the Young's modulus of the base material is at least the lower limit of the above range, dimensional stability can be ensured when the electromagnetic wave shielding film is formed. When the Young's modulus of the base material is not more than the upper limit of the above range, the stretchability of the terminal protection tape is improved.
The Young's modulus of the base material can be measured by the method described in Examples described later.
 基材の破断伸度は、50~2000%であることが好ましく、70~1600%であることがより好ましく、90~1200%であることがさらに好ましい。基材の破断伸度が前記範囲内であると、後述の<端子保護用テープの延伸方法1>に記載の把持部材などを用いて端子保護用テープの外周部を掴んで引き延ばす方法(2軸延伸)と<端子保護用テープの延伸方法2>に記載のリングフレームを使用する方法にて延伸しやすくなる。
 基材の破断伸度は、後述の実施例に記載の方法により測定することができる。
The elongation at break of the base material is preferably 50 to 2000%, more preferably 70 to 1600%, and even more preferably 90 to 1200%. When the breaking elongation of the base material is within the above range, a method of grasping and stretching the outer peripheral portion of the terminal protection tape by using the gripping member or the like described in <Stretching method 1 of the terminal protection tape> described later (2 axes). Stretching) and the method using the ring frame described in <Stretching method 2 of terminal protection tape> facilitates stretching.
The elongation at break of the base material can be measured by the method described in Examples described later.
 基材の破断応力は、10~300MPaであることが好ましく、20~250MPaであることがより好ましく、30~200MPaであることがさらに好ましい。基材の破断応力が前記範囲内であると、後述の<端子保護用テープの延伸方法1>に記載の把持部材などを用いて端子保護用テープの外周部を掴んで引き延ばす方法(2軸延伸)と<端子保護用テープの延伸方法2>に記載のリングフレームを使用する方法にて延伸可能となる。
 基材の破断応力は、後述の実施例に記載の方法により測定することができる。
The breaking stress of the base material is preferably 10 to 300 MPa, more preferably 20 to 250 MPa, and even more preferably 30 to 200 MPa. When the breaking stress of the base material is within the above range, a method of grasping and stretching the outer peripheral portion of the terminal protection tape by using the gripping member or the like described in <Stretching method 1 of the terminal protection tape> described later (biaxial stretching). ) And <Stretching method of terminal protection tape 2> can be stretched by the method using the ring frame.
The breaking stress of the base material can be measured by the method described in Examples described later.
 基材は、透明であってもよいし、不透明であってもよく、目的に応じて着色されていてもよいし、他の層が蒸着されていてもよい。
 前記粘弾性層がエネルギー線硬化性である場合、基材はエネルギー線を透過させるものが好ましい。
The base material may be transparent, opaque, colored depending on the purpose, or another layer may be vapor-deposited.
When the viscoelastic layer is energy ray-curable, the base material is preferably one that allows energy rays to pass through.
 基材は、公知の方法で製造できる。例えば、樹脂を含有する基材は、前記樹脂を含有する樹脂組成物を成形することで製造できる。 The base material can be produced by a known method. For example, a base material containing a resin can be produced by molding a resin composition containing the resin.
◎剥離フィルム
 前記剥離フィルムは、本分野で公知のものでよい。
 好ましい前記剥離フィルムとしては、例えば、ポリエチレンテレフタレート等の樹脂製フィルムの少なくとも一方の表面が、シリコーン処理等によって剥離処理されたもの;フィルムの少なくとも一方の表面が、ポリオレフィンで構成された剥離面となっているもの等が挙げられる。
 剥離フィルムの厚さは、基材の厚さと同様であることが好ましい。
◎ Release film The release film may be one known in the art.
The preferred release film is, for example, one in which at least one surface of a resin film such as polyethylene terephthalate is peeled by a silicone treatment or the like; at least one surface of the film is a release surface made of polyolefin. And so on.
The thickness of the release film is preferably the same as the thickness of the base material.
◎第2粘着剤層
 第2粘着剤層(すなわち、貼合粘着剤層)は、本実施形態の端子保護用テープを支持体に貼合するための粘着剤層である。
 前記第2粘着剤層は、当該分野で公知のものでよく、上述の第1粘着剤層で説明したものから、支持体に合わせて適宜選択することができる。
 第2粘着剤層を形成するための第2粘着剤組成物は、前記第1粘着剤組成物と同様であり、第2粘着剤組成物の製造方法も、前記第1粘着剤組成物の製造方法と同様である。
(4) Second pressure-sensitive adhesive layer The second pressure-sensitive adhesive layer (that is, the bonded pressure-sensitive adhesive layer) is a pressure-sensitive adhesive layer for bonding the terminal protection tape of the present embodiment to the support.
The second pressure-sensitive adhesive layer may be one known in the art, and can be appropriately selected from those described in the above-mentioned first pressure-sensitive adhesive layer according to the support.
The second pressure-sensitive adhesive composition for forming the second pressure-sensitive adhesive layer is the same as the first pressure-sensitive adhesive composition, and the method for producing the second pressure-sensitive adhesive composition is also the production of the first pressure-sensitive adhesive composition. Similar to the method.
◇端子保護用テープの製造方法
 前記端子保護用テープは、上述の各層を対応する位置関係となるように順次積層することで製造できる。各層の形成方法は、先に説明したとおりである。
-Method of manufacturing the terminal protection tape The terminal protection tape can be manufactured by sequentially laminating the above-mentioned layers so as to have a corresponding positional relationship. The method of forming each layer is as described above.
 例えば、剥離フィルムの剥離処理面上に、上述の埋め込み層形成用組成物を塗工し、必要に応じて乾燥させることで、埋め込み層を積層する。別の剥離フィルムの剥離処理面上に、上述の第1粘着剤組成物を塗工し、必要に応じて乾燥させることで、第1粘着剤層を積層する。剥離フィルム上の埋め込み層を、別の剥離フィルム上の第1粘着剤層と貼り合わせることで、剥離フィルム、埋め込み層、第1粘着剤層及び剥離フィルムがこの順に積層された端子保護用テープを得る。剥離フィルムは、端子保護用テープの使用時に取り除けばよい。 For example, the embedded layer is laminated by applying the above-mentioned composition for forming an embedded layer on the peeled surface of the release film and drying it if necessary. The first pressure-sensitive adhesive layer is laminated by applying the above-mentioned first pressure-sensitive adhesive composition on the peel-processed surface of another release film and drying it if necessary. By laminating the embedding layer on the release film with the first adhesive layer on another release film, a terminal protection tape in which the release film, the embedding layer, the first adhesive layer and the release film are laminated in this order can be obtained. obtain. The release film may be removed when the terminal protection tape is used.
 また、基材上に埋め込み層及び第1粘着剤層がこの順に、これらの厚さ方向において積層された端子保護用テープは、以下に示す方法で製造できる。
 例えば、上述の、剥離フィルム、埋め込み層、第1粘着剤層及び剥離フィルムがこの順に積層された端子保護用テープの埋め込み層の側の剥離フィルムを剥離し、これを基材と貼り合わせることで、基材上に埋め込み層、第1粘着剤層及び剥離フィルムがこの順に積層された端子保護用テープを得ることができる。剥離フィルムは、端子保護用テープの使用時に取り除けばよい。
Further, the terminal protection tape in which the embedding layer and the first pressure-sensitive adhesive layer are laminated on the base material in this order in the thickness direction can be produced by the method shown below.
For example, by peeling off the release film on the side of the embedding layer of the terminal protection tape in which the release film, the embedding layer, the first adhesive layer, and the release film are laminated in this order, and sticking this to the base material. , A terminal protection tape in which an embedded layer, a first pressure-sensitive adhesive layer, and a release film are laminated in this order can be obtained. The release film may be removed when the terminal protection tape is used.
<電磁波シールド膜付き半導体装置の製造方法1>
 本発明の一の実施形態の電磁波シールド膜付き半導体装置の製造方法は、粘弾性層を有する端子保護用テープの前記粘弾性層に、端子付き半導体装置の端子を埋設させる工程と、前記端子保護用テープの粘弾性層に埋設されていない前記端子付き半導体装置の露出面に電磁波シールド膜を形成する工程と、前記端子保護用テープを延伸することにより、電磁波シールド膜が形成された前記端子付き半導体装置を前記端子保護用テープから剥離する工程と、を含む。以下、図5を参照して本実施形態の電磁波シールド膜付き半導体装置の製造方法を説明する。
<Manufacturing method 1 of semiconductor device with electromagnetic wave shield film>
The method for manufacturing a semiconductor device with an electromagnetic wave shielding film according to an embodiment of the present invention includes a step of embedding the terminals of the semiconductor device with terminals in the viscoelastic layer of the terminal protection tape having a viscoelastic layer, and the terminal protection. The step of forming an electromagnetic wave shielding film on the exposed surface of the terminal-attached semiconductor device that is not embedded in the viscoelastic layer of the tape for terminal, and the terminal attachment in which the electromagnetic wave shielding film is formed by stretching the terminal protection tape. The step of peeling the semiconductor device from the terminal protection tape is included. Hereinafter, a method of manufacturing the semiconductor device with an electromagnetic wave shielding film of the present embodiment will be described with reference to FIG.
 図5は、本実施形態の電磁波シールド膜付き半導体装置の製造方法であって、粘着剤層14と、埋め込み層13と、基材11と、をこの順で有する端子保護用テープ3を、図4に示すように支持体30に固定して、電磁波シールド膜付き半導体装置の製造方法を模式的に示す断面図である。 FIG. 5 shows a method for manufacturing a semiconductor device with an electromagnetic wave shielding film according to the present embodiment, in which a terminal protection tape 3 having an adhesive layer 14, an embedded layer 13, and a base material 11 in this order is shown. It is sectional drawing which shows typically the manufacturing method of the semiconductor device with an electromagnetic wave shielding film fixed to the support 30 as shown in 4.
 まず、図5(a)、(b)に示す様に、端子保護用テープの粘弾性層12に、端子付き半導体装置65を、端子91の側、すなわち回路基板63の端子形成面63aを下にして押し付けて、粘弾性層12に端子91を埋設させる。
 このとき、端子付き半導体装置65の端子91に粘弾性層12を接触させて、端子保護用テープに端子付き半導体装置65を押し付ける。これにより、粘弾性層12の粘着剤層14の側の最表面を、端子91の表面及び回路基板63の端子形成面63aに、順次圧着させる。このとき、粘弾性層12を加熱することで、粘弾性層12は軟化し、端子91を覆うようにして端子91間に広がり、端子形成面63aに密着するとともに、端子91の表面、特に端子形成面63aの近傍部位の表面を覆って、端子91を埋設させる。
First, as shown in FIGS. 5A and 5B, the semiconductor device 65 with terminals is placed on the viscoelastic layer 12 of the terminal protection tape, and the terminal 91 side, that is, the terminal forming surface 63a of the circuit board 63 is below. The terminal 91 is embedded in the viscoelastic layer 12 by pressing the terminal 91.
