WO2021112156A1 - Substrate processing apparatus and substrate processing method - Google Patents

Substrate processing apparatus and substrate processing method Download PDF

Info

Publication number
WO2021112156A1
WO2021112156A1 PCT/JP2020/044959 JP2020044959W WO2021112156A1 WO 2021112156 A1 WO2021112156 A1 WO 2021112156A1 JP 2020044959 W JP2020044959 W JP 2020044959W WO 2021112156 A1 WO2021112156 A1 WO 2021112156A1
Authority
WO
WIPO (PCT)
Prior art keywords
substrate
cleaning
wafer
cleaning liquid
polishing
Prior art date
Application number
PCT/JP2020/044959
Other languages
French (fr)
Japanese (ja)
Inventor
英立 磯川
健史 新海
大 吉成
幸一 橋本
幸次 前田
海洋 徐
俊 江原
Original Assignee
株式会社荏原製作所
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from JP2019221177A external-priority patent/JP2023007512A/en
Priority claimed from JP2019221179A external-priority patent/JP2023007513A/en
Application filed by 株式会社荏原製作所 filed Critical 株式会社荏原製作所
Publication of WO2021112156A1 publication Critical patent/WO2021112156A1/en

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B24GRINDING; POLISHING
    • B24BMACHINES, DEVICES, OR PROCESSES FOR GRINDING OR POLISHING; DRESSING OR CONDITIONING OF ABRADING SURFACES; FEEDING OF GRINDING, POLISHING, OR LAPPING AGENTS
    • B24B55/00Safety devices for grinding or polishing machines; Accessories fitted to grinding or polishing machines for keeping tools or parts of the machine in good working condition
    • B24B55/06Dust extraction equipment on grinding or polishing machines
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/04Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer
    • H01L21/18Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer the devices having semiconductor bodies comprising elements of Group IV of the Periodic Table or AIIIBV compounds with or without impurities, e.g. doping materials
    • H01L21/30Treatment of semiconductor bodies using processes or apparatus not provided for in groups H01L21/20 - H01L21/26
    • H01L21/302Treatment of semiconductor bodies using processes or apparatus not provided for in groups H01L21/20 - H01L21/26 to change their surface-physical characteristics or shape, e.g. etching, polishing, cutting
    • H01L21/304Mechanical treatment, e.g. grinding, polishing, cutting
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/67Apparatus specially adapted for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus specially adapted for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components ; Apparatus not specifically provided for elsewhere
    • H01L21/677Apparatus specially adapted for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus specially adapted for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components ; Apparatus not specifically provided for elsewhere for conveying, e.g. between different workstations

