WO2021111701A1 - Connector fitting device and connector fitting method - Google Patents

Connector fitting device and connector fitting method Download PDF

Info

Publication number
WO2021111701A1
WO2021111701A1 PCT/JP2020/034915 JP2020034915W WO2021111701A1 WO 2021111701 A1 WO2021111701 A1 WO 2021111701A1 JP 2020034915 W JP2020034915 W JP 2020034915W WO 2021111701 A1 WO2021111701 A1 WO 2021111701A1
Authority
WO
WIPO (PCT)
Prior art keywords
connector
fitting
force sensor
end effector
profile
Prior art date
Application number
PCT/JP2020/034915
Other languages
French (fr)
Japanese (ja)
Inventor
卓旦 高塚
靖 浅居
太田 貴之
Original Assignee
三菱電機株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 三菱電機株式会社 filed Critical 三菱電機株式会社
Priority to JP2021562461A priority Critical patent/JP7186900B2/en
Priority to CN202080083184.6A priority patent/CN114746226B/en
Publication of WO2021111701A1 publication Critical patent/WO2021111701A1/en

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B25HAND TOOLS; PORTABLE POWER-DRIVEN TOOLS; MANIPULATORS
    • B25JMANIPULATORS; CHAMBERS PROVIDED WITH MANIPULATION DEVICES
    • B25J13/00Controls for manipulators
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B25HAND TOOLS; PORTABLE POWER-DRIVEN TOOLS; MANIPULATORS
    • B25JMANIPULATORS; CHAMBERS PROVIDED WITH MANIPULATION DEVICES
    • B25J13/00Controls for manipulators
    • B25J13/08Controls for manipulators by means of sensing devices, e.g. viewing or touching devices
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01RELECTRICALLY-CONDUCTIVE CONNECTIONS; STRUCTURAL ASSOCIATIONS OF A PLURALITY OF MUTUALLY-INSULATED ELECTRICAL CONNECTING ELEMENTS; COUPLING DEVICES; CURRENT COLLECTORS
    • H01R12/00Structural associations of a plurality of mutually-insulated electrical connecting elements, specially adapted for printed circuits, e.g. printed circuit boards [PCB], flat or ribbon cables, or like generally planar structures, e.g. terminal strips, terminal blocks; Coupling devices specially adapted for printed circuits, flat or ribbon cables, or like generally planar structures; Terminals specially adapted for contact with, or insertion into, printed circuits, flat or ribbon cables, or like generally planar structures
    • H01R12/70Coupling devices
    • H01R12/91Coupling devices allowing relative movement between coupling parts, e.g. floating or self aligning

