WO2021111545A1 - Welding abnormality diagnosis device - Google Patents

Welding abnormality diagnosis device Download PDF

Info

Publication number
WO2021111545A1
WO2021111545A1 PCT/JP2019/047421 JP2019047421W WO2021111545A1 WO 2021111545 A1 WO2021111545 A1 WO 2021111545A1 JP 2019047421 W JP2019047421 W JP 2019047421W WO 2021111545 A1 WO2021111545 A1 WO 2021111545A1
Authority
WO
WIPO (PCT)
Prior art keywords
welding
abnormality
feature amount
light
light feature
Prior art date
Application number
PCT/JP2019/047421
Other languages
French (fr)
Japanese (ja)
Inventor
真康 関本
Original Assignee
東芝三菱電機産業システム株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Family has litigation
First worldwide family litigation filed litigation Critical https://patents.darts-ip.com/?family=76222496&utm_source=google_patent&utm_medium=platform_link&utm_campaign=public_patent_search&patent=WO2021111545(A1) "Global patent litigation dataset” by Darts-ip is licensed under a Creative Commons Attribution 4.0 International License.
Application filed by 東芝三菱電機産業システム株式会社 filed Critical 東芝三菱電機産業システム株式会社
Priority to JP2021562251A priority Critical patent/JP7184211B2/en
Priority to KR1020217017719A priority patent/KR102536439B1/en
Priority to CN201980081139.4A priority patent/CN113226633B/en
Priority to PCT/JP2019/047421 priority patent/WO2021111545A1/en
Publication of WO2021111545A1 publication Critical patent/WO2021111545A1/en

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K31/00Processes relevant to this subclass, specially adapted for particular articles or purposes, but not covered by only one of the preceding main groups
    • B23K31/12Processes relevant to this subclass, specially adapted for particular articles or purposes, but not covered by only one of the preceding main groups relating to investigating the properties, e.g. the weldability, of materials
    • B23K31/125Weld quality monitoring
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K31/00Processes relevant to this subclass, specially adapted for particular articles or purposes, but not covered by only one of the preceding main groups
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23QDETAILS, COMPONENTS, OR ACCESSORIES FOR MACHINE TOOLS, e.g. ARRANGEMENTS FOR COPYING OR CONTROLLING; MACHINE TOOLS IN GENERAL CHARACTERISED BY THE CONSTRUCTION OF PARTICULAR DETAILS OR COMPONENTS; COMBINATIONS OR ASSOCIATIONS OF METAL-WORKING MACHINES, NOT DIRECTED TO A PARTICULAR RESULT
    • B23Q17/00Arrangements for observing, indicating or measuring on machine tools
    • B23Q17/24Arrangements for observing, indicating or measuring on machine tools using optics or electromagnetic waves
    • B23Q17/2409Arrangements for indirect observation of the working space using image recording means, e.g. a camera
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N21/00Investigating or analysing materials by the use of optical means, i.e. using sub-millimetre waves, infrared, visible or ultraviolet light
    • G01N21/84Systems specially adapted for particular applications
    • G01N21/88Investigating the presence of flaws or contamination
    • G01N21/8851Scan or image signal processing specially adapted therefor, e.g. for scan signal adjustment, for detecting different kinds of defects, for compensating for structures, markings, edges
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K2101/00Articles made by soldering, welding or cutting
    • B23K2101/18Sheet panels

Definitions

  • This application relates to a welding system for welding between steel sheets supplied to a continuous cold processing line mainly for a continuous cold rolling line for steel sheets.
  • the steel sheet supplied to the continuous cold rolling line is mainly a steel sheet rolled by the hot rolling line and having a thickness of about 1.0 to 10 mm and a length of 100 m to 1 km.
  • the tail end of the leading material and the tip of the trailing material are welded, and the steel plate is continuously supplied. This improves productivity.
  • Welding of the leading material and the trailing material is performed by an automatic welding device. Normally, in an automatic welding device, the tail end of the leading material and the tip of the trailing material are cut by a shear to make their welded portions parallel. After that, the gap between the leading material and the trailing material is abutted and welded. Depending on the material, after preheating, the gap between the leading material and the trailing material is abutted.
  • predetermined welding conditions hereinafter referred to as preset information
  • preset information predetermined welding conditions
  • welding may not be successful with preset information alone.
  • One example of the reason why welding does not work is the distortion of the steel sheet itself.
  • Another example of the reason is non-uniform thermal expansion when preheated.
  • Another reason is, for example, a change in the gap distance due to a temperature drop from the beginning to the end of welding. Therefore, welding may be executed by feedback control using the actual information from the welding equipment or the accompanying instrument. However, there are cases where useful information used for feedback control cannot be obtained.
  • an optical sensor may be used to detect the shape of the weld bead after welding is completed to determine whether the welding is good or bad.
  • the quality of welding is determined by measuring the temperature near the welded portion immediately after welding.
  • Patent Document 2 proposes to use an infrared sensor to judge the quality of welding from the shape of the welding pond that is visually recognized immediately after welding, and to perform welding control using the judgment result. ing.
  • Judgment of good or bad welding by detecting the shape of the welding bead has become mainstream in recent years. However, even if a good judgment is made based on the weld bead, fracture may occur in continuous cold rolling, and it cannot always be said that an accurate judgment can be made. In addition, since the final judgment is made by the manager of the automatic welding device or the operator of the welding system, it may be difficult to make a judgment.
