WO2021111971A1 - 生分解性積層体 - Google Patents

生分解性積層体 Download PDF

Info

Publication number
WO2021111971A1
WO2021111971A1 PCT/JP2020/043988 JP2020043988W WO2021111971A1 WO 2021111971 A1 WO2021111971 A1 WO 2021111971A1 JP 2020043988 W JP2020043988 W JP 2020043988W WO 2021111971 A1 WO2021111971 A1 WO 2021111971A1
Authority
WO
WIPO (PCT)
Prior art keywords
biodegradable
core layer
resin
biodegradable resin
laminate
Prior art date
Application number
PCT/JP2020/043988
Other languages
English (en)
French (fr)
Inventor
廣井 洋介
Original Assignee
株式会社ユポ・コーポレーション
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社ユポ・コーポレーション filed Critical 株式会社ユポ・コーポレーション
Priority to JP2021562604A priority Critical patent/JPWO2021111971A1/ja
Publication of WO2021111971A1 publication Critical patent/WO2021111971A1/ja

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B27/00Layered products comprising a layer of synthetic resin
    • B32B27/30Layered products comprising a layer of synthetic resin comprising vinyl (co)polymers; comprising acrylic (co)polymers
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B27/00Layered products comprising a layer of synthetic resin
    • B32B27/36Layered products comprising a layer of synthetic resin comprising polyesters
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L101/00Compositions of unspecified macromolecular compounds
    • C08L101/16Compositions of unspecified macromolecular compounds the macromolecular compounds being biodegradable