Definitions

  • the present disclosure relates to a connector fitting device and a connector fitting method.
  • Patent Document 1 discloses a robot that fits a female connector and a male connector. This robot is configured to be able to determine the quality of the mating state at the same time as performing the fitting work.
  • the robot has a grip portion, an arm portion, and a force sensor.
  • the grip portion is provided at the tip of the arm portion via a force sensor, and is configured to grip the male connector with three fingers.
  • the force sensor is provided between the grip portion and the arm portion, and detects the force acting between the grip portion and the arm portion in the three axial directions and the moment around the axis in the mounting direction of the grip portion. To do.
  • the robot performs the fitting operation by moving the male connector relative to the female connector whose position and orientation are fixed.
  • the robot further uses the force sense information of the force sense sensor and the position information of the grip portion to determine whether the fitting state is good or bad.
  • a target value is generated for the output of the force sensor and the position of the grip portion at each timing, and the operation of the robot is controlled so that the output of the force sensor and the position of the grip portion become the target value.
  • an allowable range is set in advance for each of the output of the force sensor and the position of the grip portion, and the fit state is good or bad based on whether the output of the force sensor and the position of the grip portion are within the allowable range. To judge.
  • the present disclosure has been made in view of the above problems, and an object of the present invention is to fit a first connector and a second connector without gripping the connector, and a second connector with respect to the first connector. It is an object of the present invention to provide a connector fitting device and a connector fitting method capable of stably determining the fitting operation and the quality of the fitting state regardless of the size of the relative position of the connector.
  • the connector fitting device is a connector fitting device that fits the first connector and the second connector.
  • the second connector has a movable portion that is in conductive contact with the first connector, a housing that accommodates the movable portion, and a terminal that connects the housing and the movable portion.
  • the second connector is a floating connector in which the movable portion moves with respect to the housing due to the elastic deformation of the flexible portion of the terminal.
  • the connector fitting device includes a positioning mechanism for positioning the first connector, a robot device, a force sensor, and a controller.
  • the robot device has an end effector and a robot arm for moving the end effector.
  • the force sensor detects the load acting on the end effector.
  • the controller controls the operation of the robot arm based on the detected value of the force sensor.
  • the robot device is configured to push the second connector into the first connector by moving the end effector in the mating direction and pressing the second connector.
  • the controller moves the end effector in the mating direction in two stages.
  • the controller moves the end effector in the direction opposite to the fitting direction so as to reduce the pressing force on the second connector by the end effector between the first-stage movement and the second-stage movement.
  • the fitting operation and the fitting operation are performed independently of the magnitude of the deviation of the relative position of the second connector with respect to the first connector. It is possible to provide a connector fitting device and a connector fitting method capable of stably determining the quality of the fitting state.
  • FIG. 1 It is a perspective view which shows the connector fitting device which concerns on Embodiment 1.
  • FIG. It is a top view which shows the work and the connector in FIG. 1 in an enlarged manner.
  • FIG. 3 is a cross-sectional view taken along the line III-III of FIG.
  • FIG. 2 is a cross-sectional view taken along the line IV-IV of FIG.
  • It is a figure for demonstrating the fitting operation of the 1st connector and the 2nd connector.
  • It is a schematic diagram which shows an example of the hardware composition of the connector fitting device which concerns on Embodiment 1.
  • FIG. It is a block diagram which shows the functional structure of the controller shown in FIG. It is a flowchart for demonstrating the connector fitting process which concerns on Embodiment 1.
  • FIG. It is a schematic diagram for demonstrating the connector fitting process which concerns on Embodiment 1.
  • FIG. It is a figure which shows typically the 1st example of the correction of the relative position deviation of the 2nd connector in step S05 of FIG. It is a figure which shows typically the 2nd example of the correction of the relative position deviation of the 2nd connector in step S05 of FIG. It is a figure which shows the 1st example of the profile of the load detected by the force sensor during execution of the connector fitting process shown in FIG. It is a figure which shows the 2nd example of the profile of the load detected by the force sensor during execution of the connector fitting process shown in FIG. It is a flowchart for demonstrating the connector fitting process which concerns on 1st modification of Embodiment 1.
  • FIG. 1 is a perspective view showing a connector fitting device 100 according to the first embodiment.
  • FIG. 2 is an enlarged top view showing the workpieces 6 and 8 and the connectors 10 and 20 in FIG. 1.
  • the connector fitting device 100 according to the first embodiment is applied to a production site of an industrial product or the like, and a second connector 20 provided on the second work 8 is attached to a first connector 10 provided on the first work 6. By inserting it, the first connector 10 and the second connector 20 are configured to be fitted.
  • the connector fitting device 100 uses the robot device 1 for fitting the first connector 10 and the second connector 20.
  • the first work 6 and the second work 8 have a rectangular flat plate shape.
  • Each of the first work 6 and the second work 8 is a printed circuit board on which, for example, a processor and a memory are mounted.
  • the first connector 10 is attached to the first surface 6A, which is one surface of the first work 6.
  • the second connector 20 is attached to the first surface 8A, which is one surface of the second work 8.
  • the first work 6 and the second work 8 are arranged side by side in the horizontal direction so that the first surface 6A and the first surface 8A face the same direction and are adjacent to each other.
  • the first connector 10 and the second connector 20 are arranged so as to face each other on the adjacent first sides 61 and 81 of the first surface 6A and the first surface 8A.
  • the first connector 10 is a female connector
  • the second connector 20 is a male connector.
  • the first connector 10 and the second connector 20 have a rectangular parallelepiped shape.
  • the robot device 1 is configured to insert the second connector 20 into the first connector 10 by moving the second connector 20 relative to the first connector 10.
  • the connector fitting device 100 includes a robot device 1, a force sensor 3, and a positioning mechanism 5.
  • the robot device 1 has a support base 1A, a robot arm 1B, and an end effector 2.
  • the support base 1A supports the robot arm 1B.
  • the robot arm 1B has a plurality of joints, and has a plurality of arms connected to each other at each joint.
  • the robot arm 1B has a first arm 1b1, a second arm 1b2, and a third arm 1b3.
  • the first arm 1b1 is connected to the support base 1A via a first movable shaft (not shown), and is movable around the rotation axis of the first movable shaft with respect to the support base 1A.
  • the second arm 1b2 is connected to the first arm 1b1 via a second movable shaft (not shown), and is movable around the rotation axis of the second movable shaft with respect to the first arm 1b1.
  • the third arm 1b3 is connected to the second arm 1b2 via a third movable shaft (not shown), and is movable around the rotation axis of the third movable shaft with respect to the second arm 1b2.
  • the end effector 2 is connected to the third arm 1b3 via a fourth movable shaft (not shown), and is movable around the rotation axis of the fourth movable shaft with respect to the third arm 1b3.
  • the first movable shaft, the second movable shaft, the third movable shaft, and the fourth movable shaft are driven by a drive source such as a shaft drive motor (not shown).
  • the shaft drive motor is, for example, a servo motor.
  • the end effector 2 is provided at the tip of the robot arm 1B.
  • the end effector 2 has a base 2A and a protrusion 2B.
  • the base portion 2A is formed in a flat plate shape and has a substantially rectangular plate shape.
  • the base portion 2A has a first surface joined to the robot arm and a second surface opposite to the first surface.
  • the projecting portion 2B projects perpendicularly to the second surface of the base portion 2A.
  • two protrusions 2B are arranged side by side on the first side of the base portion 2A having a substantially rectangular shape, but the shape, position, and number of the protrusions 2B are not limited to this.
  • the posture of the end effector 2 can also change freely.
  • the protruding portion 2B of the end effector 2 is brought into contact with the second side 82 of the second work 8 facing the first side 81 where the second connector 20 is arranged. ..
  • the protrusion 2B moves the second work 8 and the second connector 20 toward the first work 6 and the first connector 10 by pressing the second side 82 of the second work 8.
  • the robot device 1 can push the second connector 20 toward the first connector 10 without gripping the second work 8 and the second connector 20. Configuration examples of the connectors 10 and 20 and the connector fitting operation will be described later.
  • the force sensor 3 is provided between the third arm 1b3 of the robot arm 1B and the end effector 2.
  • the force sensor 3 is arranged at a position corresponding to the wrist of the robot arm 1B.
  • the force sensor 3 detects the force (load) acting on the end effector 2 and transmits a signal indicating the detected value to the controller 30.
  • the force sensor 3 is configured to detect a force acting in three axial directions orthogonal to each other.
  • the force sensor 3 may further have a function of detecting the moment load, that is, the torque generated by each of the three axes.
  • the force sensor 3 corresponds to an embodiment of the “force sensor”.
  • the positioning mechanism 5 is for fixing the positions and postures of the first work 6 and the first connector 10 and for restricting the moving directions of the second work 8 and the second connector 20.
  • the positioning mechanism 5 is fixed by a support member (not shown).
  • the positioning mechanism 5 extends perpendicularly to the first portion 5A supporting the second side 62 of the first work 6 facing the first side 61 on which the first connector 10 is arranged, and the first portion 5A. It has a second portion 5B and a third portion 5C.
  • the second portion 5B and the third portion 5C of the positioning mechanism 5 are arranged in parallel with each other, and are configured to support the third side 63 and the fourth side 64 of the first work 6 facing each other.
  • the second portion 5B and the third portion 5C of the positioning mechanism 5 are further configured to support the third side 83 and the fourth side 84 of the second work 8 facing each other.
  • the second portion 5B and the third portion 5C are configured to function as a "guide portion" for moving the second work 8 toward the first work 6.
  • each of the second portion 5B and the third portion 5C is a guide rail having a groove extending along the longitudinal direction (Y-axis direction).
  • the second work 8 is supported by the second portion 5B and the third portion 5C so as to be slidable along the groove of the guide rail.
  • FIG. 3 is a cross-sectional view taken along the line III-III of FIG.
  • FIG. 4 is a cross-sectional view taken along the line IV-IV of FIG.
  • the first connector 10 is formed in a rectangular parallelepiped shape and has a housing 12 and a conduction terminal 14.
  • the housing 12 has a hollow box shape with an opening formed on the top surface.
  • the housing 12 is made of, for example, an insulating resin.
  • the housing 12 is fixed to the first surface 6A of the first work 6 so that the opening faces the second connector 20.
  • the conduction terminal 14 is fixed to the housing 12 so as to project vertically from the bottom surface opposite to the top surface of the housing 12.
  • the conduction terminal 14 has a narrow rectangular plate-like shape and extends in the extending direction of the first surface 6A of the first work 6.
  • the rectangular plate-shaped conductive terminal 14 is provided with a contactor (not shown) for conducting conductive contact with the conductive terminal of the second connector 20.
  • the contact is formed of a conductive metal plate and is electrically connected to an electronic component mounted on the first surface 6A of the first work 6.
  • the second connector 20 is formed in a rectangular parallelepiped shape, and has a housing 22, a movable portion 24, and a terminal 26.
  • the second connector 20 is a floating connector. Floating is a function that enables fitting by absorbing the deviation by moving the connector even when there is a deviation of the fitting shaft between the male connector and the female connector.
  • the housing 22 has a hollow box shape with an opening formed on the top surface.
  • the housing 22 is made of, for example, an insulating resin.
  • the housing 22 is fixed to the first surface 8A of the second work 8 so that the opening faces the first connector 10.
  • the movable portion 24 has a groove shape with an opening formed on the top surface.
  • the opening of the movable portion 24 extends parallel to the first surface 8A of the second work 8.
  • the movable portion 24 is housed in the opening of the housing 22 so that the opening faces the first connector 10.
  • the movable portion 24 constitutes a “fitting portion” into which the conduction terminal 14 of the first connector 10 is inserted.
  • the terminal 26 is connected between a contact that is fixed to the movable portion 24 and makes conductive contact with the conductive terminal 14 of the first connector 10, a fixed portion that is fixed to the housing 22, and the contact and the fixed portion. It has a flexible portion.
  • the terminal 26 is formed by bending a conductive metal plate in the plate thickness direction.
  • the fixing portion is electrically connected to an electric component mounted on the first surface 8A of the second work 8.
  • the flexible portion is elastically deformable, and by elastically connecting the movable portion 24 and the housing 22, the movable portion 24 is displaceably supported with respect to the housing 22.
  • a gap is formed between the inner peripheral surface of the housing 22 and the outer peripheral surface of the movable portion 24.
  • a gap X2 is formed along a direction parallel to the first surface 8A of the second work 8 (X-axis direction), and a gap X2 is formed along a direction perpendicular to the second surface 8A (Z-axis direction).
  • Z2 is formed.
  • the gaps X2 and Z2 have a size of about 0.5 mm.
  • a gap is formed between the inner peripheral surface of the groove portion of the second portion 5B and the third portion 5C and the outer peripheral surface of the second work 8.
  • a gap X1 is formed along a direction parallel to the first surface 8A of the second work 8 (X-axis direction), and a gap X1 is formed along a direction perpendicular to the first surface 8A (Z-axis direction).
  • Z1 is formed.
  • the gaps X1 and Z1 have a size of about 0.2 mm.
  • the second work 8 can be displaced in the directions parallel and perpendicular to the first surface 8A inside the gaps X1 and Z1. Therefore, the second work 8 can be displaced with respect to the first work 6 inside the gaps X1 and Z1.
  • the connector fitting device 100 since the first work 6 is fixed and supported by the positioning mechanism 5, the position and posture of the first connector 10 are fixed.
  • the second work 8 is movably supported by the positioning mechanism 5 along the direction toward the first work 6 (direction of arrow A1 in FIGS. 2 and 3). Therefore, by moving the end effector 2 of the robot device 1 along the direction A1 and pressing the second work 8 by the protruding portion 2B provided on the end effector 2, the second work 8 and the second connector 20 are pressed. While moving toward the first work 6 and the first connector 10, the second connector 20 can be inserted into the first connector 10 to fit the first connector 10 and the second connector 20.
  • the direction of arrow A1 in FIGS. 2 and 3 is also referred to as “fitting direction”.
  • FIG. 5 is a diagram for explaining the fitting operation of the first connector 10 and the second connector 20.
  • FIG. 5 shows in stages the fitting states of the first connector 10 and the second connector 20 when the second work 8 is moved in the fitting direction A1 from the state shown in FIG. ..
  • FIG. 5A is a diagram showing a mating state of the first connector 10 and the second connector 20 when the fitting operation is started.
  • the tip end portion of the conduction terminal 14 of the first connector 10 is inserted into the opening of the movable portion 24 of the second connector 20.
  • a load in the direction opposite to the fitting direction A1 acts on the movable portion 24.
  • the terminal 26 connecting the movable portion 24 and the housing 22 is elastically deformed.
  • the movable portion 24 is displaced in the direction toward the housing 22 (the direction opposite to the fitting direction A1).
  • the movable portion 24 of the second connector 20 moves in the fitting direction A1 while contacting the conduction terminal 14, as shown in FIG. 5 (B). Then, the contact provided in the movable portion 24 makes a conductive contact with the contact of the conductive terminal 14 at the initial contact position set in the conductive terminal 14.
  • the fitting state of the first connector 10 and the second connector 20 from the start of the fitting operation to the time when the movable portion 24 of the second connector 20 reaches the initial contact position is referred to as the “initial fitting state”. Also called.
  • the movable portion 24 of the second connector 20 is further moved in the fitting direction A1 (see FIG. 5C). ).
  • the contact of the movable portion 24 slides on the conductive terminal 14 while contacting the contact of the conductive terminal 14 of the first connector 10.
  • the contact of the movable portion 24 moves in the region of the “effective fitting length” of the conduction terminal 14.
  • the effective mating length indicates the distance that the contact of the movable portion 24 of the second connector 20 moves in contact with the contact of the first connector 10 during the insertion or withdrawal of the second connector 20. .. That is, the effective fitting length corresponds to the length at which the contacts of both the first connector 10 and the second connector 20 can make conductive contact in the fitted state.
  • the effective mating length corresponds to the distance between the initial contact position and the normal contact position.
  • the first connector 10 and the second connector 20 shift to the "fitting completed state". (See FIG. 5 (D)).
  • the first side 61 of the first work 6 and the first side 81 of the second work 8 come into contact with each other.
  • the opening edge of the housing 12 of the first connector 10 and the opening edge of the housing 22 of the second connector 20 come into contact with each other.
  • the movable portion 24 of the second connector 20 receives a load in the direction opposite to the fitting direction A1 by coming into contact with the conductive terminal 14 of the first connector 10.
  • This load acts on the housing 22 from the movable portion 24 via the terminal 26.
  • the load acting on the housing 22 further acts on the end effector 2 of the robot device 1 via the second work 8.
  • the load acting on the end effector 2 is detected by the force sensor 3.
  • the load detected by the force sensor 3 during the fitting operation changes as the fitting state of the first connector 10 and the second connector 20 changes.
  • the load increases monotonically after the fitting operation is started, and the movable portion 24 reaches the initial contact position.
  • the peak value is shown immediately before.
  • the load gradually decreases, and while the movable portion 24 is moving in the effective fitting length region (FIG. 5 (C)), the load is almost a value smaller than the peak value. It does not change.
  • the fitting is completed (FIG. 5 (D))
  • the first sides 61, 81 of the workpieces 6 and 8 and / or the opening edges of the connectors 10 and 20 come into contact with each other, so that the load is applied again.
  • the load is applied again.
  • the robot device 1 since the robot device 1 does not have a mechanism for gripping the second work 8 and the second connector 20, it is before the start of the fitting operation or fitting. During operation, the grip portion cannot be operated to adjust the relative position of the second connector 20 with respect to the first connector 10. Therefore, when performing the above-mentioned fitting operation, it is possible that the relative position of the second connector 20 with respect to the first connector 10 deviates from the regular position. In this case, since the fitting operation is performed in a state where the relative positions are deviated, the first connector 10 and the second connector 20 cannot be properly fitted, and the connectors 10, 20 and / or the work 6 cannot be properly fitted. , 8 may be damaged.
  • the first connector 10 is controlled by controlling the operation of the end effector 2 of the robot device 1 based on the detection value of the force sensor 3 during the fitting operation.
  • the deviation of the relative position of the second connector 20 with respect to the above is corrected.
  • FIG. 6 is a schematic view showing an example of the hardware configuration of the connector fitting device 100 according to the first embodiment.
  • the connector fitting device 100 includes a controller 30 that controls the entire connector fitting device 100 including the robot device 1.
  • the controller 30 has a processor 32, a memory 34, a communication interface (I / F) 36, and an input / output I / F 38 as main components. Each of these parts is communicably connected via a bus.
  • the processor 32 is typically an arithmetic processing unit such as a CPU (Central Processing Unit) or an MPU (Micro Processor Unit).
  • the processor 32 controls the operation of each part of the connector fitting device 100 by reading and executing the program stored in the memory 34. Specifically, the processor 32 realizes the connector fitting process described later by executing the program.
  • FIG. 6 shows a configuration in which the processor 32 is singular, the controller 30 may have a plurality of processors.
  • the memory 34 is realized by a non-volatile memory such as a RAM (Random Access Memory), a ROM (Read Only Memory), and a flash memory.
  • the memory 34 stores a program executed by the processor 32, data used by the processor, and the like.
  • the input / output I / F 38 is an interface for exchanging various data between the processor 32, the robot device 1, and the force sensor 3.
  • An operation unit 40 and a display unit 42 are connected to the input / output I / F 38.
  • the display unit 42 is composed of a liquid crystal panel display or the like.
  • the operation unit 40 receives a user's operation input to the connector fitting device 100.
  • the operation unit 40 is typically composed of a touch panel, a keyboard, a mouse, and the like.
  • the communication I / F 36 is a communication interface for exchanging various data between the connector fitting device 100 and other devices.
  • Other devices include a PLC (Programmable Logic Controller) 50 that controls the production site of industrial products in an integrated manner.
  • the PLC 50 outputs an operation command including a start command of the fitting operation to the connector fitting device 100.
  • the communication method of the communication I / F36 may be a wireless communication method using a wireless LAN (Local Area Network) or the like, or a wired communication method using USB (Universal Serial Bus) or the like.
  • FIG. 7 is a block diagram showing a functional configuration of the controller 30 shown in FIG.
  • the controller 30 includes a control unit 70, an operation control unit 72, a force sense detection unit 74, a waveform processing unit 76, and a quality determination unit 78. These are functional blocks realized by the processor 32 executing a program stored in the memory 34.
  • the control unit 70 When the control unit 70 receives an operation command from the PLC 50 via the communication I / F 36, the control unit 70 generates a control signal for controlling the operation of the robot device 1 according to the control command from the PLC 50. Specifically, the control unit 70 receives an operation command from the PLC 50, receives force sense information from the force sense detection unit 74, and receives determination result information from the pass / fail determination unit 78.
  • the force sense information is information indicating the load acting on the end effector 2 detected by the force sense sensor 3.
  • the determination result information is information indicating the result of performing a quality determination as to whether or not the first connector 10 and the second connector 20 are normally fitted.
  • the control unit 70 generates a control signal based on the operation command, the force sense information, and the determination result information, and outputs the generated control signal to the operation control unit 72.
  • the control unit 70 reads an operation sequence stored in advance in the memory 34, and sets a target value at each operation timing of the fitting operation according to the operation sequence.
  • the target value includes the target value of the load detected by the force sensor 3.
  • the target values are, for example, the target value of the load in the initial mating state (FIGS. 5A and 5B), the target value of the load in the effective mating length region (FIG. 5C), and the mating completed state. (FIG. 5 (D)) includes the target value of the load.
  • the control unit 70 feedback-controls the operation of the robot device 1 so that the detected value of the force sensor 3 approaches the target value at each operation timing. Specifically, the control unit 70 generates a control signal by executing a control calculation according to the deviation of the detection value of the force sensor 3 with respect to the target value, and outputs the generated control signal to the operation control unit 72. ..
  • the motion control unit 72 controls the motion of the robot device 1 based on the control signal generated by the control unit 70. As a result, the support base 1A and the robot arm 1B operate.
  • the force sense detection unit 74 detects the force (load) acting on the end effector 2 of the robot device 1 based on the output signal of the force sense sensor 3, and outputs a signal indicating the detection result to the control unit 70 and the waveform processing unit 76. Output to.
  • the waveform processing unit 76 waveform-processes the profile of the load acting on the end effector 2 included in the force sense information. Specifically, the waveform processing unit 76 obtains feature quantities such as peak value, maximum value, minimum value, average value, standard deviation, and coefficient of variation (standard deviation / average value) with respect to the load profile by waveform processing. ..
  • the quality determination unit 78 determines whether the connectors 10 and 20 are fitted or not based on the load profile output from the waveform processing unit 76. Specifically, the memory 34 stores a threshold value and an allowable range regarding the load acting during the connector fitting operation. The quality determination unit 78 reads the threshold value and the allowable range from the memory 34, and uses these values to determine the quality of whether or not the first connector 10 and the second connector 20 are normally fitted. The quality determination unit 78 outputs the determination result information to the control unit 70 and displays it on the display unit 42.
  • FIG. 8 is a flowchart for explaining the connector fitting process according to the first embodiment.
  • FIG. 9 is a schematic view for explaining the connector fitting process according to the first embodiment.
  • FIG. 9 schematically shows a top view of the first work 6, the first connector 10, the second work 8, the second connector 20, and the end effector 2.
  • FIG. 9 shows the mating states of the first connector 10 and the second connector 20 stepwise during the execution of the connector fitting process.
  • step S01 when the controller 30 receives the fitting start command from the PLC 50 (FIG. 6) in step S01 (YES in S01), the controller 30 starts the connector fitting process.
  • the controller 30 At the start of the connector fitting process, as shown in FIG. 9A, the first connector 10 and the second connector 20 are in a state where the first work 6 and the first connector 10 are fixed by the positioning mechanism 5.
  • the second work 8 is installed in the positioning mechanism 5 so as to face each other.
  • the controller 30 proceeds to step S02 and starts pushing the second connector 20 into the first connector 10.
  • the controller 30 controls the robot device 1 so that the end effector 2 moves along the fitting direction A1 from the state shown in FIG. 9A.
  • the second work 8 moves in the fitting direction A1 in response to the pushing force F1 from the end effector 2
  • a frictional force between the second work 8 and the positioning mechanism 5 acts on the end effector 2.
  • the force sensor 3 detects the load acting on the end effector 2 and outputs the detected value to the controller 30.
  • the controller 30 controls the operation of the end effector 2 by adjusting the pushing force F1 according to the deviation of the detected value with respect to the target value.
  • the mating state of the connectors 10 and 20 shifts to the initial mating state.
  • a frictional force acts on the end effector 2 between the conductive terminal 14 of the first connector 10 and the movable portion 24 of the second connector 20. Therefore, the load acting on the end effector 2 gradually increases as the end effector 2 moves.
  • the force sensor 3 detects the load acting on the end effector 2 and outputs the detected value to the controller 30.
  • the controller 30 pushes the second connector 20 against the first connector 10 until the load detected value by the force sensor 3 reaches the preset first threshold value N1.
  • the first threshold value N1 is set to a load that is larger than the frictional force between the positioning mechanism 5 and the second work 8 and that does not destroy the connectors 10 and 20.
  • the relative position of the second connector 20 with respect to the first connector 10 when the detected value of the force sensor 3 becomes the first threshold value N1 is defined as the “relative position P1”. That is, the relative position P1 is not a fixed value, but a variable value that changes according to the detection value of the force sensor 3.
  • the controller 30 determines in step S03 whether or not the load detected value by the force sensor 3 exceeds the first threshold value N1 during the execution of pushing in step S02. .
  • the controller 30 proceeds to step S04 and is the detection value of the force sensor 3 out of the preset allowable range? Judge whether or not.
  • the permissible range in step S04 can be set based on the profile of the detected value of the force sensor 3 when the connectors 10 and 20 are normally fitted.
  • step S04 If the detection value of the force sensor 3 is out of the permissible range in step S04 (YES in S04), the controller 30 determines in step S16 that the connectors 10 and 20 are not fitted properly, and determines that the fitting is defective. The result is displayed on the display unit 42. On the other hand, if the detected value of the force sensor 3 does not deviate from the permissible range (NO in S04), the controller 30 returns to step S02 and continues pushing the second connector 20.
  • the controller 30 stops pushing the second connector 20 by the end effector 2 in step S05.
  • the controller 30 further moves the end effector 2 in the direction opposite to the fitting direction A1 as shown in FIG. 9C. As a result, the pressing force of the end effector 2 against the second work 8 is reduced or the contact with the second work 8 is released.
  • step S05 the pushing force of the second connector 20 into the movable portion 24 is reduced by stopping the pushing of the second connector 20 by the end effector 2.
  • the urging force of the flexible portion of the terminal 26 acts on the movable portion 24 of the second connector 20.
  • the flexible portion of the terminal 26 applies an urging force to the movable portion 24 in a direction in which the relative position of the movable portion 24 with respect to the housing 22 returns to the original position.
  • FIG. 10 is a diagram schematically showing a first example of correcting the deviation of the relative position of the second connector 20 in step S05 of FIG.
  • FIG. 10 shows a top view of the first work 6, the first connector 10, the second work 8, and the second connector 20.
  • the central axis (fitting axis) C1 in the X-axis direction of the first connector 10 and the central axis (fitting axis) C2 in the X-axis direction of the second connector 20 are displaced from each other.
  • the state is shown.
  • the movable portion 24 is the first connector 10. It is displaced in the X-axis direction with respect to the housing 22 so as to engage with the conductive terminal 14. Therefore, an urging force for returning the position of the movable portion 24 with respect to the housing 22 to the original position is generated in the flexible portion of the terminal 26 in the direction opposite to the displacement direction.
  • the end effector 2 When the end effector 2 is moved in the direction opposite to the fitting direction A1 in step S04 of FIG. 8, the pushing force into the movable portion 24 is reduced.
  • the movable portion 24 is immovable because a part of the movable portion 24 is engaged with the conductive terminal 14 of the first connector 10.
  • the urging force of the flexible portion acts on the housing 22 instead of the movable portion 24.
  • the housing 22 moves in the displacement direction of the movable portion 24 in response to the urging force of the flexible portion of the terminal 26, so that the fitting shaft C1 and the second connector of the first connector 10 are connected.
  • the fitting shafts C2 of 20 coincide with each other.
  • the deviation of the relative position of the second connector 20 with respect to the first connector 10 is corrected.
  • the relative positions can be corrected by the gaps X1 and Z1 provided between the positioning mechanism 5 and the second work 8.
  • FIG. 11 is a diagram schematically showing a second example of correcting the deviation of the relative position of the second connector 20 in step S05 of FIG.
  • FIG. 11 shows a perspective view of the first work 6, the first connector 10, the second work 8, and the second connector 20.
  • FIG. 11A shows a state in which the second connector 20 is rotated around the fitting axis and is inclined with respect to the first connector 10.
  • the second connector 20 is pushed into the first connector 10 by the end effector 2
  • the second connector 20 is fitted into the second connector 20 depending on the inclination angle of the second connector 20 and the pushing position in the second work 8.
  • a moment acts around the axis.
  • the pushing force F1 with respect to the second work 8 causes a collision at one end of the first connector 10 and the second connector 20 in the horizontal direction, and as a result, the moment in the arrow A1 direction. Acts on the second connector 20.
  • the second work 8 When the lift of the second work 8 is eliminated, as shown in FIG. 11D, the second work 8 is positioned at an appropriate position due to the horizontal floating and the chamfering effect due to the release of the moment. Move to. As a result, as shown in FIG. 11 (E), the conduction terminal 14 of the first connector 10 and the tip end portions of the movable portion 24 of the second connector 20 are engaged with each other. When pushed in, the second connector 20 can be inserted into the first connector 10.
  • step S05 when the deviation of the relative position of the second connector 20 with respect to the first connector 10 is corrected in step S05, the controller 30 proceeds to step S06 and pushes the second connector 20 again.
  • the load acting on the end effector 2 increases monotonically.
  • the force sensor 3 detects the load acting on the end effector 2 and outputs the detected value to the controller 30.
  • the controller 30 determines in step S07 of FIG. 8 whether or not the load detection value by the force sensor 3 exceeds the preset second threshold value N2.
  • the second threshold value N2 is set to the load required for the initial fitting of the first connector 10 and the second connector 20. That is, the controller 30 determines whether or not the mating state of the connector 10 and the connector 20 is the initial mating state.
  • the controller 30 proceeds to step S08 and determines whether or not the detected value of the force sensor 3 is out of the permissible range. ..
  • the permissible range can be set based on the profile of the detected value of the force sensor 3 when the connectors 10 and 20 are normally fitted.
  • the controller 30 determines in step S16 that the connectors 10 and 20 are not fitted properly, and displays the determination result on the display unit. Display on 42. On the other hand, if the detected value of the force sensor 3 does not deviate from the permissible range (NO in S08), the controller 30 returns to step S06 and continues pushing the second connector 20.
  • the controller 30 determines that the mating state of the connectors 10 and 20 is the initial mating state.
  • the controller 30 proceeds to step S09 and operates the end effector 2 so that the second connector 20 moves along the fitting direction A1 by a preset distance D1.
  • the relative position of the second connector 20 with respect to the first connector 10 when the detected value of the force sensor 3 becomes the second threshold value N2 is defined as the “relative position P2”.
  • the relative position P2 is not a fixed value, but a variable value that changes according to the detection value of the force sensor 3.
  • the controller 30 moves the second connector 20 along the fitting direction A1 by a preset distance D1 from the relative position P2.
  • the relative position of the second connector 20 with respect to the first connector 10 when the second connector 20 is moved from the relative position P2 by the distance D1 is defined as the “relative position P3”.
  • the distance D1 for moving the second connector 20 is a distance at which the mating state of the second connector 20 and the first connector 10 at the relative position P2 can be shifted from the initial mating state to the effective mating length region. It is set.
  • the controller 30 When the controller 30 moves the second connector 20 from the relative position P2 to the relative position P3 separated by the distance D1 in step S09 of FIG. 8, the controller 30 sets the detection value N3 of the force sensor 3 at the relative position P3 in step S10. , The second threshold value N2 (corresponding to the detected value of the force sensor 3 at the relative position P2) is compared.
  • the controller 30 When the detected value N3 of the force sensor 3 at the relative position P3 is smaller than the second threshold value N2 (YES in S10), the controller 30 has the effective mating length from the initial mating state of the connectors 10 and 20. Judge that it has moved to the area. In this case, the controller 30 continues pushing the second connector 20 by moving the end effector 2 in step S11. In the effective mating length region, the load acting on the end effector 2 is smaller than the peak value in the initial mating state and hardly changes. The force sensor 3 detects the load acting on the end effector 2 and outputs the detected value to the controller 30.
  • the controller 30 determines in step S12 whether or not the load detection value by the force sensor 3 exceeds the preset fourth threshold value N4.
  • the "fourth threshold value N4" is a state in which the first connector 10 and the second connector 20 have been fitted, and the first sides 61, 81 of the workpieces 6 and 8 and / or the openings of the connectors 10 and 20 are opened. The load is set when the edges are in contact with each other.
  • the relative position of the second connector 20 with respect to the first connector 10 when the detected value of the force sensor 3 becomes the fourth threshold value N4 is defined as the “relative position P4”.
  • the relative position P4 is not a fixed value, but a variable value that changes according to the detection value of the force sensor 3. That is, in step S12, the controller 30 determines whether or not the mating state of the connectors 10 and 20 is the mating complete state.
  • step S13 determines whether or not the detection value of the force sensor 3 is out of the permissible range. ..
  • the permissible range can be set based on the profile of the detected value of the force sensor 3 when the connectors 10 and 20 are normally fitted.
  • the controller 30 determines in step S16 that the connectors 10 and 20 are not fitted properly, and displays the determination result on the display unit. Display on 42.
  • step S13 if the detected value of the force sensor 3 does not deviate from the permissible range in step S13 (NO in S13), the controller 30 returns to step S11 and continues pushing the second connector 20.
  • the controller 30 determines in step S14 that the mating of the connectors 10 and 20 is normal, and displays the determination result. It is displayed in the unit 42. Subsequently, the controller 30 retracts the end effector 2 from the second connector 20 by moving the end effector 2 in the direction opposite to the fitting direction A1 in step S15.
  • step S10 when the detected value N3 of the force sensor 3 at the relative position P3 is larger than the second threshold value N2 (NO in S10), the controller 30 is fitted with the connectors 10 and 20. It is determined that the state has not shifted from the initial fitting state to the effective fitting length region. In this case, the controller 30 determines in step S16 that the connectors 10 and 20 are not fitted properly, and displays the determination result on the display unit 42.
  • the controller 30 has the connector based on the result of comparing the load detection value by the force sensor 3 with the plurality of preset threshold values N2, N3, N4 during the execution of the connector fitting process. The mating state of 10 and 20 is determined. Then, the controller 30 determines whether the connectors 10 and 20 are fitted or not based on the determined fitting state.
  • FIG. 12 is a diagram showing a first example of a load profile detected by the force sensor 3 during execution of the connector fitting process shown in FIG.
  • the vertical axis of the profile shows the detected value of the force sensor 3
  • the horizontal axis shows the relative position of the second connector 20 with respect to the first connector 10.
  • the profile of the detected value of the force sensor 3 illustrated in FIG. 12 was acquired when the connectors 10 and 20 were normally fitted, and the second connector was obtained in steps S06, S09, and S11 of FIG.
  • the profile of the load acting on the end effector 2 when 20 is pushed in is shown.
  • the detected value of the force sensor 3 in the initial fitting state increases monotonically, and a peak occurs at the final stage thereof. .. Then, when the mating state of the connectors 10 and 20 shifts to the effective mating length region, the detected value of the force sensor 3 becomes a smaller value than the initial mating state and hardly changes. Further, when the mating state of the connectors 10 and 20 becomes the mating complete state, the detected value of the force sensor 3 starts to increase again.
  • FIG. 13 is a diagram showing a second example of the load profile detected by the force sensor 3 during the execution of the connector fitting process shown in FIG.
  • the vertical axis of the profile shows the detected value of the force sensor 3
  • the horizontal axis shows the relative position of the second connector 20 with respect to the first connector 10.
  • the profile of the detected value of the force sensor 3 illustrated in FIG. 13 was acquired when the connectors 10 and 20 were poorly fitted, and the second connector 20 was connected in steps S06 and S09 of FIG.
  • the profile of the load acting on the end effector 2 when pushed in is shown.
  • the profile shown in FIG. 12 Comparing the profile shown in FIG. 12 with the profile shown in FIG. 13, when the fitting of the connectors 10 and 20 is poor, the profile is completely different from that when the fitting of the connectors 10 and 20 is normal. You can see that. Specifically, in the example of FIG. 13, the detected value of the force sensor 3 continues to increase in the initial mating state, and no peak occurs. Further, after the peak occurs, the detection value of the force sensor 3 is smaller than the peak value and hardly changes.
  • the profile of FIG. 13 can be obtained when the connectors 10 and 20 are not properly fitted and the second connector 20 collides with a component different from the first connector 10 or the first connector 10.
  • the second threshold value N2 in step S07 of FIG. 8 corresponds to the characteristics of the profile (see FIG. 12) of the detected value of the force sensor 3 when the connectors 10 and 20 are normally fitted.
  • the fourth threshold value N4 in step S12 is set, and the distance D1 in step S09 is set.
  • the second threshold value N2 is set so as to correspond to the load acting on the end effector 2 when it is monotonically increasing in the initial mating state.
  • the distance D1 is set to a value larger than the width of the peak of the load appearing in the initial mating state.
  • the load N3 at the relative position P3 when the second connector 20 is moved by the distance D1 from the relative position P2 of the second connector 20 when the load acting on the end effector 2 becomes the second threshold value N2 is It is smaller than the second threshold value N2. Therefore, in step S10 of FIG. 8, when the detected value N3 of the force sensor 3 at the relative position P3 is smaller than the second threshold value N2, the mating state of the connectors 10 and 20 exceeds the peak of the initial mating state. It can be determined that the effective mating length region has been reached.
  • the fourth threshold value N4 is set so as to correspond to the load acting on the end effector 2 when it is monotonically increasing in the fitting completed state. According to this, in step S12 of FIG. 8, when the detected value of the force sensor 3 is larger than the fourth threshold value N4, it can be determined that the fitting of the connectors 10 and 20 is completed.
  • the controller 30 By setting a plurality of threshold values corresponding to the characteristics of the profile (see FIG. 12) of the detected value of the force sensor 3 when the connectors 10 and 20 are normally fitted, the controller 30 is fitted. By comparing the profile of the detected value of the force sensor 3 acquired during the combined operation with a plurality of threshold values, it is determined whether or not the load acting on the end effector 2 shows the same change as in the normal state. Can be done. This makes it possible to determine whether the connectors 10 and 20 are fitted or not.
  • the connector fitting device has a configuration in which the second connector is pushed by moving the end effector in the fitting direction and pressing the second connector which is a floating connector.
  • the effector is moved in the fitting direction in two stages, and the end effector is moved in the direction opposite to the fitting direction between the movement of the first step and the movement of the second step.
  • the urging force acting on the moving part of the second connector is used to make the second connector relative to the first connector.
  • the misalignment can be corrected.
  • using a robot device that does not have a grip portion that grips the second connector the fitting operation of the first connector and the second connector is performed independently of the relative position of the second connector with respect to the first connector. be able to.
  • the second connector with respect to the first connector is seconded. Whether or not the first connector and the second connector are fitted can be determined independently of the relative positions of the connectors.
  • the configuration in which the first connector 10 is a female connector and the second connector 20 is a male connector has been illustrated, but the first connector 10 is a male connector and the second connector 20 is a female connector.
  • the connector fitting process described above can be executed even in the configuration described above.
  • the configuration in which the second connector 20 is a floating connector has been illustrated, even in the configuration in which the first connector 10 is a floating connector, the first connector is formed by moving the end effector 2 in the direction opposite to the fitting direction. The deviation of the relative position of the second connector 20 with respect to the first connector 10 can be corrected by utilizing the urging force acting on the movable portion of the ten.
  • the force sensor is configured to determine whether the first connector and the second connector are fitted or not based on the load detected value by the force sensor during the fitting operation.
  • the quality of fitting may be determined based on the information indicating the position of the end effector 2.
  • FIG. 14 is a flowchart for explaining the connector fitting process according to the first modification of the first embodiment.
  • the flowchart shown in FIG. 14 is obtained by adding steps S071, S101, and S102 to the flowchart shown in FIG. Since steps S01 to S05 are the same as those in FIG. 8, the illustration is omitted.
  • the controller 30 when the load detected value by the force sensor 3 is larger than the second threshold value N2 (YES in S07), the controller 30 is in the mated state of the connectors 10 and 20. Is in the initial mating state, and the position E2 of the end effector 2 at this time is detected in step S071.
  • the position E of the end effector 2 has a positive direction in the direction toward the first connector 10 along the fitting direction A1. That is, as the end effector 2 approaches the first connector 10, the value of the position E of the end effector 2 increases.
  • controller 30 moves the second connector 20 to the relative position P3 separated from the relative position P2 by the distance D1 in step S09, and in step S10, the detection value N3 of the force sensor 3 at the relative position P3 and Compare with the second threshold N2.
  • the controller 30 detects the position E3 of the end effector 2 at this time in step S101.
  • the controller 30 compares the current position E3 of the end effector 2 with the position E2 of the end effector 2 detected in step S071.
  • the position E2 is the position of the end effector 2 before the second connector 20 is moved by the distance D1 in step S09.
  • the end effector 2 of the controller 30 is moving toward the first connector 10, and the pushing of the second connector 20 by the end effector 2 is in the fitting direction A1. It is determined that the operation is normally performed according to. In this case, the controller 30 proceeds to step S11, further moves the end effector 2 toward the fitting direction A1, and continues pushing the second connector 20.
  • step S102 determines that the end effector 2 has not normally moved toward the first connector 10. In this case, the controller 30 determines in step S16 that the connectors 10 and 20 are not fitted properly, and displays the determination result on the display unit 42.
  • FIG. 15 is a flowchart for explaining the connector fitting process according to the second modification of the first embodiment.
  • the flowchart shown in FIG. 15 is obtained by adding step S103 to the flowchart shown in FIG. Since steps S01 to S05 are the same as those in FIG. 8 as in FIG. 14, the illustration is omitted.
  • step S102 since the position E3 is larger than the position E2 (YES in S102), the pushing of the second connector 20 by the end effector 2 is in the fitting direction A1. If it is determined that the operation is normally performed, the controller 30 further determines in step S103 whether or not the position E3 of the end effector 2 is within the preset allowable range.
  • the permissible range in step S103 can be set based on the position E of the end effector 2 when the mating state of the connectors 10 and 20 becomes the effective mating length region.
  • the controller 30 determines that the second connector 20 is normally pushed by the end effector 2, and proceeds to step S11. The end effector 2 is further moved toward the fitting direction A1 to continue pushing the second connector 20.
  • step S103 determines that the second connector 20 is not normally pushed by the end effector 2. In this case, the controller 30 determines in step S16 that the connectors 10 and 20 are not fitted properly, and displays the determination result on the display unit 42.
  • the connector fitting process according to the first modification example and the second modification example whether or not the pushing direction of the second connector 20 by the end effector 2 is normal based on the position information of the end effector 2 during the fitting operation. Can be determined. Further, according to the connector fitting process according to the second modification, it is possible to determine whether or not the amount of pushing of the second connector 20 by the end effector 2 is normal. According to this, the connectors 10 and 20 are damaged due to the second connector 20 being pushed in a direction different from the fitting direction A1 or the second connector 20 being pushed in the fitting direction A1 in excess of the allowable amount. It can be prevented in advance.
  • Embodiment 2 In the first embodiment described above, a plurality of threshold values are set corresponding to the characteristics of the profile of the detected value of the force sensor 3 when the fitting of the connectors 10 and 20 is normal, and are acquired during the fitting operation. A configuration for determining the quality of fitting of the connectors 10 and 20 by comparing the profile of the detected value of the force sensor 3 with the plurality of threshold values has been described.
  • the profile of the differential value can be generated by the waveform processing unit 76 (FIG. 7) of the controller 30.
  • FIG. 16 is a diagram showing a first example of a profile of the differential value of the detected value of the force sensor 3 during the execution of the connector fitting process.
  • the vertical axis of the profile shows the differential value of the detected value of the force sensor 3, and the horizontal axis shows the relative position of the second connector 20 with respect to the first connector 10.
  • the profile of the differential value illustrated in FIG. 16 is obtained when the connectors 10 and 20 are normally fitted, and when the second connector 20 is pushed in in steps S06, S09, and S11 of FIG. Shows the profile of the differential value of the load acting on the end effector 2.
  • the differential value shows a minimum value corresponding to the peak of the detected value of the force sensor 3 in the initial fitting state. ing. Then, when the mating state of the connectors 10 and 20 shifts to the effective mating length region, the differential value becomes a value near 0 and hardly changes. Further, when the mating state of the connectors 10 and 20 becomes the mating complete state, the differential value starts to increase again.
  • FIG. 17 is a diagram showing a second example of a profile of the differential value of the detected value of the force sensor 3 during the execution of the connector fitting process.
  • the vertical axis of the profile shows the differential value of the detected value of the force sensor 3, and the horizontal axis shows the relative position of the second connector 20 with respect to the first connector 10.
  • the profile of the differential value illustrated in FIG. 17 was acquired when the connectors 10 and 20 were poorly fitted, and ended when the second connector 20 was pushed in in steps S06 and S09 of FIG.
  • the profile of the differential value of the load acting on the effector 2 is shown.
  • a plurality of threshold values are set corresponding to the characteristics of the differential value profile (see FIG. 16) of the detected value of the force sensor 3 when the connectors 10 and 20 are normally fitted.
  • the second threshold value D2 is set so as to correspond to the differential value of the load acting on the end effector 2 when monotonically increasing in the initial fitting state.
  • the distance D1 is set to a value larger than the width of the peak of the load appearing in the initial mating state. According to this, from the relative position P2 of the second connector 20 when the differential value of the load acting on the end effector 2 becomes the second threshold value D2 to the relative position P3 when the second connector 20 is moved by the distance D1. A minimum value appears in the profile of the differential value.
  • the fourth threshold value D4 is set so as to correspond to the differential value of the load acting on the end effector 2 when the fitting is monotonically increased in the completed state. According to this, when the differential value of the detected value of the force sensor 3 is larger than the fourth threshold value D4, it can be determined that the fitting of the connectors 10 and 20 is completed.
  • the controller 30 By setting a plurality of thresholds corresponding to the characteristics of the differential value profile (see FIG. 16) of the detected value of the force sensor 3 when the fitting of the connectors 10 and 20 is normal in this way, the controller 30 By comparing the profile of the differential value of the detected value of the force sensor 3 acquired during the fitting operation with a plurality of threshold values, the differential value of the load acting on the end effector 2 changes in the same manner as in the normal state. Can be determined. This makes it possible to determine whether the connectors 10 and 20 are fitted or not.
  • FIG. 18 is a flowchart for explaining the connector fitting process according to the second embodiment.
  • steps S07, S10, and S12 in the flowchart shown in FIG. 8 are replaced with steps S07A, S10A, and S12A, respectively.
  • the end effector 2 is moved in the fitting direction A1 in two stages in the same manner as the connector fitting process according to the first embodiment.
  • the end effector 2 is moved in the direction opposite to the fitting direction A1 between the movement of the first stage and the movement of the second stage to correct the deviation of the relative position of the second connector 20 with respect to the first connector 10. It is composed.
  • the controller 30 executes the same processes of steps S01 to S06 as in FIG. 8 to move the first stage and correct the relative position deviation.
  • the controller 30 determines whether the connectors 10 and 20 are fitted or not based on the profile of the differential value of the detected value of the force sensor 3 in the second stage movement. Specifically, the controller 30 proceeds to step S06 and pushes in the second connector 20 again. The force sensor 3 detects the load acting on the end effector 2 and outputs the detected value to the controller 30.
  • the controller 30 determines in step S07A whether or not the differential value of the load detected value by the force sensor 3 exceeds the preset second threshold value D2.
  • the second threshold value D2 is set to the differential value of the load that monotonically increases in the initial fitting of the first connector 10 and the second connector 20. That is, the controller 30 determines whether or not the mating state of the connector 10 and the connector 20 is the initial mating state.
  • the controller 30 proceeds to step S08 and determines whether or not the differential value is out of the permissible range.
  • the permissible range can be set based on the profile of the differential value of the detection value of the force sensor 3 when the connectors 10 and 20 are normally fitted.
  • step S16 If the differential value is out of the permissible range (YES in S08), the controller 30 determines in step S16 that the connectors 10 and 20 are not fitted properly, and displays the determination result on the display unit 42. On the other hand, if the differential value does not deviate from the permissible range (NO in S08), the controller 30 returns to step S06 and continues pushing the second connector 20.
  • the controller 30 determines that the mating state of the connectors 10 and 20 is the initial mating state.
  • the controller 30 proceeds to step S09 and operates the end effector 2 so that the second connector 20 moves along the fitting direction A1 by a preset distance D1.
  • the controller 30 determines whether or not a minimum value appears in the profile of the differential value from the relative position P2 to the relative position P3 in step S10A. Is determined.
  • the controller 30 determines that the mating state of the connectors 10 and 20 has shifted from the initial mating state to the effective mating length region. In this case, the controller 30 continues pushing the second connector 20 by moving the end effector 2 in step S11. In the effective mating length region, the load acting on the end effector 2 is smaller than the peak value in the initial mating state and hardly changes.
  • the force sensor 3 detects the load acting on the end effector 2 and outputs the detected value to the controller 30.
  • the controller 30 determines in step S12A whether or not the differential value of the load detected value by the force sensor 3 exceeds the preset fourth threshold value D4. When the differential value is smaller than the fourth threshold value D4 (NO in S12A), the controller 30 proceeds to step S13 and determines whether or not the differential value is out of the permissible range.
  • the permissible range can be set based on the profile of the detected value of the force sensor 3 when the connectors 10 and 20 are normally fitted. If the differential value is out of the permissible range (YES in S13), the controller 30 determines in step S16 that the connectors 10 and 20 are not fitted properly, and displays the determination result on the display unit 42.
  • step S13 if the differential value does not deviate from the permissible range in step S13 (NO in S13), the controller 30 returns to step S11 and continues pushing the second connector 20.
  • the controller 30 determines in step S14 that the fitting of the connectors 10 and 20 is normal, and displays the determination result on the display unit 42. .. Subsequently, the controller 30 retracts the end effector 2 from the second connector 20 by moving the end effector 2 in the direction opposite to the fitting direction A1 in step S15.
  • step S10A if the minimum value does not appear in the profile of the differential value from the relative position P2 to the relative position P3 (NO in S10A), the controller 30 is the connector 10 and 20. It is determined that the mating state has not shifted from the initial mating state to the effective mating length region. In this case, the controller 30 determines in step S16 that the connectors 10 and 20 are not fitted properly, and displays the determination result on the display unit 42.
  • the differential value of the detected value of the force sensor is a parameter expressing the characteristics of the profile of the detected value of the force sensor
  • a plurality of differential values corresponding to the characteristics of the profile of the differential value in the normal state are used.
  • the profile of the detected value changes. Since the profile of the differential value representing the above is universal, it is possible to determine whether the connectors 10 and 20 are fitted or not without being affected by the variation in the detected values.
  • the configuration in which the differential value of the detected value of the force sensor is used as the parameter expressing the characteristics of the profile of the detected value of the force sensor has been described, but by using a parameter other than the differential value, Also, it is possible to determine whether the connectors 10 and 20 are fitted or not based on the profile of the parameter. Further, in the second embodiment, a plurality of threshold values are set as absolute values, but a plurality of threshold values may be set as relative values.
  • Embodiment 3 the configuration for determining the fit of the connectors 10 and 20 based on the detected value of the force sensor 3 or the differential value of the detected value has been described.
  • the configuration may be such that the quality of fitting of the connectors 10 and 20 is determined based on the combination of the differential values of the detected values.
  • the connector 10 and 20 may be fitted to each other based on a combination of the detected value of the force sensor 3 and its differential value and a value based on other waveform processing.
  • the connector 10 is used even when the detected value of the force sensor 3 varies or noise is superimposed on the detected value. , 20 can be stably judged as to whether or not the fitting is good or bad.
  • Embodiment 4 In the first embodiment, the configuration in which the threshold values N2 and N4 for determining the mating state of the connectors 10 and 20 are set to preset fixed values in steps S07 and S12 of FIG. 8 has been described. May be a variation value using the detection value of the force sensor 3 acquired up to the immediately preceding step.
  • step S10 of FIG. 8 it may be configured to determine whether or not the load N3 at the relative position P3 is 50% or less of the peak value of the detected value of the force sensor 3 obtained immediately before.
  • the fourth threshold value N4 in step S12 of FIG. 8 may be set to a value obtained by multiplying (for example, doubling) the average value of the detected values of the force sensor 3 in the immediately preceding effective fitting length region.
  • the threshold values in steps S10 and S12 of FIG. 8 are set based on the ratio of the detected values of the force sensor 3 obtained up to the immediately preceding step to the detected values in a specific region or a specific relative position of the profile. It may be set based on the increase / decrease with respect to the detected value.
  • Embodiment 5 In the first embodiment, the configuration in which the robot device 1 is used for the fitting work of the connectors 10 and 20 has been described, but instead of the robot device 1, a uniaxial actuator provided with a servomotor may be used.
  • the controller 30 regards the torque value by the servomotor as synonymous with the detected value of the force sensor 3 in the first embodiment, and executes a flowchart similar to the flowchart of FIG. According to this, in addition to the effect of the first embodiment, the connector fitting device can be configured at a lower cost.
  • Embodiment 6 In the first embodiment, in the fitting operation of the connectors 10 and 20, the configuration in which the fitting completion is determined by the determination using the detection value of the force sensor 3 has been described.
  • an image sensor is added to the connector fitting device 100 according to the first embodiment, and the fitting amount detection value of the image sensor is used to complete the fitting of the connectors 10 and 20.
  • the configuration for determination will be described.
  • FIG. 19 is a perspective view showing the connector fitting device 101 according to the sixth embodiment.
  • the connector fitting device 101 according to the sixth embodiment is obtained by adding an image sensor 9 to the connector fitting device 100 shown in FIG.
  • the image sensor 9 is arranged directly above the fitting completion position of the connectors 10 and 20.
  • the image sensor 9 images the connectors 10 and 20 and outputs data indicating the captured images to the controller 30.
  • FIG. 20 is a flowchart for explaining the connector fitting process according to the sixth embodiment.
  • steps S11 to S13 in the flowchart shown in FIG. 8 are replaced with steps S61 to S64.
  • FIG. 21 is a diagram schematically showing an image captured by the image sensor 9 (FIG. 19).
  • M1 indicates the relative distance between the connectors 10 and 20 at the proper fitting positions
  • M2 indicates the current relative positions of the first connector 10 and the second connector 20.
  • step S62 the controller 30 calculates the difference M3 between the relative positions M2 of the connectors 10 and 20 obtained in step S61 and the appropriate relative positions M1 set in advance.
  • the controller 30 determines in step S63 whether or not the calculated difference M3 is within the preset allowable range.
  • the permissible range in step S63 can be set based on the permissible range of the appropriate relative position M1.
  • the controller 30 determines in step S14 that the fitting of the connectors 10 and 20 is normal, and displays the determination result on the display unit 42. Subsequently, the controller 30 retracts the end effector 2 from the second connector 20 by moving the end effector 2 in the direction opposite to the fitting direction A1 in step S15.
  • step S63 when the difference M3 is out of the permissible range (NO in S63), the controller 30 changes the mating state of the connectors 10 and 20 from the initial mating state to the effective mating length region. Judge that it has not migrated. In this case, the controller 30 proceeds to step S64 and moves the end effector 2 in the fitting direction. In step S64, the controller 30 uses the difference M3 calculated in step S62 as the movement amount so that the relative positions of the connectors 10 and 20 become appropriate relative positions. After moving the end effector 2, the controller 30 returns to step S61.
  • the shape of the connector is such that the housings do not collide with each other at an appropriate fitting position, or the shape of the connector is an appropriate fitting position.
  • the shape is such that a large difference does not occur between the reaction force in the above and the reaction force in the effective fitting region, the fitting operation with an appropriate connector fitting amount is possible.
  • 1 robot device 1A support base, 1B robot arm, 2 end effector, 3 force sensor, 5 positioning mechanism, 6 1st work, 8 2nd work, 9 image sensor, 10 1st connector, 20 2nd connector, 12 , 22 housing, 14 continuity terminal, 24 movable part, 26 terminal, 30 controller, 32 processor, 34 memory, 36 communication I / F, 38 input / output I / F, 40 operation unit, 42 display unit, 70 control unit, 72 Motion control unit, 74 force sensor detection unit, 76 waveform processing unit, 78 pass / fail judgment unit, 100 connector fitting device.