At this time, the viscoelastic layer 12 is brought into contact with the terminal 91 of the terminal-equipped semiconductor device 65, and the terminal-equipped semiconductor device 65 is pressed against the terminal protection tape. As a result, the outermost surface of the viscoelastic layer 12 on the side of the adhesive layer 14 is sequentially crimped to the surface of the terminal 91 and the terminal forming surface 63a of the circuit board 63. At this time, by heating the viscoelastic layer 12, the viscoelastic layer 12 is softened, spreads between the terminals 91 so as to cover the terminals 91, adheres to the terminal forming surface 63a, and is in close contact with the surface of the terminals 91, particularly the terminals. The terminal 91 is embedded by covering the surface of the portion near the forming surface 63a.
 端子保護用テープに端子付き半導体装置65を圧着させる方法としては、各種シートを対象物に圧着させて貼付する公知の方法を適用でき、例えば、ラミネートローラーや真空ラミネーターを用いる方法等が挙げられる。 As a method of crimping the semiconductor device 65 with terminals to the terminal protection tape, a known method of crimping and attaching various sheets to an object can be applied, and examples thereof include a method using a laminate roller and a vacuum laminator.
 端子付き半導体装置65を、端子保護用テープに圧着させるときの圧力は、特に限定されないが、0.1~1.5MPaであることが好ましく、0.3~1.3MPaであることがより好ましい。加熱温度は、30~70℃が好ましく、35~65℃がより好ましく、40~60℃が特に好ましい。また、粘弾性層12の第1粘着剤層14を端子形成面63aに貼り合わせることが好ましい。 The pressure at which the semiconductor device 65 with terminals is crimped onto the terminal protection tape is not particularly limited, but is preferably 0.1 to 1.5 MPa, more preferably 0.3 to 1.3 MPa. .. The heating temperature is preferably 30 to 70 ° C, more preferably 35 to 65 ° C, and particularly preferably 40 to 60 ° C. Further, it is preferable to attach the first adhesive layer 14 of the viscoelastic layer 12 to the terminal forming surface 63a.
 端子保護用テープの粘弾性層12に、端子付き半導体装置の端子を埋設させる工程における、埋め込み層13の弾性率は0.05~20MPaであることが好ましく、0.07~18MPaであることがより好ましく、0.09~16MPaであることがさらに好ましい。弾性率が前記範囲内であると、端子付き半導体装置を端子保護用テープに埋設しやすくなる。 In the step of embedding the terminals of the semiconductor device with terminals in the viscoelastic layer 12 of the terminal protection tape, the elastic modulus of the embedded layer 13 is preferably 0.05 to 20 MPa, preferably 0.07 to 18 MPa. More preferably, it is 0.09 to 16 MPa. When the elastic modulus is within the above range, it becomes easy to embed the semiconductor device with terminals in the terminal protection tape.
 端子保護用テープの粘弾性層12に埋設されていない端子付き半導体装置65の露出面に導電性樹脂101を塗布し(図5(c))、更に、熱硬化させることで、導電材料からなる電磁波シールド膜10を形成する(図5(d))。導電材料で被覆して電磁波シールド膜10を形成する方法としては、スパッタリング、イオンプレーティング、スプレーコート等の方法を用いることもできる。 A conductive resin 101 is applied to the exposed surface of the semiconductor device 65 with terminals that is not embedded in the viscoelastic layer 12 of the terminal protection tape (FIG. 5 (c)), and further thermoset to form a conductive material. The electromagnetic wave shield film 10 is formed (FIG. 5 (d)). As a method of forming the electromagnetic wave shielding film 10 by coating with a conductive material, a method such as sputtering, ion plating, or spray coating can also be used.
 端子付き半導体装置65を埋設させる工程後で、かつ電磁波シールド膜を形成する工程前における、端子付き半導体装置65に対する前記端子保護用テープ3の粘着力は1.0~6.5N/25mmであることが好ましく、1.1~6.0N/25mmであることがより好ましく、1.2~5.5N/25mmであることがさらに好ましい。
 粘着力が前記範囲内であると、電磁波シールド膜が形成された端子付き半導体装置を端子保護用テープから剥離する工程における剥離性が向上する。前記粘着力の測定方法は、実施例において詳述する。
The adhesive strength of the terminal protection tape 3 to the terminal-equipped semiconductor device 65 after the step of embedding the terminal-equipped semiconductor device 65 and before the step of forming the electromagnetic wave shield film is 1.0 to 6.5 N / 25 mm. It is preferably 1.1 to 6.0 N / 25 mm, more preferably 1.2 to 5.5 N / 25 mm, and even more preferably 1.2 to 5.5 N / 25 mm.
When the adhesive strength is within the above range, the peelability in the step of peeling the terminal-equipped semiconductor device on which the electromagnetic wave shielding film is formed from the terminal protection tape is improved. The method for measuring the adhesive strength will be described in detail in Examples.
 端子保護用テープ3を延伸することにより、電磁波シールド膜が形成された端子付き半導体装置と、粘弾性層12との接着面積を減少させ、電磁波シールド膜が形成された端子付き半導体装置を端子保護用テープ3から剥離する(図5(e))。剥離する際には、端子保護用テープ3の基材11側から、埋設されている端子をピンなどで上方に押し上げるピッキングを行うことが好ましい。
 ピッキングにおける押し上げの高さu1は、端子91の高さh1よりも高いことが好ましく、2.0≦u1/h1≦10であることが好ましい。
 なお、本明細書において、「端子の高さ」とは、端子のうち、端子形成面から最も高い位置に存在する部位での高さを意味する。
By stretching the terminal protection tape 3, the bonding area between the terminal-equipped semiconductor device on which the electromagnetic wave shield film is formed and the viscoelastic layer 12 is reduced, and the terminal-equipped semiconductor device on which the electromagnetic wave shield film is formed is terminal-protected. It is peeled off from the tape 3 (FIG. 5 (e)). When peeling, it is preferable to perform picking by pushing up the embedded terminal upward with a pin or the like from the base material 11 side of the terminal protection tape 3.
The push-up height u1 in picking is preferably higher than the height h1 of the terminal 91, and is preferably 2.0 ≦ u1 / h1 ≦ 10.
In the present specification, the "terminal height" means the height of the terminal at the highest position from the terminal forming surface.
 上記端子保護用テープの延伸における延伸量は、1.0mm以上であることが好ましく、2.0mm以上であることがより好ましく、3.0mm以上であることがさらに好ましい。延伸量が前記下限値以上であると、電磁波シールド膜が形成された端子付き半導体装置と、粘弾性層12との接着面積が十分に小さくなり、電磁波シールド膜が形成された端子付き半導体装置が端子保護用テープ3から剥離しやすくなる。延伸量の上限値は、本発明の効果を示す限り、特に限定されないが、例えば、20.0mm以下であってもよい。延伸量は、例えば、1.0mm以上19.0mm以下であることが好ましく、2.0mm以上18.0mm以下であることがより好ましく、3.0mm以上17.0mm以下であることがさらに好ましい。
 本明細書において「延伸量」とは、「延伸後の延伸方向の端子保護用テープの長さ」-「延伸前の延伸方向の端子保護用テープの長さ」を意味する。複数の方向から端子保護用テープを延伸するときには、最も延伸量の多い方向における延伸量を採用することができる。
The stretched amount of the terminal protection tape in stretching is preferably 1.0 mm or more, more preferably 2.0 mm or more, and further preferably 3.0 mm or more. When the stretching amount is equal to or greater than the lower limit, the bonding area between the terminal-equipped semiconductor device on which the electromagnetic wave shield film is formed and the viscoelastic layer 12 becomes sufficiently small, and the terminal-equipped semiconductor device on which the electromagnetic wave shield film is formed becomes available. It becomes easy to peel off from the terminal protection tape 3. The upper limit of the stretching amount is not particularly limited as long as it shows the effect of the present invention, but may be, for example, 20.0 mm or less. The stretching amount is, for example, preferably 1.0 mm or more and 19.0 mm or less, more preferably 2.0 mm or more and 18.0 mm or less, and further preferably 3.0 mm or more and 17.0 mm or less.
In the present specification, the "stretched amount" means "the length of the terminal protection tape in the stretching direction after stretching"-"the length of the terminal protecting tape in the stretching direction before stretching". When the terminal protection tape is stretched from a plurality of directions, the stretching amount in the direction having the largest stretching amount can be adopted.
 このようにして、粘弾性層12を有する端子保護用テープ3から、電磁波シールド膜付き半導体装置66をピックアップすることによって、電磁波シールド膜10で被覆された端子付き半導体装置65を取り出すことができる(図5(f))。 In this way, by picking up the semiconductor device 66 with the electromagnetic wave shield film from the terminal protection tape 3 having the viscoelastic layer 12, the semiconductor device 65 with terminals coated with the electromagnetic wave shield film 10 can be taken out ( FIG. 5 (f).
 埋め込み層13及び粘着剤層14のいずれか一方、又は両方がエネルギー線硬化性である場合、端子保護用テープの粘弾性層12に、端子付き半導体装置の端子を埋設させる工程の前、又は端子保護用テープの粘弾性層12に、端子付き半導体装置の端子を埋設させる工程の後でかつ、端子保護用テープの粘弾性層12に埋設されていない端子付き半導体装置の露出面に電磁波シールド膜を形成する工程の前に、硬化を行うことが好ましい。 When either one or both of the embedded layer 13 and the adhesive layer 14 are energy ray-curable, before the step of embedding the terminals of the semiconductor device with terminals in the viscoelastic layer 12 of the terminal protection tape, or the terminals. An electromagnetic wave shielding film on the exposed surface of the terminal-equipped semiconductor device that is not embedded in the viscoelastic layer 12 of the terminal protection tape after the step of embedding the terminals of the terminal-equipped semiconductor device in the viscoelastic layer 12 of the protective tape. It is preferable to perform curing before the step of forming.
 図5に示す電磁波シールド膜付き半導体装置の製造方法で、電磁波シールドの対象となる端子付き半導体装置65は、個別に製造された端子付き半導体装置65であってもよく、ダイシング法によって個片化された端子付き半導体装置65であってもよい。 In the method for manufacturing a semiconductor device with an electromagnetic wave shield film shown in FIG. 5, the semiconductor device 65 with terminals to be shielded by electromagnetic waves may be a semiconductor device 65 with terminals manufactured individually, and is individualized by a dicing method. The semiconductor device 65 with terminals may be used.
 図5に示す電磁波シールド膜付き半導体装置の製造方法では、個片化され個々の電子部品61、62が封止樹脂64で封止された端子付き半導体装置65を、端子保護用テープ3を用いて、電磁波シールドする方法を示したが、次の様に、個片化する前の端子付き半導体装置集合体6から、端子保護用テープ2を用いて、端子付き半導体装置65を電磁波シールドすることもできる。 In the method for manufacturing a semiconductor device with an electromagnetic wave shielding film shown in FIG. 5, a semiconductor device 65 with terminals, which is separated into individual pieces and whose individual electronic components 61 and 62 are sealed with a sealing resin 64, is used with a terminal protection tape 3. The method of electromagnetic wave shielding has been shown. However, as follows, the terminal-equipped semiconductor device 65 is electromagnetically shielded from the terminal-equipped semiconductor device assembly 6 before being separated by using the terminal protection tape 2. You can also.