Definitions

  • the present invention relates to a substrate processing apparatus and a substrate processing method.
  • This chemical mechanical polishing (CMP) apparatus generally includes a polishing table to which a polishing pad is attached, a top ring for holding a wafer, and a nozzle for supplying a polishing liquid onto the polishing pad. While supplying the polishing liquid from the nozzle onto the polishing pad, the wafer is pressed against the polishing pad by the top ring, and the top ring and the polishing table are moved relative to each other to polish the wafer and flatten its surface.
  • a substrate processing device in addition to such a CMP device, a device having a function of cleaning and further drying the polished wafer is known.
  • the substrate processing apparatus described in Patent Document 1 has a plurality of parallel cleaning lines in order to realize high throughput.
  • the wafer polished by the CMP apparatus is conveyed to the cleaning unit, and the wafer is cleaned and dried in the cleaning unit.
  • some polishing liquids used in the CMP apparatus adhere to the wafer over time.
  • the wafer cleaning efficiency is improved by quickly cleaning the wafer after polishing by the CMP apparatus. Can be enhanced.
  • the present invention has been made in view of the above circumstances, and one of the objects of the present invention is to propose a substrate processing apparatus and a substrate processing method capable of improving the cleaning efficiency of a substrate.
  • a substrate processing apparatus in which the substrate processing apparatus includes a polishing portion for polishing the substrate, a cleaning portion for cleaning the polished substrate, and the polishing of the substrate.
  • a transport mechanism for transporting from a portion to the cleaning portion which has a hand for holding the substrate and is configured so that the front surface and the back surface of the substrate can be inverted by rotating the hand. It includes a mechanism and an injection mechanism capable of injecting a cleaning liquid onto the substrate when the substrate is inverted by the transport mechanism.
  • a substrate processing method in which the substrate processing method involves a polishing step of polishing a substrate and an inversion of the polished substrate between the front surface and the back surface of the substrate. Includes a transport step of transporting the substrate to the cleaning unit, an injection step of injecting a cleaning liquid onto the substrate when the substrate is inverted in the transport step, and a step of cleaning the substrate in the cleaning unit.
  • a substrate processing apparatus includes a polishing portion for polishing a substrate, a plurality of cleaning lines for cleaning the polished substrate, and the plurality of cleaning lines.
  • a plurality of transport mechanisms for transporting the substrate in each cleaning line of the cleaning line, and the plurality of cleaning lines are arranged in series, and the substrate is moved in the first direction and delivered to any of the plurality of transport mechanisms. It is provided with a cleaning unit having a wafer station configured in the above, and an injection mechanism capable of injecting a cleaning liquid onto a substrate moving in the first direction by the wafer station.
  • a substrate processing method includes a polishing step for polishing a substrate and a wafer station in which the polished substrate is arranged in series with a plurality of cleaning lines.
  • a step of positioning the substrate, a step of moving the substrate in the first direction by the wafer station, and a step of transferring the substrate to one of a plurality of transfer mechanisms for transporting the substrate in each of the plurality of cleaning lines, and the wafer It includes an injection step of injecting a cleaning liquid onto the substrate moving in the first direction by a station, and a step of cleaning the substrate in any one of the plurality of cleaning lines.
  • FIG. 1 is a plan view showing an overall configuration of a substrate processing apparatus according to an embodiment of the present invention.
  • FIG. 2 is a perspective view schematically showing the first polishing apparatus.
  • FIG. 3 is a side view showing a transfer robot (convey mechanism).
  • FIG. 4 is a schematic view for explaining the injection of the cleaning liquid by the injection mechanism onto the wafer inverted by the transfer robot.
  • FIG. 5 is a flowchart showing an example of the substrate processing method of the present embodiment.
  • FIG. 6 is a plan view showing the overall configuration of the substrate processing apparatus according to the embodiment of the present invention.
  • FIG. 7 is a side view of the substrate processing apparatus shown in FIG. 6 as viewed from the cleaning unit side.
  • FIG. 8 is a perspective view schematically showing the first polishing apparatus.
  • FIG. 1 is a plan view showing an overall configuration of a substrate processing apparatus according to an embodiment of the present invention.
  • FIG. 2 is a perspective view schematically showing the first polishing apparatus.
  • FIG. 3 is
  • FIG. 9 is a side view showing a transfer robot (transfer mechanism).
  • FIG. 10 is a perspective view showing the internal configuration of the wafer station of the first cleaning unit.
  • FIG. 11 is a perspective view showing the internal configuration of the wafer station of the second cleaning unit.
  • FIG. 12 is a diagram for explaining the injection of the cleaning liquid onto the wafer by the first nozzle of the injection mechanism.
  • FIG. 13 is a diagram for explaining the injection of the cleaning liquid onto the wafer by the second nozzle of the injection mechanism.
  • FIG. 14 is a flowchart showing an example of the substrate processing method of the present embodiment.
  • FIG. 15 is a schematic view showing a polishing portion transport mechanism in a modified example.
  • FIG. 1 is a plan view showing an overall configuration of a substrate processing apparatus according to an embodiment of the present invention.
  • the substrate processing apparatus 10-1 in the present embodiment includes a housing having a substantially rectangular shape in a plan view, and the inside of the housing has a load / unload portion 11-1 and a polishing portion 12- by a partition wall. It is divided into 1 and a cleaning unit 13-1 and a transport unit 14-1.
  • the load / unload section 11-1, the polishing section 12-1, the cleaning section 13-1, and the transport section 14-1 are assembled independently and exhausted independently.
  • the substrate processing apparatus 10-1 has a control unit 15-1 (control) that controls the operations of the load / unload unit 11-1, the polishing unit 12-1, the cleaning unit 13-1, and the transport unit 14-1. (Also called a board) is provided.
  • the load / unload section 11-1 includes a plurality of (four in the illustrated example) front load section 113-1 on which a wafer cassette for stocking a large number of wafers (boards) W is placed. These front load portions 113-1 are arranged adjacent to each other in the width direction (direction perpendicular to the longitudinal direction) of the substrate processing apparatus 10-1.
  • An open cassette, a SMIF (Standard Manufacturing Interface) pod, or a FOUP (Front Opening Enhanced Pod) can be mounted on the front load unit 113-1.
  • SMIF and FOUP are closed containers that can maintain an environment independent of the external space by storing the wafer cassette inside and covering it with a partition wall.
  • a traveling mechanism 112-1 is laid along the arrangement direction of the front loading section 113-1, and the front loading section 113-1 is laid on the traveling mechanism 112-1.
  • a transfer robot 111-1 that can move along the arrangement direction of the above is installed.
  • the transfer robot 111-1 can access the wafer cassette mounted on the front load portion 113-1 by moving on the traveling mechanism 112-1.
  • the transfer robot 111-1 has two upper and lower hands. For example, the upper hand is used when returning the wafer W to the wafer cassette, and the lower hand is used when transferring the wafer W before polishing. You can use it to use the upper and lower hands properly. Instead of this, the wafer W may be conveyed with only a single hand.
  • the transport section 14-1 is a region for transporting the wafer before polishing from the load / unload section 11-1 to the polishing section 12-1, and is provided so as to extend along the longitudinal direction of the substrate processing apparatus 10-1. Has been done.
  • a motor drive mechanism using a ball screw or an air cylinder is used as the transport unit 14-1.
  • the polishing unit 12-1 is a region where the wafer W is polished, and has a first polishing unit 20a-1, a second polishing unit 20b-1, and a polishing unit transfer mechanism 22-1. ..
  • the first polishing unit 20a-1 has a first polishing device 21a-1 and a second polishing device 21b-1
  • the second polishing unit 20b-1 has a third polishing device 21c-1 and a fourth polishing device. It has 21d-1 and.
  • the polishing unit transfer mechanism 22-1 is arranged so as to be adjacent to each of the transfer unit 14-1 and the first polishing unit 20a-1 and the second polishing unit 20b-1.
  • the polishing unit transfer mechanism 22-1 is arranged between the cleaning unit 13-1 and the first polishing unit 20a-1 and the second polishing unit 20b-1 in the width direction of the substrate processing device 10-1.
  • the first polishing device 21a-1, the second polishing device 21b-1, the third polishing device 21c-1, and the fourth polishing device 21d-1 are arranged along the longitudinal direction of the substrate processing device 10-1. .. Since the second polishing device 21b-1, the third polishing device 21c-1, and the fourth polishing device 21d-1 have the same configuration as the first polishing device 21a-1, the first polishing device is described below. 21a-1 will be described.
  • FIG. 2 is a perspective view schematically showing the first polishing apparatus 21a-1.
  • the first polishing device 21a-1 has a polishing table 101a-1 to which a polishing pad 102a-1 having a polishing surface is attached, and a polishing pad 102a-1 that holds the wafer W and holds the wafer W on the polishing table 101a-1.
  • a polishing liquid also referred to as slurry
  • a dressing liquid for example, pure water
  • a dresser for dressing the polished surface of the polishing pad 102a-1 and a mixed gas or liquid (for example, pure water) of a liquid (for example, pure water) and a gas (for example, nitrogen gas) are atomized. It has an atomizer (not shown) that sprays onto the polished surface.
  • a mixed gas or liquid for example, pure water
  • a liquid for example, pure water
  • a gas for example, nitrogen gas
  • the top ring 25a-1 is supported by the top ring shaft 103a-1.
  • a polishing pad 102a-1 is attached to the upper surface of the polishing table 101a-1, and the upper surface of the polishing pad 102a-1 constitutes a polishing surface for polishing the wafer W.
  • a fixed whetstone can be used instead of the polishing pad 102a-1.
  • the top ring 25a-1 and the polishing table 101a-1 are configured to rotate about their axis, as indicated by the arrows in FIG.
  • the wafer W is held on the lower surface of the top ring 25a-1 by vacuum suction.
  • the polishing liquid is supplied from the polishing liquid supply nozzle 104a-1 to the polishing surface of the polishing pad 102a-1, and the wafer W to be polished is pressed against the polishing surface by the top ring 25a-1 to be polished.
  • the top ring 25a-1 of the first polishing device 21a-1 moves between the polishing position and the first substrate transport position TP1 by the swing operation of the top ring head.
  • the wafer is delivered to the first polishing apparatus 21a-1 at the first substrate transfer position TP1.
  • the top rings of the second to fourth polishing devices 21b-1 to 21d-1 move between the polishing position and the second to fourth substrate transport positions TP2 to TP4 by the swing operation of the top ring head, respectively.
  • the transfer of the wafer to the second to fourth polishing devices 21b-1 to 21d-1 is performed at the second to fourth substrate transfer positions TP2 to TP4.
  • the polishing unit transfer mechanism 22-1 has a first transfer unit 24a-1 that transfers the wafer W to the first polishing unit 20a-1 and a second transfer unit 24b-that conveys the wafer W to the second polishing unit 20b-1. It has 1 and. Further, the polishing unit transfer mechanism 22-1 is arranged between the first transfer unit 24a-1 and the second transfer unit 24b-1, and is arranged between the transfer unit 14-1 and the first transfer unit 24a-1 and the second transfer unit 24a-1. It has a transfer robot (transfer mechanism) 23-1 that transfers a wafer to and from the unit 24b-1. In the illustrated example, the transfer robot 23-1 is arranged substantially in the center of the housing of the substrate processing apparatus 10-1.
  • FIG. 3 is a side view showing the transfer robot (convey mechanism) 23-1.
  • the transfer robot 23-1 inverts the hand 231-1 holding the wafer W and the hand 231-1 upside down (that is, inverts the front surface and the back surface of the wafer W).
  • It has a robot body 233-1 including a mechanism.
  • the robot body 233-1 is attached so as to hang from the ceiling frame of the polishing portion 12-1.
  • the reversing mechanism 234-1 is configured so that the hand 231-1 can be rotated by a drive mechanism such as a motor to turn the hand 231-1 upside down.
  • the hand 231-1 is accessible to the transport unit 14-1.
  • the hand 231-1 is also accessible to the first transport unit 24a-1 and the second transport unit 24b-1 of the polishing unit 12-1. Therefore, the wafer W continuously transferred from the transfer unit 14-1 to the polishing unit 12-1 is distributed to the first transfer unit 24a-1 and the second transfer unit 24b-1 by the transfer robot 23-1.
  • the first transfer unit 24a-1 transfers the wafer W to the first polishing unit 20a-1
  • the second transfer unit 24b-1 transfers the wafer W to the second polishing unit 20b-1.
  • the hand 231-1 is accessible to the cleaning unit 13-1.
  • the wafers W polished by the first to fourth polishing devices 21a-1 to 21d-1 are transferred from the first transfer units 24a-1 and 24b-1 to the transfer robot 23-1 again, and subsequently. It is delivered from the transfer robot 23-1 to the cleaning unit 13-1.
  • the polishing unit transfer mechanism 22-1 has an injection mechanism 26-1 configured to be capable of injecting a cleaning liquid onto the wafer W held by the transfer robot 23-1 (). Not shown in FIG. 1).
  • the injection mechanism 26-1 is controlled by the control unit 15-1.
  • the injection mechanism 26-1 includes a nozzle 261-1 that injects the cleaning liquid 262-1, a cleaning liquid adjusting mechanism 263-1 that can adjust the cleaning liquid supplied to the nozzle 261-1, and a first cleaning liquid supply source 264. It has -1 and a second cleaning liquid supply source 265-1.
  • a spray nozzle or a droplet nozzle can be adopted.
  • the injection mechanism 26-1 may have a sprayer or the like in place of or in addition to the nozzle 261-1 as long as it can inject the cleaning liquid 262-1 onto the wafer W.
  • the nozzle 261-1 is fixed to a frame (not shown) of the polishing portion 12-1.
  • the nozzle 261-1 may be configured to be movable by a moving mechanism (not shown).
  • the nozzle 261-1 is preferably arranged above the target (wafer W or the hand 231-1 of the transfer robot 23-1) for injecting the cleaning liquid.
  • the nozzle 261-1 is configured so that the injection center direction of the cleaning liquid is inclined with respect to the vertical direction and the horizontal direction.
  • the nozzle 261-1 is arranged horizontally away from the object to which the cleaning liquid is sprayed. As a result, when the cleaning liquid or the like is unintentionally dropped from the nozzle 261-1, it is possible to prevent the dropped object from hitting the wafer W. Further, as an example, in the nozzle 261-1, the tip of the nozzle 261-1 is drawn out from the robot body 233-1 of the transfer robot 23-1 (particularly, the lead wire of reference numeral 233-1 in FIGS. 3 and 4 is drawn out. It is better to arrange it so that it faces the surface). Further, as an example, the nozzle 261-1 may be arranged so that the tip of the nozzle 261-1 faces the root of the hand 231-1.
  • the reversing mechanism 234-1 and the arm 232-1 can be suitably cleaned by the injection liquid injected from the injection mechanism 26-1.
  • the nozzle 261-1 may be configured to inject the cleaning liquid 262-1 into a cone shape (conical shape) or a fan shape.
  • the injection mechanism 26-1 is such that the range (diameter) of the cleaning liquid that is injected in a cone shape or a fan shape and acts on the wafer W is equal to the diameter of the wafer W or slightly larger than the diameter of the wafer W. It is composed.
  • the cleaning liquid 262-1 can be sprayed over a wide range from the nozzle 261-1, and the cleaning liquid 262-1 can be uniformly applied to the target.
  • the first cleaning liquid supply source 264-1 and the second cleaning liquid supply source 265-1 are connected to the nozzle 261-1 via the cleaning liquid adjusting mechanism 263-1.
  • Different cleaning liquids are stored in the first cleaning liquid supply source 264-1 and the second cleaning liquid supply source 265-1.
  • pure water is stored as the first cleaning liquid in the first cleaning liquid supply source 264-1
  • rinse hydrofluoric acid, ammonia, etc.
  • At least one of the first cleaning liquid and the second cleaning liquid may be the same as the cleaning liquid used in the cleaning unit 13-1. Further, at least one of the first cleaning liquid and the second cleaning liquid may be different from the cleaning liquid used in the cleaning unit 13-1.
  • the nozzle 261-1 is not limited to the one in which two cleaning liquid supply sources are connected, and one or three or more cleaning liquid supply sources may be connected.
  • the cleaning liquid (for example, the first cleaning liquid and the second cleaning liquid) injected from the injection mechanism 26-1 is selected based on the residue to be removed of the wafer W. As an example, only the cleaning liquid supply source in which pure water is stored may be connected to the nozzle 261-1.
  • the cleaning liquid adjusting mechanism 263-1 supplies the cleaning liquid from the first cleaning liquid supply source 264-1 and the second cleaning liquid supply source 265-1 to the nozzle 261-1 according to a predetermined recipe.
  • control unit 15-1 may supply the cleaning liquid from the first cleaning liquid supply source 264-1 and the second cleaning liquid supply source 265-1 to the nozzle 261-1 according to the setting through the setting unit 15c-1. ..
  • the cleaning liquid adjusting mechanism 263-1 switches the cleaning liquid supplied to the nozzle 261-1 between the first cleaning liquid from the first cleaning liquid supply source 264-1 and the second cleaning liquid from the second cleaning liquid supply source 265-1. May be supplied. Further, the cleaning liquid adjusting mechanism 263-1 may supply the cleaning liquid to the nozzle 261-1 by adjusting the mixing ratio of the first cleaning liquid and the second cleaning liquid.
  • the injection mechanism 26-1 is realized by a two-fluid nozzle mechanism, and a carrier gas supply source 266-1 for supplying a carrier gas such as nitrogen is connected to the nozzle 261-1. ing.
  • a carrier gas supply source 266-1 for supplying a carrier gas such as nitrogen is connected to the nozzle 261-1. ing.
  • a carrier gas supply source 266-1 for supplying a carrier gas such as nitrogen is connected to the nozzle 261-1. ing.
  • a carrier gas supply source 266-1 for supplying a carrier gas such as nitrogen is connected to the nozzle 261-1. ing.
  • a carrier gas supply source 266-1 for supplying a carrier gas such as nitrogen is connected to the nozzle 261-1.
  • the cleaning unit 13-1 is an area for cleaning the polished wafer, and includes a wafer station 33a-1 as a temporary stand for temporarily placing the substrate and four cleaning modules 311a-1 to clean the polished substrate.
  • 314a-1 (hereinafter, may be referred to as a primary to quaternary cleaning module) and a transfer unit 32a-1 for transferring a wafer between the wafer station 33a-1 and the cleaning modules 311a-1 to 314a-1. , Is equipped.
  • the wafer station 33a-1 and the plurality of cleaning modules 311a-1 to 314a-1 are arranged in series along the longitudinal direction of the substrate processing apparatus 10-1.
  • a cleaning machine for the primary cleaning module 311a-1 and the secondary cleaning module 312a-1 for example, roll-shaped sponges arranged vertically are rotated and pressed against the front surface and the back surface of the wafer to press the front surface and the back surface of the wafer.
  • a roll-type washer for cleaning can be used.
  • the cleaning machine of the tertiary cleaning module 313a-1 for example, a pencil type cleaning machine in which a hemispherical sponge is rotated and pressed against the wafer to perform cleaning can be used.
  • the cleaning machine for the quaternary cleaning module 314a-1 for example, a pencil type cleaning machine is used in which the back surface of the wafer can be rinsed and the surface of the wafer is cleaned by pressing a hemispherical sponge while rotating it. be able to.
  • the washing machine of the quaternary washing module 314a-1 is provided with a stage for rotating the chucked wafer at high speed, and has a function (spin dry function) of drying the washed wafer by rotating the wafer at high speed.
  • spin dry function a function of drying the washed wafer by rotating the wafer at high speed.
  • a megasonic type washer that irradiates the cleaning liquid with ultrasonic waves for cleaning is provided. It may be additionally provided.
  • the control unit 15-1 is provided to control each component of the substrate processing device 10-1.
  • the control unit 15-1 may be configured as a microcomputer that includes a CPU, a memory, and the like and realizes a predetermined function by using software, or may be configured as a hardware circuit that performs dedicated arithmetic processing.
  • the control unit 15-1 of the present embodiment includes a calculation unit 15a-1, a memory 15b-1, and a setting unit 15c-1.
  • the setting unit 15c-1 functions as a user interface and is used to set various setting values (setting information) by an external operation.
  • the setting unit 15c-1 includes an operation button (not shown), a touch panel, and the like, and various setting values set in the setting unit 15c-1 are stored in the memory 15b-1.
  • the wafer W before polishing is taken out from the wafer cassette of the front load section 113-1 by the transfer robot 111-1 of the load / unload section 11-1, and the transfer section 14-1 Handed over to.
  • the wafer W is delivered from the transfer unit 14-1 to the transfer robot 23-1, and the wafer W is turned upside down together with the hand 231-1 by the reversing mechanism 234-1 of the transfer robot 23-1. ..
  • the processing surface of the wafer W is directed downward.
  • the transfer robot 23-1 delivers the transfer to the first transfer unit 24a-1 or the second transfer unit 24b-1, and the first transfer unit 24a-1 or the second transfer unit 24b-1 first to fourth.
  • the wafer W is carried into the polishing devices 21a-1 to 21d-1.
  • the wafer W is attracted and held by the top ring and is polished by abutting with the polishing pad 102a-1.
  • the polished wafer W is received from the first polishing devices 21a-1 to 21d-1 to the transfer robot 23-1 through the first transfer unit 24a-1 or the second transfer unit 24b-1. Passed. Subsequently, the wafer W is turned upside down together with the hand 231-1 by the reversing mechanism 234-1 of the transfer robot 23-1. As a result, the processing surface of the wafer W is directed upward.
  • the cleaning liquid when the polished wafer W is inverted by the transfer robot 23-1, the cleaning liquid is injected onto the wafer W by the injection mechanism 26-1.
  • the cleaning liquid By spraying the polishing liquid while inverting the wafer W, the cleaning liquid can act on the entire surface of the wafer W.
  • the control unit 15-1 is at a position where the wafer W is along the vertical direction (vertical position) when the cleaning liquid is injected by the injection mechanism 26-1, that is, the plate surface of the wafer W faces in the horizontal direction. At the position, it may be stopped for a first hour (eg, a few seconds) (see FIG. 4). In this way, the cleaning liquid can be poured over the plate surface of the wafer W, and foreign matter can be efficiently removed from the wafer W.
  • control unit 15-1 may stop the wafer W at the vertical position for a second time (for example, several seconds) after the injection of the cleaning liquid by the injection mechanism 26-1 is completed. As a result, excess cleaning liquid and foreign matter can be removed from the plate surface of the wafer W.
  • the control unit 15-1 may invert the wafer W a plurality of times.
  • the number of times the wafer W is inverted may be a predetermined number of times (for example, twice), or may be set through the setting unit 15c-1. Further, the control unit 15-1 may adjust the speed at which the wafer W is inverted by the inversion mechanism 234-1.
  • control unit 15-1 controls the inversion mechanism 234-1 so that the wafer W is inverted at the first inversion rate when the wafer W before processing by the polishing unit 12-1 is inverted, and the polishing unit 12-1
  • the inverting mechanism 234-1 may be controlled so that the wafer W is inverted at a second inverting speed slower than the first speed.
  • the wafer W before polishing can be quickly inverted to speed up the processing in the substrate processing apparatus 10-1, and the wafer W after polishing can be inverted relatively slowly to transfer the cleaning liquid to the wafer W.
  • the inversion speed of the wafer W may be a predetermined speed or may be set through the setting unit 15c-1.
  • the cleaning liquid is applied to the wafer W when the wafer W is inverted by the transfer robot 23-1.
  • the wafer W can be pre-cleaned by acting.
  • a mechanism for newly moving the wafer W for pre-cleaning is provided.
  • the cleaning liquid can be preferably applied to the wafer W without being provided.
  • the wafer W is handed over from the transfer robot 23-1 to the cleaning unit 13-1, and cleaning and drying are performed in the cleaning unit 13-1.
  • the wafer W is taken out from the cleaning unit 13-1 to the load / unload unit 11-1, and the substrate processing in the substrate processing apparatus 10-1 is completed.
  • the cleaning liquid may be injected into the hand 231-1 of the transfer robot 23-1 by the injection mechanism 26-1.
  • the injection mechanism 26-1 can also clean the hand 231-1 of the transfer robot 23-1.
  • the cleaning liquid may be injected from the injection mechanism 26-1 while the hand 231-1 is inverted by the reversing mechanism 234-1.
  • the above-mentioned substrate processing apparatus 10-1 executes the substrate processing method shown in FIG. That is, the wafer W is polished by the polishing unit 12-1 (step S12-1), and the polished wafer W is inverted and conveyed by the transfer robot (transfer mechanism) 23-1 (step S14-1). Further, when the polished wafer W is inverted by the transfer robot 23-1, the cleaning liquid is injected onto the wafer W from the injection mechanism 26-1 (step S16-1). As a result, the wafer W can be pre-cleaned. Then, the wafer W is delivered to the cleaning unit 13-1 by the transfer robot 23-1, and the wafer W is cleaned by the cleaning unit 13-1 (step S18-1).
  • the cleaning liquid is sprayed onto the wafer W in advance in step S16-1 to pre-clean the wafer W, the cleaning time in the cleaning unit 13-1 can be shortened. According to such a substrate processing method, the cleaning efficiency of the wafer W can be improved.
  • the processing surface comes into contact with the substrate processing apparatus 10-1 and becomes contaminated or damaged.
  • the processing surface of the wafer W is turned upward so as not to prevent it.
  • the wafer W is polished by the polishing unit 12-1
  • the wafer W is inverted by the transfer robot 23-1 so that the polishing liquid acts on the polishing pad 102a-1 so that the processing surface faces downward. It is said that.
  • the polishing by the polishing unit 12-1 is completed, the wafer W is turned over again by the transfer robot 23-1 so that the processed surface is not contaminated or damaged, and the processed surface is turned upward to the cleaning unit 13-1.
  • the polishing liquid or polishing residue remaining on the wafer W due to polishing by the polishing unit 12-1 may spread over the entire surface of the wafer W due to the rotation of the wafer W by the transfer robot 23-1. There is. Further, the polishing liquid or the polishing residue may adhere to the transfer robot 23-1, or the polishing liquid or the polishing residue attached to the transfer robot 23-1 may contaminate the wafer W from the next time onward.
  • the polishing liquid used in the polishing unit 12-1 is generally highly viscous, and when it dries over time, the polishing liquid solidifies and becomes difficult to remove.
  • the injection mechanism 26-that can inject the cleaning liquid onto the wafer W. 1 is provided.
  • the cleaning liquid can be allowed to act on the wafer W and the transfer robot 23-1 at an early timing, and the polishing liquid or the polishing residue adhering to the wafer W and the transfer robot 23-1 can be suitably removed.
  • the cleaning liquid can be applied to the wafer W with the rotation of the wafer W by the transfer robot 23-1, the cleaning liquid can be uniformly applied to the entire surface of the wafer W to clean the wafer W.
  • FIG. 6 is a plan view showing the overall configuration of the substrate processing apparatus according to the embodiment of the present invention
  • FIG. 7 is a side view of the polishing apparatus shown in FIG. 6 as viewed from the cleaning unit side.
  • the substrate processing apparatus 10-2 in the present embodiment includes a housing having a substantially rectangular shape in a plan view, and the inside of the housing is polished with a load / unload portion 11-2 by a partition wall. It is divided into a section 12-2, a cleaning section 13-2, and a transport section 14-2. The load / unload section 11-2, the polishing section 12-2, the cleaning section 13-2, and the transport section 14-2 are assembled independently and exhausted independently.
  • the substrate processing apparatus 10-2 has a control unit 15-2 (control) that controls the operations of the load / unload unit 11-2, the polishing unit 12-2, the cleaning unit 13-2, and the transport unit 14-2. It is also called a board).
  • the load / unload section 11-2 includes a plurality of (four in the illustrated example) front load sections 113-2 on which a wafer cassette for stocking a large number of wafers (boards) W is placed. These front load portions 113-2 are arranged adjacent to each other in the width direction (direction perpendicular to the longitudinal direction) of the substrate processing apparatus 10-2.
  • An open cassette, a SMIF (Standard Manufacturing Interface) pod, or a FOUP (Front Opening Enhanced Pod) can be mounted on the front load unit 113-2.
  • SMIF and FOUP are closed containers that can maintain an environment independent of the external space by storing the wafer cassette inside and covering it with a partition wall.
  • a traveling mechanism 112-2 is laid along the arrangement direction of the front loading portion 113-2, and the front loading portion 113-2 is laid on the traveling mechanism 112-2.
  • a transfer robot 111-2 that can move along the arrangement direction of is installed.
  • the transfer robot 111-2 can access the wafer cassette mounted on the front load portion 113-2 by moving on the traveling mechanism 112-2.
  • the transfer robot 111-2 has two upper and lower hands. For example, the upper hand is used when returning the wafer W to the wafer cassette, and the lower hand is used when transferring the wafer W before polishing. You can use it to use the upper and lower hands properly. Instead of this, the wafer W may be conveyed with only a single hand.
  • the transport section 14-2 is a region for transporting the wafer before polishing from the load / unload section 11-2 to the polishing section 12-2, and is provided so as to extend along the longitudinal direction of the substrate processing apparatus 10-2. Has been done.
  • a motor drive mechanism using a ball screw or an air cylinder is used as the transport unit 14-2.
  • the polishing unit 12-2 is a region where the wafer W is polished, and has a first polishing unit 20a-2, a second polishing unit 20b-2, and a polishing unit transfer mechanism 22-2. ..
  • the first polishing unit 20a-2 has a first polishing device 21a-2 and a second polishing device 21b-2
  • the second polishing unit 20b-2 has a third polishing device 21c-2 and a fourth polishing device. It has 21d-2 and.
  • the polishing unit transfer mechanism 22-2 is arranged so as to be adjacent to each of the transfer unit 14-2, the first polishing unit 20a-2, and the second polishing unit 20b-2.
  • the polishing unit transfer mechanism 22-2 is arranged between the cleaning unit 13-2 and the first polishing unit 20a-2 and the second polishing unit 20b-2 in the width direction of the substrate processing device 10-2.
  • the first polishing device 21a-2, the second polishing device 21b-2, the third polishing device 21c-2, and the fourth polishing device 21d-2 are arranged along the longitudinal direction of the substrate processing device 10-2. .. Since the second polishing device 21b-2, the third polishing device 21c-2, and the fourth polishing device 21d-2 have the same configuration as the first polishing device 21a-2, the first polishing device will be described below. 21a-2 will be described.
  • FIG. 8 is a perspective view schematically showing the first polishing apparatus 21a-2.
  • the first polishing device 21a-2 has a polishing table 101a-2 to which a polishing pad 102a-2 having a polishing surface is attached, and a polishing pad 102a-2 that holds the wafer W and holds the wafer W on the polishing table 101a-2.
  • a polishing liquid also called a slurry
  • a dressing liquid for example, pure water
  • a dresser for dressing the polished surface of the polishing pad 102a-2 and a mixed gas or liquid (for example, pure water) of a liquid (for example, pure water) and a gas (for example, nitrogen gas) are atomized. It has an atomizer (not shown) that sprays onto the polished surface.
  • a mixed gas or liquid for example, pure water
  • a liquid for example, pure water
  • a gas for example, nitrogen gas
  • the top ring 25a-2 is supported by the top ring shaft 103a-2.
  • a polishing pad 102a-2 is attached to the upper surface of the polishing table 101a-2, and the upper surface of the polishing pad 102a-2 constitutes a polishing surface for polishing the wafer W.
  • a fixed whetstone can be used instead of the polishing pad 102a-2.
  • the top ring 25a-2 and the polishing table 101a-2 are configured to rotate about their axis, as indicated by the arrows in FIG.
  • the wafer W is held on the lower surface of the top ring 25a-2 by vacuum suction.
  • the polishing liquid is supplied from the polishing liquid supply nozzle 104a-2 to the polishing surface of the polishing pad 102a-2, and the wafer W to be polished is pressed against the polishing surface by the top ring 25a-2 to be polished.
  • the top ring 25a-2 of the first polishing device 21a-2 moves between the polishing position and the first substrate transport position TP1 by the swing operation of the top ring head.
  • the wafer is delivered to the first polishing apparatus 21a-2 at the first substrate transfer position TP1.
  • the top rings of the second to fourth polishing devices 21b-2 to 21d-2 move between the polishing position and the second to fourth substrate transport positions TP2 to TP4 by the swing operation of the top ring head, respectively.
  • Wafers are delivered to the 2nd to 4th polishing devices 21b-2 to 21d-2 at the 2nd to 4th substrate transfer positions TP2 to TP4.
  • the polishing unit transfer mechanism 22-2 includes a first transfer unit 24a-2 that transfers the wafer W to the first polishing unit 20a-2 and a second transfer unit 24b-that conveys the wafer W to the second polishing unit 20b-2. 2 and. Further, the polishing unit transport mechanism 22-2 is arranged between the first transport unit 24a-2 and the second transport unit 24b-2, and the transport unit 14-2, the first transport unit 24a-2, and the second transport unit 22-2 are arranged. It has a transfer robot (transfer mechanism) 23-2 that transfers a wafer to and from the unit 24b-2. In the illustrated example, the transfer robot 23-2 is arranged substantially in the center of the housing of the substrate processing apparatus 10-2.
  • FIG. 9 is a side view showing the transfer robot (convey mechanism) 23-2.
  • the transfer robot 23-2 inverts the hand 231-2 holding the wafer W and the hand 231-2 upside down (that is, inverts the front surface and the back surface of the wafer W).
  • It has a robot body 233-2 including a mechanism.
  • the robot body 233-2 is attached so as to hang from the ceiling frame of the polishing portion 12-2.
  • the hand 231-2 is accessible to the transport unit 14-2. Further, the hand 231-2 is also accessible to the first transport unit 24a-2 and the second transport unit 24b-2 of the polishing unit 12-2. Therefore, the wafer W continuously transferred from the transfer unit 14-2 to the polishing unit 12-2 is distributed to the first transfer unit 24a-2 and the second transfer unit 24b-2 by the transfer robot 23-2.
  • the first transport unit 24a-2 transports the wafer W to the first polishing unit 20a-2
  • the second transport unit 24b-2 transports the wafer W to the second polishing unit 20b-2.
  • the hand 231-2 is accessible to the cleaning unit 13-2.
  • the wafers W polished by the first to fourth polishing devices 21a-2 to 21d-2 are transferred from the first transfer units 24a-2 and 24b-2 to the transfer robot 23-2 again, and subsequently. It is delivered from the transfer robot 23-2 to the cleaning unit 13-2.
  • the cleaning unit 13-2 is a region for cleaning the wafer after polishing, and the first cleaning unit 30a-2 and the second cleaning unit 30b-2 arranged in two upper and lower stages are arranged. have.
  • the above-mentioned transport unit 14-2 is arranged between the first cleaning unit 30a-2 and the second cleaning unit 30b-2. Since the first cleaning unit 30a-2, the transport unit 14-2, and the second cleaning unit 30b-2 are arranged so as to overlap each other in the vertical direction, an advantage that the footprint is small can be obtained.
  • the first cleaning unit 30a-2 includes a plurality of (four in the illustrated example) cleaning modules 311a-2, 312a-2, 313a-2, 314a-2 and a wafer. It has a station 33a-2, and a cleaning unit transfer mechanism 32a-2 for transferring the wafer W between the cleaning modules 311a-2 to 314a-2 and the wafer station 33a-2.
  • the plurality of cleaning modules 311a-2 to 314-2 (first cleaning line) a and the wafer station 33a-2 are arranged in series along the longitudinal direction of the substrate processing apparatus 10-2.
  • a filter fan unit (not shown) having a clean air filter is provided above each cleaning module 311a-2 to 314a-2, and clean air from which particles have been removed by the filter fan unit is always downward. It is blowing out toward. Further, the inside of the first cleaning unit 30a-2 is always maintained at a pressure higher than that of the polishing unit 12-2 in order to prevent the inflow of particles from the polishing unit 12-2.
  • the second cleaning unit 30b-2 includes a plurality of (four in the illustrated example) cleaning modules 311b-2, 312b-2, 313b-2, 314b-2, and a wafer station 33b-2, respectively. It has a cleaning unit transport mechanism 32b-2 that transports the wafer W between the cleaning modules 311b-2 to 314b-2 and the wafer station 33b-2.
  • the plurality of cleaning modules 311b-2 to 314b-2 and the wafer station 33b-2 are arranged in series along the longitudinal direction of the substrate processing apparatus 10-2.
  • a filter fan unit (not shown) having a clean air filter is provided above each cleaning module 311b-2 to 314b-2, and clean air from which particles have been removed by the filter fan unit is always downward. It is blowing out toward. Further, the inside of the second cleaning unit 30b-2 is always maintained at a pressure higher than that of the polishing unit 12-2 in order to prevent the inflow of particles from the polishing unit 12-2.
  • FIG. 10 is a perspective view showing the internal configuration of the wafer station 33a-2 of the first cleaning unit 30a-2.
  • the wafer station 33a-2 functions as a temporary stand for the polished wafer W, moves the wafer W in the first direction (vertical direction in the example shown in FIG. 10), and delivers the wafer W to the cleaning unit transfer mechanism 32a-2. It is configured to be able to.
  • the first direction is not limited to the vertical direction (vertical direction), and may be a horizontal direction, a vertical direction, or a direction inclined in the horizontal direction.
  • the first direction is a direction different from the transfer direction (for example, the horizontal direction) of the wafer W to the wafer station 33a-2 (stage 72-2) by the transfer robot 23-2 of the polishing unit 12-2, particularly perpendicular. It may be a direction.
  • the wafer station 33a-2 has a substantially rectangular parallelepiped shape, a stage 72-2 arranged inside the housing 71-2 and holding the wafer W, and a stage 72. It has a drive mechanism 75-2 that moves -2 up and down.
  • the housing 71-2 has a bottom plate, four side plates, and a top plate. Of the four side plates, a carry-in inlet 73-2 communicating with the polishing portion 12-2 is formed at the lower end portion of the side plate facing the polishing portion 12-2.
  • the carry-in entrance 73-2 can be opened and closed by a shutter (not shown).
  • the transfer robot 23-2 of the polishing unit 12-2 can access the inside of the housing 71-2 from the carry-in entrance 73-2, and can deliver the polished wafer W to the stage 72-2.
  • a wafer transfer opening 74-2 is formed for passing the arm of the unit transfer mechanism 32a-2.
  • the wafer transfer opening 74-2 can be opened and closed by a shutter (not shown).
  • the cleaning unit transfer mechanism 32a-2 of the first cleaning unit 30a-2 can access the inside of the housing 71-2 through the wafer transfer opening 74-2, and the wafer W has the wafer transfer opening 74-. It is delivered from the stage 72-2 to the cleaning unit transport mechanism 32a-2 of the first cleaning unit 30a-2 through 2.
  • the drive mechanism 75-2 for example, a motor drive mechanism using a ball screw or an air cylinder is used.
  • the stage 72-2 is fixed to the movable part of the drive mechanism 75-2, and the height position facing the carry-in inlet 73-2 and the wafer transfer opening 74-2 are supplied by the power supplied from the drive mechanism 75-2. It is moved up and down between the height position facing the.
  • pins 76-2 are provided on the outer periphery of the stage 72-2 so as to protrude upward. Therefore, the wafer W mounted on the stage 72-2 is supported on the stage 72-2 with its outer peripheral edge guided and positioned by the four pins 76-2.
  • These pins 76-2 are formed from resins such as polypropylene (PP), polychlorotrifluoroethylene (PCTFE) and polyetheretherketone (PEEK).
  • PP polypropylene
  • PCTFE polychlorotrifluoroethylene
  • PEEK polyetheretherketone
  • the stage 72-2 is formed in a frame shape having an opening or a notch so as to expose and support the lower surface of the wafer W.
  • the housing 71-2 of the wafer station 33a-2 is provided with an injection mechanism 90a-2 configured to be capable of injecting a cleaning liquid onto the wafer W held by the stage 72-2. (Not shown in FIG. 6).
  • the injection mechanism 90a-2 is controlled by the control unit 15-2.
  • the injection mechanism 90a-2 includes a first nozzle 91a-2 provided above the housing 71-2 and ejecting a cleaning liquid downward, and a first nozzle 91a-2 inside the housing 71-2.
  • a spray nozzle or a droplet nozzle can be adopted as the first nozzle 91a-2 and the second nozzle 92a-2.
  • the injection mechanism 26-2 may be capable of injecting the cleaning liquid onto the wafer W, and may have a sprayer or the like in place of or in addition to the first nozzle 91a-2 and the second nozzle 92a-2. May be good.
  • the first nozzle 91a-2 and the second nozzle 92a-2 are fixed to the frame of the housing 71-2.
  • the first nozzle 91a-2 and the second nozzle 92a-2 may be configured to be movable by a moving mechanism (not shown).
  • the first nozzle 91a-2 is provided to inject the cleaning liquid onto the upper surface of the wafer W, and is above the target (wafer W) on which the cleaning liquid is to be injected, that is, the wafer transfer of the housing 71-2. It is preferable that the wafer is arranged above the opening 74-2.
  • the second nozzle 92a-2 is provided for injecting the cleaning liquid onto the lower surface of the wafer W, and is below the target (wafer W) on which the cleaning liquid is injected, that is, the carry-in inlet 73 of the housing 71-2. It should be placed below -2.
  • the injection center direction of the cleaning liquid is the first direction (up and down in the example shown in FIG. 10) in which the wafer W is conveyed by the stage 72-2. It is configured to incline at an acute angle with respect to the direction).
  • the injection mechanism 26-2 ejects the cleaning liquid in a cone shape or a fan shape so that the range (diameter) of the cleaning liquid acting on the wafer W is equal to the diameter of the wafer W or slightly larger than the diameter of the wafer W. It is good to have a configuration to make it.
  • the first nozzle 91a-2 and the second nozzle 92a-2 are arranged horizontally apart from the target (wafer W) on which the cleaning liquid is sprayed. As a result, when the cleaning liquid or the like is unintentionally dropped from the first nozzle 91a-2, it is possible to prevent the dropped object from hitting the wafer W.
  • the first nozzle 91a-2 and the second nozzle 92a-2 may be configured to inject the cleaning liquid into a cone shape (conical shape) or a fan shape. As a result, the cleaning liquid can be sprayed over a wide range from the nozzle, and the cleaning liquid can be uniformly applied to the target.
  • the first nozzle 91a-2 and the second nozzle 92a-2 are connected to the first cleaning liquid supply source 94a-2 and the second cleaning liquid supply source 95a-2 via the cleaning liquid adjusting mechanism 93a-2, respectively. Is connected. Different cleaning liquids are stored in the first cleaning liquid supply source 94a-2 and the second cleaning liquid supply source 95a-2. As an example, pure water is stored as the first cleaning liquid in the first cleaning liquid supply source 94a-2, and rinse (hydrofluoric acid, ammonia, etc.) is stored as the second cleaning liquid in the second cleaning liquid supply source 95a-2. At least one of the first cleaning liquid and the second cleaning liquid may be the same as the cleaning liquid used in the cleaning unit 13-2.
  • first cleaning liquid and the second cleaning liquid may be different from the cleaning liquid used in the cleaning unit 13-2.
  • the first nozzle 91a-2 and the second nozzle 92a-2 are not limited to those to which two cleaning liquid supply sources are connected, and one or three or more cleaning liquid supply sources may be connected.
  • the cleaning liquid (for example, the first cleaning liquid and the second cleaning liquid) injected from the injection mechanism 90a-2 is selected based on the residue to be removed of the wafer W. As an example, only the cleaning liquid supply source in which pure water is stored may be connected to the first nozzle 91a-2 and the second nozzle 92a-2.
  • the cleaning liquid adjusting mechanism 93a-2 transfers the cleaning liquid from the first cleaning liquid supply source 94a-2 and the second cleaning liquid supply source 95a-2 to the first nozzle 91a-2 and the second nozzle 92a-2 according to a predetermined recipe. Supply. Further, the control unit 15-2 applies the cleaning liquids from the first cleaning liquid supply source 94a-2 and the second cleaning liquid supply source 95a-2 to the first nozzle 91a-2 and the second nozzle according to the setting through the setting unit 15c-2. It may be supplied to 92a-2. The cleaning liquid adjusting mechanism 93a-2 supplies the cleaning liquid to the first nozzle 91a-2 and the second nozzle 92a-2 with the first cleaning liquid from the first cleaning liquid supply source 94a-2 and the second cleaning liquid supply source 95a-2.
  • the cleaning liquid adjusting mechanism 93a-2 may supply the cleaning liquid to the first nozzle 91a-2 and the second nozzle 92a-2 by adjusting the mixing ratio of the first cleaning liquid and the second cleaning liquid.
  • the injection mechanism 90a-2 is realized by a two-fluid nozzle mechanism, and the carrier gas supply source 96a- for supplying the carrier gas such as nitrogen to the nozzles 91a-2 and 92a-2. 2 is connected.
  • the carrier gas supply source 96a- for supplying the carrier gas such as nitrogen to the nozzles 91a-2 and 92a-2. 2 is connected.
  • a two-fluid jet flow in which the cleaning liquid exists as fine droplets (mist) in the carrier gas is generated.
  • the injection mechanism 90a-2 may be capable of adjusting the injection amount of the carrier gas, including cleaning without the carrier gas.
  • "injection of cleaning liquid” may include injection accompanied by a carrier gas.
  • FIG. 11 is a perspective view showing the internal configuration of the wafer station 33b-2 of the second cleaning unit 30b-2.
  • the wafer station 33b-2 functions as a temporary stand for the polished wafer W, moves the wafer W in the first direction (vertical direction in the example shown in FIG. 11), and delivers the wafer W to the cleaning unit transfer mechanism 32b-2. It is configured to be able to.
  • the first direction is not limited to the vertical direction (vertical direction), and may be a horizontal direction, a vertical direction, or a direction inclined in the horizontal direction.
  • the first direction is a direction different from the transfer direction (for example, the horizontal direction) of the wafer W to the wafer station 33b-2 (stage 82-2) by the transfer robot 23-2 of the polishing unit 12-2, particularly perpendicular. It may be a direction.
  • the wafer station 33b-2 has a substantially rectangular parallelepiped shape, a stage 82-2 arranged inside the housing 81-2 and holding the wafer W, and a stage 82. It has a drive mechanism 85-2 that moves -2 up and down.
  • the housing 81-2 has a bottom plate, four side plates, and a top plate. Of the four side plates, a carry-in inlet 83-2 communicating with the polishing portion 12-2 is formed at the upper end portion of the side plate facing the polishing portion 12-2.
  • the carry-in entrance 83-2 can be opened and closed by a shutter (not shown).
  • the transfer robot 23-2 of the polishing unit 12-2 can access the inside of the housing 81-2 from the carry-in entrance 83-2, and can deliver the polished wafer W to the stage 82-2.
  • a wafer transfer opening 84-2 is formed for passing the arm of the unit transfer mechanism 32b-2.
  • the wafer transfer opening 84-2 can be opened and closed by the shutter 87-2.
  • the cleaning unit transfer mechanism 32b-2 of the second cleaning unit 30b-2 can access the inside of the housing 81-2 through the wafer transfer opening 84-2, and the wafer W has the wafer transfer opening 84-. It is delivered from the stage 82-2 to the cleaning unit transport mechanism 32b-2 of the second cleaning unit 30b-2 through 2.
  • the drive mechanism 85-2 for example, a motor drive mechanism using a ball screw or an air cylinder is used.
  • the stage 82-2 is fixed to the movable part of the drive mechanism 85-2, and the height position facing the carry-in inlet 83-2 and the wafer transfer opening 84-2 are supplied by the power supplied from the drive mechanism 85-2. It is moved up and down between the height position facing the. Similar to the stage 72-2 of the wafer station 33a-2, the outer peripheral portion of the stage 82-2 is provided with four pins 86-2 so as to project upward. Therefore, the wafer mounted on the stage 82-2 is supported on the stage 82-2 with its outer peripheral edge guided and positioned by the four pins 86-2. Further, in the present embodiment, the stage 82-2 is formed in a frame shape having an opening or a notch so as to expose and support the lower surface of the wafer W.
  • the housing 81-2 of the wafer station 33b-2 is provided with an injection mechanism 90b-2 configured to be capable of injecting a cleaning liquid onto the wafer W held by the stage 82-2. (Not shown in FIG. 6).
  • the injection mechanism 90b-2 is controlled by the control unit 15-2.
  • the injection mechanism 90b-2 is provided inside the housing 81-2 in the same manner as the injection mechanism 90a-2 is provided inside the housing 71-2.
  • the injection mechanism 90b-2 is substantially the same as the injection mechanism 90a-2, and is the same as the first nozzle 91a-2 and the second nozzle 92a-2.
  • the first nozzle 91b-2 and the second nozzle 92b- Has 2. The same points as the injection mechanism 90a-2 with respect to the injection mechanism 90b-2 will be omitted.
  • the first and second cleaning liquid supply sources 94b-2 and 95b-2 and the carrier gas supply source 96b-2 in the wafer station 33b-2 are the first cleaning liquid supply sources 94a-2 and 95a in the wafer station 33a-2.
  • -2 and the carrier gas supply source 96a-2 may be shared, or may be provided separately.
  • a cleaning machine for the primary cleaning module 311a-2 and the secondary cleaning module 312a-2 for example, roll-shaped sponges arranged vertically are rotated and pressed against the front surface and the back surface of the wafer to press the front surface and the back surface of the wafer.
  • a roll-type washer for cleaning can be used.
  • the cleaning machine of the tertiary cleaning module 313a-2 for example, a pencil type cleaning machine in which a hemispherical sponge is rotated and pressed against the wafer to perform cleaning can be used.
  • the cleaning machine for the quaternary cleaning module 314a-2 for example, a pencil type cleaning machine is used in which the back surface of the wafer can be rinsed and the surface of the wafer is cleaned by pressing a hemispherical sponge while rotating it. be able to.
  • the cleaning machine of the quaternary cleaning module 314a-2 is provided with a stage for rotating the chucked wafer at high speed, and has a function (spin dry function) of drying the wafer after cleaning by rotating the wafer at high speed.
  • spin dry function a function of drying the wafer after cleaning by rotating the wafer at high speed.
  • a megasonic type washer that irradiates the cleaning liquid with ultrasonic waves for cleaning is provided. It may be additionally provided.
  • the control unit 15-2 is provided to control each component of the substrate processing device 10-2.
  • the control unit 15-2 may be configured as a microcomputer that includes a CPU, a memory, and the like and realizes a predetermined function by using software, or may be configured as a hardware circuit that performs dedicated arithmetic processing.
  • the control unit 15-2 of the present embodiment includes a calculation unit 15a-2, a memory 15b-2, and a setting unit 15c-2.
  • the setting unit 15c-2 functions as a user interface and is used to set various setting values (setting information) by an external operation.
  • the setting unit 15c-2 includes an operation button (not shown), a touch panel, and the like, and various setting values set in the setting unit 15c-2 are stored in the memory 15b-2.
  • the wafer W before polishing is taken out from the wafer cassette of the front load section 113-2 by the transfer robot 111-2 of the load / unload section 11-2, and is taken out from the transfer section 14-2. Handed over to. Subsequently, the wafer W is delivered from the transfer unit 14-2 to the transfer robot 23-2, and the wafer W is turned upside down together with the hand 231-2 by the reversing mechanism 234-2 of the transfer robot 23-2. .. As a result, the processing surface of the wafer W is directed downward.
  • the transfer robot 23-2 delivers the transfer to the first transfer unit 24a-2 or the second transfer unit 24b-2, and the first transfer unit 24a-2 or the second transfer unit 24b-2 first to fourth.
  • the wafer W is carried into the polishing devices 21a-2 to 21d-2.
  • the wafer W is attracted and held by the top ring, and is polished by being brought into contact with the polishing pad 102a-2.
  • the polished wafer W is received from the first polishing devices 21a-2 to 21d-2 to the transfer robot 23-2 through the first transfer unit 24a-2 or the second transfer unit 24b-2. Passed. Subsequently, the wafer W is turned upside down together with the hand 231-2 by the reversing mechanism 234-2 of the transfer robot 23-2. As a result, the processing surface of the wafer W is directed upward. Then, the wafer W is delivered from the transfer robot 23-2 to the wafer station 33a-2 or the wafer station 33b-2 of the cleaning unit 13-2.
  • FIG. 12 is a diagram for explaining the injection of the cleaning liquid onto the wafer W by the first nozzle 91a-2 of the injection mechanism 90a-2, and FIG.
  • FIG. 13 is a diagram for explaining the injection of the cleaning liquid onto the wafer W by the second nozzle 92a-2 of the injection mechanism 90a-2. It is a figure for demonstrating the injection of the cleaning liquid of a wafer W. Note that, in FIGS. 12 and 13, for the sake of simplicity, the injection of the cleaning liquid by the first nozzle 91a-2 and the injection of the cleaning liquid by the second nozzle 92a-2 are shown separately, but these are performed at the same time. You may be broken. As shown in FIG. 12, in the present embodiment, the first nozzle 91a-2 is fixed to the housing 71-2 above the wafer W and is configured to inject the cleaning liquid downward at a predetermined angle. Has been done.
  • the cleaning liquid is ejected from the first nozzle 91a-2 while moving the wafer W upward by the stage 72-2.
  • the region where the cleaning liquid is sprayed changes with the movement of the wafer W, and the cleaning liquid can be uniformly applied to the upper surface of the wafer W.
  • the second nozzle 92a-2 is fixed to the housing 81-2 below the wafer W, and the cleaning liquid is ejected toward the information at a predetermined angle. It is configured in.
  • the cleaning liquid is ejected from the second nozzle 92a-2 while moving the wafer W upward by the stage 72-2.
  • the region where the cleaning liquid is sprayed changes with the movement of the wafer W, and the cleaning liquid can be uniformly applied to the lower surface of the wafer W.
  • control unit 15-2 may reciprocate the stage 72-2 in the vertical direction to inject the cleaning liquid from the injection mechanism 90a-2 onto the wafer W.
  • the number of reciprocating movements of the stage 72-2 (wafer W) may be a predetermined number of times (for example, twice) or may be set through the setting unit 15c-2.
  • control unit 15-2 may adjust the moving speed of the stage 72-2.
  • the moving speed of the stage 72-2 may be a predetermined speed or may be set through the setting unit 15c-2.
  • the wafer W is delivered from the stage 72-2 to the cleaning unit transfer mechanism 32a-2, and the wafer W is transferred by the cleaning unit transfer mechanism 32a-2 to the primary to fourth cleaning modules 311a-2 to It is transported to 314a-2.
  • the wafer W is cleaned and dried by the cleaning modules 311a-2 to 314a-2.
  • the wafer W is taken out from the cleaning unit 13-2 to the load / unload unit 11-2, and the substrate processing in the substrate processing apparatus 10-2 is completed.
  • the control unit 15-2 drives the injection mechanism 90b-2 so that the cleaning liquid is ejected from the first nozzle 91b-2 and the second nozzle 92b-2 to the wafer W while conveying the wafer W by the wafer station 33b. It controls the mechanism 85-2.
  • the cleaning liquid is moved downward from the first nozzle 91b-2 and the second nozzle 92b-2 while the wafer W is moved downward by the stage 82-2.
  • the cleaning liquid can be uniformly applied to the lower surface of the wafer W.
  • control unit 15-2 may reciprocate the stage 82-2 in the vertical direction to inject the cleaning liquid from the injection mechanism 90b-2 onto the wafer W.
  • the number of reciprocating movements of the stage 82-2 (wafer W) may be a predetermined number of times (for example, twice) or may be set through the setting unit 15c-2.
  • control unit 15-2 may adjust the moving speed of the stage 82-2.
  • the moving speed of the stage 82-2 may be a predetermined speed or may be set through the setting unit 15c-2.
  • the wafer W is delivered from the stage 82-2 to the cleaning unit transfer mechanism 32b-2, and the wafer W is transferred from the primary to quaternary cleaning modules 311b-2 by the cleaning unit transfer mechanism 32b-2. It is transported to 314b-2. As a result, the wafer W is cleaned and dried by the cleaning modules 311b-2 to 314b-2. After the cleaning and drying treatment in the cleaning unit 13-2 is completed, the wafer W is taken out from the cleaning unit 13-2 to the load / unload unit 11-2, and the substrate processing in the substrate processing apparatus 10-2 is completed.
  • the wafer W is subjected to a plurality of cleaning lines in the cleaning unit 13-2 (in the present embodiment, the primary to quaternary cleaning modules 311a-2 to 314a-2 are used. Before cleaning in the two cleaning lines of the primary to quaternary cleaning modules 311b-2 to 314b-2), they are transported in stages 72-2, 82-2 of the wafer stations 33a-2, 33b-2.
  • the wafer W can be pre-cleaned by allowing a cleaning liquid to act on it.
  • the cleaning liquid can be preferably applied to the wafer W without providing a mechanism for causing the wafer W.
  • the above-mentioned substrate processing apparatus 10-2 executes the substrate processing method shown in FIG. That is, the wafer W is polished by the polishing unit 12-2 (step S12-2), and the polished wafer W is transferred to the wafer stations 33a-2 and 33b-2 by the transfer robot (transfer mechanism) 23-2. (Step S14-2). Subsequently, when the wafer W is moving in the vertical direction at the wafer stations 33a-2 and 33b-2, the cleaning liquid is injected onto the wafer W from the injection mechanisms 90a-2 and 90b-2 (step S16-2). .. As a result, the wafer W can be pre-cleaned.
  • the wafer W is handed over from the stages 72-2 and 82-2 of the wafer stations 33a-2 and 33b-2 to the cleaning unit transfer mechanisms 32a-2 and 32b-2, and the primary to fourth cleaning modules 311a-.
  • the wafer W is washed at 2 to 314a-2 and 311b-2 to 314b-2 (step S18-2).
  • the cleaning time in the cleaning unit 13 can be shortened. According to such a substrate processing method, the cleaning efficiency of the wafer W can be improved.
  • the processed surface comes into contact with the substrate processing apparatus 10-2 and becomes contaminated or damaged.
  • the processing surface of the wafer W is turned upward so as not to prevent it.
  • the wafer W is polished by the polishing portion 12-2, the wafer W is inverted by the transfer robot 23-2 so that the processing surface faces downward so that the polishing liquid acts on the polishing pad 102a-2. It is said that.
  • the polishing liquid or polishing residue remaining on the wafer W due to polishing by the polishing unit 12-2 may spread over the entire surface of the wafer W due to the rotation of the wafer W by the transfer robot 23-2.
  • the polishing liquid used in the polishing unit 12-2 is generally highly viscous, and when it dries over time, the polishing liquid solidifies and becomes difficult to remove.
  • the cleaning liquid is applied to the wafer W moving up and down at the wafer station 33a-2 arranged in series with the cleaning modules 311a-2 to 314a-2.
  • Injection mechanism 90a-2 capable of injecting cleaning liquid onto wafer W moving up and down in wafer station 33b-2 arranged in series with injection mechanism 90a-2 capable of injecting cleaning modules 311b-2 to 314b-2. 2 and are provided.
  • the cleaning liquid can be allowed to act on the wafer W at an early timing, and the polishing liquid or polishing residue adhering to the wafer W can be suitably removed.
  • the wafer W does not need to be newly provided with a mechanism for moving the wafer W for pre-cleaning.
  • the wafer W can be pre-cleaned by uniformly applying the cleaning liquid to the entire surface.
  • the injection mechanisms 90a-2 and 90b-2 have two nozzles for injecting the cleaning liquid.
  • the present invention is not limited to these examples, and the injection mechanisms 90a-2 and 90b-2 may have one or three or more nozzles.
  • the first cleaning unit 30a-2 and the second cleaning unit 30b-2 each have wafer stations 33a-2 and 33b-2, and the transfer robot 23 It was assumed that the wafer W was distributed to either the wafer stations 33a-2 or 33b-2 according to -2.
  • the present invention is not limited to these examples, and as an example, a single wafer station that communicates the first cleaning unit 30a-2 and the second cleaning unit 30b-2 is provided, and in the single wafer station, the wafer W Is either the primary to quaternary cleaning modules 311a-2 to 314a-2 of the first cleaning unit 30a-2 and the primary to quaternary cleaning modules 311b-2 to 314b-2 of the second cleaning unit 30b-2. It may be sorted into a wash.
  • the cleaning unit 13-2 has a first cleaning unit 30a-2 and a second cleaning unit 30b-2 arranged in two upper and lower stages.
  • the present invention is not limited to these examples, and the cleaning unit 13-2 may have a plurality of cleaning units arranged in three or more stages above and below. Further, the cleaning unit 13-2 may have a plurality of cleaning units arranged in a plurality of left and right stages.
  • FIG. 15 is a schematic view showing a polishing portion transport mechanism in a modified example.
  • the transfer robot 23-2 of the polishing portion transfer mechanism 22-2 in the modified example includes a hand 231-2 for holding the wafer W and a hand 231 as in the transfer robot 23-2 of the embodiment.
  • the flipping mechanism 234-2 that flips -2 upside down (that is, flips the front and back surfaces of the wafer W), the telescopic arm 234-2 that supports the wafer W, and the arm 234-2 are flipped up and down.
  • It has a robot main body 233-2 including an arm vertical movement mechanism for moving and an arm rotation mechanism for rotating the arm 232-2 around a vertical axis.
  • the robot body 233-2 is attached so as to hang from the ceiling frame of the polishing portion 12-2.
  • the reversing mechanism 234-2 is configured so that the hand 231-2 can be rotated by a drive mechanism such as a motor to turn the hand 231-2 upside down.
  • the polishing section transfer mechanism 22-2 of the modified example has an injection mechanism 26-2 configured to be capable of injecting a cleaning liquid onto the wafer W held by the transfer robot 23-2.
  • the injection mechanism 26-2 is controlled by the control unit 15-2.
  • the injection mechanism 26-2 includes a nozzle 261-2 that injects the cleaning liquid 262-2, a cleaning liquid adjusting mechanism 263-2 that can adjust the cleaning liquid supplied to the nozzle 261-2, and a first cleaning liquid supply source 264. -2 and a second cleaning liquid supply source 265-2.
  • a spray nozzle or a droplet nozzle can be adopted.
  • the injection mechanism 26-2 may be capable of injecting the cleaning liquid 262-2 onto the wafer W, and may have a sprayer or the like in place of or in addition to the nozzle 261-2.
  • the nozzle 261-2 is fixed to a frame (not shown) of the polishing portion 12-2.
  • the nozzle 261-2 may be configured to be movable by a moving mechanism (not shown).
  • the nozzle 261-2 may be arranged above the target (wafer W or the hand 231-2 of the transfer robot 23-2) for injecting the cleaning liquid.
  • the nozzle 261-2 is configured so that the injection center direction of the cleaning liquid is inclined with respect to the vertical direction and the horizontal direction.
  • the nozzle 261-2 is arranged horizontally away from the object to which the cleaning liquid is sprayed. As a result, when the cleaning liquid or the like is unintentionally dropped from the nozzle 261-2, it is possible to prevent the dropped object from hitting the wafer W. Further, as an example, in the nozzle 261-2, the tip of the nozzle 261-2 faces the robot main body 233-2 of the transfer robot 23 (particularly, the surface from which the lead wire of reference numeral 2332 in FIG. 15 is drawn out). It is good to be arranged like this. Further, as an example, the nozzle 261-2 may be arranged so that the tip of the nozzle 261-2 faces the root of the hand 231-2.
  • the reversing mechanism 234-2 and the arm 234-2 can be suitably cleaned by the injection liquid injected from the injection mechanism 26-2.
  • the nozzle 261-2 may be configured to inject the cleaning liquid 262-2 into a cone shape (conical shape) or a fan shape.
  • the injection mechanism 26-2 is such that the range (diameter) of the cleaning liquid that is injected in a cone shape or a fan shape and acts on the wafer W is equal to the diameter of the wafer W or slightly larger than the diameter of the wafer W. It is composed.
  • the cleaning liquid 262-2 can be sprayed over a wide range from the nozzle 261-2, and the cleaning liquid 262-2 can be uniformly applied to the target.
  • the first cleaning liquid supply source 264-2 and the second cleaning liquid supply source 265-2 are connected to the nozzle 261-2 via the cleaning liquid adjusting mechanism 263-2.
  • Different cleaning liquids are stored in the first cleaning liquid supply source 264-2 and the second cleaning liquid supply source 265-2.
  • pure water is stored as the first cleaning liquid in the first cleaning liquid supply source 264-2
  • rinse is stored as the second cleaning liquid in the second cleaning liquid supply source 265-2.
  • At least one of the first cleaning liquid and the second cleaning liquid may be the same as the cleaning liquid used in the cleaning unit 13-2. Further, at least one of the first cleaning liquid and the second cleaning liquid may be different from the cleaning liquid used in the cleaning unit 13-2.
  • first and second cleaning liquid supply sources 264 and 265-2 are with any of the first cleaning liquid supply sources 94a-2, 94b-2, 95a-2, 95b-2 of the wafer stations 33a-2, 33b-2. It may be shared.
  • the nozzle 261-2 is not limited to the one in which two cleaning liquid supply sources are connected, and one or three or more cleaning liquid supply sources may be connected.
  • the cleaning liquid (for example, the first cleaning liquid and the second cleaning liquid) injected from the injection mechanism 26-2 is selected based on the residue to be removed of the wafer W. As an example, only the cleaning liquid supply source in which pure water is stored may be connected to the nozzle 261-2.
  • the cleaning liquid adjusting mechanism 263-2 supplies the cleaning liquid from the first cleaning liquid supply source 264-2 and the second cleaning liquid supply source 265-2 to the nozzle 261-2 according to a predetermined recipe. Further, the control unit 15-2 may supply the cleaning liquid from the first cleaning liquid supply source 264-2 and the second cleaning liquid supply source 265-2 to the nozzle 261-2 according to the setting through the setting unit 15c-2. .. The cleaning liquid adjusting mechanism 263-2 switches the cleaning liquid supplied to the nozzle 261-2 between the first cleaning liquid from the first cleaning liquid supply source 264-2 and the second cleaning liquid from the second cleaning liquid supply source 265-2. May be supplied. Further, the cleaning liquid adjusting mechanism 263-2 may supply the cleaning liquid to the nozzle 261-2 by adjusting the mixing ratio of the first cleaning liquid and the second cleaning liquid.
  • the injection mechanism 26-2 is realized by a two-fluid nozzle mechanism, and a carrier gas supply source 266-2 for supplying a carrier gas such as nitrogen is connected to the nozzle 261-2. ing.
  • a carrier gas supply source 266-2 for supplying a carrier gas such as nitrogen is connected to the nozzle 261-2. ing.
  • the cleaning liquid is injected onto the wafer W by the injection mechanism 26-2.
  • the cleaning liquid can act on the entire surface of the wafer W.
  • the control unit 15-2 is at a position where the wafer W is along the vertical direction (vertical position) when the cleaning liquid is injected by the injection mechanism 26-2, that is, the plate surface of the wafer W faces in the horizontal direction. At the position, it may be stopped for a first hour (eg, a few seconds). In this way, the cleaning liquid can be poured over the plate surface of the wafer W, and foreign matter can be efficiently removed from the wafer W.
  • control unit 15-2 may stop the wafer W at the vertical position for a second time (for example, several seconds) after the injection of the cleaning liquid by the injection mechanism 26-2 is completed. As a result, excess cleaning liquid and foreign matter can be removed from the plate surface of the wafer W.
  • the control unit 15-2 may invert the wafer W a plurality of times.
  • the number of times the wafer W is inverted may be a predetermined number of times (for example, twice), or may be set through the setting unit 15c-2.
  • the control unit 15-2 may adjust the speed at which the wafer W is inverted by the inversion mechanism 234-2.
  • the control unit 15-2 controls the reversing mechanism 234-2 so that the wafer W is inverted at the first inversion speed when the wafer W before the processing by the polishing unit 12 is inverted, and the processing by the polishing unit 12-2.
  • the inversion mechanism 234-2 may be controlled so that the wafer W is inverted at a second inversion speed slower than the first speed.
  • the wafer W before polishing can be quickly inverted to speed up the processing in the substrate processing apparatus 10-2, and the wafer W after polishing can be inverted relatively slowly to transfer the cleaning liquid to the wafer W.
  • the inversion speed of the wafer W may be a predetermined speed or may be set through the setting unit 15c-2.
  • the cleaning liquid is applied to the wafer W when the wafer W is inverted by the transfer robot 23-2.
  • the wafer W can be pre-cleaned by acting.
  • a mechanism for newly moving the wafer W for pre-cleaning is provided.
  • the cleaning liquid can be preferably applied to the wafer W without being provided.
  • the wafer W is handed over from the transfer robot 23-2 to the cleaning unit 13-2 through the wafer stations 33a-2 and 33b-2, and the cleaning unit 13-2 performs cleaning and drying.
  • the wafer W is taken out from the cleaning unit 13-2 to the load / unload unit 11-2, and the substrate processing in the substrate processing apparatus 10-2 is completed.
  • the cleaning liquid may be injected into the hand 231-2 of the transfer robot 23-2 by the injection mechanism 26-2.
  • the injection mechanism 26-2 can also clean the hand 231-2 of the transfer robot 23-2.
  • the cleaning liquid may be injected from the injection mechanism 26-2 while the hand 231-2 is inverted by the reversing mechanism 234-2.
  • the substrate can be sent to the cleaning module in a wet state by cleaning during vertical transportation at the workstation, so that the wettability of the substrate surface is made uniform, and the entire substrate surface is evenly and uniformly cleaned during the subsequent cleaning. Can be washed efficiently.
  • cleaning on a workstation also has the meaning of removing defects that were not removed by cleaning with a robot hand. In this way, by performing cleaning with a robot reversing machine and cleaning with a workstation, it is possible to improve the cleaning efficiency, which is an issue of cleaning the back surface of the substrate, unlike simply repeating several stages of cleaning. it can.
  • a substrate processing apparatus includes a polishing portion for polishing a substrate, a cleaning portion for cleaning the polished substrate, and the polishing of the substrate.
  • a transport mechanism for transporting from a portion to the cleaning portion, the transport mechanism configured so that the front surface and the back surface of the substrate can be inverted, and the polished substrate are inverted by the transfer mechanism. It is provided with an injection mechanism capable of injecting a cleaning liquid onto the substrate.
  • the cleaning liquid can be applied to the substrate before the substrate is cleaned by the cleaning unit, and the cleaning efficiency of the substrate can be improved.
  • the transport mechanism vertically positions the substrate when the cleaning liquid is injected by the injection mechanism or after the cleaning liquid is injected by the injection mechanism. Stop at. According to the second embodiment, excess cleaning liquid and foreign matter can be suitably removed from the substrate.
  • Form 3 According to Form 3, in Form 1 or 2, the injection mechanism is configured so that the injection center direction of the cleaning liquid is inclined with respect to the vertical direction and the horizontal direction.
  • Form 4 According to Form 4, in Forms 1 to 3, the injection mechanism injects the cleaning liquid into a cone shape.
  • Form 5 According to Form 5, in Forms 1 to 4, the injection mechanism is arranged horizontally apart from the substrate conveyed by the transfer mechanism. According to the fifth embodiment, it is possible to prevent the droplets from the injection mechanism from hitting the substrate.
  • the substrate processing apparatus includes a control unit that controls the components of the substrate processing apparatus, and the control unit is the inversion speed of the substrate by the transport mechanism. And at least one of the number of times the substrate is inverted by the transport mechanism can be changed. According to the sixth embodiment, it is possible to set the inversion mode of the substrate by the transport mechanism according to the situation.
  • the substrate processing apparatus includes a control unit that controls the components of the substrate processing apparatus, and the control unit injects the cleaning liquid by the injection mechanism. It is configured so that at least one of the flow rate and the components of the cleaning liquid can be changed. According to the seventh embodiment, the cleaning liquid to be injected from the injection mechanism can be set depending on the situation.
  • the transport mechanism inverts the substrate at the first inversion speed when the substrate before polishing is inverted, and when the polished substrate is inverted, the transfer mechanism is described.
  • the substrate is inverted at a second inversion speed slower than the first inversion speed.
  • the substrate before being polished can be quickly inverted in the transport mechanism to improve the processing speed in the substrate processing apparatus.
  • the polished substrate can be inverted relatively slowly in the transport mechanism so that the cleaning liquid can act on the substrate.
  • the injection mechanism has a two-fluid nozzle configured to eject droplets containing the cleaning liquid together with a carrier gas.
  • a substrate processing method in which the substrate processing method involves a polishing step of polishing the substrate and the inversion of the polished substrate between the front surface and the back surface of the substrate. This includes a transfer step of transporting the substrate to the cleaning section, an injection step of injecting a cleaning liquid onto the substrate when the substrate is inverted in the transport step, and a step of cleaning the substrate in the cleaning section.
  • the same effect as that of the first form can be obtained.
  • a substrate processing apparatus includes a polishing portion for polishing a substrate, a plurality of cleaning lines for cleaning the polished substrate, and the plurality of cleaning lines.
  • a plurality of transport mechanisms for transporting the substrate in each cleaning line of the cleaning line, and the plurality of cleaning lines are arranged in series, and the substrate is moved in the first direction and delivered to any of the plurality of transport mechanisms.
  • It is provided with a cleaning unit having a wafer station configured in the above, and an injection mechanism capable of injecting a cleaning liquid onto a substrate moving in the first direction by the wafer station.
  • the cleaning liquid can be applied to the substrate before cleaning the substrate in the cleaning line, and the cleaning efficiency of the substrate can be improved.
  • Form 12 According to Form 12, in the eleventh form, the plurality of cleaning lines are arranged in the vertical direction, and the first direction is the vertical direction.
  • Form 13 According to Form 13, in Form 11 or 12, the injection mechanism is configured so that the injection center direction of the cleaning liquid is inclined with respect to the first direction.
  • the wafer station is configured to expose and support a part of the lower surface of the substrate, and the injection mechanism is conveyed by the wafer station.
  • a first injector configured to inject the cleaning liquid from above onto the substrate and a second injector configured to inject the cleaning liquid from below onto the substrate conveyed by the wafer station.
  • the cleaning liquid can be applied to both the upper surface and the lower surface of the substrate by the injection mechanism.
  • Form 15 According to Form 15, in Forms 11 to 14, the injection mechanism injects the cleaning liquid into a cone shape.
  • Form 16 in Forms 11 to 15, the injection mechanism is arranged horizontally away from the substrate conveyed by the wafer station. According to the sixteenth aspect, it is possible to prevent the droplets from the injection mechanism from hitting the substrate, or to prevent the injection mechanism from being contaminated by the scattered substances from the substrate.
  • the transfer of the substrate by the wafer station includes the reciprocating movement in the first direction. In this way, the cleaning liquid can act on the substrate while reciprocating the substrate.
  • the substrate processing apparatus includes a control unit that controls the components of the substrate processing apparatus, and the control unit is the moving speed of the substrate by the wafer station. And, at least one of the number of times the substrate is moved by the wafer station can be changed. According to the eighteenth aspect, the movement mode of the substrate in the wafer station can be set according to the situation.
  • the substrate processing apparatus includes a control unit that controls a component of the substrate processing apparatus, and the control unit injects the cleaning liquid by the injection mechanism. It is configured so that at least one of the flow rate and the components of the cleaning liquid can be changed. According to the nineteenth aspect, the cleaning liquid to be injected from the injection mechanism can be set depending on the situation.
  • Form 20 According to Form 20, in Forms 11 to 19, the injection mechanism has a two-fluid nozzle configured to eject droplets containing the cleaning liquid together with a carrier gas.
  • a substrate processing method includes a polishing step for polishing a substrate and a wafer station in which the polished substrate is arranged in series with a plurality of cleaning lines.
  • the same effect as that of the morphology 11 can be obtained.