Landscapes

  • Engineering & Computer Science (AREA)
  • Robotics (AREA)
  • Mechanical Engineering (AREA)
  • Human Computer Interaction (AREA)
  • Details Of Connecting Devices For Male And Female Coupling (AREA)
  • Manipulator (AREA)

Abstract

A connector fitting device comprises: a positioning mechanism (5) for positioning a first connector (10); a robotic device; a force sensor; and a controller. The robotic device has an end effector (2), and a robot arm for moving the end effector (2). The force sensor detects a load acting on the end effector (2). The controller controls operations of the robot arm on the bases of detection values of the force sensor. The robotic device is configured so as to press a second connector (20) into the first connector (10) by the end effector (2) moving in a fitting direction and pressuring the second connector (20). The controller moves the end effector (2) in the fitting direction in two stages, and also moves the end effector (2) in a direction opposite to the fitting direction between movement in a first stage and movement in a second stage, to reduce pressuring force on the second connector (20) from the end effector (2).

Description

コネクタ嵌合装置およびコネクタ嵌合方法Connector mating device and connector mating method
 本開示は、コネクタ嵌合装置およびコネクタ嵌合方法に関する。 The present disclosure relates to a connector fitting device and a connector fitting method.
 特開2015-168017号公報(特許文献1)には、雌コネクタと雄コネクタとを嵌合させるロボットが開示される。このロボットは、嵌合作業を行なうのと同時に、嵌合状態の良否を判定することが可能に構成される。 Japanese Unexamined Patent Publication No. 2015-168017 (Patent Document 1) discloses a robot that fits a female connector and a male connector. This robot is configured to be able to determine the quality of the mating state at the same time as performing the fitting work.
 具体的には、ロボットは、把持部と、アーム部と、力覚センサとを有する。把持部は、力覚センサを介してアーム部の先端に設けられており、3つの指によって雄コネクタを把持するように構成される。力覚センサは、把持部とアーム部との間に設けられ、把持部とアーム部との間で作用している3軸方向の力と、把持部の取付方向の軸回りのモーメントとを検出する。ロボットは、位置および向きが固定された雌コネクタに対して雄コネクタを相対移動させることにより、嵌合作業を行なう。ロボットはさらに、力覚センサの力覚情報と、把持部の位置情報とを用いて、嵌合状態の良否を判定する。 Specifically, the robot has a grip portion, an arm portion, and a force sensor. The grip portion is provided at the tip of the arm portion via a force sensor, and is configured to grip the male connector with three fingers. The force sensor is provided between the grip portion and the arm portion, and detects the force acting between the grip portion and the arm portion in the three axial directions and the moment around the axis in the mounting direction of the grip portion. To do. The robot performs the fitting operation by moving the male connector relative to the female connector whose position and orientation are fixed. The robot further uses the force sense information of the force sense sensor and the position information of the grip portion to determine whether the fitting state is good or bad.
特開2015-168017号公報Japanese Unexamined Patent Publication No. 2015-168017
 上述したコネクタ嵌合装置では、各タイミングにおける力覚センサの出力および把持部の位置について目標値を生成し、力覚センサの出力および把持部の位置が目標値となるようにロボットの動作を制御する。また、力覚センサの出力および把持部の位置の各々に許容範囲を予め設定しておき、力覚センサの出力および把持部の位置が許容範囲にあるか否かに基づいて嵌合状態の良否を判定する。 In the connector fitting device described above, a target value is generated for the output of the force sensor and the position of the grip portion at each timing, and the operation of the robot is controlled so that the output of the force sensor and the position of the grip portion become the target value. To do. Further, an allowable range is set in advance for each of the output of the force sensor and the position of the grip portion, and the fit state is good or bad based on whether the output of the force sensor and the position of the grip portion are within the allowable range. To judge.
 しかしながら、このようなロボットの動作の制御および嵌合状態の良否の判定は、コネクタを把持する把持部を有さないコネクタ嵌合装置に対しては適用することができない。雌コネクタに対する雄コネクタの相対位置にずれが生じている場合において、把持部を操作して相対位置のずれを修正することができないためである。その結果、ロボットは、相対位置のずれを有している状態で雌コネクタに対して雄コネクタを相対移動させることになる。また、嵌合状態の良否を判定するためには、相対位置の最大ずれを推定し、最大ずれを考慮して力覚センサの出力およびコネクタの位置に対して許容範囲を設定することが必要となる。これによると、推定される最大ずれが大きい場合には、許容範囲も大きくなってしまうため、嵌合状態の良否を判定することが難しくなる。 However, such control of the robot operation and determination of the quality of the fitting state cannot be applied to the connector fitting device having no grip portion for gripping the connector. This is because when the relative position of the male connector with respect to the female connector is displaced, the grip portion cannot be operated to correct the displacement of the relative position. As a result, the robot moves the male connector relative to the female connector while having a relative positional deviation. In addition, in order to judge the quality of the mating state, it is necessary to estimate the maximum deviation of the relative position and set the allowable range for the output of the force sensor and the position of the connector in consideration of the maximum deviation. Become. According to this, when the estimated maximum deviation is large, the allowable range also becomes large, and it becomes difficult to judge whether the fitting state is good or bad.
 本開示は、上記のような課題に鑑みてなされたものであって、その目的は、コネクタを把持することなく第1コネクタおよび第2コネクタを嵌合する構成において、第1コネクタに対する第2コネクタの相対位置の大きさに依存せず、嵌合動作および嵌合状態の良否の判定を安定して行なうことができるコネクタ嵌合装置およびコネクタ嵌合方法を提供することである。 The present disclosure has been made in view of the above problems, and an object of the present invention is to fit a first connector and a second connector without gripping the connector, and a second connector with respect to the first connector. It is an object of the present invention to provide a connector fitting device and a connector fitting method capable of stably determining the fitting operation and the quality of the fitting state regardless of the size of the relative position of the connector.
 本開示に係るコネクタ嵌合装置は、第1コネクタと第2コネクタとを嵌合させるコネクタ嵌合装置である。第2コネクタは、第1コネクタと導通接触する可動部と、可動部を収容するハウジングと、ハウジングと可動部とを連結する端子とを有する。第2コネクタは、端子が有する可撓部の弾性変形により可動部がハウジングに対して可動するフローティングコネクタである。コネクタ嵌合装置は、第1コネクタを位置決めする位置決め機構と、ロボット装置と、力センサと、コントローラとを備える。ロボット装置は、エンドエフェクタと、エンドエフェクタを移動させるロボットアームとを有する。力センサは、エンドエフェクタに作用する荷重を検出する。コントローラは、力センサの検出値に基づいて、ロボットアームの動作を制御する。ロボット装置は、エンドエフェクタが嵌合方向に移動して第2コネクタを押圧することにより、第1コネクタに第2コネクタを押し込むように構成される。コントローラは、エンドエフェクタを二段階に分けて嵌合方向に移動させる。コントローラは、一段目の移動と二段目の移動との間に、エンドエフェクタによる第2コネクタへの押圧力を軽減するようにエンドエフェクタを嵌合方向とは反対方向に移動させる。 The connector fitting device according to the present disclosure is a connector fitting device that fits the first connector and the second connector. The second connector has a movable portion that is in conductive contact with the first connector, a housing that accommodates the movable portion, and a terminal that connects the housing and the movable portion. The second connector is a floating connector in which the movable portion moves with respect to the housing due to the elastic deformation of the flexible portion of the terminal. The connector fitting device includes a positioning mechanism for positioning the first connector, a robot device, a force sensor, and a controller. The robot device has an end effector and a robot arm for moving the end effector. The force sensor detects the load acting on the end effector. The controller controls the operation of the robot arm based on the detected value of the force sensor. The robot device is configured to push the second connector into the first connector by moving the end effector in the mating direction and pressing the second connector. The controller moves the end effector in the mating direction in two stages. The controller moves the end effector in the direction opposite to the fitting direction so as to reduce the pressing force on the second connector by the end effector between the first-stage movement and the second-stage movement.
 本開示によれば、コネクタを把持することなく第1コネクタおよび第2コネクタを嵌合する構成において、第1コネクタに対する第2コネクタの相対位置のずれの大きさに依存せず、嵌合動作および嵌合状態の良否の判定を安定して行なうことができるコネクタ嵌合装置およびコネクタ嵌合方法を提供することができる。 According to the present disclosure, in a configuration in which the first connector and the second connector are fitted without gripping the connector, the fitting operation and the fitting operation are performed independently of the magnitude of the deviation of the relative position of the second connector with respect to the first connector. It is possible to provide a connector fitting device and a connector fitting method capable of stably determining the quality of the fitting state.
実施の形態1に係るコネクタ嵌合装置を示す斜視図である。It is a perspective view which shows the connector fitting device which concerns on Embodiment 1. FIG. 図1中のワークよびコネクタを拡大して示す上面図である。It is a top view which shows the work and the connector in FIG. 1 in an enlarged manner. 図2のIII-III線における断面図である。FIG. 3 is a cross-sectional view taken along the line III-III of FIG. 図2のIV-IV線における断面図である。FIG. 2 is a cross-sectional view taken along the line IV-IV of FIG. 第1コネクタおよび第2コネクタの嵌合動作を説明するための図である。It is a figure for demonstrating the fitting operation of the 1st connector and the 2nd connector. 実施の形態1に係るコネクタ嵌合装置のハードウェア構成の一例を示す模式図である。It is a schematic diagram which shows an example of the hardware composition of the connector fitting device which concerns on Embodiment 1. FIG. 図6に示したコントローラの機能構成を示すブロック図である。It is a block diagram which shows the functional structure of the controller shown in FIG. 実施の形態1に係るコネクタ嵌合処理を説明するためのフローチャートである。It is a flowchart for demonstrating the connector fitting process which concerns on Embodiment 1. FIG. 実施の形態1に係るコネクタ嵌合処理を説明するための模式図である。It is a schematic diagram for demonstrating the connector fitting process which concerns on Embodiment 1. FIG. 図8のステップS05における第2コネクタの相対位置のずれの修正の第1例を模式的に示す図である。It is a figure which shows typically the 1st example of the correction of the relative position deviation of the 2nd connector in step S05 of FIG. 図8のステップS05における第2コネクタの相対位置のずれの修正の第2例を模式的に示す図である。It is a figure which shows typically the 2nd example of the correction of the relative position deviation of the 2nd connector in step S05 of FIG. 図8に示したコネクタ嵌合処理の実行中に力覚センサにより検出される荷重のプロファイルの第1例を示す図である。It is a figure which shows the 1st example of the profile of the load detected by the force sensor during execution of the connector fitting process shown in FIG. 図8に示したコネクタ嵌合処理の実行中に力覚センサにより検出される荷重のプロファイルの第2例を示す図である。It is a figure which shows the 2nd example of the profile of the load detected by the force sensor during execution of the connector fitting process shown in FIG. 実施の形態1の第1変更例に係るコネクタ嵌合処理を説明するためのフローチャートである。It is a flowchart for demonstrating the connector fitting process which concerns on 1st modification of Embodiment 1. 実施の形態1の第2変更例に係るコネクタ嵌合処理を説明するためのフローチャートである。It is a flowchart for demonstrating the connector fitting process which concerns on the 2nd modification of Embodiment 1. コネクタ嵌合処理の実行中における力覚センサの検出値の微分値のプロファイルの第1例を示す図である。It is a figure which shows the 1st example of the profile of the differential value of the detection value of the force sensor during execution of a connector fitting process. コネクタ嵌合処理の実行中における力覚センサの検出値の微分値のプロファイルの第2例を示す図である。It is a figure which shows the 2nd example of the profile of the differential value of the detection value of the force sensor during execution of a connector fitting process. 実施の形態2に係るコネクタ嵌合処理を説明するためのフローチャートである。It is a flowchart for demonstrating the connector fitting process which concerns on Embodiment 2. 実施の形態6に係るコネクタ嵌合装置を示す斜視図である。It is a perspective view which shows the connector fitting device which concerns on Embodiment 6. 実施の形態6に係るコネクタ嵌合処理を説明するためのフローチャートである。It is a flowchart for demonstrating the connector fitting process which concerns on Embodiment 6. 画像センサによる撮像画像を模式的に示す図である。It is a figure which shows typically the image captured by the image sensor.
 以下、本開示の実施の形態について、図面を参照して詳細に説明する。なお、以下では、図中の同一または相当部分には同一符号を付して、その説明は原則的に繰返さないものとする。 Hereinafter, embodiments of the present disclosure will be described in detail with reference to the drawings. In the following, the same or corresponding parts in the drawings will be designated by the same reference numerals, and the explanations will not be repeated in principle.
 実施の形態1.
 (コネクタ嵌合装置の全体構成)
 図1は、実施の形態1に係るコネクタ嵌合装置100を示す斜視図である。図2は、図1中のワーク6,8およびコネクタ10,20を拡大して示す上面図である。
Embodiment 1.
(Overall configuration of connector fitting device)
FIG. 1 is a perspective view showing a connector fitting device 100 according to the first embodiment. FIG. 2 is an enlarged top view showing the workpieces 6 and 8 and the connectors 10 and 20 in FIG. 1.
 実施の形態1に係るコネクタ嵌合装置100は、工業製品の生産現場などに適用され、第1ワーク6に設けられた第1コネクタ10に、第2ワーク8に設けられた第2コネクタ20を挿入することにより、第1コネクタ10と第2コネクタ20とを嵌合させるように構成される。コネクタ嵌合装置100は、第1コネクタ10および第2コネクタ20の嵌合作業にロボット装置1を用いる。 The connector fitting device 100 according to the first embodiment is applied to a production site of an industrial product or the like, and a second connector 20 provided on the second work 8 is attached to a first connector 10 provided on the first work 6. By inserting it, the first connector 10 and the second connector 20 are configured to be fitted. The connector fitting device 100 uses the robot device 1 for fitting the first connector 10 and the second connector 20.
 第1ワーク6および第2ワーク8は、矩形平板状の形状を有している。第1ワーク6および第2ワーク8の各々は、例えばプロセッサおよびメモリ等が実装されたプリント回路基板である。 The first work 6 and the second work 8 have a rectangular flat plate shape. Each of the first work 6 and the second work 8 is a printed circuit board on which, for example, a processor and a memory are mounted.
 第1コネクタ10は、第1ワーク6の一方の表面である第1面6Aに取り付けられている。第2コネクタ20は、第2ワーク8の一方の表面である第1面8Aに取り付けられている。第1コネクタ10と第2コネクタ20とを嵌合することにより、第1ワーク6と第2ワーク8とを電気的に接続することができる。 The first connector 10 is attached to the first surface 6A, which is one surface of the first work 6. The second connector 20 is attached to the first surface 8A, which is one surface of the second work 8. By fitting the first connector 10 and the second connector 20, the first work 6 and the second work 8 can be electrically connected.
 図1の例では、第1ワーク6および第2ワーク8は、第1面6Aと第1面8Aとが同じ方向を向いて互いに隣り合うように、水平方向に並べて配置されている。第1コネクタ10および第2コネクタ20は、第1面6Aおよび第1面8Aの隣り合う第1辺61,81において、互いに向き合うようにそれぞれ配置されている。第1コネクタ10は雌コネクタであり、第2コネクタ20は雄コネクタである。第1コネクタ10および第2コネクタ20は、直方体状の形状を有している。 In the example of FIG. 1, the first work 6 and the second work 8 are arranged side by side in the horizontal direction so that the first surface 6A and the first surface 8A face the same direction and are adjacent to each other. The first connector 10 and the second connector 20 are arranged so as to face each other on the adjacent first sides 61 and 81 of the first surface 6A and the first surface 8A. The first connector 10 is a female connector, and the second connector 20 is a male connector. The first connector 10 and the second connector 20 have a rectangular parallelepiped shape.
 ロボット装置1は、第2コネクタ20を第1コネクタ10に対して相対移動させることにより、第1コネクタ10に第2コネクタ20を挿入するように構成される。具体的には、コネクタ嵌合装置100は、ロボット装置1と、力覚センサ3と、位置決め機構5とを備える。 The robot device 1 is configured to insert the second connector 20 into the first connector 10 by moving the second connector 20 relative to the first connector 10. Specifically, the connector fitting device 100 includes a robot device 1, a force sensor 3, and a positioning mechanism 5.
 ロボット装置1は、支持台1Aと、ロボットアーム1Bと、エンドエフェクタ2とを有する。支持台1Aは、ロボットアーム1Bを支持する。ロボットアーム1Bは、複数の関節を有しており、各関節にて互いに接続される複数のアームを有する。図1の例では、ロボットアーム1Bは、第1アーム1b1、第2アーム1b2および第3アーム1b3を有する。第1アーム1b1は、図示しない第1可動軸を介して支持台1Aに接続されており、支持台1Aに対して第1可動軸の回転軸回りに可動する。第2アーム1b2は、図示しない第2可動軸を介して第1アーム1b1に接続されており、第1アーム1b1に対して第2可動軸の回転軸回りに可動する。第3アーム1b3は、図示しない第3可動軸を介して第2アーム1b2に接続されており、第2アーム1b2に対して第3可動軸の回転軸回りに可動する。エンドエフェクタ2は、図示しない第4可動軸を介して第3アーム1b3に接続されており、第3アーム1b3に対して第4可動軸の回転軸回りに可動する。第1可動軸、第2可動軸、第3可動軸および第4可動軸は、図示しない軸駆動モータ等の駆動源により駆動する。軸駆動モータは、例えばサーボモータである。各可動軸が駆動することにより、第1アーム1b1、第2アーム1b2および第3アーム1b3の姿勢は自由に変化する。 The robot device 1 has a support base 1A, a robot arm 1B, and an end effector 2. The support base 1A supports the robot arm 1B. The robot arm 1B has a plurality of joints, and has a plurality of arms connected to each other at each joint. In the example of FIG. 1, the robot arm 1B has a first arm 1b1, a second arm 1b2, and a third arm 1b3. The first arm 1b1 is connected to the support base 1A via a first movable shaft (not shown), and is movable around the rotation axis of the first movable shaft with respect to the support base 1A. The second arm 1b2 is connected to the first arm 1b1 via a second movable shaft (not shown), and is movable around the rotation axis of the second movable shaft with respect to the first arm 1b1. The third arm 1b3 is connected to the second arm 1b2 via a third movable shaft (not shown), and is movable around the rotation axis of the third movable shaft with respect to the second arm 1b2. The end effector 2 is connected to the third arm 1b3 via a fourth movable shaft (not shown), and is movable around the rotation axis of the fourth movable shaft with respect to the third arm 1b3. The first movable shaft, the second movable shaft, the third movable shaft, and the fourth movable shaft are driven by a drive source such as a shaft drive motor (not shown). The shaft drive motor is, for example, a servo motor. By driving each movable shaft, the postures of the first arm 1b1, the second arm 1b2, and the third arm 1b3 can be freely changed.
 エンドエフェクタ2は、ロボットアーム1Bの先端に設けられる。エンドエフェクタ2は、基部2Aと、突出部2Bとを有する。基部2Aは、平板状に形成されており、略矩形板状の形状を有する。基部2Aは、ロボットアームに接合される第1面と、第1面と反対側の第2面とを有する。突出部2Bは、基部2Aの第2面に対して垂直に突出している。図1の例では、略矩形形状の基部2Aの第1辺において2本の突出部2Bが並べて配置されているが、突出部2Bの形状、位置および本数はこれに限定されない。 The end effector 2 is provided at the tip of the robot arm 1B. The end effector 2 has a base 2A and a protrusion 2B. The base portion 2A is formed in a flat plate shape and has a substantially rectangular plate shape. The base portion 2A has a first surface joined to the robot arm and a second surface opposite to the first surface. The projecting portion 2B projects perpendicularly to the second surface of the base portion 2A. In the example of FIG. 1, two protrusions 2B are arranged side by side on the first side of the base portion 2A having a substantially rectangular shape, but the shape, position, and number of the protrusions 2B are not limited to this.
 ロボットアーム1Bの第1アーム1b1、第2アーム1b2および第3アーム1b3の姿勢が自由に変化することに伴い、エンドエフェクタ2の姿勢も自由に変化し得る。後述するように、コネクタ嵌合動作において、エンドエフェクタ2の突出部2Bは、第2ワーク8の、第2コネクタ20が配置される第1辺81に対向する第2辺82に当接される。突出部2Bは、第2ワーク8の第2辺82を押圧することにより、第2ワーク8および第2コネクタ20を、第1ワーク6および第1コネクタ10に向けて移動させる。これにより、ロボット装置1は、第2ワーク8および第2コネクタ20を把持することなく、第2コネクタ20を第1コネクタ10に向けて押し込むことができる。コネクタ10,20の構成例およびコネクタ嵌合動作については後述する。 As the postures of the first arm 1b1, the second arm 1b2, and the third arm 1b3 of the robot arm 1B change freely, the posture of the end effector 2 can also change freely. As will be described later, in the connector fitting operation, the protruding portion 2B of the end effector 2 is brought into contact with the second side 82 of the second work 8 facing the first side 81 where the second connector 20 is arranged. .. The protrusion 2B moves the second work 8 and the second connector 20 toward the first work 6 and the first connector 10 by pressing the second side 82 of the second work 8. As a result, the robot device 1 can push the second connector 20 toward the first connector 10 without gripping the second work 8 and the second connector 20. Configuration examples of the connectors 10 and 20 and the connector fitting operation will be described later.
 力覚センサ3は、ロボットアーム1Bの第3アーム1b3とエンドエフェクタ2との間に設けられる。力覚センサ3は、ロボットアーム1Bの手首に相当する位置に配置されている。力覚センサ3は、エンドエフェクタ2作用する力(荷重)を検出し、検出値を示す信号をコントローラ30へ送信する。力覚センサ3は、互いに直交する3軸方向に作用する力を検出するように構成される。力覚センサ3は、さらに、3軸の各々の発生するモーメント荷重つまりトルクを検出する機能を有していてもよい。力覚センサ3は「力センサ」の一実施例に対応する。 The force sensor 3 is provided between the third arm 1b3 of the robot arm 1B and the end effector 2. The force sensor 3 is arranged at a position corresponding to the wrist of the robot arm 1B. The force sensor 3 detects the force (load) acting on the end effector 2 and transmits a signal indicating the detected value to the controller 30. The force sensor 3 is configured to detect a force acting in three axial directions orthogonal to each other. The force sensor 3 may further have a function of detecting the moment load, that is, the torque generated by each of the three axes. The force sensor 3 corresponds to an embodiment of the “force sensor”.
 位置決め機構5は、第1ワーク6および第1コネクタ10の位置および姿勢を固定するとともに、第2ワーク8および第2コネクタ20の移動方向を規制するためのものである。位置決め機構5は、図示しない支持部材により固定されている。位置決め機構5は、第1ワーク6の、第1コネクタ10が配置される第1辺61に対向する第2辺62を支持する第1部分5Aと、第1部分5Aに対して垂直に延在する第2部分5Bおよび第3部分5Cとを有する。位置決め機構5の第2部分5Bおよび第3部分5Cは、互いに平行に配置されており、第1ワーク6の互いに対向する第3辺63および第4辺64を支持するように構成される。 The positioning mechanism 5 is for fixing the positions and postures of the first work 6 and the first connector 10 and for restricting the moving directions of the second work 8 and the second connector 20. The positioning mechanism 5 is fixed by a support member (not shown). The positioning mechanism 5 extends perpendicularly to the first portion 5A supporting the second side 62 of the first work 6 facing the first side 61 on which the first connector 10 is arranged, and the first portion 5A. It has a second portion 5B and a third portion 5C. The second portion 5B and the third portion 5C of the positioning mechanism 5 are arranged in parallel with each other, and are configured to support the third side 63 and the fourth side 64 of the first work 6 facing each other.
 位置決め機構5の第2部分5Bおよび第3部分5Cはさらに、第2ワーク8の互いに対向する第3辺83および第4辺84を支持するように構成される。ただし、第2部分5Bよび第3部分5Cは、第2ワーク8を第1ワーク6に向けて移動させるための「ガイド部」としての機能を果たすように構成されている。例えば、第2部分5Bおよび第3部分5Cの各々は、長手方向(Y軸方向)に沿って延在する溝部が形成されたガイドレールである。第2ワーク8は、ガイドレールの溝部に沿って摺動可能なように、第2部分5Bおよび第3部分5Cによって支持される。 The second portion 5B and the third portion 5C of the positioning mechanism 5 are further configured to support the third side 83 and the fourth side 84 of the second work 8 facing each other. However, the second portion 5B and the third portion 5C are configured to function as a "guide portion" for moving the second work 8 toward the first work 6. For example, each of the second portion 5B and the third portion 5C is a guide rail having a groove extending along the longitudinal direction (Y-axis direction). The second work 8 is supported by the second portion 5B and the third portion 5C so as to be slidable along the groove of the guide rail.
 図3は、図2のIII-III線における断面図である。図4は、図2のIV-IV線における断面図である。 FIG. 3 is a cross-sectional view taken along the line III-III of FIG. FIG. 4 is a cross-sectional view taken along the line IV-IV of FIG.
 図3を参照して、第1コネクタ10は、直方体状に形成されており、ハウジング12と、導通端子14とを有する。ハウジング12は、頂面に開口部が形成された中空の箱型形状を有している。ハウジング12は、例えば絶縁性樹脂により形成されている。ハウジング12は、開口部が第2コネクタ20に対向するように、第1ワーク6の第1面6Aに固定されている。 With reference to FIG. 3, the first connector 10 is formed in a rectangular parallelepiped shape and has a housing 12 and a conduction terminal 14. The housing 12 has a hollow box shape with an opening formed on the top surface. The housing 12 is made of, for example, an insulating resin. The housing 12 is fixed to the first surface 6A of the first work 6 so that the opening faces the second connector 20.
 導通端子14は、ハウジング12の頂面と反対側の底面から垂直に突出するように、ハウジング12に固定されている。導通端子14は、幅狭の矩形板状の形状を有し、第1ワーク6の第1面6Aの延在方向に延びる。矩形板状の導通端子14には、第2コネクタ20の導通端子と導通接触するための接触子(図示せず)が設けられている。接触子は、導電性金属板により形成されており、第1ワーク6の第1面6A上に搭載された電子部品と電気的に接続されている。 The conduction terminal 14 is fixed to the housing 12 so as to project vertically from the bottom surface opposite to the top surface of the housing 12. The conduction terminal 14 has a narrow rectangular plate-like shape and extends in the extending direction of the first surface 6A of the first work 6. The rectangular plate-shaped conductive terminal 14 is provided with a contactor (not shown) for conducting conductive contact with the conductive terminal of the second connector 20. The contact is formed of a conductive metal plate and is electrically connected to an electronic component mounted on the first surface 6A of the first work 6.
 第2コネクタ20は、直方体状に形成されており、ハウジング22と、可動部24と、端子26とを有する。第2コネクタ20は、フローティングコネクタである。フローティングとは、雄コネクタと雌コネクタとの間に嵌合軸のズレがある状態においても、コネクタが可動することでそのズレを吸収して嵌合を可能にする機能である。 The second connector 20 is formed in a rectangular parallelepiped shape, and has a housing 22, a movable portion 24, and a terminal 26. The second connector 20 is a floating connector. Floating is a function that enables fitting by absorbing the deviation by moving the connector even when there is a deviation of the fitting shaft between the male connector and the female connector.
 ハウジング22は、頂面に開口部が形成された中空の箱型形状を有している。ハウジング22は、例えば絶縁性樹脂により形成されている。ハウジング22は、開口部が第1コネクタ10に対向するように、第2ワーク8の第1面8Aに固定されている。 The housing 22 has a hollow box shape with an opening formed on the top surface. The housing 22 is made of, for example, an insulating resin. The housing 22 is fixed to the first surface 8A of the second work 8 so that the opening faces the first connector 10.
 可動部24は、頂面に開口部が形成された溝型形状を有している。可動部24の開口部は、第2ワーク8の第1面8Aに対して平行に延在する。可動部24は、開口部が第1コネクタ10に対向するように、ハウジング22の開口部内に収容されている。可動部24は、第1コネクタ10の導通端子14が挿入される「嵌合部」を構成する。 The movable portion 24 has a groove shape with an opening formed on the top surface. The opening of the movable portion 24 extends parallel to the first surface 8A of the second work 8. The movable portion 24 is housed in the opening of the housing 22 so that the opening faces the first connector 10. The movable portion 24 constitutes a “fitting portion” into which the conduction terminal 14 of the first connector 10 is inserted.
 端子26は、可動部24に固定されて第1コネクタ10の導通端子14と導通接触するための接触子と、ハウジング22に固定される固定部と、接触子と固定部との間に接続される可撓部とを有する。端子26は、導電性金属板を板厚方向に折り曲げて形成される。固定部は、第2ワーク8の第1面8A上に搭載された電気部品と電気的に接続されている。可撓部は、弾性変形可能であり、可動部24とハウジング22とを弾性的に繋ぐことにより、可動部24をハウジング22に対して変位可能に支持する。 The terminal 26 is connected between a contact that is fixed to the movable portion 24 and makes conductive contact with the conductive terminal 14 of the first connector 10, a fixed portion that is fixed to the housing 22, and the contact and the fixed portion. It has a flexible portion. The terminal 26 is formed by bending a conductive metal plate in the plate thickness direction. The fixing portion is electrically connected to an electric component mounted on the first surface 8A of the second work 8. The flexible portion is elastically deformable, and by elastically connecting the movable portion 24 and the housing 22, the movable portion 24 is displaceably supported with respect to the housing 22.
 図4に示すように、フローティングコネクタである第2コネクタ20において、ハウジング22の内周面と可動部24の外周面との間には、隙間が形成されている。図4の例では、第2ワーク8の第1面8Aに平行な方向(X軸方向)に沿って隙間X2が形成され、第2面8Aに垂直な方向(Z軸方向)に沿って隙間Z2が形成されている。隙間X2,Z2は0.5mm程度の大きさを有している。端子26の可撓部が弾性変形することにより、可動部24は、隙間X2,Z2の内部で、第1面8Aに対して平行および垂直な方向に変位することができる。 As shown in FIG. 4, in the second connector 20 which is a floating connector, a gap is formed between the inner peripheral surface of the housing 22 and the outer peripheral surface of the movable portion 24. In the example of FIG. 4, a gap X2 is formed along a direction parallel to the first surface 8A of the second work 8 (X-axis direction), and a gap X2 is formed along a direction perpendicular to the second surface 8A (Z-axis direction). Z2 is formed. The gaps X2 and Z2 have a size of about 0.5 mm. By elastically deforming the flexible portion of the terminal 26, the movable portion 24 can be displaced in the directions parallel and perpendicular to the first surface 8A inside the gaps X2 and Z2.
 位置決め機構5において、第2部分5Bおよび第3部分5Cの溝部の内周面と第2ワーク8の外周面との間には、隙間が形成されている。図4の例では、第2ワーク8の第1面8Aに平行な方向(X軸方向)に沿って隙間X1が形成され、第1面8Aに垂直な方向(Z軸方向)に沿って隙間Z1が形成されている。隙間X1,Z1は0.2mm程度の大きさを有している。第2ワーク8は、隙間X1,Z1の内部で、第1面8Aに対して平行および垂直な方向に変位することができる。したがって、第2ワーク8を、隙間X1,Z1の内部で第1ワーク6に対して変位させることができる。 In the positioning mechanism 5, a gap is formed between the inner peripheral surface of the groove portion of the second portion 5B and the third portion 5C and the outer peripheral surface of the second work 8. In the example of FIG. 4, a gap X1 is formed along a direction parallel to the first surface 8A of the second work 8 (X-axis direction), and a gap X1 is formed along a direction perpendicular to the first surface 8A (Z-axis direction). Z1 is formed. The gaps X1 and Z1 have a size of about 0.2 mm. The second work 8 can be displaced in the directions parallel and perpendicular to the first surface 8A inside the gaps X1 and Z1. Therefore, the second work 8 can be displaced with respect to the first work 6 inside the gaps X1 and Z1.
 実施の形態1に係るコネクタ嵌合装置100においては、第1ワーク6が位置決め機構5に固定されて支持されているため、第1コネクタ10の位置および姿勢が固定されている。一方、第2ワーク8は、位置決め機構5により、第1ワーク6に向かう方向(図2および図3の矢印A1の方向)に沿って移動可能に支持されている。したがって、ロボット装置1のエンドエフェクタ2を方向A1に沿って移動させ、エンドエフェクタ2に設けられた突出部2Bによって第2ワーク8を押圧することにより、第2ワーク8および第2コネクタ20を、第1ワーク6および第1コネクタ10に向けて移動させるとともに、第2コネクタ20を第1コネクタ10に挿入して第1コネクタ10および第2コネクタ20を嵌合することができる。以下の説明では、図2および図3の矢印A1の方向を「嵌合方向」とも称する。 In the connector fitting device 100 according to the first embodiment, since the first work 6 is fixed and supported by the positioning mechanism 5, the position and posture of the first connector 10 are fixed. On the other hand, the second work 8 is movably supported by the positioning mechanism 5 along the direction toward the first work 6 (direction of arrow A1 in FIGS. 2 and 3). Therefore, by moving the end effector 2 of the robot device 1 along the direction A1 and pressing the second work 8 by the protruding portion 2B provided on the end effector 2, the second work 8 and the second connector 20 are pressed. While moving toward the first work 6 and the first connector 10, the second connector 20 can be inserted into the first connector 10 to fit the first connector 10 and the second connector 20. In the following description, the direction of arrow A1 in FIGS. 2 and 3 is also referred to as “fitting direction”.
 図5は、第1コネクタ10および第2コネクタ20の嵌合動作を説明するための図である。図5には、図3に示した状態から第2ワーク8を嵌合方向A1に移動させたときの、第1コネクタ10および第2コネクタ20の嵌合の状態が段階的に示されている。 FIG. 5 is a diagram for explaining the fitting operation of the first connector 10 and the second connector 20. FIG. 5 shows in stages the fitting states of the first connector 10 and the second connector 20 when the second work 8 is moved in the fitting direction A1 from the state shown in FIG. ..