<電磁波シールド膜付き半導体装置の製造方法2>
 本発明の別の実施形態の電磁波シールド膜付き半導体装置の製造方法は、粘弾性層を有する端子保護用テープの前記粘弾性層に、端子付き半導体装置集合体の端子を埋設させる工程と、前記端子付き半導体装置集合体をダイシングして、前記端子付き半導体装置集合体を、前記端子保護用テープの粘弾性層に端子が埋設された端子付き半導体装置とする工程と、前記端子保護用テープの粘弾性層に埋設されていない前記端子付き半導体装置の露出面に電磁波シールド膜を形成する工程と、前記端子保護用テープを延伸することにより、電磁波シールド膜が形成された前記端子付き半導体装置を前記端子保護用テープから剥離する工程と、を含む。以下、図6を参照して本実施形態の電磁波シールド膜付き半導体装置の製造方法を説明する。
<Manufacturing method 2 of semiconductor device with electromagnetic wave shield film>
Another method of manufacturing a semiconductor device with an electromagnetic wave shielding film according to another embodiment of the present invention includes a step of embedding terminals of a semiconductor device assembly with terminals in the viscoelastic layer of a terminal protection tape having a viscoelastic layer, and the above-mentioned. The process of dicing the terminal-equipped semiconductor device assembly to make the terminal-equipped semiconductor device assembly into a terminal-equipped semiconductor device in which terminals are embedded in the viscoelastic layer of the terminal protection tape, and the terminal protection tape The step of forming an electromagnetic wave shielding film on the exposed surface of the terminal-equipped semiconductor device not embedded in the viscoelastic layer, and the terminal-attached semiconductor device on which the electromagnetic wave shielding film is formed by stretching the terminal protection tape. The step of peeling from the terminal protection tape is included. Hereinafter, a method of manufacturing the semiconductor device with an electromagnetic wave shielding film of the present embodiment will be described with reference to FIG.
 図6は、本実施形態の電磁波シールド膜付き半導体装置の製造方法であって、粘着剤層14と、埋め込み層13と、基材11と、をこの順で有する端子保護用テープ3を、図4に示すように支持体30に固定して、電磁波シールド膜付き半導体装置の製造方法を模式的に示す断面図である。 FIG. 6 shows a method for manufacturing a semiconductor device with an electromagnetic wave shielding film according to the present embodiment, in which a terminal protection tape 3 having an adhesive layer 14, an embedded layer 13, and a base material 11 in this order is shown. It is sectional drawing which shows typically the manufacturing method of the semiconductor device with an electromagnetic wave shielding film fixed to the support 30 as shown in 4.
 まず、図6(a)、(b)に示す様に、端子保護用テープの粘弾性層12に、回路基板63によって連結された端子付き半導体装置集合体6を、端子91の側、すなわち回路基板63の端子形成面63aを下にして押し付けて、前記図5(a)、(b)のときと同様に、粘弾性層12に端子91を埋設させる。 First, as shown in FIGS. 6A and 6B, the semiconductor device assembly 6 with terminals connected to the viscoelastic layer 12 of the terminal protection tape by the circuit board 63 is attached to the terminal 91 side, that is, the circuit. The terminal 91 is embedded in the viscoelastic layer 12 by pressing the substrate 63 with the terminal forming surface 63a facing down, as in the cases of FIGS. 5A and 5B.
 このとき、端子付き半導体装置集合体6に上側から圧力をかけながら、前記図5(a)、(b)のときと同様に、端子保護用テープの粘弾性層12に、端子91を埋設させる。 At this time, while applying pressure to the semiconductor device assembly 6 with terminals from above, the terminals 91 are embedded in the viscoelastic layer 12 of the terminal protection tape as in the cases of FIGS. 5A and 5B. ..
 また、粘弾性層12を加熱しながら貼り合わせることで、粘弾性層12を軟化させ、粘弾性層12を回路基板63の端子形成面63aに密着させることができる。端子付き半導体装置集合体6を、端子保護用テープに圧着させるときの圧力は、特に限定されないが、0.1~1.5MPaであることが好ましく、0.3~1.3MPaであることがより好ましい。加熱温度は、30~70℃が好ましく、35~65℃がより好ましく、40~60℃が特に好ましい。また、粘弾性層12の第1粘着剤層14を端子形成面63aに貼り合わせることが好ましい。 Further, by laminating the viscoelastic layer 12 while heating, the viscoelastic layer 12 can be softened and the viscoelastic layer 12 can be brought into close contact with the terminal forming surface 63a of the circuit board 63. The pressure at which the semiconductor device assembly 6 with terminals is crimped onto the terminal protection tape is not particularly limited, but is preferably 0.1 to 1.5 MPa, preferably 0.3 to 1.3 MPa. More preferred. The heating temperature is preferably 30 to 70 ° C, more preferably 35 to 65 ° C, and particularly preferably 40 to 60 ° C. Further, it is preferable to attach the first adhesive layer 14 of the viscoelastic layer 12 to the terminal forming surface 63a.
 次いで、端子付き半導体装置集合体6をダイシングして、端子付き半導体装置65とする(図6(c))。電磁波シールド膜を形成する工程に用いられる本発明の端子保護用テープは、端子付き半導体装置集合体6のダイシングテープを兼ねることになる。そして、図5に示す電磁波シールド膜付き半導体装置の製造方法において、電磁波シールドの対象となる端子付き半導体装置65が、ダイシング法によって個片化された端子付き半導体装置65であるときは、ダイシングテープ上の端子付き半導体装置をピックアップして、端子保護用テープに貼り換える作業(図5(a))が必要になるが、図6に示す電磁波シールド膜付き半導体装置の製造方法では、ダイシングテープ上の端子付き半導体装置65を端子保護用テープに貼り換える作業を省略することができる。 Next, the semiconductor device assembly 6 with terminals is diced to obtain the semiconductor device 65 with terminals (FIG. 6 (c)). The terminal protection tape of the present invention used in the step of forming the electromagnetic wave shield film also serves as a dicing tape for the terminal-equipped semiconductor device assembly 6. Then, in the method for manufacturing the semiconductor device with an electromagnetic wave shielding film shown in FIG. 5, when the semiconductor device 65 with a terminal to be the target of the electromagnetic wave shielding is the semiconductor device 65 with a terminal separated by the dicing method, the dicing tape is used. It is necessary to pick up the above semiconductor device with terminals and replace it with the terminal protection tape (FIG. 5 (a)). However, in the method of manufacturing the semiconductor device with electromagnetic wave shielding film shown in FIG. 6, the dicing tape is used. The work of replacing the terminal-equipped semiconductor device 65 with the terminal protection tape can be omitted.
 端子保護用テープの粘弾性層12に埋設されていない端子付き半導体装置65の露出面に導電性樹脂101を塗布する(図6(d))。このとき、端子付き半導体装置集合体6の各端子付き半導体装置65の境界部分において導電性樹脂101の分離が不充分な場合には、エキスパンド装置等を用いて端子保護用テープを延伸してもよい。個片化された端子付き半導体装置65のそれぞれの側面に導電性樹脂101が塗布された状態で、個々の端子付き半導体装置65を個片化することができる。更に、個片化された端子付き半導体装置65の天面及び側面に塗布された導電性樹脂101を加熱し硬化させて、端子保護用テープの粘弾性層12に埋設されていない端子付き半導体装置65の露出面に、導電材料からなる電磁波シールド膜10を形成させる(図6(e))。端子付き半導体装置65(図6(c))に直接導電材料をスパッタリングして、電磁波シールド膜10を形成させてもよい(図6(e))。 The conductive resin 101 is applied to the exposed surface of the semiconductor device 65 with terminals that is not embedded in the viscoelastic layer 12 of the terminal protection tape (FIG. 6 (d)). At this time, if the conductive resin 101 is not sufficiently separated at the boundary portion of each terminal-equipped semiconductor device 65 of the terminal-equipped semiconductor device assembly 6, the terminal protection tape may be stretched using an expanding device or the like. Good. Individual terminal-equipped semiconductor devices 65 can be individualized with the conductive resin 101 coated on each side surface of the individualized terminal-equipped semiconductor device 65. Further, the conductive resin 101 applied to the top surface and the side surface of the fragmented semiconductor device 65 with terminals is heated and cured to be not embedded in the viscoelastic layer 12 of the terminal protection tape. An electromagnetic wave shielding film 10 made of a conductive material is formed on the exposed surface of 65 (FIG. 6 (e)). The electromagnetic wave shielding film 10 may be formed by directly sputtering the conductive material onto the semiconductor device 65 with terminals (FIG. 6 (c)) (FIG. 6 (e)).
 端子保護用テープ3を延伸することにより、電磁波シールド膜が形成された端子付き半導体装置と、粘弾性層12との接着面積を減少させ、電磁波シールド膜が形成された端子付き半導体装置を端子保護用テープ3から剥離する(図6(f))。剥離する際には、端子保護用テープ3の基材11側から、ピンなどで上方に押し上げるピッキングを行うことが好ましい。 By stretching the terminal protection tape 3, the bonding area between the terminal-equipped semiconductor device on which the electromagnetic wave shield film is formed and the viscoelastic layer 12 is reduced, and the terminal-equipped semiconductor device on which the electromagnetic wave shield film is formed is terminal-protected. It is peeled off from the tape 3 (FIG. 6 (f)). When peeling, it is preferable to perform picking by pushing upward with a pin or the like from the base material 11 side of the terminal protection tape 3.
 粘弾性層12を有する端子保護用テープから、電磁波シールド膜付き半導体装置66をピックアップすることによって、電磁波シールド膜10で被覆された端子付き半導体装置65を取り出すことができる(図6(g))。 By picking up the semiconductor device 66 with an electromagnetic wave shield film from the terminal protection tape having the viscoelastic layer 12, the semiconductor device 65 with terminals coated with the electromagnetic wave shield film 10 can be taken out (FIG. 6 (g)). ..
 埋め込み層13及び粘着剤層14のいずれか一方、又は両方がエネルギー線硬化性である場合、端子保護用テープの粘弾性層12に、端子付き半導体集合体の端子を埋設させる工程の前、又は端端子保護用テープの粘弾性層12に、端子付き半導体装置集合体の端子を埋設させる工程の後でかつ、ダイシングを行う前に、硬化を行うことが好ましい。 When either one or both of the embedded layer 13 and the adhesive layer 14 are energy ray-curable, before the step of embedding the terminals of the semiconductor assembly with terminals in the viscoelastic layer 12 of the terminal protection tape, or It is preferable to perform curing after the step of embedding the terminals of the semiconductor device assembly with terminals in the viscoelastic layer 12 of the end terminal protection tape and before dicing.
 上述の電磁波シールド膜付き半導体装置の製造方法1及び電磁波シールド膜付き半導体装置の製造方法2の工程中の、端子保護用テープ3の延伸を行う工程(図5(e)、図6(f))における端子保護用テープ3の延伸方法は特に限定されないが、例えば以下の2つの方法が挙げられる。 A step of stretching the terminal protection tape 3 during the steps of the above-mentioned manufacturing method 1 of the semiconductor device with the electromagnetic wave shielding film and the manufacturing method 2 of the semiconductor device with the electromagnetic wave shielding film (FIGS. 5 (e) and 6 (f)). The method for stretching the terminal protection tape 3 in) is not particularly limited, and examples thereof include the following two methods.