Definitions

  • the present invention relates to a biodegradable laminate.
  • thermoplastic resin film has been used as printing paper or label paper having excellent water resistance and durability. Since petroleum-derived raw materials such as polyolefin resins, which are generally used as thermoplastic resins, are not biodegradable, alternatives to biodegradable resins such as polylactic acid or polybutylene succinate are being considered as a response to environmental problems. (See, for example, Patent Document 1).
  • An object of the present invention is to provide a biodegradable laminate that does not easily deteriorate during use and is rapidly decomposed in a natural environment after use.
  • the present invention is as follows.
  • a biodegradable laminate having a core layer containing a first biodegradable resin and barrier layers on both sides of the core layer.
  • the core layer is a repeating unit derived from an aliphatic diol having a structure represented by the following general formula (I) and a fat having a structure represented by the following general formula (II) as the first biodegradable resin.
  • the barrier layer contains a second biodegradable resin having a higher breaking strength retention rate than the first biodegradable resin.
  • Biodegradable laminate (I) -O- (CH 2 ) 4- O- (II) -OC- (CH 2 ) 2-CO-
  • the content of the first biodegradable resin in the core layer is 50 to 100% by mass.
  • the core layer contains polybutylene succinate as the first biodegradable resin.
  • the biodegradable laminate according to (1) or (2) above.
  • the second biodegradable resin is water-soluble.
  • the biodegradable laminate according to any one of (1) to (3) above.
  • the second biodegradable resin is a polyvinyl alcohol-based resin.
  • the biodegradable laminate according to any one of (1) to (4) above.
  • the biodegradable laminate is in the form of a sheet.
  • the biodegradable laminate according to any one of (1) to (5) above.
  • a biodegradable laminate having a particle-like core layer containing the first biodegradable resin and a barrier layer covering the outer surface of the core layer, and having a core-shell structure in the form of particles.
  • the core layer is a repeating unit derived from an aliphatic diol having a structure represented by the following general formula (I) and a fat having a structure represented by the following general formula (II) as the first biodegradable resin.
  • the barrier layer contains a second biodegradable resin having a higher breaking strength retention rate than the first biodegradable resin.
  • Biodegradable laminate (I) -O- (CH 2 ) 4- O- (II) -OC- (CH 2 ) 2-CO-
  • a biodegradable laminate having a hollow core layer containing a first biodegradable resin and a barrier layer covering the outer surface and / or inner surface of the core layer.
  • the core layer is a repeating unit derived from an aliphatic diol having a structure represented by the following general formula (I) and a fat having a structure represented by the following general formula (II) as the first biodegradable resin.
  • the barrier layer contains a second biodegradable resin having a higher breaking strength retention rate than the first biodegradable resin.
  • Biodegradable laminate (I) -O- (CH 2 ) 4- O- (II) -OC- (CH 2 ) 2-CO-
  • biodegradable laminate of the present invention will be described in detail.
  • the following description is an example (representative example) of the present invention, and the present invention is not specified in this content.
  • FIG. 1 shows the configuration of the biodegradable laminate 10 of one embodiment.
  • the biodegradable laminate 10 illustrated in FIG. 1 is a sheet-like laminate having a core layer 11 and two barrier layers 12 and 13. Each of the barrier layers 12 and 13 covers the surface of the core layer 11.
  • the core layer contains the first biodegradable resin and the barrier layer contains the second biodegradable resin.
  • the biodegradable resin refers to a resin having degradability in a natural environment.
  • the second biodegradable resin has a higher breaking strength retention rate than the first biodegradable resin.
  • the breaking strength retention rate represents the rate at which the breaking stress of the biodegradable resin measured in accordance with JIS7161 changes before and after the humidification promotion treatment. Specifically, the breaking stress of the biodegradable resin test piece is measured before and after the humidification promotion treatment in accordance with JIS7161, and the ratio (%) of the measured value after the humidification promotion treatment to the measurement value before the humidification promotion treatment.
  • the breaking strength maintenance rate can be obtained by calculating.
  • the humidification promotion treatment is a treatment in which the test piece is placed in an environment having a temperature of 85% and a relative humidity of 85% RH for 24 hours.
  • the measurement target may be a single layer or a laminated body, and in either case, the breaking strength retention rate can be measured.
  • the hydrolyzability of the biodegradable resin can be evaluated by the breaking strength retention rate.
  • the biodegradable resin that has been subjected to the humidification promotion treatment tends to be hydrolyzed in contact with water and its strength tends to decrease. In other words, it can be said that the larger the breaking strength retention rate and the closer to 100%, the lower the hydrolyzability and the higher the strength in a high humidity environment.
  • the biodegradable resin is reduced in molecular weight by hydrolysis or oxidative decomposition, and then microorganisms act on the small molecules, and the biodegradable resin is decomposed into water, carbon dioxide, methane, etc. by the enzymatic reaction.
  • Hydrolysis proceeds in a moist environment, but can also occur with trace amounts of moisture in the atmosphere. Therefore, the deterioration of the biodegradable resin starts from the initial stage even under environmental conditions where there is little contact with water and microorganisms.
  • the core layer is covered with the barrier layer.
  • the barrier layer having a high fracture strength retention rate can protect the core layer without hydrolysis. Since the hydrolysis of the core layer is suppressed, the subsequent start timing of decomposition by microorganisms can be delayed. Therefore, a biodegradable laminate that does not easily deteriorate during use with little contact with water and microorganisms can be obtained.
  • a second biodegradable resin having a high fracture strength retention rate and low hydrolyzability proceeds to be hydrolyzed in the presence of a large amount of water. Therefore, when the biodegradable laminate of the present invention is left in water such as the sea or river, or in a natural environment where there is a lot of contact with water and microorganisms such as in the soil, the second biodegradable resin is hydrolyzed. Subsequent biodegradation by microorganisms progresses and the barrier layer deteriorates. Since the core layer is exposed due to the deterioration of the barrier layer and the hydrolysis and biodegradation of the core layer proceed, the biodegradable laminate after use is rapidly decomposed.
  • the core layer imparts mechanical strength to the biodegradable laminate.
  • a biodegradable laminate having such a core layer can be suitably used as printing paper, label paper, or the like having excellent elasticity and good transportability.
  • the core layer is represented by a repeating unit derived from 1,4-butanediol, which is an aliphatic diol having a structure represented by the following general formula (I), as a first biodegradable resin, and a following general formula (II). It contains an aliphatic polyester resin containing a repeating unit derived from succinic acid, which is an aliphatic dicarboxylic acid having a structure to be formed. (I) -O- (CH 2 ) 4- O- (II) -OC- (CH 2 ) 2-CO-
  • the aliphatic polyester resin can further contain a repeating unit derived from an aliphatic oxycarboxylic acid having a structure represented by the following general formula (III).
  • p represents 0 or an integer of 1 to 10.
  • the above-mentioned aliphatic polyester resin is a copolymer of an aliphatic diol and an aliphatic dicarboxylic acid, and may be a copolymer obtained by further polymerizing an aliphatic oxycarboxylic acid.
  • the above-mentioned aliphatic polyester resin has an alkylene in a polymer chain depending on the type or blending ratio of the aliphatic diol, the aliphatic dicarboxylic acid and the aliphatic oxycarboxylic acid used.
  • the ratio of chains and the like can be arbitrarily designed.
  • the alkylene chain in the molecule makes it possible to obtain physical properties similar to those of a polyolefin resin (for example, elastic modulus or tensile elongation at break), and the film can be easily formed.
  • 1,4-butanediol in addition to the above-mentioned 1,4-butanediol, other aliphatic diols can be used in combination as the above-mentioned aliphatic diol as long as the effect of the present invention is not impaired.
  • examples of the aliphatic diol that can be used in combination include ethylene glycol, 1,3-propanediol, 1,4-butanediol, 1,5-pentanediol, 1,6-hexanediol, 1,8-octanediol, and 1, Examples thereof include 10-decanediol. These may be used alone or in combination of two or more.
  • aliphatic dicarboxylic acid other aliphatic dicarboxylic acid can be used in combination with the above-mentioned succinic acid as long as the effect of the present invention is not impaired.
  • the aliphatic dicarboxylic acid that can be used in combination include oxalic acid, malonic acid, succinic anhydride, glutaric acid, adipic acid, pimelic acid, suberic acid, azelaic acid, sebacic acid, undecadicarboxylic acid, and dodecadicarboxylic acid. Be done.
  • Derivatives such as alkyl esters and anhydrides having about 1 to 4 carbon atoms of these dicarboxylic acids can also be used in the production of the aliphatic polyester resin. These may be used alone or in combination of two or more.
  • Examples of the aliphatic oxycarboxylic acid include glycolic acid, lactic acid, 2-hydroxy-n-butyric acid, 2-hydroxy-3-methyl-n-butyric acid, 2-hydroxy-3,3-dimethyl-n-butyric acid, 3 -Hydroxy-n-butyric acid, 4-hydroxy-n-butyric acid, 2-hydroxy-n-valeric acid, 3-hydroxy-n-valeric acid, 4-hydroxy-n-butyric acid, 5-hydroxy-n-valeric acid , 2-Hydroxy-n-hexane acid, 2-hydroxy-1-hexane acid, 3-hydroxy-n-hexane acid, 4-hydroxy-n-hexane acid, etc. do not inhibit the effect of the present invention.
  • any of D-form, L-form and racemic form may be used. They may also be in the form of solids, liquids or aqueous solutions. Among them, lactic acid or an aqueous solution of lactic acid, which are easily available, can be used.
  • the composition ratio of the raw materials in the aliphatic polyester resin it is preferable that the molar ratios of the repeating unit derived from the aliphatic diol and the repeating unit derived from the aliphatic dicarboxylic acid are substantially equal, and specifically, 38.5 to 50 mol, respectively. More preferably.
  • the repeating unit derived from the aliphatic oxycarboxylic acid is preferably 0 to 23 mol%. Within these ranges, sufficient heat resistance and mechanical strength can be easily obtained.
  • the core layer preferably contains polybutylene succinate (PBS) or polybutylene succinate adipate (PBSA), and polybutylene succinate (PBS). Is more preferable.
  • the method for producing the aliphatic polyester resin is not particularly limited, for example, a ring-opening polymerization method using a cyclic monomer, a melt polycondensation method as described in JP-A-8-239461, or dehydration weight in an organic solvent. Examples thereof include a method of condensation.
  • a gelnium compound to exist as a catalyst in the polymerization reaction and using an appropriate amount of an aliphatic oxycarboxylic acid such as lactic acid, the polymerization rate can be increased and a high molecular weight aliphatic polyester resin can be obtained.
  • polybutylene succinate can be produced by polymerization of 1,4-butanediol and succinic acid, and lactic acid can also be used as a polymerization component.
  • polybutylene succinate adipate can be produced by polymerization of succinic acid, 1,4-butanediol and 3-alkoxy-1,2-propanediol.
  • the raw material of the aliphatic polyester resin may be derived from petroleum or naturally. From the viewpoint of reducing environmental problems, naturally derived materials such as sugars and starch are preferable, and from the viewpoint of cost, petroleum-derived materials are preferable.
  • the number average molecular weight Mn of the first biodegradable resin is preferably 10,000 or more, more preferably 30,000 or more.
  • the same number average molecular weight Mn is preferably 500,000 or less, more preferably 200,000 or less.
  • the number average molecular weight Mn is a value measured by the GPC method and converted into polystyrene.
  • the first biodegradable resin is preferably a thermoplastic resin from the viewpoint of moldability.
  • the aliphatic polyester resin has the same physical characteristics as the polyolefin resin and the like, and can be preferably used as a thermoplastic resin.
  • the melting point of the first biodegradable resin is preferably 70 ° C. or higher, more preferably 80 ° C. or higher, from the viewpoint of heat resistance.
  • the melting point is preferably 180 ° C. or lower, more preferably 135 ° C. or lower, from the viewpoint of moldability.
  • the MFR of the first biodegradable resin is preferably 0.01 to 20 g / 10 minutes from the viewpoint of moldability. The MFR is measured in an environment with a temperature of 190 ° C. in accordance with JIS-K-7210.
  • the content of the first biodegradable resin in the core layer is preferably 50% by mass or more, more preferably 70% by mass or more. When the content is 50% by mass or more, the mechanical strength of the core layer is likely to be improved. On the other hand, there is no particular upper limit on the content of the first biodegradable resin, which may be 100% by mass, and 100 by adding a filler and an additive described later within a range that does not affect the strength or moldability. It may be less than% by mass.
  • the core layer can contain a filler.
  • the filler can impart a pulp paper-like texture to the biodegradable laminate.
  • microorganisms tend to stay on the irregularities formed on the surface of the core layer by the filler, and biodegradability tends to be improved. Pore is easily formed by the filler, and it can be expected that the resin density in the biodegradable laminate is reduced to further improve the biodegradability.
  • the filler examples include an inorganic filler and an organic filler. From the viewpoint of environmental measures, naturally derived inorganic fillers are preferable.