 図5(A)は、嵌合動作を開始したときの第1コネクタ10および第2コネクタ20の嵌合の状態を示す図である。図5(A)に示すように、第2コネクタ20の可動部24の開口部に第1コネクタ10の導通端子14の先端部分が挿入される。可動部24の開口部の内周面と導通端子14とが接触することにより、嵌合方向A1と反対方向の荷重が可動部24に作用する。この荷重を受けて、可動部24とハウジング22とを繋ぐ端子26が弾性変形する。これにより、可動部24はハウジング22に向かう方向(嵌合方向A1とは反対の方向)に変位する。 FIG. 5A is a diagram showing a mating state of the first connector 10 and the second connector 20 when the fitting operation is started. As shown in FIG. 5A, the tip end portion of the conduction terminal 14 of the first connector 10 is inserted into the opening of the movable portion 24 of the second connector 20. When the inner peripheral surface of the opening of the movable portion 24 and the conductive terminal 14 come into contact with each other, a load in the direction opposite to the fitting direction A1 acts on the movable portion 24. Upon receiving this load, the terminal 26 connecting the movable portion 24 and the housing 22 is elastically deformed. As a result, the movable portion 24 is displaced in the direction toward the housing 22 (the direction opposite to the fitting direction A1).
 エンドエフェクタ2をさらに嵌合方向A1に移動させると、図5(B)に示すように、第2コネクタ20の可動部24は、導通端子14に接触しながら嵌合方向A1に移動する。そして、可動部24に設けられた接触子が、導通端子14に設定された初期接触位置において、導通端子14の接触子と導通接触する。本願明細書では、嵌合動作を開始してから第2コネクタ20の可動部24が初期接触位置に至るまでの第1コネクタ10および第2コネクタ20の嵌合の状態を「初期嵌合状態」とも称する。 When the end effector 2 is further moved in the fitting direction A1, the movable portion 24 of the second connector 20 moves in the fitting direction A1 while contacting the conduction terminal 14, as shown in FIG. 5 (B). Then, the contact provided in the movable portion 24 makes a conductive contact with the contact of the conductive terminal 14 at the initial contact position set in the conductive terminal 14. In the specification of the present application, the fitting state of the first connector 10 and the second connector 20 from the start of the fitting operation to the time when the movable portion 24 of the second connector 20 reaches the initial contact position is referred to as the “initial fitting state”. Also called.
 図5(B)に示す初期嵌合状態からさらにエンドエフェクタ2を嵌合方向A1に移動させると、第2コネクタ20の可動部24がさらに嵌合方向A1に移動する(図5(C)参照)。可動部24の接触子は、第1コネクタ10の導通端子14の接触子と接触しながら導通端子14上を摺動する。このとき、可動部24の接触子は、導通端子14の「有効嵌合長」の領域を移動する。有効嵌合長とは、第2コネクタ20の可動部24の接触子が、第2コネクタ20の挿入または引き抜きの間において、第1コネクタ10の接触子と接触して移動する距離を示している。すなわち、有効嵌合長は、第1コネクタ10および第2コネクタ20の嵌合の状態において、両者の接触子が導通接触可能な長さに相当する。有効嵌合長は、初期接触位置と正規接触位置との間の距離に相当する。 When the end effector 2 is further moved in the fitting direction A1 from the initial fitting state shown in FIG. 5B, the movable portion 24 of the second connector 20 is further moved in the fitting direction A1 (see FIG. 5C). ). The contact of the movable portion 24 slides on the conductive terminal 14 while contacting the contact of the conductive terminal 14 of the first connector 10. At this time, the contact of the movable portion 24 moves in the region of the “effective fitting length” of the conduction terminal 14. The effective mating length indicates the distance that the contact of the movable portion 24 of the second connector 20 moves in contact with the contact of the first connector 10 during the insertion or withdrawal of the second connector 20. .. That is, the effective fitting length corresponds to the length at which the contacts of both the first connector 10 and the second connector 20 can make conductive contact in the fitted state. The effective mating length corresponds to the distance between the initial contact position and the normal contact position.
 第2コネクタ20の可動部24の接触子が、第1コネクタ10の導通端子14に設定された正規接触位置に到達すると、第1コネクタ10および第2コネクタ20は「嵌合完了状態」に移行する(図5(D)参照)。嵌合完了状態では、第1ワーク6の第1辺61と第2ワーク8の第1辺81とが接触する。また、第1コネクタ10のハウジング12の開口縁部と第2コネクタ20のハウジング22の開口縁部とが接触する。 When the contact of the movable portion 24 of the second connector 20 reaches the normal contact position set for the conduction terminal 14 of the first connector 10, the first connector 10 and the second connector 20 shift to the "fitting completed state". (See FIG. 5 (D)). In the mating completed state, the first side 61 of the first work 6 and the first side 81 of the second work 8 come into contact with each other. Further, the opening edge of the housing 12 of the first connector 10 and the opening edge of the housing 22 of the second connector 20 come into contact with each other.
 以上に示す嵌合動作において、第2コネクタ20の可動部24は、第1コネクタ10の導通端子14と接触することにより、嵌合方向A1と反対方向の荷重を受ける。この荷重は、可動部24から端子26を経由してハウジング22に作用する。ハウジング22に作用する荷重は、さらに第2ワーク8を介してロボット装置1のエンドエフェクタ2に作用する。エンドエフェクタ2に作用する荷重は、力覚センサ3によって検出される。 In the fitting operation shown above, the movable portion 24 of the second connector 20 receives a load in the direction opposite to the fitting direction A1 by coming into contact with the conductive terminal 14 of the first connector 10. This load acts on the housing 22 from the movable portion 24 via the terminal 26. The load acting on the housing 22 further acts on the end effector 2 of the robot device 1 via the second work 8. The load acting on the end effector 2 is detected by the force sensor 3.
 嵌合動作中に力覚センサ3によって検出される荷重は、第1コネクタ10および第2コネクタ20の嵌合の状態の変化とともに変化する。図5の例では、初期嵌合状態(図5(A)および図5(B))において、荷重は、嵌合動作を開始してから単調に増加し、可動部24が初期接触位置に至る直前においてピーク値を示す。そして、初期嵌合状態を超えると、荷重は徐々に低下し、可動部24が有効嵌合長領域を移動している間(図5(C))、荷重はピーク値よりも小さい値でほとんど変化しない。そして、嵌合完了状態(図5(D))になると、例えばワーク6,8の第1辺61,81同士および/またはコネクタ10,20の開口縁部同士が接触することにより、荷重が再び増加する。 The load detected by the force sensor 3 during the fitting operation changes as the fitting state of the first connector 10 and the second connector 20 changes. In the example of FIG. 5, in the initial fitting state (FIGS. 5A and 5B), the load increases monotonically after the fitting operation is started, and the movable portion 24 reaches the initial contact position. The peak value is shown immediately before. Then, when the initial fitting state is exceeded, the load gradually decreases, and while the movable portion 24 is moving in the effective fitting length region (FIG. 5 (C)), the load is almost a value smaller than the peak value. It does not change. Then, when the fitting is completed (FIG. 5 (D)), for example, the first sides 61, 81 of the workpieces 6 and 8 and / or the opening edges of the connectors 10 and 20 come into contact with each other, so that the load is applied again. To increase.
 ここで、実施の形態1に係るコネクタ嵌合装置100において、ロボット装置1は、第2ワーク8および第2コネクタ20を把持する機構を有していないため、嵌合動作の開始前または嵌合動作中、把持部を操作して第1コネクタ10に対する第2コネクタ20の相対位置を調整することができない。そのため、上述した嵌合動作を行なう際に、第1コネクタ10に対する第2コネクタ20の相対位置が正規の位置からずれている場合が少なからず起こり得る。この場合、相対位置がずれている状態で嵌合動作が行なわれることにより、第1コネクタ10と第2コネクタ20とを適切に嵌合することができず、コネクタ10,20および/またはワーク6,8を損傷させることが懸念される。 Here, in the connector fitting device 100 according to the first embodiment, since the robot device 1 does not have a mechanism for gripping the second work 8 and the second connector 20, it is before the start of the fitting operation or fitting. During operation, the grip portion cannot be operated to adjust the relative position of the second connector 20 with respect to the first connector 10. Therefore, when performing the above-mentioned fitting operation, it is possible that the relative position of the second connector 20 with respect to the first connector 10 deviates from the regular position. In this case, since the fitting operation is performed in a state where the relative positions are deviated, the first connector 10 and the second connector 20 cannot be properly fitted, and the connectors 10, 20 and / or the work 6 cannot be properly fitted. , 8 may be damaged.
 そこで、実施の形態1に係るコネクタ嵌合装置100では、嵌合動作中における力覚センサ3の検出値に基づいて、ロボット装置1のエンドエフェクタ2の動作を制御することにより、第1コネクタ10に対する第2コネクタ20の相対位置のずれを修正する。 Therefore, in the connector fitting device 100 according to the first embodiment, the first connector 10 is controlled by controlling the operation of the end effector 2 of the robot device 1 based on the detection value of the force sensor 3 during the fitting operation. The deviation of the relative position of the second connector 20 with respect to the above is corrected.
 以下、実施の形態1に係るコネクタ嵌合装置100の構成および動作について詳細に説明する。 Hereinafter, the configuration and operation of the connector fitting device 100 according to the first embodiment will be described in detail.
 (コントローラのハードウェア構成)
 まず、図6を参照して、実施の形態1に係るコネクタ嵌合装置100のハードウェア構成について説明する。図6は、実施の形態1に係るコネクタ嵌合装置100のハードウェア構成の一例を示す模式図である。
(Hardware configuration of controller)
First, the hardware configuration of the connector fitting device 100 according to the first embodiment will be described with reference to FIG. FIG. 6 is a schematic view showing an example of the hardware configuration of the connector fitting device 100 according to the first embodiment.
 実施の形態1に係るコネクタ嵌合装置100は、ロボット装置1を含むコネクタ嵌合装置100全体を制御するコントローラ30を備える。コントローラ30は、主な構成要素として、プロセッサ32と、メモリ34と、通信インターフェイス(I/F)36と、入出力I/F38とを有する。これらの各部はバスを介して通信可能に接続されている。 The connector fitting device 100 according to the first embodiment includes a controller 30 that controls the entire connector fitting device 100 including the robot device 1. The controller 30 has a processor 32, a memory 34, a communication interface (I / F) 36, and an input / output I / F 38 as main components. Each of these parts is communicably connected via a bus.
 プロセッサ32は、典型的には、CPU(Central Processing Unit)またはMPU(Micro Processor Unit)などの演算処理部である。プロセッサ32は、メモリ34に記憶されたプログラムを読み出して実行することで、コネクタ嵌合装置100の各部の動作を制御する。具体的には、プロセッサ32は、当該プログラムを実行することによって、後述するコネクタ嵌合処理を実現する。なお、図6の例では、プロセッサ32が単数である構成を示しているが、コントローラ30は複数のプロセッサを有していてもよい。 The processor 32 is typically an arithmetic processing unit such as a CPU (Central Processing Unit) or an MPU (Micro Processor Unit). The processor 32 controls the operation of each part of the connector fitting device 100 by reading and executing the program stored in the memory 34. Specifically, the processor 32 realizes the connector fitting process described later by executing the program. Although the example of FIG. 6 shows a configuration in which the processor 32 is singular, the controller 30 may have a plurality of processors.
 メモリ34は、RAM(Random Access Memory)、ROM(Read Only Memory)およびフラッシュメモリなどの不揮発性メモリによって実現される。メモリ34は、プロセッサ32によって実行されるプログラム、またはプロセッサによって用いられるデータなどを記憶する。 The memory 34 is realized by a non-volatile memory such as a RAM (Random Access Memory), a ROM (Read Only Memory), and a flash memory. The memory 34 stores a program executed by the processor 32, data used by the processor, and the like.
 入出力I/F38は、プロセッサ32とロボット装置1および力覚センサ3との間で各種データを遣り取りするためのインターフェイスである。入出力I/F38には、操作部40および表示部42が接続される。表示部42は、液晶パネルディスプレイなどで構成される。操作部40は、コネクタ嵌合装置100に対するユーザの操作入力を受け付ける。操作部40は、典型的には、タッチパネル、キーボードおよびマウスなどにより構成される。 The input / output I / F 38 is an interface for exchanging various data between the processor 32, the robot device 1, and the force sensor 3. An operation unit 40 and a display unit 42 are connected to the input / output I / F 38. The display unit 42 is composed of a liquid crystal panel display or the like. The operation unit 40 receives a user's operation input to the connector fitting device 100. The operation unit 40 is typically composed of a touch panel, a keyboard, a mouse, and the like.
 通信I/F36は、コネクタ嵌合装置100と他の装置との間で各種データを遣り取りするための通信インターフェイスである。他の装置には、工業製品の生産現場を統括制御するPLC(Programmable Logic Controller)50などが含まれる。PLC50は、コネクタ嵌合装置100に対し、嵌合動作の開始指令を含む動作指令を出力する。なお、通信I/F36の通信方式は、無線LAN(Local Area Network)などによる無線通信方式であってもよいし、USB(Universal Serial Bus)などを利用した有線通信方式であってもよい。 The communication I / F 36 is a communication interface for exchanging various data between the connector fitting device 100 and other devices. Other devices include a PLC (Programmable Logic Controller) 50 that controls the production site of industrial products in an integrated manner. The PLC 50 outputs an operation command including a start command of the fitting operation to the connector fitting device 100. The communication method of the communication I / F36 may be a wireless communication method using a wireless LAN (Local Area Network) or the like, or a wired communication method using USB (Universal Serial Bus) or the like.
 (コントローラの機能構成)
 図7は、図6に示したコントローラ30の機能構成を示すブロック図である。
(Functional configuration of controller)
FIG. 7 is a block diagram showing a functional configuration of the controller 30 shown in FIG.
 図7を参照して、コントローラ30は、制御部70と、動作制御部72と、力覚検出部74と、波形処理部76と、良否判定部78とを有する。これらは、プロセッサ32がメモリ34に格納されたプログラムを実行することによって実現される機能ブロックである。 With reference to FIG. 7, the controller 30 includes a control unit 70, an operation control unit 72, a force sense detection unit 74, a waveform processing unit 76, and a quality determination unit 78. These are functional blocks realized by the processor 32 executing a program stored in the memory 34.
 制御部70は、通信I/F36を経由してPLC50からの動作指令を受け付けると、PLC50からの制御指令に従ってロボット装置1の動作を制御するための制御信号を生成する。具体的には、制御部70は、PLC50から動作指令を受け、力覚検出部74から力覚情報を受け、良否判定部78から判定結果情報を受ける。力覚情報は、力覚センサ3により検出されたエンドエフェクタ2に作用する荷重を示す情報である。判定結果情報は、第1コネクタ10および第2コネクタ20が正常に嵌合したか否かの良否判定を行なった結果を示す情報である。制御部70は、動作指令、力覚情報および判定結果情報に基づいて制御信号を生成し、生成した制御信号を動作制御部72へ出力する。 When the control unit 70 receives an operation command from the PLC 50 via the communication I / F 36, the control unit 70 generates a control signal for controlling the operation of the robot device 1 according to the control command from the PLC 50. Specifically, the control unit 70 receives an operation command from the PLC 50, receives force sense information from the force sense detection unit 74, and receives determination result information from the pass / fail determination unit 78. The force sense information is information indicating the load acting on the end effector 2 detected by the force sense sensor 3. The determination result information is information indicating the result of performing a quality determination as to whether or not the first connector 10 and the second connector 20 are normally fitted. The control unit 70 generates a control signal based on the operation command, the force sense information, and the determination result information, and outputs the generated control signal to the operation control unit 72.
 具体的には、制御部70は、メモリ34に予め記憶されている動作シーケンスを読み出し、それに従い嵌合動作の各動作タイミングにおける目標値を設定する。目標値は、力覚センサ3により検出される荷重の目標値を含む。目標値は、例えば、初期嵌合状態(図5(A),(B))における荷重の目標値、有効嵌合長領域(図5(C))における荷重の目標値、および嵌合完了状態(図5(D))における荷重の目標値を含む。 Specifically, the control unit 70 reads an operation sequence stored in advance in the memory 34, and sets a target value at each operation timing of the fitting operation according to the operation sequence. The target value includes the target value of the load detected by the force sensor 3. The target values are, for example, the target value of the load in the initial mating state (FIGS. 5A and 5B), the target value of the load in the effective mating length region (FIG. 5C), and the mating completed state. (FIG. 5 (D)) includes the target value of the load.
 嵌合動作時には、制御部70は、各動作タイミングにおいて、力覚センサ3の検出値が目標値に近づくように、ロボット装置1の動作をフィードバック制御する。具体的には、制御部70は、目標値に対する力覚センサ3の検出値の偏差に応じた制御演算を実行することによって制御信号を生成し、生成した制御信号を動作制御部72へ出力する。 At the time of fitting operation, the control unit 70 feedback-controls the operation of the robot device 1 so that the detected value of the force sensor 3 approaches the target value at each operation timing. Specifically, the control unit 70 generates a control signal by executing a control calculation according to the deviation of the detection value of the force sensor 3 with respect to the target value, and outputs the generated control signal to the operation control unit 72. ..
 動作制御部72は、制御部70により生成された制御信号に基づいて、ロボット装置1の動作を制御する。これにより、支持台1Aおよびロボットアーム1Bが動作する。 The motion control unit 72 controls the motion of the robot device 1 based on the control signal generated by the control unit 70. As a result, the support base 1A and the robot arm 1B operate.
 力覚検出部74は、力覚センサ3の出力信号に基づいて、ロボット装置1のエンドエフェクタ2に作用する力(荷重)を検出し、検出結果を示す信号を制御部70および波形処理部76へ出力する。 The force sense detection unit 74 detects the force (load) acting on the end effector 2 of the robot device 1 based on the output signal of the force sense sensor 3, and outputs a signal indicating the detection result to the control unit 70 and the waveform processing unit 76. Output to.
 波形処理部76は、力覚情報に含まれる、エンドエフェクタ2に作用する荷重のプロファイルを波形処理する。具体的には、波形処理部76は、荷重のプロファイルに対してピーク値、最大値、最小値、平均値、標準偏差、変動係数(標準偏差/平均値)などの特徴量を波形処理により求める。 The waveform processing unit 76 waveform-processes the profile of the load acting on the end effector 2 included in the force sense information. Specifically, the waveform processing unit 76 obtains feature quantities such as peak value, maximum value, minimum value, average value, standard deviation, and coefficient of variation (standard deviation / average value) with respect to the load profile by waveform processing. ..
 良否判定部78は、波形処理部76から出力される荷重のプロファイルに基づいて、コネクタ10,20の嵌合の良否を判定する。具体的には、メモリ34には、コネクタ嵌合動作中に作用する荷重に関する閾値および許容範囲が記憶されている。良否判定部78は、メモリ34から閾値および許容範囲を読み出し、これらの値を用いて第1コネクタ10および第2コネクタ20が正常に嵌合しているか否かの良否判定を行なう。良否判定部78は、判定結果情報を制御部70へ出力するとともに、表示部42に表示する。 The quality determination unit 78 determines whether the connectors 10 and 20 are fitted or not based on the load profile output from the waveform processing unit 76. Specifically, the memory 34 stores a threshold value and an allowable range regarding the load acting during the connector fitting operation. The quality determination unit 78 reads the threshold value and the allowable range from the memory 34, and uses these values to determine the quality of whether or not the first connector 10 and the second connector 20 are normally fitted. The quality determination unit 78 outputs the determination result information to the control unit 70 and displays it on the display unit 42.
 (コネクタ嵌合処理)
 次に、実施の形態1に係るコネクタ嵌合装置100におけるコネクタ嵌合処理の手順について説明する。
(Connector fitting process)
Next, the procedure of the connector fitting process in the connector fitting device 100 according to the first embodiment will be described.
 図8は、実施の形態1に係るコネクタ嵌合処理を説明するためのフローチャートである。図9は、実施の形態1に係るコネクタ嵌合処理を説明するための模式図である。図9には、第1ワーク6および第1コネクタ10、第2ワーク8および第2コネクタ20、エンドエフェクタ2の上面図が模式的に示されている。図9には、コネクタ嵌合処理の実行中における第1コネクタ10および第2コネクタ20の嵌合状態が段階的に示されている。 FIG. 8 is a flowchart for explaining the connector fitting process according to the first embodiment. FIG. 9 is a schematic view for explaining the connector fitting process according to the first embodiment. FIG. 9 schematically shows a top view of the first work 6, the first connector 10, the second work 8, the second connector 20, and the end effector 2. FIG. 9 shows the mating states of the first connector 10 and the second connector 20 stepwise during the execution of the connector fitting process.
 図8を参照して、コントローラ30は、ステップS01にて、PLC50(図6)からの嵌合開始指令を受信すると(S01にてYES)、コネクタ嵌合処理を開始する。コネクタ嵌合処理の開始時には、図9(A)に示すように、第1ワーク6および第1コネクタ10が位置決め機構5によって固定されている状態において、第1コネクタ10と第2コネクタ20とが対向するように、位置決め機構5に第2ワーク8が設置されている。嵌合開始指令を受信すると、コントローラ30は、ステップS02に進み、第1コネクタ10に対する第2コネクタ20の押し込みを開始する。 With reference to FIG. 8, when the controller 30 receives the fitting start command from the PLC 50 (FIG. 6) in step S01 (YES in S01), the controller 30 starts the connector fitting process. At the start of the connector fitting process, as shown in FIG. 9A, the first connector 10 and the second connector 20 are in a state where the first work 6 and the first connector 10 are fixed by the positioning mechanism 5. The second work 8 is installed in the positioning mechanism 5 so as to face each other. Upon receiving the fitting start command, the controller 30 proceeds to step S02 and starts pushing the second connector 20 into the first connector 10.
 具体的には、コントローラ30は、図9(A)の状態からエンドエフェクタ2が嵌合方向A1に沿って移動するように、ロボット装置1を制御する。エンドエフェクタ2からの押し込み力F1受けて第2ワーク8が嵌合方向A1に移動すると、エンドエフェクタ2には、第2ワーク8と位置決め機構5との間の摩擦力が作用する。力覚センサ3は、エンドエフェクタ2に作用する荷重を検出し、検出値をコントローラ30へ出力する。コントローラ30は、目標値に対する検出値の偏差に応じて押し込み力F1を調整することにより、エンドエフェクタ2の動作を制御する。 Specifically, the controller 30 controls the robot device 1 so that the end effector 2 moves along the fitting direction A1 from the state shown in FIG. 9A. When the second work 8 moves in the fitting direction A1 in response to the pushing force F1 from the end effector 2, a frictional force between the second work 8 and the positioning mechanism 5 acts on the end effector 2. The force sensor 3 detects the load acting on the end effector 2 and outputs the detected value to the controller 30. The controller 30 controls the operation of the end effector 2 by adjusting the pushing force F1 according to the deviation of the detected value with respect to the target value.
 図9(B)に示すように、第1コネクタ10に対する第2コネクタ20の挿入が開始されると、コネクタ10,20の嵌合の状態は初期嵌合状態に移行する。初期嵌合状態では、エンドエフェクタ2には、第1コネクタ10の導通端子14と第2コネクタ20の可動部24との間の摩擦力が作用する。そのため、エンドエフェクタ2の移動に従ってエンドエフェクタ2に作用する荷重が徐々に大きくなる。力覚センサ3は、エンドエフェクタ2に作用する荷重を検出し、検出値をコントローラ30へ出力する。 As shown in FIG. 9B, when the insertion of the second connector 20 into the first connector 10 is started, the mating state of the connectors 10 and 20 shifts to the initial mating state. In the initial mating state, a frictional force acts on the end effector 2 between the conductive terminal 14 of the first connector 10 and the movable portion 24 of the second connector 20. Therefore, the load acting on the end effector 2 gradually increases as the end effector 2 moves. The force sensor 3 detects the load acting on the end effector 2 and outputs the detected value to the controller 30.
 コントローラ30は、力覚センサ3による荷重の検出値が予め設定された第1閾値N1に達するまで、第1コネクタ10に対して第2コネクタ20を押し込む。第1閾値N1は、位置決め機構5と第2ワーク8との間の摩擦力よりも大きく、かつ、コネクタ10,20が破壊されない程度の荷重に設定されている。図9(B)では、力覚センサ3の検出値が第1閾値N1となるときの第1コネクタ10に対する第2コネクタ20の相対位置を「相対位置P1」とする。すなわち、相対位置P1は固定値ではなく、力覚センサ3の検出値に応じて変化する可変値である。 The controller 30 pushes the second connector 20 against the first connector 10 until the load detected value by the force sensor 3 reaches the preset first threshold value N1. The first threshold value N1 is set to a load that is larger than the frictional force between the positioning mechanism 5 and the second work 8 and that does not destroy the connectors 10 and 20. In FIG. 9B, the relative position of the second connector 20 with respect to the first connector 10 when the detected value of the force sensor 3 becomes the first threshold value N1 is defined as the “relative position P1”. That is, the relative position P1 is not a fixed value, but a variable value that changes according to the detection value of the force sensor 3.
 具体的には、図8を参照して、コントローラ30は、ステップS02による押し込みの実行中、ステップS03により、力覚センサ3による荷重の検出値が第1閾値N1を超えたか否かを判定する。力覚センサ3の検出値が第1閾値N1より小さい場合(S03にてNO)、コントローラ30は、ステップS04に進み、力覚センサ3の検出値が予め設定されている許容範囲から外れているか否かを判定する。ステップS04における許容範囲は、コネクタ10,20が正常に嵌合されたときの力覚センサ3の検出値のプロファイルに基づいて設定することができる。 Specifically, referring to FIG. 8, the controller 30 determines in step S03 whether or not the load detected value by the force sensor 3 exceeds the first threshold value N1 during the execution of pushing in step S02. .. When the detection value of the force sensor 3 is smaller than the first threshold value N1 (NO in S03), the controller 30 proceeds to step S04 and is the detection value of the force sensor 3 out of the preset allowable range? Judge whether or not. The permissible range in step S04 can be set based on the profile of the detected value of the force sensor 3 when the connectors 10 and 20 are normally fitted.
 ステップS04にて力覚センサ3の検出値が許容範囲から外れている場合(S04にてYES)、コントローラ30は、ステップS16により、コネクタ10,20の嵌合が不良であると判定し、判定結果を表示部42に表示する。これに対して、力覚センサ3の検出値が許容範囲から外れていない場合には(S04にてNO)、コントローラ30は、ステップS02に戻り、第2コネクタ20の押し込みを継続する。 If the detection value of the force sensor 3 is out of the permissible range in step S04 (YES in S04), the controller 30 determines in step S16 that the connectors 10 and 20 are not fitted properly, and determines that the fitting is defective. The result is displayed on the display unit 42. On the other hand, if the detected value of the force sensor 3 does not deviate from the permissible range (NO in S04), the controller 30 returns to step S02 and continues pushing the second connector 20.
 力覚センサ3の検出値が第1閾値N1より大きくなると(S03にてYES)、コントローラ30は、ステップS05により、エンドエフェクタ2による第2コネクタ20の押し込みを停止する。コントローラ30はさらに、図9(C)に示すように、エンドエフェクタ2を嵌合方向A1とは反対方向に移動させる。これにより、エンドエフェクタ2は、第2ワーク8への押し付け力が軽減もしくは第2ワーク8との接触が解除される。 When the detected value of the force sensor 3 becomes larger than the first threshold value N1 (YES in S03), the controller 30 stops pushing the second connector 20 by the end effector 2 in step S05. The controller 30 further moves the end effector 2 in the direction opposite to the fitting direction A1 as shown in FIG. 9C. As a result, the pressing force of the end effector 2 against the second work 8 is reduced or the contact with the second work 8 is released.
 ステップS05では、エンドエフェクタ2による第2コネクタ20の押し込みが停止されることによって、第2コネクタ20の可動部24への押し込み力が軽減される。これにより、第2コネクタ20の可動部24には、端子26の可撓部の付勢力が作用することになる。端子26の可撓部は、ハウジング22に対する可動部24の相対位置が元の位置に戻る方向に、可動部24に対して付勢力を加える。この可撓部の付勢力を利用して、第1コネクタ10に対する第2コネクタ20の相対位置のずれを修正することができる。 In step S05, the pushing force of the second connector 20 into the movable portion 24 is reduced by stopping the pushing of the second connector 20 by the end effector 2. As a result, the urging force of the flexible portion of the terminal 26 acts on the movable portion 24 of the second connector 20. The flexible portion of the terminal 26 applies an urging force to the movable portion 24 in a direction in which the relative position of the movable portion 24 with respect to the housing 22 returns to the original position. By utilizing the urging force of the flexible portion, it is possible to correct the deviation of the relative position of the second connector 20 with respect to the first connector 10.
 図10は、図8のステップS05における第2コネクタ20の相対位置のずれの修正の第1例を模式的に示す図である。図10には、第1ワーク6、第1コネクタ10、第2ワーク8および第2コネクタ20の上面図が示されている。 FIG. 10 is a diagram schematically showing a first example of correcting the deviation of the relative position of the second connector 20 in step S05 of FIG. FIG. 10 shows a top view of the first work 6, the first connector 10, the second work 8, and the second connector 20.
 図10(A)には、第1コネクタ10のX軸方向の中心軸(嵌合軸)C1と、第2コネクタ20のX軸方向の中心軸(嵌合軸)C2とが互いにずれている状態が示されている。このような状態で、エンドエフェクタ2によって第1コネクタ10に対して第2コネクタ20を押し込むと、図10(B)に示すように、第2コネクタ20では、可動部24が第1コネクタ10の導通端子14と係合するように、ハウジング22に対してX軸方向に変位する。したがって、端子26の可撓部には、ハウジング22に対する可動部24の位置を元の位置に戻そうとする付勢力が変位方向とは反対方向に生じることになる。 In FIG. 10A, the central axis (fitting axis) C1 in the X-axis direction of the first connector 10 and the central axis (fitting axis) C2 in the X-axis direction of the second connector 20 are displaced from each other. The state is shown. In such a state, when the second connector 20 is pushed into the first connector 10 by the end effector 2, as shown in FIG. 10B, in the second connector 20, the movable portion 24 is the first connector 10. It is displaced in the X-axis direction with respect to the housing 22 so as to engage with the conductive terminal 14. Therefore, an urging force for returning the position of the movable portion 24 with respect to the housing 22 to the original position is generated in the flexible portion of the terminal 26 in the direction opposite to the displacement direction.
 図8のステップS04によりエンドエフェクタ2を嵌合方向A1とは反対方向に移動させると、可動部24への押し込み力が軽減される。しかしながら、可動部24は、その一部分が第1コネクタ10の導通端子14と係合しているため、可動不能となっている。その結果、可動部24に代えて、ハウジング22に可撓部の付勢力が作用することになる。端子26の可撓部の付勢力を受けてハウジング22が可動部24の変位方向に移動することにより、図10(C)に示すように、第1コネクタ10の嵌合軸C1および第2コネクタ20の嵌合軸C2が一致する。これにより、第1コネクタ10に対する第2コネクタ20の相対位置のずれが修正される。位置決め機構5と第2ワーク8との間に設けた隙間X1,Z1によって相対位置の修正が可能となる。 When the end effector 2 is moved in the direction opposite to the fitting direction A1 in step S04 of FIG. 8, the pushing force into the movable portion 24 is reduced. However, the movable portion 24 is immovable because a part of the movable portion 24 is engaged with the conductive terminal 14 of the first connector 10. As a result, the urging force of the flexible portion acts on the housing 22 instead of the movable portion 24. As shown in FIG. 10C, the housing 22 moves in the displacement direction of the movable portion 24 in response to the urging force of the flexible portion of the terminal 26, so that the fitting shaft C1 and the second connector of the first connector 10 are connected. The fitting shafts C2 of 20 coincide with each other. As a result, the deviation of the relative position of the second connector 20 with respect to the first connector 10 is corrected. The relative positions can be corrected by the gaps X1 and Z1 provided between the positioning mechanism 5 and the second work 8.
 図11は、図8のステップS05における第2コネクタ20の相対位置のずれの修正の第2例を模式的に示す図である。図11には、第1ワーク6、第1コネクタ10、第2ワーク8および第2コネクタ20の斜視図が示されている。 FIG. 11 is a diagram schematically showing a second example of correcting the deviation of the relative position of the second connector 20 in step S05 of FIG. FIG. 11 shows a perspective view of the first work 6, the first connector 10, the second work 8, and the second connector 20.
 図11(A)には、第2コネクタ20が嵌合軸回りに回転しており、第1コネクタ10に対して傾斜している状態が示されている。このような状態で、エンドエフェクタ2によって第1コネクタ10に対して第2コネクタ20を押し込むと、第2コネクタ20の傾斜角度および第2ワーク8における押し込みの位置によって、第2コネクタ20には嵌合軸回りにモーメントが作用する。図11(A)の例では、第2ワーク8に対する押し込み力F1により、第1コネクタ10および第2コネクタ20の水平方向の一方端部に衝突が生じており、その結果、矢印A1方向のモーメントが第2コネクタ20に作用する。一方、第2コネクタ20の傾斜を修正するためには、矢印A2方向に第2コネクタ20を回転させる必要があるが、第2コネクタ20に作用するモーメントとは反対方向となるため、傾斜を修正することができない。 FIG. 11A shows a state in which the second connector 20 is rotated around the fitting axis and is inclined with respect to the first connector 10. In such a state, when the second connector 20 is pushed into the first connector 10 by the end effector 2, the second connector 20 is fitted into the second connector 20 depending on the inclination angle of the second connector 20 and the pushing position in the second work 8. A moment acts around the axis. In the example of FIG. 11A, the pushing force F1 with respect to the second work 8 causes a collision at one end of the first connector 10 and the second connector 20 in the horizontal direction, and as a result, the moment in the arrow A1 direction. Acts on the second connector 20. On the other hand, in order to correct the inclination of the second connector 20, it is necessary to rotate the second connector 20 in the direction of arrow A2, but since it is in the opposite direction to the moment acting on the second connector 20, the inclination is corrected. Can not do it.
