WO2021111621A1 - Pathological diagnosis system for plants, pathological diagnosis method for plants, pathological diagnosis device for plants, and drone - Google Patents

Pathological diagnosis system for plants, pathological diagnosis method for plants, pathological diagnosis device for plants, and drone Download PDF

Info

Publication number
WO2021111621A1
WO2021111621A1 PCT/JP2019/047861 JP2019047861W WO2021111621A1 WO 2021111621 A1 WO2021111621 A1 WO 2021111621A1 JP 2019047861 W JP2019047861 W JP 2019047861W WO 2021111621 A1 WO2021111621 A1 WO 2021111621A1
Authority
WO
WIPO (PCT)
Prior art keywords
unit
pathological
pathological diagnosis
drone
crop
Prior art date
Application number
PCT/JP2019/047861
Other languages
French (fr)
Japanese (ja)
Inventor
圭一 黒川
千大 和氣
鈴木 大介
Original Assignee
株式会社ナイルワークス
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社ナイルワークス filed Critical 株式会社ナイルワークス
Priority to PCT/JP2019/047861 priority Critical patent/WO2021111621A1/en
Priority to JP2021562421A priority patent/JP7411259B2/en
Publication of WO2021111621A1 publication Critical patent/WO2021111621A1/en

Links

Images

Classifications

    • AHUMAN NECESSITIES
    • A01AGRICULTURE; FORESTRY; ANIMAL HUSBANDRY; HUNTING; TRAPPING; FISHING
    • A01GHORTICULTURE; CULTIVATION OF VEGETABLES, FLOWERS, RICE, FRUIT, VINES, HOPS OR SEAWEED; FORESTRY; WATERING
    • A01G7/00Botany in general