  • inorganic fillers examples include titanium oxide, heavy calcium carbonate, light calcium carbonate, calcined clay, silica, silica soil, white clay, talc, barium sulfate, silicon oxide, magnesium oxide, alumina, zeolite, mica, sericite, and bentonite. , Sepiolite, vermiculite, dolomite, wallastonite, kaolin, glass fiber, or inorganic particles obtained by surface-treating these with fatty acids, polymer surfactants, antistatic agents and the like. One of these may be used alone or in combination of two or more. Of these, titanium oxide is preferable from the viewpoint of imparting whiteness like pulp paper.
  • the organic filler is a biodegradable resin that is incompatible with the first biodegradable resin that is the main component of the core layer, and has a higher melting point or glass transition temperature than the first biodegradable resin. Organic particles that are finely dispersed under melt-kneading conditions are preferable.
  • the organic filler may be used alone or in combination of two or more. Either one of the above-mentioned inorganic filler and the organic filler may be used alone, or one or more kinds of inorganic filler and one or more kinds of organic filler may be used in combination.
  • the average particle size of the filler is preferably 0.1 ⁇ m or more, more preferably 0.3 ⁇ m, and even more preferably 0.5 ⁇ m or more from the viewpoint of easiness of forming pores.
  • the average particle size is preferably 10 ⁇ m or less, more preferably 5 ⁇ m or less, still more preferably 3 ⁇ m or less, from the viewpoint of improving the durability of the core layer.
  • the average particle size can be obtained as the median diameter D50 measured by a particle size distribution meter by laser diffraction.
  • the content of the filler in the core layer is preferably 1% by mass or more, more preferably 3% by mass or more, from the viewpoint of increasing the whiteness. From the viewpoint of cost effectiveness, the content is preferably 10% by mass or less, more preferably 7% by mass or less.
  • the content of the filler in the core layer is preferably 10% by mass or more, preferably 20% by mass, from the viewpoint of weight reduction and improvement of biodegradability by forming pores. The above is more preferable. From the viewpoint of layer strength at the time of forming pores and suppression of bleed-out, the content is preferably 70% by mass or less, more preferably 50% by mass or less.
  • the core layer can contain additives such as antioxidants, hydrolysis inhibitors, and dispersants, if necessary.
  • antioxidant examples include steric hindrance phenol-based, phosphorus-based, amine-based and other antioxidants.
  • hydrolysis inhibitor examples include carbodiimide compounds and the like.
  • the contents of the antioxidant and the hydrolysis inhibitor in the core layer are usually 0.001 to 1% by mass independently of each other.
  • the dispersant can be used, for example, for the purpose of dispersing the filler.
  • the content of the dispersant in the core layer is usually in the range of 0.01 to 4% by mass.
  • examples of the dispersant include a silane coupling agent, a higher fatty acid such as oleic acid or stearic acid, polyacrylic acid, polymethacrylic acid, or a salt thereof.
  • the core layer may have a single layer structure or a multi-layer structure.
  • the types and blending amounts of the components of each layer may be the same or different.
  • the barrier layer contains a second biodegradable resin having a higher breaking strength retention rate than the first biodegradable resin.
  • the barrier layer has a barrier function of preventing contact with water in the core layer and suppressing deterioration due to hydrolysis of the core layer.
  • the biodegradable resin of the barrier layer is not particularly limited as long as its breaking strength retention rate is larger than that of the first biodegradable resin.
  • the second biodegradable resin include polyvinyl alcohol (PVA) -based resins, polycaprolactones, polylactic acid and other chemically synthesized systems, cellulose derivatives, starches and other natural systems, and polyhydroxyalkanoic acid (PHA) and other microbial systems. And so on. These can be used alone or in combination of two or more.
  • the breaking strength retention rate of the monolayer of polybutylene succinate alone was 50%, and that of the monolayer of polyvinyl alcohol alone was 100%.
  • the breaking strength retention rate of the monolayer of polylactic acid alone was 60%.
  • the difference in breaking strength retention rate between the first biodegradable resin and the second biodegradable resin is preferably 20% or more, and more preferably 40% or more.
  • polybutylene succinate having a breaking strength retention rate of 50% is used as the first biodegradable resin
  • polyvinyl alcohol having a breaking strength retention rate of 100% is used as compared with polylactic acid having a breaking strength retention rate of 60%. It is preferably used as a second biodegradable resin.
  • the second biodegradable resin preferably has a high moisture barrier property. If the ability to barrier moisture is high, contact between the core layer and moisture can be prevented more effectively, and deterioration due to hydrolysis of the core layer can be further suppressed. Further, the second biodegradable resin is preferably water-soluble. The water-soluble second biodegradable resin can be dissolved when placed in a natural environment where there is a lot of contact with water to rapidly expose the core layer. Since the start timing of biodegradation of the core layer is earlier, the time required for decomposition of the biodegradable laminate after use is shortened.
  • Examples of the second biodegradable resin which is water-soluble, has a high water barrier property, and has a higher breaking strength retention rate than the first biodegradable resin, include polyvinyl alcohol-based resins.
  • the polyvinyl alcohol-based resin makes it easy to improve the printability of the barrier layer, and the biodegradable laminate can be suitably used as printing paper, label paper, and the like.
  • the polyvinyl alcohol-based resin is a saponified product of a vinyl ester polymer.
  • the vinyl ester polymer is a polymer containing at least vinyl ester as a polymerization component (monomer).
  • the polymerization component of the vinyl ester polymer at least the vinyl ester may be contained, and if necessary, another polymerization component capable of copolymerizing with the vinyl ester may be contained, or the vinyl ester may be another polymer. It may be modified by a polymerization component.
  • the vinyl ester is not particularly limited, and examples thereof include fatty acid vinyl ester and aromatic carboxylic acid vinyl ester.
  • fatty acid vinyl ester examples include vinyl formate, vinyl acetate, vinyl propionate, vinyl butyrate, vinyl caprylate, vinyl versatic acid, monochloroacetate, vinyl alkanoic acid having 1 to 16 carbon atoms, and the like having 1 to 16 carbon atoms.
  • 20 fatty acid vinyl esters and the like can be mentioned.
  • the aromatic carboxylic acid vinyl ester include vinyl benzoate, an arene carboxylic acid vinyl ester having 7 to 12 carbon atoms, and the like. These vinyl esters may be used alone or in combination of two or more.
  • the vinyl ester preferably contains at least a fatty acid vinyl ester, for example, an alkanoic acid vinyl ester having 1 to 10 carbon atoms such as vinyl formate, vinyl acetate, vinyl propionate, and vinyl butyrate, from an industrial point of view.
  • a fatty acid vinyl ester for example, an alkanoic acid vinyl ester having 1 to 10 carbon atoms such as vinyl formate, vinyl acetate, vinyl propionate, and vinyl butyrate, from an industrial point of view.
  • Vinyl acetate is more preferable.
  • the degree of saponification of the polyvinyl alcohol-based resin is preferably 90 mol% or more, more preferably 98 mol% or more. If it is 90 mol% or more, the water solubility is moderately low, so that it does not adhere to the hand when touched, and high film strength can be obtained.
  • the upper limit of the degree of saponification is not particularly limited and may be 100 mol%, but usually it is about 98 mol% or more and less than 100 mol%.
  • the content of the second biodegradable resin in the barrier layer is preferably 10% by mass or more, more preferably 20% by mass or more, from the viewpoint of a binder for maintaining the barrier layer and the viewpoint of protecting the core layer.
  • the upper limit of the content is not particularly limited and may be 100% by mass, or may be less than 100% by mass by adding a filler or the like described later.
  • the barrier layer can further contain a cross-linking agent.
  • a cross-linking agent When the second biodegradable resin in the barrier layer is crosslinked with a cross-linking agent, the breaking strength retention rate of the barrier layer is increased and the barrier function is improved.
  • cross-linking agent examples include hydrazine derivatives such as adipic acid hydrazide.
  • the water-soluble hydrazine derivative is preferable because it is easy to prepare a coating liquid for forming a barrier layer containing the above-mentioned water-soluble biodegradable resin.
  • the content of the cross-linking agent in the barrier layer can usually be 0.1 to 5% by mass.
  • the barrier layer can contain the same filler as the core layer.
  • the filler can fill the gaps between the molecules of the biodegradable resin to further enhance the barrier property.
  • a polyvinyl alcohol-based resin is used as the second biodegradable resin, a layered filler is preferable from the viewpoint of barrier properties, and kaolin is particularly preferable.
  • the content of the filler in the barrier layer is preferably 20% by mass or more, more preferably 40% by mass or more, and more preferably 60% by mass or more.
  • the content of the filler is at least the above lower limit value, the pores in the barrier layer and the unevenness of the surface increase, the whiteness increases, and biodegradation becomes easy.
  • the barrier property is improved and the raw material cost can be easily reduced.
  • the content is preferably 80% by mass or less.
  • the barrier layer can contain the same additives as the core layer, if necessary.
  • the thickness of the core layer is preferably 10 ⁇ m or more, more preferably 20 ⁇ m or more, further preferably 30 ⁇ m or more, and particularly preferably 50 ⁇ m or more.
  • the thickness is preferably 1000 ⁇ m or less, more preferably 800 ⁇ m or less, further preferably 500 ⁇ m or less, and particularly preferably 300 ⁇ m or less. If the thickness is 10 ⁇ m or more, sufficient strength and stiffness can be easily obtained, and transportability during printing and processing can be easily improved. When the thickness is 1000 ⁇ m or less, the time until complete biodegradation tends to be shortened when left in a natural environment where a large amount of water or microorganisms is present.
  • the thickness of the barrier layer is preferably 0.1 ⁇ m or more, more preferably 0.5 ⁇ m or more, and even more preferably 1 ⁇ m or more.
  • the thickness is preferably 100 ⁇ m or less, more preferably 50 ⁇ m or less, and even more preferably 20 ⁇ m or less. If the thickness is 0.1 ⁇ m or more, a sufficient barrier function can be easily obtained, and if it is 100 ⁇ m or less, it is easy to accelerate the start of biodegradation of the core layer when left in a natural environment where a large amount of water or microorganisms is present.
  • the ratio (D2 / D1) of the thickness (D2) of the barrier layer to the thickness (D1) of the core layer is preferably 0.001 or more, more preferably 0.01 or more.
  • the ratio is preferably less than 1, more preferably 0.9 or less. If the ratio is 0.001 or more, sufficient barrier properties can be easily obtained, while if it is less than 1, biodegradability can be easily improved and stiffness can be easily obtained.
  • the porosity in the core layer is preferably 10% or more, more preferably 12% or more, still more preferably 15% or more, from the viewpoint of reducing the resin component and increasing the biodegradability. , 20% or more is particularly preferable. From the viewpoint of maintaining mechanical strength, the porosity is preferably 50% or less, more preferably 44% or less, further preferably 42% or less, and particularly preferably 40% or less.
  • the porosity can be determined by observing the cross section of the biodegradable laminate with a scanning or transmissive electron microscope and calculating the ratio of the area occupied by the pores in the observed fixed region.
  • the method for producing the biodegradable laminate of the present invention is not particularly limited, and the biodegradable laminate can be produced, for example, by laminating barrier layers on both sides of the core layer.
  • the sheet-shaped core layer can be formed by film-molding a resin composition in which the first biodegradable resin and other components are mixed.
  • the barrier layer is formed by forming a film of a second biodegradable resin and laminating it on the core layer, or by applying a coating liquid containing the second biodegradable resin to the surface of the core layer. Can be done.
  • the film forming method is not particularly limited, and various known forming methods can be used alone or in combination.
  • Known molding methods include, for example, cast molding, calendar molding, rolling molding, inflation molding and the like in which molten resin is extruded into a sheet by a single-layer or multi-layer T-die or I-die connected to a screw-type extruder. ..
  • a method of removing the solvent or oil after casting or calendering a mixture of the resin and the organic solvent or oil can also be mentioned.
  • Examples of the method for forming a film having a multilayer structure in which a barrier layer is laminated on a core layer include a multilayer die method using a feed block or a multi-manifold, an extrusion lamination method using a plurality of dies, and the like. It can also be combined.
  • the core layer and the barrier layer may be unstretched films or stretched films, respectively.
  • the stretching method include a longitudinal stretching method using the peripheral speed difference of the roll group, a transverse stretching method using a tenter oven, a sequential biaxial stretching method combining these, a rolling method, and a simultaneous two stretching method using a combination of a tenter oven and a pantograph. Examples thereof include a shaft stretching method or a simultaneous biaxial stretching method using a combination of a tenter oven and a linear motor. Further, a simultaneous biaxial stretching (inflation molding) method in which the molten resin is extruded into a tube shape using a circular die connected to a screw type extruder and then air is blown into the molten resin can also be used.
  • the core layer is preferably surface-treated to have a surface-treated layer from the viewpoint of enhancing the adhesion with the barrier layer.
  • Examples of the surface treatment include corona discharge treatment, frame treatment, plasma treatment, glow discharge treatment, ozone treatment, and the like, and these treatments can be combined. Of these, corona discharge treatment or frame treatment is preferable, and corona treatment is more preferable.