 図11(A)の状態からさらに押し込みを続けると、図11(B)に示すように、押し込み荷重から逃れるために、第2ワーク8全体が上方に持ち上がる。さらに、第2コネクタ20の可動部24は、矢印A4に示すように嵌合方向A1に圧縮される。第2コネクタ20の可動部24は、矢印A5に示すように、水平方向にのみ移動する。可動部24は、第1コネクタ10および第2コネクタ20の端部同士の衝突を解消するように、水平方向に微少量移動する。 When the pushing is continued from the state of FIG. 11 (A), as shown in FIG. 11 (B), the entire second work 8 is lifted upward in order to escape from the pushing load. Further, the movable portion 24 of the second connector 20 is compressed in the fitting direction A1 as shown by the arrow A4. The movable portion 24 of the second connector 20 moves only in the horizontal direction as shown by the arrow A5. The movable portion 24 moves in a small amount in the horizontal direction so as to eliminate the collision between the ends of the first connector 10 and the second connector 20.
 ここで、図8のステップS04によりエンドエフェクタ2を嵌合方向A1とは反対方向に移動させると、図11(C)に示すように、第2コネクタ20の可動部24が押し込み力F1から解放されることによって、可動部24は嵌合方向A1とは反対方向に変位する。これにより、第2ワーク8の持ち上がりが解消される。また、可動部24の嵌合方向A1における圧縮は第2コネクタ20の一方端部のみであるため、押し込み力F1から解放されることによって、第2コネクタ20の傾きも補正される。 Here, when the end effector 2 is moved in the direction opposite to the fitting direction A1 in step S04 of FIG. 8, as shown in FIG. 11C, the movable portion 24 of the second connector 20 is released from the pushing force F1. As a result, the movable portion 24 is displaced in the direction opposite to the fitting direction A1. As a result, the lifting of the second work 8 is eliminated. Further, since the movable portion 24 is compressed only at one end of the second connector 20 in the fitting direction A1, the inclination of the second connector 20 is also corrected by being released from the pushing force F1.
 なお、第2ワーク8の持ち上がりが解消される際には、図11(D)に示すように、水平方向のフローティングおよびモーメントが解放されたことによる面取り効果によって、第2ワーク8が適正な位置に移動する。その結果、図11(E)に示すように、第1コネクタ10の導通端子14および第2コネクタ20の可動部24の先端部同士が係合された状態となるため、再度第2コネクタ20の押し込みを行なうと、第1コネクタ10に対して第2コネクタ20を挿入することが可能となる。 When the lift of the second work 8 is eliminated, as shown in FIG. 11D, the second work 8 is positioned at an appropriate position due to the horizontal floating and the chamfering effect due to the release of the moment. Move to. As a result, as shown in FIG. 11 (E), the conduction terminal 14 of the first connector 10 and the tip end portions of the movable portion 24 of the second connector 20 are engaged with each other. When pushed in, the second connector 20 can be inserted into the first connector 10.
 図8に戻って、ステップS05において第1コネクタ10に対する第2コネクタ20の相対位置のずれが修正されると、コントローラ30は、ステップS06に進み、再び第2コネクタ20の押し込みを行なう。エンドエフェクタ2の移動によって第2コネクタ20を押し込むことにより、エンドエフェクタ2に作用する荷重は単調に増加する。力覚センサ3は、エンドエフェクタ2に作用する荷重を検出し、検出値をコントローラ30へ出力する。 Returning to FIG. 8, when the deviation of the relative position of the second connector 20 with respect to the first connector 10 is corrected in step S05, the controller 30 proceeds to step S06 and pushes the second connector 20 again. By pushing the second connector 20 by moving the end effector 2, the load acting on the end effector 2 increases monotonically. The force sensor 3 detects the load acting on the end effector 2 and outputs the detected value to the controller 30.
 コントローラ30は、図8のステップS07により、力覚センサ3による荷重の検出値が予め設定された第2閾値N2を超えたか否かを判定する。第2閾値N2は、第1コネクタ10と第2コネクタ20との初期嵌合に必要とされる荷重に設定されている。すなわち、コントローラ30は、コネクタ10,コネクタ20の嵌合の状態が初期嵌合状態となっているか否かを判定する。 The controller 30 determines in step S07 of FIG. 8 whether or not the load detection value by the force sensor 3 exceeds the preset second threshold value N2. The second threshold value N2 is set to the load required for the initial fitting of the first connector 10 and the second connector 20. That is, the controller 30 determines whether or not the mating state of the connector 10 and the connector 20 is the initial mating state.
 力覚センサ3の検出値が第2閾値N2より小さい場合(S07にてNO)、コントローラ30は、ステップS08に進み、力覚センサ3の検出値が許容範囲から外れているか否かを判定する。許容範囲は、コネクタ10,20が正常に嵌合されたときの力覚センサ3の検出値のプロファイルに基づいて設定することができる。 When the detected value of the force sensor 3 is smaller than the second threshold value N2 (NO in S07), the controller 30 proceeds to step S08 and determines whether or not the detected value of the force sensor 3 is out of the permissible range. .. The permissible range can be set based on the profile of the detected value of the force sensor 3 when the connectors 10 and 20 are normally fitted.
 力覚センサ3の検出値が許容範囲から外れている場合(S08にてYES)、コントローラ30は、ステップS16により、コネクタ10,20の嵌合が不良であると判定し、判定結果を表示部42に表示する。一方、力覚センサ3の検出値が許容範囲から外れていない場合(S08にてNO)、コントローラ30は、ステップS06に戻り、第2コネクタ20の押し込みを継続する。 When the detection value of the force sensor 3 is out of the permissible range (YES in S08), the controller 30 determines in step S16 that the connectors 10 and 20 are not fitted properly, and displays the determination result on the display unit. Display on 42. On the other hand, if the detected value of the force sensor 3 does not deviate from the permissible range (NO in S08), the controller 30 returns to step S06 and continues pushing the second connector 20.
 力覚センサ3の検出値が第2閾値N2より大きくなると(S07にてYES)、コントローラ30は、コネクタ10,20の嵌合の状態が初期嵌合状態であると判定する。コントローラ30は、ステップS09に進み、第2コネクタ20が嵌合方向A1に沿って予め設定されている距離D1だけ移動するように、エンドエフェクタ2を動作させる。 When the detected value of the force sensor 3 becomes larger than the second threshold value N2 (YES in S07), the controller 30 determines that the mating state of the connectors 10 and 20 is the initial mating state. The controller 30 proceeds to step S09 and operates the end effector 2 so that the second connector 20 moves along the fitting direction A1 by a preset distance D1.
 具体的には、図9(D)では、力覚センサ3の検出値が第2閾値N2となるときの第1コネクタ10に対する第2コネクタ20の相対位置を「相対位置P2」とする。相対位置P2は固定値ではなく、力覚センサ3の検出値に応じて変化する可変値である。コントローラ30は、第2コネクタ20を、相対位置P2から予め設定した距離D1だけ嵌合方向A1に沿って移動させる。図9(E)では、相対位置P2から距離D1だけ第2コネクタ20を移動させたときの、第1コネクタ10に対する第2コネクタ20の相対位置を「相対位置P3」とする。第2コネクタ20を移動させる距離D1は、相対位置P2にいる第2コネクタ20と第1コネクタ10との嵌合の状態を初期嵌合状態から有効嵌合長領域に移行させることができる距離に設定されている。 Specifically, in FIG. 9D, the relative position of the second connector 20 with respect to the first connector 10 when the detected value of the force sensor 3 becomes the second threshold value N2 is defined as the “relative position P2”. The relative position P2 is not a fixed value, but a variable value that changes according to the detection value of the force sensor 3. The controller 30 moves the second connector 20 along the fitting direction A1 by a preset distance D1 from the relative position P2. In FIG. 9E, the relative position of the second connector 20 with respect to the first connector 10 when the second connector 20 is moved from the relative position P2 by the distance D1 is defined as the “relative position P3”. The distance D1 for moving the second connector 20 is a distance at which the mating state of the second connector 20 and the first connector 10 at the relative position P2 can be shifted from the initial mating state to the effective mating length region. It is set.
 コントローラ30は、図8のステップS09により、第2コネクタ20を相対位置P2から距離D1だけ離れた相対位置P3まで移動させると、ステップS10により、相対位置P3における力覚センサ3の検出値N3と、第2閾値N2(相対位置P2における力覚センサ3の検出値に相当)とを比較する。 When the controller 30 moves the second connector 20 from the relative position P2 to the relative position P3 separated by the distance D1 in step S09 of FIG. 8, the controller 30 sets the detection value N3 of the force sensor 3 at the relative position P3 in step S10. , The second threshold value N2 (corresponding to the detected value of the force sensor 3 at the relative position P2) is compared.
 相対位置P3における力覚センサ3の検出値N3が第2閾値N2より小さい場合(S10にてYES)、コントローラ30は、コネクタ10,20の嵌合の状態が初期嵌合状態から有効嵌合長領域に移行したと判定する。この場合、コントローラ30は、ステップS11により、エンドエフェクタ2の移動により第2コネクタ20の押し込みを継続する。有効嵌合長領域では、エンドエフェクタ2に作用する荷重は、初期嵌合状態のピーク値よりも小さく、ほとんど変化しない。力覚センサ3は、エンドエフェクタ2に作用する荷重を検出し、検出値をコントローラ30へ出力する。 When the detected value N3 of the force sensor 3 at the relative position P3 is smaller than the second threshold value N2 (YES in S10), the controller 30 has the effective mating length from the initial mating state of the connectors 10 and 20. Judge that it has moved to the area. In this case, the controller 30 continues pushing the second connector 20 by moving the end effector 2 in step S11. In the effective mating length region, the load acting on the end effector 2 is smaller than the peak value in the initial mating state and hardly changes. The force sensor 3 detects the load acting on the end effector 2 and outputs the detected value to the controller 30.
 コントローラ30は、ステップS12により、力覚センサ3による荷重の検出値が予め設定された第4閾値N4を超えたか否かを判定する。「第4閾値N4」は、第1コネクタ10と第2コネクタ20との嵌合が完了した状態であって、ワーク6,8の第1辺61,81同士および/またはコネクタ10,20の開口縁部同士が接触しているときの荷重に設定されている。図9(F)では、力覚センサ3の検出値が第4閾値N4となるときの第1コネクタ10に対する第2コネクタ20の相対位置を「相対位置P4」とする。相対位置P4は固定値ではなく、力覚センサ3の検出値に応じて変化する可変値である。すなわち、ステップS12では、コントローラ30は、コネクタ10,20の嵌合の状態が嵌合完了状態となっているか否かを判定する。 The controller 30 determines in step S12 whether or not the load detection value by the force sensor 3 exceeds the preset fourth threshold value N4. The "fourth threshold value N4" is a state in which the first connector 10 and the second connector 20 have been fitted, and the first sides 61, 81 of the workpieces 6 and 8 and / or the openings of the connectors 10 and 20 are opened. The load is set when the edges are in contact with each other. In FIG. 9F, the relative position of the second connector 20 with respect to the first connector 10 when the detected value of the force sensor 3 becomes the fourth threshold value N4 is defined as the “relative position P4”. The relative position P4 is not a fixed value, but a variable value that changes according to the detection value of the force sensor 3. That is, in step S12, the controller 30 determines whether or not the mating state of the connectors 10 and 20 is the mating complete state.
 力覚センサ3の検出値が第4閾値N4より小さい場合(S12にてNO)、コントローラ30は、ステップS13に進み、力覚センサ3の検出値が許容範囲から外れているか否かを判定する。許容範囲は、コネクタ10,20が正常に嵌合されたときの力覚センサ3の検出値のプロファイルに基づいて設定することができる。力覚センサ3の検出値が許容範囲から外れている場合(S13にてYES)、コントローラ30は、ステップS16により、コネクタ10,20の嵌合が不良であると判定し、判定結果を表示部42に表示する。 When the detection value of the force sensor 3 is smaller than the fourth threshold value N4 (NO in S12), the controller 30 proceeds to step S13 and determines whether or not the detection value of the force sensor 3 is out of the permissible range. .. The permissible range can be set based on the profile of the detected value of the force sensor 3 when the connectors 10 and 20 are normally fitted. When the detection value of the force sensor 3 is out of the permissible range (YES in S13), the controller 30 determines in step S16 that the connectors 10 and 20 are not fitted properly, and displays the determination result on the display unit. Display on 42.
 一方、ステップS13において力覚センサ3の検出値が許容範囲から外れていない場合(S13にてNO)、コントローラ30は、ステップS11に戻り、第2コネクタ20の押し込みを継続する。力覚センサ3の検出値が第4閾値N4よりも大きくなると(S12にてYES)、コントローラ30は、ステップS14により、コネクタ10,20の嵌合が正常であると判定し、判定結果を表示部42に表示する。続いてコントローラ30は、ステップS15により、エンドエフェクタ2を嵌合方向A1と反対方向に移動させることにより、第2コネクタ20からエンドエフェクタ2を退避させる。 On the other hand, if the detected value of the force sensor 3 does not deviate from the permissible range in step S13 (NO in S13), the controller 30 returns to step S11 and continues pushing the second connector 20. When the detected value of the force sensor 3 becomes larger than the fourth threshold value N4 (YES in S12), the controller 30 determines in step S14 that the mating of the connectors 10 and 20 is normal, and displays the determination result. It is displayed in the unit 42. Subsequently, the controller 30 retracts the end effector 2 from the second connector 20 by moving the end effector 2 in the direction opposite to the fitting direction A1 in step S15.
 これに対して、ステップS10に戻って、相対位置P3における力覚センサ3の検出値N3が第2閾値N2より大きい場合(S10にてNO)、コントローラ30は、コネクタ10,20の嵌合の状態が初期嵌合状態から有効嵌合長領域に移行していないと判定する。この場合、コントローラ30は、ステップS16により、コネクタ10,20の嵌合が不良であると判定し、判定結果を表示部42に表示する。 On the other hand, returning to step S10, when the detected value N3 of the force sensor 3 at the relative position P3 is larger than the second threshold value N2 (NO in S10), the controller 30 is fitted with the connectors 10 and 20. It is determined that the state has not shifted from the initial fitting state to the effective fitting length region. In this case, the controller 30 determines in step S16 that the connectors 10 and 20 are not fitted properly, and displays the determination result on the display unit 42.
 以上説明したように、コントローラ30は、コネクタ嵌合処理の実行中、力覚センサ3による荷重の検出値と予め設定された複数の閾値N2,N3,N4とを比較した結果に基づいて、コネクタ10,20の嵌合の状態を判定する。そしてコントローラ30は、判定された嵌合の状態に基づいて、コネクタ10,20の嵌合の良否を判定する。 As described above, the controller 30 has the connector based on the result of comparing the load detection value by the force sensor 3 with the plurality of preset threshold values N2, N3, N4 during the execution of the connector fitting process. The mating state of 10 and 20 is determined. Then, the controller 30 determines whether the connectors 10 and 20 are fitted or not based on the determined fitting state.
 図12は、図8に示したコネクタ嵌合処理の実行中に力覚センサ3により検出される荷重のプロファイルの第1例を示す図である。プロファイルの縦軸は力覚センサ3の検出値を示し、横軸は第1コネクタ10に対する第2コネクタ20の相対位置を示す。図12に例示する力覚センサ3の検出値のプロファイルは、コネクタ10,20が正常に嵌合されたときに取得されたものであり、図8のステップS06,S09,S11にて第2コネクタ20を押し込んだときにエンドエフェクタ2に作用する荷重のプロファイルを示している。 FIG. 12 is a diagram showing a first example of a load profile detected by the force sensor 3 during execution of the connector fitting process shown in FIG. The vertical axis of the profile shows the detected value of the force sensor 3, and the horizontal axis shows the relative position of the second connector 20 with respect to the first connector 10. The profile of the detected value of the force sensor 3 illustrated in FIG. 12 was acquired when the connectors 10 and 20 were normally fitted, and the second connector was obtained in steps S06, S09, and S11 of FIG. The profile of the load acting on the end effector 2 when 20 is pushed in is shown.
 図12に示すように、コネクタ10,20の嵌合が正常である場合には、初期嵌合状態のときの力覚センサ3の検出値は単調に増加し、その終盤にてピークが発生する。そして、コネクタ10,20の嵌合の状態が有効嵌合長領域に移行すると、力覚センサ3の検出値は、初期嵌合状態に比べて小さい値となり、ほとんど変化することがない。さらにコネクタ10,20の嵌合の状態が嵌合完了状態になると、力覚センサ3の検出値は再び増加し始める。 As shown in FIG. 12, when the fitting of the connectors 10 and 20 is normal, the detected value of the force sensor 3 in the initial fitting state increases monotonically, and a peak occurs at the final stage thereof. .. Then, when the mating state of the connectors 10 and 20 shifts to the effective mating length region, the detected value of the force sensor 3 becomes a smaller value than the initial mating state and hardly changes. Further, when the mating state of the connectors 10 and 20 becomes the mating complete state, the detected value of the force sensor 3 starts to increase again.
 図13は、図8に示したコネクタ嵌合処理の実行中に力覚センサ3により検出される荷重のプロファイルの第2例を示す図である。プロファイルの縦軸は力覚センサ3の検出値を示し、横軸は第1コネクタ10に対する第2コネクタ20の相対位置を示す。図13に例示する力覚センサ3の検出値のプロファイルは、コネクタ10,20の嵌合が不良であるときに取得されたものであり、図8のステップS06,S09にて第2コネクタ20を押し込んだときにエンドエフェクタ2に作用する荷重のプロファイルを示している。 FIG. 13 is a diagram showing a second example of the load profile detected by the force sensor 3 during the execution of the connector fitting process shown in FIG. The vertical axis of the profile shows the detected value of the force sensor 3, and the horizontal axis shows the relative position of the second connector 20 with respect to the first connector 10. The profile of the detected value of the force sensor 3 illustrated in FIG. 13 was acquired when the connectors 10 and 20 were poorly fitted, and the second connector 20 was connected in steps S06 and S09 of FIG. The profile of the load acting on the end effector 2 when pushed in is shown.
 図12に示すプロファイルと図13に示すプロファイルとを比較すると、コネクタ10,20の嵌合が不良であるときには、コネクタ10,20の嵌合が正常であるときとは全く異なるプロファイルを示していることが分かる。詳細には、図13の例では、初期嵌合状態において力覚センサ3の検出値は増加し続けており、ピークが発生していない。またピーク発生後に、力覚センサ3の検出値がピーク値よりも小さい値でほとんど変化しないという特徴が見られない。なお、図13のプロファイルは、コネクタ10,20が適切に嵌合されず、第2コネクタ20が第1コネクタ10または第1コネクタ10とは別の部品と衝突している場合に取得され得る。 Comparing the profile shown in FIG. 12 with the profile shown in FIG. 13, when the fitting of the connectors 10 and 20 is poor, the profile is completely different from that when the fitting of the connectors 10 and 20 is normal. You can see that. Specifically, in the example of FIG. 13, the detected value of the force sensor 3 continues to increase in the initial mating state, and no peak occurs. Further, after the peak occurs, the detection value of the force sensor 3 is smaller than the peak value and hardly changes. The profile of FIG. 13 can be obtained when the connectors 10 and 20 are not properly fitted and the second connector 20 collides with a component different from the first connector 10 or the first connector 10.
 実施の形態1では、コネクタ10,20の嵌合が正常であるときの力覚センサ3の検出値のプロファイル(図12参照)の特徴に対応させて、図8のステップS07における第2閾値N2およびステップS12における第4閾値N4を設定するとともに、ステップS09における距離D1を設定する。 In the first embodiment, the second threshold value N2 in step S07 of FIG. 8 corresponds to the characteristics of the profile (see FIG. 12) of the detected value of the force sensor 3 when the connectors 10 and 20 are normally fitted. And the fourth threshold value N4 in step S12 is set, and the distance D1 in step S09 is set.
 具体的には、第2閾値N2は、初期嵌合状態において単調増加しているときにエンドエフェクタ2に作用する荷重に対応するように設定される。距離D1は、初期嵌合状態に現れる荷重のピークの幅よりも大きい値に設定される。これによると、エンドエフェクタ2に作用する荷重が第2閾値N2となるときの第2コネクタ20の相対位置P2から距離D1だけ第2コネクタ20を移動させたときの相対位置P3における荷重N3は、第2閾値N2に比べて小さくなる。したがって、図8のステップS10では、相対位置P3における力覚センサ3の検出値N3が第2閾値N2よりも小さいときには、コネクタ10,20の嵌合の状態が初期嵌合状態のピークを越えて有効嵌合長領域に移行したと判断することができる。 Specifically, the second threshold value N2 is set so as to correspond to the load acting on the end effector 2 when it is monotonically increasing in the initial mating state. The distance D1 is set to a value larger than the width of the peak of the load appearing in the initial mating state. According to this, the load N3 at the relative position P3 when the second connector 20 is moved by the distance D1 from the relative position P2 of the second connector 20 when the load acting on the end effector 2 becomes the second threshold value N2 is It is smaller than the second threshold value N2. Therefore, in step S10 of FIG. 8, when the detected value N3 of the force sensor 3 at the relative position P3 is smaller than the second threshold value N2, the mating state of the connectors 10 and 20 exceeds the peak of the initial mating state. It can be determined that the effective mating length region has been reached.
 また第4閾値N4は、嵌合完了状態において単調増加しているときにエンドエフェクタ2に作用する荷重に対応するように設定される。これによると、図8のステップS12では、力覚センサ3の検出値が第4閾値N4より大きいときには、コネクタ10,20の嵌合が完了したと判断することができる。 Further, the fourth threshold value N4 is set so as to correspond to the load acting on the end effector 2 when it is monotonically increasing in the fitting completed state. According to this, in step S12 of FIG. 8, when the detected value of the force sensor 3 is larger than the fourth threshold value N4, it can be determined that the fitting of the connectors 10 and 20 is completed.
 このようにコネクタ10,20の嵌合が正常であるときの力覚センサ3の検出値のプロファイル(図12参照)の特徴に対応させて複数の閾値を設定することにより、コントローラ30は、嵌合動作中に取得される力覚センサ3の検出値のプロファイルと複数の閾値とを比較することにより、エンドエフェクタ2に作用する荷重が正常時と同様の変化を示しているかどうかを判定することができる。これにより、コネクタ10,20の嵌合の良否を判定することが可能となる。 By setting a plurality of threshold values corresponding to the characteristics of the profile (see FIG. 12) of the detected value of the force sensor 3 when the connectors 10 and 20 are normally fitted, the controller 30 is fitted. By comparing the profile of the detected value of the force sensor 3 acquired during the combined operation with a plurality of threshold values, it is determined whether or not the load acting on the end effector 2 shows the same change as in the normal state. Can be done. This makes it possible to determine whether the connectors 10 and 20 are fitted or not.
 以上説明したように、実施の形態1に係るコネクタ嵌合装置は、エンドエフェクタを嵌合方向に移動してフローティングコネクタである第2コネクタを押圧することにより、第2コネクタを押し込む構成において、エンドエフェクタを二段階に分けて嵌合方向に移動させるとともに、一段目の移動と二段目の移動との間にエンドエフェクタを嵌合方向とは反対方向に移動させる。エンドエフェクタを嵌合方法とは反対方向に移動させ、第2コネクタを押圧力から解放することによって、第2コネクタの可動部に作用する付勢力を利用して第1コネクタに対する第2コネクタの相対位置のずれを修正することができる。その結果、第2コネクタを把持する把持部を有さないロボット装置を用いて、第1コネクタに対する第2コネクタの相対位置に依存せずに、第1コネクタおよび第2コネクタの嵌合動作を行なうことができる。 As described above, the connector fitting device according to the first embodiment has a configuration in which the second connector is pushed by moving the end effector in the fitting direction and pressing the second connector which is a floating connector. The effector is moved in the fitting direction in two stages, and the end effector is moved in the direction opposite to the fitting direction between the movement of the first step and the movement of the second step. By moving the end effector in the direction opposite to the fitting method and releasing the second connector from the pressing force, the urging force acting on the moving part of the second connector is used to make the second connector relative to the first connector. The misalignment can be corrected. As a result, using a robot device that does not have a grip portion that grips the second connector, the fitting operation of the first connector and the second connector is performed independently of the relative position of the second connector with respect to the first connector. be able to.
 また、嵌合動作中の力覚センサの検出値のプロファイルに基づいて、エンドエフェクタに作用する荷重が正常時と同様の変化を示しているか否かを判定することにより、第1コネクタに対する第2コネクタの相対位置に依存せずに、第1コネクタおよび第2コネクタの嵌合の良否を判定することができる。 Further, by determining whether or not the load acting on the end effector shows the same change as in the normal state based on the profile of the detected value of the force sensor during the mating operation, the second connector with respect to the first connector is seconded. Whether or not the first connector and the second connector are fitted can be determined independently of the relative positions of the connectors.
 なお、上述した実施の形態1では、第1コネクタ10を雌コネクタとし、第2コネクタ20を雄コネクタとする構成について例示したが、第1コネクタ10を雄コネクタとし、第2コネクタ20を雌コネクタとする構成としても上述したコネクタ嵌合処理を実行することができる。また、第2コネクタ20をフローティングコネクタとする構成について例示したが、第1コネクタ10をフローティングコネクタとする構成としても、エンドエフェクタ2を嵌合方向とは反対方向に移動させることにより、第1コネクタ10の可動部に作用する付勢力を利用して第1コネクタ10に対する第2コネクタ20の相対位置のずれを修正することができる。 In the first embodiment described above, the configuration in which the first connector 10 is a female connector and the second connector 20 is a male connector has been illustrated, but the first connector 10 is a male connector and the second connector 20 is a female connector. The connector fitting process described above can be executed even in the configuration described above. Further, although the configuration in which the second connector 20 is a floating connector has been illustrated, even in the configuration in which the first connector 10 is a floating connector, the first connector is formed by moving the end effector 2 in the direction opposite to the fitting direction. The deviation of the relative position of the second connector 20 with respect to the first connector 10 can be corrected by utilizing the urging force acting on the movable portion of the ten.
 また、上述した実施の形態1では、嵌合動作中の力覚センサによる荷重の検出値に基づいて、第1コネクタおよび第2コネクタの嵌合の良否を判定する構成としたが、力覚センサの検出値に加えて、エンドエフェクタ2の位置を示す情報に基づいて、嵌合の良否を判定する構成としてもよい。 Further, in the first embodiment described above, the force sensor is configured to determine whether the first connector and the second connector are fitted or not based on the load detected value by the force sensor during the fitting operation. In addition to the detected value of, the quality of fitting may be determined based on the information indicating the position of the end effector 2.
 図14は、実施の形態1の第1変形例に係るコネクタ嵌合処理を説明するためのフローチャートである。図14に示すフローチャートは、図8に示すフローチャートに対し、ステップS071,S101,S102を追加したものである。なお、ステップS01~S05については図8と同じであるため、図示を省略している。 FIG. 14 is a flowchart for explaining the connector fitting process according to the first modification of the first embodiment. The flowchart shown in FIG. 14 is obtained by adding steps S071, S101, and S102 to the flowchart shown in FIG. Since steps S01 to S05 are the same as those in FIG. 8, the illustration is omitted.
 図14を参照して、第1変更例では、コントローラ30は、力覚センサ3による荷重の検出値が第2閾値N2より大きい場合(S07にてYES)、コネクタ10,20の嵌合の状態が初期嵌合状態であると判定するとともに、ステップS071により、このときのエンドエフェクタ2の位置E2を検出する。エンドエフェクタ2の位置Eは、嵌合方向A1に沿って第1コネクタ10に向かう方向を正方向とする。すなわち、エンドエフェクタ2が第1コネクタ10に近づくに従って、エンドエフェクタ2の位置Eの値が大きくなる。 With reference to FIG. 14, in the first modification, when the load detected value by the force sensor 3 is larger than the second threshold value N2 (YES in S07), the controller 30 is in the mated state of the connectors 10 and 20. Is in the initial mating state, and the position E2 of the end effector 2 at this time is detected in step S071. The position E of the end effector 2 has a positive direction in the direction toward the first connector 10 along the fitting direction A1. That is, as the end effector 2 approaches the first connector 10, the value of the position E of the end effector 2 increases.
 次に、コントローラ30は、ステップS09により、第2コネクタ20を相対位置P2から距離D1だけ離れた相対位置P3に移動させ、ステップS10により、相対位置P3における力覚センサ3の検出値N3と、第2閾値N2とを比較する。 Next, the controller 30 moves the second connector 20 to the relative position P3 separated from the relative position P2 by the distance D1 in step S09, and in step S10, the detection value N3 of the force sensor 3 at the relative position P3 and Compare with the second threshold N2.
 相対位置P3における力覚センサ3の検出値N3が第2閾値N2より小さい場合(S10にてYES)、コントローラ30は、ステップS101により、このときのエンドエフェクタ2の位置E3を検出する。コントローラ30は、ステップS102により、現在のエンドエフェクタ2の位置E3と、ステップS071にて検出したエンドエフェクタ2の位置E2とを比較する。位置E2は、ステップS09により第2コネクタ20を距離D1だけ移動させる前のエンドエフェクタ2の位置である。 When the detection value N3 of the force sensor 3 at the relative position P3 is smaller than the second threshold value N2 (YES in S10), the controller 30 detects the position E3 of the end effector 2 at this time in step S101. In step S102, the controller 30 compares the current position E3 of the end effector 2 with the position E2 of the end effector 2 detected in step S071. The position E2 is the position of the end effector 2 before the second connector 20 is moved by the distance D1 in step S09.
 位置E2より位置E3が大きい場合(S102にてYES)、コントローラ30は、エンドエフェクタ2が第1コネクタ10に向かって移動しており、エンドエフェクタ2による第2コネクタ20の押し込みが嵌合方向A1に沿って正常に行なわれていると判定する。この場合、コントローラ30は、ステップS11に進み、エンドエフェクタ2をさらに嵌合方向A1に向けて移動させて、第2コネクタ20の押し込みを継続する。 When the position E3 is larger than the position E2 (YES in S102), the end effector 2 of the controller 30 is moving toward the first connector 10, and the pushing of the second connector 20 by the end effector 2 is in the fitting direction A1. It is determined that the operation is normally performed according to. In this case, the controller 30 proceeds to step S11, further moves the end effector 2 toward the fitting direction A1, and continues pushing the second connector 20.
 一方、ステップS102にて位置E2より位置E3が小さい場合(S102にてNO)、コントローラ30は、エンドエフェクタ2が第1コネクタ10に向かって正常に移動していないと判定する。この場合、コントローラ30は、ステップS16により、コネクタ10,20の嵌合が不良であると判定し、判定結果を表示部42に表示する。 On the other hand, if the position E3 is smaller than the position E2 in step S102 (NO in S102), the controller 30 determines that the end effector 2 has not normally moved toward the first connector 10. In this case, the controller 30 determines in step S16 that the connectors 10 and 20 are not fitted properly, and displays the determination result on the display unit 42.
 図15は、実施の形態1の第2変更例に係るコネクタ嵌合処理を説明するためのフローチャートである。図15に示すフローチャートは、図14に示すフローチャートに対し、ステップS103を追加したものである。なお、図14と同様、ステップS01~S05については図8と同じであるため、図示を省略している。 FIG. 15 is a flowchart for explaining the connector fitting process according to the second modification of the first embodiment. The flowchart shown in FIG. 15 is obtained by adding step S103 to the flowchart shown in FIG. Since steps S01 to S05 are the same as those in FIG. 8 as in FIG. 14, the illustration is omitted.
 図15を参照して、第2変更例では、ステップS102にて、位置E2より位置E3が大きいことにより(S102にてYES)、エンドエフェクタ2による第2コネクタ20の押し込みが嵌合方向A1に沿って正常に行なわれていると判定されると、コントローラ30は、さらにステップS103により、エンドエフェクタ2の位置E3は予め設定された許容範囲内に入っているか否かを判定する。ステップS103における許容範囲は、コネクタ10,20の嵌合の状態が有効嵌合長領域となるときのエンドエフェクタ2の位置Eに基づいて設定することができる。 With reference to FIG. 15, in the second modification, in step S102, since the position E3 is larger than the position E2 (YES in S102), the pushing of the second connector 20 by the end effector 2 is in the fitting direction A1. If it is determined that the operation is normally performed, the controller 30 further determines in step S103 whether or not the position E3 of the end effector 2 is within the preset allowable range. The permissible range in step S103 can be set based on the position E of the end effector 2 when the mating state of the connectors 10 and 20 becomes the effective mating length region.
 エンドエフェクタ2の位置E3が許容範囲内に入っている場合(S103にてYES)、コントローラ30は、エンドエフェクタ2による第2コネクタ20の押し込みが正常に行なわれていると判定し、ステップS11に進み、エンドエフェクタ2をさらに嵌合方向A1に向けて移動させて、第2コネクタ20の押し込みを継続する。 When the position E3 of the end effector 2 is within the permissible range (YES in S103), the controller 30 determines that the second connector 20 is normally pushed by the end effector 2, and proceeds to step S11. The end effector 2 is further moved toward the fitting direction A1 to continue pushing the second connector 20.
 一方、ステップS103にて位置E3が許容範囲から外れている場合(S103にてNO)、コントローラ30は、エンドエフェクタ2による第2コネクタ20の押し込みが正常に行なわれていないと判定する。この場合、コントローラ30は、ステップS16により、コネクタ10,20の嵌合が不良であると判定し、判定結果を表示部42に表示する。 On the other hand, if the position E3 is out of the permissible range in step S103 (NO in S103), the controller 30 determines that the second connector 20 is not normally pushed by the end effector 2. In this case, the controller 30 determines in step S16 that the connectors 10 and 20 are not fitted properly, and displays the determination result on the display unit 42.
 第1変更例および第2変更例に係るコネクタ嵌合処理によれば、嵌合動作中のエンドエフェクタ2の位置情報からエンドエフェクタ2による第2コネクタ20の押し込みの方向が正常であるか否かを判定することができる。また第2変更例に係るコネクタ嵌合処理によれば、エンドエフェクタ2による第2コネクタ20の押し込みの量が正常であるか否かを判定することができる。これによると、嵌合方向A1とは異なる方向に第2コネクタ20が押し込まれること、または嵌合方向A1に許容量を超えて第2コネクタ20が押し込まれることによる、コネクタ10,20の破損を未然に防ぐことができる。 According to the connector fitting process according to the first modification example and the second modification example, whether or not the pushing direction of the second connector 20 by the end effector 2 is normal based on the position information of the end effector 2 during the fitting operation. Can be determined. Further, according to the connector fitting process according to the second modification, it is possible to determine whether or not the amount of pushing of the second connector 20 by the end effector 2 is normal. According to this, the connectors 10 and 20 are damaged due to the second connector 20 being pushed in a direction different from the fitting direction A1 or the second connector 20 being pushed in the fitting direction A1 in excess of the allowable amount. It can be prevented in advance.
 実施の形態2.