<端子保護用テープの延伸方法1>
 本実施形態の端子保護用テープの延伸方法は、把持部材などを用いて端子保護用テープの外周部を掴んで引き延ばす方法である。
 本実施形態においては、端子保護用テープは少なくとも2軸延伸によって延伸されることが好ましい。
この場合、端子保護用テープは、例えば互いに直交するX軸及びY軸における+X軸方向、-X軸方向、+Y軸方向、-Y軸方向の4方向に張力を付与して引き延ばされる。
<Stretching method 1 of terminal protection tape>
The method of stretching the terminal protection tape of the present embodiment is a method of grasping and stretching the outer peripheral portion of the terminal protection tape using a gripping member or the like.
In the present embodiment, the terminal protection tape is preferably stretched by at least biaxial stretching.
In this case, the terminal protection tape is stretched by applying tension in four directions of, for example, the + X-axis direction, the −X-axis direction, the + Y-axis direction, and the −Y-axis direction in the X-axis and the Y-axis orthogonal to each other.
 上記のような2軸延伸は、例えば、X軸方向及びY軸方向に張力を付与する離間装置を使用して行うことができる。ここで、X軸及びY軸は直交するものとし、X軸に平行な方向のうちの1つを+X軸方向、前記+X軸方向に反対の方向を-X軸方向、Y軸に平行な方向のうちの1つを+Y軸方向、前記+Y軸方向に反対の方向を-Y軸方向とする。 Biaxial stretching as described above can be performed, for example, by using a separation device that applies tension in the X-axis direction and the Y-axis direction. Here, it is assumed that the X-axis and the Y-axis are orthogonal to each other, one of the directions parallel to the X-axis is the + X-axis direction, the direction opposite to the + X-axis direction is the -X-axis direction, and the direction parallel to the Y-axis. One of them is defined as the + Y-axis direction, and the direction opposite to the + Y-axis direction is defined as the −Y-axis direction.
 上記離間装置は、端子保護用テープに対して、+X軸方向、-X軸方向、+Y軸方向、-Y軸方向の4方向に張力を付与し、この4方向のそれぞれについて、複数の保持手段と、それらに対応する複数の張力付与手段とを備えることが好ましい。各方向における、保持手段及び張力付与手段の数は、端子保護用テープの大きさによるものの、例えば、3個以上、10個以下であってもよい。 The separating device applies tension to the terminal protection tape in four directions of + X-axis direction, −X-axis direction, + Y-axis direction, and −Y-axis direction, and a plurality of holding means in each of the four directions. And, it is preferable to provide a plurality of tension applying means corresponding to them. The number of holding means and tension applying means in each direction depends on the size of the terminal protection tape, but may be, for example, 3 or more and 10 or less.
<端子保護用テープの延伸方法2>
 本実施形態の端子保護用テープの延伸方法は、端子保護用テープの外周部を固定冶具により固定し、エキスパンダを押し当てて、端子保護用テープを引き延ばす方法である。
 図7を参照して、本実施形態の端子保護用テープの延伸方法の例を説明する。本実施形態においては、粘弾性層12が第3粘着剤層16を介してリングフレーム17に貼着されている。
 前記第3粘着剤層は、当該分野で公知のものでよく、上述の第1粘着剤層、第2粘着剤層で説明したものから、リングフレーム17の材質に合わせて適宜選択することができる。
 第3粘着剤層を形成するための第3粘着剤組成物は、前記第1粘着剤組成物、第2粘着剤組成物と同様であり、第3粘着剤組成物の製造方法も、前記第1粘着剤組成物の製造方法、第2と粘着剤組成物の製造方法と同様である。
 このようにして、外周部がリングフレームにより固定された端子保護用テープを基材11側から円筒状のエキスパンダ18を押し当て、上方に押し上げることにより、端子保護用テープを引き延ばす。
<Stretching method 2 of terminal protection tape>
The method of stretching the terminal protection tape of the present embodiment is a method of fixing the outer peripheral portion of the terminal protection tape with a fixing jig and pressing an expander to stretch the terminal protection tape.
An example of the method of stretching the terminal protection tape of the present embodiment will be described with reference to FIG. 7. In the present embodiment, the viscoelastic layer 12 is attached to the ring frame 17 via the third pressure-sensitive adhesive layer 16.
The third pressure-sensitive adhesive layer may be known in the art, and can be appropriately selected from those described in the above-mentioned first pressure-sensitive adhesive layer and second pressure-sensitive adhesive layer according to the material of the ring frame 17. ..
The third pressure-sensitive adhesive composition for forming the third pressure-sensitive adhesive layer is the same as the first pressure-sensitive adhesive composition and the second pressure-sensitive adhesive composition, and the method for producing the third pressure-sensitive adhesive composition is also the same as the first pressure-sensitive adhesive composition. 1 The method for producing the pressure-sensitive adhesive composition and the second method for producing the pressure-sensitive adhesive composition are the same.
In this way, the terminal protection tape whose outer peripheral portion is fixed by the ring frame is pressed against the cylindrical expander 18 from the base material 11 side and pushed upward to stretch the terminal protection tape.
 本発明の端子保護用テープにおいて、端子91の高さh0は、粘弾性層12の厚さd1よりも低いことが好ましく、1.2≦ d1/h0 ≦5.0であることが好ましい。具体的には、端子91の高さは、20~300μmであることが好ましく、30~270μmであることがより好ましく、40~240μmであることが特に好ましい。端子91の高さが前記下限値以上であることで、端子91の機能をより向上させることができる。また、端子91の高さが前記上限値以下であることで、端子91上部での粘弾性層12の残存を抑制する効果がより高くなる。
 なお、本明細書において、「端子の高さ」とは、端子のうち、端子形成面から最も高い位置に存在する部位での高さを意味する。端子付き半導体装置集合体及び端子付き半導体装置65が複数の端子91を有する場合、端子91の高さh0はそれらの平均とすることができる。端子の高さは、例えば、非接触型3次元光干渉式表面粗さ計(日本Veeco社製、商品名:Wyko NT1100)によって測定することができる。
In the terminal protection tape of the present invention, the height h0 of the terminal 91 is preferably lower than the thickness d1 of the viscoelastic layer 12, and preferably 1.2 ≦ d1 / h0 ≦ 5.0. Specifically, the height of the terminal 91 is preferably 20 to 300 μm, more preferably 30 to 270 μm, and particularly preferably 40 to 240 μm. When the height of the terminal 91 is equal to or higher than the lower limit value, the function of the terminal 91 can be further improved. Further, when the height of the terminal 91 is not more than the upper limit value, the effect of suppressing the remaining of the viscoelastic layer 12 on the upper part of the terminal 91 becomes higher.
In the present specification, the "terminal height" means the height of the terminal at the highest position from the terminal forming surface. When the terminal-equipped semiconductor device assembly and the terminal-equipped semiconductor device 65 have a plurality of terminals 91, the height h0 of the terminals 91 can be the average of them. The height of the terminal can be measured by, for example, a non-contact three-dimensional optical interference type surface roughness meter (manufactured by Japan Veeco, trade name: Wyko NT1100).
 端子91の幅は特に限定されないが、170~350μmであることが好ましく、200~320μmであることがより好ましく、230~290μmであることが特に好ましい。端子91の幅が前記下限値以上であることで、端子91の機能をより向上させることができる。また、端子91の幅が前記上限値以下であることで、端子91上部での粘弾性層12の残存を抑制する効果がより高くなる。
 なお、本明細書において、「端子の幅」とは、端子形成面に対して垂直な方向から端子を見下ろして平面視したときに、端子表面上の異なる2点間を直線で結んで得られる線分の最大値を意味する。端子が球形、又は半球形であるときは、「端子の幅」とは、端子を見下ろして平面視したときのその端子の最大直径(端子径)をいう。
The width of the terminal 91 is not particularly limited, but is preferably 170 to 350 μm, more preferably 200 to 320 μm, and particularly preferably 230 to 290 μm. When the width of the terminal 91 is equal to or larger than the lower limit value, the function of the terminal 91 can be further improved. Further, when the width of the terminal 91 is not more than the upper limit value, the effect of suppressing the remaining of the viscoelastic layer 12 on the upper part of the terminal 91 becomes higher.
In the present specification, the "terminal width" is obtained by connecting two different points on the terminal surface with a straight line when the terminal is viewed in a plan view from a direction perpendicular to the terminal forming surface. It means the maximum value of the line segment. When the terminal is spherical or hemispherical, the "terminal width" means the maximum diameter (terminal diameter) of the terminal when the terminal is viewed in a plan view.
 隣り合う端子91間の距離(すなわち、端子間ピッチ)は、特に限定されないが、250~800μmであることが好ましく、300~600μmであることがより好ましく、350~500μmであることが特に好ましい。前記距離が前記下限値以上であることで、端子91の埋め込み性をより向上させることができる。また、前記距離が前記上限値以下であることで、端子91上部での粘弾性層12の残存を抑制する効果がより高くなる。
 なお、本明細書において、「隣り合う端子間の距離」とは、隣り合う端子同士の表面間の距離の最小値を意味する。
The distance between adjacent terminals 91 (that is, the pitch between terminals) is not particularly limited, but is preferably 250 to 800 μm, more preferably 300 to 600 μm, and particularly preferably 350 to 500 μm. When the distance is equal to or greater than the lower limit value, the embedding property of the terminal 91 can be further improved. Further, when the distance is not more than the upper limit value, the effect of suppressing the remaining of the viscoelastic layer 12 on the upper part of the terminal 91 becomes higher.
In the present specification, the "distance between adjacent terminals" means the minimum value of the distance between the surfaces of adjacent terminals.
 以下、具体的実施例により、本発明についてより詳細に説明する。ただし、本発明は、以下に示す実施例に、何ら限定されるものではない。 Hereinafter, the present invention will be described in more detail with reference to specific examples. However, the present invention is not limited to the examples shown below.
<物性の測定方法>
 基材のヤング率、端子保護用テープの粘弾性層に端子を埋設させたときの気泡の量、端子付き半導体装置に対する端子保護用テープの粘着力、第1粘着剤層及び埋め込み層の弾性率、基材及び端子保護用テープの破断応力、及び基材及び端子保護用テープの破断伸度の測定は、以下の方法で測定を行った。
<Measurement method of physical properties>
Young's modulus of the base material, amount of air bubbles when terminals are embedded in the viscoelastic layer of the terminal protection tape, adhesive strength of the terminal protection tape to the semiconductor device with terminals, elastic modulus of the first adhesive layer and the embedded layer , The breaking stress of the base material and the terminal protection tape, and the breaking elongation of the base material and the terminal protection tape were measured by the following methods.