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Manufacturing & Machinery (AREA)
  • Computer Hardware Design (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)
  • Mechanical Engineering (AREA)
  • Cleaning Or Drying Semiconductors (AREA)
  • Mechanical Treatment Of Semiconductor (AREA)

Abstract

Proposed are a substrate processing apparatus and a substrate processing method that can improve cleaning efficiency of a substrate. The substrate processing apparatus comprises: a polishing part that polishes the substrate; a cleaning part for cleaning the polished substrate; a transport mechanism for transporting the substrate from the polishing part to the cleaning part, the transport mechanism being configured so that the transport mechanism has a hand holding the substrate, and by rotating the hand, the front surface and the rear surface of the substrate can be inverted; and an injection mechanism that can inject a cleaning liquid onto the substrate when the substrate is inverted by the transport mechanism.

Description

基板処理装置、および基板処理方法Substrate processing equipment and substrate processing method
 本発明は、基板処理装置、および基板処理方法に関する。 The present invention relates to a substrate processing apparatus and a substrate processing method.
 近年、半導体デバイスの高集積化が進むにつれて回路の配線が微細化し、配線間距離もより狭くなりつつある。半導体デバイスの製造では、シリコンウェハの上に多くの種類の材料が膜状に繰り返し形成され、積層構造が形成される。この積層構造を形成するためには、ウェハの表面を平坦にする技術が重要となっている。このようなウェハの表面を平坦化する一手段として、化学機械研磨(CMP)を行う研磨装置(化学的機械的研磨装置ともいう)が広く用いられている。 In recent years, as the integration of semiconductor devices has progressed, the wiring of circuits has become finer and the distance between wirings has become narrower. In the manufacture of semiconductor devices, many types of materials are repeatedly formed on a silicon wafer in the form of a film to form a laminated structure. In order to form this laminated structure, a technique for flattening the surface of the wafer is important. As a means for flattening the surface of such a wafer, a polishing apparatus (also referred to as a chemical mechanical polishing apparatus) that performs chemical mechanical polishing (CMP) is widely used.
 この化学機械研磨(CMP)装置は、一般に、研磨パッドが取り付けられた研磨テーブルと、ウェハを保持するトップリングと、研磨液を研磨パッド上に供給するノズルとを備えている。ノズルから研磨液を研磨パッド上に供給しながら、トップリングによりウェハを研磨パッドに押し付け、さらにトップリングと研磨テーブルとを相対移動させることにより、ウェハを研磨してその表面を平坦にする。 This chemical mechanical polishing (CMP) apparatus generally includes a polishing table to which a polishing pad is attached, a top ring for holding a wafer, and a nozzle for supplying a polishing liquid onto the polishing pad. While supplying the polishing liquid from the nozzle onto the polishing pad, the wafer is pressed against the polishing pad by the top ring, and the top ring and the polishing table are moved relative to each other to polish the wafer and flatten its surface.
 基板処理装置としては、このようなCMP装置に加え、研磨後のウェハを洗浄し、さらに乾燥させる機能を有するものが知られている。特許文献1に記載の基板処理装置は、高スループットを実現するために、複数の並列した洗浄ラインを有している。 As a substrate processing device, in addition to such a CMP device, a device having a function of cleaning and further drying the polished wafer is known. The substrate processing apparatus described in Patent Document 1 has a plurality of parallel cleaning lines in order to realize high throughput.
特開2018-6549号公報JP-A-2018-6549
 上記したように、基板処理装置では、CMP装置で研磨されたウェハが洗浄ユニットへ搬送され、洗浄ユニットにおいてウェハが洗浄および乾燥される。ここで、CMP装置で使用される研磨液によっては時間が経つにつれてウェハに固着するものがあり、特にこうした場合には、CMP装置による研磨後、ウェハの洗浄を早く行うことでウェハの洗浄効率を高めることができる。 As described above, in the substrate processing apparatus, the wafer polished by the CMP apparatus is conveyed to the cleaning unit, and the wafer is cleaned and dried in the cleaning unit. Here, some polishing liquids used in the CMP apparatus adhere to the wafer over time. In such a case, the wafer cleaning efficiency is improved by quickly cleaning the wafer after polishing by the CMP apparatus. Can be enhanced.
 本発明は、上述した事情に鑑みてなされたもので、基板の洗浄効率を向上することができる基板処理装置および基板処理方法を提案することを目的の1つとする。 The present invention has been made in view of the above circumstances, and one of the objects of the present invention is to propose a substrate processing apparatus and a substrate processing method capable of improving the cleaning efficiency of a substrate.
 本発明の一実施形態によれば、基板処理装置が提案され、前記基板処理装置は、基板を研磨するための研磨部と、研磨された基板を洗浄するための洗浄部と、基板を前記研磨部から前記洗浄部へ搬送するための搬送機構であって、基板を保持するハンドを有し、前記ハンドを回転させることにより基板のおもて面と裏面とを反転できるように構成された搬送機構と、前記搬送機構によって基板が反転されている際に基板に対して洗浄液を噴射可能な噴射機構と、を備える。 According to one embodiment of the present invention, a substrate processing apparatus is proposed, in which the substrate processing apparatus includes a polishing portion for polishing the substrate, a cleaning portion for cleaning the polished substrate, and the polishing of the substrate. A transport mechanism for transporting from a portion to the cleaning portion, which has a hand for holding the substrate and is configured so that the front surface and the back surface of the substrate can be inverted by rotating the hand. It includes a mechanism and an injection mechanism capable of injecting a cleaning liquid onto the substrate when the substrate is inverted by the transport mechanism.
 本発明の別の一実施形態によれば、基板処理方法が提案され、前記基板処理方法は、基板を研磨する研磨ステップと、研磨された基板を、基板のおもて面と裏面との反転を伴って洗浄部へ搬送する搬送ステップと、前記搬送ステップで基板が反転されている際に基板に対して洗浄液を噴射する噴射ステップと、前記洗浄部において基板を洗浄するステップと、を含む。 According to another embodiment of the present invention, a substrate processing method is proposed, in which the substrate processing method involves a polishing step of polishing a substrate and an inversion of the polished substrate between the front surface and the back surface of the substrate. Includes a transport step of transporting the substrate to the cleaning unit, an injection step of injecting a cleaning liquid onto the substrate when the substrate is inverted in the transport step, and a step of cleaning the substrate in the cleaning unit.
 本発明の一実施形態によれば、基板処理装置が提案され、前記基板処理装置は、基板を研磨するための研磨部と、研磨された基板を洗浄するための複数の洗浄ラインと、前記複数の洗浄ラインの各洗浄ラインにおいて基板を搬送する複数の搬送機構と、前記複数の洗浄ラインと直列に配置され、基板を第1方向に移動させて前記複数の搬送機構のいずれかへ受け渡すように構成されたウェハステーションと、を有する洗浄部と、前記ウェハステーションによって前記第1方向に移動している基板に対して洗浄液を噴射可能な噴射機構と、を備える。 According to one embodiment of the present invention, a substrate processing apparatus is proposed, wherein the substrate processing apparatus includes a polishing portion for polishing a substrate, a plurality of cleaning lines for cleaning the polished substrate, and the plurality of cleaning lines. A plurality of transport mechanisms for transporting the substrate in each cleaning line of the cleaning line, and the plurality of cleaning lines are arranged in series, and the substrate is moved in the first direction and delivered to any of the plurality of transport mechanisms. It is provided with a cleaning unit having a wafer station configured in the above, and an injection mechanism capable of injecting a cleaning liquid onto a substrate moving in the first direction by the wafer station.
 本発明の一実施形態によれば、基板処理方法が提案され、前記基板処理方法は、基板を研磨する研磨ステップと、研磨された基板を、複数の洗浄ラインと直列に配置されたウェハステーションに位置させるステップと、前記ウェハステーションによって基板を第1方向に移動させて、前記複数の洗浄ラインの各洗浄ラインにおいて基板を搬送する複数の搬送機構のいずれかへ基板を受け渡すステップと、前記ウェハステーションによって前記第1方向に移動している基板に対して洗浄液を噴射する噴射ステップと、前記複数の洗浄ラインのいずれかにおいて基板を洗浄するステップと、を含む。 According to one embodiment of the present invention, a substrate processing method is proposed, wherein the substrate processing method includes a polishing step for polishing a substrate and a wafer station in which the polished substrate is arranged in series with a plurality of cleaning lines. A step of positioning the substrate, a step of moving the substrate in the first direction by the wafer station, and a step of transferring the substrate to one of a plurality of transfer mechanisms for transporting the substrate in each of the plurality of cleaning lines, and the wafer It includes an injection step of injecting a cleaning liquid onto the substrate moving in the first direction by a station, and a step of cleaning the substrate in any one of the plurality of cleaning lines.
図1は、本発明の一実施形態に係る基板処理装置の全体構成を示す平面図である。FIG. 1 is a plan view showing an overall configuration of a substrate processing apparatus according to an embodiment of the present invention. 図2は、第1研磨装置を模式的に示す斜視図である。FIG. 2 is a perspective view schematically showing the first polishing apparatus. 図3は、搬送ロボット(搬送機構)を示す側面図である。FIG. 3 is a side view showing a transfer robot (convey mechanism). 図4は、搬送ロボットによって反転されているウェハに対する噴射機構による洗浄液の噴射を説明するための模式図である。FIG. 4 is a schematic view for explaining the injection of the cleaning liquid by the injection mechanism onto the wafer inverted by the transfer robot. 図5は、本実施形態の基板処理方法の一例を示すフローチャートである。FIG. 5 is a flowchart showing an example of the substrate processing method of the present embodiment. 図6は、本発明の一実施形態に係る基板処理装置の全体構成を示す平面図である。FIG. 6 is a plan view showing the overall configuration of the substrate processing apparatus according to the embodiment of the present invention. 図7は、図6に示す基板処理装置を洗浄部側から見た側面図である。FIG. 7 is a side view of the substrate processing apparatus shown in FIG. 6 as viewed from the cleaning unit side. 図8は、第1研磨装置を模式的に示す斜視図である。FIG. 8 is a perspective view schematically showing the first polishing apparatus. 図9は、搬送ロボット(搬送機構)を示す側面図である。FIG. 9 is a side view showing a transfer robot (transfer mechanism). 図10は、第1洗浄ユニットのウェハステーションの内部構成を示す斜視図である。FIG. 10 is a perspective view showing the internal configuration of the wafer station of the first cleaning unit. 図11は、第2洗浄ユニットのウェハステーションの内部構成を示す斜視図である。FIG. 11 is a perspective view showing the internal configuration of the wafer station of the second cleaning unit. 図12は、噴射機構の第1ノズルによるウェハへの洗浄液の噴射を説明するための図である。FIG. 12 is a diagram for explaining the injection of the cleaning liquid onto the wafer by the first nozzle of the injection mechanism. 図13は、噴射機構の第2ノズルによるウェハへの洗浄液の噴射を説明するための図である。FIG. 13 is a diagram for explaining the injection of the cleaning liquid onto the wafer by the second nozzle of the injection mechanism. 図14は、本実施形態の基板処理方法の一例を示すフローチャートである。FIG. 14 is a flowchart showing an example of the substrate processing method of the present embodiment. 図15は、変形例における研磨部搬送機構を示す概略図である。FIG. 15 is a schematic view showing a polishing portion transport mechanism in a modified example.
 以下、図面を参照しながら本発明の一実施形態について説明する。ただし、用いられる図面は模式図である。したがって、図示された部品の大きさ、位置および形状などは、実際の装置における大きさ、位置および形状などとは異なり得る。また、以下の説明および以下の説明で用いる図面では、同一に構成され得る部分について、同一の符号を用いるとともに、重複する説明を省略する。 Hereinafter, an embodiment of the present invention will be described with reference to the drawings. However, the drawings used are schematic views. Therefore, the size, position, shape, and the like of the illustrated parts may differ from the size, position, shape, and the like in an actual device. Further, in the following description and the drawings used in the following description, the same reference numerals are used for parts that can be configured in the same manner, and duplicate description is omitted.
<実施形態-1>
 図1は本発明の一実施形態による基板処理装置の全体構成を示す平面図である。図1に示すように、本実施形態における基板処理装置10-1は、平面視略矩形状のハウジングを備えており、ハウジングの内部は隔壁によってロード/アンロード部11-1と研磨部12-1と洗浄部13-1と搬送部14-1とに区画されている。これらのロード/アンロード部11-1、研磨部12-1、洗浄部13-1、および搬送部14-1は、それぞれ独立に組み立てられ、独立に排気されるものである。また、基板処理装置10-1には、ロード/アンロード部11-1、研磨部12-1、洗浄部13-1、および搬送部14-1の動作を制御する制御部15-1(制御盤ともいう)が設けられている。
<Embodiment-1>
FIG. 1 is a plan view showing an overall configuration of a substrate processing apparatus according to an embodiment of the present invention. As shown in FIG. 1, the substrate processing apparatus 10-1 in the present embodiment includes a housing having a substantially rectangular shape in a plan view, and the inside of the housing has a load / unload portion 11-1 and a polishing portion 12- by a partition wall. It is divided into 1 and a cleaning unit 13-1 and a transport unit 14-1. The load / unload section 11-1, the polishing section 12-1, the cleaning section 13-1, and the transport section 14-1 are assembled independently and exhausted independently. Further, the substrate processing apparatus 10-1 has a control unit 15-1 (control) that controls the operations of the load / unload unit 11-1, the polishing unit 12-1, the cleaning unit 13-1, and the transport unit 14-1. (Also called a board) is provided.
 ロード/アンロード部11-1は、多数のウェハ(基板)Wをストックするウェハカセットを載置する複数(図示された例では4つ)のフロントロード部113-1を備えている。これらのフロントロード部113-1は、基板処理装置10-1の幅方向(長手方向と垂直な方向)に隣接して配列されている。フロントロード部113-1には、オープンカセット、SMIF(Standard Manufacturing Interface)ポッド、またはFOUP(Front Opening Unified Pod)を搭載することができる。ここで、SMIF、FOUPは、内部にウェハカセットを収納し、隔壁で覆うことにより、外部空間とは独立した環境を保つことができる密閉容器である。 The load / unload section 11-1 includes a plurality of (four in the illustrated example) front load section 113-1 on which a wafer cassette for stocking a large number of wafers (boards) W is placed. These front load portions 113-1 are arranged adjacent to each other in the width direction (direction perpendicular to the longitudinal direction) of the substrate processing apparatus 10-1. An open cassette, a SMIF (Standard Manufacturing Interface) pod, or a FOUP (Front Opening Enhanced Pod) can be mounted on the front load unit 113-1. Here, SMIF and FOUP are closed containers that can maintain an environment independent of the external space by storing the wafer cassette inside and covering it with a partition wall.
 また、ロード/アンロード部11-1には、フロントロード部113-1の配列方向に沿って走行機構112-1が敷設されており、この走行機構112-1上にフロントロード部113-1の配列方向に沿って移動可能な搬送ロボット111-1が設置されている。搬送ロボット111-1は走行機構112-1上を移動することによってフロントロード部113-1に搭載されたウェハカセットにアクセスできるようになっている。この搬送ロボット111-1は上下に2つのハンドを備えており、例えば、ウェハカセットにウェハWを戻すときに上側のハンドを使用し、研磨前のウェハWを搬送するときに下側のハンドを使用して、上下のハンドを使い分けることができるようになっている。
 なお、これに変えて単一のハンドのみでウェハWを搬送するようにしてもよい。
Further, in the load / unload section 11-1, a traveling mechanism 112-1 is laid along the arrangement direction of the front loading section 113-1, and the front loading section 113-1 is laid on the traveling mechanism 112-1. A transfer robot 111-1 that can move along the arrangement direction of the above is installed. The transfer robot 111-1 can access the wafer cassette mounted on the front load portion 113-1 by moving on the traveling mechanism 112-1. The transfer robot 111-1 has two upper and lower hands. For example, the upper hand is used when returning the wafer W to the wafer cassette, and the lower hand is used when transferring the wafer W before polishing. You can use it to use the upper and lower hands properly.
Instead of this, the wafer W may be conveyed with only a single hand.
 搬送部14-1は、研磨前のウェハをロード/アンロード部11-1から研磨部12-1へと搬送する領域であり、基板処理装置10-1の長手方向に沿って延びるように設けられている。搬送部14-1としては、例えばボールねじを用いたモータ駆動機構またはエアシリンダが用いられる。 The transport section 14-1 is a region for transporting the wafer before polishing from the load / unload section 11-1 to the polishing section 12-1, and is provided so as to extend along the longitudinal direction of the substrate processing apparatus 10-1. Has been done. As the transport unit 14-1, for example, a motor drive mechanism using a ball screw or an air cylinder is used.
 研磨部12-1は、ウェハWの研磨が行われる領域であり、第1研磨ユニット20a-1と、第2研磨ユニット20b-1と、研磨部搬送機構22-1と、を有している。第1研磨ユニット20a-1は、第1研磨装置21a-1と第2研磨装置21b-1とを有し、第2研磨ユニット20b-1は、第3研磨装置21c-1と第4研磨装置21d-1とを有する。研磨部搬送機構22-1は、搬送部14-1と第1研磨ユニット20a-1および第2研磨ユニット20b-1のそれぞれに隣接するように配置されている。研磨部搬送機構22-1は、基板処理装置10-1の幅方向において洗浄部13-1と第1研磨ユニット20a-1および第2研磨ユニット20b-1との間に配置されている。 The polishing unit 12-1 is a region where the wafer W is polished, and has a first polishing unit 20a-1, a second polishing unit 20b-1, and a polishing unit transfer mechanism 22-1. .. The first polishing unit 20a-1 has a first polishing device 21a-1 and a second polishing device 21b-1, and the second polishing unit 20b-1 has a third polishing device 21c-1 and a fourth polishing device. It has 21d-1 and. The polishing unit transfer mechanism 22-1 is arranged so as to be adjacent to each of the transfer unit 14-1 and the first polishing unit 20a-1 and the second polishing unit 20b-1. The polishing unit transfer mechanism 22-1 is arranged between the cleaning unit 13-1 and the first polishing unit 20a-1 and the second polishing unit 20b-1 in the width direction of the substrate processing device 10-1.
 第1研磨装置21a-1、第2研磨装置21b-1、第3研磨装置21c-1、および第4研磨装置21d-1は、基板処理装置10-1の長手方向に沿って配列されている。第2研磨装置21b-1、第3研磨装置21c-1、および第4研磨装置21d-1は、第1研磨装置21a-1と同様の構成を有しているので、以下、第1研磨装置21a-1について説明する。 The first polishing device 21a-1, the second polishing device 21b-1, the third polishing device 21c-1, and the fourth polishing device 21d-1 are arranged along the longitudinal direction of the substrate processing device 10-1. .. Since the second polishing device 21b-1, the third polishing device 21c-1, and the fourth polishing device 21d-1 have the same configuration as the first polishing device 21a-1, the first polishing device is described below. 21a-1 will be described.
 図2は、第1研磨装置21a-1を模式的に示す斜視図である。第1研磨装置21a-1は、研磨面を有する研磨パッド102a-1が取り付けられた研磨テーブル101a-1と、ウェハWを保持しかつウェハWを研磨テーブル101a-1上の研磨パッド102a-1に押圧しながら研磨するためのトップリング25a-1と、研磨パッド102a-1に研磨液(スラリともいう)やドレッシング液(例えば、純水)を供給するための研磨液供給ノズル104a-1と、研磨パッド102a-1の研磨面のドレッシングを行うためのドレッサ(不図示)と、液体(例えば純水)と気体(例えば窒素ガス)の混合気体または液体(例えば純水)を霧状にして研磨面に噴射するアトマイザ(不図示)と、を有している。 FIG. 2 is a perspective view schematically showing the first polishing apparatus 21a-1. The first polishing device 21a-1 has a polishing table 101a-1 to which a polishing pad 102a-1 having a polishing surface is attached, and a polishing pad 102a-1 that holds the wafer W and holds the wafer W on the polishing table 101a-1. A top ring 25a-1 for polishing while pressing against, and a polishing liquid supply nozzle 104a-1 for supplying a polishing liquid (also referred to as slurry) or a dressing liquid (for example, pure water) to the polishing pad 102a-1. , A dresser (not shown) for dressing the polished surface of the polishing pad 102a-1 and a mixed gas or liquid (for example, pure water) of a liquid (for example, pure water) and a gas (for example, nitrogen gas) are atomized. It has an atomizer (not shown) that sprays onto the polished surface.
 トップリング25a-1は、トップリングシャフト103a-1に支持されている。研磨テーブル101a-1の上面には研磨パッド102a-1が貼付されており、この研磨パッド102a-1の上面はウェハWを研磨する研磨面を構成する。なお、研磨パッド102a-1に代えて固定砥石を用いることもできる。トップリング25a-1および研磨テーブル101a-1は、図2において矢印で示すように、その軸心周りに回転するように構成されている。ウェハWは、トップリング25a-1の下面に真空吸着により保持される。研磨時には、研磨液供給ノズル104a-1から研磨パッド102a-1の研磨面に研磨液が供給され、研磨対象であるウェハWがトップリング25a-1により研磨面に押圧されて研磨される。 The top ring 25a-1 is supported by the top ring shaft 103a-1. A polishing pad 102a-1 is attached to the upper surface of the polishing table 101a-1, and the upper surface of the polishing pad 102a-1 constitutes a polishing surface for polishing the wafer W. A fixed whetstone can be used instead of the polishing pad 102a-1. The top ring 25a-1 and the polishing table 101a-1 are configured to rotate about their axis, as indicated by the arrows in FIG. The wafer W is held on the lower surface of the top ring 25a-1 by vacuum suction. At the time of polishing, the polishing liquid is supplied from the polishing liquid supply nozzle 104a-1 to the polishing surface of the polishing pad 102a-1, and the wafer W to be polished is pressed against the polishing surface by the top ring 25a-1 to be polished.
 図1を参照して、第1研磨装置21a-1のトップリング25a-1は、トップリングヘッドのスイング動作により研磨位置と第1基板搬送位置TP1との間を移動する。第1研磨装置21a-1へのウェハの受け渡しは第1基板搬送位置TP1にて行われる。同様に、第2~第4研磨装置21b-1~21d-1のトップリングは、トップリングヘッドのスイング動作により研磨位置と第2~第4基板搬送位置TP2~TP4との間をそれぞれ移動し、第2~第4研磨装置21b-1~21d-1へのウェハの受け渡しは第2~第4基板搬送位置TP2~TP4にて行われる。 With reference to FIG. 1, the top ring 25a-1 of the first polishing device 21a-1 moves between the polishing position and the first substrate transport position TP1 by the swing operation of the top ring head. The wafer is delivered to the first polishing apparatus 21a-1 at the first substrate transfer position TP1. Similarly, the top rings of the second to fourth polishing devices 21b-1 to 21d-1 move between the polishing position and the second to fourth substrate transport positions TP2 to TP4 by the swing operation of the top ring head, respectively. , The transfer of the wafer to the second to fourth polishing devices 21b-1 to 21d-1 is performed at the second to fourth substrate transfer positions TP2 to TP4.
 研磨部搬送機構22-1は、第1研磨ユニット20a-1にウェハWを搬送する第1搬送ユニット24a-1と、第2研磨ユニット20b-1にウェハWを搬送する第2搬送ユニット24b-1と、を有している。また、研磨部搬送機構22-1は、第1搬送ユニット24a-1と第2搬送ユニット24b-1との間に配置され、搬送部14-1と第1搬送ユニット24a-1および第2搬送ユニット24b-1との間のウェハの受け渡しを行う搬送ロボット(搬送機構)23-1を有している。図示された例では、搬送ロボット23-1は、基板処理装置10-1のハウジングの略中央に配置されている。 The polishing unit transfer mechanism 22-1 has a first transfer unit 24a-1 that transfers the wafer W to the first polishing unit 20a-1 and a second transfer unit 24b-that conveys the wafer W to the second polishing unit 20b-1. It has 1 and. Further, the polishing unit transfer mechanism 22-1 is arranged between the first transfer unit 24a-1 and the second transfer unit 24b-1, and is arranged between the transfer unit 14-1 and the first transfer unit 24a-1 and the second transfer unit 24a-1. It has a transfer robot (transfer mechanism) 23-1 that transfers a wafer to and from the unit 24b-1. In the illustrated example, the transfer robot 23-1 is arranged substantially in the center of the housing of the substrate processing apparatus 10-1.
 図3は、搬送ロボット(搬送機構)23-1を示す側面図である。図3に示すように、搬送ロボット23-1は、ウェハWを保持するハンド231-1と、ハンド231-1を上下反転させる(つまり、ウェハWのおもて面と裏面とを反転させる)反転機構234-1と、ウェハWを支持する伸縮可能なアーム232-1と、アーム232-1を上下移動させるアーム上下移動機構およびアーム232-1を鉛直な軸線周りに回動させるアーム回動機構を含むロボット本体233-1と、を有している。ロボット本体233-1は、研磨部12-1の天井のフレームに対して吊り下がるように取り付けられている。反転機構234-1は、モータなどの駆動機構によりハンド231-1を回転させて、ハンド231-1を上下反転させることができるように構成されている。 FIG. 3 is a side view showing the transfer robot (convey mechanism) 23-1. As shown in FIG. 3, the transfer robot 23-1 inverts the hand 231-1 holding the wafer W and the hand 231-1 upside down (that is, inverts the front surface and the back surface of the wafer W). The reversing mechanism 234-1, the telescopic arm 232-1 that supports the wafer W, the arm vertical movement mechanism that moves the arm 232-1 up and down, and the arm rotation that rotates the arm 232-1 around the vertical axis. It has a robot body 233-1 including a mechanism. The robot body 233-1 is attached so as to hang from the ceiling frame of the polishing portion 12-1. The reversing mechanism 234-1 is configured so that the hand 231-1 can be rotated by a drive mechanism such as a motor to turn the hand 231-1 upside down.
 本実施形態では、ハンド231-1は、搬送部14-1に対してアクセス可能となっている。また、ハンド231-1は、研磨部12-1の第1搬送ユニット24a-1および第2搬送ユニット24b-1に対してもアクセス可能となっている。したがって、搬送部14-1から研磨部12-1に連続的に搬送されてくるウェハWは、搬送ロボット23-1により第1搬送ユニット24a-1および第2搬送ユニット24b-1に振り分けられる。第1搬送ユニット24a-1は、ウェハWを第1研磨ユニット20a-1に搬送し、第2搬送ユニット24b-1は、ウェハWを第2研磨ユニット20b-1に搬送する。さらに、ハンド231-1は、洗浄部13-1に対してアクセス可能となっている。これにより、第1~第4研磨装置21a-1~21d-1において研磨されたウェハWは、第1搬送ユニット24a-1,24b-1から再び搬送ロボット23-1へ受け渡され、続いて搬送ロボット23-1から洗浄部13-1へ受け渡される。 In the present embodiment, the hand 231-1 is accessible to the transport unit 14-1. The hand 231-1 is also accessible to the first transport unit 24a-1 and the second transport unit 24b-1 of the polishing unit 12-1. Therefore, the wafer W continuously transferred from the transfer unit 14-1 to the polishing unit 12-1 is distributed to the first transfer unit 24a-1 and the second transfer unit 24b-1 by the transfer robot 23-1. The first transfer unit 24a-1 transfers the wafer W to the first polishing unit 20a-1, and the second transfer unit 24b-1 transfers the wafer W to the second polishing unit 20b-1. Further, the hand 231-1 is accessible to the cleaning unit 13-1. As a result, the wafers W polished by the first to fourth polishing devices 21a-1 to 21d-1 are transferred from the first transfer units 24a-1 and 24b-1 to the transfer robot 23-1 again, and subsequently. It is delivered from the transfer robot 23-1 to the cleaning unit 13-1.
 また、本実施形態では、研磨部搬送機構22-1は、搬送ロボット23-1によって保持されているウェハWに対して洗浄液を噴射可能に構成される噴射機構26-1を有している(図1では、不図示)。噴射機構26-1は、制御部15-1によって制御される。一例として、噴射機構26-1は、洗浄液262-1を噴射するノズル261-1と、ノズル261-1に供給される洗浄液を調整可能な洗浄液調整機構263-1と、第1洗浄液供給源264-1と、第2洗浄液供給源265-1と、を有する。ノズル261-1としては、スプレーノズルや液滴ノズルを採用することができる。なお、噴射機構26-1は、ウェハWに対して洗浄液262-1を噴射可能であればよく、ノズル261-1に代えて、または加えて、噴霧器などを有してもよい。 Further, in the present embodiment, the polishing unit transfer mechanism 22-1 has an injection mechanism 26-1 configured to be capable of injecting a cleaning liquid onto the wafer W held by the transfer robot 23-1 (). Not shown in FIG. 1). The injection mechanism 26-1 is controlled by the control unit 15-1. As an example, the injection mechanism 26-1 includes a nozzle 261-1 that injects the cleaning liquid 262-1, a cleaning liquid adjusting mechanism 263-1 that can adjust the cleaning liquid supplied to the nozzle 261-1, and a first cleaning liquid supply source 264. It has -1 and a second cleaning liquid supply source 265-1. As the nozzle 261-1, a spray nozzle or a droplet nozzle can be adopted. The injection mechanism 26-1 may have a sprayer or the like in place of or in addition to the nozzle 261-1 as long as it can inject the cleaning liquid 262-1 onto the wafer W.
 本実施形態では、ノズル261-1は、研磨部12-1の図示しないフレームに対して固定される。ただし、ノズル261-1は、図示しない移動機構によって移動可能に構成されてもよい。ここで、ノズル261-1は、洗浄液を噴射する対象(ウェハWまたは搬送ロボット23-1のハンド231-1)よりも上方に配置されるとよい。これにより、ウェハWまたは搬送ロボット23-1のハンド231-1からの飛散物によってノズル261-1の洗浄口が汚染されてしまうことを抑制できる。また、一例として、ノズル261-1は、洗浄液の噴射中心方向が、鉛直方向および水平方向に対して傾斜するように構成される。さらに、一例として、ノズル261-1は、洗浄液を噴射する対象から水平方向に離れて配置される。これにより、ノズル261-1から意図せず洗浄液などが滴下したときに、滴下物がウェハWに当たることを防止できる。また、一例として、ノズル261-1は、ノズル261-1の先端が搬送ロボット23-1のロボット本体233-1(特に、図3および図4中の符号233-1の引き出し線が引き出されている面)に向き合うように配置されるとよい。また、一例として、ノズル261-1は、ノズル261-1の先端がハンド231-1の根本へ向くように配置されるとよい。これらにより、噴射機構26-1から噴射される噴射液によって、反転機構234-1やアーム232-1を好適に洗浄することができる。また、ノズル261-1は、洗浄液262-1をコーン状(円錐状)または扇状に噴射するように構成されるとよい。この場合、一例として、噴射機構26-1は、コーン状または扇状に噴射されてウェハWに作用する洗浄液の範囲(直径)がウェハWの直径と等しい又はウェハWの直径よりやや大きくなるように構成される。これにより、ノズル261-1から洗浄液262-1を広範囲に噴射することができ、対象に均一に洗浄液262-1を作用させることができる。 In this embodiment, the nozzle 261-1 is fixed to a frame (not shown) of the polishing portion 12-1. However, the nozzle 261-1 may be configured to be movable by a moving mechanism (not shown). Here, the nozzle 261-1 is preferably arranged above the target (wafer W or the hand 231-1 of the transfer robot 23-1) for injecting the cleaning liquid. As a result, it is possible to prevent the cleaning port of the nozzle 261-1 from being contaminated by the scattered matter from the wafer W or the hand 231-1 of the transfer robot 23-1. Further, as an example, the nozzle 261-1 is configured so that the injection center direction of the cleaning liquid is inclined with respect to the vertical direction and the horizontal direction. Further, as an example, the nozzle 261-1 is arranged horizontally away from the object to which the cleaning liquid is sprayed. As a result, when the cleaning liquid or the like is unintentionally dropped from the nozzle 261-1, it is possible to prevent the dropped object from hitting the wafer W. Further, as an example, in the nozzle 261-1, the tip of the nozzle 261-1 is drawn out from the robot body 233-1 of the transfer robot 23-1 (particularly, the lead wire of reference numeral 233-1 in FIGS. 3 and 4 is drawn out. It is better to arrange it so that it faces the surface). Further, as an example, the nozzle 261-1 may be arranged so that the tip of the nozzle 261-1 faces the root of the hand 231-1. As a result, the reversing mechanism 234-1 and the arm 232-1 can be suitably cleaned by the injection liquid injected from the injection mechanism 26-1. Further, the nozzle 261-1 may be configured to inject the cleaning liquid 262-1 into a cone shape (conical shape) or a fan shape. In this case, as an example, the injection mechanism 26-1 is such that the range (diameter) of the cleaning liquid that is injected in a cone shape or a fan shape and acts on the wafer W is equal to the diameter of the wafer W or slightly larger than the diameter of the wafer W. It is composed. As a result, the cleaning liquid 262-1 can be sprayed over a wide range from the nozzle 261-1, and the cleaning liquid 262-1 can be uniformly applied to the target.
 本実施形態では、ノズル261-1には、洗浄液調整機構263-1を介して第1洗浄液供給源264-1と第2洗浄液供給源265-1とが接続されている。第1洗浄液供給源264-1と第2洗浄液供給源265-1とには、異なる洗浄液が貯められている。一例として、第1洗浄液供給源264-1には第1洗浄液として純水が貯められ、第2洗浄液供給源265-1には第2洗浄液としてリンス(フッ酸、アンモニア等)が貯められる。第1洗浄液と第2洗浄液との少なくとも一方は、洗浄部13-1において使用される洗浄液と同一であってもよい。また、第1洗浄液と第2洗浄液との少なくとも一方は、洗浄部13-1において使用される洗浄液とは異なっていてもよい。なお、ノズル261-1には、2つの洗浄液供給源が接続されるものに限定されず、1つ又は3つ以上の洗浄液供給源が接続されてもよい。噴射機構26-1から噴射される洗浄液(例えば第1洗浄液および第2洗浄液)は、ウェハWの除去対象残渣に基づいて選択される。一例として、ノズル261-1には、純水が貯められる洗浄液供給源のみが接続されてもよい。洗浄液調整機構263-1は、予め定められたレシピに従って第1洗浄液供給源264-1と第2洗浄液供給源265-1とからの洗浄液をノズル261-1に供給する。また、制御部15-1は、設定部15c-1を通じた設定に従って第1洗浄液供給源264-1と第2洗浄液供給源265-1とからの洗浄液をノズル261-1に供給してもよい。洗浄液調整機構263-1は、ノズル261-1に供給する洗浄液を、第1洗浄液供給源264-1からの第1洗浄液と、第2洗浄液供給源265-1からの第2洗浄液と、で切り替えて供給してもよい。また、洗浄液調整機構263-1は、第1洗浄液と第2洗浄液との混合割合を調整して洗浄液をノズル261-1に供給してもよい。 In the present embodiment, the first cleaning liquid supply source 264-1 and the second cleaning liquid supply source 265-1 are connected to the nozzle 261-1 via the cleaning liquid adjusting mechanism 263-1. Different cleaning liquids are stored in the first cleaning liquid supply source 264-1 and the second cleaning liquid supply source 265-1. As an example, pure water is stored as the first cleaning liquid in the first cleaning liquid supply source 264-1, and rinse (hydrofluoric acid, ammonia, etc.) is stored as the second cleaning liquid in the second cleaning liquid supply source 265-1. At least one of the first cleaning liquid and the second cleaning liquid may be the same as the cleaning liquid used in the cleaning unit 13-1. Further, at least one of the first cleaning liquid and the second cleaning liquid may be different from the cleaning liquid used in the cleaning unit 13-1. The nozzle 261-1 is not limited to the one in which two cleaning liquid supply sources are connected, and one or three or more cleaning liquid supply sources may be connected. The cleaning liquid (for example, the first cleaning liquid and the second cleaning liquid) injected from the injection mechanism 26-1 is selected based on the residue to be removed of the wafer W. As an example, only the cleaning liquid supply source in which pure water is stored may be connected to the nozzle 261-1. The cleaning liquid adjusting mechanism 263-1 supplies the cleaning liquid from the first cleaning liquid supply source 264-1 and the second cleaning liquid supply source 265-1 to the nozzle 261-1 according to a predetermined recipe. Further, the control unit 15-1 may supply the cleaning liquid from the first cleaning liquid supply source 264-1 and the second cleaning liquid supply source 265-1 to the nozzle 261-1 according to the setting through the setting unit 15c-1. .. The cleaning liquid adjusting mechanism 263-1 switches the cleaning liquid supplied to the nozzle 261-1 between the first cleaning liquid from the first cleaning liquid supply source 264-1 and the second cleaning liquid from the second cleaning liquid supply source 265-1. May be supplied. Further, the cleaning liquid adjusting mechanism 263-1 may supply the cleaning liquid to the nozzle 261-1 by adjusting the mixing ratio of the first cleaning liquid and the second cleaning liquid.
 さらに、本実施形態では、噴射機構26-1は、2流体ノズル機構により実現されており、ノズル261―1には窒素などのキャリアガスを供給するためのキャリアガス供給源266-1が接続されている。洗浄液とキャリアガスとを高速で噴出させることで、キャリアガス中に洗浄液が微小液滴(ミスト)として存在する2流体ジェット流が生成される。この2流体ジェット流をウェハWの表面に向けて噴出させて衝突させることで、パーティクル等を好適に除去(洗浄)することができる。なお、噴射機構26-1は、キャリアガスを伴わない洗浄を含め、キャリアガスの噴射量を調整できるものとしてもよい。また、本開示において、「洗浄液の噴射」には、キャリアガスを伴った噴射が含まれ得る。 Further, in the present embodiment, the injection mechanism 26-1 is realized by a two-fluid nozzle mechanism, and a carrier gas supply source 266-1 for supplying a carrier gas such as nitrogen is connected to the nozzle 261-1. ing. By ejecting the cleaning liquid and the carrier gas at high speed, a two-fluid jet flow in which the cleaning liquid exists as fine droplets (mist) in the carrier gas is generated. By ejecting this two-fluid jet flow toward the surface of the wafer W and causing it to collide, particles and the like can be suitably removed (cleaned). The injection mechanism 26-1 may be capable of adjusting the injection amount of the carrier gas, including cleaning without the carrier gas. Further, in the present disclosure, "injection of cleaning liquid" may include injection accompanied by a carrier gas.
 再び図1を参照する。洗浄部13-1は、研磨後のウェハを洗浄する領域であり、基板を仮置きする仮置き台としてのウェハステーション33a-1と、研磨後の基板を洗浄する4つの洗浄モジュール311a-1~314a-1(以下、1次~4次洗浄モジュールと呼ぶことがある)と、ウェハステーション33a-1と洗浄モジュール311a-1~314a-1との間でウェハを搬送する搬送ユニット32a-1と、を備えている。ウェハステーション33a-1と複数の洗浄モジュール311a-1~314a-1とは、基板処理装置10-1の長手方向に沿って直列に配置されている。 Refer to Fig. 1 again. The cleaning unit 13-1 is an area for cleaning the polished wafer, and includes a wafer station 33a-1 as a temporary stand for temporarily placing the substrate and four cleaning modules 311a-1 to clean the polished substrate. 314a-1 (hereinafter, may be referred to as a primary to quaternary cleaning module) and a transfer unit 32a-1 for transferring a wafer between the wafer station 33a-1 and the cleaning modules 311a-1 to 314a-1. , Is equipped. The wafer station 33a-1 and the plurality of cleaning modules 311a-1 to 314a-1 are arranged in series along the longitudinal direction of the substrate processing apparatus 10-1.
 1次洗浄モジュール311a-1および2次洗浄モジュール312a-1の洗浄機としては、例えば、上下に配置されたロール状のスポンジを回転させてウェハの表面および裏面に押し付けてウェハの表面および裏面を洗浄するロールタイプの洗浄機を用いることができる。また、3次洗浄モジュール313a-1の洗浄機としては、例えば、半球状のスポンジを回転させながらウェハに押し付けて洗浄するペンシルタイプの洗浄機を用いることができる。4次洗浄モジュール314a-1の洗浄機としては、例えば、ウェハの裏面はリンス洗浄することができ、ウェハ表面の洗浄は半球状のスポンジを回転させながら押し付けて洗浄するペンシルタイプの洗浄機を用いることができる。この4次洗浄モジュール314a-1の洗浄機は、チャックしたウェハを高速回転させるステージを備えており、ウェハを高速回転させることで洗浄後のウェハを乾燥させる機能(スピンドライ機能)を有している。なお、各洗浄モジュール311a-1~314a-1の洗浄機において、上述したロールタイプの洗浄機やペンシルタイプの洗浄機に加えて、洗浄液に超音波を当てて洗浄するメガソニックタイプの洗浄機を付加的に設けてもよい。 As a cleaning machine for the primary cleaning module 311a-1 and the secondary cleaning module 312a-1, for example, roll-shaped sponges arranged vertically are rotated and pressed against the front surface and the back surface of the wafer to press the front surface and the back surface of the wafer. A roll-type washer for cleaning can be used. Further, as the cleaning machine of the tertiary cleaning module 313a-1, for example, a pencil type cleaning machine in which a hemispherical sponge is rotated and pressed against the wafer to perform cleaning can be used. As the cleaning machine for the quaternary cleaning module 314a-1, for example, a pencil type cleaning machine is used in which the back surface of the wafer can be rinsed and the surface of the wafer is cleaned by pressing a hemispherical sponge while rotating it. be able to. The washing machine of the quaternary washing module 314a-1 is provided with a stage for rotating the chucked wafer at high speed, and has a function (spin dry function) of drying the washed wafer by rotating the wafer at high speed. There is. In each cleaning module 311a-1 to 314a-1, in addition to the roll type washer and the pencil type washer described above, a megasonic type washer that irradiates the cleaning liquid with ultrasonic waves for cleaning is provided. It may be additionally provided.
 制御部15-1は、基板処理装置10-1の各構成要素を制御するために設けられている。制御部15-1は、CPU、メモリなどを備え、ソフトウェアを用いて所定の機能を実現するマイクロコンピュータとして構成されてもよいし、専用の演算処理を行うハードウェア回路として構成されてもよい。本実施形態の制御部15-1は、演算部15a-1と、メモリ15b-1と、設定部15c-1と、を備えている。設定部15c-1は、ユーザーインターフェースとして機能し、外部操作により、各種設定値(設定情報)を設定するのに使用される。具体的には、設定部15c-1は不図示の操作ボタンやタッチパネル等を備え、設定部15c-1において設定された各種設定値は、メモリ15b-1に記憶される。 The control unit 15-1 is provided to control each component of the substrate processing device 10-1. The control unit 15-1 may be configured as a microcomputer that includes a CPU, a memory, and the like and realizes a predetermined function by using software, or may be configured as a hardware circuit that performs dedicated arithmetic processing. The control unit 15-1 of the present embodiment includes a calculation unit 15a-1, a memory 15b-1, and a setting unit 15c-1. The setting unit 15c-1 functions as a user interface and is used to set various setting values (setting information) by an external operation. Specifically, the setting unit 15c-1 includes an operation button (not shown), a touch panel, and the like, and various setting values set in the setting unit 15c-1 are stored in the memory 15b-1.