 上述した実施の形態1では、コネクタ10,20の嵌合が正常であるときの力覚センサ3の検出値のプロファイルの特徴に対応させて複数の閾値を設定し、嵌合動作中に取得される力覚センサ3の検出値のプロファイルと当該複数の閾値とを比較することにより、コネクタ10,20の嵌合の良否を判定する構成について説明した。
Embodiment 2.
In the first embodiment described above, a plurality of threshold values are set corresponding to the characteristics of the profile of the detected value of the force sensor 3 when the fitting of the connectors 10 and 20 is normal, and are acquired during the fitting operation. A configuration for determining the quality of fitting of the connectors 10 and 20 by comparing the profile of the detected value of the force sensor 3 with the plurality of threshold values has been described.
 実施の形態2では、力覚センサ3の検出値のプロファイルを微分処理して得られる微分値のプロファイルに基づいて、コネクタ10,20の嵌合の良否を判定する構成について説明する。なお、微分値のプロファイルは、コントローラ30の波形処理部76(図7)により生成することができる。 In the second embodiment, a configuration for determining the fit of the connectors 10 and 20 based on the profile of the differential value obtained by differentiating the profile of the detected value of the force sensor 3 will be described. The profile of the differential value can be generated by the waveform processing unit 76 (FIG. 7) of the controller 30.
 図16は、コネクタ嵌合処理の実行中における力覚センサ3の検出値の微分値のプロファイルの第1例を示す図である。プロファイルの縦軸は力覚センサ3の検出値の微分値を示し、横軸は第1コネクタ10に対する第2コネクタ20の相対位置を示す。図16に例示する微分値のプロファイルは、コネクタ10,20が正常に嵌合されたときに取得されたものであり、図8のステップS06,S09,S11にて第2コネクタ20を押し込んだときにエンドエフェクタ2に作用する荷重の微分値のプロファイルを示している。 FIG. 16 is a diagram showing a first example of a profile of the differential value of the detected value of the force sensor 3 during the execution of the connector fitting process. The vertical axis of the profile shows the differential value of the detected value of the force sensor 3, and the horizontal axis shows the relative position of the second connector 20 with respect to the first connector 10. The profile of the differential value illustrated in FIG. 16 is obtained when the connectors 10 and 20 are normally fitted, and when the second connector 20 is pushed in in steps S06, S09, and S11 of FIG. Shows the profile of the differential value of the load acting on the end effector 2.
 図16に示すように、コネクタ10,20の嵌合が正常である場合には、初期嵌合状態のときの力覚センサ3の検出値のピークに対応して、微分値は極小値を示している。そして、コネクタ10,20の嵌合の状態が有効嵌合長領域に移行すると、微分値は0近傍の値となり、ほとんど変化することがない。さらにコネクタ10,20の嵌合の状態が嵌合完了状態になると、微分値は再び増加し始める。 As shown in FIG. 16, when the fitting of the connectors 10 and 20 is normal, the differential value shows a minimum value corresponding to the peak of the detected value of the force sensor 3 in the initial fitting state. ing. Then, when the mating state of the connectors 10 and 20 shifts to the effective mating length region, the differential value becomes a value near 0 and hardly changes. Further, when the mating state of the connectors 10 and 20 becomes the mating complete state, the differential value starts to increase again.
 図17は、コネクタ嵌合処理の実行中における力覚センサ3の検出値の微分値のプロファイルの第2例を示す図である。プロファイルの縦軸は力覚センサ3の検出値の微分値を示し、横軸は第1コネクタ10に対する第2コネクタ20の相対位置を示す。図17に例示する微分値のプロファイルは、コネクタ10,20の嵌合が不良であるときに取得されたものであり、図8のステップS06,S09にて第2コネクタ20を押し込んだときにエンドエフェクタ2に作用する荷重の微分値のプロファイルを示している。 FIG. 17 is a diagram showing a second example of a profile of the differential value of the detected value of the force sensor 3 during the execution of the connector fitting process. The vertical axis of the profile shows the differential value of the detected value of the force sensor 3, and the horizontal axis shows the relative position of the second connector 20 with respect to the first connector 10. The profile of the differential value illustrated in FIG. 17 was acquired when the connectors 10 and 20 were poorly fitted, and ended when the second connector 20 was pushed in in steps S06 and S09 of FIG. The profile of the differential value of the load acting on the effector 2 is shown.
 図16に示すプロファイルと図17に示すプロファイルとを比較すると、コネクタ10,20の嵌合が不良であるときには、コネクタ10,20の嵌合が正常であるときとは全く異なるプロファイルを示していることが分かる。詳細には、図17の例では、初期嵌合状態において微分値は極小値を示していない。また、極小値を示した後に、微分値が再び増加するという特徴が見られない。 Comparing the profile shown in FIG. 16 with the profile shown in FIG. 17, when the fitting of the connectors 10 and 20 is poor, the profile is completely different from that when the fitting of the connectors 10 and 20 is normal. You can see that. Specifically, in the example of FIG. 17, the differential value does not show the minimum value in the initial mating state. In addition, there is no characteristic that the differential value increases again after showing the minimum value.
 本実施の形態2では、コネクタ10,20の嵌合が正常であるときの力覚センサ3の検出値の微分値のプロファイル(図16参照)の特徴に対応させて複数の閾値を設定する。具体的には、第2閾値D2は、初期嵌合状態において単調増加しているときにエンドエフェクタ2に作用する荷重の微分値に対応するように設定される。なお、実施の形態1と同様に、距離D1は、初期嵌合状態に現れる荷重のピークの幅よりも大きい値に設定される。これによると、エンドエフェクタ2に作用する荷重の微分値が第2閾値D2となるときの第2コネクタ20の相対位置P2から距離D1だけ第2コネクタ20を移動させたときの相対位置P3までの微分値のプロファイルには極小値が現れる。したがって、相対位置P2から距離D1だけ第2コネクタ20を移動させたときの微分値のプロファイルに極小値が現れたときには、コネクタ10,20の嵌合の状態が初期嵌合状態のピークを越えて有効嵌合長領域に移行したと判断することができる。 In the second embodiment, a plurality of threshold values are set corresponding to the characteristics of the differential value profile (see FIG. 16) of the detected value of the force sensor 3 when the connectors 10 and 20 are normally fitted. Specifically, the second threshold value D2 is set so as to correspond to the differential value of the load acting on the end effector 2 when monotonically increasing in the initial fitting state. As in the first embodiment, the distance D1 is set to a value larger than the width of the peak of the load appearing in the initial mating state. According to this, from the relative position P2 of the second connector 20 when the differential value of the load acting on the end effector 2 becomes the second threshold value D2 to the relative position P3 when the second connector 20 is moved by the distance D1. A minimum value appears in the profile of the differential value. Therefore, when a minimum value appears in the profile of the differential value when the second connector 20 is moved from the relative position P2 by the distance D1, the mating state of the connectors 10 and 20 exceeds the peak of the initial mating state. It can be determined that the region has moved to the effective mating length region.
 また第4閾値D4は、嵌合完了状態において単調増加しているときにエンドエフェクタ2に作用する荷重の微分値に対応するように設定される。これによると、力覚センサ3の検出値の微分値が第4閾値D4より大きいときには、コネクタ10,20の嵌合が完了したと判断することができる。 Further, the fourth threshold value D4 is set so as to correspond to the differential value of the load acting on the end effector 2 when the fitting is monotonically increased in the completed state. According to this, when the differential value of the detected value of the force sensor 3 is larger than the fourth threshold value D4, it can be determined that the fitting of the connectors 10 and 20 is completed.
 このようにコネクタ10,20の嵌合が正常であるときの力覚センサ3の検出値の微分値のプロファイル(図16参照)の特徴に対応させて複数の閾値を設定することにより、コントローラ30は、嵌合動作中に取得される力覚センサ3の検出値の微分値のプロファイルと複数の閾値とを比較することにより、エンドエフェクタ2に作用する荷重の微分値が正常時と同様の変化を示しているかどうかを判定することができる。これにより、コネクタ10,20の嵌合の良否を判定することが可能となる。 By setting a plurality of thresholds corresponding to the characteristics of the differential value profile (see FIG. 16) of the detected value of the force sensor 3 when the fitting of the connectors 10 and 20 is normal in this way, the controller 30 By comparing the profile of the differential value of the detected value of the force sensor 3 acquired during the fitting operation with a plurality of threshold values, the differential value of the load acting on the end effector 2 changes in the same manner as in the normal state. Can be determined. This makes it possible to determine whether the connectors 10 and 20 are fitted or not.
 図18は、実施の形態2に係るコネクタ嵌合処理を説明するためのフローチャートである。図18に示すフローチャートは、図8に示すフローチャートにおけるステップS07,S10,S12をそれぞれ、ステップS07A,S10A,S12Aに置き換えたものである。 FIG. 18 is a flowchart for explaining the connector fitting process according to the second embodiment. In the flowchart shown in FIG. 18, steps S07, S10, and S12 in the flowchart shown in FIG. 8 are replaced with steps S07A, S10A, and S12A, respectively.
 図18を参照して、実施の形態2に係るコネクタ嵌合処理は、実施の形態1に係るコネクタ嵌合処理と同様に、エンドエフェクタ2を二段階に分けて嵌合方向A1に移動させるとともに、一段目の移動と二段目の移動との間にエンドエフェクタ2を嵌合方向A1とは反対方向に移動させて第1コネクタ10に対する第2コネクタ20の相対位置のずれを修正するように構成される。具体的には、コントローラ30は、図8と同じステップS01~S06の処理を実行することにより、一段目の移動と相対位置のずれの修正とを行なう。 With reference to FIG. 18, in the connector fitting process according to the second embodiment, the end effector 2 is moved in the fitting direction A1 in two stages in the same manner as the connector fitting process according to the first embodiment. , The end effector 2 is moved in the direction opposite to the fitting direction A1 between the movement of the first stage and the movement of the second stage to correct the deviation of the relative position of the second connector 20 with respect to the first connector 10. It is composed. Specifically, the controller 30 executes the same processes of steps S01 to S06 as in FIG. 8 to move the first stage and correct the relative position deviation.
 実施の形態2では、コントローラ30は、二段目の移動における力覚センサ3の検出値の微分値のプロファイルに基づいて、コネクタ10,20の嵌合の良否を判定する。具体的には、コントローラ30は、ステップS06に進み、再び第2コネクタ20の押し込みを行なう。力覚センサ3は、エンドエフェクタ2に作用する荷重を検出し、検出値をコントローラ30へ出力する。 In the second embodiment, the controller 30 determines whether the connectors 10 and 20 are fitted or not based on the profile of the differential value of the detected value of the force sensor 3 in the second stage movement. Specifically, the controller 30 proceeds to step S06 and pushes in the second connector 20 again. The force sensor 3 detects the load acting on the end effector 2 and outputs the detected value to the controller 30.
 コントローラ30は、ステップS07Aにより、力覚センサ3による荷重の検出値の微分値が予め設定された第2閾値D2を超えたか否かを判定する。第2閾値D2は、第1コネクタ10と第2コネクタ20との初期嵌合において単調増加する荷重の微分値に設定されている。すなわち、コントローラ30は、コネクタ10,コネクタ20の嵌合の状態が初期嵌合状態となっているか否かを判定する。 The controller 30 determines in step S07A whether or not the differential value of the load detected value by the force sensor 3 exceeds the preset second threshold value D2. The second threshold value D2 is set to the differential value of the load that monotonically increases in the initial fitting of the first connector 10 and the second connector 20. That is, the controller 30 determines whether or not the mating state of the connector 10 and the connector 20 is the initial mating state.
 力覚センサ3の検出値の微分値が第2閾値D2より小さい場合(S07AにてNO)、コントローラ30は、ステップS08に進み、微分値が許容範囲から外れているか否かを判定する。許容範囲は、コネクタ10,20が正常に嵌合されたときの力覚センサ3の検出値の微分値のプロファイルに基づいて設定することができる。 When the differential value of the detected value of the force sensor 3 is smaller than the second threshold value D2 (NO in S07A), the controller 30 proceeds to step S08 and determines whether or not the differential value is out of the permissible range. The permissible range can be set based on the profile of the differential value of the detection value of the force sensor 3 when the connectors 10 and 20 are normally fitted.
 微分値が許容範囲から外れている場合(S08にてYES)、コントローラ30は、ステップS16により、コネクタ10,20の嵌合が不良であると判定し、判定結果を表示部42に表示する。一方、微分値が許容範囲から外れていない場合(S08にてNO)、コントローラ30は、ステップS06に戻り、第2コネクタ20の押し込みを継続する。 If the differential value is out of the permissible range (YES in S08), the controller 30 determines in step S16 that the connectors 10 and 20 are not fitted properly, and displays the determination result on the display unit 42. On the other hand, if the differential value does not deviate from the permissible range (NO in S08), the controller 30 returns to step S06 and continues pushing the second connector 20.
 微分値が第2閾値D2より大きくなると(S07AにてYES)、コントローラ30は、コネクタ10,20の嵌合の状態が初期嵌合状態であると判定する。コントローラ30は、ステップS09に進み、第2コネクタ20が嵌合方向A1に沿って予め設定されている距離D1だけ移動するように、エンドエフェクタ2を動作させる。 When the differential value becomes larger than the second threshold value D2 (YES in S07A), the controller 30 determines that the mating state of the connectors 10 and 20 is the initial mating state. The controller 30 proceeds to step S09 and operates the end effector 2 so that the second connector 20 moves along the fitting direction A1 by a preset distance D1.
 第2コネクタ20を相対位置P2から距離D1だけ離れた相対位置P3まで移動させると、コントローラ30は、ステップS10Aにより、相対位置P2から相対位置P3までの微分値のプロファイルに極小値が現れたか否かを判定する。 When the second connector 20 is moved from the relative position P2 to the relative position P3 separated by the distance D1, the controller 30 determines whether or not a minimum value appears in the profile of the differential value from the relative position P2 to the relative position P3 in step S10A. Is determined.
 微分値のプロファイルに極小値が現れた場合(S10AにてYES)、コントローラ30は、コネクタ10,20の嵌合の状態が初期嵌合状態から有効嵌合長領域に移行したと判定する。この場合、コントローラ30は、ステップS11により、エンドエフェクタ2の移動により第2コネクタ20の押し込みを継続する。有効嵌合長領域では、エンドエフェクタ2に作用する荷重は、初期嵌合状態のピーク値よりも小さく、ほとんど変化しない。力覚センサ3は、エンドエフェクタ2に作用する荷重を検出し、検出値をコントローラ30へ出力する。 When a minimum value appears in the profile of the differential value (YES in S10A), the controller 30 determines that the mating state of the connectors 10 and 20 has shifted from the initial mating state to the effective mating length region. In this case, the controller 30 continues pushing the second connector 20 by moving the end effector 2 in step S11. In the effective mating length region, the load acting on the end effector 2 is smaller than the peak value in the initial mating state and hardly changes. The force sensor 3 detects the load acting on the end effector 2 and outputs the detected value to the controller 30.
 コントローラ30は、ステップS12Aにより、力覚センサ3による荷重の検出値の微分値が予め設定された第4閾値D4を超えたか否かを判定する。微分値が第4閾値D4より小さい場合(S12AにてNO)、コントローラ30は、ステップS13に進み、微分値が許容範囲から外れているか否かを判定する。許容範囲は、コネクタ10,20が正常に嵌合されたときの力覚センサ3の検出値のプロファイルに基づいて設定することができる。微分値が許容範囲から外れている場合(S13にてYES)、コントローラ30は、ステップS16により、コネクタ10,20の嵌合が不良であると判定し、判定結果を表示部42に表示する。 The controller 30 determines in step S12A whether or not the differential value of the load detected value by the force sensor 3 exceeds the preset fourth threshold value D4. When the differential value is smaller than the fourth threshold value D4 (NO in S12A), the controller 30 proceeds to step S13 and determines whether or not the differential value is out of the permissible range. The permissible range can be set based on the profile of the detected value of the force sensor 3 when the connectors 10 and 20 are normally fitted. If the differential value is out of the permissible range (YES in S13), the controller 30 determines in step S16 that the connectors 10 and 20 are not fitted properly, and displays the determination result on the display unit 42.
 一方、ステップS13において微分値が許容範囲から外れていない場合(S13にてNO)、コントローラ30は、ステップS11に戻り、第2コネクタ20の押し込みを継続する。微分値が第4閾値D4よりも大きくなると(S12AにてYES)、コントローラ30は、ステップS14により、コネクタ10,20の嵌合が正常であると判定し、判定結果を表示部42に表示する。続いてコントローラ30は、ステップS15により、エンドエフェクタ2を嵌合方向A1と反対方向に移動させることにより、第2コネクタ20からエンドエフェクタ2を退避させる。 On the other hand, if the differential value does not deviate from the permissible range in step S13 (NO in S13), the controller 30 returns to step S11 and continues pushing the second connector 20. When the differential value becomes larger than the fourth threshold value D4 (YES in S12A), the controller 30 determines in step S14 that the fitting of the connectors 10 and 20 is normal, and displays the determination result on the display unit 42. .. Subsequently, the controller 30 retracts the end effector 2 from the second connector 20 by moving the end effector 2 in the direction opposite to the fitting direction A1 in step S15.
 これに対して、ステップS10Aに戻って、相対位置P2から相対位置P3までの微分値のプロファイルに極小値が現れていない場合には(S10AにてNO)、コントローラ30は、コネクタ10,20の嵌合の状態が初期嵌合状態から有効嵌合長領域に移行していないと判定する。この場合、コントローラ30は、ステップS16により、コネクタ10,20の嵌合が不良であると判定し、判定結果を表示部42に表示する。 On the other hand, returning to step S10A, if the minimum value does not appear in the profile of the differential value from the relative position P2 to the relative position P3 (NO in S10A), the controller 30 is the connector 10 and 20. It is determined that the mating state has not shifted from the initial mating state to the effective mating length region. In this case, the controller 30 determines in step S16 that the connectors 10 and 20 are not fitted properly, and displays the determination result on the display unit 42.
 以上説明したように、実施の形態2に係るコネクタ嵌合装置によれば、嵌合動作中の力覚センサの検出値の微分値のプロファイルが正常時と同様の変化を示しているか否かを判定することにより、実施の形態1と同様に、第1コネクタに対する第2コネクタの相対位置に依存せずに、第1コネクタおよび第2コネクタの嵌合の良否を判定することができる。 As described above, according to the connector fitting device according to the second embodiment, whether or not the profile of the differential value of the detected value of the force sensor during the fitting operation shows the same change as in the normal state. By making the determination, it is possible to determine whether the fitting of the first connector and the second connector is good or bad without depending on the relative position of the second connector with respect to the first connector, as in the first embodiment.
 すなわち、力覚センサの検出値の微分値は、力覚センサの検出値のプロファイルの特徴を表現するパラメータであるため、正常時の微分値のプロファイル(図16)の特徴に対応させて複数の閾値を設定することにより、実施の形態2においても実施の形態1と同様に、嵌合動作中にエンドエフェクタに作用する荷重が正常時と同様の変化を示しているか否かを判定することができる。 That is, since the differential value of the detected value of the force sensor is a parameter expressing the characteristics of the profile of the detected value of the force sensor, a plurality of differential values corresponding to the characteristics of the profile of the differential value in the normal state (FIG. 16) are used. By setting the threshold value, it is possible to determine whether or not the load acting on the end effector during the fitting operation shows the same change as in the normal state in the second embodiment as in the first embodiment. it can.
 さらに実施の形態2に係るコネクタ嵌合装置によると、コネクタ10,20の嵌合が正常であるときの力覚センサの検出値の大きさにばらつきが生じる場合においても、検出値のプロファイルの変化を表す微分値のプロファイルは普遍的であることから、検出値のばらつきに影響されることなく、コネクタ10,20の嵌合の良否を判定することができる。 Further, according to the connector fitting device according to the second embodiment, even when the magnitude of the detected value of the force sensor when the connectors 10 and 20 are normally fitted varies, the profile of the detected value changes. Since the profile of the differential value representing the above is universal, it is possible to determine whether the connectors 10 and 20 are fitted or not without being affected by the variation in the detected values.
 なお、実施の形態2では、力覚センサの検出値のプロファイルの特徴を表現するパラメータとして、力覚センサの検出値の微分値を用いる構成について説明したが、微分値以外のパラメータを用いることによっても、当該パラメータのプロファイルに基づいてコネクタ10,20の嵌合の良否を判定することができる。また、実施の形態2では、複数の閾値を絶対値とする構成としたが、複数の閾値を相対値としてもよい。 In the second embodiment, the configuration in which the differential value of the detected value of the force sensor is used as the parameter expressing the characteristics of the profile of the detected value of the force sensor has been described, but by using a parameter other than the differential value, Also, it is possible to determine whether the connectors 10 and 20 are fitted or not based on the profile of the parameter. Further, in the second embodiment, a plurality of threshold values are set as absolute values, but a plurality of threshold values may be set as relative values.
 実施の形態3.
 実施の形態1および2では、力覚センサ3の検出値または検出値の微分値に基づいてコネクタ10,20の嵌合の良否を判定する構成について説明したが、力覚センサ3の検出値および検出値の微分値の組み合わせに基づいて、コネクタ10,20の嵌合の良否を判定する構成としてもよい。もしくは、力覚センサ3の検出値およびその微分値と、他の波形処理に基づく値との組み合わせに基づいて、コネクタ10,20の嵌合の良否を判定する構成としてもよい。
Embodiment 3.
In the first and second embodiments, the configuration for determining the fit of the connectors 10 and 20 based on the detected value of the force sensor 3 or the differential value of the detected value has been described. The configuration may be such that the quality of fitting of the connectors 10 and 20 is determined based on the combination of the differential values of the detected values. Alternatively, the connector 10 and 20 may be fitted to each other based on a combination of the detected value of the force sensor 3 and its differential value and a value based on other waveform processing.
 このような構成とすることにより、実施の形態1および2による効果に加えて、力覚センサ3の検出値にばらつきがある場合、または検出値にノイズが重畳している場合においても、コネクタ10,20の嵌合の良否を安定して判定することができる。 With such a configuration, in addition to the effects of the first and second embodiments, the connector 10 is used even when the detected value of the force sensor 3 varies or noise is superimposed on the detected value. , 20 can be stably judged as to whether or not the fitting is good or bad.
 実施の形態4.
 実施の形態1では、図8のステップS07,S12においてコネクタ10,20の嵌合の状態を判定するための閾値N2,N4を予め設定された固定値とする構成について説明したが、これらの閾値を直前のステップまでに取得された力覚センサ3の検出値を用いた変動値とする構成としてもよい。
Embodiment 4.
In the first embodiment, the configuration in which the threshold values N2 and N4 for determining the mating state of the connectors 10 and 20 are set to preset fixed values in steps S07 and S12 of FIG. 8 has been described. May be a variation value using the detection value of the force sensor 3 acquired up to the immediately preceding step.
 例えば、図8のステップS10において、相対位置P3における荷重N3が、直前に得られた力覚センサ3の検出値のピーク値の50%以下となっているか否かを判定する構成としてもよい。または、図8のステップS12における第4閾値N4を、直前の有効嵌合長領域における力覚センサ3の検出値の平均値を数倍(例えば2倍)した値に設定する構成としてもよい。 For example, in step S10 of FIG. 8, it may be configured to determine whether or not the load N3 at the relative position P3 is 50% or less of the peak value of the detected value of the force sensor 3 obtained immediately before. Alternatively, the fourth threshold value N4 in step S12 of FIG. 8 may be set to a value obtained by multiplying (for example, doubling) the average value of the detected values of the force sensor 3 in the immediately preceding effective fitting length region.
 あるいは、図8のステップS10およびS12における閾値を、直前のステップまでに得られた力覚センサ3の検出値のプロファイルの特定の領域または特定の相対位置における検出値との割合に基づいて設定してもよいし、当該検出値に対する増減に基づいて設定してもよい。 Alternatively, the threshold values in steps S10 and S12 of FIG. 8 are set based on the ratio of the detected values of the force sensor 3 obtained up to the immediately preceding step to the detected values in a specific region or a specific relative position of the profile. It may be set based on the increase / decrease with respect to the detected value.
 このような構成とすることにより、力覚センサ3の検出値にばらつきがある場合においても、コネクタ10,20の嵌合の良否を安定して判定することができる。 With such a configuration, even if the detection value of the force sensor 3 varies, it is possible to stably determine whether the connectors 10 and 20 are fitted or not.
 実施の形態5.
 実施の形態1では、コネクタ10,20の嵌合作業にロボット装置1を用いる構成について説明したが、ロボット装置1に代えて、サーボモータを備えた1軸のアクチュエータを用いてもよい。この場合、コントローラ30は、サーボモータによるトルク値を実施の形態1における力覚センサ3の検出値と同義と捉え、図8のフローチャートと同様のフローチャートを実行する。これによると、実施の形態1による効果に加えて、コネクタ嵌合装置をより安価に構成することが可能となる。
Embodiment 5.
In the first embodiment, the configuration in which the robot device 1 is used for the fitting work of the connectors 10 and 20 has been described, but instead of the robot device 1, a uniaxial actuator provided with a servomotor may be used. In this case, the controller 30 regards the torque value by the servomotor as synonymous with the detected value of the force sensor 3 in the first embodiment, and executes a flowchart similar to the flowchart of FIG. According to this, in addition to the effect of the first embodiment, the connector fitting device can be configured at a lower cost.
 実施の形態6.
 実施の形態1では、コネクタ10,20の嵌合作業において、力覚センサ3の検出値を用いる判定によって嵌合完了を判定する構成について説明した。
Embodiment 6.
In the first embodiment, in the fitting operation of the connectors 10 and 20, the configuration in which the fitting completion is determined by the determination using the detection value of the force sensor 3 has been described.
 実施の形態6では、実施の形態1に係るコネクタ嵌合装置100に画像センサを追加する構成を採用し、当該画像センサによる嵌合量検出値を用いて、コネクタ10,20の嵌合完了を判定する構成について説明する。 In the sixth embodiment, an image sensor is added to the connector fitting device 100 according to the first embodiment, and the fitting amount detection value of the image sensor is used to complete the fitting of the connectors 10 and 20. The configuration for determination will be described.
 図19は、実施の形態6に係るコネクタ嵌合装置101を示す斜視図である。図19に示すように、実施の形態6に係るコネクタ嵌合装置101は、図1に示したコネクタ嵌合装置100に画像センサ9を追加したものである。画像センサ9は、コネクタ10,20の嵌合完了位置の直上に配置されている。画像センサ9は、コネクタ10,20を撮像し、撮像した画像を示すデータをコントローラ30へ出力する。 FIG. 19 is a perspective view showing the connector fitting device 101 according to the sixth embodiment. As shown in FIG. 19, the connector fitting device 101 according to the sixth embodiment is obtained by adding an image sensor 9 to the connector fitting device 100 shown in FIG. The image sensor 9 is arranged directly above the fitting completion position of the connectors 10 and 20. The image sensor 9 images the connectors 10 and 20 and outputs data indicating the captured images to the controller 30.
 図20は、実施の形態6に係るコネクタ嵌合処理を説明するためのフローチャートである。図20に示すフローチャートは、図8に示すフローチャートにおけるステップS11~S13を、ステップS61~S64に置き換えたものである。 FIG. 20 is a flowchart for explaining the connector fitting process according to the sixth embodiment. In the flowchart shown in FIG. 20, steps S11 to S13 in the flowchart shown in FIG. 8 are replaced with steps S61 to S64.
 図20を参照して、図8と同じステップS09により、第2コネクタ20を相対位置P2から距離D1だけ離れた相対位置P3まで移動させると、ステップS10により、相対位置P3における力覚センサ3の検出値N3と、第2閾値N2(相対位置P2における力覚センサ3の検出値に相当)とを比較する。 With reference to FIG. 20, when the second connector 20 is moved from the relative position P2 to the relative position P3 separated by the distance D1 by the same step S09 as in FIG. 8, the force sensor 3 at the relative position P3 is moved by step S10. The detected value N3 is compared with the second threshold value N2 (corresponding to the detected value of the force sensor 3 at the relative position P2).
 相対位置P3における力覚センサ3の検出値が第2閾値N2より小さい場合(S10にてYES)、コントローラ30は、ステップS61により、画像センサ9によりコネクタ10,20を撮像し、撮像画像を示すデータを取得する。ステップS61では、コントローラ30は、取得した撮像画像を用いて、第1コネクタ10および第2コネクタ20の相対距離を測定する。図21は、画像センサ9(図19)による撮像画像を模式的に示す図である。図21において、M1はコネクタ10,20の適正な嵌合位置での相対距離を示し、M2は第1コネクタ10および第2コネクタ20の現在の相対位置を示している。 When the detected value of the force sensor 3 at the relative position P3 is smaller than the second threshold value N2 (YES in S10), the controller 30 images the connectors 10 and 20 by the image sensor 9 in step S61 and shows the captured image. Get the data. In step S61, the controller 30 measures the relative distance between the first connector 10 and the second connector 20 using the acquired captured image. FIG. 21 is a diagram schematically showing an image captured by the image sensor 9 (FIG. 19). In FIG. 21, M1 indicates the relative distance between the connectors 10 and 20 at the proper fitting positions, and M2 indicates the current relative positions of the first connector 10 and the second connector 20.
 コントローラ30は、ステップS62により、ステップS61で得られたコネクタ10,20の相対位置M2と、予め設定した適正な相対位置M1との差分M3を算出する。 In step S62, the controller 30 calculates the difference M3 between the relative positions M2 of the connectors 10 and 20 obtained in step S61 and the appropriate relative positions M1 set in advance.
 コントローラ30は、ステップS63により、算出した差分M3が予め設定された許容範囲内であるか否かを判定する。ステップS63における許容範囲は、適正な相対位置M1の許容範囲に基づいて設定することができる。 The controller 30 determines in step S63 whether or not the calculated difference M3 is within the preset allowable range. The permissible range in step S63 can be set based on the permissible range of the appropriate relative position M1.
 差分M3が許容範囲内にある場合(S63にてYES)、コントローラ30は、ステップS14により、コネクタ10,20の嵌合が正常であると判定し、判定結果を表示部42に表示する。続いてコントローラ30は、ステップS15により、エンドエフェクタ2を嵌合方向A1と反対方向に移動させることにより、第2コネクタ20からエンドエフェクタ2を退避させる。 When the difference M3 is within the permissible range (YES in S63), the controller 30 determines in step S14 that the fitting of the connectors 10 and 20 is normal, and displays the determination result on the display unit 42. Subsequently, the controller 30 retracts the end effector 2 from the second connector 20 by moving the end effector 2 in the direction opposite to the fitting direction A1 in step S15.
 これに対して、ステップS63において、差分M3が許容範囲外である場合(S63にてNO)、コントローラ30は、コネクタ10,20の嵌合の状態が初期嵌合状態から有効嵌合長領域に移行していないと判定する。この場合、コントローラ30は、ステップS64に進み、エンドエフェクタ2を嵌合方向に移動させる。ステップS64では、コントローラ30は、コネクタ10,20の相対位置が適正な相対位置となるように、ステップS62で算出した差分M3を移動量とする。エンドエフェクタ2を移動させた後、コントローラ30はステップS61に戻る。 On the other hand, in step S63, when the difference M3 is out of the permissible range (NO in S63), the controller 30 changes the mating state of the connectors 10 and 20 from the initial mating state to the effective mating length region. Judge that it has not migrated. In this case, the controller 30 proceeds to step S64 and moves the end effector 2 in the fitting direction. In step S64, the controller 30 uses the difference M3 calculated in step S62 as the movement amount so that the relative positions of the connectors 10 and 20 become appropriate relative positions. After moving the end effector 2, the controller 30 returns to step S61.
 実施の形態6に係るコネクタ嵌合装置によると、コネクタの形状が、適切な嵌合位置においてハウジング同士の衝突が発生しないような形状である場合、または、コネクタの形状が、適切な嵌合位置での反力と有効嵌合領域での反力との間に大きな差が生じないような形状である場合において、適切なコネクタ嵌合量での嵌合動作を可能とする。 According to the connector fitting device according to the sixth embodiment, the shape of the connector is such that the housings do not collide with each other at an appropriate fitting position, or the shape of the connector is an appropriate fitting position. When the shape is such that a large difference does not occur between the reaction force in the above and the reaction force in the effective fitting region, the fitting operation with an appropriate connector fitting amount is possible.
 今回開示された実施の形態はすべての点で例示であって制限的な物ではないと考えられるべきである。本開示の範囲は、上記した説明ではなく、請求の範囲によって示され、請求の範囲と均等の意味および範囲内でのすべての変更が含まれることが意図される。 The embodiment disclosed this time should be considered as an example in all respects and not a restrictive one. The scope of the present disclosure is indicated by the scope of claims rather than the above description, and is intended to include all modifications within the meaning and scope of the claims.
 1 ロボット装置、1A 支持台、1B ロボットアーム、2 エンドエフェクタ、3 力覚センサ、5 位置決め機構、6 第1ワーク、8 第2ワーク、9 画像センサ、10 第1コネクタ、20 第2コネクタ、12,22 ハウジング、14 導通端子、24 可動部、26 端子、30 コントローラ、32 プロセッサ、34 メモリ、36 通信I/F、38 入出力I/F、40 操作部、42 表示部、70 制御部、72 動作制御部、74 力覚検出部、76 波形処理部、78 良否判定部、100 コネクタ嵌合装置。 1 robot device, 1A support base, 1B robot arm, 2 end effector, 3 force sensor, 5 positioning mechanism, 6 1st work, 8 2nd work, 9 image sensor, 10 1st connector, 20 2nd connector, 12 , 22 housing, 14 continuity terminal, 24 movable part, 26 terminal, 30 controller, 32 processor, 34 memory, 36 communication I / F, 38 input / output I / F, 40 operation unit, 42 display unit, 70 control unit, 72 Motion control unit, 74 force sensor detection unit, 76 waveform processing unit, 78 pass / fail judgment unit, 100 connector fitting device.