(基材のヤング率)
 JIS K7161:2014に準拠して、23℃における基材の引張弾性率を測定し、ヤング率とした。基材の測定時の幅を15mm、つかみ具間距離を10mm、引張速度を50mm/minとした。
(Young's modulus of the base material)
The tensile elastic modulus of the base material at 23 ° C. was measured according to JIS K7161: 2014 and used as Young's modulus. The width of the base material at the time of measurement was 15 mm, the distance between the gripping tools was 10 mm, and the tensile speed was 50 mm / min.
(端子保護用テープの粘弾性層に端子を埋設させたときの気泡の量)
 径0.25mmの端子を端子保護用テープの粘弾性層に埋設した。デジタル光学顕微鏡(KEYENCE社製、製品名「VHX-1000」)を用いて基材側から端子の外側に生じた円形の空隙の直径を測定した。なお、測定は、後述の<剥離性の評価>における、紫外線照射後の剥離を行う際に行った。すなわち、剥離の際に端子保護用テープの延伸を行った場合は、延伸後の端子保護用テープにおいて上記測定を行った。
(Amount of air bubbles when terminals are embedded in the viscoelastic layer of terminal protection tape)
A terminal having a diameter of 0.25 mm was embedded in a viscoelastic layer of a terminal protection tape. The diameter of the circular void formed from the base material side to the outside of the terminal was measured using a digital optical microscope (manufactured by KEYENCE, product name "VHX-1000"). The measurement was performed when peeling after irradiation with ultraviolet rays in <evaluation of peelability> described later. That is, when the terminal protection tape was stretched at the time of peeling, the above measurement was performed on the stretched terminal protection tape.
(端子付き半導体装置に対する端子保護用テープの粘着力)
 JIS Z0237:2009に準じて以下の通り測定した。端子保護用テープを幅25mm、長さ250mmに裁断し、剥離シートを剥離し、露出した粘着剤層を、23℃、50%RHの環境下で、被着体として半導体装置に2kgゴムローラーを用いて貼付し、同環境下に24時間放置した。そして、紫外線照射(照度230mW/cm、光量190mJ/cm)を行った後、万能型引張試験機(オリエンテック社製、製品名「テンシロンUTM-4-100」)を用いて、剥離角度180°、剥離速度300mm/minで端子保護用テープを上記半導体装置から剥離することにより、その粘着力を測定した。
(Adhesive strength of terminal protection tape to semiconductor devices with terminals)
The measurement was performed as follows according to JIS Z0237: 2009. The terminal protection tape is cut to a width of 25 mm and a length of 250 mm, the release sheet is peeled off, and the exposed adhesive layer is placed on a semiconductor device as an adherend with a 2 kg rubber roller in an environment of 23 ° C. and 50% RH. It was affixed using and left in the same environment for 24 hours. Then, after irradiating with ultraviolet rays (irradiance 230 mW / cm 2 , light intensity 190 mJ / cm 2 ), a peeling angle is used using a universal tensile tester (manufactured by Orientec, product name "Tencilon UTM-4-100"). The adhesive strength was measured by peeling the terminal protection tape from the semiconductor device at 180 ° and a peeling speed of 300 mm / min.
(第1粘着剤層及び埋め込み層の弾性率)
 粘弾性測定装置(Rheometrics社製、装置名「DYNAMIC ANALYZER RDAII」)を用いて、直径8mm×厚さ3mmサイズのサンプルを、1Hzで23℃の環境下でねじりせん断法により測定した。
(Elastic modulus of the first adhesive layer and the embedded layer)
Using a viscoelasticity measuring device (manufactured by Rheometrics, device name "DYNAMIC ANALYZER RDAII"), a sample having a diameter of 8 mm and a thickness of 3 mm was measured by a torsional shear method at 1 Hz in an environment of 23 ° C.
(基材及び端子保護用テープの破断応力及び破断伸度)
 基材又は端子保護用テープを10mm幅×75mm長のサンプルとして切り出した。サンプル測定部位が10mm幅×25mm長(伸長方向)になるように、上記サンプルを引張試験機(オリエンテック社製、製品名「テンシロン」)にセットし、23℃、50%RHの環境下で当該引張試験機を用いて引張速度200mm/分で伸長させた。上記サンプルが破断するまで伸長させ、破断伸度(%)及び破断応力(MPa)を測定した。
(Breaking stress and breaking elongation of base material and terminal protection tape)
The base material or the terminal protection tape was cut out as a sample having a width of 10 mm and a length of 75 mm. The above sample is set in a tensile tester (manufactured by Orientec, product name "Tencilon") so that the sample measurement site has a width of 10 mm and a length of 25 mm (extension direction), and is placed in an environment of 23 ° C. and 50% RH. It was stretched at a tensile speed of 200 mm / min using the tensile tester. The sample was stretched until it broke, and the elongation at break (%) and the stress at rupture (MPa) were measured.
<モノマー>
 略記しているモノマーの正式名称を、以下に示す。
 HEA:アクリル酸2-ヒドロキシエチル
 BA:アクリル酸n-ブチル
 MMA:メタクリル酸メチル
 AAc:アクリル酸
<Monomer>
The official names of the abbreviated monomers are shown below.
HEA: 2-Hydroxyethyl acrylate BA: n-butyl acrylate MMA: Methyl methacrylate AAc: Acrylic acid
(粘着剤層形成用組成物Aの製造)
 BA74質量部、MMA20質量部及びHEA6質量部からなるアクリル系共重合体に対して、2-メタクリロイルオキシエチルイソシアネート(HEAに対して約50モル%)を付加した樹脂の溶液(粘着剤主剤、固形分35質量%)を調製した。この粘着剤主剤100質量部に対して、光重合開始剤としての1-ヒドロキシシクロヘキシルフェニルケトン(BASF社製,製品名「イルガキュア184」、固形分濃度100%)3質量部、架橋剤としてトリレン-2,6-ジイソシアネート(トーヨーケム株式会社製、製品名「BHS 8515」、固形分濃度:37.5%)を0.5質量部添加し、30分間攪拌を行って粘着剤層形成用組成物Aを調製した。
(Production of Composition A for Forming Adhesive Layer)
A resin solution (adhesive base, solid) to which 2-methacryloyloxyethyl isocyanate (about 50 mol% with respect to HEA) was added to an acrylic copolymer consisting of 74 parts by mass of BA, 20 parts by mass of MMA, and 6 parts by mass of HEA. 35% by mass) was prepared. 1-hydroxycyclohexylphenylketone (manufactured by BASF, product name "Irgacure 184", solid content concentration 100%) as a photopolymerization initiator, 3 parts by mass, and trilen as a cross-linking agent, based on 100 parts by mass of this pressure-sensitive adhesive base material. Add 0.5 parts by mass of 2,6-diisocyanate (manufactured by Toyochem Co., Ltd., product name "BHS 8515", solid content concentration: 37.5%), and stir for 30 minutes to form a pressure-sensitive adhesive layer composition A. Was prepared.
(粘着剤層Aの製造)
 ポリエチレンテレフタレート製フィルムの片面がシリコーン処理により剥離処理された剥離フィルム(リンテック社製「SP-PET381031」、厚さ38μm)の剥離処理面に、前記粘着剤層形成用組成物Aを塗工し、100℃で1分加熱乾燥させることにより、厚さがそれぞれ、10μmと、20μmの粘着剤層Aを製造した。
 粘着剤層Aのエネルギー線硬化前の弾性率は0.05MPa、硬化後の弾性率は24MPaであった。
(Manufacturing of adhesive layer A)
The pressure-sensitive adhesive layer forming composition A was applied to the peeled surface of the peeled film (“SP-PET38131” manufactured by Lintec Corporation, thickness 38 μm) in which one side of the polyethylene terephthalate film was peeled by silicone treatment. By heating and drying at 100 ° C. for 1 minute, the pressure-sensitive adhesive layer A having a thickness of 10 μm and 20 μm, respectively, was produced.
The elastic modulus of the pressure-sensitive adhesive layer A before the energy ray curing was 0.05 MPa, and the elastic modulus after curing was 24 MPa.
(埋め込み層形成用組成物Aの製造)
 BA91質量部、AAc9質量部からなるアクリル系共重合体の溶液(重量平均分子量(Mw)400,000、粘着剤主剤、固形分濃度33.6%、日本カーバイド工業株式会社製、製品名「ニッセツ PE-121」)100質量部と、BA62質量部、MMA10質量部及びHEA28質量部からなるアクリル系共重合体に2-メタクリロイルオキシエチルイソシアネートをHEA100mol%に対して付加率が80mol%となるように付加した樹脂の溶液(重量平均分子量(Mw)100,000、粘着剤主剤、固形分濃度45%、日本合成化学工業株式会社製、製品名「コーポニール UN-2528LM1」)93.5質量部と、光重合開始剤としての1-ヒドロキシシクロヘキシルフェニルケトン(BASF社製,製品名「イルガキュア184」、固形分濃度100%)3質量部と、架橋剤としてトリレン-2,6-ジイソシアネート(トーヨーケム株式会社製、製品名「BHS-8515」、固形分濃度:37.5%)2.5質量部と、架橋剤としてN,N’-(シクロヘキサン-1,3-ジイルビスメチレン)ビス(グリシジルアミン)(三菱ガス化学社製、製品名「TETRAD-C」、固形分濃度:5%)2.5質量部を添加し、30分間撹拌して埋め込み層形成用組成物Aを調製した。
(Production of Composition A for Forming Embedded Layer)
A solution of an acrylic copolymer consisting of 91 parts by mass of BA and 9 parts by mass of AAc (weight average molecular weight (Mw) 400,000, pressure-sensitive adhesive base, solid content concentration 33.6%, manufactured by Nippon Carbide Industries, Ltd., product name "Nisetsu" PE-121 ") 100 parts by mass of BA, 62 parts by mass of BA, 10 parts by mass of MMA and 28 parts by mass of HEA were added with 2-methacryloyloxyethyl isocyanate so that the addition rate was 80 mol% with respect to 100 mol% of HEA. 93.5 parts by mass of the added resin solution (weight average molecular weight (Mw) 100,000, pressure-sensitive adhesive main agent, solid content concentration 45%, manufactured by Nippon Synthetic Chemical Industry Co., Ltd., product name "Corponil UN-2528LM1") , 1-Hydroxycyclohexylphenylketone (manufactured by BASF, product name "Irgacure 184", solid content concentration 100%) as a photopolymerization initiator, 3 parts by mass, and trilen-2,6-diisocyanate (Toyochem Co., Ltd.) as a cross-linking agent. Manufactured by, product name "BHS-8515", solid content concentration: 37.5%) 2.5 parts by mass, and N, N'-(cyclohexane-1,3-diylbismethylene) bis (glycidylamine) as a cross-linking agent (Manufactured by Mitsubishi Gas Chemicals, Inc., product name "TETRAD-C", solid content concentration: 5%) 2.5 parts by mass was added, and the mixture was stirred for 30 minutes to prepare a composition A for forming an embedded layer.
(埋め込み層形成用組成物Bの製造)
 単官ウレタンアクリレート40質量部、イソボルニルアクリレート(IBXA)45質量部、2-ヒドロキシプロピルアクリレート(HPA)15質量部、ペンタエリスリトールテトラキス(3-メルカプトブチレート)(昭和電工株式会社製、製品名「カレンズMT PE1」、第2級4官能のチオール含有化合物、固形分濃度100質量%)3.5質量部、架橋剤1.8質量部、及び光重合開始剤としての2-ヒドロキシ-2-メチル-1-フェニル-プロパン-1-オン(BASF社製、製品名「ダロキュア1173」、固形分濃度100質量%)1.0質量部を配合して、埋め込み層形成用組成物Bを調製した。
(Production of Composition B for Forming Embedded Layer)
40 parts by mass of single-purpose urethane acrylate, 45 parts by mass of isobornyl acrylate (IBXA), 15 parts by mass of 2-hydroxypropyl acrylate (HPA), pentaerythritol tetrakis (3-mercaptobutyrate) (manufactured by Showa Denko Co., Ltd., product name) "Karens MT PE1", secondary tetrafunctional thiol-containing compound, solid content concentration 100% by mass) 3.5 parts by mass, cross-linking agent 1.8 parts by mass, and 2-hydroxy-2- as a photopolymerization initiator A composition B for forming an embedded layer was prepared by blending 1.0 part by mass of methyl-1-phenyl-propane-1-one (manufactured by BASF, product name "DaroCure 1173", solid content concentration 100% by mass). ..
(基材)
 厚さ80μmのポリエチレンフィルムを基材Aとして用いた。
 基材Aのヤング率は、340MPa、破断伸度は950%、破断応力は45MPaであった。
(Base material)