Definitions

  • the present invention relates to a plant pathological diagnosis system, a plant pathological diagnosis method, a plant pathological diagnosis device, and a drone.
  • Patent Document 2 describes an image analysis means for acquiring an image captured in flight, a pest detection means for detecting pests attached to a crop based on the image analysis means, and a crop to which the pests are attached.
  • a mobile control application comprising a mobile control means for controlling a mobile so as to spray a pest control agent based on position information is disclosed.
  • the plant pathological diagnosis system includes a flight control unit for flying a drone over a field and an image of a crop mounted on the drone and growing in the field. Based on the pathological information acquisition unit to be acquired, the spot measurement unit that measures at least one parameter of the size, density, and number of spots generated in the crop based on the image, and the measurement result of the parameter. , A pathological diagnosis unit for determining whether the crop is sick or not.
  • a medical history storage unit that stores a past medical history in the field may be further provided, and the pathological diagnosis unit may perform the pathological determination based on the medical history.
  • the pathological diagnosis unit may make a pathological determination based on the climate information of the field.
  • the climate information may include at least one of temperature, humidity and wind speed information.
  • the drone may include a red light camera that detects the amount of light in the red light frequency band, and the pathological information acquisition unit may acquire the image by the red light camera.
  • the pathological diagnosis unit may determine the progress of the disease based on at least one of the shape and size of the spots generated on the crop.
  • the drone includes a visible light camera that detects light amounts of at least three wavelengths in the visible light band such as an RGB camera, and the pathological diagnosis unit determines the progress based on the information obtained by the visible light camera. May be.
  • a countermeasure determination unit for determining countermeasures to be taken in the field may be further provided according to the progress.
  • the countermeasure may include at least one of visual confirmation instruction of the strain origin, rephotographing, waiting, spraying of pesticides, removal of pathological leaves, removal of pathological strains, and removal of strains in the pathological strain occurrence area.
  • the countermeasure determination unit may determine the pesticide spraying area according to the progress.
  • the countermeasure determination unit may determine the spray concentration of the pesticide according to the progress.
  • the countermeasure determination unit may determine the type of pesticide to be sprayed according to the progress of the disease.
  • a result output unit for displaying the determination result of the countermeasure determination unit on the display unit or transmitting the determination result to the flight control unit of the drone may be further provided.
  • another method of pathological diagnosis of a plant includes a flight control step of flying a drone over a field and an image of a crop mounted on the drone and growing in the field. Based on the pathological information acquisition step to be acquired, the spot measurement step of measuring at least one parameter of the size, density, and number of spots generated in the crop based on the image, and the measurement result of the parameter. , A pathological diagnosis step of making a pathological determination as to whether or not the crop is sick.
  • the plant pathological diagnosis apparatus occurs in the crop based on the image of the crop growing in the field acquired by the drone flying over the field.
  • a spot measuring unit that measures at least one of the parameters of the size, density, and number of spots to be used, and a pathological diagnosis unit that determines the pathological condition of the crop based on the measurement results of the parameters. To be equipped.
  • the drone includes a flight control unit for flying the drone over the field, a pathology information acquisition unit for acquiring an image of a crop growing in the field, and the above.
  • a spot measuring unit that measures at least one parameter of the size, density, and number of spots that occur on the crop based on the image, and whether or not the crop is sick based on the measurement result of the parameter. It is provided with a pathological diagnosis unit for determining pathology.
  • the pathological diagnosis of crops can be performed accurately.
  • the pathological diagnosis system is a flowchart for performing a pathological diagnosis of a crop. It is an image diagram of the photographed image obtained by photographing the rice leaf infected with blast with the red light camera provided in the drone.
  • the drone is regardless of the power means (electric power, prime mover, etc.) and the maneuvering method (wireless or wired, autonomous flight type, manual maneuvering type, etc.). It refers to all air vehicles with multiple rotor blades.
  • the rotors 101-1a, 101-1b, 101-2a, 101-2b, 101-3a, 101-3b, 101-4a, 101-4b are It is a means for flying the Drone 100, and is equipped with eight aircraft (four sets of two-stage rotor blades) in consideration of the balance between flight stability, aircraft size, and power consumption.
  • Each rotor 101 is arranged on all sides of the housing 110 by an arm protruding from the housing 110 of the drone 100.
  • the rotors 101-1a and 101-1b are left rearward in the direction of travel, the rotors 101-2a and 101-2b are forward left, the rotors 101-3a and 101-3b are rearward right, and the rotors 101- are forward right. 4a and 101-4b are arranged respectively.
  • the drone 100 has the traveling direction facing downward on the paper in FIG.
  • a grid-shaped propeller guard 115-1,115-2,115-3,115-4 forming a substantially cylindrical shape is provided on the outer circumference of each set of the rotor blade 101 to prevent the rotor blade 101 from interfering with foreign matter.
  • the radial members for supporting the propeller guards 115-1,115-2,115-3,115-4 are not horizontal but have a yagura-like structure. This is to encourage the member to buckle outside the rotor in the event of a collision and prevent it from interfering with the rotor.
  • Rod-shaped legs 107-1, 107-2, 107-3, 107-4 extend downward from the rotation axis of the rotor 101, respectively.
  • Motors 102-1a, 102-1b, 102-2a, 102-2b, 102-3a, 102-3b, 102-4a, 102-4b are rotary blades 101-1a, 101-1b, 101-2a, 101- It is a means to rotate 2b, 101-3a, 101-3b, 101-4a, 101-4b (typically an electric motor, but it may also be a motor, etc.), and one machine is provided for one rotary blade. Has been done.
  • Motor 102 is an example of a thruster.
  • the upper and lower rotors (eg, 101-1a and 101-1b) in one set, and their corresponding motors (eg, 102-1a and 102-1b), are used for drone flight stability, etc.
  • the axes are on the same straight line and rotate in opposite directions.
  • Nozzles 103-1, 103-2, 103-3, 103-4 are means for spraying the sprayed material downward and are equipped with four nozzles.
  • the sprayed material generally refers to a liquid or powder sprayed on a field such as a pesticide, a herbicide, a liquid fertilizer, an insecticide, a seed, and water.
  • the tank 104 is a tank for storing the sprayed material, and is provided at a position close to the center of gravity of the drone 100 and at a position lower than the center of gravity from the viewpoint of weight balance.
  • the hoses 105-1, 105-2, 1053, 105-4 are means for connecting the tank 104 and the nozzles 103-1, 103-2, 103-3, 103-4, and are made of a hard material. Therefore, it may also serve as a support for the nozzle.
  • the pump 106 is a means for discharging the sprayed material from the nozzle.
  • FIG. 6 shows an overall conceptual diagram of the flight control system of the drone 100 according to the present invention.
  • This figure is a schematic view, and the scale is not accurate.
  • the drone 100, the actuator 401, and the small mobile terminal 401a are each connected to the base station 404, and only the actuator 401 is connected to the farming cloud 405. Not limited to.
  • the drone 100, the actuator 401, the small mobile terminal 401a, and the base station 404 are each connected to the farming cloud 405. These connections may be wireless communication by Wi-Fi, mobile communication system or the like, or may be partially or wholly connected by wire.
  • the controller 401 transmits a command to the drone 100 by the operation of the user 402, and also displays information received from the drone 100 (for example, position, amount of sprayed material, battery level, camera image, etc.). It may be realized by a portable information device such as a general tablet terminal that runs a computer program.
  • the actuator 401 includes an input unit and a display unit as a user interface device.
  • the drone 100 according to the present invention is controlled to perform autonomous flight, but may be capable of manual operation during basic operations such as takeoff and return, and in an emergency.
  • an emergency operation device (not shown) having a function dedicated to emergency stop may be used.
  • the emergency manipulator may be a dedicated device provided with a large emergency stop button or the like so that an emergency response can be taken quickly.
  • the system may include a small mobile terminal 401a capable of displaying a part or all of the information displayed on the operating device 401, for example, a smart phone. Further, it may have a function of changing the operation of the drone 100 based on the information input from the small mobile terminal 401a.
  • the small mobile terminal 401a is connected to, for example, the base station 404, and can receive information and the like from the farming cloud 405 via the base station 404.
  • Field 403 is a rice field, field, etc. that is the target of spraying with the drone 100. In reality, the terrain of field 403 is complicated, and the topographic map may not be available in advance, or the topographic map and the situation at the site may be inconsistent. Field 403 is usually adjacent to houses, hospitals, schools, other crop fields, roads, railroads, etc. In addition, there may be intruders such as buildings and electric wires in the field 403.
  • the base station 404 is a device that provides a master unit function for Wi-Fi communication, etc., and may also function as an RTK-GPS base station so that it can provide an accurate position of the drone 100 (Wi-).
  • the base unit function of Fi communication and the RTK-GPS base station may be independent devices).
  • the base station 404 may be able to communicate with the farming cloud 405 using mobile communication systems such as 3G, 4G, and LTE.
  • the farming cloud 405 is typically a group of computers operated on a cloud service and related software, and may be wirelessly connected to the actuator 401 by a mobile phone line or the like.
  • the farming cloud 405 may be configured by a hardware device.
  • the farming cloud 405 may analyze the image of the field 403 taken by the drone 100, grasp the growing condition of the crop, and perform a process for determining the flight route.
  • the topographical information of the stored field 403 may be provided to the drone 100.
  • the history of the flight and captured images of the drone 100 may be accumulated and various analysis processes may be performed.
  • the small mobile terminal 401a is, for example, a smart phone or the like. On the display of the small mobile terminal 401a, information on expected operations regarding the operation of the drone 100, more specifically, the scheduled time when the drone 100 will return to the departure / arrival point 406, and the work to be performed by the user 402 at the time of return Information such as contents is displayed as appropriate. Further, the operation of the drone 100 may be changed based on the input from the small mobile terminal 401a.
  • the drone 100 takes off from the departure / arrival point 406 outside the field 403 and returns to the departure / arrival point 406 after spraying the sprayed material on the field 403 or when it becomes necessary to replenish or charge the sprayed material.
  • the flight route (invasion route) from the departure / arrival point 406 to the target field 403 may be stored in advance in the farming cloud 405 or the like, or may be input by the user 402 before the start of takeoff.
  • the departure / arrival point 406 may be a virtual point defined by the coordinates stored in the drone 100, or may have a physical departure / arrival platform.
  • FIG. 7 shows a block diagram showing a control function of an embodiment of the spraying drone according to the present invention.
  • the flight controller 501 is a component that controls the entire drone, and may be an embedded computer including a CPU, memory, related software, and the like.
  • the flight controller 501 uses motors 102-1a and 102-1b via control means such as ESC (Electronic Speed Control) based on the input information received from the controller 401 and the input information obtained from various sensors described later. , 102-2a, 102-2b, 102-3a, 102-3b, 104-a, 104-b to control the flight of the drone 100.
  • ESC Electronic Speed Control
  • the actual rotation speeds of the motors 102-1a, 102-1b, 102-2a, 102-2b, 102-3a, 102-3b, 104-a, 104-b are fed back to the flight controller 501, and normal rotation is performed. It is configured so that it can be monitored.
  • the rotary blade 101 may be provided with an optical sensor or the like so that the rotation of the rotary blade 101 is fed back to the flight controller 501.
  • the software used by the flight controller 501 can be rewritten through storage media, etc. for function expansion / change, problem correction, etc., or through communication means such as Wi-Fi communication and USB. In this case, protection is performed by encryption, checksum, electronic signature, virus check software, etc. so that rewriting by malicious software is not performed.
  • a part of the calculation process used by the flight controller 501 for control may be executed by another computer located on the controller 401, the farming cloud 405, or somewhere else. Due to the high importance of the flight controller 501, some or all of its components may be duplicated.
  • the flight controller 501 communicates with the actuator 401 via the Wi-Fi slave unit function 503 and further via the base station 404, receives necessary commands from the actuator 401, and receives necessary information from the actuator 401. Can be sent to 401. In this case, the communication may be encrypted so as to prevent fraudulent acts such as interception, spoofing, and device hijacking.
  • the base station 404 has the function of an RTK-GPS base station in addition to the communication function by Wi-Fi. By combining the signal from the RTK base station and the signal from the GPS positioning satellite, the flight controller 501 can measure the absolute position of the drone 100 with an accuracy of about several centimeters. Flight controllers 501 are so important that they may be duplicated and multiplexed, and each redundant flight controller 501 should use a different satellite to handle the failure of a particular GPS satellite. It may be controlled.
  • the 6-axis gyro sensor 505 is a means for measuring the acceleration of the drone body in three directions orthogonal to each other, and further, a means for calculating the velocity by integrating the acceleration.
  • the 6-axis gyro sensor 505 is a means for measuring the change in the attitude angle of the drone aircraft in the above-mentioned three directions, that is, the angular velocity.
  • the geomagnetic sensor 506 is a means for measuring the direction of the drone body by measuring the geomagnetism.
  • the barometric pressure sensor 507 is a means for measuring barometric pressure, and can also indirectly measure the altitude of the drone.
  • the laser sensor 508 is a means for measuring the distance between the drone body and the ground surface by utilizing the reflection of the laser light, and may be an IR (infrared) laser.
  • the sonar 509 is a means for measuring the distance between the drone aircraft and the ground surface by utilizing the reflection of sound waves such as ultrasonic waves. These sensors may be selected according to the cost target and performance requirements of the drone. In addition, a gyro sensor (angular velocity sensor) for measuring the inclination of the aircraft, a wind sensor for measuring wind power, and the like may be added. Further, these sensors may be duplicated or multiplexed.
  • the flight controller 501 may use only one of them, and if it fails, it may switch to an alternative sensor for use. Alternatively, a plurality of sensors may be used at the same time, and if the measurement results do not match, it may be considered that a failure has occurred.
  • the flow rate sensor 510 is a means for measuring the flow rate of the sprayed material, and is provided at a plurality of locations on the path from the tank 104 to the nozzle 103.
  • the liquid drainage sensor 511 is a sensor that detects that the amount of sprayed material has fallen below a predetermined amount.
  • the growth diagnosis camera 512a is a means for photographing the field 403 and acquiring data for the growth diagnosis.
  • the growth diagnostic camera 512a is, for example, a multispectral camera and receives a plurality of light rays having different wavelengths from each other.
  • the plurality of light rays are, for example, red light (wavelength of about 650 nm) and near-infrared light (wavelength of about 774 nm).
  • the growth diagnosis camera 512a may be a camera that receives visible light.
  • the pathological diagnosis camera 512b is a means for photographing the crops growing in the field 403 and acquiring the data for the pathological diagnosis.
  • the pathological diagnosis camera 512b is, for example, a red light camera.
  • the red light camera is a camera that detects the amount of light in the frequency band corresponding to the absorption spectrum of chlorophyll contained in the plant, and detects, for example, the amount of light in the band around 650 nm.
  • the pathological diagnosis camera 512b may detect the amount of light in the frequency bands of red light and near infrared light.
  • the pathological diagnosis camera 512b may include both a red light camera and a visible light camera such as an RGB camera that detects light amounts of at least three wavelengths in the visible light band.
  • FIG. 12 shows an image diagram of a photographed image of a leaf obtained by photographing a leaf of rice infected with blast with a red light camera.
  • the part where chlorophyll that absorbs red light is present appears black, and the part where chlorophyll is destroyed due to a disease such as blast absorbs red light. It looks white because it does not.
  • the chlorophyll of the leaf is destroyed in the form of spots, so that an image in which the spot L1 appears in the leaf L can be obtained as shown in FIG.
  • the visible light camera it is possible to acquire an image of a visible lesion and an image capable of analyzing the color and shape of leaves, stems and ears.
  • the growth diagnosis camera 512a and the pathology diagnosis camera 512b may be realized by one hardware configuration.
  • the obstacle detection camera 513 is a camera for detecting a drone intruder, and since the image characteristics and the orientation of the lens are different from the growth diagnosis camera 512a and the pathological diagnosis camera 512b, what are the growth diagnosis camera 512a and the pathological diagnosis camera 512b? Another device.
  • the switch 514 is a means for the user 402 of the drone 100 to make various settings.
  • the obstacle contact sensor 515 is a sensor for detecting that the drone 100, in particular, its rotor or propeller guard part, has come into contact with an intruder such as an electric wire, a building, a human body, a standing tree, a bird, or another drone. ..
  • the obstacle contact sensor 515 may be replaced by a 6-axis gyro sensor 505.
  • the cover sensor 516 is a sensor that detects that the operation panel of the drone 100 and the cover for internal maintenance are in the open state.
  • the inlet sensor 517 is a sensor that detects that the inlet of the tank 104 is
  • sensors may be selected according to the cost target and performance requirements of the drone, and may be duplicated / multiplexed.
  • a sensor may be provided at the base station 404, the actuator 401, or some other place outside the drone 100, and the read information may be transmitted to the drone.
  • a wind sensor may be provided in the base station 404 to transmit information on the wind and wind direction to the drone 100 via Wi-Fi communication.
  • the flight controller 501 sends a control signal to the pump 106 to adjust the discharge amount and stop the discharge.
  • the current status of the pump 106 (for example, the number of revolutions) is fed back to the flight controller 501.
  • the LED107 is a display means for notifying the drone operator of the drone status.
  • Display means such as a liquid crystal display may be used in place of or in addition to the LED.
  • the buzzer is an output means for notifying the state of the drone (particularly the error state) by an audio signal.
  • the Wi-Fi slave unit function 519 is an optional component for communicating with an external computer or the like for transferring software, for example, in addition to the actuator 401.
  • other wireless communication means such as infrared communication, Bluetooth (registered trademark), ZigBee (registered trademark), NFC, or wired communication means such as USB connection You may use it.
  • the speaker 520 is an output means for notifying the state of the drone (particularly the error state) by means of recorded human voice, synthetic voice, or the like. Depending on the weather conditions, it may be difficult to see the visual display of the drone 100 in flight. In such cases, voice communication is effective.
  • the warning light 521 is a display means such as a strobe light for notifying the state of the drone (particularly the error state).
  • the plant pathological diagnosis system 1000 is a system including, for example, a drone 100, a user interface device 200, a measuring device 500, a diagnostic device 600, and a planning device 700, and these are network NWs. They are connected so that they can communicate with each other through.
  • the diagnostic device 600 and the planning device 700 may have a hardware configuration or may be configured on the farming cloud 405.
  • the drone 100, the user interface device 200, the diagnostic device 600, and the planning device 700 may be connected to each other wirelessly, or may be partially or wholly connected by wire.
  • the configuration shown in FIG. 8 is an example, and one component may include another component, and the functional unit of each component may be included in another component. ..
  • some or all of the functions of the diagnostic device 600 and the planning device 700 may be mounted on the drone 100.
  • the user interface device 200 may be provided with an input unit and a display unit by an operator, and may be realized by the function of the operator 401. Further, the user interface device 200 may be a personal computer, or information may be input and displayed in the UI on the Web via a Web browser installed in the personal computer.
  • ⁇ Functional part of the drone Drone 100 is equipped with a computing device such as a CPU (Central Processing Unit) for executing information processing and a storage device such as RAM (Random Access Memory) and ROM (Read Only Memory). As resources, it has at least a flight control unit 1001, a spray control unit 1002, a growth information acquisition unit 1003, and a pathological information acquisition unit 1004.
  • a computing device such as a CPU (Central Processing Unit) for executing information processing
  • a storage device such as RAM (Random Access Memory) and ROM (Read Only Memory).
  • RAM Random Access Memory
  • ROM Read Only Memory
  • the flight control unit 1001 is a functional unit that operates the motor 102 and controls the flight and takeoff and landing of the drone 100.
  • the flight control unit 1001 is realized by, for example, a flight controller 501, and controls the flight altitude, flight speed, and flight path to fly the drone 100 over the field.
  • the spray control unit 1002 is a functional unit that operates the pump 106 and controls the spraying of the sprayed material from the nozzles 103-1, 103-2, 103-3, 103-4.
  • the spray control unit 1002 is realized by, for example, a flight controller 501.
  • Growth information acquisition unit 1003 is a functional unit that acquires growth information of crops growing in the field while the drone 100 is flying over the field.
  • the growth information includes an image of the crop for diagnosing the growth state of the crop.
  • the density of leaf chlorophyll (chlorophyll a, chlorophyll b, carotenoid, etc.) changes depending on the amount of nitrogen absorbed
  • the density of chlorophyll is estimated by analyzing the characteristics of the reflected light of the leaves, and the nitrogen to the leaves is estimated. It is known that the amount of absorption can be estimated and the degree of growth of crops can be measured based on the amount of nitrogen absorbed. Therefore, the growth information acquisition unit 1003 acquires the data used for the analysis of the growth condition of the crop by receiving the reflected light of the sunlight obtained from the field 403.
  • the growth information acquisition unit 1003 acquires an image of the crop with the growth diagnosis camera 512a.
  • the growth information acquisition unit 1003 has a beam splitter and acquires only light rays in a predetermined frequency range from the light source.
  • the light rays received by the growth information acquisition unit 1003 include reflected light that is mainly reflected from the crop by the light rays transmitted from the growth information acquisition unit 1003.
  • the drone 100 acquires the growth information of the crops growing in the field 403 by receiving the reflected light reflected from the field 403 by the growth information acquisition unit 1003 while flying in the field 403 by the flight control unit 1001.
  • the growth information acquisition unit 1003 provides visual information such as the number of tillers, the color of the stem or rice ear, the amount of rice ear, or the length or deflection of the stem. You may get it.
  • the growth information acquisition unit 1003 can use a camera capable of receiving visible light.
  • the pathology information acquisition unit 1004 is a functional unit that acquires pathological information, that is, pathological information of crop diseases in the field while the drone 100 is flying over the field.
  • the pathological information acquisition unit 1004 acquires an image of the crop for diagnosing the pathological state of the crop by the pathological diagnosis camera 512b.
  • the pathological information acquisition unit 1004 acquires an image of at least one of a site where a lesion appears, for example, a leaf, a leaf sheath, a stem, and an ear.
  • the pathological information acquisition unit 1004 may photograph the color or shape of the stem or ear. This is because there is a possibility of discoloration or deformation due to illness.
  • the drone 100 is provided with a spray control unit 1002, a growth information acquisition unit 1003, and a pathology information acquisition unit 1004, but the technical idea of the present invention is not limited to this.
  • the drone 100 may include at least a flight control unit 1001 and a pathology information acquisition unit 1004.
  • the spray control unit 1002 may be included in the pathological diagnosis system 1000 or may be included in the land traveling machine connected to the pathological diagnosis system 1000.
  • the diagnostic device 600 is a functional part that diagnoses plants, that is, crops, that grow in the field 403 to which the drone 100 flies, based on the information acquired by the drone 100. ..
  • the diagnostic device 600 includes a computing device such as a CPU (Central Processing Unit) for executing information processing, and a storage device such as RAM (Random Access Memory) and ROM (Read Only Memory), whereby at least as a software resource, It is equipped with a medical history memory unit 601, a growth diagnosis unit 602, a climate information acquisition unit 603, a spot measurement unit 604, and a pathological diagnosis unit 605.
  • a computing device such as a CPU (Central Processing Unit) for executing information processing
  • RAM Random Access Memory
  • ROM Read Only Memory
  • the medical history memory unit 601 is a functional unit that stores the medical history of diseases that have occurred in the field 403 in the past.
  • the medical history includes at least one of the disease outbreak area, the type of outbreak, and the time of outbreak within field 403.
  • the medical history may also include climatic information of the outbreak area at the time of the outbreak.
  • the medical history memory unit 601 may memorize the response record to the disease carried out in the field 403. Correspondence results include spraying the drug to the outbreak area and removing pathological leaves or pathological strains.
  • the response record may include the type or concentration of the sprayed drug.
  • the medical history storage unit 601 may receive the countermeasure determined by the planning device 700 and store it as a response record. In addition, the medical history and the response record may be input from the user interface device 200 by, for example, an operator.
  • the growth diagnosis unit 602 is a functional unit that diagnoses the growth status of crops in the field based on the growth information acquired by the growth information acquisition unit 1003.