  • Patent Document 1 can be applied only to a specific welding method in which the temperature distribution around the welded portion is relatively visible. Therefore, for example, it is difficult to apply it to laser welding having a small heat-affected zone.
  • Patent Document 2 focuses on the surface of the material to be welded on the welding head 12 side, and monitors the quality of welding based on the shape characteristics of the welding bead on the surface. However, it is difficult to distinguish the shape of the weld bead when the welded part is in the proper position and the shape when the welded part is greatly deviated from the proper position.
  • This application was made in view of the above, and an object of the present application is to provide an improved welding abnormality diagnostic device so as to judge the quality of welding with high accuracy.
  • the welding abnormality diagnostic device captures a camera system for photographing the back surface of the material to be welded and a luminescence photographed image taken by the camera system at the time of welding the material to be welded.
  • Welding part imaging camera image collecting unit to collect, welding control information collecting unit to collect welding condition set values, and welding light feature amount for diagnosing the welding status of the material to be welded are the luminescence photographed image and the welding condition. It is provided with a welding status diagnosis unit that calculates based on the set value and determines the quality of welding based on the welding light feature amount and the upper and lower limit values for determining welding abnormality.
  • the welding light feature amount may be a numerical value or the like representing the contour shape of the welding light taken from the back surface side of the material to be welded.
  • the welding light feature amount may be one feature amount selected from the group consisting of the spatial moment, the area, the center of gravity, the welding light, the spark roughness, and the roundness of the welding light of the luminescence photographed image.
  • the welding condition set value is the power supplied to the welding head in the welding system, the moving speed of the welding head, the height or feed speed of the welding rod, and the amount of gap between the leading material and the trailing material. It may be included.
  • the welding condition set value may include a set value or an actual value for the height position or pressure of the guide roller.
  • the welding condition setting values are the specifications of the preceding material (for example, steel type, plate thickness and plate width), the specifications of the trailing material (for example, steel type, plate thickness and plate width), the presence or absence of the preheating process, and the temperature at the time of preheating. May include settings and.
  • a welding abnormality judgment upper and lower limit table and a welding status information database may be provided.
  • the welding abnormality determination upper and lower limit value table stores the welding abnormality determination upper and lower limit values for use in determining the quality of welding.
  • the welding status information database stores the output result of the welding status.
  • the welding status output unit is an interface for the welding system administrator to visually recognize the output result of the welding status diagnosis unit.
  • the welding abnormality alarm unit notifies the welding system administrator of the welding abnormality based on the determination of the welding abnormality in the welding condition diagnosis unit.
  • the welding condition can be accurately evaluated based on the welding light feature amount calculated from the welding light on the back surface of the material to be welded.
  • the welding light obtained by photographing the back surface of the material to be welded has a characteristic that differences are likely to appear depending on the quality of the welding condition. By treating this difference in the appearance of welding light as a welding light feature amount, it is possible to accurately determine whether the welding is good or bad.
  • FIG. 1 shows a configuration example of the welding system 10 according to the first embodiment.
  • the welding head 12 is welded in the width direction of the material 9 to be welded along a guide rail, a guide roller, or the like equipped in the device.
  • the material to be welded 9 includes a leading material 9a and a trailing material 9b.
  • the welding head 12 welds the leading material 9a and the trailing material 9b.
  • the welded portion front surface photographing camera 13 and the welded portion back surface photographing camera 14 move so as to follow the movement of the welding head 12, and always photograph the welding situation at the same position with respect to the welding head 12.
  • the welding head 12 may be for laser welding or for arc welding.
  • the electric power supplied from the output device 16 is controlled by the control device 15 to obtain a desired welding output.
  • the control amount that determines the welding conditions is set based on the information of the material 9 to be welded.
  • the controlled amounts are, for example, the electric power supplied to the welding head 12, the moving speed of the welding head 12, the height and feed speed of the welding rod of the welding head 12, and the amount of gap between the leading material 9a and the trailing material 9b. (Hereinafter, also referred to as a gap) and the height position and pressure of the guide roller may be included.
  • the information of the material to be welded 9 may include, for example, the steel type, plate thickness and plate width of the leading material 9a, and the steel type, plate thickness and plate width of the trailing material 9b.
  • the welding abnormality diagnosis device 20 collects images taken moment by moment by the welding portion front surface photographing camera 13 and the welding portion back surface photographing camera 14, information on welding control output, and other information incidental to welding.
  • the welding abnormality diagnosis device 20 determines whether the welding is good or bad by executing the calculation of the welding light feature amount and the statistic thereof for diagnosing the welding condition.
  • the welding system configuration described is an example, and the configuration may be added or omitted as appropriate.
  • the welded surface photographing camera 13 may be omitted.
  • FIG. 20 illustrates a rolling system 40 to which the welding system 10 is applied.
  • the welding system 40 includes a facility for supplying a hot coil 41, a welding system 10 for welding these, a cold rolling mill 43 which is a continuous cold rolling line, and a facility for winding a thin plate after rolling as a cold rolled coil 44. And.
  • the welding abnormality diagnosis device 20 is composed of the block diagram shown in FIG.