A polyethylene film having a thickness of 80 μm was used as the base material A.
The Young's modulus of the base material A was 340 MPa, the elongation at break was 950%, and the stress at break was 45 MPa.
(端子付き半導体装置の準備)
 実施例及び比較例の端子保護用テープの剥離性を評価するに当たり、次の端子付き半導体装置を準備した。
・端子付き半導体装置
 半導体装置の大きさ:10mm×10mm
 端子の高さ:250μm
 端子径:250μm
 端子間ピッチ:400μm
 端子の数:10×10=100個
(Preparation of semiconductor devices with terminals)
In evaluating the peelability of the terminal protection tapes of Examples and Comparative Examples, the following semiconductor devices with terminals were prepared.
-Semiconductor device with terminals Size of semiconductor device: 10 mm x 10 mm
Terminal height: 250 μm
Terminal diameter: 250 μm
Pitch between terminals: 400 μm
Number of terminals: 10 x 10 = 100
<剥離性の評価>
 端子付き半導体装置の端子の側を下にして、端子保護用テープに、プレス圧力(荷重1.1MPa)、プレス時間40s、加熱時間50℃で押し付けラミネートした。その後、常温にて24時間放置後、紫外線照射(照度230mW/cm、光量190mJ/cm)を行った後、必要に応じ端子保護用テープを延伸、ピックアップを行い、半導体装置から端子保護用テープを剥離し剥離の可否を評価した。評価結果は、○:剥離可能、×:剥離不能とした。
<Evaluation of peelability>
The terminal side of the semiconductor device with terminals was turned down, and the tape was pressed and laminated on the terminal protection tape at a pressing pressure (load 1.1 MPa), a pressing time of 40 s, and a heating time of 50 ° C. Then, after leaving it at room temperature for 24 hours, it is irradiated with ultraviolet rays (illuminance 230 mW / cm 2 , light intensity 190 mJ / cm 2 ), and then the terminal protection tape is stretched and picked up as necessary to protect the terminals from the semiconductor device. The tape was peeled off and the possibility of peeling was evaluated. The evaluation results were as follows: ◯: peelable, ×: non-peelable.
[実施例1]
 埋め込み層形成用組成物Aをポリエチレンテレフタレート製フィルムの片面がシリコーン処理により剥離処理された剥離フィルム(リンテック社製「SP-PET381031」、厚さ38μm)の剥離処理面に塗工し、100℃で1分加熱乾燥させた後、埋め込み層形成用組成物Aの上にポリエチレンテレフタレート製フィルムの片面がシリコーン処理により剥離処理された剥離フィルム(リンテック社製「SP-PET382150」、厚さ38μm)の剥離処理面をラミネートし、厚さ50μmの埋め込み層を製造した。
 前記埋め込み層のラミネートした剥離フィルムを剥がした面どうしを貼合し、厚さ100μmの埋め込み層を作製した。同様にして埋め込み層を貼合して積層し、厚さ300μmの埋め込み層Aを作製した。
 埋め込み層Aのエネルギー線硬化前の弾性率は0.06MPa、硬化後の弾性率は65MPaであった。
 厚さ10μmの粘着剤層Aに厚さ300μmの埋め込み層Aを貼合した。さらに、埋め込み層Aの側の剥離フィルムを剥離し、基材Aの易接着処理側と貼り合わせ、図2に示す、基材11/埋め込み層13/粘着剤層14の形態の端子保護用テープ1を製造した。端子保護用テープ1の構成及び物性を表1及び2に示す(以下、同様)。
 端子保護用テープ1を用いて、剥離性の評価を行った。剥離条件並びに評価結果を表3に示す。
[Example 1]
The composition A for forming an embedded layer is applied to the peeled surface of a release film (“SP-PET38131” manufactured by Lintec Corporation, thickness 38 μm) in which one side of a polyethylene terephthalate film is peeled by silicone treatment, and at 100 ° C. After heating and drying for 1 minute, a release film (Lintec's "SP-PET382150", thickness 38 μm) in which one side of a polyethylene terephthalate film was peeled off by a silicone treatment on the composition A for forming an embedded layer was peeled off. The treated surface was laminated to produce an embedded layer having a thickness of 50 μm.
The surfaces from which the laminated release film of the embedded layer was peeled off were pasted together to prepare an embedded layer having a thickness of 100 μm. In the same manner, the embedded layers were laminated and laminated to prepare an embedded layer A having a thickness of 300 μm.
The elastic modulus of the embedded layer A before the energy ray curing was 0.06 MPa, and the elastic modulus after the curing was 65 MPa.
An embedded layer A having a thickness of 300 μm was bonded to the pressure-sensitive adhesive layer A having a thickness of 10 μm. Further, the release film on the side of the embedded layer A is peeled off and bonded to the easy-adhesion-treated side of the base material A, and the terminal protection tape in the form of the base material 11 / embedded layer 13 / adhesive layer 14 shown in FIG. 1 was manufactured. The configuration and physical characteristics of the terminal protection tape 1 are shown in Tables 1 and 2 (the same applies hereinafter).
The peelability was evaluated using the terminal protection tape 1. Table 3 shows the peeling conditions and the evaluation results.
[実施例2]
 厚さ10μmの粘着剤層Aの代えて厚さ20μmの粘着剤層Aを使用したこと以外は製造例と同様にして、端子保護用テープ2を製造した。
 端子保護用テープ2を用いて、剥離性の評価を行った。剥離条件並びに評価結果を表3に示す。
[Example 2]
The terminal protection tape 2 was manufactured in the same manner as in the production example except that the pressure-sensitive adhesive layer A having a thickness of 20 μm was used instead of the pressure-sensitive adhesive layer A having a thickness of 10 μm.
The peelability was evaluated using the terminal protection tape 2. Table 3 shows the peeling conditions and the evaluation results.
[実施例3]
 埋め込み層形成用組成物Aをポリエチレンテレフタレート製フィルムの片面がシリコーン処理により剥離処理された剥離フィルム(リンテック社製「SP-PET381031」、厚さ38μm)の剥離処理面にファウンテンダイ方式で、塗布して塗膜を得た。
 塗膜側から紫外線を照射して半硬化層を形成した。紫外線照射は、紫外線照射装置として、ベルトコンベア式紫外線照射装置(アイグラフィクス株式会社製、製品名「ECS-401GGX」)を用い、紫外線源として高圧水銀ランプ(アイグラフィクス株式会社製、製品名「H04-L41」を使用し、照射条件として光波長365nmの照度112mW/cm、光量117mJ/cm(アイグラフィクス株式会社製、製品名「UVPF-A1」にて測定)で行った。
 形成した半硬化層の上に、基材Aを積層し、さらに紫外線照射(上記の紫外線照射装置、紫外線源を用い、照射条件として、照度271mW/cm、光量1,200mJ/cm)を行い、埋め込み層形成用組成物Bを完全に硬化させて、基材A上に厚さ300μmの埋め込み層Bを形成し、基材Aと埋め込み層Bの積層体を得た。
 剥離フィルムを剥がし、埋め込み層Bの基材Aとは反対側の面に厚さ10μmの粘着剤層Aを貼り合わせ、図2に示す、基材11/埋め込み層13/粘着剤層14の形態の端子保護用テープ3を製造した。
 端子保護用テープ3を用いて、剥離性の評価を行った。剥離条件並びに評価結果を表3に示す。
[Example 3]
The composition A for forming an embedded layer is applied by a fountain die method to a peeling film (“SP-PET38131” manufactured by Lintec Corporation, thickness 38 μm) in which one side of a polyethylene terephthalate film is peeled by silicone treatment. Obtained a coating film.
A semi-cured layer was formed by irradiating ultraviolet rays from the coating film side. For ultraviolet irradiation, a belt conveyor type ultraviolet irradiation device (manufactured by Eye Graphics Co., Ltd., product name "ECS-401GGX") is used as the ultraviolet irradiation device, and a high-pressure mercury lamp (manufactured by Eye Graphics Co., Ltd., product name "H04") is used as the ultraviolet source. -L41 "was used, and the irradiation conditions were an illuminance of 112 mW / cm 2 with a light wavelength of 365 nm and a light amount of 117 mJ / cm 2 (measured by the product name" UVPF-A1 "manufactured by Eye Graphics Co., Ltd.).
The base material A is laminated on the formed semi-cured layer, and further irradiated with ultraviolet rays (using the above-mentioned ultraviolet irradiation device and ultraviolet source, illuminance 271 mW / cm 2 and light intensity 1,200 mJ / cm 2 ). Then, the composition B for forming an embedded layer was completely cured to form an embedded layer B having a thickness of 300 μm on the base material A, and a laminate of the base material A and the embedded layer B was obtained.
The release film is peeled off, and the pressure-sensitive adhesive layer A having a thickness of 10 μm is attached to the surface of the embedded layer B opposite to the base material A, and the form of the base material 11 / embedded layer 13 / pressure-sensitive adhesive layer 14 shown in FIG. The terminal protection tape 3 of the above was manufactured.
The peelability was evaluated using the terminal protection tape 3. Table 3 shows the peeling conditions and the evaluation results.
[比較例1]
 端子保護用テープ1を用いて、剥離性の評価を行った。剥離条件並びに評価結果を表3に示す。
[Comparative Example 1]
The peelability was evaluated using the terminal protection tape 1. Table 3 shows the peeling conditions and the evaluation results.
Figure JPOXMLDOC01-appb-T000003
Figure JPOXMLDOC01-appb-T000003
Figure JPOXMLDOC01-appb-T000004
Figure JPOXMLDOC01-appb-T000004
Figure JPOXMLDOC01-appb-T000005
Figure JPOXMLDOC01-appb-T000005
 表3に示される結果から、本発明の電磁波シールド膜付き半導体装置の製造方法は、電磁波シールド膜が形成された端子付き半導体装置を端子保護用テープから剥離する工程において、容易に剥離可能であり、製造効率が高まることが確認された。 From the results shown in Table 3, the method for manufacturing the semiconductor device with an electromagnetic wave shield film of the present invention can be easily peeled off in the step of peeling the semiconductor device with terminals on which the electromagnetic wave shield film is formed from the terminal protection tape. , It was confirmed that the manufacturing efficiency is improved.
 本発明の電磁波シールド膜付き半導体装置の製造方法によると、端子付き半導体装置を電磁波シールドすることができ、電磁波シールド膜付き半導体装置を製造することができる。 According to the method for manufacturing a semiconductor device with an electromagnetic wave shielding film of the present invention, the semiconductor device with terminals can be electromagnetically shielded, and the semiconductor device with an electromagnetic wave shielding film can be manufactured.
1,2,3・・・端子保護用テープ、10・・・電磁波シールド膜、11・・・基材、12・・・粘弾性層、13・・・埋め込み層、14・・・粘着剤層、15・・・第2粘着剤層(貼合粘着剤層)、16・・・第3粘着剤層、17・・・リングフレーム、18・・・エキスパンダ、30・・・支持体、6・・・端子付き半導体装置集合体、60・・・半導体装置集合体、60a・・・端子形成面、61、62・・・電子部品、63・・・回路基板、63a・・・端子形成面、64・・・封止樹脂層、65・・・端子付き半導体装置、66・・・電磁波シールド膜付き半導体装置、91・・・端子、101・・・導電性樹脂、20,21,22・・・剥離フィルム 1,2,3 ... Terminal protection tape, 10 ... Electromagnetic shield film, 11 ... Base material, 12 ... Viscoelastic layer, 13 ... Embedded layer, 14 ... Adhesive layer , 15 ... 2nd adhesive layer (bonded adhesive layer), 16 ... 3rd adhesive layer, 17 ... ring frame, 18 ... expander, 30 ... support, 6 ... Semiconductor device assembly with terminals, 60 ... Semiconductor device assembly, 60a ... Terminal forming surface, 61, 62 ... Electronic components, 63 ... Circuit board, 63a ... Terminal forming surface , 64 ... Sealing resin layer, 65 ... Semiconductor device with terminal, 66 ... Semiconductor device with electromagnetic wave shielding film, 91 ... Terminal, 101 ... Conductive resin, 20, 21, 22, ...・ ・ Release film