 続いて、基板処理装置10-1の動作について説明する。基板処理装置10-1では、まず、フロントロード部113-1のウェハカセットから研磨前のウェハWが、ロード/アンロード部11-1の搬送ロボット111-1により取り出されて搬送部14-1へ受け渡される。続いて、ウェハWは、搬送部14-1から搬送ロボット23-1へ受け渡され、搬送ロボット23-1の反転機構234-1により、ウェハWはハンド231-1と一緒に上下反転される。これにより、ウェハWの処理面が下方に向けられる。次に、搬送ロボット23-1から第1搬送ユニット24a-1または第2搬送ユニット24b-1へ受け渡され、第1搬送ユニット24a-1または第2搬送ユニット24b-1から第1~第4研磨装置21a-1~21d-1へとウェハWが搬入される。そして、第1~第4研磨装置21a-1~21d-1においてウェハWは、トップリングに吸着保持され、研磨パッド102a-1と当接することにより研磨される。 Next, the operation of the substrate processing device 10-1 will be described. In the substrate processing apparatus 10-1, first, the wafer W before polishing is taken out from the wafer cassette of the front load section 113-1 by the transfer robot 111-1 of the load / unload section 11-1, and the transfer section 14-1 Handed over to. Subsequently, the wafer W is delivered from the transfer unit 14-1 to the transfer robot 23-1, and the wafer W is turned upside down together with the hand 231-1 by the reversing mechanism 234-1 of the transfer robot 23-1. .. As a result, the processing surface of the wafer W is directed downward. Next, the transfer robot 23-1 delivers the transfer to the first transfer unit 24a-1 or the second transfer unit 24b-1, and the first transfer unit 24a-1 or the second transfer unit 24b-1 first to fourth. The wafer W is carried into the polishing devices 21a-1 to 21d-1. Then, in the first to fourth polishing devices 21a-1 to 21d-1, the wafer W is attracted and held by the top ring and is polished by abutting with the polishing pad 102a-1.
 ウェハWの研磨が終了した後、研磨したウェハWは、第1研磨装置21a-1~21d-1から第1搬送ユニット24a-1または第2搬送ユニット24b-1を通じて搬送ロボット23-1へ受け渡される。続いて、搬送ロボット23-1の反転機構234-1により、ウェハWはハンド231-1と一緒に上下反転される。これにより、ウェハWの処理面が上方に向けられる。 After the polishing of the wafer W is completed, the polished wafer W is received from the first polishing devices 21a-1 to 21d-1 to the transfer robot 23-1 through the first transfer unit 24a-1 or the second transfer unit 24b-1. Passed. Subsequently, the wafer W is turned upside down together with the hand 231-1 by the reversing mechanism 234-1 of the transfer robot 23-1. As a result, the processing surface of the wafer W is directed upward.
 本実施形態では、研磨されたウェハWが搬送ロボット23-1によって反転される際に、噴射機構26-1によってウェハWに洗浄液が噴射される。ウェハWを反転させながら研磨液を吹きかけることにより、ウェハWの全面に洗浄液を作用させることができる。このときには、制御部15-1は、噴射機構26-1によって洗浄液が噴射されているときに、ウェハWが鉛直方向に沿う位置(鉛直位置)で、つまりウェハWの板面が水平方向に向く位置で、第1時間(例えば数秒)にわたって停止させてもよい(図4参照)。こうすれば、ウェハWの板面に洗浄液を掛け流すことができ、ウェハWから異物を効率的に除去し得る。さらに、制御部15-1は、噴射機構26-1による洗浄液の噴射が終了した後に、ウェハWを鉛直位置で第2時間(例えば数秒)にわたって停止させるとよい。これにより、ウェハWの板面から余分な洗浄液および異物を除去することができる。 In the present embodiment, when the polished wafer W is inverted by the transfer robot 23-1, the cleaning liquid is injected onto the wafer W by the injection mechanism 26-1. By spraying the polishing liquid while inverting the wafer W, the cleaning liquid can act on the entire surface of the wafer W. At this time, the control unit 15-1 is at a position where the wafer W is along the vertical direction (vertical position) when the cleaning liquid is injected by the injection mechanism 26-1, that is, the plate surface of the wafer W faces in the horizontal direction. At the position, it may be stopped for a first hour (eg, a few seconds) (see FIG. 4). In this way, the cleaning liquid can be poured over the plate surface of the wafer W, and foreign matter can be efficiently removed from the wafer W. Further, the control unit 15-1 may stop the wafer W at the vertical position for a second time (for example, several seconds) after the injection of the cleaning liquid by the injection mechanism 26-1 is completed. As a result, excess cleaning liquid and foreign matter can be removed from the plate surface of the wafer W.
 また、噴射機構26-1から洗浄液を噴射するときには、制御部15-1は、ウェハWを複数回にわたって反転させてもよい。ウェハWの反転回数は、予め定められた回数(例えば2回など)としてもよいし、設定部15c-1を通じて設定可能としてもよい。さらに、制御部15-1は、反転機構234-1によってウェハWを反転させる速度を調整してもよい。たとえば、制御部15-1は、研磨部12-1による処理前のウェハWを反転させるときには第1反転速度でウェハWが反転するように反転機構234-1を制御し、研磨部12-1による処理後のウェハWを反転させるときには第1速度より遅い第2反転速度でウェハWが反転するように反転機構234-1を制御してもよい。これにより、研磨前のウェハWについては迅速に反転させて基板処理装置10-1における処理を速くすることができるとともに、研磨後のウェハWについては比較的ゆっくりと反転させて洗浄液をウェハWに作用させることができる。また、ウェハWの反転速度は、予め定められた速度としてもよいし、設定部15c-1を通じて設定可能としてもよい。 Further, when the cleaning liquid is injected from the injection mechanism 26-1, the control unit 15-1 may invert the wafer W a plurality of times. The number of times the wafer W is inverted may be a predetermined number of times (for example, twice), or may be set through the setting unit 15c-1. Further, the control unit 15-1 may adjust the speed at which the wafer W is inverted by the inversion mechanism 234-1. For example, the control unit 15-1 controls the inversion mechanism 234-1 so that the wafer W is inverted at the first inversion rate when the wafer W before processing by the polishing unit 12-1 is inverted, and the polishing unit 12-1 When inverting the wafer W after the treatment according to the above method, the inverting mechanism 234-1 may be controlled so that the wafer W is inverted at a second inverting speed slower than the first speed. As a result, the wafer W before polishing can be quickly inverted to speed up the processing in the substrate processing apparatus 10-1, and the wafer W after polishing can be inverted relatively slowly to transfer the cleaning liquid to the wafer W. Can act. Further, the inversion speed of the wafer W may be a predetermined speed or may be set through the setting unit 15c-1.
 このように、本実施形態の基板処理装置10-1では、ウェハWを洗浄部13-1で洗浄する前に、ウェハWを搬送ロボット23-1で反転させている際にウェハWに洗浄液を作用させて、ウェハWをプレ洗浄することができる。また、トップリング25a-1にウェハWを取り付けるためにウェハWを反転させる搬送ロボット23-1の反転機構234-1を利用することにより、プレ洗浄のために新たにウェハWを移動させる機構を設けることなく好適にウェハWに洗浄液を作用させることができる。 As described above, in the substrate processing apparatus 10-1 of the present embodiment, before the wafer W is cleaned by the cleaning unit 13-1, the cleaning liquid is applied to the wafer W when the wafer W is inverted by the transfer robot 23-1. The wafer W can be pre-cleaned by acting. Further, by using the reversing mechanism 234-1 of the transfer robot 23-1 that inverts the wafer W in order to attach the wafer W to the top ring 25a-1, a mechanism for newly moving the wafer W for pre-cleaning is provided. The cleaning liquid can be preferably applied to the wafer W without being provided.
 そして、ウェハWは、搬送ロボット23-1から洗浄部13-1へ受け渡され、洗浄部13-1において洗浄および乾燥が行われる。洗浄部13-1における洗浄および乾燥処理が終了した後、ウェハWは、洗浄部13-1からロード/アンロード部11-1へ取り出され、基板処理装置10-1における基板処理が終了する。ウェハWが搬送ロボット23-1から洗浄部13-1へ受け渡された後には、噴射機構26-1によって搬送ロボット23-1のハンド231-1に洗浄液を噴射してもよい。こうすれば、噴射機構26-1によって、搬送ロボット23-1のハンド231-1の洗浄を行うこともできる。このときには、反転機構234-1によってハンド231-1を反転させながら噴射機構26-1から洗浄液を噴射してもよい。 Then, the wafer W is handed over from the transfer robot 23-1 to the cleaning unit 13-1, and cleaning and drying are performed in the cleaning unit 13-1. After the cleaning and drying processing in the cleaning unit 13-1 is completed, the wafer W is taken out from the cleaning unit 13-1 to the load / unload unit 11-1, and the substrate processing in the substrate processing apparatus 10-1 is completed. After the wafer W is delivered from the transfer robot 23-1 to the cleaning unit 13-1, the cleaning liquid may be injected into the hand 231-1 of the transfer robot 23-1 by the injection mechanism 26-1. In this way, the injection mechanism 26-1 can also clean the hand 231-1 of the transfer robot 23-1. At this time, the cleaning liquid may be injected from the injection mechanism 26-1 while the hand 231-1 is inverted by the reversing mechanism 234-1.
 重複した説明となるが、上記した基板処理装置10-1は、図5に示す基板処理方法を実行している。つまり、ウェハWは研磨部12-1において研磨され(ステップS12-1)、研磨されたウェハWは、搬送ロボット(搬送機構)23-1で反転および搬送される(ステップS14-1)。また、研磨されたウェハWが搬送ロボット23-1によって反転されている際に、噴射機構26-1から洗浄液がウェハWに噴射される(ステップS16-1)。これにより、ウェハWをプレ洗浄することができる。そして、搬送ロボット23-1によってウェハWが洗浄部13-1へ受け渡され、洗浄部13-1においてウェハWの洗浄が行われる(ステップS18-1)。このときには、ステップS16-1において予めウェハWに洗浄液が噴射されてウェハWがプレ洗浄されているので、洗浄部13-1における洗浄時間を短くすることができる。こうした基板処理方法によれば、ウェハWの洗浄効率を向上することができる。 Although it is a duplicate explanation, the above-mentioned substrate processing apparatus 10-1 executes the substrate processing method shown in FIG. That is, the wafer W is polished by the polishing unit 12-1 (step S12-1), and the polished wafer W is inverted and conveyed by the transfer robot (transfer mechanism) 23-1 (step S14-1). Further, when the polished wafer W is inverted by the transfer robot 23-1, the cleaning liquid is injected onto the wafer W from the injection mechanism 26-1 (step S16-1). As a result, the wafer W can be pre-cleaned. Then, the wafer W is delivered to the cleaning unit 13-1 by the transfer robot 23-1, and the wafer W is cleaned by the cleaning unit 13-1 (step S18-1). At this time, since the cleaning liquid is sprayed onto the wafer W in advance in step S16-1 to pre-clean the wafer W, the cleaning time in the cleaning unit 13-1 can be shortened. According to such a substrate processing method, the cleaning efficiency of the wafer W can be improved.
 上記した基板処理装置10-1では、ウェハWが搬送部14-1およびロード/アンロード部11-1などで搬送されるときには、処理面が基板処理装置10-1に接触して汚染または損傷しないように、ウェハWの処理面は上向きとされる。また、ウェハWが研磨部12-1で研磨されるときには、研磨液が研磨パッド102a-1上に好適に作用するように、ウェハWは、搬送ロボット23-1によって反転されて処理面が下向きとされる。そして、研磨部12-1での研磨が終了すると、処理面が汚染または損傷されないように、ウェハWは搬送ロボット23-1によって再び反転されて処理面が上向きとされて洗浄部13-1へと搬送される。こうした基板処理装置10-1では、研磨部12-1での研磨によってウェハWに残った研磨液または研磨残留物が、搬送ロボット23-1によるウェハWの回転によってウェハW全面に広がってしまうおそれがある。また、研磨液または研磨残留物が搬送ロボット23-1に付着したり、搬送ロボット23-1に付着した研磨液または研磨残留物が次回以降のウェハWを汚染させるおそれがある。研磨部12-1で使用される研磨液は一般に粘性が強く、また時間が経って乾燥すると、研磨液が固まって除去しにくくなってしまう。これに対して、本実施形態による基板処理装置10-1では、研磨されたウェハWが搬送ロボット23-1によって反転されている際に、ウェハWに対して洗浄液を噴射可能な噴射機構26-1が設けられている。これにより、ウェハWおよび搬送ロボット23-1に早いタイミングで洗浄液を作用させることができ、ウェハWおよび搬送ロボット23-1に付着した研磨液または研磨残留物を好適に除去することができる。しかも、搬送ロボット23-1によるウェハWの回転を伴ってウェハWに洗浄液を作用させることができるため、ウェハWの全面に均一に洗浄液を作用させてウェハWを洗浄することができる。 In the substrate processing apparatus 10-1 described above, when the wafer W is conveyed by the conveying section 14-1 and the load / unloading section 11-1, the processing surface comes into contact with the substrate processing apparatus 10-1 and becomes contaminated or damaged. The processing surface of the wafer W is turned upward so as not to prevent it. Further, when the wafer W is polished by the polishing unit 12-1, the wafer W is inverted by the transfer robot 23-1 so that the polishing liquid acts on the polishing pad 102a-1 so that the processing surface faces downward. It is said that. Then, when the polishing by the polishing unit 12-1 is completed, the wafer W is turned over again by the transfer robot 23-1 so that the processed surface is not contaminated or damaged, and the processed surface is turned upward to the cleaning unit 13-1. Is transported. In such a substrate processing apparatus 10-1, the polishing liquid or polishing residue remaining on the wafer W due to polishing by the polishing unit 12-1 may spread over the entire surface of the wafer W due to the rotation of the wafer W by the transfer robot 23-1. There is. Further, the polishing liquid or the polishing residue may adhere to the transfer robot 23-1, or the polishing liquid or the polishing residue attached to the transfer robot 23-1 may contaminate the wafer W from the next time onward. The polishing liquid used in the polishing unit 12-1 is generally highly viscous, and when it dries over time, the polishing liquid solidifies and becomes difficult to remove. On the other hand, in the substrate processing apparatus 10-1 according to the present embodiment, when the polished wafer W is inverted by the transfer robot 23-1, the injection mechanism 26-that can inject the cleaning liquid onto the wafer W. 1 is provided. As a result, the cleaning liquid can be allowed to act on the wafer W and the transfer robot 23-1 at an early timing, and the polishing liquid or the polishing residue adhering to the wafer W and the transfer robot 23-1 can be suitably removed. Moreover, since the cleaning liquid can be applied to the wafer W with the rotation of the wafer W by the transfer robot 23-1, the cleaning liquid can be uniformly applied to the entire surface of the wafer W to clean the wafer W.
<実施形態-2>
 図6は本発明の一実施形態による基板処理装置の全体構成を示す平面図であり、図7は、図6に示す研磨装置を洗浄部側から見た側面図である。図6及び図7に示すように、本実施形態における基板処理装置10-2は、平面視略矩形状のハウジングを備えており、ハウジングの内部は隔壁によってロード/アンロード部11-2と研磨部12-2と洗浄部13-2と搬送部14-2とに区画されている。これらのロード/アンロード部11-2、研磨部12-2、洗浄部13-2、および搬送部14-2は、それぞれ独立に組み立てられ、独立に排気されるものである。また、基板処理装置10-2には、ロード/アンロード部11-2、研磨部12-2、洗浄部13-2、および搬送部14-2の動作を制御する制御部15-2(制御盤ともいう)が設けられている。
<Embodiment-2>
FIG. 6 is a plan view showing the overall configuration of the substrate processing apparatus according to the embodiment of the present invention, and FIG. 7 is a side view of the polishing apparatus shown in FIG. 6 as viewed from the cleaning unit side. As shown in FIGS. 6 and 7, the substrate processing apparatus 10-2 in the present embodiment includes a housing having a substantially rectangular shape in a plan view, and the inside of the housing is polished with a load / unload portion 11-2 by a partition wall. It is divided into a section 12-2, a cleaning section 13-2, and a transport section 14-2. The load / unload section 11-2, the polishing section 12-2, the cleaning section 13-2, and the transport section 14-2 are assembled independently and exhausted independently. Further, the substrate processing apparatus 10-2 has a control unit 15-2 (control) that controls the operations of the load / unload unit 11-2, the polishing unit 12-2, the cleaning unit 13-2, and the transport unit 14-2. It is also called a board).
 ロード/アンロード部11-2は、多数のウェハ(基板)Wをストックするウェハカセットを載置する複数(図示された例では4つ)のフロントロード部113-2を備えている。これらのフロントロード部113-2は、基板処理装置10-2の幅方向(長手方向と垂直な方向)に隣接して配列されている。フロントロード部113-2には、オープンカセット、SMIF(Standard Manufacturing Interface)ポッド、またはFOUP(Front Opening Unified Pod)を搭載することができる。ここで、SMIF、FOUPは、内部にウェハカセットを収納し、隔壁で覆うことにより、外部空間とは独立した環境を保つことができる密閉容器である。 The load / unload section 11-2 includes a plurality of (four in the illustrated example) front load sections 113-2 on which a wafer cassette for stocking a large number of wafers (boards) W is placed. These front load portions 113-2 are arranged adjacent to each other in the width direction (direction perpendicular to the longitudinal direction) of the substrate processing apparatus 10-2. An open cassette, a SMIF (Standard Manufacturing Interface) pod, or a FOUP (Front Opening Enhanced Pod) can be mounted on the front load unit 113-2. Here, SMIF and FOUP are closed containers that can maintain an environment independent of the external space by storing the wafer cassette inside and covering it with a partition wall.
 また、ロード/アンロード部11-2には、フロントロード部113-2の配列方向に沿って走行機構112-2が敷設されており、この走行機構112-2上にフロントロード部113-2の配列方向に沿って移動可能な搬送ロボット111-2が設置されている。搬送ロボット111-2は走行機構112-2上を移動することによってフロントロード部113-2に搭載されたウェハカセットにアクセスできるようになっている。この搬送ロボット111-2は上下に2つのハンドを備えており、例えば、ウェハカセットにウェハWを戻すときに上側のハンドを使用し、研磨前のウェハWを搬送するときに下側のハンドを使用して、上下のハンドを使い分けることができるようになっている。
 なお、これに変えて単一のハンドのみでウェハWを搬送するようにしてもよい。
Further, in the load / unload portion 11-2, a traveling mechanism 112-2 is laid along the arrangement direction of the front loading portion 113-2, and the front loading portion 113-2 is laid on the traveling mechanism 112-2. A transfer robot 111-2 that can move along the arrangement direction of is installed. The transfer robot 111-2 can access the wafer cassette mounted on the front load portion 113-2 by moving on the traveling mechanism 112-2. The transfer robot 111-2 has two upper and lower hands. For example, the upper hand is used when returning the wafer W to the wafer cassette, and the lower hand is used when transferring the wafer W before polishing. You can use it to use the upper and lower hands properly.
Instead of this, the wafer W may be conveyed with only a single hand.
 搬送部14-2は、研磨前のウェハをロード/アンロード部11-2から研磨部12-2へと搬送する領域であり、基板処理装置10-2の長手方向に沿って延びるように設けられている。搬送部14-2としては、例えばボールねじを用いたモータ駆動機構またはエアシリンダが用いられる。 The transport section 14-2 is a region for transporting the wafer before polishing from the load / unload section 11-2 to the polishing section 12-2, and is provided so as to extend along the longitudinal direction of the substrate processing apparatus 10-2. Has been done. As the transport unit 14-2, for example, a motor drive mechanism using a ball screw or an air cylinder is used.
 研磨部12-2は、ウェハWの研磨が行われる領域であり、第1研磨ユニット20a-2と、第2研磨ユニット20b-2と、研磨部搬送機構22-2と、を有している。第1研磨ユニット20a-2は、第1研磨装置21a-2と第2研磨装置21b-2とを有し、第2研磨ユニット20b-2は、第3研磨装置21c-2と第4研磨装置21d-2とを有する。研磨部搬送機構22-2は、搬送部14-2と第1研磨ユニット20a-2および第2研磨ユニット20b-2のそれぞれに隣接するように配置されている。研磨部搬送機構22-2は、基板処理装置10-2の幅方向において洗浄部13-2と第1研磨ユニット20a-2および第2研磨ユニット20b-2との間に配置されている。 The polishing unit 12-2 is a region where the wafer W is polished, and has a first polishing unit 20a-2, a second polishing unit 20b-2, and a polishing unit transfer mechanism 22-2. .. The first polishing unit 20a-2 has a first polishing device 21a-2 and a second polishing device 21b-2, and the second polishing unit 20b-2 has a third polishing device 21c-2 and a fourth polishing device. It has 21d-2 and. The polishing unit transfer mechanism 22-2 is arranged so as to be adjacent to each of the transfer unit 14-2, the first polishing unit 20a-2, and the second polishing unit 20b-2. The polishing unit transfer mechanism 22-2 is arranged between the cleaning unit 13-2 and the first polishing unit 20a-2 and the second polishing unit 20b-2 in the width direction of the substrate processing device 10-2.
 第1研磨装置21a-2、第2研磨装置21b-2、第3研磨装置21c-2、および第4研磨装置21d-2は、基板処理装置10-2の長手方向に沿って配列されている。第2研磨装置21b-2、第3研磨装置21c-2、および第4研磨装置21d-2は、第1研磨装置21a-2と同様の構成を有しているので、以下、第1研磨装置21a-2について説明する。 The first polishing device 21a-2, the second polishing device 21b-2, the third polishing device 21c-2, and the fourth polishing device 21d-2 are arranged along the longitudinal direction of the substrate processing device 10-2. .. Since the second polishing device 21b-2, the third polishing device 21c-2, and the fourth polishing device 21d-2 have the same configuration as the first polishing device 21a-2, the first polishing device will be described below. 21a-2 will be described.
 図8は、第1研磨装置21a-2を模式的に示す斜視図である。第1研磨装置21a-2は、研磨面を有する研磨パッド102a-2が取り付けられた研磨テーブル101a-2と、ウェハWを保持しかつウェハWを研磨テーブル101a-2上の研磨パッド102a-2に押圧しながら研磨するためのトップリング25a-2と、研磨パッド102a-2に研磨液(スラリともいう)やドレッシング液(例えば、純水)を供給するための研磨液供給ノズル104a-2と、研磨パッド102a-2の研磨面のドレッシングを行うためのドレッサ(不図示)と、液体(例えば純水)と気体(例えば窒素ガス)の混合気体または液体(例えば純水)を霧状にして研磨面に噴射するアトマイザ(不図示)と、を有している。 FIG. 8 is a perspective view schematically showing the first polishing apparatus 21a-2. The first polishing device 21a-2 has a polishing table 101a-2 to which a polishing pad 102a-2 having a polishing surface is attached, and a polishing pad 102a-2 that holds the wafer W and holds the wafer W on the polishing table 101a-2. A top ring 25a-2 for polishing while pressing against, and a polishing liquid supply nozzle 104a-2 for supplying a polishing liquid (also called a slurry) or a dressing liquid (for example, pure water) to the polishing pad 102a-2. , A dresser (not shown) for dressing the polished surface of the polishing pad 102a-2 and a mixed gas or liquid (for example, pure water) of a liquid (for example, pure water) and a gas (for example, nitrogen gas) are atomized. It has an atomizer (not shown) that sprays onto the polished surface.
 トップリング25a-2は、トップリングシャフト103a-2に支持されている。研磨テーブル101a-2の上面には研磨パッド102a-2が貼付されており、この研磨パッド102a-2の上面はウェハWを研磨する研磨面を構成する。なお、研磨パッド102a-2に代えて固定砥石を用いることもできる。トップリング25a-2および研磨テーブル101a-2は、図7において矢印で示すように、その軸心周りに回転するように構成されている。ウェハWは、トップリング25a-2の下面に真空吸着により保持される。研磨時には、研磨液供給ノズル104a-2から研磨パッド102a-2の研磨面に研磨液が供給され、研磨対象であるウェハWがトップリング25a-2により研磨面に押圧されて研磨される。 The top ring 25a-2 is supported by the top ring shaft 103a-2. A polishing pad 102a-2 is attached to the upper surface of the polishing table 101a-2, and the upper surface of the polishing pad 102a-2 constitutes a polishing surface for polishing the wafer W. A fixed whetstone can be used instead of the polishing pad 102a-2. The top ring 25a-2 and the polishing table 101a-2 are configured to rotate about their axis, as indicated by the arrows in FIG. The wafer W is held on the lower surface of the top ring 25a-2 by vacuum suction. At the time of polishing, the polishing liquid is supplied from the polishing liquid supply nozzle 104a-2 to the polishing surface of the polishing pad 102a-2, and the wafer W to be polished is pressed against the polishing surface by the top ring 25a-2 to be polished.
 図6を参照して、第1研磨装置21a-2のトップリング25a-2は、トップリングヘッドのスイング動作により研磨位置と第1基板搬送位置TP1との間を移動する。第1研磨装置21a-2へのウェハの受け渡しは第1基板搬送位置TP1にて行われる。同様に、第2~第4研磨装置21b-2~21d-2のトップリングは、トップリングヘッドのスイング動作により研磨位置と第2~第4基板搬送位置TP2~TP4との間をそれぞれ移動し、第2~第4研磨装置21b-2~21d-2へのウェハの受け渡しは第2~第4基板搬送位置TP2~TP4にて行われる。 With reference to FIG. 6, the top ring 25a-2 of the first polishing device 21a-2 moves between the polishing position and the first substrate transport position TP1 by the swing operation of the top ring head. The wafer is delivered to the first polishing apparatus 21a-2 at the first substrate transfer position TP1. Similarly, the top rings of the second to fourth polishing devices 21b-2 to 21d-2 move between the polishing position and the second to fourth substrate transport positions TP2 to TP4 by the swing operation of the top ring head, respectively. Wafers are delivered to the 2nd to 4th polishing devices 21b-2 to 21d-2 at the 2nd to 4th substrate transfer positions TP2 to TP4.
 研磨部搬送機構22-2は、第1研磨ユニット20a-2にウェハWを搬送する第1搬送ユニット24a-2と、第2研磨ユニット20b-2にウェハWを搬送する第2搬送ユニット24b-2と、を有している。また、研磨部搬送機構22-2は、第1搬送ユニット24a-2と第2搬送ユニット24b-2との間に配置され、搬送部14-2と第1搬送ユニット24a-2および第2搬送ユニット24b-2との間のウェハの受け渡しを行う搬送ロボット(搬送機構)23-2を有している。図示された例では、搬送ロボット23-2は、基板処理装置10-2のハウジングの略中央に配置されている。 The polishing unit transfer mechanism 22-2 includes a first transfer unit 24a-2 that transfers the wafer W to the first polishing unit 20a-2 and a second transfer unit 24b-that conveys the wafer W to the second polishing unit 20b-2. 2 and. Further, the polishing unit transport mechanism 22-2 is arranged between the first transport unit 24a-2 and the second transport unit 24b-2, and the transport unit 14-2, the first transport unit 24a-2, and the second transport unit 22-2 are arranged. It has a transfer robot (transfer mechanism) 23-2 that transfers a wafer to and from the unit 24b-2. In the illustrated example, the transfer robot 23-2 is arranged substantially in the center of the housing of the substrate processing apparatus 10-2.
 図9は、搬送ロボット(搬送機構)23-2を示す側面図である。図9に示すように、搬送ロボット23-2は、ウェハWを保持するハンド231-2と、ハンド231-2を上下反転させる(つまり、ウェハWのおもて面と裏面とを反転させる)反転機構234-2と、ウェハWを支持する伸縮可能なアーム232-2と、アーム232-2を上下移動させるアーム上下移動機構およびアーム232-2を鉛直な軸線周りに回動させるアーム回動機構を含むロボット本体233-2と、を有している。ロボット本体233-2は、研磨部12-2の天井のフレームに対して吊り下がるように取り付けられている。 FIG. 9 is a side view showing the transfer robot (convey mechanism) 23-2. As shown in FIG. 9, the transfer robot 23-2 inverts the hand 231-2 holding the wafer W and the hand 231-2 upside down (that is, inverts the front surface and the back surface of the wafer W). The reversing mechanism 234-2, the telescopic arm 232-2 that supports the wafer W, the arm vertical movement mechanism that moves the arm 232-2 up and down, and the arm rotation that rotates the arm 232-2 around the vertical axis. It has a robot body 233-2 including a mechanism. The robot body 233-2 is attached so as to hang from the ceiling frame of the polishing portion 12-2.
 本実施形態では、ハンド231-2は、搬送部14-2に対してアクセス可能となっている。また、ハンド231-2は、研磨部12-2の第1搬送ユニット24a-2および第2搬送ユニット24b-2に対してもアクセス可能となっている。したがって、搬送部14-2から研磨部12-2に連続的に搬送されてくるウェハWは、搬送ロボット23-2により第1搬送ユニット24a-2および第2搬送ユニット24b-2に振り分けられる。第1搬送ユニット24a-2は、ウェハWを第1研磨ユニット20a-2に搬送し、第2搬送ユニット24b-2は、ウェハWを第2研磨ユニット20b-2に搬送する。さらに、ハンド231-2は、洗浄部13-2に対してアクセス可能となっている。これにより、第1~第4研磨装置21a-2~21d-2において研磨されたウェハWは、第1搬送ユニット24a-2,24b-2から再び搬送ロボット23-2へ受け渡され、続いて搬送ロボット23-2から洗浄部13-2へ受け渡される。 In the present embodiment, the hand 231-2 is accessible to the transport unit 14-2. Further, the hand 231-2 is also accessible to the first transport unit 24a-2 and the second transport unit 24b-2 of the polishing unit 12-2. Therefore, the wafer W continuously transferred from the transfer unit 14-2 to the polishing unit 12-2 is distributed to the first transfer unit 24a-2 and the second transfer unit 24b-2 by the transfer robot 23-2. The first transport unit 24a-2 transports the wafer W to the first polishing unit 20a-2, and the second transport unit 24b-2 transports the wafer W to the second polishing unit 20b-2. Further, the hand 231-2 is accessible to the cleaning unit 13-2. As a result, the wafers W polished by the first to fourth polishing devices 21a-2 to 21d-2 are transferred from the first transfer units 24a-2 and 24b-2 to the transfer robot 23-2 again, and subsequently. It is delivered from the transfer robot 23-2 to the cleaning unit 13-2.
 図6及び図7に示すように、洗浄部13-2は、研磨後のウェハを洗浄する領域であり、上下二段に配置された第1洗浄ユニット30a-2および第2洗浄ユニット30b-2を有している。上述した搬送部14-2は、第1洗浄ユニット30a-2と第2洗浄ユニット30b-2との間に配置されている。第1洗浄ユニット30a-2と搬送部14-2と第2洗浄ユニット30b-2とが上下方向に重なるように配列されているため、フットプリントが小さいという利点が得られる。 As shown in FIGS. 6 and 7, the cleaning unit 13-2 is a region for cleaning the wafer after polishing, and the first cleaning unit 30a-2 and the second cleaning unit 30b-2 arranged in two upper and lower stages are arranged. have. The above-mentioned transport unit 14-2 is arranged between the first cleaning unit 30a-2 and the second cleaning unit 30b-2. Since the first cleaning unit 30a-2, the transport unit 14-2, and the second cleaning unit 30b-2 are arranged so as to overlap each other in the vertical direction, an advantage that the footprint is small can be obtained.
 図6および図7に示すように、第1洗浄ユニット30a-2は、複数(図示された例では4つ)の洗浄モジュール311a-2、312a-2、313a-2、314a-2と、ウェハステーション33a-2と、各洗浄モジュール311a-2~314a-2とウェハステーション33a-2との間にてウェハWを搬送する洗浄部搬送機構32a-2とを有している。複数の洗浄モジュール311a-2~314-2(第1の洗浄ライン)aとウェハステーション33a-2とは、基板処理装置10-2の長手方向に沿って直列に配置されている。各洗浄モジュール311a-2~314a-2の上部には、クリーンエアフィルタを有するフィルタファンユニット(図示せず)が設けられており、このフィルタファンユニットによりパーティクルが除去されたクリーンエアが常時下方に向かって吹き出している。また、第1洗浄ユニット30a-2の内部は、研磨部12-2からのパーティクルの流入を防止するために研磨部12-2よりも高い圧力に常時維持されている。 As shown in FIGS. 6 and 7, the first cleaning unit 30a-2 includes a plurality of (four in the illustrated example) cleaning modules 311a-2, 312a-2, 313a-2, 314a-2 and a wafer. It has a station 33a-2, and a cleaning unit transfer mechanism 32a-2 for transferring the wafer W between the cleaning modules 311a-2 to 314a-2 and the wafer station 33a-2. The plurality of cleaning modules 311a-2 to 314-2 (first cleaning line) a and the wafer station 33a-2 are arranged in series along the longitudinal direction of the substrate processing apparatus 10-2. A filter fan unit (not shown) having a clean air filter is provided above each cleaning module 311a-2 to 314a-2, and clean air from which particles have been removed by the filter fan unit is always downward. It is blowing out toward. Further, the inside of the first cleaning unit 30a-2 is always maintained at a pressure higher than that of the polishing unit 12-2 in order to prevent the inflow of particles from the polishing unit 12-2.
 同様に、第2洗浄ユニット30b-2は、複数(図示された例では4つ)の洗浄モジュール311b-2、312b-2、313b-2、314b-2と、ウェハステーション33b-2と、各洗浄モジュール311b-2~314b-2とウェハステーション33b-2との間にてウェハWを搬送する洗浄部搬送機構32b-2とを有している。複数の洗浄モジュール311b-2~314b-2とウェハステーション33b-2とは、基板処理装置10-2の長手方向に沿って直列に配置されている。各洗浄モジュール311b-2~314b-2の上部には、クリーンエアフィルタを有するフィルタファンユニット(図示せず)が設けられており、このフィルタファンユニットによりパーティクルが除去されたクリーンエアが常時下方に向かって吹き出している。また、第2洗浄ユニット30b-2の内部は、研磨部12-2からのパーティクルの流入を防止するために研磨部12-2よりも高い圧力に常時維持されている。 Similarly, the second cleaning unit 30b-2 includes a plurality of (four in the illustrated example) cleaning modules 311b-2, 312b-2, 313b-2, 314b-2, and a wafer station 33b-2, respectively. It has a cleaning unit transport mechanism 32b-2 that transports the wafer W between the cleaning modules 311b-2 to 314b-2 and the wafer station 33b-2. The plurality of cleaning modules 311b-2 to 314b-2 and the wafer station 33b-2 are arranged in series along the longitudinal direction of the substrate processing apparatus 10-2. A filter fan unit (not shown) having a clean air filter is provided above each cleaning module 311b-2 to 314b-2, and clean air from which particles have been removed by the filter fan unit is always downward. It is blowing out toward. Further, the inside of the second cleaning unit 30b-2 is always maintained at a pressure higher than that of the polishing unit 12-2 in order to prevent the inflow of particles from the polishing unit 12-2.
 図10は、第1洗浄ユニット30a-2のウェハステーション33a-2の内部構成を示す斜視図である。ウェハステーション33a-2は、研磨されたウェハWの仮置き台として機能し、ウェハWを第1方向(図10に示す例では上下方向)に移動させて洗浄部搬送機構32a-2へ受け渡すことができるように構成されている。なお、第1方向は、上下方向(鉛直方向)に限定されず、水平方向であってもよいし、鉛直方向または水平方向に傾斜した方向であってもよい。また、第1方向は、研磨部12-2の搬送ロボット23-2によるウェハステーション33a-2(ステージ72-2)へのウェハWの搬送方向(例えば、水平方向)と異なる方向、特に垂直な方向であってもよい。図10に示すように、ウェハステーション33a-2は、略直方体形状を有する筐体71-2と、筐体71-2の内部に配置され、ウェハWを保持するステージ72-2と、ステージ72-2を上下移動させる駆動機構75-2と、を有している。 FIG. 10 is a perspective view showing the internal configuration of the wafer station 33a-2 of the first cleaning unit 30a-2. The wafer station 33a-2 functions as a temporary stand for the polished wafer W, moves the wafer W in the first direction (vertical direction in the example shown in FIG. 10), and delivers the wafer W to the cleaning unit transfer mechanism 32a-2. It is configured to be able to. The first direction is not limited to the vertical direction (vertical direction), and may be a horizontal direction, a vertical direction, or a direction inclined in the horizontal direction. Further, the first direction is a direction different from the transfer direction (for example, the horizontal direction) of the wafer W to the wafer station 33a-2 (stage 72-2) by the transfer robot 23-2 of the polishing unit 12-2, particularly perpendicular. It may be a direction. As shown in FIG. 10, the wafer station 33a-2 has a substantially rectangular parallelepiped shape, a stage 72-2 arranged inside the housing 71-2 and holding the wafer W, and a stage 72. It has a drive mechanism 75-2 that moves -2 up and down.
 筐体71-2は、底面板と、4つの側面板と、天面板とを有している。4つの側面板のうち研磨部12-2に対向する側面板の下端部には、研磨部12-2に連通する搬入口73-2が形成されている。搬入口73-2は、不図示のシャッタにより開閉可能となっている。研磨部12-2の搬送ロボット23-2は、搬入口73-2から筐体71-2の内側にアクセスすることができ、研磨されたウェハWをステージ72-2へ受け渡すことができる。 The housing 71-2 has a bottom plate, four side plates, and a top plate. Of the four side plates, a carry-in inlet 73-2 communicating with the polishing portion 12-2 is formed at the lower end portion of the side plate facing the polishing portion 12-2. The carry-in entrance 73-2 can be opened and closed by a shutter (not shown). The transfer robot 23-2 of the polishing unit 12-2 can access the inside of the housing 71-2 from the carry-in entrance 73-2, and can deliver the polished wafer W to the stage 72-2.
 また、4つの側面板のうち残りの3つの側面板(すなわち、洗浄部搬送機構32a-2に対向する側面板および左右の側面板)の搬入口73-2より高い高さ位置には、洗浄部搬送機構32a-2のアームを通過させるためのウェハ搬送用開口74-2が形成されている。ウェハ搬送用開口74-2は、不図示のシャッタにより開閉可能となっている。第1洗浄ユニット30a-2の洗浄部搬送機構32a-2が、ウェハ搬送用開口74-2を通じて筐体71-2の内側にアクセス可能となっており、ウェハWは、ウェハ搬送用開口74-2を通じてステージ72-2から第1洗浄ユニット30a-2の洗浄部搬送機構32a-2へ受け渡される。 Further, among the four side plates, the remaining three side plates (that is, the side plates facing the cleaning unit transport mechanism 32a-2 and the left and right side plates) are cleaned at a height higher than the carry-in inlet 73-2. A wafer transfer opening 74-2 is formed for passing the arm of the unit transfer mechanism 32a-2. The wafer transfer opening 74-2 can be opened and closed by a shutter (not shown). The cleaning unit transfer mechanism 32a-2 of the first cleaning unit 30a-2 can access the inside of the housing 71-2 through the wafer transfer opening 74-2, and the wafer W has the wafer transfer opening 74-. It is delivered from the stage 72-2 to the cleaning unit transport mechanism 32a-2 of the first cleaning unit 30a-2 through 2.
 駆動機構75-2としては、例えばボールねじを用いたモータ駆動機構またはエアシリンダが用いられる。ステージ72-2は、駆動機構75-2の可動部に固定されており、駆動機構75-2から与えられる動力により、搬入口73-2に対向する高さ位置とウェハ搬送用開口74-2に対向する高さ位置との間を上下移動される。 As the drive mechanism 75-2, for example, a motor drive mechanism using a ball screw or an air cylinder is used. The stage 72-2 is fixed to the movable part of the drive mechanism 75-2, and the height position facing the carry-in inlet 73-2 and the wafer transfer opening 74-2 are supplied by the power supplied from the drive mechanism 75-2. It is moved up and down between the height position facing the.
 ステージ72-2の外周部には、4本のピン76-2が上方に突き出すように設けられている。そのため、ステージ72-2上に載せられるウェハWは、その外周縁が4本のピン76-2によりガイドされて位置決めされた状態で、ステージ72-2上に支持されるようになっている。これらのピン76-2は、ポリプロピレン(PP)、ポリクロロトリフルオロエチレン(PCTFE)やポリエーテルエーテルケトン(PEEK)などの樹脂から形成されている。また、本実施形態では、ステージ72-2は、ウェハWの下面を露出させて支持するように、開口または切り欠きを有する枠状に形成される。 Four pins 76-2 are provided on the outer periphery of the stage 72-2 so as to protrude upward. Therefore, the wafer W mounted on the stage 72-2 is supported on the stage 72-2 with its outer peripheral edge guided and positioned by the four pins 76-2. These pins 76-2 are formed from resins such as polypropylene (PP), polychlorotrifluoroethylene (PCTFE) and polyetheretherketone (PEEK). Further, in the present embodiment, the stage 72-2 is formed in a frame shape having an opening or a notch so as to expose and support the lower surface of the wafer W.
 また、本実施形態では、ウェハステーション33a-2の筐体71-2には、ステージ72-2によって保持されているウェハWに対して洗浄液を噴射可能に構成される噴射機構90a-2が設けられている(図6では、不図示)。噴射機構90a-2は、制御部15-2によって制御される。一例として、噴射機構90a-2は、筐体71-2内の上方に設けられて下方に向けて洗浄液を噴射する第1ノズル91a-2と、筐体71-2内の第1ノズル91a-2よりも下方に設けられて上方に向けて洗浄液を噴射する第2ノズル92a-2と、第1ノズル91a-2および第2に供給される洗浄液を調整可能な洗浄液調整機構93a-2と、第1洗浄液供給源94a-2と、第2洗浄液供給源95a-2と、を有する。第1ノズル91a-2および第2ノズル92a-2としては、スプレーノズルや液滴ノズルを採用することができる。なお、噴射機構26-2は、ウェハWに対して洗浄液を噴射可能であればよく、第1ノズル91a-2および第2ノズル92a-2に代えて、または加えて、噴霧器などを有してもよい。 Further, in the present embodiment, the housing 71-2 of the wafer station 33a-2 is provided with an injection mechanism 90a-2 configured to be capable of injecting a cleaning liquid onto the wafer W held by the stage 72-2. (Not shown in FIG. 6). The injection mechanism 90a-2 is controlled by the control unit 15-2. As an example, the injection mechanism 90a-2 includes a first nozzle 91a-2 provided above the housing 71-2 and ejecting a cleaning liquid downward, and a first nozzle 91a-2 inside the housing 71-2. A second nozzle 92a-2 provided below 2 and ejecting the cleaning liquid upward, a cleaning liquid adjusting mechanism 93a-2 capable of adjusting the first nozzle 91a-2 and the cleaning liquid supplied to the second nozzle, and It has a first cleaning liquid supply source 94a-2 and a second cleaning liquid supply source 95a-2. As the first nozzle 91a-2 and the second nozzle 92a-2, a spray nozzle or a droplet nozzle can be adopted. The injection mechanism 26-2 may be capable of injecting the cleaning liquid onto the wafer W, and may have a sprayer or the like in place of or in addition to the first nozzle 91a-2 and the second nozzle 92a-2. May be good.