  • the growth diagnosis unit 602 calculates the NDVI (Normalized Difference Vegetation Index) based on the image obtained by the reflected light of red light (wavelength about 650 nm) and near infrared light (wavelength about 774 nm), and obtains the absorption rate of red light.
  • the effective light receiving area can be estimated by NDVI.
  • NDVI is calculated by the formula (IR-R) / (IR + R) (where IR is the reflectance of near-infrared light and R is the reflectance of red light). IR and R are obtained by analyzing field images for each frequency band.
  • the growth diagnosis unit 602 applies a frequency filter to the light rays received by the growth information acquisition unit 1003 in a hard or soft manner, so that the amount of light rays in a predetermined frequency range related to the growth situation, for example, the power spectral density. To get.
  • the calculation process of the amount of light may be performed by the growth information acquisition unit 1003, and the growth diagnosis unit 602 may diagnose the growth state based on the amount of light received.
  • the growth diagnosis unit 602 diagnoses the growth status of the field based on the information stored in advance that associates the amount of light with the amount of growth in a predetermined frequency band.
  • the growth diagnosis unit 602 may predict the yield in the field based on the growth condition.
  • the climate information acquisition unit 603 is a functional unit that acquires the climate information of the field 403.
  • climate information includes at least one of temperature, humidity and wind speed information.
  • the climate information may include information on the wind direction.
  • the climate information acquisition unit 603 may receive each measured value from, for example, a measuring instrument 500 arranged in the field 403, for example, a thermometer, a hygrometer, and an anemometer. Further, the drone 100 may include a part or all of each configuration of the measuring instrument 500.
  • the climate information acquisition unit 603 may receive information transmitted from the outside of the pathological diagnosis system 1000.
  • the climate information acquisition unit 603 may acquire information from a meteorological satellite.
  • Meteorological satellites are, for example, sunflowers.
  • the climate information acquisition unit 603 may acquire information (public information) processed by various organizations such as the Japan Meteorological Agency, particularly public organizations, as climate information.
  • the spot measurement unit 604 is a functional unit that measures the state of spots occurring on the crop based on the image acquired by the pathological information acquisition unit 1004.
  • the spot measuring unit 604 measures at least one parameter of the size, density, and number of spots generated on the crop based on the image. That is, the spot measurement unit 604 includes at least one of a spot counting unit 604a, a spot size measuring unit 604b, and a spot density measuring unit 604c.
  • the spot counting unit 604a is a functional unit that counts spots occurring on at least one of the leaves, leaf sheaths, stems and ears of a plant by image analysis.
  • the spot counting unit 604a may count the number of spots for each site where the spots are generated. Counting for each development site is performed by distinguishing, for example, leaves, leaf sheaths and stems. In addition, the tip of the leaf, the middle of the leaf, and the origin of the leaf may be counted separately.
  • the spot size measuring unit 604b is a functional unit that measures the size of spots by image analysis.
  • the spot density measuring unit 604c is a functional unit that measures the number of spots generated per predetermined region, that is, the density of spots. The spot density measuring unit 604c may obtain the spot density by measuring the distance between the spots.
  • the pathological diagnosis unit 605 is a functional unit that diagnoses the morbidity of plant diseases in the field.
  • the pathological diagnosis unit 605 makes a pathological determination as to whether or not the disease is a disease based on the measurement results of at least one of the parameters of the spot size, the spot density, and the number of spots. That is, the pathological diagnosis unit 605 may determine that the patient is ill when the spots are larger than a predetermined size. In this case, for example, the disease can be determined on condition that the area of the spots is 100 square millimeters or more. The pathological diagnosis unit 605 may determine that the patient is ill when the spot density is equal to or higher than a predetermined value.
  • the pathological diagnosis unit 605 may determine that the patient is ill when the number of spots is equal to or greater than a predetermined value. In this case, for example, when the number of spots having a spot area of 4 square millimeters or more is 10 or more around a predetermined area, it may be determined that the disease has occurred. Alternatively, the pathological diagnosis unit 605 may make a pathological determination based on a plurality of parameters among the spot size, the spot density, and the number of spots.
  • the pathology is based on the likelihood distribution table by the value of one parameter or the combination of the values of multiple parameters. It is also possible to generate an occurrence likelihood. In this case, the generated pathological likelihood value may be output, or the fact that the pathological occurrence is detected when the generated pathological likelihood value exceeds a predetermined threshold value is output. Alternatively, both the pathological occurrence likelihood and the pathological occurrence detection information may be output.
  • the pathological diagnosis unit 605 may make a pathological diagnosis for each plant strain. Further, the pathological diagnosis unit 605 may subdivide the field 403 into a plurality of regions and perform pathological diagnosis for each region. The pathological diagnosis unit 605 subdivides the field 403 into a mesh, for example. Each area has a rectangular shape of, for example, 1 m square. Further, the pathological diagnosis unit 605 may make a pathological diagnosis for each image taken by the pathological diagnosis camera 512b.
  • the pathological diagnosis unit 605 may diagnose the type of disease affecting the plant based on the spot size, spot density or spot number.
  • the pathological diagnosis unit 605 may diagnose the type of disease based on the site where the spots are generated. For example, the pathological diagnosis unit 605 stores the type of the disease in association with the shape, size, density, number of spots, or spot occurrence site or range of the spots that occur, and refers to the information to store the disease. Diagnose the type.
  • the pathological diagnosis unit 605 may make a pathological determination based on the past medical history information stored in the medical history storage unit 601. For example, if there is a history of disease outbreaks in the same area last year, it may be determined that there is a high probability that the area has a disease. Specifically, even when a part or all of the measurement results of the spots do not satisfy the first threshold value, it may be determined that the patient is ill based on the occurrence history. Further, a second threshold value smaller than the first threshold value is defined in advance for the measurement result of the spot, and if the measurement result is equal to or more than the second threshold value and less than the first threshold value and there is an occurrence history, the disease is found in the area. It may be determined that it has occurred. Alternatively, the above-mentioned pathological likelihood may be calculated in consideration of past medical history information.
  • the pathological diagnosis unit 605 may make a pathological judgment based on the climate information. Specifically, it may be determined that the lower the temperature, the higher the humidity, and the lower the wind speed, the higher the probability that the disease has occurred. This condition is because it is known that the climate is vulnerable to disease and easy to progress.
  • the pathological diagnosis unit 605 has a threshold value for at least one of temperature, humidity and wind speed, and when the acquired climate information is equal to or higher than the threshold value, a part or all of the measurement results of the spots do not meet the first threshold value. In some cases, it may be determined that the patient is ill. Alternatively, the above-mentioned pathological likelihood may be calculated in consideration of climate information.
  • the pathological diagnosis unit 605 may determine the progress of the disease.
  • the progress is, for example, three stages of early, middle and late stages, but may be two stages or further subdivided into multiple stages. Further, even if the condition is not diagnosed as ill, the condition that may be ill may be determined as the "suspected pathology" condition.
  • the pathological diagnosis unit 605 determines the progress of the disease based on at least one of the shape and size of the spot.
  • the shape of the spot is, for example, the length of the spot.
  • the length of the spots may be calculated by obtaining the minor axis and the major axis of the oval-shaped spots and calculating the ratio of the minor axis to the major axis. This is because the spots are known to grow as the disease progresses.
  • the pathological diagnosis unit 605 determines that the state is more advanced than the earliest stage of development, for example, "middle stage" or "late stage".
  • the pathological diagnosis unit 605 may determine the progress of the disease based on the information obtained by the visible light camera. For example, it is known that the area around the lesion turns black as the disease progresses after the chlorophyll is destroyed and the lesion develops. According to the visible light camera, the discolored region can be detected. Since discoloration around the lesion occurs after the onset of the lesion, the pathological diagnosis unit 605 determines that the discolored region is more advanced than the earliest stage of development, for example, "middle stage" or "late stage". To do.
  • the pathological diagnosis unit 605 may use the growth status of the plant for pathological determination or determination of disease progression. For example, the pathological diagnosis unit 605 may determine that the disease is ill by referring to the specific growth condition when determining the disease that is likely to be affected in the case of the specific growth condition.
  • the pathological diagnosis unit 605 may make a pathological diagnosis based on the color or shape of the stem or ear.
  • the target plant for which the diagnostic device 600 performs pathological determination is assumed to be paddy rice, but the technical scope of the present invention is not limited to this, and another plant capable of pathological diagnosis mainly by photographing from the sky may be used.
  • the diagnostic apparatus 600 can perform pathological diagnosis based on images of leaves, stems, fruits and the like having chlorophyll.
  • the diagnostic apparatus 600 may perform pathological determination of a plurality of types of plants, store different pathological determination criteria for each type of plant, and perform pathological determination according to different determination criteria for each type of plant.
  • the planning device 700 includes arithmetic units such as a CPU (Central Processing Unit) for executing information processing, RAM (Random Access Memory), ROM (Read Only Memory), etc. It has at least a countermeasure decision unit 701 and a result output unit 704 as software resources.
  • arithmetic units such as a CPU (Central Processing Unit) for executing information processing, RAM (Random Access Memory), ROM (Read Only Memory), etc. It has at least a countermeasure decision unit 701 and a result output unit 704 as software resources.
  • the countermeasure decision unit 701 is a functional unit that determines the necessity of dealing with a disease based on the result of pathological diagnosis.
  • the countermeasure decision unit 701 determines the necessity of dealing with the disease for each strain or each area.
  • the countermeasure determination unit 701 decides to take countermeasures when the diagnostic device 600 determines that the patient is ill.
  • the countermeasure decision unit 701 determines the countermeasures to be taken in the field based on the progress of the disease.
  • Countermeasures include, for example, at least one of visual confirmation of the strain origin, rephotographing, waiting, spraying pesticides, removal of pathological leaves, removal of pathological strains, and removal of strains in the pathological strain outbreak area.
  • the stock yuan visual confirmation instruction is a measure to encourage the stock yuan to be visually confirmed.
  • the humidity around the plant root is higher than that around the leaves, and the probability of developing the disease is high.
  • the plant root is difficult to see from above, the disease may not be detected by photographing from the sky. According to the stock origin visual confirmation instruction, even if the pathological condition is difficult to detect by the drone 100, the disease can be detected at an early stage.
  • Agricultural chemical spraying is the work of spraying pesticides on a predetermined area including plants in which a disease has been found.
  • the area to be sprayed, the type and concentration of the pesticide are determined by the spraying mode determining unit 702 described later.
  • Removal of pathological leaves is the work of removing only the diseased leaves, that is, the pathological leaves. Removal of pathological strains is the task of removing diseased strains, i.e. pathological strains. Removal of strains in the pathological strain development area is an operation of removing all crops growing in a predetermined area including the pathological strains.
  • the countermeasure decision unit 701 outputs "wait and see” when the progress is "early” when it has a function of judging the progress of the disease in at least two stages including "early stage” and "late stage”. , "Agricultural chemical spraying", “Removal of pathological leaves” or “Removal of pathological strain” is output in the case of "late stage” in which the progress is more advanced than the initial stage.
  • the countermeasure determination unit 701 outputs "pesticide spraying" when the progress is “early”, and outputs “removal of pathological leaves” or “removal of pathological strain” when the progress is “late”. It may be a thing.
  • the countermeasure determination unit 701 may output "removal of pathological leaves” when the progress is “early” and “removal of pathological strains” when the progress is “late”.
  • the countermeasure decision unit 701 outputs "wait and see” when the progress is "early” when the progress of the disease is judged in at least three stages including “early”, “middle” and “late”. "Agricultural chemical spraying” is output when the progress is more advanced than the initial stage, and “pathological leaf removal” or “pathological strain removal” is output when the progress is more advanced than the middle stage. It may be output.
  • the countermeasure decision unit 701 outputs "pesticide spraying" when the progress is “early”, outputs “removal of pathological leaves” when the progress is “middle”, and the progress is "late”. In the case of, "removal of pathological strain” may be output.
  • the countermeasure decision unit 701 may decide the countermeasure by referring to the climate information. This is because the disease may not progress and spread to surrounding crops depending on the weather. For example, when the humidity is below the specified value, the temperature is above the specified value, and the wind speed is at least the specified value, the countermeasure determination unit 701 outputs a countermeasure that is lighter than the countermeasure associated with the determined progress. You may. That is, for example, the countermeasure determination unit 701 outputs "wait and see” when the above conditions are satisfied in a mode in which the progress is determined to be "initial” and "pesticide spraying" is associated with “initial”. You may.
  • a milder countermeasure may be output only when the climate information meets the predetermined conditions and the progress is early.
  • the characteristics of the disease can be used to more accurately determine appropriate countermeasures. In particular, it is possible to suppress excessive measures and prevent excessive spraying of pesticides and reduction in yield due to excessive removal.
  • suitable measures can be determined to stop the spread of the disease in the field 403. Further, according to the countermeasure determination unit 701, it is possible to determine an appropriate countermeasure according to the progress of the disease, so that excessive spraying of pesticides can be prevented. As a result, the cost of pesticides can be suppressed, and crops with a small amount of pesticides can be grown. Further, according to the countermeasure determination unit 701, since the pathological leaves can be appropriately removed and the pathological strains can be removed, excessive removal work can be prevented. As a result, the labor cost of the removal work can be suppressed. In addition, the yield can be maintained because the leaves and strains are not excessively removed.
  • the countermeasure determination unit 701 includes a spray mode determination unit 702 and a countermeasure timing calculation unit 703.
  • the spraying mode determining unit 702 is a functional unit that determines the mode in which the drug is sprayed on the field 403.
  • the spraying mode determining unit 702 has a spraying area determining unit 702a, a pesticide determining unit 702b, and a concentration determining unit 702c.
  • the spraying area determination unit 702a is a functional unit that determines a predetermined range including a pathological strain determined to be disease as a spraying area.
  • the spraying area determination unit 702a sprays pesticides in areas where there is a high risk of spreading the disease.
  • Bacterial growth is a cause of diseases that affect plants. Since the spores of the fungus are blown by the wind and move, it is presumed that the higher the wind speed, the wider the spores spread. It is also estimated that spores are spreading leeward. Furthermore, if the disease in the found pathological strain is advanced, it is presumed that time has passed since the onset of the disease, that is, the spores have spread over a wide area.
  • the spraying area determination unit 702a determines the distance from the pathological strain to which the pesticide is sprayed based on the wind speed information. That is, the spraying area determination unit 702a increases the distance from the pathological strain on which the pesticide is sprayed as the wind speed increases. In addition, the spraying area determination unit 702a determines the area where the pesticide is sprayed based on the wind direction information. That is, the spraying area determination unit 702a determines to spray the pesticide on the area extending from the pathological strain toward the leeward side. In other words, the spray area determination unit 702a makes the distance from the pathological strain to the spray range end in the leeward direction longer than the distance from the pathological strain to the spray range end in the leeward direction.
  • the wind speed information and the wind direction information may receive information from the measuring instrument 500.
  • the spraying area determination unit 702a determines the area to spray pesticides based on the progress of the disease in the found pathological strain. That is, the spraying area determination unit 702a increases the area of the spraying area as the disease of the pathological strain progresses. In other words, the spray area determination unit 702a increases the distance from the pathological strain to the end of the spray range as the disease progresses.
  • the spraying area determination unit 702a may estimate the elapsed time from the onset of the disease based on the progress of the disease, and determine the area to spray the pesticide based on the elapsed time.
  • the spraying area determination unit 702a increases the spraying area as the elapsed time increases.
  • the elapsed time may be estimated by referring to temperature, humidity, and wind speed information in addition to the progress. For example, the lower the temperature, the higher the humidity, or the lower the wind speed, the faster the disease progresses, and the shorter the elapsed time from the onset of the disease may be estimated.
  • the countermeasure determination unit 701 may determine the area for which the spraying area determination unit 702a determines the spraying as the information of the target range in the area requiring the removal of the strain, that is, the "removal of the strain in the pathological strain occurrence area”. ..
  • the area where the spraying area determination unit 702a determines the spraying is not limited to the flight range of the drone 100, but may include the area around the flight range.
  • the area may be a field managed by another worker, regardless of the field directly managed by the worker using the pathological diagnosis system 1000.
  • Information on the area requiring spraying may be managed by the comprehensive manager of the field in the area, and the comprehensive manager may notify each worker. Further, the information of the determined spraying area may be output to another system to be linked.
  • the pesticide determination unit 702b is a functional unit that determines the type of pesticide according to the progress of the disease.
  • the pesticide determination unit 702b has a table for associating the progress of the disease with suitable pesticides, and the type of pesticide may be determined with reference to the table.
  • pesticides are a concept that broadly includes various liquids, powders, granules, etc. that are effective for spraying as a countermeasure against diseases.
  • the concentration determination unit 702c is a functional unit that determines the concentration of pesticides to be sprayed according to the progress of the disease. Concentration determination unit 702c decides to apply a higher concentration of pesticide as the disease progresses.
  • the tank 104 is filled with high-concentration pesticides in advance and sprayed, and the pesticides are sprayed while flying at a lower speed than when spraying the standard concentration.
  • the concentration of the pesticide in the field may be ensured by changing the flight mode such as increasing the discharge amount from the nozzle 103 or flying and spraying the same location a plurality of times.
  • the concentration determining unit 702c may have a function of determining the flight mode of the drone 100 according to the spray concentration.
  • Countermeasure timing calculation unit 703 is a functional unit that calculates the deadline for taking countermeasures. Crop diseases progress day by day, and by taking countermeasures at an early stage, the diseases can be eliminated with mild measures. For example, it is advisable to take measures within a predetermined time from the outbreak of the disease. Therefore, the countermeasure timing calculation unit 703 estimates the elapsed time from the occurrence of the disease based on the progress of the disease, and calculates the time when the predetermined time is added to the time of the occurrence of the disease as the countermeasure deadline. The deadline for countermeasures is, for example, within 48 hours after the outbreak of the disease. Further, the countermeasure timing calculation unit 703 may determine the flight timing of the drone 100. The countermeasure timing calculation unit 703 may refer to the flight plan of the drone 100 and decide to take countermeasures at the timing when the flight is scheduled. The countermeasure timing calculation unit 703 may newly determine the flight timing and urge the operator.
  • the result output unit 704 is a functional unit that outputs the decision result of the countermeasure.
  • the result output unit 704 outputs at least one of a determination result of the presence or absence of a disease, a progress of the disease, a recommended countermeasure, and a countermeasure deadline for which the countermeasure should be taken.
  • the result output unit 704 may display the determination result on the user interface device 200. Further, the result output unit 704 may display the determination result on the screen of the personal computer, or may display the determination result on the UI on the Web via the Web browser installed in the personal computer.
  • the result output unit 704 may display a plurality of recommended countermeasures and allow the operator to select the countermeasure to be executed.
  • the result output unit 704 may display the recommended countermeasures in the recommended order. The worker can flexibly take measures according to the work convenience and the like.
  • the user interface device 200 accepts the selection input of the countermeasures to be actually performed, and when the countermeasures are input, the input countermeasures are recorded in the medical history storage unit 601 as the response record. To do.
  • the result output unit 704 may transmit the determination result to the flight control unit 1001 of the drone 100.
  • the drone 100 may fly for pathological diagnosis or for drug spraying based on the decision result.
  • the drone 100 may also perform the necessary preparatory movements for those flights.
  • the result output screen G1 is displayed on the user interface device 200.
  • the result output screen G1 displays fields 403a, 403b, 403c, and 403d, and virtual lines that divide each field into a mesh.
  • the areas 403a-1 and 403b-1 where the pathological strain exists are displayed in a manner different from those of the other areas.
  • the fields 403a to 403d are shaded, and the areas 403a-1 and 403b-1 where the pathological strains are present are shown in white.
  • the result output screen G1 displays the shape of the field and the area where the pathological strain exists in an overlapping manner.
  • the data of the aerial photograph or the farmland bank may be referred to, or the data input by the operator may be used.
  • the field displayed on the result output screen G1 may be a photograph or an illustration.
  • the area where the pathological strain exists is identified by, for example, the RTK-GPS information acquired by the drone 100 during flight. According to this configuration, the location of the pathological strain can be listed.
  • a progress display column g10 indicating the progress of the disease in the pathological strain and a countermeasure display column g20 for displaying the countermeasures for the pathological strain displayed in the progress display column g10 are displayed.
  • the pathological strain existing area 403a-1 displayed in the progress display column g10 and the countermeasure display column g20 can be distinguished from the other existing area 403b-1. ..
  • pin P is displayed in the existence area 403a-1.
  • One or more countermeasure columns g21 and g22 are displayed in the countermeasure display column g20. By pressing the countermeasure columns g21 and g22, the details of the countermeasure and the response deadline may be displayed. Further, the user interface device 200 may be able to input that the operator has implemented the countermeasure based on the operation for the countermeasure columns g21 and g22.
  • the screen transitions to the detailed result output screen G2 shown in FIG. 10, which enlarges and displays the pathological strains in the existence area.
  • the image g30 acquired by the pathological diagnosis camera 512b is displayed on the result output screen G2.
  • a pathological region identification mark g31 indicating a pathological leaf or a pathological strain is displayed superimposed on the image g30.
  • it is easy to search for a pathological leaf or a pathological strain in the field.
  • it is useful for visual confirmation or removal of pathological leaves or pathological strains.
  • By selecting the pathological region identification mark g31 it may be possible to input that the visual confirmation has been completed. According to this configuration, it is easy to manage the results of countermeasures against pathological strains.
  • the drone 100 first flies over the field and acquires an image of the crop (S11). Then, based on the acquired image, at least one of the parameters of spot size, density and number is measured (S12). Next, it is determined whether the parameter measurement result is within the predetermined range (S13). When the measurement result of the parameter is within the predetermined range, it is determined that the determination target is not a disease (S14). When the measurement result of the parameter is out of the predetermined range, it is determined that the determination target is ill (S15). Next, the progress of the disease is determined (S16). Determine countermeasures based on the progress and output (S17). The determination in step S12 may be made for each stock or for each image.
  • the processes of steps S12 to S17 are repeated for one acquired image.
  • the pathological occurrence likelihood may be generated based on the value of each parameter, and the presence or absence of the pathological occurrence may be determined based on the pathological occurrence likelihood.
  • S13 to S15 can be replaced as follows. That is, in S13, the pathological likelihood is generated based on the measurement result of the parameter (S13). Next, in S14, when the generated pathological likelihood is less than a predetermined value, it is determined that the determination target is not a disease (S14). Further, in S15, when the generated pathological likelihood is equal to or higher than a predetermined value, it is determined that the determination target is a disease (S15).