Claims (13)

  1.  粘弾性層を有する端子保護用テープの前記粘弾性層に、端子付き半導体装置の端子を埋設させる工程と、
     前記端子保護用テープの粘弾性層に埋設されていない前記端子付き半導体装置の露出面に電磁波シールド膜を形成する工程と、
     前記端子保護用テープを延伸することにより、電磁波シールド膜が形成された前記端子付き半導体装置を前記端子保護用テープから剥離する工程と、
     を含む電磁波シールド膜付き半導体装置の製造方法。
    A step of embedding terminals of a semiconductor device with terminals in the viscoelastic layer of a terminal protection tape having a viscoelastic layer, and
    A step of forming an electromagnetic wave shielding film on an exposed surface of the terminal-equipped semiconductor device that is not embedded in the viscoelastic layer of the terminal protection tape, and
    A step of peeling the terminal-equipped semiconductor device on which the electromagnetic wave shielding film is formed from the terminal protection tape by stretching the terminal protection tape.
    A method for manufacturing a semiconductor device with an electromagnetic wave shielding film including.
  2.  粘弾性層を有する端子保護用テープの前記粘弾性層に、端子付き半導体装置集合体の端子を埋設させる工程と、
     前記端子付き半導体装置集合体をダイシングして、前記端子付き半導体装置集合体を、前記端子保護用テープの粘弾性層に端子が埋設された端子付き半導体装置とする工程と、
     前記端子保護用テープの粘弾性層に埋設されていない前記端子付き半導体装置の露出面に電磁波シールド膜を形成する工程と、
     前記端子保護用テープを延伸することにより、電磁波シールド膜が形成された前記端子付き半導体装置を前記端子保護用テープから剥離する工程と、
     を含む電磁波シールド膜付き半導体装置の製造方法。
    A step of embedding the terminals of the semiconductor device assembly with terminals in the viscoelastic layer of the terminal protection tape having the viscoelastic layer, and
    A step of dicing the semiconductor device assembly with terminals to make the semiconductor device assembly with terminals into a semiconductor device with terminals in which terminals are embedded in a viscoelastic layer of the terminal protection tape.
    A step of forming an electromagnetic wave shielding film on an exposed surface of the terminal-equipped semiconductor device that is not embedded in the viscoelastic layer of the terminal protection tape, and
    A step of peeling the terminal-equipped semiconductor device on which the electromagnetic wave shielding film is formed from the terminal protection tape by stretching the terminal protection tape.
    A method for manufacturing a semiconductor device with an electromagnetic wave shielding film including.
  3.  電磁波シールド膜が形成された前記端子付き半導体装置を前記端子保護用テープから剥離する前記工程における前記端子保護用テープの延伸量が1.0mm以上である、請求項1又は2に記載の電磁波シールド膜付き半導体装置の製造方法。 The electromagnetic wave shield according to claim 1 or 2, wherein the stretched amount of the terminal protection tape in the step of peeling the terminal-attached semiconductor device on which the electromagnetic wave shield film is formed from the terminal protection tape is 1.0 mm or more. A method for manufacturing a semiconductor device with a film.
  4.  直径0.25mmの端子を前記端子保護用テープの前記粘弾性層に埋設したときに、前記端子保護用テープの厚さ方向から観察される前記埋設された端子の外側に現れる気泡に由来する略円状の影の直径が0.30mm以上である請求項1~3のいずれか一項に記載の電磁波シールド膜付き半導体装置の製造方法。 Abbreviation derived from air bubbles appearing outside the embedded terminal observed from the thickness direction of the terminal protection tape when the terminal having a diameter of 0.25 mm is embedded in the viscoelastic layer of the terminal protection tape. The method for manufacturing a semiconductor device with an electromagnetic wave shielding film according to any one of claims 1 to 3, wherein the diameter of the circular shadow is 0.30 mm or more.
  5.  前記端子付き半導体装置の端子を埋設させる前記工程後で、かつ電磁波シールド膜を形成する前記工程前における、前記端子付き半導体装置に対する前記端子保護用テープの粘着力が6.5N/25mm以下である請求項1~4のいずれか一項に記載の電磁波シールド膜付き半導体装置の製造方法。 The adhesive strength of the terminal protection tape to the terminal-equipped semiconductor device is 6.5 N / 25 mm or less after the step of burying the terminals of the terminal-equipped semiconductor device and before the step of forming the electromagnetic wave shield film. The method for manufacturing a semiconductor device with an electromagnetic wave shielding film according to any one of claims 1 to 4.
  6.  前記端子付き半導体装置又は端子付き半導体装置集合体の端子の高さh0に対する前記粘弾性層の厚さd1の割合が、1.2≦d1/h0≦5.0を満たす請求項1~5のいずれか一項に記載の電磁波シールド膜付き半導体装置の製造方法。 2. The method for manufacturing a semiconductor device with an electromagnetic wave shielding film according to any one of the above.
  7.  前記粘弾性層が、埋め込み層及び粘着剤層を有する請求項1~6のいずれか一項に記載の電磁波シールド膜付き半導体装置の製造方法。 The method for manufacturing a semiconductor device with an electromagnetic wave shielding film according to any one of claims 1 to 6, wherein the viscoelastic layer has an embedded layer and an adhesive layer.
  8.  粘弾性層を有する端子保護用テープの前記粘弾性層に、端子付き半導体装置又は端子付き半導体装置集合体の端子を埋設させる前記工程における、前記埋め込み層の弾性率が0.05~20MPaである、請求項7に記載の電磁波シールド膜付き半導体装置の製造方法。 The elastic modulus of the embedded layer in the step of embedding the terminal of the terminal-equipped semiconductor device or the terminal-equipped semiconductor device assembly in the viscoelastic layer of the terminal protection tape having the viscoelastic layer is 0.05 to 20 MPa. The method for manufacturing a semiconductor device with an electromagnetic wave shielding film according to claim 7.
  9.  前記粘着剤層と、前記埋め込み層と、基材と、をこの順で有する、請求項7又は8に記載の電磁波シールド膜付き半導体装置の製造方法。 The method for manufacturing a semiconductor device with an electromagnetic wave shielding film according to claim 7 or 8, further comprising the pressure-sensitive adhesive layer, the embedded layer, and a base material in this order.
  10.  前記基材のヤング率が100~2000MPaである請求項9に記載の電磁波シールド膜付き半導体装置の製造方法。 The method for manufacturing a semiconductor device with an electromagnetic wave shielding film according to claim 9, wherein the Young's modulus of the base material is 100 to 2000 MPa.
  11.  前記埋め込み層は、エネルギー線硬化性の構成材料を用いて形成された埋め込み層である、請求項7~10のいずれか一項に記載の電磁波シールド膜付き半導体装置の製造方法。 The method for manufacturing a semiconductor device with an electromagnetic wave shielding film according to any one of claims 7 to 10, wherein the embedded layer is an embedded layer formed by using an energy ray-curable constituent material.
  12.  前記粘着剤層は、エネルギー線硬化性の粘着剤を用いて形成された粘着剤層である、請求項7~11のいずれか一項に記載の電磁波シールド膜付き半導体装置の製造方法。 The method for manufacturing a semiconductor device with an electromagnetic wave shielding film according to any one of claims 7 to 11, wherein the pressure-sensitive adhesive layer is a pressure-sensitive adhesive layer formed by using an energy ray-curable pressure-sensitive adhesive.
  13.  請求項4~12のいずれか一項に記載の電磁波シールド膜付き半導体装置の製造方法に用いられる端子保護用テープ。 A terminal protection tape used in the method for manufacturing a semiconductor device with an electromagnetic wave shielding film according to any one of claims 4 to 12.
PCT/JP2020/045307 2019-12-06 2020-12-04 Manufacturing method for semiconductor device with electromagnetic shield film, and terminal protection tape WO2021112238A1 (en)