 本実施形態では、第1ノズル91a-2および第2ノズル92a-2は、筐体71-2のフレームに対して固定される。ただし、第1ノズル91a-2および第2ノズル92a-2は、図示しない移動機構によって移動可能に構成されてもよい。ここで、第1ノズル91a-2は、ウェハWの上面に洗浄液を噴射するために設けられており、洗浄液を噴射する対象(ウェハW)よりも上方に、つまり筐体71-2のウェハ搬送用開口74-2よりも上方に配置されるとよい。また、第2ノズル92a-2は、ウェハWの下面に洗浄液を噴射するために設けられており、洗浄液を噴射する対象(ウェハW)よりも下方に、つまり筐体71-2の搬入口73-2よりも下方に配置されるとよい。また、一例として、第1ノズル91a-2および第2ノズル92a-2は、洗浄液の噴射中心方向が、ステージ72-2によるウェハWの搬送方向である第1方向(図10に示す例では上下方向)に対して鋭角に傾斜するように構成される。また、一例として、噴射機構26-2は、コーン状または扇状に噴射されてウェハWに作用する洗浄液の範囲(直径)がウェハWの直径と等しい又はウェハWの直径よりやや大きくなるように噴出させる構成を備えているとよい。さらに、一例として、第1ノズル91a-2および第2ノズル92a-2は、洗浄液を噴射する対象(ウェハW)から水平方向に離れて配置される。これにより、第1ノズル91a-2から意図せず洗浄液などが滴下したときに、滴下物がウェハWに当たることを防止できる。また、ウェハWからの飛散物によって第2ノズル92a-2の噴射口が汚染されることを抑制できる。さらに、第1ノズル91a-2および第2ノズル92a-2は、洗浄液をコーン状(円錐状)または扇状に噴射するように構成されるとよい。これにより、ノズルから洗浄液を広範囲に噴射することができ、対象に均一に洗浄液を作用させることができる。 In the present embodiment, the first nozzle 91a-2 and the second nozzle 92a-2 are fixed to the frame of the housing 71-2. However, the first nozzle 91a-2 and the second nozzle 92a-2 may be configured to be movable by a moving mechanism (not shown). Here, the first nozzle 91a-2 is provided to inject the cleaning liquid onto the upper surface of the wafer W, and is above the target (wafer W) on which the cleaning liquid is to be injected, that is, the wafer transfer of the housing 71-2. It is preferable that the wafer is arranged above the opening 74-2. Further, the second nozzle 92a-2 is provided for injecting the cleaning liquid onto the lower surface of the wafer W, and is below the target (wafer W) on which the cleaning liquid is injected, that is, the carry-in inlet 73 of the housing 71-2. It should be placed below -2. Further, as an example, in the first nozzle 91a-2 and the second nozzle 92a-2, the injection center direction of the cleaning liquid is the first direction (up and down in the example shown in FIG. 10) in which the wafer W is conveyed by the stage 72-2. It is configured to incline at an acute angle with respect to the direction). Further, as an example, the injection mechanism 26-2 ejects the cleaning liquid in a cone shape or a fan shape so that the range (diameter) of the cleaning liquid acting on the wafer W is equal to the diameter of the wafer W or slightly larger than the diameter of the wafer W. It is good to have a configuration to make it. Further, as an example, the first nozzle 91a-2 and the second nozzle 92a-2 are arranged horizontally apart from the target (wafer W) on which the cleaning liquid is sprayed. As a result, when the cleaning liquid or the like is unintentionally dropped from the first nozzle 91a-2, it is possible to prevent the dropped object from hitting the wafer W. Further, it is possible to prevent the injection port of the second nozzle 92a-2 from being contaminated by the scattered matter from the wafer W. Further, the first nozzle 91a-2 and the second nozzle 92a-2 may be configured to inject the cleaning liquid into a cone shape (conical shape) or a fan shape. As a result, the cleaning liquid can be sprayed over a wide range from the nozzle, and the cleaning liquid can be uniformly applied to the target.
 本実施形態では、第1ノズル91a-2と第2ノズル92a-2とのそれぞれには、洗浄液調整機構93a-2を介して第1洗浄液供給源94a-2と第2洗浄液供給源95a-2とが接続されている。第1洗浄液供給源94a-2と第2洗浄液供給源95a-2とには、異なる洗浄液が貯められている。一例として、第1洗浄液供給源94a-2には第1洗浄液として純水が貯められ、第2洗浄液供給源95a-2には第2洗浄液としてリンス(フッ酸、アンモニア等)が貯められる。第1洗浄液と第2洗浄液との少なくとも一方は、洗浄部13-2において使用される洗浄液と同一であってもよい。また、第1洗浄液と第2洗浄液との少なくとも一方は、洗浄部13-2において使用される洗浄液とは異なっていてもよい。なお、第1ノズル91a-2および第2ノズル92a-2には、2つの洗浄液供給源が接続されるものに限定されず、1つ又は3つ以上の洗浄液供給源が接続されてもよい。噴射機構90a-2から噴射される洗浄液(例えば第1洗浄液および第2洗浄液)は、ウェハWの除去対象残渣に基づいて選択される。一例として、第1ノズル91a-2および第2ノズル92a-2には、純水が貯められる洗浄液供給源のみが接続されてもよい。洗浄液調整機構93a-2は、予め定められたレシピに従って第1洗浄液供給源94a-2と第2洗浄液供給源95a-2とからの洗浄液を第1ノズル91a-2および第2ノズル92a-2に供給する。また、制御部15-2は、設定部15c-2を通じた設定に従って第1洗浄液供給源94a-2と第2洗浄液供給源95a-2とからの洗浄液を第1ノズル91a-2および第2ノズル92a-2に供給してもよい。洗浄液調整機構93a-2は、第1ノズル91a-2および第2ノズル92a-2に供給する洗浄液を、第1洗浄液供給源94a-2からの第1洗浄液と、第2洗浄液供給源95a-2からの第2洗浄液と、で切り替えて供給してもよい。また、洗浄液調整機構93a-2は、第1洗浄液と第2洗浄液との混合割合を調整して洗浄液を第1ノズル91a-2および第2ノズル92a-2に供給してもよい。 In the present embodiment, the first nozzle 91a-2 and the second nozzle 92a-2 are connected to the first cleaning liquid supply source 94a-2 and the second cleaning liquid supply source 95a-2 via the cleaning liquid adjusting mechanism 93a-2, respectively. Is connected. Different cleaning liquids are stored in the first cleaning liquid supply source 94a-2 and the second cleaning liquid supply source 95a-2. As an example, pure water is stored as the first cleaning liquid in the first cleaning liquid supply source 94a-2, and rinse (hydrofluoric acid, ammonia, etc.) is stored as the second cleaning liquid in the second cleaning liquid supply source 95a-2. At least one of the first cleaning liquid and the second cleaning liquid may be the same as the cleaning liquid used in the cleaning unit 13-2. Further, at least one of the first cleaning liquid and the second cleaning liquid may be different from the cleaning liquid used in the cleaning unit 13-2. The first nozzle 91a-2 and the second nozzle 92a-2 are not limited to those to which two cleaning liquid supply sources are connected, and one or three or more cleaning liquid supply sources may be connected. The cleaning liquid (for example, the first cleaning liquid and the second cleaning liquid) injected from the injection mechanism 90a-2 is selected based on the residue to be removed of the wafer W. As an example, only the cleaning liquid supply source in which pure water is stored may be connected to the first nozzle 91a-2 and the second nozzle 92a-2. The cleaning liquid adjusting mechanism 93a-2 transfers the cleaning liquid from the first cleaning liquid supply source 94a-2 and the second cleaning liquid supply source 95a-2 to the first nozzle 91a-2 and the second nozzle 92a-2 according to a predetermined recipe. Supply. Further, the control unit 15-2 applies the cleaning liquids from the first cleaning liquid supply source 94a-2 and the second cleaning liquid supply source 95a-2 to the first nozzle 91a-2 and the second nozzle according to the setting through the setting unit 15c-2. It may be supplied to 92a-2. The cleaning liquid adjusting mechanism 93a-2 supplies the cleaning liquid to the first nozzle 91a-2 and the second nozzle 92a-2 with the first cleaning liquid from the first cleaning liquid supply source 94a-2 and the second cleaning liquid supply source 95a-2. It may be supplied by switching with the second cleaning liquid from. Further, the cleaning liquid adjusting mechanism 93a-2 may supply the cleaning liquid to the first nozzle 91a-2 and the second nozzle 92a-2 by adjusting the mixing ratio of the first cleaning liquid and the second cleaning liquid.
 さらに、本実施形態では、噴射機構90a-2は、2流体ノズル機構により実現されており、ノズル91a-2,92a-2には窒素などのキャリアガスを供給するためのキャリアガス供給源96a-2が接続されている。洗浄液とキャリアガスとを高速で噴出させることで、キャリアガス中に洗浄液が微小液滴(ミスト)として存在する2流体ジェット流が生成される。この2流体ジェット流をウェハWの表面に向けて噴出させて衝突させることで、パーティクル等を好適に除去(洗浄)することができる。なお、噴射機構90a-2は、キャリアガスを伴わない洗浄を含め、キャリアガスの噴射量を調整できるものとしてもよい。また、本開示において、「洗浄液の噴射」には、キャリアガスを伴った噴射が含まれ得る。 Further, in the present embodiment, the injection mechanism 90a-2 is realized by a two-fluid nozzle mechanism, and the carrier gas supply source 96a- for supplying the carrier gas such as nitrogen to the nozzles 91a-2 and 92a-2. 2 is connected. By ejecting the cleaning liquid and the carrier gas at high speed, a two-fluid jet flow in which the cleaning liquid exists as fine droplets (mist) in the carrier gas is generated. By ejecting this two-fluid jet flow toward the surface of the wafer W and causing it to collide, particles and the like can be suitably removed (cleaned). The injection mechanism 90a-2 may be capable of adjusting the injection amount of the carrier gas, including cleaning without the carrier gas. Further, in the present disclosure, "injection of cleaning liquid" may include injection accompanied by a carrier gas.
 図11は、第2洗浄ユニット30b-2のウェハステーション33b-2の内部構成を示す斜視図である。ウェハステーション33b-2は、研磨されたウェハWの仮置き台として機能し、ウェハWを第1方向(図11に示す例では上下方向)に移動させて洗浄部搬送機構32b-2へ受け渡すことができるように構成されている。なお、第1方向は、上下方向(鉛直方向)に限定されず、水平方向であってもよいし、鉛直方向または水平方向に傾斜した方向であってもよい。また、第1方向は、研磨部12-2の搬送ロボット23-2によるウェハステーション33b-2(ステージ82-2)へのウェハWの搬送方向(例えば、水平方向)と異なる方向、特に垂直な方向であってもよい。図11に示すように、ウェハステーション33b-2は、略直方体形状を有する筐体81-2と、筐体81-2の内部に配置され、ウェハWを保持するステージ82-2と、ステージ82-2を上下移動させる駆動機構85-2と、を有している。 FIG. 11 is a perspective view showing the internal configuration of the wafer station 33b-2 of the second cleaning unit 30b-2. The wafer station 33b-2 functions as a temporary stand for the polished wafer W, moves the wafer W in the first direction (vertical direction in the example shown in FIG. 11), and delivers the wafer W to the cleaning unit transfer mechanism 32b-2. It is configured to be able to. The first direction is not limited to the vertical direction (vertical direction), and may be a horizontal direction, a vertical direction, or a direction inclined in the horizontal direction. Further, the first direction is a direction different from the transfer direction (for example, the horizontal direction) of the wafer W to the wafer station 33b-2 (stage 82-2) by the transfer robot 23-2 of the polishing unit 12-2, particularly perpendicular. It may be a direction. As shown in FIG. 11, the wafer station 33b-2 has a substantially rectangular parallelepiped shape, a stage 82-2 arranged inside the housing 81-2 and holding the wafer W, and a stage 82. It has a drive mechanism 85-2 that moves -2 up and down.
 筐体81-2は、底面板と、4つの側面板と、天面板とを有している。4つの側面板のうち研磨部12-2に対向する側面板の上端部には、研磨部12-2に連通する搬入口83-2が形成されている。搬入口83-2は、不図示のシャッタにより開閉可能となっている。研磨部12-2の搬送ロボット23-2は、搬入口83-2から筐体81-2の内側にアクセスすることができ、研磨されたウェハWをステージ82-2へ受け渡すことができる。 The housing 81-2 has a bottom plate, four side plates, and a top plate. Of the four side plates, a carry-in inlet 83-2 communicating with the polishing portion 12-2 is formed at the upper end portion of the side plate facing the polishing portion 12-2. The carry-in entrance 83-2 can be opened and closed by a shutter (not shown). The transfer robot 23-2 of the polishing unit 12-2 can access the inside of the housing 81-2 from the carry-in entrance 83-2, and can deliver the polished wafer W to the stage 82-2.
 また、4つの側面板のうち残りの3つの側面板(すなわち、研磨部12-2とは反対側の側面板および左右の側面板)の搬入口83-2より低い高さ位置には、洗浄部搬送機構32b-2のアームを通過させるためのウェハ搬送用開口84-2が形成されている。ウェハ搬送用開口84-2は、シャッタ87-2により開閉可能となっている。第2洗浄ユニット30b-2の洗浄部搬送機構32b-2が、ウェハ搬送用開口84-2を通じて筐体81-2の内側にアクセス可能となっており、ウェハWは、ウェハ搬送用開口84-2を通じてステージ82-2から第2洗浄ユニット30b-2の洗浄部搬送機構32b-2へ受け渡される。 Further, among the four side plates, the remaining three side plates (that is, the side plates on the side opposite to the polishing portion 12-2 and the left and right side plates) are cleaned at a height lower than the carry-in entrance 83-2. A wafer transfer opening 84-2 is formed for passing the arm of the unit transfer mechanism 32b-2. The wafer transfer opening 84-2 can be opened and closed by the shutter 87-2. The cleaning unit transfer mechanism 32b-2 of the second cleaning unit 30b-2 can access the inside of the housing 81-2 through the wafer transfer opening 84-2, and the wafer W has the wafer transfer opening 84-. It is delivered from the stage 82-2 to the cleaning unit transport mechanism 32b-2 of the second cleaning unit 30b-2 through 2.
 駆動機構85-2としては、例えばボールねじを用いたモータ駆動機構またはエアシリンダが用いられる。ステージ82-2は、駆動機構85-2の可動部に固定されており、駆動機構85-2から与えられる動力により、搬入口83-2に対向する高さ位置とウェハ搬送用開口84-2に対向する高さ位置との間を上下移動される。ウェハステーション33a-2のステージ72-2と同様に、ステージ82-2の外周部には、4本のピン86-2が上方に突き出すように設けられている。そのため、ステージ82-2上に載せられるウェハは、その外周縁が4本のピン86-2によりガイドされて位置決めされた状態で、ステージ82-2上に支持されるようになっている。また、本実施形態では、ステージ82-2は、ウェハWの下面を露出させて支持するように、開口または切り欠きを有する枠状に形成される。 As the drive mechanism 85-2, for example, a motor drive mechanism using a ball screw or an air cylinder is used. The stage 82-2 is fixed to the movable part of the drive mechanism 85-2, and the height position facing the carry-in inlet 83-2 and the wafer transfer opening 84-2 are supplied by the power supplied from the drive mechanism 85-2. It is moved up and down between the height position facing the. Similar to the stage 72-2 of the wafer station 33a-2, the outer peripheral portion of the stage 82-2 is provided with four pins 86-2 so as to project upward. Therefore, the wafer mounted on the stage 82-2 is supported on the stage 82-2 with its outer peripheral edge guided and positioned by the four pins 86-2. Further, in the present embodiment, the stage 82-2 is formed in a frame shape having an opening or a notch so as to expose and support the lower surface of the wafer W.
 また、本実施形態では、ウェハステーション33b-2の筐体81-2には、ステージ82-2によって保持されているウェハWに対して洗浄液を噴射可能に構成される噴射機構90b-2が設けられている(図6では、不図示)。噴射機構90b-2は、制御部15-2によって制御される。噴射機構90b-2は、筐体71-2内部において噴射機構90a-2が設けられているのと同様に、筐体81-2内部において設けられている。噴射機構90b-2は、概ね噴射機構90a-2と同様に構成されており、第1ノズル91a-2および第2ノズル92a-2と同様である第1ノズル91b-2および第2ノズル92b-2を有する。噴射機構90b-2について噴射機構90a-2と同一の点については説明を省略する。なお、ウェハステーション33b-2における第1、第2洗浄液供給源94b-2、95b-2、及びキャリアガス供給源96b-2は、ウェハステーション33a-2における第1洗浄液供給源94a-2、95a-2、及びキャリアガス供給源96a-2と共用されてもよいし、別々に設けられるものとしてもよい。 Further, in the present embodiment, the housing 81-2 of the wafer station 33b-2 is provided with an injection mechanism 90b-2 configured to be capable of injecting a cleaning liquid onto the wafer W held by the stage 82-2. (Not shown in FIG. 6). The injection mechanism 90b-2 is controlled by the control unit 15-2. The injection mechanism 90b-2 is provided inside the housing 81-2 in the same manner as the injection mechanism 90a-2 is provided inside the housing 71-2. The injection mechanism 90b-2 is substantially the same as the injection mechanism 90a-2, and is the same as the first nozzle 91a-2 and the second nozzle 92a-2. The first nozzle 91b-2 and the second nozzle 92b- Has 2. The same points as the injection mechanism 90a-2 with respect to the injection mechanism 90b-2 will be omitted. The first and second cleaning liquid supply sources 94b-2 and 95b-2 and the carrier gas supply source 96b-2 in the wafer station 33b-2 are the first cleaning liquid supply sources 94a-2 and 95a in the wafer station 33a-2. -2 and the carrier gas supply source 96a-2 may be shared, or may be provided separately.
 1次洗浄モジュール311a-2および2次洗浄モジュール312a-2の洗浄機としては、例えば、上下に配置されたロール状のスポンジを回転させてウェハの表面および裏面に押し付けてウェハの表面および裏面を洗浄するロールタイプの洗浄機を用いることができる。また、3次洗浄モジュール313a-2の洗浄機としては、例えば、半球状のスポンジを回転させながらウェハに押し付けて洗浄するペンシルタイプの洗浄機を用いることができる。4次洗浄モジュール314a-2の洗浄機としては、例えば、ウェハの裏面はリンス洗浄することができ、ウェハ表面の洗浄は半球状のスポンジを回転させながら押し付けて洗浄するペンシルタイプの洗浄機を用いることができる。この4次洗浄モジュール314a-2の洗浄機は、チャックしたウェハを高速回転させるステージを備えており、ウェハを高速回転させることで洗浄後のウェハを乾燥させる機能(スピンドライ機能)を有している。なお、各洗浄モジュール311a-2~314a-2の洗浄機において、上述したロールタイプの洗浄機やペンシルタイプの洗浄機に加えて、洗浄液に超音波を当てて洗浄するメガソニックタイプの洗浄機を付加的に設けてもよい。 As a cleaning machine for the primary cleaning module 311a-2 and the secondary cleaning module 312a-2, for example, roll-shaped sponges arranged vertically are rotated and pressed against the front surface and the back surface of the wafer to press the front surface and the back surface of the wafer. A roll-type washer for cleaning can be used. Further, as the cleaning machine of the tertiary cleaning module 313a-2, for example, a pencil type cleaning machine in which a hemispherical sponge is rotated and pressed against the wafer to perform cleaning can be used. As the cleaning machine for the quaternary cleaning module 314a-2, for example, a pencil type cleaning machine is used in which the back surface of the wafer can be rinsed and the surface of the wafer is cleaned by pressing a hemispherical sponge while rotating it. be able to. The cleaning machine of the quaternary cleaning module 314a-2 is provided with a stage for rotating the chucked wafer at high speed, and has a function (spin dry function) of drying the wafer after cleaning by rotating the wafer at high speed. There is. In each cleaning module 311a-2 to 314a-2, in addition to the roll type washer and the pencil type washer described above, a megasonic type washer that irradiates the cleaning liquid with ultrasonic waves for cleaning is provided. It may be additionally provided.
 制御部15-2は、基板処理装置10-2の各構成要素を制御するために設けられている。制御部15-2は、CPU、メモリなどを備え、ソフトウェアを用いて所定の機能を実現するマイクロコンピュータとして構成されてもよいし、専用の演算処理を行うハードウェア回路として構成されてもよい。本実施形態の制御部15-2は、演算部15a-2と、メモリ15b-2と、設定部15c-2と、を備えている。設定部15c-2は、ユーザーインターフェースとして機能し、外部操作により、各種設定値(設定情報)を設定するのに使用される。具体的には、設定部15c-2は不図示の操作ボタンやタッチパネル等を備え、設定部15c-2において設定された各種設定値は、メモリ15b-2に記憶される。 The control unit 15-2 is provided to control each component of the substrate processing device 10-2. The control unit 15-2 may be configured as a microcomputer that includes a CPU, a memory, and the like and realizes a predetermined function by using software, or may be configured as a hardware circuit that performs dedicated arithmetic processing. The control unit 15-2 of the present embodiment includes a calculation unit 15a-2, a memory 15b-2, and a setting unit 15c-2. The setting unit 15c-2 functions as a user interface and is used to set various setting values (setting information) by an external operation. Specifically, the setting unit 15c-2 includes an operation button (not shown), a touch panel, and the like, and various setting values set in the setting unit 15c-2 are stored in the memory 15b-2.
 続いて、基板処理装置10-2の動作について説明する。基板処理装置10-2では、まず、フロントロード部113-2のウェハカセットから研磨前のウェハWが、ロード/アンロード部11-2の搬送ロボット111-2により取り出されて搬送部14-2へ受け渡される。続いて、ウェハWは、搬送部14-2から搬送ロボット23-2へ受け渡され、搬送ロボット23-2の反転機構234-2により、ウェハWはハンド231-2と一緒に上下反転される。これにより、ウェハWの処理面が下方に向けられる。次に、搬送ロボット23-2から第1搬送ユニット24a-2または第2搬送ユニット24b-2へ受け渡され、第1搬送ユニット24a-2または第2搬送ユニット24b-2から第1~第4研磨装置21a-2~21d-2へとウェハWが搬入される。そして、第1~第4研磨装置21a-2~21d-2においてウェハWは、トップリングに吸着保持され、研磨パッド102a-2と当接することにより研磨される。 Next, the operation of the substrate processing device 10-2 will be described. In the substrate processing apparatus 10-2, first, the wafer W before polishing is taken out from the wafer cassette of the front load section 113-2 by the transfer robot 111-2 of the load / unload section 11-2, and is taken out from the transfer section 14-2. Handed over to. Subsequently, the wafer W is delivered from the transfer unit 14-2 to the transfer robot 23-2, and the wafer W is turned upside down together with the hand 231-2 by the reversing mechanism 234-2 of the transfer robot 23-2. .. As a result, the processing surface of the wafer W is directed downward. Next, the transfer robot 23-2 delivers the transfer to the first transfer unit 24a-2 or the second transfer unit 24b-2, and the first transfer unit 24a-2 or the second transfer unit 24b-2 first to fourth. The wafer W is carried into the polishing devices 21a-2 to 21d-2. Then, in the first to fourth polishing devices 21a-2 to 21d-2, the wafer W is attracted and held by the top ring, and is polished by being brought into contact with the polishing pad 102a-2.
 ウェハWの研磨が終了した後、研磨したウェハWは、第1研磨装置21a-2~21d-2から第1搬送ユニット24a-2または第2搬送ユニット24b-2を通じて搬送ロボット23-2へ受け渡される。続いて、搬送ロボット23-2の反転機構234-2により、ウェハWはハンド231-2と一緒に上下反転される。これにより、ウェハWの処理面が上方に向けられる。そして、ウェハWは、搬送ロボット23-2から洗浄部13-2のウェハステーション33a-2またはウェハステーション33b-2へと受け渡される。 After the polishing of the wafer W is completed, the polished wafer W is received from the first polishing devices 21a-2 to 21d-2 to the transfer robot 23-2 through the first transfer unit 24a-2 or the second transfer unit 24b-2. Passed. Subsequently, the wafer W is turned upside down together with the hand 231-2 by the reversing mechanism 234-2 of the transfer robot 23-2. As a result, the processing surface of the wafer W is directed upward. Then, the wafer W is delivered from the transfer robot 23-2 to the wafer station 33a-2 or the wafer station 33b-2 of the cleaning unit 13-2.
 研磨されたウェハWがウェハステーション33a-2へ受け渡されると、ウェハWは、ステージ72-2に保持され、駆動機構75-2によってステージ72-2と共に上方向に移動する。本実施形態では、こうしたウェハステーション33a-2によってウェハWが搬送される際に、噴射機構90a-2によってウェハWに洗浄液が噴射される。つまり、制御部15-2は、ウェハステーション33a-2によってウェハWを搬送しながらウェハWへ第1ノズル91a-2および第2ノズル92a-2から洗浄液が噴出されるように噴射機構90a-2と駆動機構75-2とを制御する。図12は、噴射機構90a-2の第1ノズル91a-2によるウェハWへの洗浄液の噴射を説明するための図であり、図13は、噴射機構90a-2の第2ノズル92a-2によるウェハWの洗浄液の噴射を説明するための図である。なお、図12および図13では、説明の容易のため、第1ノズル91a-2による洗浄液の噴射と第2ノズル92a-2による洗浄液の噴射とが別々に示されているが、これらは同時に行われてもよい。図12に示すように、本実施形態では、第1ノズル91a-2は、ウェハWよりも上方において筐体71-2に固定され、所定の角度で下方に向けて洗浄液を噴射するように構成されている。そして、ステージ72-2によってウェハWを上方向に移動させながら、第1ノズル91a-2から洗浄液を噴射する。これにより、図12に示すように、ウェハWの移動に伴って洗浄液が噴射される領域が変化し、ウェハWの上面に均一に洗浄液を作用させることができる。また、図13に示すように、本実施形態では、第2ノズル92a-2は、ウェハWよりも下方において筐体81-2に固定され、所定の角度で情報に向けて洗浄液を噴射するように構成されている。そして、ステージ72-2によってウェハWを上方に移動させながら、第2ノズル92a-2から洗浄液を噴射する。これにより、図13に示すように、ウェハWの移動に伴って洗浄液が噴射される領域が変化し、ウェハWの下面に均一に洗浄液を作用させることができる。 When the polished wafer W is delivered to the wafer station 33a-2, the wafer W is held by the stage 72-2 and moves upward together with the stage 72-2 by the drive mechanism 75-2. In the present embodiment, when the wafer W is conveyed by the wafer station 33a-2, the cleaning liquid is injected onto the wafer W by the injection mechanism 90a-2. That is, the control unit 15-2 ejects the cleaning liquid from the first nozzle 91a-2 and the second nozzle 92a-2 to the wafer W while transporting the wafer W by the wafer station 33a-2. And the drive mechanism 75-2 are controlled. FIG. 12 is a diagram for explaining the injection of the cleaning liquid onto the wafer W by the first nozzle 91a-2 of the injection mechanism 90a-2, and FIG. 13 is a diagram for explaining the injection of the cleaning liquid onto the wafer W by the second nozzle 92a-2 of the injection mechanism 90a-2. It is a figure for demonstrating the injection of the cleaning liquid of a wafer W. Note that, in FIGS. 12 and 13, for the sake of simplicity, the injection of the cleaning liquid by the first nozzle 91a-2 and the injection of the cleaning liquid by the second nozzle 92a-2 are shown separately, but these are performed at the same time. You may be broken. As shown in FIG. 12, in the present embodiment, the first nozzle 91a-2 is fixed to the housing 71-2 above the wafer W and is configured to inject the cleaning liquid downward at a predetermined angle. Has been done. Then, the cleaning liquid is ejected from the first nozzle 91a-2 while moving the wafer W upward by the stage 72-2. As a result, as shown in FIG. 12, the region where the cleaning liquid is sprayed changes with the movement of the wafer W, and the cleaning liquid can be uniformly applied to the upper surface of the wafer W. Further, as shown in FIG. 13, in the present embodiment, the second nozzle 92a-2 is fixed to the housing 81-2 below the wafer W, and the cleaning liquid is ejected toward the information at a predetermined angle. It is configured in. Then, the cleaning liquid is ejected from the second nozzle 92a-2 while moving the wafer W upward by the stage 72-2. As a result, as shown in FIG. 13, the region where the cleaning liquid is sprayed changes with the movement of the wafer W, and the cleaning liquid can be uniformly applied to the lower surface of the wafer W.
 また、制御部15-2は、ステージ72-2を上下方向に往復移動させて、噴射機構90a-2から洗浄液をウェハWに噴射してもよい。ステージ72-2(ウェハW)の往復移動回数は、予め定められた回数(例えば2回など)としてもよいし、設定部15c-2を通じて設定可能としてもよい。さらに、制御部15-2は、ステージ72-2の移動速度を調整してもよい。ステージ72-2の移動速度は、予め定められた速度としてもよいし、設定部15c-2を通じて設定可能としてもよい。 Further, the control unit 15-2 may reciprocate the stage 72-2 in the vertical direction to inject the cleaning liquid from the injection mechanism 90a-2 onto the wafer W. The number of reciprocating movements of the stage 72-2 (wafer W) may be a predetermined number of times (for example, twice) or may be set through the setting unit 15c-2. Further, the control unit 15-2 may adjust the moving speed of the stage 72-2. The moving speed of the stage 72-2 may be a predetermined speed or may be set through the setting unit 15c-2.
 そして、ウェハステーション33a-2においてステージ72-2から洗浄部搬送機構32a-2にウェハWが受け渡され、洗浄部搬送機構32a-2によってウェハWが1次~4次洗浄モジュール311a-2~314a-2へと搬送される。これにより、各洗浄モジュール311a-2~314a-2によってウェハWの洗浄および乾燥が行われる。洗浄部13における洗浄および乾燥処理が終了した後、ウェハWは、洗浄部13-2からロード/アンロード部11-2へ取り出され、基板処理装置10-2における基板処理が終了する。 Then, at the wafer station 33a-2, the wafer W is delivered from the stage 72-2 to the cleaning unit transfer mechanism 32a-2, and the wafer W is transferred by the cleaning unit transfer mechanism 32a-2 to the primary to fourth cleaning modules 311a-2 to It is transported to 314a-2. As a result, the wafer W is cleaned and dried by the cleaning modules 311a-2 to 314a-2. After the cleaning and drying treatment in the cleaning unit 13 is completed, the wafer W is taken out from the cleaning unit 13-2 to the load / unload unit 11-2, and the substrate processing in the substrate processing apparatus 10-2 is completed.
 同様に、研磨されたウェハWがウェハステーション33b-2へ受け渡されると、ウェハWは、ステージ82-2に保持され、駆動機構85-2によってステージ82-2と共に下方向に移動する。本実施形態では、こうしたウェハステーション33b-2によってウェハWが搬送される際に、噴射機構90b-2によってウェハWに洗浄液が噴射される。つまり、制御部15-2は、ウェハステーション33bによってウェハWを搬送しながらウェハWへ第1ノズル91b-2および第2ノズル92b-2から洗浄液が噴出されるように噴射機構90b-2と駆動機構85-2とを制御する。上記したウェハステーション33a-2における噴射機構90a-2による洗浄液の噴射と同様に、ステージ82-2によってウェハWを下方に移動させながら、第1ノズル91b-2および第2ノズル92b-2から洗浄液を噴射することにより、ウェハWの下面に均一に洗浄液を作用させることができる。 Similarly, when the polished wafer W is delivered to the wafer station 33b-2, the wafer W is held by the stage 82-2 and moves downward together with the stage 82-2 by the drive mechanism 85-2. In the present embodiment, when the wafer W is conveyed by the wafer station 33b-2, the cleaning liquid is injected onto the wafer W by the injection mechanism 90b-2. That is, the control unit 15-2 drives the injection mechanism 90b-2 so that the cleaning liquid is ejected from the first nozzle 91b-2 and the second nozzle 92b-2 to the wafer W while conveying the wafer W by the wafer station 33b. It controls the mechanism 85-2. Similar to the injection of the cleaning liquid by the injection mechanism 90a-2 in the wafer station 33a-2 described above, the cleaning liquid is moved downward from the first nozzle 91b-2 and the second nozzle 92b-2 while the wafer W is moved downward by the stage 82-2. By injecting the cleaning liquid, the cleaning liquid can be uniformly applied to the lower surface of the wafer W.
 また、制御部15-2は、ステージ82-2を上下方向に往復移動させて、噴射機構90b-2から洗浄液をウェハWに噴射してもよい。ステージ82-2(ウェハW)の往復移動回数は、予め定められた回数(例えば2回など)としてもよいし、設定部15c-2を通じて設定可能としてもよい。さらに、制御部15-2は、ステージ82-2の移動速度を調整してもよい。ステージ82-2の移動速度は、予め定められた速度としてもよいし、設定部15c-2を通じて設定可能としてもよい。 Further, the control unit 15-2 may reciprocate the stage 82-2 in the vertical direction to inject the cleaning liquid from the injection mechanism 90b-2 onto the wafer W. The number of reciprocating movements of the stage 82-2 (wafer W) may be a predetermined number of times (for example, twice) or may be set through the setting unit 15c-2. Further, the control unit 15-2 may adjust the moving speed of the stage 82-2. The moving speed of the stage 82-2 may be a predetermined speed or may be set through the setting unit 15c-2.
 そして、ウェハステーション33b-2においてステージ82-2から洗浄部搬送機構32b-2にウェハWが受け渡され、洗浄部搬送機構32b-2によってウェハWが1次~4次洗浄モジュール311b-2~314b-2へと搬送される。これにより、各洗浄モジュール311b-2~314b-2によってウェハWの洗浄および乾燥が行われる。洗浄部13-2における洗浄および乾燥処理が終了した後、ウェハWは、洗浄部13-2からロード/アンロード部11-2へ取り出され、基板処理装置10-2における基板処理が終了する。 Then, at the wafer station 33b-2, the wafer W is delivered from the stage 82-2 to the cleaning unit transfer mechanism 32b-2, and the wafer W is transferred from the primary to quaternary cleaning modules 311b-2 by the cleaning unit transfer mechanism 32b-2. It is transported to 314b-2. As a result, the wafer W is cleaned and dried by the cleaning modules 311b-2 to 314b-2. After the cleaning and drying treatment in the cleaning unit 13-2 is completed, the wafer W is taken out from the cleaning unit 13-2 to the load / unload unit 11-2, and the substrate processing in the substrate processing apparatus 10-2 is completed.
 このように、本実施形態の基板処理装置10-2では、ウェハWを洗浄部13-2における複数の洗浄ライン(本実施形態では、1次~4次洗浄モジュール311a-2~314a-2と、1次~4次洗浄モジュール311b-2~314b-2との2つの洗浄ライン)で洗浄する前に、ウェハステーション33a-2,33b-2のステージ72-2,82-2で搬送される洗浄液を作用させて、ウェハWをプレ洗浄することができる。このようにウェハステーション33a-2,33b-2におけるステージ72-2,82-2の搬送による移動を利用してウェハWに洗浄液を作用させることにより、プレ洗浄のために新たにウェハWを移動させる機構を設けることなく好適にウェハWに洗浄液を作用させることができる。 As described above, in the substrate processing apparatus 10-2 of the present embodiment, the wafer W is subjected to a plurality of cleaning lines in the cleaning unit 13-2 (in the present embodiment, the primary to quaternary cleaning modules 311a-2 to 314a-2 are used. Before cleaning in the two cleaning lines of the primary to quaternary cleaning modules 311b-2 to 314b-2), they are transported in stages 72-2, 82-2 of the wafer stations 33a-2, 33b-2. The wafer W can be pre-cleaned by allowing a cleaning liquid to act on it. By allowing the cleaning liquid to act on the wafer W by utilizing the movement of the stages 72-2 and 82-2 at the wafer stations 33a-2 and 33b-2 in this way, the wafer W is newly moved for pre-cleaning. The cleaning liquid can be preferably applied to the wafer W without providing a mechanism for causing the wafer W.
 重複した説明となるが、上記した基板処理装置10-2は、図14に示す基板処理方法を実行している。つまり、ウェハWは研磨部12-2において研磨され(ステップS12-2)、研磨されたウェハWは、搬送ロボット(搬送機構)23-2でウェハステーション33a-2,33b-2へ搬送される(ステップS14-2)。続いて、ウェハステーション33a-2,33b-2においてウェハWが上下方向に移動している際に、噴射機構90a-2,90b-2から洗浄液がウェハWに噴射される(ステップS16-2)。これにより、ウェハWをプレ洗浄することができる。そして、ウェハステーション33a-2,33b-2のステージ72-2,82-2から洗浄部搬送機構32a-2,32b-2へとウェハWが受け渡され、1次~4次洗浄モジュール311a-2~314a-2,311b-2~314b-2においてウェハWの洗浄が行われる(ステップS18-2)。このときには、ステップS16-2において予めウェハWに洗浄液が噴射されてウェハWがプレ洗浄されているので、洗浄部13における洗浄時間を短くすることができる。こうした基板処理方法によれば、ウェハWの洗浄効率を向上することができる。 Although it is a duplicate explanation, the above-mentioned substrate processing apparatus 10-2 executes the substrate processing method shown in FIG. That is, the wafer W is polished by the polishing unit 12-2 (step S12-2), and the polished wafer W is transferred to the wafer stations 33a-2 and 33b-2 by the transfer robot (transfer mechanism) 23-2. (Step S14-2). Subsequently, when the wafer W is moving in the vertical direction at the wafer stations 33a-2 and 33b-2, the cleaning liquid is injected onto the wafer W from the injection mechanisms 90a-2 and 90b-2 (step S16-2). .. As a result, the wafer W can be pre-cleaned. Then, the wafer W is handed over from the stages 72-2 and 82-2 of the wafer stations 33a-2 and 33b-2 to the cleaning unit transfer mechanisms 32a-2 and 32b-2, and the primary to fourth cleaning modules 311a-. The wafer W is washed at 2 to 314a-2 and 311b-2 to 314b-2 (step S18-2). At this time, since the cleaning liquid is sprayed onto the wafer W in advance in step S16-2 to pre-clean the wafer W, the cleaning time in the cleaning unit 13 can be shortened. According to such a substrate processing method, the cleaning efficiency of the wafer W can be improved.
 上記した基板処理装置10-2では、ウェハWが搬送部14-2およびロード/アンロード部11-2などで搬送されるときには、処理面が基板処理装置10-2に接触して汚染または損傷しないように、ウェハWの処理面は上向きとされる。また、ウェハWが研磨部12-2で研磨されるときには、研磨液が研磨パッド102a-2上に好適に作用するように、ウェハWは、搬送ロボット23-2によって反転されて処理面が下向きとされる。そして、研磨部12-2での研磨が終了すると、処理面が汚染または損傷されないように、ウェハWは搬送ロボット23によって再び反転されて処理面が上向きとされて洗浄部13-2へと搬送される。こうした基板処理装置10-2では、研磨部12-2での研磨によってウェハWに残った研磨液または研磨残留物が、搬送ロボット23-2によるウェハWの回転によってウェハW全面に広がってしまうおそれがある。研磨部12-2で使用される研磨液は一般に粘性が強く、また時間が経って乾燥すると、研磨液が固まって除去しにくくなってしまう。これに対して、本実施形態による基板処理装置10-2では、洗浄モジュール311a-2~314a-2と直列に配置されたウェハステーション33a-2において上下移動しているウェハWに対して洗浄液を噴射可能な噴射機構90a-2と、洗浄モジュール311b-2~314b-2と直列に配置されたウェハステーション33b-2において上下移動しているウェハWに対して洗浄液を噴射可能な噴射機構90b-2と、が設けられている。これにより、ウェハWに早いタイミングで洗浄液を作用させることができ、ウェハWに付着した研磨液または研磨残留物を好適に除去することができる。しかも、ウェハステーション33a-2,33b-2によるウェハWの移動を伴ってウェハWに洗浄液を作用させることにより、プレ洗浄のために新たにウェハWを移動させる機構を設けることなく、ウェハWの全面に均一に洗浄液を作用させてウェハWをプレ洗浄することができる。 In the substrate processing apparatus 10-2 described above, when the wafer W is conveyed by the conveying section 14-2, the load / unloading section 11-2, or the like, the processed surface comes into contact with the substrate processing apparatus 10-2 and becomes contaminated or damaged. The processing surface of the wafer W is turned upward so as not to prevent it. Further, when the wafer W is polished by the polishing portion 12-2, the wafer W is inverted by the transfer robot 23-2 so that the processing surface faces downward so that the polishing liquid acts on the polishing pad 102a-2. It is said that. Then, when the polishing by the polishing unit 12-2 is completed, the wafer W is inverted again by the transfer robot 23 so that the processed surface is not contaminated or damaged, and the processed surface is turned upward and transferred to the cleaning unit 13-2. Will be done. In such a substrate processing apparatus 10-2, the polishing liquid or polishing residue remaining on the wafer W due to polishing by the polishing unit 12-2 may spread over the entire surface of the wafer W due to the rotation of the wafer W by the transfer robot 23-2. There is. The polishing liquid used in the polishing unit 12-2 is generally highly viscous, and when it dries over time, the polishing liquid solidifies and becomes difficult to remove. On the other hand, in the substrate processing apparatus 10-2 according to the present embodiment, the cleaning liquid is applied to the wafer W moving up and down at the wafer station 33a-2 arranged in series with the cleaning modules 311a-2 to 314a-2. Injection mechanism 90a-2 capable of injecting cleaning liquid onto wafer W moving up and down in wafer station 33b-2 arranged in series with injection mechanism 90a-2 capable of injecting cleaning modules 311b-2 to 314b-2. 2 and are provided. As a result, the cleaning liquid can be allowed to act on the wafer W at an early timing, and the polishing liquid or polishing residue adhering to the wafer W can be suitably removed. Moreover, by allowing the cleaning liquid to act on the wafer W with the movement of the wafer W by the wafer stations 33a-2 and 33b-2, the wafer W does not need to be newly provided with a mechanism for moving the wafer W for pre-cleaning. The wafer W can be pre-cleaned by uniformly applying the cleaning liquid to the entire surface.
(変形例1)
 上記した実施形態では、噴射機構90a-2,90b-2は、洗浄液を噴射する2つのノズルを有するものとした。しかし、こうした例に限定されず、噴射機構90a-2,90b-2は、1つ又は3つ以上のノズルを有してもよい。
(Modification example 1)
In the above embodiment, the injection mechanisms 90a-2 and 90b-2 have two nozzles for injecting the cleaning liquid. However, the present invention is not limited to these examples, and the injection mechanisms 90a-2 and 90b-2 may have one or three or more nozzles.
 また、上記した実施形態では、洗浄部13-2は、第1洗浄ユニット30a-2と第2洗浄ユニット30b-2とのそれぞれがウェハステーション33a-2,33b-2を有し、搬送ロボット23-2によってウェハWがウェハステーション33a-2,33b-2のいずれかに振り分けられるものとした。しかし、こうした例に限定されず、一例として、第1洗浄ユニット30a-2と第2洗浄ユニット30b-2とを連通する単一のウェハステーションが設けられ、当該単一のウェハステーションにおいて、ウェハWは、第1洗浄ユニット30a-2の1次~4次洗浄モジュール311a-2~314a-2と第2洗浄ユニット30b-2の1次~4次洗浄モジュール311b-2~314b-2とのいずれかに振り分けられてもよい。 Further, in the above-described embodiment, in the cleaning unit 13-2, the first cleaning unit 30a-2 and the second cleaning unit 30b-2 each have wafer stations 33a-2 and 33b-2, and the transfer robot 23 It was assumed that the wafer W was distributed to either the wafer stations 33a-2 or 33b-2 according to -2. However, the present invention is not limited to these examples, and as an example, a single wafer station that communicates the first cleaning unit 30a-2 and the second cleaning unit 30b-2 is provided, and in the single wafer station, the wafer W Is either the primary to quaternary cleaning modules 311a-2 to 314a-2 of the first cleaning unit 30a-2 and the primary to quaternary cleaning modules 311b-2 to 314b-2 of the second cleaning unit 30b-2. It may be sorted into a wash.
 また、上記した実施形態では、洗浄部13-2は、上下二段に配置された第1洗浄ユニット30a-2および第2洗浄ユニット30b-2を有するものとした。しかし、こうした例に限定されず、洗浄部13-2は、上下三段以上に配置された複数の洗浄ユニットを有してもよい。また、洗浄部13-2は、左右複数段に配置された複数の洗浄ユニットを有してもよい。 Further, in the above-described embodiment, the cleaning unit 13-2 has a first cleaning unit 30a-2 and a second cleaning unit 30b-2 arranged in two upper and lower stages. However, the present invention is not limited to these examples, and the cleaning unit 13-2 may have a plurality of cleaning units arranged in three or more stages above and below. Further, the cleaning unit 13-2 may have a plurality of cleaning units arranged in a plurality of left and right stages.
(変形例2)
 図15は、変形例における研磨部搬送機構を示す概略図である。図15に示すように、変形例における研磨部搬送機構22-2の搬送ロボット23-2は、実施形態の搬送ロボット23-2と同様に、ウェハWを保持するハンド231-2と、ハンド231-2を上下反転させる(つまり、ウェハWのおもて面と裏面とを反転させる)反転機構234-2と、ウェハWを支持する伸縮可能なアーム232-2と、アーム232-2を上下移動させるアーム上下移動機構およびアーム232-2を鉛直な軸線周りに回動させるアーム回動機構を含むロボット本体233-2と、を有している。ロボット本体233-2は、研磨部12-2の天井のフレームに対して吊り下がるように取り付けられている。反転機構234-2は、モータなどの駆動機構によりハンド231-2を回転させて、ハンド231-2を上下反転させることができるように構成されている。