  • the welding abnormality diagnosis device 20 includes a welding portion photographing camera image collecting unit 21, a welding control information collecting unit 22, a welding status diagnosis unit 23, a welding abnormality determination upper and lower limit table 24, a welding abnormality alarm unit 25, and a welding status. It includes an output unit 26, a welding control information database 27, and a welding status information database 28.
  • Welding control information collecting unit 22 collects welding control output information and other welding-related information.
  • Information on the welding control output includes, for example, the power supplied to the welding head 12, the moving speed of the welding head 12, the height and feed speed of the welding rod, and the amount of gap between the leading material 9a and the trailing material 9b (hereinafter, gap). ), The height position of the guide roller, the set value of the pressure, and the actual value.
  • Other information associated with welding includes, for example, the steel type, plate thickness, and plate width of the preceding material 9a, the steel type, plate thickness, plate width of the trailing material 9b, the presence or absence of a preheating process, and the temperature setting during preheating. , Information used to set welding conditions.
  • the information collected by the welding control information collecting unit 22 is stored in, for example, the welding control information database 27.
  • the welded portion photographing camera image collecting unit 21 collects images taken every moment by the welded portion front surface photographing camera 13 and the welded portion back surface photographing camera 14.
  • FIG. 3 shows an example of an image collected by the welded portion photographing camera image collecting unit 21.
  • the welding head 12 moves from the lower part to the upper part of FIG.
  • the welded portion front surface photographing camera 13 or the welded portion back surface photographing camera 14 moves so as to follow the welding head 12. After the welding head 12 has passed, the welding pond B d1 is formed.
  • the welded portion front surface photographing camera 13 or the welded portion back surface photographing camera 14 photographs the dotted line portion of FIG. 3, and obtains an image in which the welding light L w1 as shown in FIG. 3 is reflected as an example.
  • the image obtained by the welded portion back surface photographing camera 14 is also referred to as a welded portion back surface photographing camera image 19 for convenience.
  • the welding light L w1 can be appropriately visually recognized in the welded portion back surface photographing camera image 19 by adjusting the contrast, brightness, exposure, and the like. These adjustments may be processed by the welded portion photographing camera image collecting unit 21, the welded portion front surface photographing camera 13, or the welded portion back surface photographing camera 14.
  • FIG. 21 to 23 are diagrams for explaining the difference in how the welding light L w1 appears on the back surface according to the welding situation.
  • FIG. 21 illustrates the case of laser welding.
  • the welding laser beam is appropriately applied to the contact portion between the leading material 9a and the trailing material 9b, the welding light L w1 appears on the front surface and the back surface of the material 9 to be welded.
  • the welding light L w1 appears on the front surface and the back surface of the material 9 to be welded.
  • the intensity (energy) of the irradiated welding laser beam may be weaker than in the normal state. In this case, the size and shape of the welding light L w1 appearing on the back surface are smaller than in the appropriate case of FIG.
  • the cross section of the trailing member 9b may be slanted with respect to the length direction.
  • the contact condition of the welding laser beam changes during welding.
  • a clear change in the size and shape of the welding light Lw1 on the back surface tends to appear during welding.
  • the welding light L w1 photographed from the back surface of the material 9 to be welded has a feature that a difference is likely to appear depending on the quality of the welding condition. Therefore, by treating the difference in the appearance of the welding light L w1 as a feature amount, it is possible to accurately determine whether the welding is good or bad. Based on such a principle, in the embodiment, the welding condition can be accurately evaluated based on the welding condition on the back surface of the material 9 to be welded.
  • the welding status diagnosis unit 23 calculates the welding light feature amount and its statistic for diagnosing the welding status based on the information collected by the welding control information collecting unit 22 and the welding unit photographing camera image collecting unit 21. , Diagnose welding abnormalities.
  • the calculation results of the welding light features and the statistics for diagnosing the welding status are stored in the welding status information database 28.
  • the welding light feature amount for diagnosing the welding condition and its statistic are compared with the welding abnormality diagnosis standard, and when the standard value is exceeded, it is determined as a welding abnormality.
  • the welding light feature amount for diagnosing the welding condition and its statistic are compared with a predetermined value in the welding abnormality determination upper and lower limit table 24 in which the welding abnormality determination upper and lower limit values are predetermined, and welding is performed. An abnormality may be determined.
  • FIG. 4 is an example of the welding abnormality determination upper / lower limit table 24.
  • the upper limit value and the lower limit value of the welding abnormality determination upper and lower limit values may be set according to various categories.
  • the various categories may include the steel grades of the leading material 9a and the trailing material 9b, the average plate thickness of the leading material 9a and the trailing material 9b, the gap setting value between the leading material 9a and the trailing material 9b, and the like.
  • the upper limit value and the lower limit value (upper and lower limit values of the welding abnormality warning) for warning that a numerical value close to the welding abnormality judgment is detected may be set in a narrower range than the range where the welding abnormality judgment is judged.
  • the welding abnormality is determined by both the welding light feature amount for diagnosing the welding condition and the welding abnormality determination upper and lower limit values calculated using the statistic thereof. May be good.
  • the welding abnormality alarm unit 25 sends a warning to the administrator.
  • the welding status output unit 26 outputs the welding status moment by moment, the results of a plurality of welding statuses, and the like. This output may be displayed on a display screen for the administrator to confirm welding.