  • the amount of discharge when the corona discharge treatment is carried out is preferably 600 J / m 2 (10 W / min / m 2 ) or more, and more preferably 1,200 J / m 2 (20 W / min / m 2 ) or more. Meanwhile, preferably at 12, 000J / m 2 (200W ⁇ min / m 2) or less, and more preferably not more than 10,800J / m 2 (180W ⁇ min / m 2).
  • the discharge amount is preferably 8,000 J / m 2 or more, more preferably 20,000 J / m 2 or more, and preferably 200,000 J / m 2 or less, more preferably. It is preferably 100,000 J / m 2 or less.
  • a material such as a biodegradable resin of the barrier layer is dissolved or dispersed in a medium to prepare a coating liquid, and the coating liquid is applied onto the core layer and dried.
  • a coating liquid coating device for example, an air knife coater, a gravure coater, a blade coater, a roll coater, a reverse roll coater, a bar coater, a curtain coater, a die slot coater, a champlex coater, and the like. Examples include size press coaters, gate roll coaters, bill blade coaters and the like.
  • the shape of the biodegradable laminate of the present invention is not limited to the above-mentioned sheet shape, but may be other shapes such as a particle shape and a hollow shape.
  • the biodegradable laminate having any shape has a core layer and a barrier layer as in the sheet shape described above, and the barrier layer is arranged on the outer surface of the biodegradable laminate. Therefore, the biodegradable laminate deteriorates slowly during use and is rapidly decomposed in a natural environment after use.
  • the particle-like biodegradable laminate has a particle-like core layer and a barrier layer that covers the outer surface of the core layer. That is, the particle-like biodegradable laminate has a core-shell structure in which the core layer is the core and the barrier layer is the shell.
  • the core layer contains the above-mentioned first biodegradable resin and the barrier layer contains the above-mentioned second biodegradable resin. To do.
  • the particulate biodegradable laminate can be formed by, for example, a suspension polymerization method, an emulsion polymerization agglutination method, or the like.
  • the particulate biodegradable laminate can be used, for example, as a filler or the like.
  • the particle-like biodegradable laminate can be used as a pesticide or the like that exerts its effect with a time lag.
  • the hollow laminate has a hollow core layer and a barrier layer on the outer surface and / or inner surface of the core layer. Similar to the sheet-shaped laminate, in the hollow laminate, the core layer contains the above-mentioned first biodegradable resin, and the barrier layer contains the above-mentioned second biodegradable resin. The outer surface is covered with a barrier layer. The breaking strength retention rate of the second biodegradable resin in the barrier layer is larger than that of the first biodegradable resin in the core layer.
  • the method for producing the hollow biodegradable laminate is not particularly limited, and after forming the core layer by, for example, injection molding or molding, the inner surface and / or outer surface of the core layer is coated to form a barrier layer. It can be formed by applying a working solution. It can also be manufactured by assembling a sheet-shaped biodegradable laminate in a hollow shape. From the viewpoint of protecting the core layer, it is preferable that the barrier layer is laminated on both the inner surface and the outer surface of the core layer.
  • the cross-sectional shape of the hollow biodegradable laminate is not particularly limited, and may be circular, square, triangular, or the like.
  • the hollow biodegradable laminate can be used, for example, as a container or the like.
  • the biodegradable laminate may be non-hollow.
  • the biodegradable laminate may have a prismatic shape in which the outer surface of the core layer of the prism is covered with a barrier layer.
  • the cross-sectional shape of the pillar may be circular, square, or the like, and is not particularly limited.
  • the biodegradable laminate may be in the form of a roll in which a core layer and a barrier layer are wound around. In the roll-shaped biodegradable laminate, the core layer and the barrier layer are alternately arranged from the center of the roll toward the outer peripheral side, and the barrier layer is arranged on the outermost surface.
  • the core layer contains the above-mentioned first biodegradable resin and the barrier layer is the above-mentioned second biodegradable resin, similarly to the sheet-like biodegradable laminate. Contains.
  • the prismatic biodegradable laminate can be formed by forming a core layer by, for example, injection molding, molding, or the like, and then applying a coating liquid for forming a barrier layer to the outer surface of the core layer.
  • the roll-shaped biodegradable laminate can be produced, for example, by superimposing a sheet-shaped barrier layer on a sheet-shaped core layer, locating the core layer inside, and winding the core layer and the barrier layer.
  • the non-hollow biodegradable laminate can be used, for example, as the above-mentioned filler, pesticide, or the like.
  • Table 1 shows a list of raw materials used for producing the biodegradable laminates of each Example and Comparative Example.
  • the breaking strength retention rate (%) of each biodegradable resin in the table is a value measured by a measuring method described later with respect to a single-layer film of the biodegradable resin alone.
  • PVA1 carbonyl-modified polyvinyl alcohol, trade name: D-polymer DF-17, manufactured by Japan Vam & Poval Co., Ltd., saponification degree: 98 to 99, breaking strength retention rate: 100%
  • Biodegradable resin solution (c2)> In the biodegradable resin solution (c1), PVA1 is converted to PVA2 (polyvinyl alcohol, trade name: J Poval V, manufactured by Japan Vam & Poval Co., Ltd., saponification degree: 99.3 or more, breaking strength retention rate: 100%).
  • a biodegradable resin solution (c2) was prepared in the same manner as the biodegradable resin solution (c1) except that it was changed.
  • Biodegradable resin solution (c3) In the biodegradable resin solution (c1), PVA1 is converted to PVA3 (polyvinyl alcohol, trade name: J Poval VC-10, manufactured by Japan Vam & Poval Co., Ltd., saponification degree: 99.3 or more, breaking strength maintenance rate: 100%. ), A biodegradable resin solution (c3) was prepared in the same manner as the biodegradable resin solution (c1).
  • ⁇ Filler dispersion> In water, 0.1% by mass of Poise 520 (manufactured by Kao Corporation) was added as a dispersant. Further, filler 2 (kaolin, trade name: Kaolin 90, manufactured by THIELE KAOLIN COMPANY) was added so as to have a solid content of 40% by mass, mixed and dispersed.
  • Adipic acid hydrazide manufactured by Otsuka Chemical Co., Ltd. was added to water as a cross-linking agent in an amount of 10% by mass, mixed and dissolved.
  • ⁇ Coating liquid (A1)> A 95% by mass biodegradable resin solution (c1) and a 5% by mass cross-linking agent solution were mixed to prepare a coating liquid (A1) for forming a barrier layer.
  • the biodegradable resin solution (c2) was obtained as it was as a coating liquid (A3) for forming a barrier layer.
  • ⁇ Coating liquid (A4)> A biodegradable resin solution (c2) of 63% by mass and a filler dispersion liquid of 37% by mass were mixed to prepare a coating liquid (A4) for forming a barrier layer.
  • ⁇ Coating liquid (A5)> The biodegradable resin solution (c3) was obtained as it was as a coating liquid (A5) for forming a barrier layer.
  • ⁇ Coating liquid (A6)> A biodegradable resin solution (c3) of 63% by mass and a filler dispersion liquid of 37% by mass were mixed to obtain a coating liquid (A6) for forming a barrier layer.
  • Table 2 shows the content of each component in each of the coating liquids (A1) to (A6) in terms of solid content concentration.
  • Example 1 Pellets of polybutylene succinate (trade name: BioPBS FZ91PB, manufactured by Mitsubishi Chemical Corporation, breaking strength retention rate: 50%) are melted by an extruder (MK-40, manufactured by Misuzu Erie) whose cylinder temperature is set to 180 ° C. did. This was extruded into a film from a T-die mounted on the tip of an extruder and cooled by a cooling roll to form a core layer (B1) having a thickness of 100 ⁇ m.
  • MK-40 manufactured by Misuzu Erie
  • a barrier layer (A1) for forming a barrier layer was applied to both sides of the formed core layer (B1) and dried to form a barrier layer (A1) having a thickness of 1 ⁇ m.
  • the biodegradable laminate of Example 1 (layer structure: A1 / B1 / A1, thickness of each layer: 1 ⁇ m / 100 ⁇ m / 1 ⁇ m, thickness of all layers: 102 ⁇ m) was obtained.
  • Example 2 In the same manner as in Example 1 except that the thickness of the barrier layer was changed to 5 ⁇ m in Example 1, the biodegradable laminate of Example 2 (layer structure: A1 / B1 / A1, thickness of each layer: 5 ⁇ m / 100 ⁇ m / 5 ⁇ m, thickness of all layers: 110 ⁇ m) was obtained.
  • Examples 3 to 7 Biodegradable laminates of Examples 3 to 7 in the same manner as in Example 2 except that the coating liquid (A1) of the barrier layer was changed to the coating liquids (A2) to (A6) in Example 2.
  • Example 8 95% by mass polybutylene succinate (trade name: BioPBS FZ91PB, manufactured by Mitsubishi Chemical Co., Ltd., breaking strength retention rate: 50%), and 5% by mass filler 1 (titanium oxide, trade name: CR60, manufactured by Ishihara Sangyo Co., Ltd.)
  • the resin composition consisting of the above was stirred and mixed with a Henschel mixer. Next, pellets were produced by melt-kneading with a twin-screw kneader (NEXT-T60, manufactured by Kobe Steel).
  • the pellets were melted by an extruder (MK-40, manufactured by Misuzu Erie) whose cylinder temperature was set to 180 ° C., and extruded into a film from a T-die mounted on the tip of the extruder. Then, it was cooled by a cooling roll to form a core layer (B2) having a thickness of 100 ⁇ m.
  • MK-40 manufactured by Misuzu Erie
  • a barrier layer (A2) for forming a barrier layer is applied to both sides of the formed core layer (B2) and dried to form a barrier layer (A2) having a thickness of 5 ⁇ m.
  • a degradable laminate (layer structure: A2 / B2 / A2, thickness of each layer: 5 ⁇ m / 100 ⁇ m / 5 ⁇ m, thickness of all layers: 110 ⁇ m) was obtained.
  • Example 9 This was laminated in the order of PLA / PBS / PLA by a feed block type T-type die and co-extruded, and the biodegradable laminate of Example 9 (layer structure: PLA / B1 / PLA, thickness of each layer: 5 ⁇ m / 100 ⁇ m). / 5 ⁇ m, thickness of all layers: 110 ⁇ m) was obtained.
  • Example 1 In Example 1, only the core layer (B1) was used as the biodegradable laminate of Comparative Example 1 without forming the barrier layer.
  • the obtained pellets were melted by an extruder (MK-40, manufactured by Misuzu Erie Co., Ltd.) in which the cylinder temperature was set to 180 ° C. This was extruded into a film from a T-die mounted on the tip of an extruder and cooled by a cooling roll to form a core layer (B3) having a thickness of 100 ⁇ m.
  • This core layer (B3) was used as the biodegradable laminate of Comparative Example 2 without forming a barrier layer.
  • Humidification promotion treatment was applied to the biodegradable laminates of each Example and Comparative Example using a high temperature and high humidity machine.
  • the humidification promotion treatment is a treatment of placing in an environment of a temperature of 85 ° C. and a relative humidity of 85% RH for 24 hours.
  • dumbbell-shaped test pieces were prepared from each of the biodegradable laminates before and after the humidification promotion treatment, pulled at 200 mm / min, and the breaking stress at the time of breaking was measured.
  • the pulling direction was the flow direction (MD) of the core layer.
  • the ratio (%) of the measured value after the humidification promotion treatment to the measured value before the humidification promotion treatment was determined as the breaking strength maintenance rate (%). It can be evaluated that the closer the breaking strength retention rate is to 100%, the lower the hydrolyzability of the biodegradable laminate.
  • ⁇ Biodegradability> The degree of biodegradation (%) with respect to the elapsed time of the biodegradable laminates of each Example and Comparative Example was determined in accordance with JIS K6953-2. From the obtained degree of biodegradation, the biodegradability of the biodegradable laminate was evaluated according to the following criteria. ⁇ : The degree of biodegradation on the 20th day is 50% or more, the degree of biodegradation after 45 days is 60% or more ⁇ : The degree of biodegradation on the 20th day is 20% or more and less than 50%, and the degree of biodegradation after 45 days Degree is 60% or more ⁇ : Does not show biodegradability, or biodegradability after 45 days is 20% or less
  • Table 3 shows the evaluation results.
  • the content (mass%) of each component of the core layer and the barrier layer is represented by the solid content concentration. Since the components of the barrier layers on both sides of the core layer are the same, only the components of one of the barrier layers are shown in Table 3.
  • biodegradable laminates of Examples 1 to 9 a high breaking strength retention rate of 100% is obtained, and it can be seen that the hydrolyzability of the barrier layer is low.
  • biodegradability of Examples 1 to 9 is also good.
  • the biodegradable laminates of Examples 1 to 8 have high biodegradability, and all of them are rapidly decomposed.
  • Comparative Example 1 is biodegradable, it is expected that biodegradation will proceed from the initial stage because the breaking strength retention rate is low and the hydrolyzability is high.
  • Comparative Example 2 is considered to be less likely to be biodegraded due to the influence of the hydrolysis inhibitor.
  • FIG. 2 shows the breaking strength retention rate of the biodegradable laminates of Example 2 and Comparative Examples 1 and 2 with respect to the elapsed time.
  • Comparative Example 1 which is a single layer of PBS
  • Comparative Example 2 which is a single layer in which a hydrolysis inhibitor is blended with PBS
  • the deterioration itself is gradually progressing, although there is no initial rapid change due to the hydrolysis inhibitor.
  • the hydrolysis inhibitor due to the hydrolysis inhibitor, it takes a long time for the breaking strength retention rate to decrease to the extent that biodegradation is started, and the time required for complete biodegradation is long.
  • Example 2 in which both sides of PBS are covered with PVA, the breaking strength maintenance rate does not decrease because it is protected by PVA for the first fixed period. After that, when PVA is decomposed and / or eluted in water and the protection by PVA is lost, the breaking strength retention rate rapidly decreases as in Comparative Example 1 of PBS alone, so that the time required for complete biodegradation is required. It gets shorter.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Health & Medical Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Medicinal Chemistry (AREA)
  • Polymers & Plastics (AREA)
  • Organic Chemistry (AREA)
  • Biological Depolymerization Polymers (AREA)