(Modification 2)
FIG. 15 is a schematic view showing a polishing portion transport mechanism in a modified example. As shown in FIG. 15, the transfer robot 23-2 of the polishing portion transfer mechanism 22-2 in the modified example includes a hand 231-2 for holding the wafer W and a hand 231 as in the transfer robot 23-2 of the embodiment. The flipping mechanism 234-2 that flips -2 upside down (that is, flips the front and back surfaces of the wafer W), the telescopic arm 234-2 that supports the wafer W, and the arm 234-2 are flipped up and down. It has a robot main body 233-2 including an arm vertical movement mechanism for moving and an arm rotation mechanism for rotating the arm 232-2 around a vertical axis. The robot body 233-2 is attached so as to hang from the ceiling frame of the polishing portion 12-2. The reversing mechanism 234-2 is configured so that the hand 231-2 can be rotated by a drive mechanism such as a motor to turn the hand 231-2 upside down.
 また、変形例の研磨部搬送機構22-2は、搬送ロボット23-2によって保持されているウェハWに対して洗浄液を噴射可能に構成される噴射機構26-2を有している。噴射機構26-2は、制御部15-2によって制御される。一例として、噴射機構26-2は、洗浄液262-2を噴射するノズル261-2と、ノズル261-2に供給される洗浄液を調整可能な洗浄液調整機構263-2と、第1洗浄液供給源264-2と、第2洗浄液供給源265-2と、を有する。ノズル261-2としては、スプレーノズルや液滴ノズルを採用することができる。なお、噴射機構26-2は、ウェハWに対して洗浄液262-2を噴射可能であればよく、ノズル261-2に代えて、または加えて、噴霧器などを有してもよい。 Further, the polishing section transfer mechanism 22-2 of the modified example has an injection mechanism 26-2 configured to be capable of injecting a cleaning liquid onto the wafer W held by the transfer robot 23-2. The injection mechanism 26-2 is controlled by the control unit 15-2. As an example, the injection mechanism 26-2 includes a nozzle 261-2 that injects the cleaning liquid 262-2, a cleaning liquid adjusting mechanism 263-2 that can adjust the cleaning liquid supplied to the nozzle 261-2, and a first cleaning liquid supply source 264. -2 and a second cleaning liquid supply source 265-2. As the nozzle 261-2, a spray nozzle or a droplet nozzle can be adopted. The injection mechanism 26-2 may be capable of injecting the cleaning liquid 262-2 onto the wafer W, and may have a sprayer or the like in place of or in addition to the nozzle 261-2.
 本変形例では、ノズル261-2は、研磨部12-2の図示しないフレームに対して固定される。ただし、ノズル261-2は、図示しない移動機構によって移動可能に構成されてもよい。ここで、ノズル261-2は、洗浄液を噴射する対象(ウェハWまたは搬送ロボット23-2のハンド231-2)よりも上方に配置されるとよい。これにより、ウェハWまたは搬送ロボット23-2のハンド231-2からの飛散物によってノズル261-2の洗浄口が汚染されてしまうことを抑制できる。また、一例として、ノズル261-2は、洗浄液の噴射中心方向が、鉛直方向および水平方向に対して傾斜するように構成される。さらに、一例として、ノズル261-2は、洗浄液を噴射する対象から水平方向に離れて配置される。これにより、ノズル261-2から意図せず洗浄液などが滴下したときに、滴下物がウェハWに当たることを防止できる。また、一例として、ノズル261-2は、ノズル261-2の先端が搬送ロボット23のロボット本体233-2(特に、図15中の符号233-2の引き出し線が引き出されている面)に向き合うように配置されるとよい。また、一例として、ノズル261-2は、ノズル261-2の先端がハンド231-2の根本へ向くように配置されるとよい。これらにより、噴射機構26-2から噴射される噴射液によって、反転機構234-2やアーム232-2を好適に洗浄することができる。また、ノズル261-2は、洗浄液262-2をコーン状(円錐状)または扇状に噴射するように構成されるとよい。この場合、一例として、噴射機構26-2は、コーン状または扇状に噴射されてウェハWに作用する洗浄液の範囲(直径)がウェハWの直径と等しい又はウェハWの直径よりやや大きくなるように構成される。これにより、ノズル261-2から洗浄液262-2を広範囲に噴射することができ、対象に均一に洗浄液262-2を作用させることができる。 In this modification, the nozzle 261-2 is fixed to a frame (not shown) of the polishing portion 12-2. However, the nozzle 261-2 may be configured to be movable by a moving mechanism (not shown). Here, the nozzle 261-2 may be arranged above the target (wafer W or the hand 231-2 of the transfer robot 23-2) for injecting the cleaning liquid. As a result, it is possible to prevent the cleaning port of the nozzle 261-2 from being contaminated by the scattered matter from the wafer W or the hand 231-2 of the transfer robot 23-2. Further, as an example, the nozzle 261-2 is configured so that the injection center direction of the cleaning liquid is inclined with respect to the vertical direction and the horizontal direction. Further, as an example, the nozzle 261-2 is arranged horizontally away from the object to which the cleaning liquid is sprayed. As a result, when the cleaning liquid or the like is unintentionally dropped from the nozzle 261-2, it is possible to prevent the dropped object from hitting the wafer W. Further, as an example, in the nozzle 261-2, the tip of the nozzle 261-2 faces the robot main body 233-2 of the transfer robot 23 (particularly, the surface from which the lead wire of reference numeral 2332 in FIG. 15 is drawn out). It is good to be arranged like this. Further, as an example, the nozzle 261-2 may be arranged so that the tip of the nozzle 261-2 faces the root of the hand 231-2. As a result, the reversing mechanism 234-2 and the arm 234-2 can be suitably cleaned by the injection liquid injected from the injection mechanism 26-2. Further, the nozzle 261-2 may be configured to inject the cleaning liquid 262-2 into a cone shape (conical shape) or a fan shape. In this case, as an example, the injection mechanism 26-2 is such that the range (diameter) of the cleaning liquid that is injected in a cone shape or a fan shape and acts on the wafer W is equal to the diameter of the wafer W or slightly larger than the diameter of the wafer W. It is composed. As a result, the cleaning liquid 262-2 can be sprayed over a wide range from the nozzle 261-2, and the cleaning liquid 262-2 can be uniformly applied to the target.
 本変形例では、ノズル261-2には、洗浄液調整機構263-2を介して第1洗浄液供給源264-2と第2洗浄液供給源265-2とが接続されている。第1洗浄液供給源264-2と第2洗浄液供給源265-2とには、異なる洗浄液が貯められている。一例として、第1洗浄液供給源264-2には第1洗浄液として純水が貯められ、第2洗浄液供給源265-2には第2洗浄液としてリンス(フッ酸、アンモニア等)が貯められる。第1洗浄液と第2洗浄液との少なくとも一方は、洗浄部13-2において使用される洗浄液と同一であってもよい。また、第1洗浄液と第2洗浄液との少なくとも一方は、洗浄部13-2において使用される洗浄液とは異なっていてもよい。さらに、第1、第2洗浄液供給源264、265-2は、ウェハステーション33a-2,33b-2の第1洗浄液供給源94a-2、94b-2、95a-2、95b-2の何れかと共用されてもよい。なお、ノズル261-2には、2つの洗浄液供給源が接続されるものに限定されず、1つ又は3つ以上の洗浄液供給源が接続されてもよい。噴射機構26-2から噴射される洗浄液(例えば第1洗浄液および第2洗浄液)は、ウェハWの除去対象残渣に基づいて選択される。一例として、ノズル261-2には、純水が貯められる洗浄液供給源のみが接続されてもよい。洗浄液調整機構263-2は、予め定められたレシピに従って第1洗浄液供給源264-2と第2洗浄液供給源265-2とからの洗浄液をノズル261-2に供給する。また、制御部15-2は、設定部15c-2を通じた設定に従って第1洗浄液供給源264-2と第2洗浄液供給源265-2とからの洗浄液をノズル261-2に供給してもよい。洗浄液調整機構263-2は、ノズル261-2に供給する洗浄液を、第1洗浄液供給源264-2からの第1洗浄液と、第2洗浄液供給源265-2からの第2洗浄液と、で切り替えて供給してもよい。また、洗浄液調整機構263-2は、第1洗浄液と第2洗浄液との混合割合を調整して洗浄液をノズル261-2に供給してもよい。 In this modification, the first cleaning liquid supply source 264-2 and the second cleaning liquid supply source 265-2 are connected to the nozzle 261-2 via the cleaning liquid adjusting mechanism 263-2. Different cleaning liquids are stored in the first cleaning liquid supply source 264-2 and the second cleaning liquid supply source 265-2. As an example, pure water is stored as the first cleaning liquid in the first cleaning liquid supply source 264-2, and rinse (hydrofluoric acid, ammonia, etc.) is stored as the second cleaning liquid in the second cleaning liquid supply source 265-2. At least one of the first cleaning liquid and the second cleaning liquid may be the same as the cleaning liquid used in the cleaning unit 13-2. Further, at least one of the first cleaning liquid and the second cleaning liquid may be different from the cleaning liquid used in the cleaning unit 13-2. Further, the first and second cleaning liquid supply sources 264 and 265-2 are with any of the first cleaning liquid supply sources 94a-2, 94b-2, 95a-2, 95b-2 of the wafer stations 33a-2, 33b-2. It may be shared. The nozzle 261-2 is not limited to the one in which two cleaning liquid supply sources are connected, and one or three or more cleaning liquid supply sources may be connected. The cleaning liquid (for example, the first cleaning liquid and the second cleaning liquid) injected from the injection mechanism 26-2 is selected based on the residue to be removed of the wafer W. As an example, only the cleaning liquid supply source in which pure water is stored may be connected to the nozzle 261-2. The cleaning liquid adjusting mechanism 263-2 supplies the cleaning liquid from the first cleaning liquid supply source 264-2 and the second cleaning liquid supply source 265-2 to the nozzle 261-2 according to a predetermined recipe. Further, the control unit 15-2 may supply the cleaning liquid from the first cleaning liquid supply source 264-2 and the second cleaning liquid supply source 265-2 to the nozzle 261-2 according to the setting through the setting unit 15c-2. .. The cleaning liquid adjusting mechanism 263-2 switches the cleaning liquid supplied to the nozzle 261-2 between the first cleaning liquid from the first cleaning liquid supply source 264-2 and the second cleaning liquid from the second cleaning liquid supply source 265-2. May be supplied. Further, the cleaning liquid adjusting mechanism 263-2 may supply the cleaning liquid to the nozzle 261-2 by adjusting the mixing ratio of the first cleaning liquid and the second cleaning liquid.
 さらに、本実施形態では、噴射機構26-2は、2流体ノズル機構により実現されており、ノズル261―2には窒素などのキャリアガスを供給するためのキャリアガス供給源266-2が接続されている。洗浄液とキャリアガスとを高速で噴出させることで、キャリアガス中に洗浄液が微小液滴(ミスト)として存在する2流体ジェット流が生成される。この2流体ジェット流をウェハWの表面に向けて噴出させて衝突させることで、パーティクル等を好適に除去(洗浄)することができる。なお、噴射機構26-2は、キャリアガスを伴わない洗浄を含め、キャリアガスの噴射量を調整できるものとしてもよい。また、本開示において、「洗浄液の噴射」には、キャリアガスを伴った噴射が含まれ得る。 Further, in the present embodiment, the injection mechanism 26-2 is realized by a two-fluid nozzle mechanism, and a carrier gas supply source 266-2 for supplying a carrier gas such as nitrogen is connected to the nozzle 261-2. ing. By ejecting the cleaning liquid and the carrier gas at high speed, a two-fluid jet flow in which the cleaning liquid exists as fine droplets (mist) in the carrier gas is generated. By ejecting this two-fluid jet flow toward the surface of the wafer W and causing it to collide, particles and the like can be suitably removed (cleaned). The injection mechanism 26-2 may be capable of adjusting the injection amount of the carrier gas, including cleaning without the carrier gas. Further, in the present disclosure, "injection of cleaning liquid" may include injection accompanied by a carrier gas.
 本変形例では、研磨されたウェハWが搬送ロボット23-2によって反転される際に、噴射機構26-2によってウェハWに洗浄液が噴射される。ウェハWを反転させながら研磨液を吹きかけることにより、ウェハWの全面に洗浄液を作用させることができる。このときには、制御部15-2は、噴射機構26-2によって洗浄液が噴射されているときに、ウェハWが鉛直方向に沿う位置(鉛直位置)で、つまりウェハWの板面が水平方向に向く位置で、第1時間(例えば数秒)にわたって停止させてもよい。こうすれば、ウェハWの板面に洗浄液を掛け流すことができ、ウェハWから異物を効率的に除去し得る。さらに、制御部15-2は、噴射機構26-2による洗浄液の噴射が終了した後に、ウェハWを鉛直位置で第2時間(例えば数秒)にわたって停止させるとよい。これにより、ウェハWの板面から余分な洗浄液および異物を除去することができる。 In this modification, when the polished wafer W is inverted by the transfer robot 23-2, the cleaning liquid is injected onto the wafer W by the injection mechanism 26-2. By spraying the polishing liquid while inverting the wafer W, the cleaning liquid can act on the entire surface of the wafer W. At this time, the control unit 15-2 is at a position where the wafer W is along the vertical direction (vertical position) when the cleaning liquid is injected by the injection mechanism 26-2, that is, the plate surface of the wafer W faces in the horizontal direction. At the position, it may be stopped for a first hour (eg, a few seconds). In this way, the cleaning liquid can be poured over the plate surface of the wafer W, and foreign matter can be efficiently removed from the wafer W. Further, the control unit 15-2 may stop the wafer W at the vertical position for a second time (for example, several seconds) after the injection of the cleaning liquid by the injection mechanism 26-2 is completed. As a result, excess cleaning liquid and foreign matter can be removed from the plate surface of the wafer W.
 また、噴射機構26-2から洗浄液を噴射するときには、制御部15-2は、ウェハWを複数回にわたって反転させてもよい。ウェハWの反転回数は、予め定められた回数(例えば2回など)としてもよいし、設定部15c-2を通じて設定可能としてもよい。さらに、制御部15-2は、反転機構234-2によってウェハWを反転させる速度を調整してもよい。たとえば、制御部15-2は、研磨部12による処理前のウェハWを反転させるときには第1反転速度でウェハWが反転するように反転機構234-2を制御し、研磨部12-2による処理後のウェハWを反転させるときには第1速度より遅い第2反転速度でウェハWが反転するように反転機構234-2を制御してもよい。これにより、研磨前のウェハWについては迅速に反転させて基板処理装置10-2における処理を速くすることができるとともに、研磨後のウェハWについては比較的ゆっくりと反転させて洗浄液をウェハWに作用させることができる。また、ウェハWの反転速度は、予め定められた速度としてもよいし、設定部15c-2を通じて設定可能としてもよい。 Further, when the cleaning liquid is injected from the injection mechanism 26-2, the control unit 15-2 may invert the wafer W a plurality of times. The number of times the wafer W is inverted may be a predetermined number of times (for example, twice), or may be set through the setting unit 15c-2. Further, the control unit 15-2 may adjust the speed at which the wafer W is inverted by the inversion mechanism 234-2. For example, the control unit 15-2 controls the reversing mechanism 234-2 so that the wafer W is inverted at the first inversion speed when the wafer W before the processing by the polishing unit 12 is inverted, and the processing by the polishing unit 12-2. When the subsequent wafer W is inverted, the inversion mechanism 234-2 may be controlled so that the wafer W is inverted at a second inversion speed slower than the first speed. As a result, the wafer W before polishing can be quickly inverted to speed up the processing in the substrate processing apparatus 10-2, and the wafer W after polishing can be inverted relatively slowly to transfer the cleaning liquid to the wafer W. Can act. Further, the inversion speed of the wafer W may be a predetermined speed or may be set through the setting unit 15c-2.
 このように、本実施形態の基板処理装置10-2では、ウェハWを洗浄部13-2で洗浄する前に、ウェハWを搬送ロボット23-2で反転させている際にウェハWに洗浄液を作用させて、ウェハWをプレ洗浄することができる。また、トップリング25a-2にウェハWを取り付けるためにウェハWを反転させる搬送ロボット23-2の反転機構234-2を利用することにより、プレ洗浄のために新たにウェハWを移動させる機構を設けることなく好適にウェハWに洗浄液を作用させることができる。 As described above, in the substrate processing apparatus 10-2 of the present embodiment, before the wafer W is cleaned by the cleaning unit 13-2, the cleaning liquid is applied to the wafer W when the wafer W is inverted by the transfer robot 23-2. The wafer W can be pre-cleaned by acting. Further, by using the reversing mechanism 234-2 of the transfer robot 23-2 that inverts the wafer W in order to attach the wafer W to the top ring 25a-2, a mechanism for newly moving the wafer W for pre-cleaning is provided. The cleaning liquid can be preferably applied to the wafer W without being provided.
 そして、ウェハWは、搬送ロボット23-2からウェハステーション33a-2,33b-2を通じて洗浄部13-2へ受け渡され、洗浄部13-2において洗浄および乾燥が行われる。洗浄部13-2における洗浄および乾燥処理が終了した後、ウェハWは、洗浄部13-2からロード/アンロード部11-2へ取り出され、基板処理装置10-2における基板処理が終了する。ウェハWが搬送ロボット23-2から洗浄部13-2へ受け渡された後には、噴射機構26-2によって搬送ロボット23-2のハンド231-2に洗浄液を噴射してもよい。こうすれば、噴射機構26-2によって、搬送ロボット23-2のハンド231-2の洗浄を行うこともできる。このときには、反転機構234-2によってハンド231-2を反転させながら噴射機構26-2から洗浄液を噴射してもよい。 Then, the wafer W is handed over from the transfer robot 23-2 to the cleaning unit 13-2 through the wafer stations 33a-2 and 33b-2, and the cleaning unit 13-2 performs cleaning and drying. After the cleaning and drying treatment in the cleaning unit 13-2 is completed, the wafer W is taken out from the cleaning unit 13-2 to the load / unload unit 11-2, and the substrate processing in the substrate processing apparatus 10-2 is completed. After the wafer W is delivered from the transfer robot 23-2 to the cleaning unit 13-2, the cleaning liquid may be injected into the hand 231-2 of the transfer robot 23-2 by the injection mechanism 26-2. In this way, the injection mechanism 26-2 can also clean the hand 231-2 of the transfer robot 23-2. At this time, the cleaning liquid may be injected from the injection mechanism 26-2 while the hand 231-2 is inverted by the reversing mechanism 234-2.
 ロボット反転機の洗浄では、研磨後の研摩粒子・研磨され剥離した基板粒子・研磨液や研磨パッドの細粉等、研摩ルート毎に種々存在しかつその割合も多々である異物(ディフィクトと称する)を基板両面から、特に裏面に回ったものを、ハンドという上下動よりも激しい動きを利用(回転という遠心力を利用等)して、積極的に除去することができる。そして、主たるディフェクトが基板両面にない状態で基板を洗浄部に送り込むことができる。ワークステーションでの上下搬送時の洗浄は、水膜を作ることで、研磨された基板表面の配線等の金属の酸化を防ぐ効果を奏する。また、ワークステーションでの上下搬送時の洗浄により、基板を濡らした状態で洗浄モジュールに送り込むことができ、基板表面の濡れ性を均一化して、その後の洗浄時に、基板表面全体をむらなくかつ一律に効率的に洗浄することができる。むろんワークステーションでの洗浄は、ロボットハンドでの洗浄で落ちなかったディフェクトを落とす意味もある。このように、ロボット反転機での洗浄とワークステーションでの洗浄とを行うことで、単に何段階かの洗浄を繰り返すだけとは相違し、基板裏面洗浄の課題である洗浄効率アップを図ることができる。 In the cleaning of the robot reversing machine, there are various foreign substances (called "defict") that are present for each polishing route, such as polished particles after polishing, substrate particles that have been polished and peeled off, polishing liquid, and fine powder of polishing pads. Can be positively removed from both sides of the substrate, especially those that have turned to the back surface, by using a more vigorous movement than the vertical movement of the hand (using the centrifugal force of rotation, etc.). Then, the substrate can be fed to the cleaning unit in a state where the main defects are not present on both sides of the substrate. Cleaning during vertical transportation at a workstation has the effect of preventing oxidation of metals such as wiring on the polished substrate surface by forming a water film. In addition, the substrate can be sent to the cleaning module in a wet state by cleaning during vertical transportation at the workstation, so that the wettability of the substrate surface is made uniform, and the entire substrate surface is evenly and uniformly cleaned during the subsequent cleaning. Can be washed efficiently. Of course, cleaning on a workstation also has the meaning of removing defects that were not removed by cleaning with a robot hand. In this way, by performing cleaning with a robot reversing machine and cleaning with a workstation, it is possible to improve the cleaning efficiency, which is an issue of cleaning the back surface of the substrate, unlike simply repeating several stages of cleaning. it can.
 以上、いくつかの本発明の実施形態について説明してきたが、上記した発明の実施形態は、本発明の理解を容易にするためのものであり、本発明を限定するものではない。本発明は、その趣旨を逸脱することなく、変更、改良され得るとともに、本発明にはその等価物が含まれることは勿論である。また、上述した課題の少なくとも一部を解決できる範囲、または、効果の少なくとも一部を奏する範囲において、特許請求の範囲および明細書に記載された各構成要素の任意の組み合わせ、または、省略が可能である。 Although some embodiments of the present invention have been described above, the above-described embodiments of the present invention are for facilitating the understanding of the present invention and do not limit the present invention. The present invention can be modified and improved without departing from the spirit thereof, and it goes without saying that the present invention includes an equivalent thereof. In addition, any combination or omission of the claims and the components described in the specification is possible within the range in which at least a part of the above-mentioned problems can be solved or at least a part of the effect is exhibited. Is.
 本願は、2019年12月6日出願の日本特許出願番号第2019-221177号、及び2019年12月6日出願の日本特許出願番号第2019-221179号に基づく優先権を主張する。日本特許出願番号第2019-221177号および日本特許出願番号第2019-221179号の明細書、特許請求の範囲、図面及び要約書を含む全ての開示内容は、参照により全体として本願に援用される。特開2018-6549号公報(特許文献1)の明細書、特許請求の範囲、図面及び要約書を含む全ての開示は、参照により全体として本願に援用される。 The present application claims priority based on Japanese Patent Application No. 2019-22177 filed on December 6, 2019 and Japanese Patent Application No. 2019-22179 filed on December 6, 2019. All disclosures, including the specification, claims, drawings and abstracts of Japanese Patent Application No. 2019-22177 and Japanese Patent Application No. 2019-22179, are incorporated herein by reference in their entirety. All disclosures including the specification, claims, drawings and abstracts of JP-A-2018-6549 (Patent Document 1) are incorporated herein by reference in their entirety.
 以上説明した本実施形態は、以下の形態としても記載することができる。
[形態1]形態1によれば、基板処理装置が提案され、前記基板処理装置は、基板を研磨するための研磨部と、研磨された基板を洗浄するための洗浄部と、基板を前記研磨部から前記洗浄部へ搬送するための搬送機構であって、基板のおもて面と裏面とを反転できるように構成された搬送機構と、研磨された基板が前記搬送機構によって反転されている際に基板に対して洗浄液を噴射可能な噴射機構と、を備える。形態1によれば、洗浄部によって基板を洗浄する前に基板に洗浄液をさせることができ、基板の洗浄効率を向上することができる。
The present embodiment described above can also be described as the following embodiment.
[Form 1] According to Form 1, a substrate processing apparatus is proposed, and the substrate processing apparatus includes a polishing portion for polishing a substrate, a cleaning portion for cleaning the polished substrate, and the polishing of the substrate. A transport mechanism for transporting from a portion to the cleaning portion, the transport mechanism configured so that the front surface and the back surface of the substrate can be inverted, and the polished substrate are inverted by the transfer mechanism. It is provided with an injection mechanism capable of injecting a cleaning liquid onto the substrate. According to the first embodiment, the cleaning liquid can be applied to the substrate before the substrate is cleaned by the cleaning unit, and the cleaning efficiency of the substrate can be improved.
[形態2]形態2によれば、形態1において、前記搬送機構は、前記噴射機構によって前記洗浄液が噴射されているときに、または前記噴射機構によって前記洗浄液が噴射された後に、基板を鉛直位置で停止させる。形態2によれば、基板から余分な洗浄液および異物を好適に除去することができる。 [Form 2] According to the second embodiment, in the first embodiment, the transport mechanism vertically positions the substrate when the cleaning liquid is injected by the injection mechanism or after the cleaning liquid is injected by the injection mechanism. Stop at. According to the second embodiment, excess cleaning liquid and foreign matter can be suitably removed from the substrate.
[形態3]形態3によれば、形態1または2において、前記噴射機構は、鉛直方向および水平方向に対して前記洗浄液の噴射中心方向が傾斜するように構成される。 [Form 3] According to Form 3, in Form 1 or 2, the injection mechanism is configured so that the injection center direction of the cleaning liquid is inclined with respect to the vertical direction and the horizontal direction.
[形態4]形態4によれば、形態1から3において、前記噴射機構は、前記洗浄液をコーン状に噴射する。 [Form 4] According to Form 4, in Forms 1 to 3, the injection mechanism injects the cleaning liquid into a cone shape.
[形態5]形態5によれば、形態1から4において、前記噴射機構は、前記搬送機構によって搬送されている基板から水平方向において離れて配置される。形態5によれば、噴射機構からの滴下物が基板に当たることを抑制できる。 [Form 5] According to Form 5, in Forms 1 to 4, the injection mechanism is arranged horizontally apart from the substrate conveyed by the transfer mechanism. According to the fifth embodiment, it is possible to prevent the droplets from the injection mechanism from hitting the substrate.
[形態6]形態6によれば、形態1から5において、前記基板処理装置は、当該基板処理装置の構成要素を制御する制御部を備え、前記制御部は、前記搬送機構による基板の反転速度と、前記搬送機構による基板の反転回数と、の少なくとも一方を変更することができるように構成される。形態6によれば、状況に応じて搬送機構による基板の反転態様を設定することができる。 [Form 6] According to the sixth embodiment, in the first to fifth aspects, the substrate processing apparatus includes a control unit that controls the components of the substrate processing apparatus, and the control unit is the inversion speed of the substrate by the transport mechanism. And at least one of the number of times the substrate is inverted by the transport mechanism can be changed. According to the sixth embodiment, it is possible to set the inversion mode of the substrate by the transport mechanism according to the situation.
[形態7]形態7によれば、形態1から6において、前記基板処理装置は、当該基板処理装置の構成要素を制御する制御部を備え、前記制御部は、前記噴射機構による前記洗浄液の噴射流量と、前記洗浄液の成分と、の少なくとも一方を変更することができるように構成される。形態7によれば、状況に応じて噴射機構から噴射される洗浄液を設定することができる。 [Form 7] According to the seventh embodiment, in the first to sixth aspects, the substrate processing apparatus includes a control unit that controls the components of the substrate processing apparatus, and the control unit injects the cleaning liquid by the injection mechanism. It is configured so that at least one of the flow rate and the components of the cleaning liquid can be changed. According to the seventh embodiment, the cleaning liquid to be injected from the injection mechanism can be set depending on the situation.
[形態8]形態8によれば、形態1から7において、前記搬送機構は、研磨される前の基板を反転するときには第1反転速度で基板を反転させ、研磨された基板を反転するときには前記第1反転速度よりも遅い第2反転速度で基板を反転させる。形態8によれば、研磨される前の基板については搬送機構において迅速に反転させて基板処理装置における処理速度を向上させることができる。また、研磨された基板については搬送機構において比較的ゆっくりと反転させて洗浄液を基板に作用させることができる。 [Form 8] According to the eighth aspect, in the first to seventh forms, the transport mechanism inverts the substrate at the first inversion speed when the substrate before polishing is inverted, and when the polished substrate is inverted, the transfer mechanism is described. The substrate is inverted at a second inversion speed slower than the first inversion speed. According to the eighth embodiment, the substrate before being polished can be quickly inverted in the transport mechanism to improve the processing speed in the substrate processing apparatus. Further, the polished substrate can be inverted relatively slowly in the transport mechanism so that the cleaning liquid can act on the substrate.
[形態9]形態9によれば、形態1から8において、前記噴射機構は、前記洗浄液を含む液滴をキャリアガスとともに噴出するように構成された2流体ノズルを有する。 [Form 9] According to Form 9, in Forms 1 to 8, the injection mechanism has a two-fluid nozzle configured to eject droplets containing the cleaning liquid together with a carrier gas.
[形態10]形態10によれば、基板処理方法が提案され、前記基板処理方法は、基板を研磨する研磨ステップと、研磨された基板を、基板のおもて面と裏面との反転を伴って洗浄部へ搬送する搬送ステップと、前記搬送ステップで基板が反転されている際に基板に対して洗浄液を噴射する噴射ステップと、前記洗浄部において基板を洗浄するステップと、を含む。形態9によれば、形態1と同様の効果を奏することができる。 [Form 10] According to Form 10, a substrate processing method is proposed, in which the substrate processing method involves a polishing step of polishing the substrate and the inversion of the polished substrate between the front surface and the back surface of the substrate. This includes a transfer step of transporting the substrate to the cleaning section, an injection step of injecting a cleaning liquid onto the substrate when the substrate is inverted in the transport step, and a step of cleaning the substrate in the cleaning section. According to the ninth form, the same effect as that of the first form can be obtained.
[形態11]形態11によれば、基板処理装置が提案され、前記基板処理装置は、基板を研磨するための研磨部と、研磨された基板を洗浄するための複数の洗浄ラインと、前記複数の洗浄ラインの各洗浄ラインにおいて基板を搬送する複数の搬送機構と、前記複数の洗浄ラインと直列に配置され、基板を第1方向に移動させて前記複数の搬送機構のいずれかへ受け渡すように構成されたウェハステーションと、を有する洗浄部と、前記ウェハステーションによって前記第1方向に移動している基板に対して洗浄液を噴射可能な噴射機構と、を備える。形態11によれば、洗浄ラインにおいて基板を洗浄する前に基板に洗浄液をさせることができ、基板の洗浄効率を向上することができる。 [Form 11] According to Form 11, a substrate processing apparatus is proposed, and the substrate processing apparatus includes a polishing portion for polishing a substrate, a plurality of cleaning lines for cleaning the polished substrate, and the plurality of cleaning lines. A plurality of transport mechanisms for transporting the substrate in each cleaning line of the cleaning line, and the plurality of cleaning lines are arranged in series, and the substrate is moved in the first direction and delivered to any of the plurality of transport mechanisms. It is provided with a cleaning unit having a wafer station configured in the above, and an injection mechanism capable of injecting a cleaning liquid onto a substrate moving in the first direction by the wafer station. According to the eleventh aspect, the cleaning liquid can be applied to the substrate before cleaning the substrate in the cleaning line, and the cleaning efficiency of the substrate can be improved.
[形態12]形態12によれば、形態11において、前記複数の洗浄ラインは、上下方向に配列されており、前記第1方向は、上下方向である。 [Form 12] According to Form 12, in the eleventh form, the plurality of cleaning lines are arranged in the vertical direction, and the first direction is the vertical direction.
[形態13]形態13によれば、形態11または12において、前記噴射機構は、前記第1方向に対して前記洗浄液の噴射中心方向が傾斜するように構成される。 [Form 13] According to Form 13, in Form 11 or 12, the injection mechanism is configured so that the injection center direction of the cleaning liquid is inclined with respect to the first direction.
[形態14]形態14によれば、形態11から13において、前記ウェハステーションは、基板の下面の一部を露出させて支持するように構成され、前記噴射機構は、前記ウェハステーションによって搬送される基板に対して上方から洗浄液を噴射するように構成される第1噴射器と、前記ウェハステーションによって搬送される基板に対して下方から洗浄液を噴射するように構成される第2噴射器と、を有する。形態14によれば、噴射機構によって、基板の上面および下面の両方に洗浄液を作用させることができる。 [Form 14] According to Form 14, in Forms 11 to 13, the wafer station is configured to expose and support a part of the lower surface of the substrate, and the injection mechanism is conveyed by the wafer station. A first injector configured to inject the cleaning liquid from above onto the substrate and a second injector configured to inject the cleaning liquid from below onto the substrate conveyed by the wafer station. Have. According to the fourteenth aspect, the cleaning liquid can be applied to both the upper surface and the lower surface of the substrate by the injection mechanism.
[形態15]形態15によれば、形態11から14において、前記噴射機構は、前記洗浄液をコーン状に噴射する。 [Form 15] According to Form 15, in Forms 11 to 14, the injection mechanism injects the cleaning liquid into a cone shape.
[形態16]形態16によれば、形態11から15において、前記噴射機構は、前記ウェハステーションによって搬送されている基板から水平方向において離れて配置される。形態16によれば、噴射機構からの滴下物が基板に当たることを抑制できる、または基板からの飛散物によって噴射機構が汚染されることを抑制できる。 [Form 16] According to Form 16, in Forms 11 to 15, the injection mechanism is arranged horizontally away from the substrate conveyed by the wafer station. According to the sixteenth aspect, it is possible to prevent the droplets from the injection mechanism from hitting the substrate, or to prevent the injection mechanism from being contaminated by the scattered substances from the substrate.
[形態17]形態17によれば、形態11から16において、前記ウェハステーションによる基板の搬送は、前記第1方向における往復移動を含む。こうすれば、基板を往復移動させながら洗浄液を基板に作用させることができる。 [Form 17] According to Form 17, in the 11th to 16th forms, the transfer of the substrate by the wafer station includes the reciprocating movement in the first direction. In this way, the cleaning liquid can act on the substrate while reciprocating the substrate.
[形態18]形態18によれば、形態11から17において、前記基板処理装置は、当該基板処理装置の構成要素を制御する制御部を備え、前記制御部は、前記ウェハステーションによる基板の移動速度と、前記ウェハステーションによる基板の移動回数と、の少なくとも一方を変更することができるように構成される。形態18によれば、状況に応じてウェハステーションにおける基板の移動態様を設定することができる。 [Form 18] According to the 18th form, in the 11th to 17th forms, the substrate processing apparatus includes a control unit that controls the components of the substrate processing apparatus, and the control unit is the moving speed of the substrate by the wafer station. And, at least one of the number of times the substrate is moved by the wafer station can be changed. According to the eighteenth aspect, the movement mode of the substrate in the wafer station can be set according to the situation.
[形態19]形態19によれば、形態11から18において、前記基板処理装置は、当該基板処理装置の構成要素を制御する制御部を備え、前記制御部は、前記噴射機構による前記洗浄液の噴射流量と、前記洗浄液の成分と、の少なくとも一方を変更することができるように構成される。形態19によれば、状況に応じて噴射機構から噴射される洗浄液を設定することができる。 [Form 19] According to Form 19, in modes 11 to 18, the substrate processing apparatus includes a control unit that controls a component of the substrate processing apparatus, and the control unit injects the cleaning liquid by the injection mechanism. It is configured so that at least one of the flow rate and the components of the cleaning liquid can be changed. According to the nineteenth aspect, the cleaning liquid to be injected from the injection mechanism can be set depending on the situation.
[形態20]形態20によれば、形態11から19において、前記噴射機構は、前記洗浄液を含む液滴をキャリアガスとともに噴出するように構成された2流体ノズルを有する。 [Form 20] According to Form 20, in Forms 11 to 19, the injection mechanism has a two-fluid nozzle configured to eject droplets containing the cleaning liquid together with a carrier gas.
[形態21]形態21によれば、基板処理方法が提案され、前記基板処理方法は、基板を研磨する研磨ステップと、研磨された基板を、複数の洗浄ラインと直列に配置されたウェハステーションに位置させるステップと、前記ウェハステーションによって基板を第1方向に移動させて、前記複数の洗浄ラインの各洗浄ラインにおいて基板を搬送する複数の搬送機構のいずれかへ基板を受け渡すステップと、前記ウェハステーションによって前記第1方向に移動している基板に対して洗浄液を噴射する噴射ステップと、前記複数の洗浄ラインのいずれかにおいて基板を洗浄するステップと、を含む。形態21によれば、形態11と同様の効果を奏することができる。 [Form 21] According to Form 21, a substrate processing method is proposed, in which the substrate processing method includes a polishing step for polishing a substrate and a wafer station in which the polished substrate is arranged in series with a plurality of cleaning lines. A step of positioning the substrate, a step of moving the substrate in the first direction by the wafer station, and a step of transferring the substrate to one of a plurality of transfer mechanisms for transporting the substrate in each cleaning line of the plurality of cleaning lines, and the wafer. It includes an injection step of injecting a cleaning liquid onto the substrate moving in the first direction by a station, and a step of cleaning the substrate in any of the plurality of cleaning lines. According to the morphology 21, the same effect as that of the morphology 11 can be obtained.
 以上、いくつかの本発明の実施形態について説明してきたが、上記した発明の実施形態は、本発明の理解を容易にするためのものであり、本発明を限定するものではない。本発明は、その趣旨を逸脱することなく、変更、改良され得るとともに、本発明にはその等価物が含まれることは勿論である。また、上述した課題の少なくとも一部を解決できる範囲、または、効果の少なくとも一部を奏する範囲において、特許請求の範囲および明細書に記載された各構成要素の任意の組み合わせ、または、省略が可能である。 Although some embodiments of the present invention have been described above, the above-described embodiments of the present invention are for facilitating the understanding of the present invention and do not limit the present invention. The present invention can be modified and improved without departing from the spirit thereof, and it goes without saying that the present invention includes an equivalent thereof. In addition, any combination or omission of the claims and the components described in the specification is possible within the range in which at least a part of the above-mentioned problems can be solved or at least a part of the effect is exhibited. Is.
  10-1…基板処理装置
  11-1…ロード/アンロード部
  12-1…研磨部
  13-1…洗浄部
  14-1…搬送部
  15-1…制御部
  22-1…研磨部搬送機構
  23-1…搬送ロボット
  26-1…噴射機構
  231-1…ハンド
  232-1…アーム
  233-1…ロボット本体
  234-1…反転機構
  261-1…ノズル
  262-1…洗浄液
  263-1…洗浄液調整機構
  264-1…第1洗浄液供給源
  265-1…第2洗浄液供給源
  266-1…キャリアガス供給源
  W…ウェハ
  10-2…基板処理装置
  11-2…ロード/アンロード部
  12-2…研磨部
  13-2…洗浄部
  14-2…搬送部
  15-2…制御部
  22-2…研磨部搬送機構
  23-2…搬送ロボット
  26-2…噴射機構
  30a-2…第1洗浄ユニット
  30b-2…第2洗浄ユニット
  32a-2,32b-2…洗浄部搬送機構
  33a-2,33b-2…ウェハステーション
  71-2…筐体
  72-2…ステージ
  73-2…搬入口
  74-2…ウェハ搬送用開口
  75-2…駆動機構
  76-2…ピン
  81-2…筐体
  82-2…ステージ
  83-2…搬入口
  84-2…ウェハ搬送用開口
  85-2…駆動機構
  86-2…ピン
  90a-2,90b-2…噴射機構
  91a-2,91b-2…第1ノズル
  92a-2,92b-2…第2ノズル
  93a-2,93b-2…洗浄液調整機構
  94a-2,94b-2…第1洗浄液供給源
  95a-2,95b-2…第2洗浄液供給源
  96a-2,96b-2…キャリアガス供給源
  311a-2~314a-2,311b-2~314b-2…洗浄モジュール(洗浄ライン)
  231-2…ハンド
  232-2…アーム
  233-2…ロボット本体
  234-2…反転機構
  261-2…ノズル
  262-2…洗浄液
  263-2…洗浄液調整機構
  264-2…第1洗浄液供給源
  265-2…第2洗浄液供給源
  266-2…キャリアガス供給源
10-1 ... Substrate processing device 11-1 ... Load / unload part 12-1 ... Polishing part 13-1 ... Cleaning part 14-1 ... Conveying part 15-1 ... Control unit 22-1 ... Polishing part Conveying mechanism 23- 1 ... Transfer robot 26-1 ... Injection mechanism 231-1 ... Hand 232-1 ... Arm 233-1 ... Robot body 234-1 ... Inversion mechanism 261-1 ... Nozzle 262-1 ... Cleaning liquid 263-1 ... Cleaning liquid adjustment mechanism 264 -1 ... 1st cleaning liquid supply source 265-1 ... 2nd cleaning liquid supply source 266-1 ... Carrier gas supply source W ... Wafer 10-2 ... Substrate processing device 11-2 ... Load / unload part 12-2 ... Polishing part 13-2 ... Cleaning unit 14-2 ... Transfer unit 15-2 ... Control unit 22-2 ... Polishing unit Transfer mechanism 23-2 ... Transfer robot 26-2 ... Injection mechanism 30a-2 ... First cleaning unit 30b-2 ... 2nd cleaning unit 32a-2, 32b-2 ... Cleaning unit transfer mechanism 33a-2, 33b-2 ... Wafer station 71-2 ... Housing 72-2 ... Stage 73-2 ... Carry-in inlet 74-2 ... For wafer transfer Opening 75-2 ... Drive mechanism 76-2 ... Pin 81-2 ... Housing 82-2 ... Stage 83-2 ... Carry-in entrance 84-2 ... Wafer transfer opening 85-2 ... Drive mechanism 86-2 ... Pin 90a- 2,90b-2 ... Injection mechanism 91a-2, 91b-2 ... First nozzle 92a-2, 92b-2 ... Second nozzle 93a-2, 93b-2 ... Cleaning liquid adjustment mechanism 94a-2, 94b-2 ... Second 1 Cleaning liquid supply source 95a-2, 95b-2 ... Second cleaning liquid supply source 96a-2, 96b-2 ... Carrier gas supply source 311a-2 to 314a-2, 311b-2 to 314b-2 ... Cleaning module (cleaning line) )
231-2 ... Hand 234-2 ... Arm 2332 ... Robot body 234-2 ... Reversing mechanism 261-2 ... Nozzle 262-2 ... Cleaning liquid 263-2 ... Cleaning liquid adjustment mechanism 264-2 ... First cleaning liquid supply source 265- 2 ... Second cleaning liquid supply source 266-2 ... Carrier gas supply source