  • the welding status diagnosis unit 23 has a diagnosis function block 23A for each photographed image, a diagnosis function block 23B after the completion of welding, and a welding tendency diagnosis function block 23C.
  • the diagnostic function block 23A for each photographed image calculates a statistic for diagnosing the welding situation for each image photographed every moment from the start to the end of the welding process, and determines whether the welding is good or bad.
  • the post-welding diagnostic function block 23B uses the statistic for diagnosing the welding condition calculated by the above-mentioned photographed image-by-photographed image-based diagnostic function block 23A in one welding. Calculate the statistics for diagnosing the welding situation and judge the quality of welding.
  • the welding tendency diagnosis function block 23C is a statistic for diagnosing the welding situation at an arbitrary number of welds M from the newest welded time after the number of welds exceeds a predetermined number of welds N after the welding system is started. Welding quality is judged from the tendency of quantity.
  • Both functions use the welding portion backside photographing camera image 19 collected by the welding portion photographing camera image collecting unit 21 and the information collected from the welding control information collecting unit 22 as input sources.
  • FIG. 5 shows a flow chart showing the execution procedure of each function.
  • the logic for determining from the start to the end of welding (step S1) may be determined based on the actual value of the welding control output information indicating the welding sequence ON. Alternatively, it may be determined by confirming the existence of the welding light L w1 in the welding portion front surface photographing camera image or the welding portion back surface photographing camera image 19 obtained from the welding portion photographing camera image collecting unit 21.
  • the diagnostic function block 23A for each photographed image operates according to the welding process ON. Information collected by the welding control information collecting unit 22 is given to the diagnostic function block 23A for each captured image via the welding control information database 27.
  • the diagnostic function block 23A for each captured image calculates the analysis result of the welding status for each captured image every moment.
  • the analysis result includes the "welding light feature amount” described later.
  • the analysis result for each image is stored in the welding status information database 28.
  • Step S2 includes a logic for determining the completion of welding. In step S2, it is also determined whether or not the database has been updated. After the welding is completed, the diagnostic function block 23B operates after the welding is completed. After the welding is completed, the analysis result (welding light feature amount) of each image taken every moment stored in the welding status information database 28 is used in the post-welding diagnostic function block 23B.
  • the post-welding diagnostic function block 23B outputs the analysis result of the welding status in one welding to the welding status information database 28.
  • the analysis result includes a statistic calculated from the welding light feature amount. The details of this statistic will be described later.
  • the logic for determining the completion of welding may be determined based on the actual value of the information of the welding control output representing the welding sequence ON, or the welding portion obtained from the welding portion photographing camera image collecting unit 21. It may be judged by confirming the existence of the welding light L w1 in the front surface photographing camera image or the welding portion back surface photographing camera image 19.
  • w is the number of pixels in the width direction of the image
  • h is the number of pixels in the height direction of the image
  • I is the pixel value at the width direction pixel position x and the height direction pixel position y.
  • the color space is described in RGB space, but this is not the case.
  • the presence of the welding light L w1 can be determined by performing threshold processing based on the average value of all the pixels.
  • I d (x, y) is a pixel value after grayscale at the width direction pixel position x and the height direction pixel position y.
  • the coefficients for calculating Id (x, y) shown here are ITU-R BT.601 (Studio encoding parameters of digital television for standard), which is an international standard for converting analog and digital signals. 4: 3 and wide screen 16: 9 aspect ratios International Telecommunication Union). However, each coefficient may rely on other standards.
  • the method using the above average value is an example. Not limited to the average value, various known threshold treatments may be applied.
  • step S3 it is determined whether or not the number of welds since the system is started is N or more (step S3). If it is not N or more, this routine ends.
  • the welding tendency diagnosis function block 23C When it is determined in step S3 that the number of welds is N or more, the welding tendency diagnosis function block 23C is activated.
  • the welding tendency diagnosis function block 23C receives a statistic based on the welding light feature amount for diagnosing the welding status of the number of welds J (J ⁇ N) from the welding status information database 28.
  • the diagnostic function block 23A for each captured image will be described with reference to the flow chart of FIG.
  • the back side photographed camera image 19 of the welded portion is acquired.
  • the light source other than the welding light L w1 existing in the acquired backside photographing camera image 19 of the welded portion is removed, and the portion corresponding to the welding light L w1 and the other portion are binarized (step S101).
  • the Gaussian filter smoothes the image by weighting the neighboring pixel values with the Gaussian distribution g.
  • Otsu's binarization process calculates the threshold value at which the degree of separation is greatest within the range of the maximum and minimum pixel values in the image.
  • the pixel value is binarized according to the calculated threshold value.
  • the contour extraction method may be a method of applying a filtering process such as a first-order differential filter or a Laplacian filter.
  • the contour extraction method may simply be a method of extracting the contour having the maximum area belonging to one of the numerical values obtained by the binarization process. In either method, a pixel position group for expressing the contour of the welding light L w1 is obtained.
  • welding light feature amount is calculated indicating a feature of the welding beam L w1 (step S103).
  • the welding light feature amount numerically represents the feature of the figure represented by the contour shape of the welding light L w1.
  • Welding light feature amount may be a spatial moment of welding light L w1 may be in the area of the welding beam L w1 may be in the center of gravity of the welding beam L w1 may be a circumference of the welding beam L w1, spark welding light L w1
  • the roughness may be used, or the roundness of the welding light L w1 may be used.