Landscapes

  • Life Sciences & Earth Sciences (AREA)
  • Biodiversity & Conservation Biology (AREA)
  • Botany (AREA)
  • Ecology (AREA)
  • Forests & Forestry (AREA)
  • Environmental Sciences (AREA)
  • Management, Administration, Business Operations System, And Electronic Commerce (AREA)
  • Catching Or Destruction (AREA)

Abstract

[Problem] To pathologically diagnose crops with high accuracy. [Solution] A pathological diagnosis system 1000 for plants is provided with: a flight control unit 1001 that causes a drone 100 to fly over a field; a pathological information acquisition unit 1004 that is mounted on the drone and acquires an image of a crop growing in the field 403; a spot measurement unit 604 for measuring at least any parameter among the size, density and number of spots on the crop on the basis of the image; and a pathological diagnosis unit 605 for pathologically determining whether the crop has a disease or not on the basis of the parameter measurement result.

Description

植物の病理診断システム、植物の病理診断方法、植物の病理診断装置、およびドローンPlant pathological diagnosis system, plant pathological diagnosis method, plant pathological diagnosis device, and drone
 本願発明は、植物の病理診断システム、植物の病理診断方法、植物の病理診断装置、およびドローンに関する。 The present invention relates to a plant pathological diagnosis system, a plant pathological diagnosis method, a plant pathological diagnosis device, and a drone.
 一般にドローンと呼ばれる小型ヘリコプター(マルチコプター)の応用が進んでいる。その重要な応用分野の一つとして農地(圃場)への農薬や液肥などの散布が挙げられる(たとえば、特許文献1)。比較的狭い農地においては、有人の飛行機やヘリコプターではなくドローンの使用が適しているケースが多い。 The application of small helicopters (multicopters) generally called drones is advancing. One of the important application fields is spraying agricultural land (field) with pesticides, liquid fertilizers, etc. (for example, Patent Document 1). In relatively small farmlands, it is often appropriate to use drones rather than manned planes and helicopters.
 特許文献2には、飛行中の撮像画像を取得する画像解析手段と、画像解析した手段に基づいて、作物に付着している害虫を検出する害虫検出手段と、害虫が付着している作物の位置情報に基づいて害虫駆除剤を散布するように移動体を制御する移動体制御手段と、を備える移動体制御アプリケーションが開示されている。 Patent Document 2 describes an image analysis means for acquiring an image captured in flight, a pest detection means for detecting pests attached to a crop based on the image analysis means, and a crop to which the pests are attached. A mobile control application comprising a mobile control means for controlling a mobile so as to spray a pest control agent based on position information is disclosed.
特許公開公報 特開2001-120151Patent Publication Japanese Patent Application Laid-Open No. 2001-120151 特許公報 特許6427301Patent Gazette Patent 6427301
 作物の病理診断を正確に行う植物の病理診断システムを提供する。 Provide a plant pathological diagnosis system that accurately diagnoses the pathological diagnosis of crops.
 上記目的を達成するため、本発明の一の観点に係る植物の病理診断システムは、ドローンを圃場の上空に飛行させる飛行制御部と、前記ドローンに搭載され、前記圃場に生育する作物の画像を取得する病理情報取得部と、前記画像に基づいて、前記作物に発生する斑点の大きさ、密度、および数の少なくともいずれかのパラメータを測定する斑点測定部と、前記パラメータの測定結果に基づいて、前記作物が病気か否かの病理判定を行う病理診断部と、を備える。 In order to achieve the above object, the plant pathological diagnosis system according to one aspect of the present invention includes a flight control unit for flying a drone over a field and an image of a crop mounted on the drone and growing in the field. Based on the pathological information acquisition unit to be acquired, the spot measurement unit that measures at least one parameter of the size, density, and number of spots generated in the crop based on the image, and the measurement result of the parameter. , A pathological diagnosis unit for determining whether the crop is sick or not.
 前記圃場における過去の病歴を記憶する病歴記憶部をさらに備え、前記病理診断部は、前記病歴に基づいて前記病理判定を行うものとしてもよい。 A medical history storage unit that stores a past medical history in the field may be further provided, and the pathological diagnosis unit may perform the pathological determination based on the medical history.
 前記病理診断部は、前記圃場の気候情報に基づいて病理判定を行うものとしてもよい。 The pathological diagnosis unit may make a pathological determination based on the climate information of the field.
 前記気候情報は、温度、湿度および風速の少なくともいずれかの情報を含むものとしてもよい。 The climate information may include at least one of temperature, humidity and wind speed information.
 前記ドローンは赤色光周波数帯域の光量を検出する赤色光カメラを備え、前記病理情報取得部は、前記赤色光カメラにより前記画像を取得するものとしてもよい。 The drone may include a red light camera that detects the amount of light in the red light frequency band, and the pathological information acquisition unit may acquire the image by the red light camera.
 前記病理診断部は、前記作物に発生する斑点の形状および大きさの少なくともいずれかに基づいて、前記病気の進行具合を判定するものとしてもよい。 The pathological diagnosis unit may determine the progress of the disease based on at least one of the shape and size of the spots generated on the crop.
 前記ドローンはRGBカメラ等の可視光帯域の少なくとも3波長の光量を検出する可視光カメラを備え、前記病理診断部は、前記可視光カメラにより得られる情報に基づいて、前記進行具合を判定するものとしてもよい。 The drone includes a visible light camera that detects light amounts of at least three wavelengths in the visible light band such as an RGB camera, and the pathological diagnosis unit determines the progress based on the information obtained by the visible light camera. May be.
 前記進行具合に応じて、前記圃場に行うべき対応策を決定する対策決定部をさらに備えるものとしてもよい。 A countermeasure determination unit for determining countermeasures to be taken in the field may be further provided according to the progress.
 前記対応策は、株元目視確認指示、再撮影、静観、農薬散布、病理葉の除去、病理株の除去、および病理株発生エリアの株の除去、の少なくともいずれかを含むものとしてもよい。 The countermeasure may include at least one of visual confirmation instruction of the strain origin, rephotographing, waiting, spraying of pesticides, removal of pathological leaves, removal of pathological strains, and removal of strains in the pathological strain occurrence area.
 前記対策決定部は、前記進行具合に応じて、農薬の散布エリアを決定するものとしてもよい。 The countermeasure determination unit may determine the pesticide spraying area according to the progress.
 前記対策決定部は、前記進行具合に応じて、農薬の散布濃度を決定するものとしてもよい。 The countermeasure determination unit may determine the spray concentration of the pesticide according to the progress.
 前記対策決定部は、前記病気の進行具合に応じて散布する農薬の種類を決定するものとしてもよい。 The countermeasure determination unit may determine the type of pesticide to be sprayed according to the progress of the disease.
 前記対策決定部の決定結果を表示部に表示、又は前記ドローンの飛行制御部に送信する結果出力部をさらに備えるものとしてもよい。 A result output unit for displaying the determination result of the countermeasure determination unit on the display unit or transmitting the determination result to the flight control unit of the drone may be further provided.
 上記目的を達成するため、本発明の別の観点に係る植物の病理診断方法は、ドローンを圃場の上空に飛行させる飛行制御ステップと、前記ドローンに搭載され、前記圃場に生育する作物の画像を取得する病理情報取得ステップと、前記画像に基づいて、前記作物に発生する斑点の大きさ、密度、および数の少なくともいずれかのパラメータを測定する斑点測定ステップと、前記パラメータの測定結果に基づいて、前記作物が病気か否かの病理判定を行う病理診断ステップと、を含む。 In order to achieve the above object, another method of pathological diagnosis of a plant according to another aspect of the present invention includes a flight control step of flying a drone over a field and an image of a crop mounted on the drone and growing in the field. Based on the pathological information acquisition step to be acquired, the spot measurement step of measuring at least one parameter of the size, density, and number of spots generated in the crop based on the image, and the measurement result of the parameter. , A pathological diagnosis step of making a pathological determination as to whether or not the crop is sick.
 上記目的を達成するため、本発明のさらに別の観点に係る植物の病理診断装置は、圃場の上空を飛行するドローンが取得する、前記圃場に生育する作物の画像に基づいて、前記作物に発生する斑点の大きさ、密度、および数の少なくともいずれかのパラメータを測定する斑点測定部と、前記パラメータの測定結果に基づいて、前記作物が病気か否かの病理判定を行う病理診断部と、を備える。 In order to achieve the above object, the plant pathological diagnosis apparatus according to still another aspect of the present invention occurs in the crop based on the image of the crop growing in the field acquired by the drone flying over the field. A spot measuring unit that measures at least one of the parameters of the size, density, and number of spots to be used, and a pathological diagnosis unit that determines the pathological condition of the crop based on the measurement results of the parameters. To be equipped.
 上記目的を達成するため、本発明のさらに別の観点に係るドローンは、ドローンを圃場の上空に飛行させる飛行制御部と、前記圃場に生育する作物の画像を取得する病理情報取得部と、前記画像に基づいて、前記作物に発生する斑点の大きさ、密度、および数の少なくともいずれかのパラメータを測定する斑点測定部と、前記パラメータの測定結果に基づいて、前記作物が病気か否かの病理判定を行う病理診断部と、を備える。 In order to achieve the above object, the drone according to still another aspect of the present invention includes a flight control unit for flying the drone over the field, a pathology information acquisition unit for acquiring an image of a crop growing in the field, and the above. A spot measuring unit that measures at least one parameter of the size, density, and number of spots that occur on the crop based on the image, and whether or not the crop is sick based on the measurement result of the parameter. It is provided with a pathological diagnosis unit for determining pathology.
 作物の病理診断を正確に行うことができる。 The pathological diagnosis of crops can be performed accurately.
本願発明に係るドローンの平面図である。It is a top view of the drone which concerns on this invention. 上記ドローンの正面図である。It is a front view of the said drone. 上記ドローンの右側面図である。It is a right side view of the above drone. 上記ドローンの背面図である。It is a rear view of the said drone. 上記ドローンの斜視図である。It is a perspective view of the said drone. 本願発明に係る病理診断システムの全体概念図である。It is an overall conceptual diagram of the pathological diagnosis system which concerns on this invention. 上記ドローンが有する機能ブロック図である。It is a functional block diagram which the said drone has. 上記病理診断システムが有するドローン、ユーザインターフェース装置、診断装置および計画装置の機能ブロック図である。It is a functional block diagram of the drone, the user interface apparatus, the diagnostic apparatus and the planning apparatus which the pathological diagnosis system has. 上記病理診断システムにより出力される結果出力画面の別の例である。This is another example of the result output screen output by the pathological diagnosis system. 上記病理診断システムにより出力される結果出力画面の別の例である。This is another example of the result output screen output by the pathological diagnosis system. 上記病理診断システムが、作物の病理診断を行うフローチャートである。The pathological diagnosis system is a flowchart for performing a pathological diagnosis of a crop. 上記ドローンが備える赤色光カメラで、いもち病に感染した稲の葉を撮影して得られる撮影画像のイメージ図である。It is an image diagram of the photographed image obtained by photographing the rice leaf infected with blast with the red light camera provided in the drone.
 以下、図を参照しながら、本願発明を実施するための形態について説明する。図はすべて例示である。以下の詳細な説明では、説明のために、開示された実施形態の完全な理解を促すために、ある特定の詳細について述べられている。しかしながら、実施形態は、これらの特定の詳細に限られない。また、図面を単純化するために、周知の構造および装置については概略的に示されている。 Hereinafter, a mode for carrying out the present invention will be described with reference to the drawings. All figures are illustrations. In the following detailed description, certain details are given for illustration purposes and to facilitate a complete understanding of the disclosed embodiments. However, embodiments are not limited to these particular details. Also, to simplify the drawings, well-known structures and devices are outlined.
 まず、本発明にかかるドローンの構成について説明する。本願明細書において、ドローンとは、動力手段(電力、原動機等)、操縦方式(無線であるか有線であるか、および、自律飛行型であるか手動操縦型であるか等)を問わず、複数の回転翼を有する飛行体全般を指すこととする。 First, the configuration of the drone according to the present invention will be described. In the specification of the present application, the drone is regardless of the power means (electric power, prime mover, etc.) and the maneuvering method (wireless or wired, autonomous flight type, manual maneuvering type, etc.). It refers to all air vehicles with multiple rotor blades.
 図1乃至図5に示すように、回転翼101-1a、101-1b、101-2a、101-2b、101-3a、101-3b、101-4a、101-4b(ローターとも呼ばれる)は、ドローン100を飛行させるための手段であり、飛行の安定性、機体サイズ、および、電力消費量のバランスを考慮し、8機(2段構成の回転翼が4セット)備えられている。各回転翼101は、ドローン100の筐体110からのび出たアームにより筐体110の四方に配置されている。すなわち、進行方向左後方に回転翼101-1a、101-1b、左前方に回転翼101-2a、101-2b、右後方に回転翼101-3a、101-3b、右前方に回転翼101-4a、101-4bがそれぞれ配置されている。なお、ドローン100は図1における紙面下向きを進行方向とする。 As shown in FIGS. 1 to 5, the rotors 101-1a, 101-1b, 101-2a, 101-2b, 101-3a, 101-3b, 101-4a, 101-4b (also referred to as rotors) are It is a means for flying the Drone 100, and is equipped with eight aircraft (four sets of two-stage rotor blades) in consideration of the balance between flight stability, aircraft size, and power consumption. Each rotor 101 is arranged on all sides of the housing 110 by an arm protruding from the housing 110 of the drone 100. That is, the rotors 101-1a and 101-1b are left rearward in the direction of travel, the rotors 101-2a and 101-2b are forward left, the rotors 101-3a and 101-3b are rearward right, and the rotors 101- are forward right. 4a and 101-4b are arranged respectively. In addition, the drone 100 has the traveling direction facing downward on the paper in FIG.
 回転翼101の各セットの外周には、略円筒形を形成する格子状のプロペラガード115-1,115-2,115-3,115-4が設けられ、回転翼101が異物と干渉しづらくなるようにしている。図2および図3に示されるように、プロペラガード115-1,115-2,115-3,115-4を支えるための放射状の部材は水平ではなくやぐら状の構造である。衝突時に当該部材が回転翼の外側に座屈することを促し、ローターと干渉することを防ぐためである。 A grid-shaped propeller guard 115-1,115-2,115-3,115-4 forming a substantially cylindrical shape is provided on the outer circumference of each set of the rotor blade 101 to prevent the rotor blade 101 from interfering with foreign matter. As shown in FIGS. 2 and 3, the radial members for supporting the propeller guards 115-1,115-2,115-3,115-4 are not horizontal but have a yagura-like structure. This is to encourage the member to buckle outside the rotor in the event of a collision and prevent it from interfering with the rotor.
 回転翼101の回転軸から下方には、それぞれ棒状の足107-1,107-2,107-3,107-4が伸び出ている。 Rod-shaped legs 107-1, 107-2, 107-3, 107-4 extend downward from the rotation axis of the rotor 101, respectively.
 モーター102-1a、102-1b、102-2a、102-2b、102-3a、102-3b、102-4a、102-4bは、回転翼101-1a、101-1b、101-2a、101-2b、101-3a、101-3b、101-4a、101-4bを回転させる手段(典型的には電動機だが発動機等であってもよい)であり、一つの回転翼に対して1機設けられている。モーター102は、推進器の例である。1セット内の上下の回転翼(たとえば、101-1aと101-1b)、および、それらに対応するモーター(たとえば、102-1aと102-1b)は、ドローンの飛行の安定性等のために軸が同一直線上にあり、かつ、互いに反対方向に回転する。 Motors 102-1a, 102-1b, 102-2a, 102-2b, 102-3a, 102-3b, 102-4a, 102-4b are rotary blades 101-1a, 101-1b, 101-2a, 101- It is a means to rotate 2b, 101-3a, 101-3b, 101-4a, 101-4b (typically an electric motor, but it may also be a motor, etc.), and one machine is provided for one rotary blade. Has been done. Motor 102 is an example of a thruster. The upper and lower rotors (eg, 101-1a and 101-1b) in one set, and their corresponding motors (eg, 102-1a and 102-1b), are used for drone flight stability, etc. The axes are on the same straight line and rotate in opposite directions.
 ノズル103-1、103-2、103-3、103-4は、散布物を下方に向けて散布するための手段であり4機備えられている。なお、本願明細書において、散布物とは、農薬、除草剤、液肥、殺虫剤、種、および、水などの圃場に散布される液体または粉体を一般的に指すこととする。 Nozzles 103-1, 103-2, 103-3, 103-4 are means for spraying the sprayed material downward and are equipped with four nozzles. In the specification of the present application, the sprayed material generally refers to a liquid or powder sprayed on a field such as a pesticide, a herbicide, a liquid fertilizer, an insecticide, a seed, and water.
 タンク104は散布物を保管するためのタンクであり、重量バランスの観点からドローン100の重心に近い位置でかつ重心より低い位置に設けられている。ホース105-1、105-2、105-3、105-4は、タンク104と各ノズル103-1、103-2、103-3、103-4とを接続する手段であり、硬質の素材から成り、当該ノズルを支持する役割を兼ねていてもよい。ポンプ106は、散布物をノズルから吐出するための手段である。 The tank 104 is a tank for storing the sprayed material, and is provided at a position close to the center of gravity of the drone 100 and at a position lower than the center of gravity from the viewpoint of weight balance. The hoses 105-1, 105-2, 1053, 105-4 are means for connecting the tank 104 and the nozzles 103-1, 103-2, 103-3, 103-4, and are made of a hard material. Therefore, it may also serve as a support for the nozzle. The pump 106 is a means for discharging the sprayed material from the nozzle.
 図6に本願発明に係るドローン100の飛行制御システムの全体概念図を示す。本図は模式図であって、縮尺は正確ではない。同図において、ドローン100、操作器401、小型携帯端末401aが、それぞれ基地局404と接続されていて、操作器401のみが営農クラウド405と接続されているが、接続関係は例示であり、これに限られない。ドローン100、操作器401、小型携帯端末401a、基地局404は、営農クラウド405にそれぞれ接続されている。これらの接続は、Wi-Fiや移動通信システム等による無線通信を行ってもよいし、一部又は全部が有線接続されていてもよい。 FIG. 6 shows an overall conceptual diagram of the flight control system of the drone 100 according to the present invention. This figure is a schematic view, and the scale is not accurate. In the figure, the drone 100, the actuator 401, and the small mobile terminal 401a are each connected to the base station 404, and only the actuator 401 is connected to the farming cloud 405. Not limited to. The drone 100, the actuator 401, the small mobile terminal 401a, and the base station 404 are each connected to the farming cloud 405. These connections may be wireless communication by Wi-Fi, mobile communication system or the like, or may be partially or wholly connected by wire.
 操作器401は、使用者402の操作によりドローン100に指令を送信し、また、ドローン100から受信した情報(たとえば、位置、散布物の貯留量、電池残量、カメラ映像等)を表示するための手段であり、コンピューター・プログラムを稼働する一般的なタブレット端末等の携帯情報機器によって実現されてよい。操作器401は、ユーザインターフェース装置としての入力部および表示部を備える。本願発明に係るドローン100は自律飛行を行なうよう制御されるが、離陸や帰還などの基本操作時、および、緊急時にはマニュアル操作が行なえるようになっていてもよい。携帯情報機器に加えて、緊急停止専用の機能を有する非常用操作器(図示していない)を使用してもよい。非常用操作器は緊急時に迅速に対応が取れるよう大型の緊急停止ボタン等を備えた専用機器であってもよい。さらに、操作器401とは別に、操作器401に表示される情報の一部又は全部を表示可能な小型携帯端末401a、例えばスマートホンがシステムに含まれていてもよい。また、小型携帯端末401aから入力される情報に基づいて、ドローン100の動作が変更される機能を有していてもよい。小型携帯端末401aは、例えば基地局404と接続されていて、基地局404を介して営農クラウド405からの情報等を受信可能である。 The controller 401 transmits a command to the drone 100 by the operation of the user 402, and also displays information received from the drone 100 (for example, position, amount of sprayed material, battery level, camera image, etc.). It may be realized by a portable information device such as a general tablet terminal that runs a computer program. The actuator 401 includes an input unit and a display unit as a user interface device. The drone 100 according to the present invention is controlled to perform autonomous flight, but may be capable of manual operation during basic operations such as takeoff and return, and in an emergency. In addition to the portable information device, an emergency operation device (not shown) having a function dedicated to emergency stop may be used. The emergency manipulator may be a dedicated device provided with a large emergency stop button or the like so that an emergency response can be taken quickly. Further, apart from the operating device 401, the system may include a small mobile terminal 401a capable of displaying a part or all of the information displayed on the operating device 401, for example, a smart phone. Further, it may have a function of changing the operation of the drone 100 based on the information input from the small mobile terminal 401a. The small mobile terminal 401a is connected to, for example, the base station 404, and can receive information and the like from the farming cloud 405 via the base station 404.
 圃場403は、ドローン100による散布の対象となる田圃や畑等である。実際には、圃場403の地形は複雑であり、事前に地形図が入手できない場合、あるいは、地形図と現場の状況が食い違っている場合がある。通常、圃場403は家屋、病院、学校、他の作物圃場、道路、鉄道等と隣接している。また、圃場403内に、建築物や電線等の侵入者が存在する場合もある。 Field 403 is a rice field, field, etc. that is the target of spraying with the drone 100. In reality, the terrain of field 403 is complicated, and the topographic map may not be available in advance, or the topographic map and the situation at the site may be inconsistent. Field 403 is usually adjacent to houses, hospitals, schools, other crop fields, roads, railroads, etc. In addition, there may be intruders such as buildings and electric wires in the field 403.
 基地局404は、Wi-Fi通信の親機機能等を提供する装置であり、RTK-GPS基地局としても機能し、ドローン100の正確な位置を提供できるようになっていてもよい(Wi-Fi通信の親機機能とRTK-GPS基地局が独立した装置であってもよい)。また、基地局404は、3G、4G、およびLTE等の移動通信システムを用いて、営農クラウド405と互いに通信可能であってもよい。 The base station 404 is a device that provides a master unit function for Wi-Fi communication, etc., and may also function as an RTK-GPS base station so that it can provide an accurate position of the drone 100 (Wi-). The base unit function of Fi communication and the RTK-GPS base station may be independent devices). In addition, the base station 404 may be able to communicate with the farming cloud 405 using mobile communication systems such as 3G, 4G, and LTE.
 営農クラウド405は、典型的にはクラウドサービス上で運営されているコンピュータ群と関連ソフトウェアであり、操作器401と携帯電話回線等で無線接続されていてもよい。営農クラウド405は、ハードウェア装置により構成されていてもよい。営農クラウド405は、ドローン100が撮影した圃場403の画像を分析し、作物の生育状況を把握して、飛行ルートを決定するための処理を行ってよい。また、保存していた圃場403の地形情報等をドローン100に提供してよい。加えて、ドローン100の飛行および撮影映像の履歴を蓄積し、様々な分析処理を行ってもよい。 The farming cloud 405 is typically a group of computers operated on a cloud service and related software, and may be wirelessly connected to the actuator 401 by a mobile phone line or the like. The farming cloud 405 may be configured by a hardware device. The farming cloud 405 may analyze the image of the field 403 taken by the drone 100, grasp the growing condition of the crop, and perform a process for determining the flight route. In addition, the topographical information of the stored field 403 may be provided to the drone 100. In addition, the history of the flight and captured images of the drone 100 may be accumulated and various analysis processes may be performed.
 小型携帯端末401aは例えばスマートホン等である。小型携帯端末401aの表示部には、ドローン100の運転に関し予測される動作の情報、より具体的にはドローン100が発着地点406に帰還する予定時刻や、帰還時に使用者402が行うべき作業の内容等の情報が適宜表示される。また、小型携帯端末401aからの入力に基づいて、ドローン100の動作を変更してもよい。 The small mobile terminal 401a is, for example, a smart phone or the like. On the display of the small mobile terminal 401a, information on expected operations regarding the operation of the drone 100, more specifically, the scheduled time when the drone 100 will return to the departure / arrival point 406, and the work to be performed by the user 402 at the time of return Information such as contents is displayed as appropriate. Further, the operation of the drone 100 may be changed based on the input from the small mobile terminal 401a.
 通常、ドローン100は圃場403の外部にある発着地点406から離陸し、圃場403に散布物を散布した後に、あるいは、散布物の補充や充電等が必要になった時に発着地点406に帰還する。発着地点406から目的の圃場403に至るまでの飛行経路(侵入経路)は、営農クラウド405等で事前に保存されていてもよいし、使用者402が離陸開始前に入力してもよい。発着地点406は、ドローン100に記憶されている座標により規定される仮想の地点であってもよいし、物理的な発着台があってもよい。 Normally, the drone 100 takes off from the departure / arrival point 406 outside the field 403 and returns to the departure / arrival point 406 after spraying the sprayed material on the field 403 or when it becomes necessary to replenish or charge the sprayed material. The flight route (invasion route) from the departure / arrival point 406 to the target field 403 may be stored in advance in the farming cloud 405 or the like, or may be input by the user 402 before the start of takeoff. The departure / arrival point 406 may be a virtual point defined by the coordinates stored in the drone 100, or may have a physical departure / arrival platform.