Priority Applications (3)

Application Number Priority Date Filing Date Title
JP2021562753A JPWO2021112238A1 (en) 2019-12-06 2020-12-04
KR1020227002752A KR20220113345A (en) 2019-12-06 2020-12-04 Manufacturing method of semiconductor device with electromagnetic shielding film and tape for terminal protection
CN202080059202.7A CN114270494A (en) 2019-12-06 2020-12-04 Method for manufacturing semiconductor device with electromagnetic wave shielding film and terminal protection tape

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2019-221466 2019-12-06
JP2019221466 2019-12-06

Publications (1)

Publication Number Publication Date
WO2021112238A1 true WO2021112238A1 (en) 2021-06-10

Family

ID=76221755

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2020/045307 WO2021112238A1 (en) 2019-12-06 2020-12-04 Manufacturing method for semiconductor device with electromagnetic shield film, and terminal protection tape

Country Status (5)

Country Link
JP (1) JPWO2021112238A1 (en)
KR (1) KR20220113345A (en)
CN (1) CN114270494A (en)
TW (1) TW202137303A (en)
WO (1) WO2021112238A1 (en)

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH05117600A (en) * 1991-10-24 1993-05-14 Furukawa Electric Co Ltd:The Tacky adhesive tape for fixing semiconductor wafer
JP2011035076A (en) * 2009-07-30 2011-02-17 Sumitomo Bakelite Co Ltd Film for semiconductor and method of manufacturing semiconductor device
WO2016121488A1 (en) * 2015-01-30 2016-08-04 リンテック株式会社 Adhesive sheet for semiconductor processing
JP2017208388A (en) * 2016-05-16 2017-11-24 株式会社アルバック Method for manufacturing electronic components and processing system
JP2017208529A (en) * 2016-05-11 2017-11-24 積水化学工業株式会社 Semiconductor package manufacturing method

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011151372A (en) 2009-12-25 2011-08-04 Murata Mfg Co Ltd Method for manufacturing electronic component module, and electronic component module
JP6584245B2 (en) 2015-09-08 2019-10-02 三井化学東セロ株式会社 Film for manufacturing electronic parts and method for manufacturing electronic parts

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH05117600A (en) * 1991-10-24 1993-05-14 Furukawa Electric Co Ltd:The Tacky adhesive tape for fixing semiconductor wafer
JP2011035076A (en) * 2009-07-30 2011-02-17 Sumitomo Bakelite Co Ltd Film for semiconductor and method of manufacturing semiconductor device
WO2016121488A1 (en) * 2015-01-30 2016-08-04 リンテック株式会社 Adhesive sheet for semiconductor processing
JP2017208529A (en) * 2016-05-11 2017-11-24 積水化学工業株式会社 Semiconductor package manufacturing method
JP2017208388A (en) * 2016-05-16 2017-11-24 株式会社アルバック Method for manufacturing electronic components and processing system

Also Published As

Publication number Publication date
JPWO2021112238A1 (en) 2021-06-10
TW202137303A (en) 2021-10-01
KR20220113345A (en) 2022-08-12
CN114270494A (en) 2022-04-01

Similar Documents

Publication Publication Date Title
KR102510144B1 (en) Adhesive sheet for semiconductor processing
JP6213757B2 (en) Curable resin film and first protective film forming sheet
JP7301053B2 (en) Terminal protection tape and method for manufacturing semiconductor device with electromagnetic wave shielding film
KR102528605B1 (en) Sheet for forming a first protective film, method for forming a first protective film, and method for manufacturing a semiconductor chip
KR102545393B1 (en) Sheet for forming the first protective film
JP6273542B2 (en) Curable resin film and first protective film forming sheet
KR102544368B1 (en) Sheet for forming protective film
WO2021112238A1 (en) Manufacturing method for semiconductor device with electromagnetic shield film, and terminal protection tape
JP6821580B2 (en) Thermosetting resin film and first protective film forming sheet
JP6229222B2 (en) Curable resin film and first protective film forming sheet
KR102534927B1 (en) Thermosetting resin film, sheet for forming the first protective film, and method for forming the first protective film
JP7225250B2 (en) Terminal protection tape and method for manufacturing semiconductor device with electromagnetic wave shielding film

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 20896871

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2021562753

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 20896871

Country of ref document: EP

Kind code of ref document: A1