  • the spatial moment mijf of the welding light L w1 may be calculated by the following equation (6).
  • the area A f of the welding light L w1 may be calculated by the following formula (7).
  • the center of gravity C f of the welding light L w1 may be calculated by the following equation (8).
  • the peripheral length P f of the welding light L w1 may be calculated by the following equation (9).
  • the spark roughness R f of the welding light L w1 may be calculated by the following equation (10).
  • Roundness C IRCF welding light L w1 may be calculated by the following equation (11).
  • m 10f and m 01f are spatial primary moments in the width direction and the height direction of the image, respectively.
  • Welding light feature amount at least, the area of the welding beam L w1, the circumferential length of the welding beam L w1, the center of gravity of the welding beam L w1, it is desirable to include a roundness of the welding beam L w1.
  • FIG. 25 is a diagram showing variations in welding light features.
  • the welding light Lw1 of FIG. 25 includes a first portion and a second portion extending to the left and right of the paper surface with respect to the center of gravity G.
  • the distance from the center of gravity G to the first part is r1
  • the distance from the center of gravity G to the second part is r2.
  • Let r br be the absolute value of the difference between r1 and r2. This r br may be used as a welding light feature amount.
  • the welding light feature amount is stored in the welding status information database 28 (step S104). At the time of storage, the welding light feature amount is associated with the information used for setting the welding conditions obtained from the welding control information collecting unit 22. In addition, the welding light feature amount is stored together with the actual value of the welding control output information obtained from the welding control information collecting unit 22. That is, as in the table shown in FIG. 7, the actual value of the welding light feature amount and the welding control output information is stored in a predetermined table linked to the information used for setting the welding conditions. Will be done.
  • the quality of welding in the acquired welded portion back surface photographed camera image 19 is evaluated and diagnosed.
  • the welding abnormality determination criterion is acquired (step S105).
  • the upper and lower limit values for welding abnormality judgment which is an example of welding abnormality judgment criteria, are used for evaluation / diagnosis.
  • the welding abnormality determination upper and lower limit values are stored in advance in the welding abnormality determination upper and lower limit table 24.
  • the steel grades of the leading material 9a and the trailing material 9b, the average plate thickness of the leading material 9a and the trailing material 9b, and the leading material 9a and the trailing material 9b The set value of the gap may be used as a table reference parameter.
  • the corresponding category of the welding abnormality determination upper and lower limit table 24 is referred to based on the table reference parameter, and the welding abnormality determination upper and lower limit values of the welding abnormality determination upper and lower limit values are acquired.
  • a welding abnormality warning upper / lower limit value this may be acquired at the same time as the welding abnormality determination upper / lower limit value.
  • each welding light feature amount is compared with the corresponding welding abnormality warning upper and lower limit values (step S106). Further, each welding light feature amount is compared with the corresponding welding abnormality determination upper and lower limit values (step S107).
  • each welding light feature amount exceeds the welding abnormality warning upper and lower limit values and does not exceed the welding abnormality upper and lower limit values, a warning is notified that the state is close to the welding abnormality (step S108).
  • the characteristics of each welding light L w1 exceed the upper and lower limits of the welding abnormality, it is determined that the welding abnormality is present and the welding abnormality is notified (step S109).
  • the welding light feature amount used for determining the welding defect may be limited to any one, or a plurality of welding light features may be selected.
  • FIGS. 8A and 8B may be collectively referred to as FIG.
  • FIG. 8A by adding steps S200 to S203 after step S104, the welding light feature amount in an arbitrary number of images section (Fr) is acquired.
  • smoothing is performed using the average value or the median value of the plurality of welding light features acquired in step S203 (step S204), and the welding abnormality determination criterion is acquired (step S205). Welding abnormalities may be determined after smoothing.
  • FIG 9 shows an example of the welding abnormality judging a welding light feature amount A momentary lower limit A err1, A err2 and welding abnormality Warning threshold A wrn1, A wrn2.
  • the welding light feature amount A is arbitrarily selected from various quantities such as the above-mentioned spatial moment and area.
  • the horizontal axis is the number of images from the beginning to the end of welding.
  • the welding abnormality warning lower limit value A wrn2 Since the welding light feature amount A is below the welding abnormality warning lower limit value A wrn2 in the middle from the start to the end of welding, a warning is notified to the administrator. After that, since the welding light feature amount A is lower than the welding abnormality determination lower limit value Aerr2 , the welding abnormality is notified.
  • the diagnostic function block 23B after the completion of welding will be described.
  • the processing flow of the diagnostic function block 23B after the completion of welding is shown in FIG.
  • the welding light feature amount of the completed welding is acquired from the welding status information database 28 every moment (step S300).
  • the welding light feature amount between any number of images may be taken out from the collected momentary welding light feature amount, or may be taken out by the moving average or the moving median value in an arbitrary number of image number sections.
  • the statistics for each of the collected momentary welding light features are calculated (step S301).
  • the characteristic amount of welding light from moment to moment is reduced to the characteristic for each number of weldings.
  • the statistic described here may be an average value, a standard deviation, a variance, a maximum value, a minimum value, or a skewness. It may be sharp, it may be median.
  • the statistic may be calculated by the following generally known formulas (12) to (19).