 図7に本願発明に係る散布用ドローンの実施例の制御機能を表したブロック図を示す。フライトコントローラー501は、ドローン全体の制御を司る構成要素であり、具体的にはCPU、メモリー、関連ソフトウェア等を含む組み込み型コンピュータであってよい。フライトコントローラー501は、操作器401から受信した入力情報、および、後述の各種センサーから得た入力情報に基づき、ESC(Electronic Speed Control)等の制御手段を介して、モーター102-1a、102-1b、102-2a、102-2b、102-3a、102-3b、104-a、104-bの回転数を制御することで、ドローン100の飛行を制御する。モーター102-1a、102-1b、102-2a、102-2b、102-3a、102-3b、104-a、104-bの実際の回転数はフライトコントローラー501にフィードバックされ、正常な回転が行なわれているかを監視できる構成になっている。あるいは、回転翼101に光学センサー等を設けて回転翼101の回転がフライトコントローラー501にフィードバックされる構成でもよい。 FIG. 7 shows a block diagram showing a control function of an embodiment of the spraying drone according to the present invention. The flight controller 501 is a component that controls the entire drone, and may be an embedded computer including a CPU, memory, related software, and the like. The flight controller 501 uses motors 102-1a and 102-1b via control means such as ESC (Electronic Speed Control) based on the input information received from the controller 401 and the input information obtained from various sensors described later. , 102-2a, 102-2b, 102-3a, 102-3b, 104-a, 104-b to control the flight of the drone 100. The actual rotation speeds of the motors 102-1a, 102-1b, 102-2a, 102-2b, 102-3a, 102-3b, 104-a, 104-b are fed back to the flight controller 501, and normal rotation is performed. It is configured so that it can be monitored. Alternatively, the rotary blade 101 may be provided with an optical sensor or the like so that the rotation of the rotary blade 101 is fed back to the flight controller 501.
 フライトコントローラー501が使用するソフトウェアは、機能拡張・変更、問題修正等のために記憶媒体等を通じて、または、Wi-Fi通信やUSB等の通信手段を通じて書き換え可能になっている。この場合において、不正なソフトウェアによる書き換えが行なわれないように、暗号化、チェックサム、電子署名、ウィルスチェックソフト等による保護が行われている。また、フライトコントローラー501が制御に使用する計算処理の一部が、操作器401上、または、営農クラウド405上や他の場所に存在する別のコンピュータによって実行されてもよい。フライトコントローラー501は重要性が高いため、その構成要素の一部または全部が二重化されていてもよい。 The software used by the flight controller 501 can be rewritten through storage media, etc. for function expansion / change, problem correction, etc., or through communication means such as Wi-Fi communication and USB. In this case, protection is performed by encryption, checksum, electronic signature, virus check software, etc. so that rewriting by malicious software is not performed. In addition, a part of the calculation process used by the flight controller 501 for control may be executed by another computer located on the controller 401, the farming cloud 405, or somewhere else. Due to the high importance of the flight controller 501, some or all of its components may be duplicated.
 フライトコントローラー501は、Wi-Fi子機機能503を介して、さらに、基地局404を介して操作器401とやり取りを行ない、必要な指令を操作器401から受信すると共に、必要な情報を操作器401に送信できる。この場合に、通信には暗号化を施し、傍受、成り済まし、機器の乗っ取り等の不正行為を防止できるようにしておいてもよい。基地局404は、Wi-Fiによる通信機能に加えて、RTK-GPS基地局の機能も備えている。RTK基地局の信号とGPS測位衛星からの信号を組み合わせることで、フライトコントローラー501により、ドローン100の絶対位置を数センチメートル程度の精度で測定可能となる。フライトコントローラー501は重要性が高いため、二重化・多重化されていてもよく、また、特定のGPS衛星の障害に対応するため、冗長化されたそれぞれのフライトコントローラー501は別の衛星を使用するよう制御されていてもよい。 The flight controller 501 communicates with the actuator 401 via the Wi-Fi slave unit function 503 and further via the base station 404, receives necessary commands from the actuator 401, and receives necessary information from the actuator 401. Can be sent to 401. In this case, the communication may be encrypted so as to prevent fraudulent acts such as interception, spoofing, and device hijacking. The base station 404 has the function of an RTK-GPS base station in addition to the communication function by Wi-Fi. By combining the signal from the RTK base station and the signal from the GPS positioning satellite, the flight controller 501 can measure the absolute position of the drone 100 with an accuracy of about several centimeters. Flight controllers 501 are so important that they may be duplicated and multiplexed, and each redundant flight controller 501 should use a different satellite to handle the failure of a particular GPS satellite. It may be controlled.
 6軸ジャイロセンサー505はドローン機体の互いに直交する3方向の加速度を測定する手段であり、さらに、加速度の積分により速度を計算する手段である。6軸ジャイロセンサー505は、上述の3方向におけるドローン機体の姿勢角の変化、すなわち角速度を測定する手段である。地磁気センサー506は、地磁気の測定によりドローン機体の方向を測定する手段である。気圧センサー507は、気圧を測定する手段であり、間接的にドローンの高度も測定することもできる。レーザーセンサー508は、レーザー光の反射を利用してドローン機体と地表との距離を測定する手段であり、IR(赤外線)レーザーであってもよい。ソナー509は、超音波等の音波の反射を利用してドローン機体と地表との距離を測定する手段である。これらのセンサー類は、ドローンのコスト目標や性能要件に応じて取捨選択してよい。また、機体の傾きを測定するためのジャイロセンサー(角速度センサー)、風力を測定するための風力センサーなどが追加されていてもよい。また、これらのセンサー類は、二重化または多重化されていてもよい。同一目的複数のセンサーが存在する場合には、フライトコントローラー501はそのうちの一つのみを使用し、それが障害を起こした際には、代替のセンサーに切り替えて使用するようにしてもよい。あるいは、複数のセンサーを同時に使用し、それぞれの測定結果が一致しない場合には障害が発生したと見なすようにしてもよい。 The 6-axis gyro sensor 505 is a means for measuring the acceleration of the drone body in three directions orthogonal to each other, and further, a means for calculating the velocity by integrating the acceleration. The 6-axis gyro sensor 505 is a means for measuring the change in the attitude angle of the drone aircraft in the above-mentioned three directions, that is, the angular velocity. The geomagnetic sensor 506 is a means for measuring the direction of the drone body by measuring the geomagnetism. The barometric pressure sensor 507 is a means for measuring barometric pressure, and can also indirectly measure the altitude of the drone. The laser sensor 508 is a means for measuring the distance between the drone body and the ground surface by utilizing the reflection of the laser light, and may be an IR (infrared) laser. The sonar 509 is a means for measuring the distance between the drone aircraft and the ground surface by utilizing the reflection of sound waves such as ultrasonic waves. These sensors may be selected according to the cost target and performance requirements of the drone. In addition, a gyro sensor (angular velocity sensor) for measuring the inclination of the aircraft, a wind sensor for measuring wind power, and the like may be added. Further, these sensors may be duplicated or multiplexed. If there are multiple sensors for the same purpose, the flight controller 501 may use only one of them, and if it fails, it may switch to an alternative sensor for use. Alternatively, a plurality of sensors may be used at the same time, and if the measurement results do not match, it may be considered that a failure has occurred.
 流量センサー510は散布物の流量を測定するための手段であり、タンク104からノズル103に至る経路の複数の場所に設けられている。液切れセンサー511は散布物の量が所定の量以下になったことを検知するセンサーである。 The flow rate sensor 510 is a means for measuring the flow rate of the sprayed material, and is provided at a plurality of locations on the path from the tank 104 to the nozzle 103. The liquid drainage sensor 511 is a sensor that detects that the amount of sprayed material has fallen below a predetermined amount.
 生育診断カメラ512aは、圃場403を撮影し、生育診断のためのデータを取得する手段である。生育診断カメラ512aは例えばマルチスペクトルカメラであり、互いに波長の異なる複数の光線を受信する。当該複数の光線は、例えば赤色光(波長約650nm)と近赤外光(波長約774nm)である。また、生育診断カメラ512aは、可視光線を受光するカメラであってもよい。 The growth diagnosis camera 512a is a means for photographing the field 403 and acquiring data for the growth diagnosis. The growth diagnostic camera 512a is, for example, a multispectral camera and receives a plurality of light rays having different wavelengths from each other. The plurality of light rays are, for example, red light (wavelength of about 650 nm) and near-infrared light (wavelength of about 774 nm). Further, the growth diagnosis camera 512a may be a camera that receives visible light.
 病理診断カメラ512bは、圃場403に生育する作物を撮影し、病理診断のためのデータを取得する手段である。病理診断カメラ512bは、例えば赤色光カメラである。赤色光カメラは、植物に含有されるクロロフィルの吸収スペクトルに対応する周波数帯域の光量を検出するカメラであり、例えば波長650nm付近の帯域の光量を検出する。病理診断カメラ512bは、赤色光と近赤外光の周波数帯域の光量を検出してもよい。また、病理診断カメラ512bとして、赤色光カメラおよびRGBカメラ等の可視光帯域の少なくとも3波長の光量を検出する可視光カメラの両方を備えていてもよい。 The pathological diagnosis camera 512b is a means for photographing the crops growing in the field 403 and acquiring the data for the pathological diagnosis. The pathological diagnosis camera 512b is, for example, a red light camera. The red light camera is a camera that detects the amount of light in the frequency band corresponding to the absorption spectrum of chlorophyll contained in the plant, and detects, for example, the amount of light in the band around 650 nm. The pathological diagnosis camera 512b may detect the amount of light in the frequency bands of red light and near infrared light. Further, the pathological diagnosis camera 512b may include both a red light camera and a visible light camera such as an RGB camera that detects light amounts of at least three wavelengths in the visible light band.
 植物に発生する病気には、葉、葉鞘、茎又は穂に病斑が発生するものが知られている。病斑が発生する病気は、例えば、いもち病、ごま葉枯病、もん枯れ病、しま葉枯病等である。病斑の発生機序としては、まずクロロフィルが変質、分解又は欠乏し、次いで当該部位が枯れて視認できる病斑となり、その後病斑が拡大する。そのため、赤色光カメラによれば、視認できない段階の初期の病斑の画像を取得することができる。 It is known that diseases that occur in plants cause lesions on leaves, leaf sheaths, stems or ears. Diseases in which lesions occur include, for example, blast disease, sesame leaf blight, blight, and striped leaf blight. The mechanism of lesion development is that chlorophyll is first altered, decomposed or deficient, then the site withers and becomes a visible lesion, and then the lesion expands. Therefore, according to the red light camera, it is possible to acquire an image of an early lesion at an invisible stage.
 図12は、いもち病に感染した稲の葉を赤色光カメラで撮影して得られる葉の撮影画像のイメージ図を示している。赤色光カメラで撮影を行うと、赤色の光を吸収するクロロフィルが存在する部分は黒く映り、いもち病等の病気が発生したことにより葉のクロロフィルが破壊されている部分は、赤色の光を吸収しないため白く映る。いもち病等の病気が発生した場合には、葉のクロロフィルが斑点状に破壊されるため、図12のように葉Lの中に斑点L1が現れた画像が得られる。 FIG. 12 shows an image diagram of a photographed image of a leaf obtained by photographing a leaf of rice infected with blast with a red light camera. When shooting with a red light camera, the part where chlorophyll that absorbs red light is present appears black, and the part where chlorophyll is destroyed due to a disease such as blast absorbs red light. It looks white because it does not. When a disease such as blast occurs, the chlorophyll of the leaf is destroyed in the form of spots, so that an image in which the spot L1 appears in the leaf L can be obtained as shown in FIG.
 また、可視光カメラによれば、視認できる病斑の画像、および葉、茎および穂の色および形状を解析可能な画像を取得することができる。 Further, according to the visible light camera, it is possible to acquire an image of a visible lesion and an image capable of analyzing the color and shape of leaves, stems and ears.
 なお、生育診断カメラ512aおよび病理診断カメラ512bは、1個のハードウェア構成により実現されていてもよい。 The growth diagnosis camera 512a and the pathology diagnosis camera 512b may be realized by one hardware configuration.
 障害物検知カメラ513はドローン侵入者を検知するためのカメラであり、画像特性とレンズの向きが生育診断カメラ512aおよび病理診断カメラ512bとは異なるため、生育診断カメラ512aおよび病理診断カメラ512bとは別の機器である。スイッチ514はドローン100の使用者402が様々な設定を行なうための手段である。障害物接触センサー515はドローン100、特に、そのローターやプロペラガード部分が電線、建築物、人体、立木、鳥、または、他のドローン等の侵入者に接触したことを検知するためのセンサーである。なお、障害物接触センサー515は、6軸ジャイロセンサー505で代用してもよい。カバーセンサー516は、ドローン100の操作パネルや内部保守用のカバーが開放状態であることを検知するセンサーである。注入口センサー517はタンク104の注入口が開放状態であることを検知するセンサーである。 The obstacle detection camera 513 is a camera for detecting a drone intruder, and since the image characteristics and the orientation of the lens are different from the growth diagnosis camera 512a and the pathological diagnosis camera 512b, what are the growth diagnosis camera 512a and the pathological diagnosis camera 512b? Another device. The switch 514 is a means for the user 402 of the drone 100 to make various settings. The obstacle contact sensor 515 is a sensor for detecting that the drone 100, in particular, its rotor or propeller guard part, has come into contact with an intruder such as an electric wire, a building, a human body, a standing tree, a bird, or another drone. .. The obstacle contact sensor 515 may be replaced by a 6-axis gyro sensor 505. The cover sensor 516 is a sensor that detects that the operation panel of the drone 100 and the cover for internal maintenance are in the open state. The inlet sensor 517 is a sensor that detects that the inlet of the tank 104 is in an open state.
 これらのセンサー類はドローンのコスト目標や性能要件に応じて取捨選択してよく、二重化・多重化してもよい。また、ドローン100外部の基地局404、操作器401、または、その他の場所にセンサーを設けて、読み取った情報をドローンに送信してもよい。たとえば、基地局404に風力センサーを設け、風力・風向に関する情報をWi-Fi通信経由でドローン100に送信するようにしてもよい。 These sensors may be selected according to the cost target and performance requirements of the drone, and may be duplicated / multiplexed. Further, a sensor may be provided at the base station 404, the actuator 401, or some other place outside the drone 100, and the read information may be transmitted to the drone. For example, a wind sensor may be provided in the base station 404 to transmit information on the wind and wind direction to the drone 100 via Wi-Fi communication.
 フライトコントローラー501はポンプ106に対して制御信号を送信し、吐出量の調整や吐出の停止を行なう。ポンプ106の現時点の状況(たとえば、回転数等)は、フライトコントローラー501にフィードバックされる構成となっている。 The flight controller 501 sends a control signal to the pump 106 to adjust the discharge amount and stop the discharge. The current status of the pump 106 (for example, the number of revolutions) is fed back to the flight controller 501.
 LED107は、ドローンの操作者に対して、ドローンの状態を知らせるための表示手段である。LEDに替えて、または、それに加えて液晶ディスプレイ等の表示手段を使用してもよい。ブザーは、音声信号によりドローンの状態(特にエラー状態)を知らせるための出力手段である。Wi-Fi子機機能519は操作器401とは別に、たとえば、ソフトウェアの転送などのために外部のコンピューター等と通信するためのオプショナルな構成要素である。Wi-Fi子機機能に替えて、または、それに加えて、赤外線通信、Bluetooth(登録商標)、ZigBee(登録商標)、NFC等の他の無線通信手段、または、USB接続などの有線通信手段を使用してもよい。また、Wi-Fi子機機能に替えて、3G、4G、およびLTE等の移動通信システムにより相互に通信可能であってもよい。スピーカー520は、録音した人声や合成音声等により、ドローンの状態(特にエラー状態)を知らせる出力手段である。天候状態によっては飛行中のドローン100の視覚的表示が見にくいことがあるため、そのような場合には音声による状況伝達が有効である。警告灯521はドローンの状態(特にエラー状態)を知らせるストロボライト等の表示手段である。これらの入出力手段は、ドローンのコスト目標や性能要件に応じて取捨選択してよく、二重化・多重化してもよい。 LED107 is a display means for notifying the drone operator of the drone status. Display means such as a liquid crystal display may be used in place of or in addition to the LED. The buzzer is an output means for notifying the state of the drone (particularly the error state) by an audio signal. The Wi-Fi slave unit function 519 is an optional component for communicating with an external computer or the like for transferring software, for example, in addition to the actuator 401. Instead of or in addition to the Wi-Fi slave function, other wireless communication means such as infrared communication, Bluetooth (registered trademark), ZigBee (registered trademark), NFC, or wired communication means such as USB connection You may use it. Further, instead of the Wi-Fi slave unit function, mutual communication may be possible by a mobile communication system such as 3G, 4G, and LTE. The speaker 520 is an output means for notifying the state of the drone (particularly the error state) by means of recorded human voice, synthetic voice, or the like. Depending on the weather conditions, it may be difficult to see the visual display of the drone 100 in flight. In such cases, voice communication is effective. The warning light 521 is a display means such as a strobe light for notifying the state of the drone (particularly the error state). These input / output means may be selected according to the cost target and performance requirements of the drone, and may be duplicated / multiplexed.
●制御システムの概要
 図8に示すように、植物の病理診断システム1000は、例えばドローン100、ユーザインターフェース装置200、測定器500、診断装置600および計画装置700を含むシステムであり、これらはネットワークNWを通じて互いに通信可能に接続されている。診断装置600および計画装置700は、ハードウェア構成であってもよいし、営農クラウド405上に構成されていてもよい。ドローン100、ユーザインターフェース装置200、診断装置600および計画装置700は、無線で互いに接続されていてもよいし、一部又は全部が有線により接続されていてもよい。
● Outline of control system As shown in Fig. 8, the plant pathological diagnosis system 1000 is a system including, for example, a drone 100, a user interface device 200, a measuring device 500, a diagnostic device 600, and a planning device 700, and these are network NWs. They are connected so that they can communicate with each other through. The diagnostic device 600 and the planning device 700 may have a hardware configuration or may be configured on the farming cloud 405. The drone 100, the user interface device 200, the diagnostic device 600, and the planning device 700 may be connected to each other wirelessly, or may be partially or wholly connected by wire.
 なお、図8に示した構成は例示であり、ある構成要素が別の構成要素を包含していてもよいし、各構成要素が有する機能部は、別の構成要素が有していてもよい。例えば、診断装置600および計画装置700の機能の一部および全部がドローン100に搭載されていてもよい。 The configuration shown in FIG. 8 is an example, and one component may include another component, and the functional unit of each component may be included in another component. .. For example, some or all of the functions of the diagnostic device 600 and the planning device 700 may be mounted on the drone 100.
 ユーザインターフェース装置200は、作業者による入力部および表示部を備えていればよく、操作器401の機能により実現されてもよい。また、ユーザインターフェース装置200は、パーソナルコンピュータであってもよく、パーソナルコンピュータにインストールされたWebブラウザを介して、Web上のUIに情報を入力し、表示させてもよい。 The user interface device 200 may be provided with an input unit and a display unit by an operator, and may be realized by the function of the operator 401. Further, the user interface device 200 may be a personal computer, or information may be input and displayed in the UI on the Web via a Web browser installed in the personal computer.
●ドローンの機能部
 ドローン100は、情報処理を実行するためのCPU(Central Processing Unit)などの演算装置、RAM(Random Access Memory)やROM(Read Only Memory)などの記憶装置を備え、これによりソフトウェア資源として少なくとも、飛行制御部1001、散布制御部1002、生育情報取得部1003および病理情報取得部1004を有する。
● Functional part of the drone Drone 100 is equipped with a computing device such as a CPU (Central Processing Unit) for executing information processing and a storage device such as RAM (Random Access Memory) and ROM (Read Only Memory). As resources, it has at least a flight control unit 1001, a spray control unit 1002, a growth information acquisition unit 1003, and a pathological information acquisition unit 1004.
 飛行制御部1001は、モーター102を稼働させ、ドローン100の飛行および離着陸を制御する機能部である。飛行制御部1001は、例えばフライトコントローラー501によって実現され、飛行高度、飛行速度、および飛行経路を制御して、ドローン100を圃場の上空に飛行させる。 The flight control unit 1001 is a functional unit that operates the motor 102 and controls the flight and takeoff and landing of the drone 100. The flight control unit 1001 is realized by, for example, a flight controller 501, and controls the flight altitude, flight speed, and flight path to fly the drone 100 over the field.
 散布制御部1002は、ポンプ106を稼働させ、ノズル103-1、103-2、103-3、103-4からの散布物の散布を制御する機能部である。散布制御部1002は、例えばフライトコントローラー501によって実現される。 The spray control unit 1002 is a functional unit that operates the pump 106 and controls the spraying of the sprayed material from the nozzles 103-1, 103-2, 103-3, 103-4. The spray control unit 1002 is realized by, for example, a flight controller 501.
 生育情報取得部1003は、ドローン100が圃場の上空を飛行中に、当該圃場に生育する作物の生育情報を取得する機能部である。生育情報は、作物の生育状態を診断するための、作物の画像を含む。 Growth information acquisition unit 1003 is a functional unit that acquires growth information of crops growing in the field while the drone 100 is flying over the field. The growth information includes an image of the crop for diagnosing the growth state of the crop.
 窒素吸収量により葉の葉緑素(クロロフィルa、クロロフィルb、カロテノイド等)の密度が変化することを利用し、葉の反射光の特性を分析することで、葉緑素の密度を推定して葉への窒素吸収量を推定し、この窒素吸収量に基づいて作物の生長度を測定できることが知られている。そこで、生育情報取得部1003は、圃場403から得られる日光の反射光を受信することで、作物の生育状況の分析に用いるデータを取得する。 Utilizing the fact that the density of leaf chlorophyll (chlorophyll a, chlorophyll b, carotenoid, etc.) changes depending on the amount of nitrogen absorbed, the density of chlorophyll is estimated by analyzing the characteristics of the reflected light of the leaves, and the nitrogen to the leaves is estimated. It is known that the amount of absorption can be estimated and the degree of growth of crops can be measured based on the amount of nitrogen absorbed. Therefore, the growth information acquisition unit 1003 acquires the data used for the analysis of the growth condition of the crop by receiving the reflected light of the sunlight obtained from the field 403.
 生育情報取得部1003は、生育診断カメラ512aにより作物の画像を取得する。生育情報取得部1003は、ビームスプリッタを有し、光源から所定の周波数範囲の光線のみを取得する。生育情報取得部1003が受信する光線は、生育情報取得部1003から送信される光線が主に作物から反射される反射光を含む。ドローン100は、飛行制御部1001により圃場403を飛行しながら、生育情報取得部1003により圃場403から反射される反射光を受信することで、圃場403に生育する作物の生育情報を取得する。 The growth information acquisition unit 1003 acquires an image of the crop with the growth diagnosis camera 512a. The growth information acquisition unit 1003 has a beam splitter and acquires only light rays in a predetermined frequency range from the light source. The light rays received by the growth information acquisition unit 1003 include reflected light that is mainly reflected from the crop by the light rays transmitted from the growth information acquisition unit 1003. The drone 100 acquires the growth information of the crops growing in the field 403 by receiving the reflected light reflected from the field 403 by the growth information acquisition unit 1003 while flying in the field 403 by the flight control unit 1001.
 なお、生育情報取得部1003は、これに代えて、又はこれに加えて、分げつ数、茎又は稲穂の色、稲穂の量、もしくは茎の長さ又はたわみ量等の視覚的な情報を取得してもよい。この視覚的な情報のみを取得する場合、生育情報取得部1003は、可視光線を受光可能なカメラを利用することができる。 In addition, instead of or in addition to this, the growth information acquisition unit 1003 provides visual information such as the number of tillers, the color of the stem or rice ear, the amount of rice ear, or the length or deflection of the stem. You may get it. When acquiring only this visual information, the growth information acquisition unit 1003 can use a camera capable of receiving visible light.
 病理情報取得部1004は、ドローン100が圃場の上空を飛行中に、当該圃場における作物の病気の罹患情報、すなわち病理情報を取得する機能部である。病理情報取得部1004は、病理診断カメラ512bにより、作物の病理状態を診断するための、作物の画像を取得する。病理情報取得部1004は、病斑が表れる部位、例えば葉、葉鞘、茎及び穂の少なくともいずれかの画像を取得する。また、病理情報取得部1004は、茎又は穂の色又は形を撮影してもよい。病気により、変色又は変形の可能性があるためである。 The pathology information acquisition unit 1004 is a functional unit that acquires pathological information, that is, pathological information of crop diseases in the field while the drone 100 is flying over the field. The pathological information acquisition unit 1004 acquires an image of the crop for diagnosing the pathological state of the crop by the pathological diagnosis camera 512b. The pathological information acquisition unit 1004 acquires an image of at least one of a site where a lesion appears, for example, a leaf, a leaf sheath, a stem, and an ear. In addition, the pathological information acquisition unit 1004 may photograph the color or shape of the stem or ear. This is because there is a possibility of discoloration or deformation due to illness.
 なお、本実施形態においては、ドローン100が散布制御部1002、生育情報取得部1003および病理情報取得部1004を備えている構成としたが、本発明の技術的思想はこれに限られるものではなく、ドローン100は、少なくとも飛行制御部1001および病理情報取得部1004を備えていればよい。また、散布制御部1002は、病理診断システム1000が有する、又は病理診断システム1000と接続される陸上走行機械が有していてもよい。 In the present embodiment, the drone 100 is provided with a spray control unit 1002, a growth information acquisition unit 1003, and a pathology information acquisition unit 1004, but the technical idea of the present invention is not limited to this. , The drone 100 may include at least a flight control unit 1001 and a pathology information acquisition unit 1004. Further, the spray control unit 1002 may be included in the pathological diagnosis system 1000 or may be included in the land traveling machine connected to the pathological diagnosis system 1000.
●診断装置の機能部
 図8に示すように、診断装置600は、ドローン100が取得する情報に基づいて、当該ドローン100が飛行する圃場403に生育する植物、すなわち作物を診断する機能部である。診断装置600は、情報処理を実行するためのCPU(Central Processing Unit)などの演算装置、RAM(Random Access Memory)やROM(Read Only Memory)などの記憶装置を備え、これによりソフトウェア資源として少なくとも、病歴記憶部601、生育診断部602、気候情報取得部603、斑点測定部604および病理診断部605を備える。