Claims (11)

  1.  第1コネクタと第2コネクタとを嵌合させるコネクタ嵌合装置であって、
     前記第2コネクタは、前記第1コネクタと導通接触する可動部と、前記可動部を収容するハウジングと、前記ハウジングと前記可動部とを連結する端子とを有し、前記端子が有する可撓部の弾性変形により前記可動部が前記ハウジングに対して可動するフローティングコネクタであり、
     前記第1コネクタを位置決めする位置決め機構と、
     エンドエフェクタと、前記エンドエフェクタを移動させるロボットアームとを有するロボット装置と、
     前記エンドエフェクタに作用する荷重を検出する力センサと、
     前記力センサの検出値に基づいて、前記ロボットアームの動作を制御するコントローラとを備え、
     前記ロボット装置は、前記エンドエフェクタが嵌合方向に移動して前記第2コネクタを押圧することにより、前記第1コネクタに前記第2コネクタを押し込むように構成され、
     前記コントローラは、前記エンドエフェクタを二段階に分けて前記嵌合方向に移動させるとともに、一段目の移動と二段目の移動との間に、前記エンドエフェクタによる前記第2コネクタへの押圧力を軽減するように前記エンドエフェクタを前記嵌合方向とは反対方向に移動させる、コネクタ嵌合装置。
    A connector fitting device that mates the first connector and the second connector.
    The second connector has a movable portion that makes conductive contact with the first connector, a housing that accommodates the movable portion, and a terminal that connects the housing and the movable portion, and the flexible portion of the terminal. It is a floating connector in which the movable part moves with respect to the housing due to the elastic deformation of the housing.
    A positioning mechanism for positioning the first connector and
    A robot device having an end effector and a robot arm for moving the end effector,
    A force sensor that detects the load acting on the end effector,
    A controller that controls the operation of the robot arm based on the detected value of the force sensor is provided.
    The robot device is configured to push the second connector into the first connector by moving the end effector in the fitting direction and pressing the second connector.
    The controller moves the end effector in the fitting direction in two stages, and applies a pressing force by the end effector to the second connector between the movement of the first stage and the movement of the second stage. A connector fitting device that moves the end effector in a direction opposite to the fitting direction so as to reduce the amount.
  2.  前記位置決め機構は、前記第2コネクタを有するワークを前記嵌合方向に直交する水平方向に支持するとともに、前記ワークを前記嵌合方向に摺動可能に構成され、
     前記位置決め機構の前記水平方向における端部と前記ワークとの間には隙間が形成されている、請求項1に記載のコネクタ嵌合装置。
    The positioning mechanism is configured to support the work having the second connector in the horizontal direction orthogonal to the fitting direction and to slide the work in the fitting direction.
    The connector fitting device according to claim 1, wherein a gap is formed between the end of the positioning mechanism in the horizontal direction and the work.
  3.  前記コントローラは、前記二段目の移動のときの前記力センサの検出値のプロファイルに基づいて、前記第1コネクタおよび前記第2コネクタの嵌合の良否を判定する、請求項1または2に記載のコネクタ嵌合装置。 The controller according to claim 1 or 2, wherein the controller determines whether or not the first connector and the second connector are fitted based on the profile of the detected value of the force sensor at the time of the second stage movement. Connector fitting device.
  4.  前記コントローラは、前記第1コネクタおよび前記第2コネクタの嵌合が正常であるときの前記力センサの検出値のプロファイルの特徴に対応する複数の閾値を設定し、前記二段目の移動のときの前記力センサの検出値のプロファイルと前記複数の閾値とを比較することにより、前記第1コネクタおよび前記第2コネクタの嵌合の良否を判定する、請求項3に記載のコネクタ嵌合装置。 The controller sets a plurality of threshold values corresponding to the characteristics of the profile of the detected value of the force sensor when the first connector and the second connector are normally fitted, and at the time of the second stage movement. The connector fitting device according to claim 3, wherein the quality of fitting of the first connector and the second connector is determined by comparing the profile of the detected value of the force sensor with the plurality of threshold values.
  5.  前記コントローラは、
     前記二段目の移動のときの前記力センサの検出値のプロファイルを波形処理する波形処理部と、
     前記波形処理部から出力されるプロファイルに基づいて、前記第1コネクタおよび前記第2コネクタの嵌合の良否を判定する判定部とを含む、請求項3または4に記載のコネクタ嵌合装置。
    The controller
    A waveform processing unit that waveform-processes the profile of the detected value of the force sensor at the time of the second-stage movement, and
    The connector fitting device according to claim 3 or 4, which includes a determination unit for determining whether or not the first connector and the second connector are fitted based on a profile output from the waveform processing unit.
  6.  前記波形処理部は、前記二段目の移動のときの前記力センサの検出値の微分値のプロファイルを生成するように構成され、
     前記判定部は、前記第1コネクタおよび前記第2コネクタの嵌合が正常であるときの前記力センサの検出値の微分値のプロファイルの特徴に対応する複数の閾値を設定し、前記二段目の移動のときの前記力センサの検出値の微分値のプロファイルと前記複数の閾値とを比較することにより、前記第1コネクタおよび前記第2コネクタの嵌合の良否を判定する、請求項5に記載のコネクタ嵌合装置。
    The waveform processing unit is configured to generate a profile of the differential value of the detected value of the force sensor at the time of the second stage movement.
    The determination unit sets a plurality of threshold values corresponding to the characteristics of the profile of the differential value of the detected value of the force sensor when the first connector and the second connector are normally fitted, and the second stage. According to claim 5, the quality of fitting of the first connector and the second connector is determined by comparing the profile of the differential value of the detected value of the force sensor at the time of movement with the plurality of threshold values. The connector fitting device described.
  7.  第1コネクタと第2コネクタとを嵌合させるコネクタ嵌合方法であって、
     前記第2コネクタは、前記第1コネクタと導通接触する可動部と、前記可動部を収容するハウジングと、前記ハウジングと前記可動部とを連結する端子とを有し、前記端子が有する可撓部の弾性変形により前記可動部が前記ハウジングに対して可動するフローティングコネクタであり、
     前記第1コネクタを位置決めするステップと、
     エンドエフェクタと、前記エンドエフェクタを移動させるロボットアームとを有するロボット装置を用いて、前記第1コネクタおよび前記第2コネクタを相対移動させるステップとを備え、
     前記第2コネクタを相対移動させるステップは、前記エンドエフェクタが嵌合方向に移動して前記第2コネクタを押圧することにより、前記第1コネクタに前記第2コネクタを押し込むステップを含み、
     前記押し込むステップは、前記エンドエフェクタを二段階に分けて前記嵌合方向に移動させるとともに、一段目の移動と二段目の移動との間に、前記エンドエフェクタによる前記第2コネクタへの押圧力を軽減するように前記エンドエフェクタを前記嵌合方向とは反対方向に移動させる、コネクタ嵌合方法。
    This is a connector fitting method in which the first connector and the second connector are fitted.
    The second connector has a movable portion that makes conductive contact with the first connector, a housing that accommodates the movable portion, and a terminal that connects the housing and the movable portion, and the flexible portion of the terminal. It is a floating connector in which the movable part moves with respect to the housing due to the elastic deformation of the housing.
    The step of positioning the first connector and
    A robot device having an end effector and a robot arm for moving the end effector is provided, and includes a step of relatively moving the first connector and the second connector.
    The step of relatively moving the second connector includes a step of pushing the second connector into the first connector by moving the end effector in the fitting direction and pressing the second connector.
    In the pushing step, the end effector is moved in the fitting direction in two stages, and the pressing force of the end effector on the second connector between the movement of the first step and the movement of the second step is performed. A connector fitting method in which the end effector is moved in a direction opposite to the fitting direction so as to reduce the problem.
  8.  力センサにより前記エンドエフェクタに作用する荷重を検出するステップと、
     前記二段目の移動のときの前記力センサの検出値のプロファイルに基づいて、前記第1コネクタおよび前記第2コネクタの嵌合の良否を判定するステップとをさらに備える、請求項7に記載のコネクタ嵌合方法。
    The step of detecting the load acting on the end effector by the force sensor, and
    The seventh aspect of claim 7, further comprising a step of determining whether the first connector and the second connector are fitted or not based on the profile of the detected value of the force sensor at the time of the second stage movement. Connector mating method.
  9.  前記判定するステップは、
     前記第1コネクタおよび前記第2コネクタの嵌合が正常であるときの前記力センサの検出値のプロファイルの特徴に対応する複数の閾値を設定するステップと、
     前記二段目の移動のときの前記力センサの検出値のプロファイルと前記複数の閾値とを比較することにより、前記第1コネクタおよび前記第2コネクタの嵌合の良否を判定するステップとを含む、請求項8に記載のコネクタ嵌合方法。
    The determination step is
    A step of setting a plurality of threshold values corresponding to the characteristics of the profile of the detected value of the force sensor when the first connector and the second connector are normally fitted, and
    The step includes a step of determining whether or not the first connector and the second connector are fitted by comparing the profile of the detected value of the force sensor at the time of the second-stage movement with the plurality of threshold values. The connector fitting method according to claim 8.
  10.  前記二段目の移動のときの前記力センサの検出値のプロファイルを波形処理するステップをさらに備え、
     前記判定するステップは、波形処理された前記力センサの検出値のプロファイルに基づいて、前記第1コネクタおよび前記第2コネクタの嵌合の良否を判定するステップを含む、請求項8または9に記載のコネクタ嵌合方法。
    Further provided with a step of corrugating the profile of the detected value of the force sensor at the time of the second stage movement.
    The determination step according to claim 8 or 9, wherein the determination step includes a step of determining whether or not the first connector and the second connector are fitted or not based on the profile of the detected value of the force sensor that has been subjected to waveform processing. Connector fitting method.
  11.  前記波形処理するステップは、前記二段目の移動のときの前記力センサの検出値の微分値のプロファイルを生成するステップを含み、
     前記判定するステップは、
     前記第1コネクタおよび前記第2コネクタの嵌合が正常であるときの前記力センサの検出値の微分値のプロファイルの特徴に対応する複数の閾値を設定するステップと、
     前記二段目の移動のときの前記力センサの検出値の微分値のプロファイルと前記複数の閾値とを比較することにより、前記第1コネクタおよび前記第2コネクタの嵌合の良否を判定するステップとを含む、請求項10に記載のコネクタ嵌合方法。
    The waveform processing step includes a step of generating a profile of a differential value of the detected value of the force sensor at the time of the second step movement.
    The determination step is
    A step of setting a plurality of threshold values corresponding to the characteristics of the profile of the differential value of the detected value of the force sensor when the first connector and the second connector are normally fitted.
    A step of determining whether or not the first connector and the second connector are fitted by comparing the profile of the differential value of the detected value of the force sensor at the time of the second-stage movement with the plurality of threshold values. The connector fitting method according to claim 10, wherein the connector fitting method includes.
PCT/JP2020/034915 2019-12-05 2020-09-15 Connector fitting device and connector fitting method WO2021111701A1 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP2021562461A JP7186900B2 (en) 2019-12-05 2020-09-15 Connector fitting device and connector fitting method
CN202080083184.6A CN114746226B (en) 2019-12-05 2020-09-15 Connector fitting device and connector fitting method