  • the standard deviation ⁇ may be calculated by the following equation (13).
  • the variance s 2 may be calculated by the following equation (14).
  • the maximum value may be calculated by the following formula (15).
  • the minimum value may be calculated by the following equation (16).
  • the skewness ⁇ 1 may be calculated by the following equation (17).
  • the kurtosis ⁇ 2 may be calculated by the following equation (18).
  • the median value may be calculated by the following equation (19).
  • One of the features of the welding light L w1 is represented by the following formula (20).
  • An arbitrary type of welding light feature is selected from the various welding light features described above as exemplified by the formulas (6) to (11). The statistics of the selected weld light features are calculated.
  • the calculated welding light feature amount statistic is linked to the information used for setting the welding conditions obtained from the welding control information collecting unit 22, and is stored in the welding status information database 28 (step). S302).
  • the quality of welding is evaluated and diagnosed from the beginning to the end of welding from the statistics of welding light features.
  • the welding abnormality determination criterion is acquired (step S105).
  • the welding abnormality judgment upper / lower limit value is acquired from the welding abnormality judgment upper / lower limit table 24, and the upper / lower limit value is used as the upper / lower limit value in the same manner as the processing performed by the diagnostic function block 23A for each captured image. Evaluation by comparison and determination of welding abnormality (steps S105 to S109).
  • upper and lower limit table 24 for welding abnormality determination at the beginning and end of welding using the statistic of the welding light feature amount upper and lower limit values corresponding to each statistic are provided. Further, the welding light feature amount and the statistic thereof used for determining the welding defect may be limited to any one, or a plurality of them may be selected.
  • FIG. 11 is a processing flow of the welding tendency diagnosis function block 23C.
  • the statistics of the welding light feature amount for an arbitrary number of welds M are acquired from the welding status information database 28 (step S400). It is desirable that the arbitrary number of welds M is relatively large.
  • FIG. 12 shows an example of a tendency of the statistical amount of the welding light feature amount for an arbitrary number of welds M.
  • FIG. 12 shows a statistic C d of a certain welding light feature amount C.
  • Figure 12 statistics C welding abnormality judging upper limit for the d value C d err1 welding abnormality determination lower limit C d err2 welding abnormality warning upper limit C d WRN1 welding abnormality warning limit value C d Wrn2 the regression line L C d and stat are exemplified.
  • a regression line is obtained for each category defined in the welding status information database 28 for the acquired statistic of the welding light feature amount for the number of welds M (step S401).
  • the regression line of the welding light feature statistic may be calculated by the following equation (21).
  • feat is a feature of the welding light L w1
  • stat is a statistic
  • a feat and stat are slopes of the regression line
  • b feat and stat are intercepts of the regression line.
  • the slope of the regression line is obtained (step S402). From the slope of the obtained regression line, the long-term tendency of the characteristics of the welding light L w1 is evaluated and diagnosed. Similar to the diagnostic function block 23A for each captured image and the diagnostic function block 23B after the completion of welding, the welding abnormality determination upper and lower limit values are set in advance from the welding abnormality determination upper and lower limit table 24, which corresponds to the features and statistics of the welding light L w1. Acquire the upper and lower limit values of the welding abnormality determination upper and lower limit values for the welding tendency (step S403).
  • the first condition is satisfied (step S404).
  • the second condition is satisfied when the characteristics of the welding light L w1 corresponding to the number of welding lights L w1 going back from the new welding of the welding time exceed the upper and lower limit values of the welding abnormality determination upper and lower limit values (step S405).
  • both the first condition and the second condition are satisfied, it is diagnosed that there is a long-term change in the tendency regarding the characteristics of the welding light L w1.
  • the diagnosis result is notified to the outside (step S406).
  • the dirt on the lens of the welded portion back surface photographing camera 14 due to long-term use may be obtained by capturing the tendency change in the roundness of the welding light L w1.
  • the welding light feature amount includes the area or the peripheral length of the welding light L w1. If the slope of the regression line in these changes in the welding light feature amount tends to decrease, it can be seen that there is a risk of abnormality in the welding output. In particular, if the welding system is laser welding, it can be suggested that the protective glass of the laser output source may be dirty.
  • various welding abnormality determination upper and lower limit values are acquired as preset numerical values and used for welding abnormality determination.
  • various welding abnormality determination upper and lower limit values are calculated.
  • FIGS. 13A and 13B may be collectively referred to as FIG.
  • the first-order differential component of the welding light feature amount is calculated from the welding light feature amount acquired in the arbitrary number of images section R (that is, the gradient of the welding light feature amount in the section R). ), The quality of welding is evaluated and diagnosed based on the change.
  • R may be a relatively long section between the beginning and end of one welding.
  • the welding light feature quantity obtained from the welded portion back surface photographed camera image 19 acquired every moment has an extreme numerical output due to various disturbances, and thus is different.
  • use welding light feature amount smoothed in any number of images section (F d r) it may calculate the first derivative. However, in this case, it is necessary to make the R> F d r.
  • step S500 After the processes of steps S101 to S104 described above are executed, the identifier FrmCnt for counting the number of images is compared with the predetermined value R in step S500. Up to the point before step S503 in FIG. 13, the same processing as in the first embodiment is performed. In step S503, the welding light feature amount is acquired in R. Obtained welded light feature quantity may be smoothed by any image acquisition sections F d r (step S504).