Abstract

使用中は劣化しにくく、使用後には自然環境下で速やかに分解される生分解性積層体を提供する。 生分解性積層体は、第1生分解性樹脂を含有するコア層と、前記コア層の両面にバリア層と、を有する。前記コア層が、前記第1生分解性樹脂として、下記一般式(I)で表される構造を有する脂肪族ジオール由来の繰り返し単位と、下記一般式(II)で表される構造を有する脂肪族ジカルボン酸由来の繰り返し単位とを含む脂肪族ポリエステル樹脂を含有する。前記バリア層が、前記第1生分解性樹脂よりも破断強度維持率が大きい第2生分解性樹脂を含有する。 (I) -O-(CH-O- (II) -OC-(CH-CO-

Description

生分解性積層体
 本発明は、生分解性積層体に関する。
 従来、耐水性及び耐久性に優れた印刷用紙、又はラベル用紙等として、熱可塑性樹脂フィルムが使用されている。熱可塑性樹脂として一般的に使用されるポリオレフィン樹脂等の石油由来の原料は生分解されないため、環境問題への対応として、ポリ乳酸、又はポリブチレンサクシネート等の生分解性樹脂への代替が検討されている(例えば、特許文献1参照)。
特開2006-117916号公報
 しかし、生分解性樹脂を用いた製品は、一般的に、製品の劣化が初期段階で始まり、製品寿命が短くなりやすい一方、廃棄後は完全に製品が生分解されるまで時間を要する傾向がある。
 本発明は、使用中は劣化しにくく、使用後には自然環境下で速やかに分解される生分解性積層体を提供することを目的とする。
 本発明者らが上記課題を解決すべく鋭意検討を行った結果、生分解性樹脂を含有するコア層の表面をバリア層で覆い、当該バリア層にコア層よりも破断強度維持率が大きい生分解性樹脂を用いることにより、上記課題を解決できることを見出し、本発明を完成した。
 すなわち、本発明は以下のとおりである。
(1)第1生分解性樹脂を含有するコア層と、前記コア層の両面にバリア層と、を有する生分解性積層体であって、
 前記コア層が、前記第1生分解性樹脂として、下記一般式(I)で表される構造を有する脂肪族ジオール由来の繰り返し単位と、下記一般式(II)で表される構造を有する脂肪族ジカルボン酸由来の繰り返し単位とを含む脂肪族ポリエステル樹脂を含有し、
 前記バリア層が、前記第1生分解性樹脂よりも破断強度維持率が大きい第2生分解性樹脂を含有する、
 生分解性積層体。
  (I)  -O-(CH-O-
  (II) -OC-(CH-CO-
(2)前記コア層中の前記第1生分解性樹脂の含有量が、50~100質量%である、
 上記(1)に記載の生分解性積層体。
(3)前記コア層が、前記第1生分解性樹脂として、ポリブチレンサクシネートを含有する、
 上記(1)又は(2)に記載の生分解性積層体。
(4)前記第2生分解性樹脂が、水溶性である、
 上記(1)~(3)のいずれかに記載の生分解性積層体。
(5)前記第2生分解性樹脂が、ポリビニルアルコール系樹脂である、
 上記(1)~(4)のいずれかに記載の生分解性積層体。
(6)前記生分解性積層体は、シート状である、
 上記(1)~(5)のいずれかに記載の生分解性積層体。
(7)第1生分解性樹脂を含有する粒子状のコア層と、前記コア層の外表面を被覆するバリア層とを有し、コア・シェル構造の粒子状である、生分解性積層体であって、
 前記コア層が、前記第1生分解性樹脂として、下記一般式(I)で表される構造を有する脂肪族ジオール由来の繰り返し単位と、下記一般式(II)で表される構造を有する脂肪族ジカルボン酸由来の繰り返し単位とを含む脂肪族ポリエステル樹脂を含有し、
 前記バリア層が、前記第1生分解性樹脂よりも破断強度維持率が大きい第2生分解性樹脂を含有する、
 生分解性積層体。
  (I)  -O-(CH-O-
  (II) -OC-(CH-CO-
(8)第1生分解性樹脂を含有する中空体のコア層と、前記コア層の外表面及び/又は内表面上を被覆するバリア層とを有する、生分解性積層体であって、
 前記コア層が、前記第1生分解性樹脂として、下記一般式(I)で表される構造を有する脂肪族ジオール由来の繰り返し単位と、下記一般式(II)で表される構造を有する脂肪族ジカルボン酸由来の繰り返し単位とを含む脂肪族ポリエステル樹脂を含有し、
 前記バリア層が、前記第1生分解性樹脂よりも破断強度維持率が大きい第2生分解性樹脂を含有する、
 生分解性積層体。
  (I)  -O-(CH-O-
  (II) -OC-(CH-CO-
 本発明によれば、使用中は劣化しにくく、使用後には自然環境下で速やかに分解される生分解性積層体を提供することができる。
本発明の一実施形態の生分解性積層体の構造を示す断面図である。 経過時間に対する生分解性積層体の破断強度維持率を示すグラフである。
 以下、本発明の生分解性積層体について詳細に説明する。以下の説明は、本発明の一例(代表例)であり、本発明はこの内容に特定されるものではない。
 以下の説明において、「(メタ)アクリル」の記載は、アクリルとメタクリルの両方を示す。
(生分解性積層体)
 本発明の生分解性積層体は、コア層と、当該コア層の両面にバリア層と、を有する。
 図1は、一実施形態の生分解性積層体10の構成を示す。
 図1に例示する生分解性積層体10は、コア層11、2つのバリア層12及び13を有するシート状の積層体である。各バリア層12及び13は、コア層11の表面を被覆する。
 本発明において、コア層は第1生分解性樹脂を含有し、バリア層は第2生分解性樹脂を含有する。本発明において、生分解性樹脂とは、自然環境下で分解性を有する樹脂をいう。
<破断強度維持率>
 第2生分解性樹脂は、第1生分解性樹脂よりも破断強度維持率が大きい。破断強度維持率は、JIS7161に準拠して測定される生分解性樹脂の破断応力が、加湿促進処理の前後で変化する割合を表す。具体的には、JIS7161に準拠して生分解性樹脂の試験片の破断応力を加湿促進処理の前後で測定し、加湿促進処理前の測定値に対する加湿促進処理後の測定値の割合(%)を計算することによって、破断強度維持率が求められる。加湿促進処理は、試験片を温度85%、相対湿度85%RHの環境下に24時間置く処理である。なお、測定対象が単層体であっても積層体であってもよく、どちらの場合もその破断強度維持率を測定することが可能である。
破断強度維持率によって、生分解性樹脂の加水分解性を評価することができる。加湿促進処理が施された生分解性樹脂は、水に接触して加水分解が進み、強度が低下しやすくなる。換言すると、破断強度維持率が大きく100%に近いほど、加水分解性が低く、高湿環境下での強度が高いといえる。
 生分解性樹脂は、加水分解又は酸化分解によって低分子化した後、低分子に微生物が作用し、その酵素反応によって水、二酸化炭素、及びメタン等に分解される。加水分解は、湿潤環境下で進行するが、大気中の微量水分でも生じ得る。そのため、水分及び微生物との接触が少ない環境条件下においても初期段階から生分解性樹脂の劣化が始まる。
 これに対し、本発明の生分解性積層体は、バリア層によってコア層が覆われる。微量の水分の存在下であれば、破断強度維持率が大きいバリア層が加水分解せずにコア層を保護できる。コア層の加水分解が抑えられるため、その後の微生物による分解の開始タイミングを遅らせることができる。したがって、水分及び微生物との接触が少ない使用中は劣化しにくい生分解性積層体が得られる。
 一方で、破断強度維持率が大きく、加水分解性が低い第2生分解性樹脂であっても、多量の水の存在下では加水分解が進む。したがって、本発明の生分解性積層体は、海や河川等の水中、及び土中等の水分及び微生物との接触が多い自然環境下に放置されると、第2生分解性樹脂の加水分解とその後の微生物による生分解が進行し、バリア層が劣化する。バリア層の劣化によりコア層が露出し、コア層の加水分解及び生分解も進行するため、使用後の生分解性積層体は速やかに分解される。
 以下、各層について説明する。
<コア層>
 コア層は、生分解性積層体に機械的強度を付与する。このようなコア層を有する生分解性積層体は、コシに優れ、搬送性が良好な印刷用紙、又はラベル用紙等として好適に使用することができる。
<<第1生分解性樹脂>>
 コア層は、第1生分解性樹脂として、下記一般式(I)で表される構造を有する脂肪族ジオールである1,4-ブタンジオール由来の繰り返し単位と、下記一般式(II)で表される構造を有する脂肪族ジカルボン酸であるコハク酸由来の繰り返し単位とを含む脂肪族ポリエステル樹脂を含有する。
  (I)   -O-(CH-O-
  (II)  -OC-(CH-CO-
 機械的強度向上の観点からは、上記脂肪族ポリエステル樹脂は、さらに下記一般式(III)で表される構造を有する脂肪族オキシカルボン酸由来の繰り返し単位を含むことができる。
Figure JPOXMLDOC01-appb-C000001
 