Claims (21)

  1.  基板を研磨するための研磨部と、
     研磨された基板を洗浄するための洗浄部と、
     基板を前記研磨部から前記洗浄部へ搬送するための搬送機構であって、基板を保持するハンドを有し、前記ハンドを回転させることにより基板のおもて面と裏面とを反転できるように構成された搬送機構と、
     研磨された基板が前記搬送機構によって反転されている際に基板に対して洗浄液を噴射可能な噴射機構と、
     を備える基板処理装置。
    A polishing part for polishing the substrate and
    A cleaning unit for cleaning the polished substrate,
    A transport mechanism for transporting a substrate from the polishing portion to the cleaning portion, which has a hand for holding the substrate so that the front surface and the back surface of the substrate can be inverted by rotating the hand. With the configured transport mechanism
    An injection mechanism capable of injecting a cleaning liquid onto the substrate when the polished substrate is inverted by the transfer mechanism.
    Substrate processing device.
  2.  前記搬送機構は、前記噴射機構によって前記洗浄液が噴射されているときに、または前記噴射機構によって前記洗浄液が噴射された後に、基板を鉛直位置で停止させる、請求項1に記載の基板処理装置。 The substrate processing device according to claim 1, wherein the transport mechanism stops the substrate at a vertical position when the cleaning liquid is injected by the injection mechanism or after the cleaning liquid is injected by the injection mechanism.
  3.  前記噴射機構は、鉛直方向および水平方向に対して前記洗浄液の噴射中心方向が傾斜するように構成される、請求項1または2に記載の基板処理装置。 The substrate processing apparatus according to claim 1 or 2, wherein the injection mechanism is configured so that the injection center direction of the cleaning liquid is inclined with respect to the vertical direction and the horizontal direction.
  4.  前記噴射機構は、前記洗浄液をコーン状に噴射する、
     請求項1から3の何れか1項に記載の基板処理装置。
    The injection mechanism injects the cleaning liquid into a cone shape.
    The substrate processing apparatus according to any one of claims 1 to 3.
  5.  前記噴射機構は、前記搬送機構によって搬送されている基板から水平方向において離れて配置される、請求項1から4の何れか1項に記載の基板処理装置。 The substrate processing device according to any one of claims 1 to 4, wherein the injection mechanism is arranged horizontally away from the substrate conveyed by the transfer mechanism.
  6.  前記基板処理装置は、当該基板処理装置の構成要素を制御する制御部を備え、
     前記制御部は、前記搬送機構による基板の反転速度と、前記搬送機構による基板の反転回数と、の少なくとも一方を変更することができるように構成される、
     請求項1から5の何れか1項に記載の基板処理装置。
    The substrate processing apparatus includes a control unit that controls components of the substrate processing apparatus.
    The control unit is configured to be able to change at least one of the reversing speed of the substrate by the transport mechanism and the number of reversals of the substrate by the transport mechanism.
    The substrate processing apparatus according to any one of claims 1 to 5.
  7.  前記基板処理装置は、当該基板処理装置の構成要素を制御する制御部を備え、
     前記制御部は、前記噴射機構による前記洗浄液の噴射流量と、前記洗浄液の成分と、の少なくとも一方を変更することができるように構成される、
     請求項1から6の何れか1項に記載の基板処理装置。
    The substrate processing apparatus includes a control unit that controls components of the substrate processing apparatus.
    The control unit is configured to be able to change at least one of the injection flow rate of the cleaning liquid by the injection mechanism and the components of the cleaning liquid.
    The substrate processing apparatus according to any one of claims 1 to 6.
  8.  前記搬送機構は、研磨される前の基板を反転するときには第1反転速度で基板を反転させ、研磨された基板を反転するときには前記第1反転速度よりも遅い第2反転速度で基板を反転させる、請求項1から7の何れか1項に記載の基板処理装置。 The transport mechanism inverts the substrate at the first inversion speed when inverting the substrate before polishing, and inverts the substrate at a second inversion speed slower than the first inversion speed when inverting the polished substrate. , The substrate processing apparatus according to any one of claims 1 to 7.
  9.  前記噴射機構は、前記洗浄液を含む液滴をキャリアガスとともに噴出するように構成された2流体ノズルを有する、請求項1から8の何れか1項に記載の基板処理装置。 The substrate processing apparatus according to any one of claims 1 to 8, wherein the injection mechanism has a two-fluid nozzle configured to eject droplets containing the cleaning liquid together with a carrier gas.
  10.  基板を研磨する研磨ステップと、
     研磨された基板を、基板のおもて面と裏面との反転を伴って洗浄部へ搬送する搬送ステップと、
     前記搬送ステップで基板が反転されている際に基板に対して洗浄液を噴射する噴射ステップと、
     前記洗浄部において基板を洗浄するステップと、
     を含む基板処理方法。
    A polishing step to polish the substrate and
    A transport step in which the polished substrate is transported to the cleaning unit with the front surface and the back surface of the substrate inverted.
    An injection step of injecting a cleaning liquid onto the substrate when the substrate is inverted in the transfer step,
    The step of cleaning the substrate in the cleaning unit and
    Substrate processing method including.
  11.  基板を研磨するための研磨部と、
     研磨された基板を洗浄するための複数の洗浄ラインと、前記複数の洗浄ラインの各洗浄ラインにおいて基板を搬送する複数の搬送機構と、前記複数の洗浄ラインと直列に配置され、基板を第1方向に移動させて前記複数の搬送機構のいずれかへ受け渡すように構成されたウェハステーションと、を有する洗浄部と、
     前記ウェハステーションによって前記第1方向に移動している基板に対して洗浄液を噴射可能な噴射機構と、
     を備える基板処理装置。
    A polishing part for polishing the substrate and
    A plurality of cleaning lines for cleaning the polished substrate, a plurality of transfer mechanisms for transporting the substrate in each cleaning line of the plurality of cleaning lines, and a plurality of transfer mechanisms arranged in series with the plurality of cleaning lines, the substrate is first. A cleaning unit having a wafer station configured to move in a direction and deliver to any of the plurality of transport mechanisms.
    An injection mechanism capable of injecting a cleaning liquid onto a substrate moving in the first direction by the wafer station.
    Substrate processing device.
  12.  前記複数の洗浄ラインは、上下方向に配列されており、
     前記第1方向は、上下方向である、
     請求項11に記載の基板処理装置。
    The plurality of cleaning lines are arranged in the vertical direction.
    The first direction is the vertical direction.
    The substrate processing apparatus according to claim 11.
  13.  前記噴射機構は、前記第1方向に対して前記洗浄液の噴射中心方向が傾斜するように構成される、請求項11または12に記載の基板処理装置。 The substrate processing apparatus according to claim 11 or 12, wherein the injection mechanism is configured so that the injection center direction of the cleaning liquid is inclined with respect to the first direction.
  14.  前記ウェハステーションは、基板の下面の一部を露出させて支持するように構成され、
     前記噴射機構は、前記ウェハステーションによって搬送される基板に対して上方から洗浄液を噴射するように構成される第1噴射器と、前記ウェハステーションによって搬送される基板に対して下方から洗浄液を噴射するように構成される第2噴射器と、を有する、請求項11から13の何れか1項に記載の基板処理装置。
    The wafer station is configured to expose and support a portion of the underside of the substrate.
    The injection mechanism injects the cleaning liquid from below onto the substrate conveyed by the wafer station and the first injector configured to inject the cleaning liquid from above onto the substrate conveyed by the wafer station. The substrate processing apparatus according to any one of claims 11 to 13, further comprising a second injector configured as described above.
  15.  前記噴射機構は、前記洗浄液をコーン状に噴射する、
     請求項11から14の何れか1項に記載の基板処理装置。
    The injection mechanism injects the cleaning liquid into a cone shape.
    The substrate processing apparatus according to any one of claims 11 to 14.
  16.  前記噴射機構は、前記ウェハステーションによって搬送されている基板から水平方向において離れて配置される、請求項11から15の何れか1項に記載の基板処理装置。 The substrate processing apparatus according to any one of claims 11 to 15, wherein the injection mechanism is arranged horizontally away from the substrate conveyed by the wafer station.
  17.  前記ウェハステーションによる基板の搬送は、前記第1方向における往復移動を含む、請求項11から16の何れか1項に記載の基板処理装置。 The substrate processing apparatus according to any one of claims 11 to 16, wherein the transfer of the substrate by the wafer station includes reciprocating movement in the first direction.
  18.  前記基板処理装置は、当該基板処理装置の構成要素を制御する制御部を備え、
     前記制御部は、前記ウェハステーションによる基板の移動速度と、前記ウェハステーションによる基板の移動回数と、の少なくとも一方を変更することができるように構成される、
     請求項11から17の何れか1項に記載の基板処理装置。
    The substrate processing apparatus includes a control unit that controls components of the substrate processing apparatus.
    The control unit is configured to be able to change at least one of the moving speed of the substrate by the wafer station and the number of times the substrate is moved by the wafer station.
    The substrate processing apparatus according to any one of claims 11 to 17.
  19.  前記基板処理装置は、当該基板処理装置の構成要素を制御する制御部を備え、
     前記制御部は、前記噴射機構による前記洗浄液の噴射流量と、前記洗浄液の成分と、の少なくとも一方を変更することができるように構成される、
     請求項11から18の何れか1項に記載の基板処理装置。
    The substrate processing apparatus includes a control unit that controls components of the substrate processing apparatus.
    The control unit is configured to be able to change at least one of the injection flow rate of the cleaning liquid by the injection mechanism and the components of the cleaning liquid.
    The substrate processing apparatus according to any one of claims 11 to 18.
  20.  前記噴射機構は、前記洗浄液を含む液滴をキャリアガスとともに噴出するように構成された2流体ノズルを有する、請求項11から19の何れか1項に記載の基板処理装置。 The substrate processing apparatus according to any one of claims 11 to 19, wherein the injection mechanism has a two-fluid nozzle configured to eject droplets containing the cleaning liquid together with a carrier gas.
  21.  基板を研磨する研磨ステップと、
     研磨された基板を、複数の洗浄ラインと直列に配置されたウェハステーションに位置させるステップと、
     前記ウェハステーションによって基板を第1方向に移動させて、前記複数の洗浄ラインの各洗浄ラインにおいて基板を搬送する複数の搬送機構のいずれかへ基板を受け渡すステップと、
     前記ウェハステーションによって前記第1方向に移動している基板に対して洗浄液を噴射する噴射ステップと、
     前記複数の洗浄ラインのいずれかにおいて基板を洗浄するステップと、
     を含む基板処理方法。
    A polishing step to polish the substrate and
    Steps to place the polished substrate on a wafer station arranged in series with multiple cleaning lines,
    A step of moving the substrate in the first direction by the wafer station and delivering the substrate to any one of a plurality of transport mechanisms for transporting the substrate in each cleaning line of the plurality of cleaning lines.
    An injection step of injecting a cleaning liquid onto a substrate moving in the first direction by the wafer station, and an injection step.
    A step of cleaning the substrate in any of the plurality of cleaning lines,
    Substrate processing method including.
PCT/JP2020/044959 2019-12-06 2020-12-03 Substrate processing apparatus and substrate processing method WO2021112156A1 (en)