● Functional part of the diagnostic device As shown in Fig. 8, the diagnostic device 600 is a functional part that diagnoses plants, that is, crops, that grow in the field 403 to which the drone 100 flies, based on the information acquired by the drone 100. .. The diagnostic device 600 includes a computing device such as a CPU (Central Processing Unit) for executing information processing, and a storage device such as RAM (Random Access Memory) and ROM (Read Only Memory), whereby at least as a software resource, It is equipped with a medical history memory unit 601, a growth diagnosis unit 602, a climate information acquisition unit 603, a spot measurement unit 604, and a pathological diagnosis unit 605.
 病歴記憶部601は、過去に当該圃場403で発生した病気の病歴を記憶する機能部である。病歴は、圃場403内における病気の発生エリア、発生した病気の種類、および発生時期の少なくともいずれかを含む。また、病歴は、当該発生時期における発生エリアの気候情報を含んでいてもよい。 The medical history memory unit 601 is a functional unit that stores the medical history of diseases that have occurred in the field 403 in the past. The medical history includes at least one of the disease outbreak area, the type of outbreak, and the time of outbreak within field 403. The medical history may also include climatic information of the outbreak area at the time of the outbreak.
 病歴記憶部601は、当該圃場403に実施した、病気への対応実績を記憶してもよい。対応実績は、発生エリアへの薬剤散布、病理葉又は病理株の除去を含む。対応実績は、散布された薬剤の種類又は濃度を含んでいてもよい。病歴記憶部601は、計画装置700により決定された対応策を受信し、対応実績として記憶してよい。また、病歴および対応実績は、例えば作業者により、ユーザインターフェース装置200から入力されてもよい。 The medical history memory unit 601 may memorize the response record to the disease carried out in the field 403. Correspondence results include spraying the drug to the outbreak area and removing pathological leaves or pathological strains. The response record may include the type or concentration of the sprayed drug. The medical history storage unit 601 may receive the countermeasure determined by the planning device 700 and store it as a response record. In addition, the medical history and the response record may be input from the user interface device 200 by, for example, an operator.
 生育診断部602は、生育情報取得部1003により取得される生育情報に基づいて、当該圃場における作物の生育状況を診断する機能部である。生育診断部602は、赤色光(波長約650nm)と近赤外光(波長約774nm)の反射光による画像に基づいてNDVI(Normalized Difference Vegetation Index)を計算し、赤色光の吸収率を求める。また、NDVIにより、有効受光面積を推定することができる。一般に、NDVIは(IR-R)/(IR+R)という計算式により求められる(ここで、IRは近赤外光の反射率、Rは赤色光の反射率である。)。IRとRは圃場の画像を周波数帯域毎に分析することにより得られる。 The growth diagnosis unit 602 is a functional unit that diagnoses the growth status of crops in the field based on the growth information acquired by the growth information acquisition unit 1003. The growth diagnosis unit 602 calculates the NDVI (Normalized Difference Vegetation Index) based on the image obtained by the reflected light of red light (wavelength about 650 nm) and near infrared light (wavelength about 774 nm), and obtains the absorption rate of red light. In addition, the effective light receiving area can be estimated by NDVI. Generally, NDVI is calculated by the formula (IR-R) / (IR + R) (where IR is the reflectance of near-infrared light and R is the reflectance of red light). IR and R are obtained by analyzing field images for each frequency band.
 生育診断部602は、生育情報取得部1003が受光する光線に対してハード的又はソフト的に周波数フィルタを掛けることで、生育状況に関連のある所定の周波数範囲の光線の光量、例えばパワースペクトル密度を取得する。なお、光量の計算処理は、生育情報取得部1003で行い、生育診断部602は受信される光量に基づいて生育状況を診断してもよい。 The growth diagnosis unit 602 applies a frequency filter to the light rays received by the growth information acquisition unit 1003 in a hard or soft manner, so that the amount of light rays in a predetermined frequency range related to the growth situation, for example, the power spectral density. To get. The calculation process of the amount of light may be performed by the growth information acquisition unit 1003, and the growth diagnosis unit 602 may diagnose the growth state based on the amount of light received.
 生育診断部602は、あらかじめ記憶された、所定の周波数帯域における光量と生育量とを対応付ける情報に基づいて、当該圃場の生育状況を診断する。生育診断部602は、生育状況に基づいて、当該圃場における収穫量を予測してもよい。 The growth diagnosis unit 602 diagnoses the growth status of the field based on the information stored in advance that associates the amount of light with the amount of growth in a predetermined frequency band. The growth diagnosis unit 602 may predict the yield in the field based on the growth condition.
 気候情報取得部603は、圃場403の気候情報を取得する機能部である。気候情報は、温度、湿度および風速の少なくともいずれかの情報を含む。また、気候情報は、風向きの情報を含んでいてもよい。気候情報取得部603は、例えば圃場403に配設された測定器500、例えば温度計、湿度計、および風速計からそれぞれの計測値を受信してもよい。また、測定器500が有する各構成の一部又は全部は、ドローン100が備えていてもよい。 The climate information acquisition unit 603 is a functional unit that acquires the climate information of the field 403. Climate information includes at least one of temperature, humidity and wind speed information. In addition, the climate information may include information on the wind direction. The climate information acquisition unit 603 may receive each measured value from, for example, a measuring instrument 500 arranged in the field 403, for example, a thermometer, a hygrometer, and an anemometer. Further, the drone 100 may include a part or all of each configuration of the measuring instrument 500.
 気候情報取得部603は、病理診断システム1000の外部から発信される情報を受信してもよい。気候情報取得部603は、気象衛星からの情報を取得してもよい。気象衛星は、たとえばひまわりである。気候情報取得部603は、気象庁等の各種機関、特に公的機関により加工された情報(公示情報)を気候情報として取得してもよい。 The climate information acquisition unit 603 may receive information transmitted from the outside of the pathological diagnosis system 1000. The climate information acquisition unit 603 may acquire information from a meteorological satellite. Meteorological satellites are, for example, sunflowers. The climate information acquisition unit 603 may acquire information (public information) processed by various organizations such as the Japan Meteorological Agency, particularly public organizations, as climate information.
 斑点測定部604は、病理情報取得部1004により取得される画像に基づいて、作物に発生している斑点の様子を測定する機能部である。斑点測定部604は、当該画像に基づいて、作物に発生する斑点の大きさ、密度、および数の少なくともいずれかのパラメータを測定する。すなわち、斑点測定部604は、斑点計数部604a、斑点サイズ測定部604bおよび斑点密度測定部604cの少なくともいずれかを備える。 The spot measurement unit 604 is a functional unit that measures the state of spots occurring on the crop based on the image acquired by the pathological information acquisition unit 1004. The spot measuring unit 604 measures at least one parameter of the size, density, and number of spots generated on the crop based on the image. That is, the spot measurement unit 604 includes at least one of a spot counting unit 604a, a spot size measuring unit 604b, and a spot density measuring unit 604c.
 斑点計数部604aは、画像解析により植物の葉、葉鞘、茎および穂の少なくともいずれかに発生している斑点を計数する機能部である。斑点計数部604aは、斑点数を、発生している部位ごとに計数してもよい。発生部位ごとの計数は、例えば葉、葉鞘および茎を区別して計数する。また、葉先、葉の中腹および元を区別して計数してもよい。斑点サイズ測定部604bは、画像解析により斑点の大きさを測定する機能部である。斑点密度測定部604cは、所定領域あたりに発生している斑点の個数、すなわち斑点の密度を測定する機能部である。斑点密度測定部604cは、斑点間の距離を測定することで斑点の密度を求めてもよい。 The spot counting unit 604a is a functional unit that counts spots occurring on at least one of the leaves, leaf sheaths, stems and ears of a plant by image analysis. The spot counting unit 604a may count the number of spots for each site where the spots are generated. Counting for each development site is performed by distinguishing, for example, leaves, leaf sheaths and stems. In addition, the tip of the leaf, the middle of the leaf, and the origin of the leaf may be counted separately. The spot size measuring unit 604b is a functional unit that measures the size of spots by image analysis. The spot density measuring unit 604c is a functional unit that measures the number of spots generated per predetermined region, that is, the density of spots. The spot density measuring unit 604c may obtain the spot density by measuring the distance between the spots.
 病理診断部605は、当該圃場における植物の病気の罹患状況を診断する機能部である。病理診断部605は、斑点の大きさ、斑点密度、および斑点数の少なくともいずれかのパラメータの測定結果に基づいて、病気か否かの病理判定を行う。すなわち、病理診断部605は、斑点が所定以上の大きさであるとき、病気である旨判定してもよい。この場合、例えば斑点の面積が100平方ミリメートル以上であることを条件として病気であると判定することができる。病理診断部605は、斑点密度が所定以上であるとき、病気である旨判定してもよい。この場合、例えば斑点の間の距離が10cm以下である場合に、病気が発生していると判断してもよい。病理診断部605は、斑点数が所定以上であるとき、病気である旨判定してもよい。この場合、例えば、斑点の面積が4平方ミリメートル以上となる斑点の数が、所定領域辺りに10個以上である場合に病気が発生していると判断してもよい。または、病理診断部605は、斑点の大きさ、斑点密度、および斑点数のうち複数のパラメータに基づいて病理判定を行ってもよい。 The pathological diagnosis unit 605 is a functional unit that diagnoses the morbidity of plant diseases in the field. The pathological diagnosis unit 605 makes a pathological determination as to whether or not the disease is a disease based on the measurement results of at least one of the parameters of the spot size, the spot density, and the number of spots. That is, the pathological diagnosis unit 605 may determine that the patient is ill when the spots are larger than a predetermined size. In this case, for example, the disease can be determined on condition that the area of the spots is 100 square millimeters or more. The pathological diagnosis unit 605 may determine that the patient is ill when the spot density is equal to or higher than a predetermined value. In this case, for example, when the distance between the spots is 10 cm or less, it may be determined that the disease has occurred. The pathological diagnosis unit 605 may determine that the patient is ill when the number of spots is equal to or greater than a predetermined value. In this case, for example, when the number of spots having a spot area of 4 square millimeters or more is 10 or more around a predetermined area, it may be determined that the disease has occurred. Alternatively, the pathological diagnosis unit 605 may make a pathological determination based on a plurality of parameters among the spot size, the spot density, and the number of spots.
 斑点の大きさ、斑点密度、および斑点数のうち1つ以上のパラメータに基づいて病理判定を行う場合、一つのパラメータの値、もしくは複数のパラメータの値の組合せにより尤度分布表に基づいて病理発生尤度を生成することも可能である。この場合には、生成された病理発生尤度の値を出力しても良いし、生成された病理発生尤度の値が所定の閾値を超えた場合に病理発生を検知した旨を出力しても良いし、病理発生尤度と前記病理発生検知の情報の双方を出力しても良い。 When making a pathological determination based on one or more of the spot size, spot density, and spot number, the pathology is based on the likelihood distribution table by the value of one parameter or the combination of the values of multiple parameters. It is also possible to generate an occurrence likelihood. In this case, the generated pathological likelihood value may be output, or the fact that the pathological occurrence is detected when the generated pathological likelihood value exceeds a predetermined threshold value is output. Alternatively, both the pathological occurrence likelihood and the pathological occurrence detection information may be output.
 病理診断部605は、植物の株ごとに病理診断してもよい。また、病理診断部605は、圃場403を複数の領域に細分化し、当該領域ごとに病理診断してもよい。病理診断部605は、例えば圃場403をメッシュ状に細分化する。各領域は、例えば1m四方の矩形状である。さらに、病理診断部605は、病理診断カメラ512bにより撮影される画像ごとに病理診断してもよい。 The pathological diagnosis unit 605 may make a pathological diagnosis for each plant strain. Further, the pathological diagnosis unit 605 may subdivide the field 403 into a plurality of regions and perform pathological diagnosis for each region. The pathological diagnosis unit 605 subdivides the field 403 into a mesh, for example. Each area has a rectangular shape of, for example, 1 m square. Further, the pathological diagnosis unit 605 may make a pathological diagnosis for each image taken by the pathological diagnosis camera 512b.
 病理診断部605は、斑点の大きさ、斑点密度又は斑点数に基づいて、植物が罹患している病気の種類を診断してもよい。病理診断部605は、斑点が発生している部位に基づいて病気の種類を診断してもよい。例えば、病理診断部605は、病気の種類と、発生する斑点の形状、大きさ、密度、斑点数又は斑点発生部位もしくは範囲とを対応付けて記憶していて、当該情報を参照して病気の種類を診断する。 The pathological diagnosis unit 605 may diagnose the type of disease affecting the plant based on the spot size, spot density or spot number. The pathological diagnosis unit 605 may diagnose the type of disease based on the site where the spots are generated. For example, the pathological diagnosis unit 605 stores the type of the disease in association with the shape, size, density, number of spots, or spot occurrence site or range of the spots that occur, and refers to the information to store the disease. Diagnose the type.
 また、病理診断部605は、病歴記憶部601に記憶されている過去の病歴情報に基づいて、病理判定を行ってもよい。例えば、昨年の同エリアに病気の発生履歴がある場合、当該エリアに病気が発生している蓋然性が高いと判定してもよい。具体的には、斑点の測定結果の一部又は全部が第1閾値を満たしていない場合にも、発生履歴に基づいて病気である旨判定してもよい。また、斑点の測定結果につき当該第1閾値より小さい第2閾値をあらかじめ規定し、測定結果が第2閾値以上第1閾値未満であって、かつ発生履歴がある場合には、当該エリアに病気が発生している旨判定してもよい。又は、過去の病歴情報を考慮して上述した病理発生尤度を計算するようにしても良い。 Further, the pathological diagnosis unit 605 may make a pathological determination based on the past medical history information stored in the medical history storage unit 601. For example, if there is a history of disease outbreaks in the same area last year, it may be determined that there is a high probability that the area has a disease. Specifically, even when a part or all of the measurement results of the spots do not satisfy the first threshold value, it may be determined that the patient is ill based on the occurrence history. Further, a second threshold value smaller than the first threshold value is defined in advance for the measurement result of the spot, and if the measurement result is equal to or more than the second threshold value and less than the first threshold value and there is an occurrence history, the disease is found in the area. It may be determined that it has occurred. Alternatively, the above-mentioned pathological likelihood may be calculated in consideration of past medical history information.
 病理診断部605は、気候情報に基づいて病理判定を行ってもよい。具体的には、温度が低く、湿度が高く、風速が低いほど、病気が発生している蓋然性が高いと判定してもよい。当該条件は、病気が発生し、進行しやすい気候であることが知られているためである。病理診断部605は、温度、湿度および風速の少なくともいずれかに関し閾値を有し、取得される気候情報が閾値以上であるとき、斑点の測定結果の一部又は全部が第1閾値を満たしていない場合にも、病気である旨判定してもよい。又は、気候情報を考慮して上述した病理発生尤度を計算するようにしても良い。 The pathological diagnosis unit 605 may make a pathological judgment based on the climate information. Specifically, it may be determined that the lower the temperature, the higher the humidity, and the lower the wind speed, the higher the probability that the disease has occurred. This condition is because it is known that the climate is vulnerable to disease and easy to progress. The pathological diagnosis unit 605 has a threshold value for at least one of temperature, humidity and wind speed, and when the acquired climate information is equal to or higher than the threshold value, a part or all of the measurement results of the spots do not meet the first threshold value. In some cases, it may be determined that the patient is ill. Alternatively, the above-mentioned pathological likelihood may be calculated in consideration of climate information.
 病理診断部605は、病気の進行具合を判定してもよい。進行具合は、例えば初期、中期および後期の3段階であるが、2段階でもよいし、さらに多段階に細分化されてもよい。また、病気の旨診断されない状態であっても、病気の可能性がある状態を「病理発生疑惑」状態として判定してもよい。病理診断部605は、斑点の形状および大きさの少なくともいずれかに基づいて、病気の進行具合を判定する。斑点の形状は、例えば斑点の長さである。斑点の長さは、長円状の斑点の短径および長径を取得し、短径と長径との比により算出してもよい。病気が進行するにつれ、斑点は伸長することが知られているためである。病理診断部605は、斑点の長さが所定の第3閾値以上である場合、最も発生初期の段階よりも進行した状態、例えば「中期」又は「後期」と判定する。 The pathological diagnosis unit 605 may determine the progress of the disease. The progress is, for example, three stages of early, middle and late stages, but may be two stages or further subdivided into multiple stages. Further, even if the condition is not diagnosed as ill, the condition that may be ill may be determined as the "suspected pathology" condition. The pathological diagnosis unit 605 determines the progress of the disease based on at least one of the shape and size of the spot. The shape of the spot is, for example, the length of the spot. The length of the spots may be calculated by obtaining the minor axis and the major axis of the oval-shaped spots and calculating the ratio of the minor axis to the major axis. This is because the spots are known to grow as the disease progresses. When the length of the spot is equal to or greater than a predetermined third threshold value, the pathological diagnosis unit 605 determines that the state is more advanced than the earliest stage of development, for example, "middle stage" or "late stage".
 病理診断部605は、可視光カメラにより得られる情報に基づいて、病気の進行具合を判定してもよい。例えば、クロロフィルが破壊されて病斑が発生した後、病気が進行するにつれ、病斑の周辺が黒く変色する症状が知られている。可視光カメラによれば当該変色領域を検出することができる。病斑周辺の変色は病斑発生の後に生じるため、病理診断部605は、当該変色領域が検出される場合、最も発生初期の段階よりも進行した状態、例えば「中期」又は「後期」と判定する。 The pathological diagnosis unit 605 may determine the progress of the disease based on the information obtained by the visible light camera. For example, it is known that the area around the lesion turns black as the disease progresses after the chlorophyll is destroyed and the lesion develops. According to the visible light camera, the discolored region can be detected. Since discoloration around the lesion occurs after the onset of the lesion, the pathological diagnosis unit 605 determines that the discolored region is more advanced than the earliest stage of development, for example, "middle stage" or "late stage". To do.
 なお、病理診断部605は、植物の生育状況を病理判定又は病気の進行具合の判定に利用してもよい。例えば、病理診断部605は、特定の生育状況の場合に罹患する可能性が高い病気の判定にあたって、特定の生育状況であることを参照して病気である旨判定してよい。 The pathological diagnosis unit 605 may use the growth status of the plant for pathological determination or determination of disease progression. For example, the pathological diagnosis unit 605 may determine that the disease is ill by referring to the specific growth condition when determining the disease that is likely to be affected in the case of the specific growth condition.
 また、病理診断部605は、茎又は穂の色又は形に基づいて、病理診断を行ってもよい。 Further, the pathological diagnosis unit 605 may make a pathological diagnosis based on the color or shape of the stem or ear.
 診断装置600が病理判定を行う対象植物は水稲を想定しているが、本発明の技術範囲はこれに限られず、主に上空からの撮影により病理診断可能な別の植物であってもよい。診断装置600は、クロロフィルを有する葉、茎および果実等の画像に基づいて、病理診断が可能である。診断装置600は、複数種類の植物の病理判定を行ってもよく、植物の種類ごとに異なる病理判定基準を記憶していて、植物の種類ごとに異なる判定基準により病理判定を行ってもよい。 The target plant for which the diagnostic device 600 performs pathological determination is assumed to be paddy rice, but the technical scope of the present invention is not limited to this, and another plant capable of pathological diagnosis mainly by photographing from the sky may be used. The diagnostic apparatus 600 can perform pathological diagnosis based on images of leaves, stems, fruits and the like having chlorophyll. The diagnostic apparatus 600 may perform pathological determination of a plurality of types of plants, store different pathological determination criteria for each type of plant, and perform pathological determination according to different determination criteria for each type of plant.
●計画装置の機能部
 図8に示すように、計画装置700は、情報処理を実行するためのCPU(Central Processing Unit)などの演算装置、RAM(Random Access Memory)やROM(Read Only Memory)などの記憶装置を備え、これによりソフトウェア資源として少なくとも、対策決定部701および結果出力部704を有する。
● Functional part of the planning device As shown in Fig. 8, the planning device 700 includes arithmetic units such as a CPU (Central Processing Unit) for executing information processing, RAM (Random Access Memory), ROM (Read Only Memory), etc. It has at least a countermeasure decision unit 701 and a result output unit 704 as software resources.
 対策決定部701は、病理診断の結果に基づいて、病気への対応要否を決定する機能部である。対策決定部701は、株ごと又は領域ごとに病気への対応要否を決定する。対策決定部701は、診断装置600により病気である旨判定されているとき、対応策を講じることを決定する。 The countermeasure decision unit 701 is a functional unit that determines the necessity of dealing with a disease based on the result of pathological diagnosis. The countermeasure decision unit 701 determines the necessity of dealing with the disease for each strain or each area. The countermeasure determination unit 701 decides to take countermeasures when the diagnostic device 600 determines that the patient is ill.
 対策決定部701は、病気の進行具合に基づいて、圃場に行うべき対応策を決定する。対応策は、例えば、株元目視確認指示、再撮影、静観、農薬散布、病理葉の除去、病理株の除去、および病理株発生エリアの株の除去の少なくともいずれかを含む。 The countermeasure decision unit 701 determines the countermeasures to be taken in the field based on the progress of the disease. Countermeasures include, for example, at least one of visual confirmation of the strain origin, rephotographing, waiting, spraying pesticides, removal of pathological leaves, removal of pathological strains, and removal of strains in the pathological strain outbreak area.
 株元目視確認指示は、株元を目視確認するよう促す対策である。圃場403においては、株元周辺の方が葉周辺より湿度が高く、病気が発生する確率が高い一方、株元は上方から見えにくいため、上空からの撮影では病気を発見できない場合がある。株元目視確認指示によれば、ドローン100による発見が難しい病態であっても、初期段階に病気を発見することができる。 The stock yuan visual confirmation instruction is a measure to encourage the stock yuan to be visually confirmed. In the field 403, the humidity around the plant root is higher than that around the leaves, and the probability of developing the disease is high. On the other hand, since the plant root is difficult to see from above, the disease may not be detected by photographing from the sky. According to the stock origin visual confirmation instruction, even if the pathological condition is difficult to detect by the drone 100, the disease can be detected at an early stage.
 農薬散布は、病気が発見された植物を含む所定領域に農薬を散布する作業である。散布される領域、農薬の種類および濃度は、後述する散布態様決定部702により決定される。 Agricultural chemical spraying is the work of spraying pesticides on a predetermined area including plants in which a disease has been found. The area to be sprayed, the type and concentration of the pesticide are determined by the spraying mode determining unit 702 described later.
 病理葉の除去は、病気になっている葉、すなわち病理葉のみを取る作業である。病理株の除去は、病気になっている株、すなわち病理株を取る作業である。病理株発生エリアの株の除去は、病理株を含む所定エリアに生育する作物をすべて除去する作業である。 Removal of pathological leaves is the work of removing only the diseased leaves, that is, the pathological leaves. Removal of pathological strains is the task of removing diseased strains, i.e. pathological strains. Removal of strains in the pathological strain development area is an operation of removing all crops growing in a predetermined area including the pathological strains.
 病気の除去にあたっては、病気が進行するにつれ重度な対応策が必要となる。具体的には、病気が進行するにつれ、株元目視確認指示、再撮影、静観、農薬散布、病理葉の除去、病理株の除去、病理株発生エリアの株の除去の順に推奨される。なお、株元目視確認指示、再撮影、静観は順不同であり、対応策として同時に提示されてもよい。例えば、対策決定部701は、病気の進行具合を「初期」および「後期」を含む少なくとも2段階以上で判断する機能を備える場合において、進行具合が「初期」の場合に「静観」を出力し、進行具合が初期よりも進行した「後期」の場合に「農薬散布」、「病理葉の除去」又は「病理株の除去」を出力する。 In removing the disease, severe countermeasures are required as the disease progresses. Specifically, as the disease progresses, it is recommended to in order to visually confirm the strain origin, re-photograph, wait, spray pesticides, remove pathological leaves, remove pathological strains, and remove strains in the pathological strain occurrence area. In addition, the instruction to visually confirm the stock origin, re-photographing, and waiting are in no particular order, and may be presented at the same time as a countermeasure. For example, the countermeasure decision unit 701 outputs "wait and see" when the progress is "early" when it has a function of judging the progress of the disease in at least two stages including "early stage" and "late stage". , "Agricultural chemical spraying", "Removal of pathological leaves" or "Removal of pathological strain" is output in the case of "late stage" in which the progress is more advanced than the initial stage.