〔一般式(III)において、pは0又は1~10の整数を表す。〕
 上記脂肪族ポリエステル樹脂は、脂肪族ジオールと脂肪族ジカルボン酸の共重合体であり、脂肪族オキシカルボン酸をさらに重合させた共重合体であってもよい。ポリ乳酸のようなオキシカルボン酸の単独重合体と比べて、上記脂肪族ポリエステル樹脂は、用いる脂肪族ジオール、脂肪族ジカルボン酸及び脂肪族オキシカルボン酸の種類又は配合比率によって高分子鎖中のアルキレン鎖の割合等を任意に設計することができる。分子中のアルキレン鎖によってポリオレフィン樹脂に近い物性(例えば、弾性率又は引張破断伸度等)を得ることができ、フィルムの成形が容易である。
 本発明の効果を阻害しない範囲内であれば、上記脂肪族ジオールとしては、上述した1,4-ブタンジオール以外に他の脂肪族ジオールを併用することができる。併用できる脂肪族ジオールとしては、例えばエチレングリコール、1,3-プロパンジオール、1,4-ブタンジオール、1,5-ペンタンジオール、1,6-へキサンジオール、1,8-オクタンジオール、1,10-デカンジオール等が挙げられる。これらは、単独でも2種以上を用いてもよい。
 本発明の効果を阻害しない範囲内であれば、上記脂肪族ジカルボン酸としては、上述したコハク酸以外に他の脂肪族ジカルボン酸を併用することができる。併用できる脂肪族ジカルボン酸としては、例えばシュウ酸、マロン酸、無水コハク酸、グルタル酸、アジピン酸、ピメリン酸、スベリン酸、アゼライン酸、セバシン酸、ウンデカジカルボン酸、及びドデカジカルボン酸等が挙げられる。脂肪族ポリエステル樹脂の製造には、これらジカルボン酸の炭素数が1~4程度のアルキルエステル、無水物等の誘導体を用いることもできる。これらは、単独でも2種以上を用いてもよい。
 上記脂肪族オキシカルボン酸としては、例えばグリコール酸、乳酸、2-ヒドロキシ-n-酪酸、2-ヒドロキシ-3-メチル-n-酪酸、2-ヒドロキシ-3,3-ジメチル-n-酪酸、3-ヒドロキシ-n-酪酸、4-ヒドロキシ-n-酪酸、2-ヒドロキシ-n-吉草酸、3-ヒドロキシ-n-吉草酸、4-ヒドロキシ-n-吉草酸、5-ヒドロキシ-n-吉草酸、2-ヒドロキシ-n-へキサン酸、2-ヒドロキシ-1-へキサン酸、3-ヒドロキシ-n-へキサン酸、及び4-ヒドロキシ-n-へキサン酸等を本発明の効果を阻害しない範囲内で用いることができる。これらに光学異性体が存在する場合は、D体、L体又はラセミ体のいずれもよい。またこれらは、固体、液体又は水溶液の形態であってもよい。なかでも、入手が容易である乳酸又は乳酸水溶液を使用できる。
 脂肪族ポリエステル樹脂中の原料組成比は、脂肪族ジオール由来の繰り返し単位と脂肪族ジカルボン酸由来の繰り返し単位のモル比が実質的に等しいことが好ましく、具体的にはそれぞれ38.5~50モル%であることがより好ましい。また、脂肪族オキシカルボン酸由来の繰り返し単位は、0~23モル%であることが好ましい。これらの範囲内であれば、十分な耐熱性及び機械的強度が得られやすい。
 上記脂肪族ポリエステル樹脂は、1種を単独で、又は2種以上を併用してもよい。
 上記脂肪族ポリエステル樹脂のなかでも、機械的強度の観点から、コア層は、ポリブチレンサクシネート(PBS)又はポリブチレンサクシネートアジペート(PBSA)を含有することが好ましく、ポリブチレンサクシネート(PBS)を含有することがより好ましい。
 脂肪族ポリエステル樹脂の製造方法は特に限定されず、例えば環状モノマーを用いた開環重合法、特開平8-239461号公報に記載されているような溶融重縮合法、又は有機溶媒中で脱水重縮合する方法等が挙げられる。重合反応の際にゲルニウム化合物を触媒として存在させ、乳酸等の脂肪族オキシカルボン酸を適量用いることにより、重合速度が増大し、高分子量の脂肪族ポリエステル樹脂を得ることができる。
 例えば、ポリブチレンサクシネートは、1,4-ブタンジオール及びコハク酸の重合により製造することができ、さらに乳酸を重合成分として用いることもできる。またポリブチレンサクシネートアジペートは、コハク酸、1、4-ブタンジオール及び3-アルコキシ-1, 2-プロパンジオールの重合により製造することができる。
 脂肪族ポリエステル樹脂の原料は、石油由来でも天然由来でもよい。環境問題を減らす観点からは糖類やでんぷん等を出発原料とする天然由来が好ましく、コストの観点からは石油由来が好ましい。
 第1生分解性樹脂の数平均分子量Mnは、10,000以上が好ましく、30,000以上がより好ましい。一方、同数平均分子量Mnは、500,000以下が好ましく、200,000以下がより好ましい。数平均分子量Mnが10,000以上であれば、十分な機械的強度が得られやすく、500,000以下であれば、成形性及び生分解性が向上しやすい。上記数平均分子量Mnは、GPC法により測定し、ポリスチレン換算した値である。
 第1生分解性樹脂は、成形性の観点から、熱可塑性樹脂であることが好ましい。上記脂肪族ポリエステル樹脂は、ポリオレフィン樹脂等と同様の物性を有し、熱可塑性樹脂として好ましく使用できる。
 第1生分解性樹脂の融点は、耐熱性の観点から、70℃以上が好ましく、80℃以上がより好ましい。同融点は、成形性の観点から、180℃以下が好ましく、135℃以下がより好ましい。
 第1生分解性樹脂のMFRは、成形性の観点から、0.01~20g/10分であることが好ましい。上記MFRは、JIS-K-7210に準拠して温度190℃の環境下で測定される。
 コア層中の第1生分解性樹脂の含有量は、50質量%以上が好ましく、70質量%以上がより好ましい。含有量が50質量%以上であれば、コア層の機械的強度が向上しやすい。一方、第1生分解性樹脂の含有量の上限は特になく、100質量%であってもよいし、強度又は成形性に影響を与えない範囲で後述するフィラー及び添加剤等が添加されて100質量%未満となってもよい。
<<フィラー>>
 コア層は、フィラーを含有することができる。フィラーは、生分解性積層体にパルプ紙のような風合いを付与することができる。また、フィラーによりコア層表面に形成される凹凸に微生物がとどまりやすくなり、生分解性が向上しやすい。フィラーにより空孔も形成されやすく、生分解性積層体中の樹脂密度を小さくして生分解性をより高めることが期待できる。
 フィラーとしては、例えば無機フィラー及び有機フィラー等が挙げられる。環境対策の観点からは、天然由来の無機フィラーが好ましい。
 無機フィラーとしては、例えば酸化チタン、重質炭酸カルシウム、軽質炭酸カルシウム、焼成クレイ、シリカ、けいそう土、白土、タルク、硫酸バリウム、酸化ケイ素、酸化マグネシウム、アルミナ、ゼオライト、マイカ、セリサイト、ベントナイト、セピオライト、バーミキュライト、ドロマイト、ワラストナイト、カオリン、ガラスファイバー、又はこれらを脂肪酸、高分子界面活性剤、帯電防止剤等で表面処理した無機粒子等が挙げられる。これらのうち1種を単独で、又は2種以上を組み合わせて使用してもよい。なかでも、パルプ紙のような白色度を付与する観点からは、酸化チタンが好ましい。
 有機フィラーとしては、生分解性樹脂であって、コア層の主成分である第1生分解性樹脂とは非相溶であり、融点又はガラス転移温度が第1生分解性樹脂よりも高く、溶融混錬条件下で微分散する有機粒子が好ましい。有機フィラーは、1種を単独で、又は2種以上を組み合わせて使用してもよい。
 上記無機フィラーと有機フィラーはいずれか一方を単独で使用してもよいし、1種以上の無機フィラーと1種以上の有機フィラーとを併用してもよい。
 フィラーの平均粒子径は、空孔の形成の容易性の観点から、0.1μm以上が好ましく、0.3μmがより好ましく、0.5μm以上がさらに好ましい。一方、同平均粒子径は、コア層の耐久性向上の観点から、10μm以下が好ましく、5μm以下がより好ましく、3μm以下がさらに好ましい。上記平均粒子径が、0.1μm以上であれば、凝集不良を抑えやすく、10μm以下であれば、過度な凹凸による印刷適性の低下又は耐久性の低下を抑えやすい。
 上記平均粒子径は、レーザー回折による粒度分布計で測定したメディアン径D50として求めることができる。
 コア層中のフィラーの含有量は、酸化チタンのような白色度を付与する顔料を用いる場合、白色度を高める観点からは、1質量%以上が好ましく、3質量%以上がより好ましい。費用対効果の観点からは、同含有量は、10質量%以下が好ましく、7質量%以下がより好ましい。
 一方、炭酸カルシウムのような充填材を用いる場合、空孔形成による軽量化と生分解性の向上の観点からは、コア層中のフィラーの含有量は、10質量%以上が好ましく、20質量%以上がより好ましい。空孔形成時の層強度とブリードアウト抑制の観点からは、同含有量は、70質量%以下が好ましく、50質量%以下がより好ましい。
<<添加剤>>
 コア層は、必要に応じて酸化防止剤、加水分解抑制剤、及び分散剤等の添加剤を含有することができる。
 酸化防止剤としては、例えば立体障害フェノール系、リン系、アミン系等の酸化防止剤等が挙げられる。加水分解抑制剤としては、例えばカルボジイミド化合物等が挙げられる。コア層中の酸化防止剤及び加水分解抑制剤の含有量は、それぞれ独立して通常0.001~1質量%である。分散剤は、例えばフィラーの分散目的で使用することができる。コア層中の分散剤の含有量は、通常0.01~4質量%の範囲内である。分散剤としては、例えばシランカップリング剤、オレイン酸又はステアリン酸等の高級脂肪酸、ポリアクリル酸、ポリメタクリル酸、又はそれらの塩等が挙げられる。
 コア層は、単層構造であってもよいし、多層構造であってもよい。多層構造の場合、各層の成分の種類及び配合量が同じでも異なっていてもよい。
<バリア層>
 バリア層は、第1生分解性樹脂よりも破断強度維持率が大きい第2生分解性樹脂を含有する。バリア層は、コア層の水分との接触を防いでコア層の加水分解による劣化を抑えるバリア機能を有する。
<<第2生分解性樹脂>>
 バリア層の生分解性樹脂は、その破断強度維持率が第1生分解性樹脂よりも大きいのであれば、特に限定されない。第2生分解性樹脂としては、例えばポリビニルアルコール(PVA)系樹脂、ポリカプロラクトン、ポリ乳酸等の化学合成系、セルロース誘導体、でんぷん等の天然系、又はポリヒドロキシアルカン酸(PHA)等の微生物系等が挙げられる。これらは、1種を単独で、又は2種以上を組み合わせて使用できる。
本発明者らが測定した結果、ポリブチレンサクシネート単独の単層体の破断強度維持率は50%であり、ポリビニルアルコール単独の単層体の場合は100%であった。また、ポリ乳酸単独の単層体の破断強度維持率は60%であった。
 よりバリア性を高める観点からは、第1生分解性樹脂と第2生分解樹脂の破断強度維持率の差が20%以上であることが好ましく、40%以上であることがより好ましい。例えば、第1生分解性樹脂として破断強度維持率が50%のポリブチレンサクシネートが用いられた場合、破断強度維持率が60%のポリ乳酸よりは破断強度維持率が100%のポリビニルアルコールを第2生分解性樹脂として用いることが好ましい。
 なかでも、第2生分解性樹脂は、水分のバリア性が高い方が好ましい。水分をバリアする性能が高ければ、コア層と水分の接触をより効果的に防いでコア層の加水分解による劣化をより抑えることができる。
 さらに、第2生分解性樹脂は、水溶性であることが好ましい。水溶性の第2生分解性樹脂は、水との接触が多い自然環境下に置かれたときに溶解してコア層を速やかに露出させることができる。コア層の生分解の開始タイミングが早まるため、使用後の生分解性積層体の分解に要する時間が短くなる。
 水溶性であり、高い水分バリア性を有しながら、かつ破断強度維持率が第1生分解性樹脂よりも大きい第2生分解性樹脂としては、例えばポリビニルアルコール系樹脂が挙げられる。ポリビニルアルコール系樹脂により、バリア層の印刷適性も高めやすく、生分解性積層体を印刷用紙、ラベル用紙等として好適に使用できる。
 ポリビニルアルコール系樹脂は、ビニルエステル重合体のケン化物である。ビニルエステル重合体は、少なくともビニルエステルを重合成分(単量体)とする重合体である。ビニルエステル重合体の重合成分として、少なくともビニルエステルが含まれていればよく、必要に応じて、ビニルエステルと共重合可能な他の重合成分が含まれていてもよいし、ビニルエステルが他の重合成分により変性されていてもよい。
 ビニルエステルとしては特に限定されないが、例えば脂肪酸ビニルエステル及び芳香族カルボン酸ビニルエステル等が挙げられる。
 脂肪酸ビニルエステルとしては、例えばギ酸ビニル、酢酸ビニル、プロピオン酸ビニル、酪酸ビニル、カプリル酸ビニル、バーサチック酸ビニル、モノクロロ酢酸ビニル、炭素数が1~16のアルカン酸ビニルエステル等の炭素数が1~20の脂肪酸ビニルエステル等が挙げられる。芳香族カルボン酸ビニルエステルとしては、例えば安息香酸ビニル、炭素数が7~12のアレーンカルボン酸ビニルエステル等が挙げられる。これらビニルエステルは、1種を単独で又は2種以上組み合わせて使用してもよい。
 なかでも、ビニルエステルとして、少なくとも脂肪酸ビニルエステル、例えばギ酸ビニル、酢酸ビニル、プロピオン酸ビニル、及び酪酸ビニル等の炭素数1~10のアルカン酸ビニルエステル等を含むことが好ましく、工業的観点等から、酢酸ビニルを含むことがより好ましい。
 ポリビニルアルコール系樹脂のケン化度は、90モル%以上が好ましく、98モル%以上がより好ましい。90モル%以上であれば、水溶性が適度に低いので触った際に手への付着が起きることもなく、また高い被膜強度を得ることもできる。同ケン化度の上限は特に限定されず、100モル%であってもよいが、通常は98モル%以上100モル%未満程度である。
 バリア層中の第2生分解性樹脂の含有量は、バリア層を維持するバインダーとしての観点、及びコア層を保護する観点から、10質量%以上であることが好ましく、20質量%以上がより好ましい。当該含有量の上限は特になく、100質量%であってもよいし、後述するフィラー等が添加されて100質量%未満となってもよい。
<<架橋剤>>
 バリア層は、さらに架橋剤を含有することができる。バリア層中の第2生分解性樹脂は、架橋剤によって架橋されると、バリア層の破断強度維持率が大きくなり、バリア機能が向上する。
 架橋剤としては、例えばアジピン酸ヒドラジド等のヒドラジン誘導体等が挙げられる。なかでも、水溶性のヒドラジン誘導体は、上記水溶性の生分解性樹脂を含むバリア層形成用の塗工液が調製しやすく、好ましい。
 バリア層中の架橋剤の含有量は、通常0.1~5質量%であることができる。
<<フィラー>>
 バリア層は、コア層と同様のフィラーを含有することができる。フィラーにより生分解性樹脂の分子間の隙間を埋めてよりバリア性を高めることができる。第2生分解性樹脂としてポリビニルアルコール系樹脂が用いられる場合のフィラーとしては、バリア性の観点から、層状であるフィラーが好ましく、中でもカオリンが好ましい。
 バリア層中のフィラーの含有量は、20質量%以上であることが好ましく、40質量%以上がより好ましく、60質量%以上がより好ましい。フィラーの含有量が上記下限値以上であれば、バリア層中の空孔及び表面の凹凸が増え、白色度が高まるとともに、生分解しやすくなる。また、バリア性が向上するとともに、原料コストを削減しやすくなる。第2生分解性樹脂の含有量を増やす観点からは、同含有量は、80質量%以下が好ましい。
<<添加剤>>
 バリア層は、必要に応じてコア層と同様の添加剤を含有することができる。
(生分解性積層体の特性)
 <厚み>
 コア層の厚みは、10μm以上が好ましく、20μm以上がより好ましく、30μm以上がさらに好ましく、50μm以上が特に好ましい。また、同厚みは、1000μm以下が好ましく、800μm以下がより好ましく、500μm以下がさらに好ましく、300μm以下が特に好ましい。厚みが10μm以上であれば十分な強度やコシが得られやすく、印刷及び加工時の搬送性が向上しやすい。厚みが1000μm以下であれば、水又は微生物が多く存在する自然環境下に放置されたときに完全に生分解するまでの時間が短くなりやすい。
 バリア層の厚みは、0.1μm以上が好ましく、0.5μm以上がより好ましく、1μm以上がさらに好ましい。また、同厚みは、100μm以下が好ましく、50μm以下がより好ましく、20μm以下がさらに好ましい。厚みが0.1μm以上であれば十分なバリア機能が得られやすく、100μm以下であれば水又は微生物が多く存在する自然環境下に放置されたときにコア層の生分解の開始を早めやすい。
 コア層の厚み(D1)に対するバリア層の厚み(D2)の比率(D2/D1)は、0.001以上が好ましく、0.01以上がより好ましい。また、同比率は、1未満が好ましく、0.9以下がより好ましい。比率が0.001以上であれば十分なバリア性が得られやすい一方、1未満であれば生分解性が向上しやすく、また、コシも得られやすい。
<空孔率>
 コア層が空孔を有する場合、コア層中の空孔率は、樹脂成分を減らして生分解性を高める観点から、10%以上が好ましく、12%以上がより好ましく、15%以上がさらに好ましく、20%以上が特に好ましい。機械的強度を維持する観点からは、同空孔率は、50%以下が好ましく、44%以下がより好ましく、42%以下がさらに好ましく、40%以下が特に好ましい。
 上記空孔率は、走査型又は透過型の電子顕微鏡で生分解性積層体の断面を観察し、観察した一定領域において空孔が占める面積の比率より求めることができる。
(生分解性積層体の製造方法)
 本発明の生分解性積層体の製造方法は特に限定されず、例えばコア層の両面にバリア層を積層することにより製造することができる。シート状のコア層は、第1生分解性樹脂と他の成分を混合した樹脂組成物をフィルム成形することにより形成することができる。バリア層は、第2生分解性樹脂をフィルム成形してコア層上に積層するか、当該第2生分解性樹脂を含む塗工液をコア層の表面に塗工することにより、形成することができる。
 フィルム成形方法は特に限定されず、公知の種々の成形方法を単独で又は組み合わせて使用することができる。公知の成形方法としては、例えばスクリュー型押出機に接続された単層又は多層のTダイ、Iダイ等により溶融樹脂をシート状に押し出すキャスト成形、カレンダー成形、圧延成形、インフレーション成形等が挙げられる。樹脂と有機溶媒又はオイルとの混合物をキャスト成形又はカレンダー成形した後、溶媒又はオイルを除去する方法も挙げられる。
 コア層上にバリア層が積層された多層構造のフィルム成形の方法としては、例えばフィードブロック又はマルチマニホールドを使用した多層ダイス方式、複数のダイスを使用する押出しラミネーション方式等が挙げられ、各方法を組み合わせることもできる。
 コア層及びバリア層は、それぞれ無延伸フィルムであってもよいし、延伸フィルムであってもよい。
 延伸方法としては、例えばロール群の周速差を利用した縦延伸法、テンターオーブンを利用した横延伸法、これらを組み合わせた逐次二軸延伸法、圧延法、テンターオーブンとパンタグラフの組み合わせによる同時二軸延伸法、又はテンターオーブンとリニアモーターの組み合わせによる同時二軸延伸法等が挙げられる。また、スクリュー型押出機に接続された円形ダイを使用して溶融樹脂をチューブ状に押し出し成形した後、これに空気を吹き込む同時二軸延伸(インフレーション成形)法等も使用できる。
(表面処理)
 コア層は、バリア層との密着性を高める観点から、表面処理が施されて表面処理層を有することが好ましい。
 表面処理としては、コロナ放電処理、フレーム処理、プラズマ処理、又はグロー放電処理、オゾン処理等が挙げられ、これら処理は組み合わせることができる。なかでも、コロナ放電処理又はフレーム処理が好ましく、コロナ処理がより好ましい。
 コロナ放電処理を実施する場合の放電量は、好ましくは600J/m(10W・分/m)以上であり、より好ましくは1,200J/m(20W・分/m)以上である一方、好ましくは12, 000J/m(200W・分/m)以下であり、より好ましくは10,800J/m(180W・分/m)以下である。フレーム処理を実施する場合の放電量は、好ましくは8,000J/m以上であり、より好ましくは20,000J/m以上である一方、好ましくは200,000J/m以下であり、より好ましくは100,000J/m以下である。
 バリア層を塗工により形成する場合、バリア層の生分解性樹脂等の材料を媒体中に溶解又は分散させて塗工液を調製し、当該塗工液をコア層上に塗工して乾燥する。塗工液の塗工装置としては公知の装置を用いることができ、例えばエアーナイフコーター、グラビアコーター、ブレードコーター、ロールコーター、リバースロールコーター、バーコーター、カーテンコーター、ダイスロットコーター、チャンプレックスコーター、サイズプレスコーター、ゲートロールコーター、又はビルブレードコーター等が挙げられる。
(他の形状の生分解性積層体)
 本発明の生分解性積層体の形状は、上述したシート状に限られず、粒子状、中空状等の他の形状であることができる。いずれの形状の生分解性積層体であっても、上述したシート状と同様に、コア層とバリア層とを有し、当該バリア層が生分解性積層体の外表面に配置される。そのため、生分解性積層体は、使用中の劣化が遅く、使用後には自然環境下で速やかに分解される。
<粒子状の生分解性積層体>
 粒子状の生分解性積層体は、粒子状のコア層と、当該コア層の外表面を被覆するバリア層と、を有する。すなわち、粒子状の生分解性積層体は、コア層をコア、バリア層をシェルとするコア・シェル構造を有する。シート状の生分解性積層体と同様に粒子状の生分解性積層体においても、コア層は上述した第1生分解性樹脂を含有し、バリア層は上述した第2生分解性樹脂を含有する。
 粒子状の生分解性積層体は、例えば懸濁重合法、及び乳化重合凝集法等により形成することができる。
 粒子状の生分解性積層体は、例えば充填剤等として使用することができる。また、バリア層による生分解性の開始タイミングの遅延を利用して、時間差で効能を発揮する農薬等としても粒子状の生分解性積層体を利用することができる。
<中空状の生分解性積層体>
 中空状の積層体は、中空体のコア層と、当該コア層の外表面及び/又は内表面上にバリア層と、を有する。シート状の積層体と同様に、中空状の積層体においても、コア層は上述した第1生分解性樹脂を含有し、バリア層は上述した第2生分解性樹脂を含有し、コア層の外表面がバリア層により覆われる。バリア層中の第2生分解性樹脂の破断強度維持率はコア層の第1生分解性樹脂よりも大きい。
 中空状の生分解性積層体の製造方法は特に限定されず、例えば射出成形、又はモールド成形等によってコア層を形成した後、コア層の内表面及び/又は外表面にバリア層形成用の塗工液を塗工することにより形成できる。また、シート状の生分解性積層体を中空状に組み立てることによっても製造できる。コア層を保護する観点からは、コア層の内表面及び外表面の両方にバリア層が積層されることが好ましい。
 中空状の生分解性積層体の断面形状は特に限定されず、円形、方形、又は三角形等であってもよい。中空状の生分解性積層体は、例えば容器等として使用することができる。
<非中空状の生分解性積層体>
 生分解性積層体は、非中空体状であってもよい。例えば、生分解性積層体は、柱体のコア層の外表面がバリア層で覆われた柱体状であってもよい。柱体の断面形状は円形、方形等であってもよく、特に限定されない。また、生分解性積層体は、コア層とバリア層が巻き回されたロール状であってもよい。ロール状の生分解性積層体では、ロールの中心から外周側に向かってコア層とバリア層が交互に配置され、バリア層が最外表面に配置される。
 非中空状の生分解性積層体においても、シート状の生分解性積層体と同様に、コア層は上述した第1生分解性樹脂を含有し、バリア層は上述した第2生分解性樹脂を含有する。
 柱体状の生分解性積層体は、例えば射出成形、又はモールド成形等によってコア層を形成した後、コア層の外表面にバリア層形成用の塗工液を塗工することにより形成できる。ロール状の生分解性積層体は、例えばシート状のコア層上にシート状のバリア層を重ね、コア層を内側に位置させてコア層とバリア層を巻き回すことによって製造できる。
 非中空状の生分解性積層体は、例えば上述した充填剤、又は農薬等として使用することができる。
 以下、実施例をあげて本発明をさらに具体的に説明するが、本発明はその要旨を超えない限り以下の実施例に限定されるものではない。なお、実施例中の「部」、「%」等の記載は、断りのない限り、質量基準の記載を意味する。
 表1は、各実施例及び比較例の生分解性積層体の製造に用いた原料の一覧を示す。なお、表中の各生分解性樹脂の破断強度維持率(%)は、生分解性樹脂単独の単層フィルムに対して後述する測定方法により測定された値である。
Figure JPOXMLDOC01-appb-T000002
 