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2019220423 2019-12-05
JP2019-220423 2019-12-05

Publications (1)

Publication Number Publication Date
WO2021111701A1 true WO2021111701A1 (en) 2021-06-10

Family

ID=76221810

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2020/034915 WO2021111701A1 (en) 2019-12-05 2020-09-15 Connector fitting device and connector fitting method

Country Status (3)

Country Link
JP (1) JP7186900B2 (en)
CN (1) CN114746226B (en)
WO (1) WO2021111701A1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2023038498A1 (en) * 2021-09-13 2023-03-16 삼성전자 주식회사 Assembly device for cable connector of electronic device

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2013107175A (en) * 2011-11-22 2013-06-06 Canon Inc Assembly robot
JP2014231110A (en) * 2013-05-29 2014-12-11 本田技研工業株式会社 Connector insertion method and connector insertion device
JP2017010803A (en) * 2015-06-23 2017-01-12 三菱電機株式会社 Connector insertion jig
WO2018042730A1 (en) * 2016-08-30 2018-03-08 本田技研工業株式会社 Robot control device and robot control method
WO2018043212A1 (en) * 2016-08-29 2018-03-08 株式会社ソニー・インタラクティブエンタテインメント Assembly device, and electronic device manufacturing method

Family Cites Families (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5131455B2 (en) * 2007-12-05 2013-01-30 第一精工株式会社 Coaxial connector device
CN201805087U (en) * 2010-03-01 2011-04-20 李立国 Blind plugging type vibration isolation device of connector for power cell case of electric power vehicles
CN102403620B (en) * 2011-10-28 2014-12-10 中航光电科技股份有限公司 Floating connector component and floating connector thereof
WO2013190648A1 (en) * 2012-06-20 2013-12-27 株式会社安川電機 Robotic system and method for manufacturing goods
JP6454960B2 (en) * 2013-10-31 2019-01-23 セイコーエプソン株式会社 Robot, robot system, robot controller
JP5849166B1 (en) * 2014-12-12 2016-01-27 イリソ電子工業株式会社 Board to board connection structure
CN105305163B (en) * 2015-11-11 2018-08-21 深圳市摩西尔电子有限公司 Floating junction device and its manufacturing method
US20180021949A1 (en) * 2016-07-20 2018-01-25 Canon Kabushiki Kaisha Robot apparatus, robot controlling method, program, and recording medium
CN107204530A (en) * 2017-05-16 2017-09-26 中国船舶科学研究中心(中国船舶重工集团公司第七0二研究所) The latent device docking charging plug device of autonomous

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2013107175A (en) * 2011-11-22 2013-06-06 Canon Inc Assembly robot
JP2014231110A (en) * 2013-05-29 2014-12-11 本田技研工業株式会社 Connector insertion method and connector insertion device
JP2017010803A (en) * 2015-06-23 2017-01-12 三菱電機株式会社 Connector insertion jig
WO2018043212A1 (en) * 2016-08-29 2018-03-08 株式会社ソニー・インタラクティブエンタテインメント Assembly device, and electronic device manufacturing method
WO2018042730A1 (en) * 2016-08-30 2018-03-08 本田技研工業株式会社 Robot control device and robot control method

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2023038498A1 (en) * 2021-09-13 2023-03-16 삼성전자 주식회사 Assembly device for cable connector of electronic device

Also Published As

Publication number Publication date
CN114746226A (en) 2022-07-12
JP7186900B2 (en) 2022-12-09
JPWO2021111701A1 (en) 2021-06-10
CN114746226B (en) 2024-03-08

Similar Documents

Publication Publication Date Title
CN108068109B (en) Method for controlling a holding device, holding device and robot device
US11685042B2 (en) Working robot and control method for working robot
CN108025407B (en) Attachment device, attachment method and mobile mechanism
US11833687B2 (en) Robot apparatus, control method for the robot apparatus, assembly method using the robot apparatus, and recording medium
CN106994680B (en) Robot and robot system
US11338442B2 (en) Robot apparatus, control method for robot apparatus, article manufacturing method using robot apparatus, and storage medium
WO2021111701A1 (en) Connector fitting device and connector fitting method
CN112672861B (en) Manipulator, manipulator control method, and program
JP2016036858A (en) Apparatus for controlling robot performing work by pressing tool against workpiece
CN112654474B (en) End effector device
US11141855B2 (en) Robot system, method of controlling robot arm, recording medium, and method of manufacturing an article
JP3352173B2 (en) Robot control device
JP4483047B2 (en) Robot control device
WO2024098787A1 (en) Shaft hole assembly method and system, and storage medium
Hartisch et al. Compliant finray-effect gripper for high-speed robotic assembly of electrical components
WO2021210200A1 (en) Assembly device, assembly method, and electronic device manufacturing method
CN112297002A (en) Robot control system for performing multipoint fitting
CN115803695A (en) Robot control device
JP2020196076A (en) Robot controller and assembling method
WO2023276718A1 (en) Electronic equipment assembling apparatus and electronic equipment assembling method
WO2023032333A1 (en) Robot, robot control method, and program
TWI809817B (en) Robot controller, control method and control program
JP7042594B2 (en) Actuator operation switching device
WO2022004371A1 (en) Operation method, robot system, control device, teaching method, and program
JP2019202360A (en) Robot control device, robot and robot system

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 20895059

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2021562461

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 20895059

Country of ref document: EP

Kind code of ref document: A1