  • FIG. 14 shows an example of acquiring the gradient of the welding light feature amount.
  • Each of the image number section positions k, k-1, and k-2, the gradient Q k at the position k, and the gradient Q k-1 at the position k-1 are shown.
  • step S506 If the difference between the gradient exceeds an arbitrary threshold value (D grad), significant change is determined to have occurred welding light feature quantity (step S506). In this case, the manager is notified of the welding abnormality (step S109).
  • D grad an arbitrary threshold value
  • a control chart which is one of the quality control methods, is applied.
  • the upper control limit and the lower control limit are set to 3 ⁇ ( ⁇ : standard deviation), and when they are exceeded, it is determined to be abnormal.
  • the upper control limit and the lower control limit for the welding light feature amount are calculated for each time series using the welding light feature amount when welding is completed normally. To do. These control limits are used as the upper and lower limits for determining welding abnormalities to diagnose the quality of welding.
  • This code may be assigned by the administrator, as a result of the diagnostic method in the first embodiment, or by another welding quality determination facility (for example, a bead inspection device). You may.
  • 15A and 15B are flow charts of the post-welding diagnostic function block 23B in the second embodiment. 15A and 15B may be collectively referred to as FIG. After the welding is completed, it is confirmed whether or not the number of welds when the welding is normal is N d or more (step S600).
  • the welding light feature amount at an arbitrary number of welds M d among the number of welds in which welding was normal is acquired (step S601).
  • the upper control limit and the lower control limit are calculated for each number of images (step S602). Even if the upper control limit and the lower control limit are calculated according to the definition of the upper control limit and the lower control limit in the Shewhart control chart (JIS Z 9020-2: 2016 control chart-Part 2: Shewhart control chart), for example. Good. Specifically, the following formulas (22) to (25a) and (25b) may be used.
  • the upper control limit UCL i may be calculated by the following equation (22).
  • the lower control limit LCL i may be calculated by the following equation (23).
  • the average value of the features of the welding light L w1 in the normalized number of images i may be calculated by the following equation (24).
  • the standard deviation of the characteristics of the welding light L w1 in the normalized number of images i may be calculated by the following formula (25a).
  • sigma i is the standard deviation of the welding number M d present in the number of images i normalized. Since the number of images may differ depending on the welding conditions, the welding light feature amount corresponding to the normalized number of images may be obtained from an approximate value or the like and complemented. In this case, for example, simple linear interpolation may be used, or interpolation by a spline function may be used.
  • the upper control limit and the lower control limit are set to 3 ⁇ .
  • 2 ⁇ may be used instead of 3 ⁇ , and the upper and lower limit settings may be changed.
  • the upper control limit and the lower control limit may be set for each category similar to the welding abnormality determination upper / lower limit table 24.
  • the classification of the welding abnormality determination upper and lower limit table 24 is the steel type of the leading material 9a and the trailing material 9b obtained from the welding condition setting information of the welding control information collecting unit 22, the average plate thickness of the leading material 9a and the trailing material 9b, and the leading material. It is a set value of the gap between the material 9a and the trailing material 9b.
  • the obtained upper control limit and lower control limit are set as welding abnormality determination criteria, and are used for determining the quality of welding (step S603). That is, when there are many points exceeding the upper control limit and the lower control limit, it is determined that the welding abnormality is found, and the manager is notified of the welding abnormality.
  • FIG. 16 shows an example of the welding light feature amount and the upper control limit and the lower control limit corresponding to each time series.
  • FIG. 16 shows an upper control limit D m1 and a lower control limit D m2 of a certain welding light feature amount D.
  • the first welding example D ex1 illustrates the case where the upper control limit D m1 is exceeded.
  • the second welding example D ex2 is an example in which welding is completed normally.
  • the normalized number of images i is I d .
  • the upper control limit and the lower control limit in the control chart are set to the upper and lower limit values for welding abnormality determination, as in the case of the post-welding diagnosis function block 23B in the second embodiment. Used for.
  • 17A and 17B show a flow chart relating to the processing of the welding tendency diagnosis function block 23C in the second embodiment. 17A and 17B may be collectively referred to as FIG.
  • the post-welding diagnostic function block 23B determines whether or not the number of normally completed welds is N d or more (step S600).
  • step S601 When the number of welds completed normally is N d or more, the statistic of the welding light feature amount at an arbitrary number of welds M d among the number of welds in which welding was normal is acquired (step). S601). Further, the upper control limit and the lower control limit are calculated from the acquired statistics (step S702). These control limits are set as welding abnormality determination criteria (step S603). After that, the processes of steps S400 to S406 are executed in the same manner as in the flow chart of FIG.
  • the upper control limit D d mx 1 and the lower control limit D d mx 2 are uniquely determined for a certain number of welds.
  • the obtained upper control limit D d mx1 and lower control limit D d mx2 are used as the upper and lower limit values for determining welding abnormality to evaluate the quality of welding.
  • the upper control limit and the lower control limit obtained from the control chart are shown, but they are not necessarily limited to this, and for example, pattern recognition is used.
  • the method may be used.
  • the distance between the welding light features obtained for each welding is calculated for a certain number of welds M dd , and the boundary between the case where the welding is completed normally and the case where the welding becomes abnormal is obtained based on the distance. ..