 また、対策決定部701は、進行具合が「初期」の場合に「農薬散布」を出力し、進行具合が「後期」の場合に「病理葉の除去」又は「病理株の除去」を出力するものとしてもよい。 In addition, the countermeasure determination unit 701 outputs "pesticide spraying" when the progress is "early", and outputs "removal of pathological leaves" or "removal of pathological strain" when the progress is "late". It may be a thing.
 さらに、対策決定部701は、進行具合が「初期」の場合に「病理葉の除去」を出力し、進行具合が「後期」の場合に「病理株の除去」を出力するものとしてもよい。 Further, the countermeasure determination unit 701 may output "removal of pathological leaves" when the progress is "early" and "removal of pathological strains" when the progress is "late".
 対策決定部701は、病気の進行具合を「初期」、「中期」および「後期」を含む少なくとも3段階以上で判断する場合において、進行具合が「初期」の場合に「静観」を出力し、進行具合が初期よりも進行した「中期」の場合に「農薬散布」を出力し、進行具合が中期よりも進行した「後期」の場合に「病理葉の除去」又は「病理株の除去」を出力してもよい。 The countermeasure decision unit 701 outputs "wait and see" when the progress is "early" when the progress of the disease is judged in at least three stages including "early", "middle" and "late". "Agricultural chemical spraying" is output when the progress is more advanced than the initial stage, and "pathological leaf removal" or "pathological strain removal" is output when the progress is more advanced than the middle stage. It may be output.
 また、対策決定部701は、進行具合が「初期」の場合に「農薬散布」を出力し、進行具合が「中期」の場合に「病理葉の除去」を出力し、進行具合が「後期」の場合に「病理株の除去」を出力してもよい。 In addition, the countermeasure decision unit 701 outputs "pesticide spraying" when the progress is "early", outputs "removal of pathological leaves" when the progress is "middle", and the progress is "late". In the case of, "removal of pathological strain" may be output.
 対策決定部701は、気候情報を参照して、対応策を決定してもよい。天候により、病気が進行せず、周りの作物に広がらない場合があるためである。例えば、対策決定部701は、湿度が所定以下、温度が所定以上、および風速が所定以下の少なくともいずれかの場合、判定された進行具合に対応付けられている対策より軽度な対応策を出力してもよい。すなわち、例えば、対策決定部701は、進行具合が「初期」と判定され、「初期」に「農薬散布」が対応付けられている態様において、上述の条件を満たす場合には「静観」を出力してもよい。病気が治癒するのは初期段階のみであると仮定して、気候情報が所定条件を満たす場合に、進行具合が初期である場合にのみ、より軽度な対応策を出力するものとしてもよい。この構成によれば、病気の特性を利用して、適切な対応策をより正確に決定できる。特に、過剰な対策を抑制し、過度な農薬散布や、過度な除去による収量の減少を予防できる。 The countermeasure decision unit 701 may decide the countermeasure by referring to the climate information. This is because the disease may not progress and spread to surrounding crops depending on the weather. For example, when the humidity is below the specified value, the temperature is above the specified value, and the wind speed is at least the specified value, the countermeasure determination unit 701 outputs a countermeasure that is lighter than the countermeasure associated with the determined progress. You may. That is, for example, the countermeasure determination unit 701 outputs "wait and see" when the above conditions are satisfied in a mode in which the progress is determined to be "initial" and "pesticide spraying" is associated with "initial". You may. Assuming that the disease is cured only in the early stage, a milder countermeasure may be output only when the climate information meets the predetermined conditions and the progress is early. With this configuration, the characteristics of the disease can be used to more accurately determine appropriate countermeasures. In particular, it is possible to suppress excessive measures and prevent excessive spraying of pesticides and reduction in yield due to excessive removal.
 対策決定部701によれば、圃場403の病気拡散を止めるために適した対策を決定できる。また、対策決定部701によれば、病気の進行具合に応じて適切な対応策を決定することができるので、過剰な農薬散布を防ぐことができる。ひいては、農薬コストを抑えることができ、農薬量の少ない作物を生育させることができる。また、対策決定部701によれば、適切な病理葉の除去および病理株の除去が行えるため、過剰な除去作業を防ぐことができる。ひいては、除去作業の人件費を抑えることができる。また、葉および株が過剰に除去されることがないから、収量を維持できる。 According to the measure determination unit 701, suitable measures can be determined to stop the spread of the disease in the field 403. Further, according to the countermeasure determination unit 701, it is possible to determine an appropriate countermeasure according to the progress of the disease, so that excessive spraying of pesticides can be prevented. As a result, the cost of pesticides can be suppressed, and crops with a small amount of pesticides can be grown. Further, according to the countermeasure determination unit 701, since the pathological leaves can be appropriately removed and the pathological strains can be removed, excessive removal work can be prevented. As a result, the labor cost of the removal work can be suppressed. In addition, the yield can be maintained because the leaves and strains are not excessively removed.
 対策決定部701は、散布態様決定部702および対策時期算出部703を備える。 The countermeasure determination unit 701 includes a spray mode determination unit 702 and a countermeasure timing calculation unit 703.
 散布態様決定部702は、圃場403に薬剤を散布する態様を決定する機能部である。散布態様決定部702は、散布エリア決定部702a、農薬決定部702bおよび濃度決定部702cを有する。 The spraying mode determining unit 702 is a functional unit that determines the mode in which the drug is sprayed on the field 403. The spraying mode determining unit 702 has a spraying area determining unit 702a, a pesticide determining unit 702b, and a concentration determining unit 702c.
 散布エリア決定部702aは、病気と判定された病理株を含む所定範囲を散布エリアとして決定する機能部である。 The spraying area determination unit 702a is a functional unit that determines a predetermined range including a pathological strain determined to be disease as a spraying area.
 散布エリア決定部702aは、病気が広がるリスクの高いエリアに農薬散布を行う。植物が罹患する病気の原因として、菌の繁殖がある。菌の胞子は風に飛ばされて移動することから、風速が大きいほど、広範囲に胞子が広がっていると推定される。また、風下に胞子が広がっていると推定される。さらに、発見された病理株における病気が進行している場合、病気の発生から時間が経過していると推定され、すなわち広範囲に胞子が広がっていると推定される。 The spraying area determination unit 702a sprays pesticides in areas where there is a high risk of spreading the disease. Bacterial growth is a cause of diseases that affect plants. Since the spores of the fungus are blown by the wind and move, it is presumed that the higher the wind speed, the wider the spores spread. It is also estimated that spores are spreading leeward. Furthermore, if the disease in the found pathological strain is advanced, it is presumed that time has passed since the onset of the disease, that is, the spores have spread over a wide area.
 そこで、散布エリア決定部702aは、風速情報に基づいて農薬散布を行う病理株からの距離を決定する。すなわち、散布エリア決定部702aは、風速が大きいほど、農薬散布を行う病理株からの距離を大きくする。また、散布エリア決定部702aは、風向情報に基づいて農薬散布を行うエリアを決定する。すなわち、散布エリア決定部702aは、病理株から風下に向かって広がるエリアに農薬散布を行うことを決定する。言い換えれば、散布エリア決定部702aは、風下方向における病理株から散布範囲端までの距離を、風上方向における病理株から散布範囲端までの距離よりも長くする。風速情報および風向情報は、測定器500からの情報を受信してよい。 Therefore, the spraying area determination unit 702a determines the distance from the pathological strain to which the pesticide is sprayed based on the wind speed information. That is, the spraying area determination unit 702a increases the distance from the pathological strain on which the pesticide is sprayed as the wind speed increases. In addition, the spraying area determination unit 702a determines the area where the pesticide is sprayed based on the wind direction information. That is, the spraying area determination unit 702a determines to spray the pesticide on the area extending from the pathological strain toward the leeward side. In other words, the spray area determination unit 702a makes the distance from the pathological strain to the spray range end in the leeward direction longer than the distance from the pathological strain to the spray range end in the leeward direction. The wind speed information and the wind direction information may receive information from the measuring instrument 500.
 散布エリア決定部702aは、発見された病理株における病気の進行具合に基づいて、農薬散布を行うエリアを決定する。すなわち、散布エリア決定部702aは、病理株の病気が進行しているほど、散布するエリアの面積を大きくする。言い換えれば、散布エリア決定部702aは、病気が進行しているほど、病理株から散布範囲端までの距離を長くする。 The spraying area determination unit 702a determines the area to spray pesticides based on the progress of the disease in the found pathological strain. That is, the spraying area determination unit 702a increases the area of the spraying area as the disease of the pathological strain progresses. In other words, the spray area determination unit 702a increases the distance from the pathological strain to the end of the spray range as the disease progresses.
 散布エリア決定部702aは、病気の進行具合に基づいて、病気発生からの経過時間を推定し、経過時間に基づいて農薬散布を行うエリアを決定してもよい。散布エリア決定部702aは、経過時間が長いほど、散布するエリアを大きくする。経過時間の推定は、進行具合の他、温度、湿度、および風速情報を参照して行ってもよい。例えば、温度が低く、湿度が高く、又は風速が低いほど、病気が速く進行したものとして、病気発生からの経過時間を短く推定してもよい。 The spraying area determination unit 702a may estimate the elapsed time from the onset of the disease based on the progress of the disease, and determine the area to spray the pesticide based on the elapsed time. The spraying area determination unit 702a increases the spraying area as the elapsed time increases. The elapsed time may be estimated by referring to temperature, humidity, and wind speed information in addition to the progress. For example, the lower the temperature, the higher the humidity, or the lower the wind speed, the faster the disease progresses, and the shorter the elapsed time from the onset of the disease may be estimated.
 なお、対策決定部701は、散布エリア決定部702aが散布を決定するエリアを、株の除去を要するエリア、すなわち「病理株発生エリアの株の除去」における対象範囲の情報として決定してもよい。 In addition, the countermeasure determination unit 701 may determine the area for which the spraying area determination unit 702a determines the spraying as the information of the target range in the area requiring the removal of the strain, that is, the "removal of the strain in the pathological strain occurrence area". ..
 散布エリア決定部702aが散布を決定するエリアは、ドローン100の飛行範囲に限られず、飛行範囲周辺の領域も含んでよい。当該エリアは、当該病理診断システム1000を利用する作業者が直接的に管理する圃場に関わらず、別の作業者の管理圃場であってもよい。地域の圃場の包括管理者により散布を要するエリアの情報が管理され、包括管理者から各作業者に通知されてもよい。また、決定される散布エリアの情報を、連携する別のシステムに出力してもよい。 The area where the spraying area determination unit 702a determines the spraying is not limited to the flight range of the drone 100, but may include the area around the flight range. The area may be a field managed by another worker, regardless of the field directly managed by the worker using the pathological diagnosis system 1000. Information on the area requiring spraying may be managed by the comprehensive manager of the field in the area, and the comprehensive manager may notify each worker. Further, the information of the determined spraying area may be output to another system to be linked.
 農薬決定部702bは、病気の進行具合に応じて、農薬の種類を決定する機能部である。農薬決定部702bは、病気の進行具合と、適した農薬とを対応付けるテーブルを有し、当該テーブルを参照して農薬の種類を決定してよい。なお、本説明において、農薬は、病気の対策として散布が有効な各種液体、粉体および粒剤などを広く含む概念である。 The pesticide determination unit 702b is a functional unit that determines the type of pesticide according to the progress of the disease. The pesticide determination unit 702b has a table for associating the progress of the disease with suitable pesticides, and the type of pesticide may be determined with reference to the table. In this description, pesticides are a concept that broadly includes various liquids, powders, granules, etc. that are effective for spraying as a countermeasure against diseases.
 濃度決定部702cは、病気の進行具合に応じて、散布する農薬の濃度を決定する機能部である。濃度決定部702cは、病気が進行しているほど、高濃度の農薬を散布することを決定する。なお、高濃度の農薬を散布するにあたり、ドローン100により散布する場合においては、高濃度の農薬をあらかじめタンク104に充填して散布する他、標準濃度の散布時よりも低速で飛行しながら散布する、ノズル103からの吐出量を多くする、同一箇所を複数回ずつ飛行して散布する、といった飛行態様の変更により、圃場における農薬の濃度を担保してもよい。この場合、濃度決定部702cは、散布濃度に応じたドローン100の飛行態様を決定する機能を有していてもよい。 The concentration determination unit 702c is a functional unit that determines the concentration of pesticides to be sprayed according to the progress of the disease. Concentration determination unit 702c decides to apply a higher concentration of pesticide as the disease progresses. When spraying high-concentration pesticides with Drone 100, the tank 104 is filled with high-concentration pesticides in advance and sprayed, and the pesticides are sprayed while flying at a lower speed than when spraying the standard concentration. , The concentration of the pesticide in the field may be ensured by changing the flight mode such as increasing the discharge amount from the nozzle 103 or flying and spraying the same location a plurality of times. In this case, the concentration determining unit 702c may have a function of determining the flight mode of the drone 100 according to the spray concentration.
 対策時期算出部703は、対応策を講じるべき期限を算出する機能部である。作物の病気は日ごとに進行し、初期段階で対応策を講じることで、軽度な対策で病気を除去することができる。例えば、病気の発生から所定時間以内に対策を講じるとよい。そこで、対策時期算出部703は、病気の進行具合に基づいて、病気発生からの経過時間を推定し、病気発生時点に所定時間を足した時点を対策期限として算出する。対策期限は、例えば病気発生から48時間以内である。また、対策時期算出部703は、ドローン100の飛行時期を決定してもよい。対策時期算出部703は、ドローン100の飛行計画を参照し、飛行が予定されているタイミングで対策することを決定してもよい。対策時期算出部703は、飛行するタイミングを新たに決定し、作業者に促してもよい。 Countermeasure timing calculation unit 703 is a functional unit that calculates the deadline for taking countermeasures. Crop diseases progress day by day, and by taking countermeasures at an early stage, the diseases can be eliminated with mild measures. For example, it is advisable to take measures within a predetermined time from the outbreak of the disease. Therefore, the countermeasure timing calculation unit 703 estimates the elapsed time from the occurrence of the disease based on the progress of the disease, and calculates the time when the predetermined time is added to the time of the occurrence of the disease as the countermeasure deadline. The deadline for countermeasures is, for example, within 48 hours after the outbreak of the disease. Further, the countermeasure timing calculation unit 703 may determine the flight timing of the drone 100. The countermeasure timing calculation unit 703 may refer to the flight plan of the drone 100 and decide to take countermeasures at the timing when the flight is scheduled. The countermeasure timing calculation unit 703 may newly determine the flight timing and urge the operator.
 結果出力部704は、対応策の決定結果を出力する機能部である。結果出力部704は、病気の有無の判定結果、病気の進行具合、推奨される対応策、および対応策を講じるべき対策期限の少なくともいずれかを出力する。結果出力部704は、ユーザインターフェース装置200に決定結果を表示させてもよい。また、結果出力部704は、パーソナルコンピュータの画面に決定結果を表示させてもよく、パーソナルコンピュータにインストールされたWebブラウザを介して、Web上のUIに決定結果を表示させてもよい。 The result output unit 704 is a functional unit that outputs the decision result of the countermeasure. The result output unit 704 outputs at least one of a determination result of the presence or absence of a disease, a progress of the disease, a recommended countermeasure, and a countermeasure deadline for which the countermeasure should be taken. The result output unit 704 may display the determination result on the user interface device 200. Further, the result output unit 704 may display the determination result on the screen of the personal computer, or may display the determination result on the UI on the Web via the Web browser installed in the personal computer.
 結果出力部704は、推奨する対応策を複数表示させ、実行する対応策を作業者に選択させてもよい。結果出力部704は、推奨する対応策を推奨順に表示してもよい。作業者は、作業都合等に合わせて対策を柔軟に講じることができる。ユーザインターフェース装置200は、推奨する対応策を複数表示した後、実際に行う対応策の選択入力を受け付け、対応策が入力されると、入力された対応策を対応実績として病歴記憶部601に記録する。 The result output unit 704 may display a plurality of recommended countermeasures and allow the operator to select the countermeasure to be executed. The result output unit 704 may display the recommended countermeasures in the recommended order. The worker can flexibly take measures according to the work convenience and the like. After displaying a plurality of recommended countermeasures, the user interface device 200 accepts the selection input of the countermeasures to be actually performed, and when the countermeasures are input, the input countermeasures are recorded in the medical history storage unit 601 as the response record. To do.
 結果出力部704は、決定結果をドローン100の飛行制御部1001に送信してもよい。ドローン100は、決定結果に基づいて病理診断のための飛行をしてもよいし、薬剤散布のための飛行をしてもよい。また、ドローン100は、それらの飛行のために必要な準備動作を行ってもよい。 The result output unit 704 may transmit the determination result to the flight control unit 1001 of the drone 100. The drone 100 may fly for pathological diagnosis or for drug spraying based on the decision result. The drone 100 may also perform the necessary preparatory movements for those flights.
●結果出力画面
 図9に示すように、ユーザインターフェース装置200には、結果出力画面G1が表示される。結果出力画面G1は、圃場403a、403b、403cおよび403dと、各圃場をメッシュ状に分割する仮想線が表示されている。分割された各エリアのうち、病理株の存在エリア403a-1、403b-1は、他のエリアとは異なる態様で表示されている。本実施形態では、圃場403a乃至403dは網掛けで示され、病理株が存在するエリア403a-1、403b-1は、白く示されている。
● Result output screen As shown in Fig. 9, the result output screen G1 is displayed on the user interface device 200. The result output screen G1 displays fields 403a, 403b, 403c, and 403d, and virtual lines that divide each field into a mesh. Of the divided areas, the areas 403a-1 and 403b-1 where the pathological strain exists are displayed in a manner different from those of the other areas. In the present embodiment, the fields 403a to 403d are shaded, and the areas 403a-1 and 403b-1 where the pathological strains are present are shown in white.
 言い換えれば、結果出力画面G1は、圃場の形状と、病理株の存在エリアとを重ね合わせて表示する。圃場の形状は、航空写真又は農地バンクのデータを参照してもよいし、作業者により入力されるデータを使用してもよい。結果出力画面G1に表示される圃場は、写真であってもイラストであってもよい。病理株の存在エリアは、例えば、ドローン100が飛行時に取得するRTK-GPSの情報により特定される。この構成によれば、病理株の存在位置を一覧することができる。 In other words, the result output screen G1 displays the shape of the field and the area where the pathological strain exists in an overlapping manner. For the shape of the field, the data of the aerial photograph or the farmland bank may be referred to, or the data input by the operator may be used. The field displayed on the result output screen G1 may be a photograph or an illustration. The area where the pathological strain exists is identified by, for example, the RTK-GPS information acquired by the drone 100 during flight. According to this configuration, the location of the pathological strain can be listed.
 また、結果出力画面G1には、病理株における病気の進行具合を示す進行具合表示欄g10、および進行具合表示欄g10に表示されている病理株に対する対応策を表示する対応策表示欄g20が表示されている。病理株の存在エリアが複数ある場合、進行具合表示欄g10および対応策表示欄g20に表示される病理株の存在エリア403a-1は、他の存在エリア403b-1とは区別可能になっている。例えば、存在エリア403a-1にはピンPが表示されている。結果出力画面G1上で存在エリア403a-1、403b-1が選択されることで、進行具合および対応策を表示する存在エリアが切り替わる。 Further, on the result output screen G1, a progress display column g10 indicating the progress of the disease in the pathological strain and a countermeasure display column g20 for displaying the countermeasures for the pathological strain displayed in the progress display column g10 are displayed. Has been done. When there are multiple areas where the pathological strain exists, the pathological strain existing area 403a-1 displayed in the progress display column g10 and the countermeasure display column g20 can be distinguished from the other existing area 403b-1. .. For example, pin P is displayed in the existence area 403a-1. By selecting the existence areas 403a-1 and 403b-1 on the result output screen G1, the existence area for displaying the progress and countermeasures is switched.
 対応策表示欄g20には、1又は複数の対応策欄g21、g22が表示されている。対応策欄g21、g22は、押下されることで、対応策の詳細や対応期限が表示されてもよい。また、ユーザインターフェース装置200は、対応策欄g21、g22に対する操作に基づいて、作業者が当該対応策を実施したことを入力可能になっていてもよい。 One or more countermeasure columns g21 and g22 are displayed in the countermeasure display column g20. By pressing the countermeasure columns g21 and g22, the details of the countermeasure and the response deadline may be displayed. Further, the user interface device 200 may be able to input that the operator has implemented the countermeasure based on the operation for the countermeasure columns g21 and g22.
 存在エリア403a-1、403b-1が指定されると、図10に示す、存在エリア内の病理株を拡大表示する詳細な結果出力画面G2に遷移する。 When the existence areas 403a-1 and 403b-1 are specified, the screen transitions to the detailed result output screen G2 shown in FIG. 10, which enlarges and displays the pathological strains in the existence area.
 図10に示すように、結果出力画面G2には、病理診断カメラ512bにより取得された画像g30が表示されている。また、病理葉又は病理株を示す病理領域特定マークg31が画像g30に重ね合わされて表示されている。この構成によれば、圃場中から病理葉又は病理株を探すのが容易である。特に、目視確認又は病理葉もしくは病理株の除去の際に有用である。病理領域特定マークg31を選択することで、目視確認が完了したことが入力可能になっていてもよい。この構成によれば、病理株への対策実績の管理が簡便である。 As shown in FIG. 10, the image g30 acquired by the pathological diagnosis camera 512b is displayed on the result output screen G2. In addition, a pathological region identification mark g31 indicating a pathological leaf or a pathological strain is displayed superimposed on the image g30. According to this configuration, it is easy to search for a pathological leaf or a pathological strain in the field. In particular, it is useful for visual confirmation or removal of pathological leaves or pathological strains. By selecting the pathological region identification mark g31, it may be possible to input that the visual confirmation has been completed. According to this configuration, it is easy to manage the results of countermeasures against pathological strains.
●病理診断を行うフローチャート
 図11に示すように、まず、ドローン100が圃場の上空を飛行して、作物の画像を取得する(S11)。次いで、取得される画像に基づいて、斑点の大きさ、密度および数の少なくともいずれかのパラメータを測定する(S12)。次いで、パラメータの測定結果が所定範囲内であるかを判定する(S13)。パラメータの測定結果が所定範囲内であるとき、判定対象は病気ではないと判定する(S14)。パラメータの測定結果が所定範囲外であるとき、判定対象は病気であると判定する(S15)。次いで、病気の進行具合を判定する(S16)。進行具合に基づいて対応策を決定し、出力する(S17)。なお、ステップS12における判定は株ごとに行ってもよいし、画像ごとに行ってもよい。判定を株ごとに行う場合であって、1個の取得画像に複数株が映り込んでいる場合は、1個の取得画像に対しステップS12乃至S17の処理を繰り返す。
 各パラメータの閾値判定による病理発生判断ではなく、各パラメータの値に基づく病理発生尤度を生成して、当該病理発生尤度に基づいて病理発生の有無を判断するようにしても良い。この場合には、S13~S15を下記のように置き換えられる。つまり、S13において、パラメータの計測結果に基づいて病理発生尤度を生成する(S13)。次に、S14において、生成した病理発生尤度が所定値未満の場合に判定対象は病気ではないと判断する(S14)。また、S15において、生成した病理発生尤度が所定値以上である場合に判定対象は病気であると判定する(S15)。
● Flow chart for pathological diagnosis As shown in Fig. 11, the drone 100 first flies over the field and acquires an image of the crop (S11). Then, based on the acquired image, at least one of the parameters of spot size, density and number is measured (S12). Next, it is determined whether the parameter measurement result is within the predetermined range (S13). When the measurement result of the parameter is within the predetermined range, it is determined that the determination target is not a disease (S14). When the measurement result of the parameter is out of the predetermined range, it is determined that the determination target is ill (S15). Next, the progress of the disease is determined (S16). Determine countermeasures based on the progress and output (S17). The determination in step S12 may be made for each stock or for each image. When the determination is performed for each stock and a plurality of stocks are reflected in one acquired image, the processes of steps S12 to S17 are repeated for one acquired image.
Instead of determining the pathological occurrence based on the threshold value determination of each parameter, the pathological occurrence likelihood may be generated based on the value of each parameter, and the presence or absence of the pathological occurrence may be determined based on the pathological occurrence likelihood. In this case, S13 to S15 can be replaced as follows. That is, in S13, the pathological likelihood is generated based on the measurement result of the parameter (S13). Next, in S14, when the generated pathological likelihood is less than a predetermined value, it is determined that the determination target is not a disease (S14). Further, in S15, when the generated pathological likelihood is equal to or higher than a predetermined value, it is determined that the determination target is a disease (S15).
(本願発明による技術的に顕著な効果)
 本発明にかかる植物の病理診断システムにおいては、作物の病理診断を正確に行うことができる。