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
JP2019221177A JP2023007512A (en) 2019-12-06 2019-12-06 Substrate processing device and substrate processing method
JP2019-221177 2019-12-06
JP2019-221179 2019-12-06
JP2019221179A JP2023007513A (en) 2019-12-06 2019-12-06 Substrate processing device and substrate processing method

Publications (1)

Publication Number Publication Date
WO2021112156A1 true WO2021112156A1 (en) 2021-06-10

Family

ID=76221733

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2020/044959 WO2021112156A1 (en) 2019-12-06 2020-12-03 Substrate processing apparatus and substrate processing method

Country Status (2)

Country Link
TW (1) TW202135986A (en)
WO (1) WO2021112156A1 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP7253604B1 (en) 2021-11-16 2023-04-06 大陽日酸株式会社 Dry ice cleaning apparatus for semiconductor wafers and method for cleaning semiconductor wafers
TWI837947B (en) 2021-11-16 2024-04-01 日商大陽日酸股份有限公司 Dry ice cleaning device for semiconductor wafer and cleaning method for semiconductor wafer

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0697143A (en) * 1992-09-10 1994-04-08 Dainippon Screen Mfg Co Ltd Cleaning equipment
JP2002164318A (en) * 2000-11-27 2002-06-07 Ishii Hyoki Corp Substrate-spinning apparatus
JP2016117137A (en) * 2014-12-22 2016-06-30 株式会社荏原製作所 Substrate treatment device
JP2018085354A (en) * 2016-11-21 2018-05-31 株式会社荏原製作所 Reversing machine, reversing unit, inversion method and substrate processing method

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0697143A (en) * 1992-09-10 1994-04-08 Dainippon Screen Mfg Co Ltd Cleaning equipment
JP2002164318A (en) * 2000-11-27 2002-06-07 Ishii Hyoki Corp Substrate-spinning apparatus
JP2016117137A (en) * 2014-12-22 2016-06-30 株式会社荏原製作所 Substrate treatment device
JP2018085354A (en) * 2016-11-21 2018-05-31 株式会社荏原製作所 Reversing machine, reversing unit, inversion method and substrate processing method

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP7253604B1 (en) 2021-11-16 2023-04-06 大陽日酸株式会社 Dry ice cleaning apparatus for semiconductor wafers and method for cleaning semiconductor wafers
WO2023090290A1 (en) * 2021-11-16 2023-05-25 大陽日酸株式会社 Dry ice cleaning apparatus for semiconductor wafers and method for cleaning semiconductor wafers
JP2023073793A (en) * 2021-11-16 2023-05-26 大陽日酸株式会社 Dry ice cleaning apparatus for semiconductor wafers and method for cleaning semiconductor wafers
TWI837947B (en) 2021-11-16 2024-04-01 日商大陽日酸股份有限公司 Dry ice cleaning device for semiconductor wafer and cleaning method for semiconductor wafer

Also Published As

Publication number Publication date
TW202135986A (en) 2021-10-01

Similar Documents

Publication Publication Date Title
US10737366B2 (en) Dressing apparatus and wafer polishing apparatus comprising same
US9677811B2 (en) Substrate cleaning and drying apparatus
TWI772294B (en) Substrate cleaning device
WO2021112156A1 (en) Substrate processing apparatus and substrate processing method
KR20180035902A (en) Substrate processing method and substrate processing apparatus
JP7491774B2 (en) Substrate holding and rotating mechanism, substrate processing apparatus
JP6895341B2 (en) Board processing equipment
JP6987184B2 (en) Board processing equipment
JP7050875B2 (en) Board cleaning equipment
US20210394332A1 (en) Substrate processing apparatus
JP2023007513A (en) Substrate processing device and substrate processing method
JP2023007512A (en) Substrate processing device and substrate processing method
US20230182262A1 (en) Substrate cleaning device and substrate polishing device
JP6934918B2 (en) Substrate cleaning equipment
KR102135060B1 (en) Apparatus and method for cleaning a back surface of a substrate
CN218677072U (en) Bottom surface cleaning device
WO2021230344A1 (en) Cleaning device and cleaning method
JP2022043081A (en) Substrate processing apparatus
TWI741473B (en) Substrate cleaning apparatus and substrate processing method
TW202331886A (en) Substrate treatment apparatus and substrate treatment method
JP2021002612A (en) Cover for rocking component of substrate processing device, rocking component of substrate processing device, and substrate processing device
JP2022043176A (en) Substrate processing apparatus
JP2003007668A (en) Apparatus and method for cleaning semiconductor wafer
JP2016055398A (en) Buff processing module, substrate processing apparatus, and buff pad cleaning method
TW201842983A (en) Apparatus and method for cleaning back surface of substrate capable of removing particles from a back surface of a substrate with a higher removal rate

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 20896397

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 20896397

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: JP