(バリア層形成用の塗工液の調製)
 バリア層の形成に用いる生分解性樹脂溶液(c1)~(c6)、フィラー分散液及び架橋剤溶液を調製した。調製した各材料の溶液又は分散液を用いて、下記バリア層形成用の塗工液(A1)~(A6)を調製した。
<生分解性樹脂溶液(c1)>
 熱水中に、PVA1(カルボニル変性ポリビニルアルコール、商品名:D-ポリマーDF-17、日本酢ビ・ポバール社製、ケン化度:98~99、破断強度維持率:100%)を融解させて、固形分が10%となるように調整し、生分解性樹脂溶液(c1)を得た。
<生分解性樹脂溶液(c2)>
 生分解性樹脂溶液(c1)において、PVA1をPVA2(ポリビニルアルコール、商品名:JポバールV、日本酢ビ・ポバール社製、ケン化度:99.3以上、破断強度維持率:100%)に変更したこと以外は、生分解性樹脂溶液(c1)と同様にして、生分解性樹脂溶液(c2)を調製した。
<生分解性樹脂溶液(c3)>
 生分解性樹脂溶液(c1)において、PVA1をPVA3(ポリビニルアルコール、商品名:JポバールVC-10、日本酢ビ・ポバール社製、ケン化度:99.3以上、破断強度維持率:100%)に変更したこと以外は、生分解性樹脂溶液(c1)と同様にして、生分解性樹脂溶液(c3)を調製した。
<フィラー分散液>
 水中に、分散剤としてポイズ520(花王社製)を0.1質量%添加した。さらに、フィラー2(カオリン、商品名:カオファイン90、THIELE KAOLIN COMPANY社製)を固形分量が40質量%となるように添加し、混合して分散させた。
<架橋剤溶液>
 水中に、架橋剤としてアジピン酸ヒドラジド(大塚化学社製)を10質量%となるように添加して、混合し、溶解させた。
<塗工液(A1)>
 95質量%の生分解性樹脂溶液(c1)と5質量%の架橋剤液とを混合して、バリア層形成用の塗工液(A1)を調製した。
<塗工液(A2)>
 61.1質量%の生分解性樹脂溶液(c1)、35.7質量%のフィラー分散液、及び3.2質量%の架橋剤液を混合して、バリア層形成用の塗工液(A2)を調製した。
<塗工液(A3)>
 生分解性樹脂溶液(c2)をそのまま、バリア層形成用の塗工液(A3)として得た。
<塗工液(A4)>
 63質量%の生分解性樹脂溶液(c2)、及び37質量%のフィラー分散液を混合して、バリア層形成用の塗工液(A4)を調製した。
<塗工液(A5)>
 生分解性樹脂溶液(c3)をそのまま、バリア層形成用の塗工液(A5)として得た。
<塗工液(A6)>
 63質量%の生分解性樹脂溶液(c3)、及び37質量%のフィラー分散液を混合し、バリア層形成用の塗工液(A6)を得た。
 表2は、各塗工液(A1)~(A6)中の各成分の含有量を固形分濃度で表す。
Figure JPOXMLDOC01-appb-T000003
 