 
(Technically remarkable effect of the present invention)
In the plant pathological diagnosis system according to the present invention, the pathological diagnosis of crops can be accurately performed.

Claims (16)

  1.  ドローンを圃場の上空に飛行させる飛行制御部と、
     前記ドローンに搭載され、前記圃場に生育する作物の画像を取得する病理情報取得部と、
     前記画像に基づいて、前記作物に発生する斑点の大きさ、密度、および数の少なくともいずれかのパラメータを測定する斑点測定部と、
     前記パラメータの測定結果に基づいて、前記作物が病気か否かの病理判定を行う病理診断部と、
    を備える、
    植物の病理診断システム。
     
    A flight control unit that flies the drone over the field,
    A pathology information acquisition unit that is mounted on the drone and acquires images of crops growing in the field.
    A spot measuring unit for measuring at least one parameter of the size, density, and number of spots generated in the crop based on the image.
    Based on the measurement results of the parameters, a pathological diagnosis unit that determines the pathology of whether or not the crop is sick, and
    To prepare
    Plant pathological diagnosis system.
  2.  前記圃場における過去の病歴を記憶する病歴記憶部をさらに備え、
     前記病理診断部は、前記病歴に基づいて前記病理判定を行う、
    請求項1記載の植物の病理診断システム。
     
    Further provided with a medical history storage unit for storing the past medical history in the field,
    The pathological diagnosis unit makes the pathological determination based on the medical history.
    The plant pathological diagnosis system according to claim 1.
  3.  前記病理診断部は、前記圃場の気候情報に基づいて病理判定を行う、
    請求項1又は2記載の植物の病理診断システム。
     
    The pathological diagnosis unit makes a pathological determination based on the climate information of the field.
    The plant pathological diagnosis system according to claim 1 or 2.
  4.  前記気候情報は、温度、湿度および風速の少なくともいずれかの情報を含む、
    請求項3記載の植物の病理診断システム。
     
    The climate information includes at least one of temperature, humidity and wind speed information.
    The plant pathological diagnosis system according to claim 3.
  5.  前記ドローンは赤色光の周波数帯域の光量を検出する赤色光カメラを備え、
     前記病理情報取得部は、前記赤色光カメラにより前記画像を取得する、
    請求項1乃至4のいずれかに記載の植物の病理診断システム。
     
    The drone is equipped with a red light camera that detects the amount of light in the frequency band of red light.
    The pathology information acquisition unit acquires the image with the red light camera.
    The plant pathological diagnosis system according to any one of claims 1 to 4.
  6.  前記病理診断部は、前記作物に発生する斑点の形状および大きさの少なくともいずれかに基づいて、前記病気の進行具合を判定する、
    請求項1乃至5のいずれかに記載の植物の病理診断システム。
     
    The pathological diagnosis unit determines the progress of the disease based on at least one of the shapes and sizes of the spots generated on the crop.
    The plant pathological diagnosis system according to any one of claims 1 to 5.
  7.  前記ドローンは可視光帯域の少なくとも3波長の光量を検出する可視光カメラを更に備え、
     前記病理診断部は、前記可視光カメラにより得られる情報に基づいて、前記進行具合を判定する、
    請求項6記載の植物の病理診断システム。
     
    The drone further comprises a visible light camera that detects light intensity at at least three wavelengths in the visible light band.
    The pathological diagnosis unit determines the progress based on the information obtained by the visible light camera.
    The plant pathological diagnosis system according to claim 6.
  8.  前記進行具合に応じて、前記圃場に行うべき対応策を決定する対策決定部をさらに備える、
    請求項6又は7記載の植物の病理診断システム。
     
    A countermeasure determination unit for determining countermeasures to be taken in the field according to the progress is further provided.
    The plant pathological diagnosis system according to claim 6 or 7.
  9.  前記対応策は、株元目視確認指示、再撮影、静観、農薬散布、病理葉の除去、病理株の除去、および病理株発生エリアの株の除去、の少なくともいずれかを含む、
    請求項8記載の植物の病理診断システム。
     
    The countermeasures include at least one of visual confirmation of the strain origin, re-photographing, waiting, spraying pesticides, removal of pathological leaves, removal of pathological strains, and removal of strains in the pathological strain occurrence area.
    The plant pathological diagnosis system according to claim 8.
  10.  前記対策決定部は、前記進行具合に応じて、農薬の散布エリアを決定する、
    請求項8又は9記載の植物の病理診断システム。
     
    The countermeasure determination unit determines the pesticide spraying area according to the progress.
    The plant pathological diagnosis system according to claim 8 or 9.
  11.  前記対策決定部は、前記進行具合に応じて、農薬の散布濃度を決定する、
    請求項8乃至10のいずれかに記載の植物の病理診断システム。
     
    The countermeasure determination unit determines the spraying concentration of the pesticide according to the progress.
    The plant pathological diagnosis system according to any one of claims 8 to 10.
  12.  前記対策決定部は、前記病気の進行具合に応じて散布する農薬の種類を決定する、
    請求項8乃至11のいずれかに記載の植物の病理診断システム。
     
    The countermeasure determination unit determines the type of pesticide to be sprayed according to the progress of the disease.
    The plant pathological diagnosis system according to any one of claims 8 to 11.
  13.  前記対策決定部の決定結果を表示部に表示、又は前記ドローンの飛行制御部に送信する結果出力部をさらに備える、
    請求項8乃至12のいずれかに記載の植物の病理診断システム。
     
    A result output unit for displaying the determination result of the countermeasure determination unit on the display unit or transmitting the determination result to the flight control unit of the drone is further provided.
    The plant pathological diagnosis system according to any one of claims 8 to 12.
  14.  ドローンを圃場の上空に飛行させる飛行制御ステップと、
     前記ドローンに搭載され、前記圃場に生育する作物の画像を取得する病理情報取得ステップと、
     前記画像に基づいて、前記作物に発生する斑点の大きさ、密度、および数の少なくともいずれかのパラメータを測定する斑点測定ステップと、
     前記パラメータの測定結果に基づいて、前記作物が病気か否かの病理判定を行う病理診断ステップと、
    を含む、
    植物の病理診断方法。
     
    Flight control steps to fly the drone over the field,
    A pathological information acquisition step of acquiring an image of a crop mounted on the drone and growing in the field, and
    A spot measurement step that measures at least one parameter of the size, density, and number of spots that occur on the crop based on the image.
    Based on the measurement results of the parameters, a pathological diagnosis step for determining whether the crop is diseased or not, and a pathological diagnosis step.
    including,
    Pathological diagnosis method of plants.
  15.  圃場の上空を飛行するドローンが取得する、前記圃場に生育する作物の画像に基づいて、前記作物に発生する斑点の大きさ、密度、および数の少なくともいずれかのパラメータを測定する斑点測定部と、
     前記パラメータの測定結果に基づいて、前記作物が病気か否かの病理判定を行う病理診断部と、
    を備える、
    植物の病理診断装置。
     
    With a spot measuring unit that measures at least one parameter of the size, density, and number of spots generated in the crop based on the image of the crop growing in the field acquired by the drone flying over the field. ,
    Based on the measurement results of the parameters, a pathological diagnosis unit that determines the pathology of whether or not the crop is sick, and
    To prepare
    Plant pathological diagnosis device.
  16.  ドローンを圃場の上空に飛行させる飛行制御部と、
     前記圃場に生育する作物の画像を取得する病理情報取得部と、
     前記画像に基づいて、前記作物に発生する斑点の大きさ、密度、および数の少なくともいずれかのパラメータを測定する斑点測定部と、
     前記パラメータの測定結果に基づいて、前記作物が病気か否かの病理判定を行う病理診断部と、
    を備える、
    ドローン。
     

     
    A flight control unit that flies the drone over the field,
    A pathology information acquisition unit that acquires images of crops growing in the field, and
    A spot measuring unit for measuring at least one parameter of the size, density, and number of spots generated in the crop based on the image.
    Based on the measurement results of the parameters, a pathological diagnosis unit that determines the pathology of whether or not the crop is sick, and
    To prepare
    Drone.


PCT/JP2019/047861 2019-12-06 2019-12-06 Pathological diagnosis system for plants, pathological diagnosis method for plants, pathological diagnosis device for plants, and drone WO2021111621A1 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
PCT/JP2019/047861 WO2021111621A1 (en) 2019-12-06 2019-12-06 Pathological diagnosis system for plants, pathological diagnosis method for plants, pathological diagnosis device for plants, and drone
JP2021562421A JP7411259B2 (en) 2019-12-06 2019-12-06 Plant pathology diagnosis system, plant pathology diagnosis method, plant pathology diagnosis device, and drone

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2019/047861 WO2021111621A1 (en) 2019-12-06 2019-12-06 Pathological diagnosis system for plants, pathological diagnosis method for plants, pathological diagnosis device for plants, and drone

Publications (1)

Publication Number Publication Date
WO2021111621A1 true WO2021111621A1 (en) 2021-06-10

Family

ID=76221150

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2019/047861 WO2021111621A1 (en) 2019-12-06 2019-12-06 Pathological diagnosis system for plants, pathological diagnosis method for plants, pathological diagnosis device for plants, and drone

Country Status (2)

Country Link
JP (1) JP7411259B2 (en)
WO (1) WO2021111621A1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2022030237A1 (en) * 2020-08-03 2022-02-10 日本電気株式会社 Plant hormone sensing method using hydrazine derivative, sensor using same, and method for early detection of disease infection in plant

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2016131517A (en) * 2015-01-19 2016-07-25 日本電信電話株式会社 Operation determination apparatus, operation determination system, operation determination method, and operation determination program
WO2018168565A1 (en) * 2017-03-12 2018-09-20 株式会社ナイルワークス Drone for capturing images of field crops
WO2019106733A1 (en) * 2017-11-29 2019-06-06 株式会社オプティム System, method, and program for predicting growth situation or pest outbreak situation
JP2019153109A (en) * 2018-03-05 2019-09-12 ドローン・ジャパン株式会社 Agricultural management prediction system, agricultural management prediction method, and server device

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006250827A (en) 2005-03-11 2006-09-21 Pasuko:Kk Analytical method for growth condition of crop

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2016131517A (en) * 2015-01-19 2016-07-25 日本電信電話株式会社 Operation determination apparatus, operation determination system, operation determination method, and operation determination program
WO2018168565A1 (en) * 2017-03-12 2018-09-20 株式会社ナイルワークス Drone for capturing images of field crops
WO2019106733A1 (en) * 2017-11-29 2019-06-06 株式会社オプティム System, method, and program for predicting growth situation or pest outbreak situation
JP2019153109A (en) * 2018-03-05 2019-09-12 ドローン・ジャパン株式会社 Agricultural management prediction system, agricultural management prediction method, and server device

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2022030237A1 (en) * 2020-08-03 2022-02-10 日本電気株式会社 Plant hormone sensing method using hydrazine derivative, sensor using same, and method for early detection of disease infection in plant

Also Published As

Publication number Publication date
JP7411259B2 (en) 2024-01-11
JPWO2021111621A1 (en) 2021-06-10

Similar Documents

Publication Publication Date Title
JP7353630B2 (en) Drone control system, drone control method, and drone
JP6762629B2 (en) Field crop photography method and drone for photography
JP6913979B2 (en) Drone
JP7488570B2 (en) Work management system, work management device, work management method, and work management program
WO2021140657A1 (en) Drone system, flight management device, and drone
WO2020189506A1 (en) Drone, drone control method, and drone control program
WO2021214812A1 (en) Survey system, survey method, and survey program
JP6982908B2 (en) Driving route generator, driving route generation method, and driving route generation program, and drone
JP7359464B2 (en) Crop growing system
JP7011233B2 (en) Spraying system and spraying management device
JP7387195B2 (en) Field management system, field management method and drone
WO2021111621A1 (en) Pathological diagnosis system for plants, pathological diagnosis method for plants, pathological diagnosis device for plants, and drone
WO2021205559A1 (en) Display device, drone flight propriety determination device, drone, drone flight propriety determination method, and computer program
WO2021152741A1 (en) Crop-growing system
WO2021255885A1 (en) Spraying system, spraying method, and drone
JP7037235B2 (en) Industrial machinery system, industrial machinery, control device, control method of industrial machinery system, and control program of industrial machinery system.
WO2021224970A1 (en) Positioning system, mobile body, speed estimating system, positioning method, and speed estimating method
JP7079547B1 (en) Field evaluation device, field evaluation method and field evaluation program
WO2021166175A1 (en) Drone system, controller, and method for defining work area
WO2021191947A1 (en) Drone system, drone, and obstacle detection method
WO2021220409A1 (en) Area editing system, user interface device, and work area editing method
JP7570710B2 (en) Area editing system, how to edit working areas
WO2021166101A1 (en) Operation device and drone operation program
WO2021205501A1 (en) Resurvey necessity determination device, survey system, drone system, and resurvey necessity determination method
WO2021199243A1 (en) Positioning system, drone, surveying machine, and positioning method

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 19954859

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2021562421

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 19954859

Country of ref document: EP

Kind code of ref document: A1