(生分解性積層体の製造)
<実施例1>
 ポリブチレンサクシネート(商品名:BioPBS FZ91PB、三菱ケミカル社製、破断強度維持率:50%)のペレットを、シリンダー温度を180℃に設定した押出機(MK-40、三鈴エリー社製)によって溶融した。これを押出機の先端に装着したTダイからフィルム状に押し出し、冷却ロールにより冷却して、厚みが100μmのコア層(B1)を形成した。
 形成したコア層(B1)の両面にそれぞれバリア層形成用の塗工液(A1)を塗工し、乾燥することにより、厚みが1μmのバリア層(A1)を形成した。これにより、実施例1の生分解性積層体(層構造:A1/B1/A1、各層の厚み:1μm/100μm/1μm、全層の厚み:102μm)を得た。
<実施例2>
 実施例1において、バリア層の厚みを5μmに変更したこと以外は実施例1と同様にして、実施例2の生分解性積層体(層構造:A1/B1/A1、各層の厚み:5μm/100μm/5μm、全層の厚み:110μm)を得た。
<実施例3~7>
 実施例2において、バリア層の塗工液(A1)を塗工液(A2)~(A6)に変更したこと以外は実施例2と同様にして、実施例3~7の生分解性積層体を得た。
<実施例8>
 95質量%のポリブチレンサクシネート(商品名:BioPBS FZ91PB、三菱ケミカル社製、破断強度維持率:50%)、及び5質量%のフィラー1(酸化チタン、商品名:CR60、石原産業社製)からなる樹脂組成物を、ヘンシェルミキサーで撹拌混合した。次いで、二軸混錬機(NEXT-T60、神戸製鋼所製)によって溶融混錬し、ペレットを作製した。このペレットを、シリンダー温度を180℃に設定した押出機(MK-40、三鈴エリー社製)によって溶融し、押出機の先端に装着したTダイからフィルム状に押し出した。次いで、冷却ロールにより冷却して、厚みが100μmのコア層(B2)を形成した。
 形成したコア層(B2)の両面にそれぞれバリア層形成用の塗工液(A2)を塗工し、乾燥することにより、厚みが5μmのバリア層(A2)を形成し、実施例8の生分解性積層体(層構造:A2/B2/A2、各層の厚み:5μm/100μm/5μm、全層の厚み:110μm)を得た。
<実施例9>
 ポリブチレンサクシネート(PBS、商品名:BioPBS FZ91PB、三菱ケミカル社製、破断強度維持率:50%)のペレットと、ポリ乳酸(PLA)(商品名:Ingeo(登録商標) biopolymer、Nature Works社製、破断強度維持率:60%)のペレットとを、シリンダー温度を180℃に設定した3つの押出機(MK-40、三鈴エリー社製)によって個別に溶融した。これをフィードブロックタイプのT型ダイにより、PLA/PBS/PLAの順に積層して共押出し、実施例9の生分解性積層体(層構造:PLA/B1/PLA、各層の厚み:5μm/100μm/5μm、全層の厚み:110μm)を得た。
<比較例1>
 実施例1において、バリア層は形成せずにコア層(B1)のみを比較例1の生分解性積層体とした。
<比較例2>
 94.8質量%のポリブチレンサクシネート(商品名:BioPBS FZ91PB、三菱ケミカル社製、破断強度維持率:50%)のペレット、0.2質量%の加水分解抑制剤(カルボジイミド、商品名:カルボジライトLA-1、日清紡ケミカル社製)、及び5質量%のフィラー1(酸化チタン、商品名:CR60、石原産業社製)からなる樹脂組成物を、ヘンシェルミキサーで撹拌混合した。次いで、二軸混錬機(NEXT-T60、神戸製鋼所製)によって溶融混錬し、ペレットを作製した。
 得られたペレットを、シリンダー温度を180℃に設定した押出機(MK-40、三鈴エリー社製)によって溶融した。これを押出機の先端に装着したTダイからフィルム状に押し出し、冷却ロールにより冷却して、厚みが100μmのコア層(B3)を形成した。バリア層は形成せずにこのコア層(B3)を比較例2の生分解性積層体とした。
(評価)
 各実施例及び比較例の生分解性積層体について、下記評価を行った。
<破断強度維持率>
 高温高湿機を用いて、各実施例及び比較例の生分解性積層体に加湿促進処理を施した。加湿促進処理は、温度85℃、相対湿度85%RHの環境下に24時間置く処理である。JIS7161に準拠し、加湿促進処理の前後の生分解性積層体からそれぞれダンベル形試験片を作製して200mm/minで引っ張り、破断したときの破断応力を測定した。なお、引っ張り方向はコア層の流れ方向(MD)とした。
 加湿促進処理前の測定値に対する加湿促進処理後の測定値の割合(%)を、破断強度維持率(%)として求めた。この破断強度維持率が100%に近いほど、生分解性積層体の加水分解性が低いと評価できる。
<生分解性>
 各実施例及び比較例の生分解性積層体の経過時間に対する生分解度(%)を、JIS K6953-2に準拠して求めた。求めた生分解度から生分解性積層体の生分解性を下記基準により評価した。
 〇:20日目の生分解度が50%以上であり、45日後の生分解度が60%以上
 △:20日目の生分解度が20%以上50%未満であり、45日後の生分解度が60%以上
 ×:生分解性を示さないか、又は45日後の生分解度が20%以下
 表3は、評価結果を示す。表3においてコア層及びバリア層の各成分の含有量(質量%)を固形分濃度で表す。なお、コア層の両面のバリア層の成分は同じであるので、表3においては一方のバリア層の成分のみ示している。
Figure JPOXMLDOC01-appb-T000004
 実施例1~9の生分解性積層体によれば、100%の高い破断強度維持率が得られており、バリア層の加水分解性が低いことが分かる。また、実施例1~9の生分解性も良好である。なかでも、実施例1~8の生分解性積層体の生分解性は高く、いずれも速やかに分解されている。
 これに対し、比較例1の生分解性積層体は、生分解はされるものの、破断強度維持率が低く、加水分解性が高いため、初期段階から生分解が進むと予想される。一方、比較例2は、加水分解防止剤の影響により生分解されにくいと考えられる。
 図2は、経過時間に対する実施例2、比較例1及び2の生分解性積層体の破断強度維持率を表す。
 図2に示すように、PBSの単層である比較例1は、測定開始からすぐに破断強度維持率が低下しており、使用直後から劣化が始まることが分かる。
 一方、PBSに加水分解防止剤を配合した単層である比較例2は、加水分解防止剤により初期の急激な変化はないものの、劣化自体は徐々に進んでいる。また、加水分解防止剤により、生分解が開始される程度に破断強度維持率が低下するまでの時間が長く、完全な生分解に要する時間が長くなっている。
 これに対し、PBSの両面がPVAにより覆われた実施例2は、最初の一定期間はPVAによって保護されるため、破断強度維持率の低下がない。その後、PVAが分解及び/又は水に溶出して、PVAによる保護が失われると、PBS単独の比較例1と同様に速やかに破断強度維持率が低下するため、完全な生分解に要する時間が短くなる。
 本出願は、2019年12月4日に出願された日本特許出願である特願2019-219955号に基づく優先権を主張し、当該日本特許出願のすべての記載内容を援用する。
10・・・生分解性積層体、11・・・コア層、12,13・・・バリア層

 

Claims (8)

  1.  第1生分解性樹脂を含有するコア層と、前記コア層の両面にバリア層と、を有する生分解性積層体であって、
     前記コア層が、前記第1生分解性樹脂として、下記一般式(I)で表される構造を有する脂肪族ジオール由来の繰り返し単位と、下記一般式(II)で表される構造を有する脂肪族ジカルボン酸由来の繰り返し単位とを含む脂肪族ポリエステル樹脂を含有し、
     前記バリア層が、前記第1生分解性樹脂よりも破断強度維持率が大きい第2生分解性樹脂を含有する、
     生分解性積層体。
      (I)  -O-(CH-O-
      (II) -OC-(CH-CO-
  2.  前記コア層中の前記第1生分解性樹脂の含有量が、50~100質量%である、
     請求項1に記載の生分解性積層体。
  3.  前記コア層が、前記第1生分解性樹脂として、ポリブチレンサクシネートを含有する、
     請求項1又は2に記載の生分解性積層体。
  4.  前記第2生分解性樹脂が、水溶性である、
     請求項1~3のいずれか一項に記載の生分解性積層体。
  5.  前記第2生分解性樹脂が、ポリビニルアルコール系樹脂である、
     請求項1~4のいずれか一項に記載の生分解性積層体。
  6.  前記生分解性積層体は、シート状である、
     請求項1~5のいずれか一項に記載の生分解性積層体。
  7.  第1生分解性樹脂を含有する粒子状のコア層と、前記コア層の外表面を被覆するバリア層とを有し、コア・シェル構造の粒子状である、生分解性積層体であって、
     前記コア層が、前記第1生分解性樹脂として、下記一般式(I)で表される構造を有する脂肪族ジオール由来の繰り返し単位と、下記一般式(II)で表される構造を有する脂肪族ジカルボン酸由来の繰り返し単位とを含む脂肪族ポリエステル樹脂を含有し、
     前記バリア層が、前記第1生分解性樹脂よりも破断強度維持率が大きい第2生分解性樹脂を含有する、
     生分解性積層体。
      (I)  -O-(CH-O-
      (II) -OC-(CH-CO-
  8.  第1生分解性樹脂を含有する中空体のコア層と、前記コア層の外表面及び/又は内表面上を被覆するバリア層とを有する、生分解性積層体であって、
     前記コア層が、前記第1生分解性樹脂として、下記一般式(I)で表される構造を有する脂肪族ジオール由来の繰り返し単位と、下記一般式(II)で表される構造を有する脂肪族ジカルボン酸由来の繰り返し単位とを含む脂肪族ポリエステル樹脂を含有し、
     前記バリア層が、前記第1生分解性樹脂よりも破断強度維持率が大きい第2生分解性樹脂を含有する、
     生分解性積層体。
      (I)  -O-(CH-O-
      (II) -OC-(CH-CO-

     
PCT/JP2020/043988 2019-12-04 2020-11-26 生分解性積層体 WO2021111971A1 (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2021562604A JPWO2021111971A1 (ja) 2019-12-04 2020-11-26

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2019-219955 2019-12-04
JP2019219955 2019-12-04

Publications (1)

Publication Number Publication Date
WO2021111971A1 true WO2021111971A1 (ja) 2021-06-10

Family

ID=76221584

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2020/043988 WO2021111971A1 (ja) 2019-12-04 2020-11-26 生分解性積層体

Country Status (2)

Country Link
JP (1) JPWO2021111971A1 (ja)
WO (1) WO2021111971A1 (ja)

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005162797A (ja) * 2003-11-28 2005-06-23 Daicel Chem Ind Ltd 複合粒子及び分散体
WO2017164264A1 (ja) * 2016-03-23 2017-09-28 東レ株式会社 積層体
JP2019181877A (ja) * 2018-04-16 2019-10-24 三菱ケミカル株式会社 積層体及びコーヒーカプセル、食品容器、化粧品容器

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005162797A (ja) * 2003-11-28 2005-06-23 Daicel Chem Ind Ltd 複合粒子及び分散体
WO2017164264A1 (ja) * 2016-03-23 2017-09-28 東レ株式会社 積層体
JP2019181877A (ja) * 2018-04-16 2019-10-24 三菱ケミカル株式会社 積層体及びコーヒーカプセル、食品容器、化粧品容器

Also Published As

Publication number Publication date
JPWO2021111971A1 (ja) 2021-06-10

Similar Documents

Publication Publication Date Title
US7172814B2 (en) Fibrous sheets coated or impregnated with biodegradable polymers or polymers blends
TWI502017B (zh) 聚乳酸系樹脂片及成形品
JP5819432B2 (ja) 多層生分解性フィルム
WO2015072163A1 (ja) 二軸延伸ポリエステルフィルムおよびその製造方法
KR20060048529A (ko) 폴리(m-크실렌아디파미드)를 포함하는 압출코팅가능한폴리에스테르 필름
JP2021160155A (ja) 生分解性ラミネート紙及び包装材
JP2015086367A (ja) 伸縮性フィルム
JP2022173250A (ja) 樹脂組成物、フィルム、多層フィルム、延伸フィルム及び包装材
JP2004082512A (ja) 生分解性フィルムおよび該フィルムからなる生分解性袋体
JP4351191B2 (ja) スリップ性、印刷性に優れた非結晶性ポリエステルシート及び成型品
TWI480161B (zh) 聚乳酸系積層片
WO2016158736A1 (ja) 生分解性白色フィルムおよびその製造方法
JP2015063633A (ja) 伸縮性フィルム
WO2014156952A1 (ja) フィルム
WO2021111971A1 (ja) 生分解性積層体
JP2009143111A (ja) ポリ乳酸積層延伸フィルム及びそれを用いた化粧紙
JP2014162884A (ja) 生分解性フィルム
JP2004051959A (ja) 脂肪族ポリエステルフィルムおよび積層体
JP4846089B2 (ja) 紙複合体およびその製法
JP5208821B2 (ja) ポリ乳酸系二軸延伸フィルム
JP2021154559A (ja) 生分解性積層体
JP6191360B2 (ja) ポリ乳酸系樹脂シートおよび成形品
JP2013147580A (ja) ポリ乳酸系配向フィルム
JP2002187964A (ja) 成形用ポリエステルフィルム
JP2016043650A (ja) ポリ乳酸系樹脂を含むフィルム

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 20896859

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2021562604

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 20896859

Country of ref document: EP

Kind code of ref document: A1