  • the number of welds M dd is the number of welds completed regardless of whether the welds are good or bad.
  • the distance between each welding light feature amount obtained for each welding may be obtained by, for example, a mean square error, or may be calculated by, for example, the following equation (26).
  • the mean square error is an example, and the distance between features may be calculated by another method. Welding quality is judged based on the boundary between the case where welding is completed normally and the case where welding becomes abnormal.
  • Various machine learning may be used as a method for finding boundaries.
  • a support vector machine, a neural network, or the like may be used to determine the boundary between when welding is completed normally and when welding becomes abnormal.
  • the diagnostic function block 23A for each photographed image is used for welding from the welding light feature amount for diagnosing the welding condition calculated for each image photographed every moment from the start to the end of the welding process. Correct the control output information.
  • the control output includes the electric power supplied to the welding head 12, the moving speed of the welding head 12, and the gap.
  • the feed rate of the welding torch may be included in the correction target.
  • Various other control outputs may be corrected. These control outputs are "welding condition set values" in the welding system 10.
  • FIGS. 19A and 19B may be collectively referred to as FIG. It should be noted that the parts that overlap with the first embodiment and the second embodiment are not mentioned.
  • steps S100 to S104 and steps S200 to S204 are executed in the same manner as described in FIG.
  • the welding light feature amount obtained from the acquired welded portion back surface photographed camera image 19 and the welding light feature equivalent to the number of welds W in the number of matching images is calculated, and the correction is added to the target control output (steps S800 to S802).
  • the correction amount for the controlled object may be given by, for example, the calculation formula (27) below.
  • ⁇ S is a correction coefficient for the target control output.
  • cur is the number of images from the start of welding in the welding.
  • f match is the number of images that matches cur.
  • the target control output is the electric power supplied to the welding head 12.
  • an area is used as one of the welding light feature quantities. This area is, at a certain time cur d, it is assumed that is smaller than the average value of the welding number W present in the area of the welding beam L w1 in f match d.
  • the electric power supplied to the welding head 12 may be increased by a correction amount so that the area of the welding light L w1 is constant.
  • the target control output is the moving speed of the welding head 12.
  • the peripheral length is used as one of the welding light feature quantities. It is assumed that this circumference becomes smaller than the average value of the number of welds W of the circumference of the welding light L w1 in f match dd at a certain time cur dd. In this case, the moving speed of the welding head 12 may be slowed by the correction amount so that the peripheral length of the welding light L w1 is constant.
  • the correction coefficient to the control output is the steel type of the leading material 9a and the trailing material 9b, the leading material 9a and the trailing material obtained from the information used for setting the welding conditions obtained from the welding control information collecting unit 22. It is desirable to provide each of the same categories as the welding abnormality determination upper and lower limit table 24, which divides the average plate thickness of 9b, the set value of the gap between the leading member 9a and the trailing member 9b, and the like. Further, the target control output is not necessarily one, but may be a plurality.
  • a correction amount is added to the control output based on the welding light feature amount every moment, but when the feature of the welding light L w1 exceeds the welding abnormality warning upper and lower limit values, the same as in the first embodiment. , Notify the administrator with a warning. Further, when the welding abnormality judgment upper and lower limit values are exceeded, a welding abnormality is notified.
  • the welding abnormality diagnosis device 20 utilizes the characteristics of light emission (that is, welding light) at the time of welding obtained from the image obtained by photographing the back surface of the material 9 to be welded to determine the welding status. Analyze and determine the quality of the weld during and after the weld. Welding conditions are automatically adjusted from the good or bad state of welding judged during welding, and the subsequent welding state is made good. Furthermore, after welding, the judgment criteria used in the analysis of good / bad judgment during welding and the welding conditions are used to predict the welding situation and recommend measures to the manager to avoid the situation caused by the welding failure. ..
  • the welding status diagnosis based on the welding light is applied to the back surface of the material 9 to be welded, but even if the welding status diagnosis of the embodiment is applied to the front surface of the material 9 to be welded. Good.
  • the welding abnormality diagnosis method according to the embodiment may be provided by reading the processing step of each flowchart executed by the welding abnormality diagnosis device 20 according to the embodiment as a method step.

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Physics & Mathematics (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Analytical Chemistry (AREA)
  • Computer Vision & Pattern Recognition (AREA)
  • Signal Processing (AREA)
  • Health & Medical Sciences (AREA)
  • Optics & Photonics (AREA)
  • Chemical & Material Sciences (AREA)
  • Quality & Reliability (AREA)
  • Biochemistry (AREA)
  • General Health & Medical Sciences (AREA)
  • General Physics & Mathematics (AREA)
  • Immunology (AREA)
  • Pathology (AREA)
  • Investigating Materials By The Use Of Optical Means Adapted For Particular Applications (AREA)
  • Laser Beam Processing (AREA)

Abstract

This welding abnormality diagnosis device comprises: a camera system for imaging the rear surface of a material to be welded; a welding part capturing camera image collection unit for collecting a light emission capture image captured by the camera system during the welding of the material to be welded; a welding control information collection unit for collecting a welding condition set value; and a welding state diagnosis unit that calculates, on the basis of the light emission capture image and the welding condition set value, a welding light feature amount for diagnosing the welding state of the material to be welded, and that determines whether the welding is good or not, on the basis of the welding light feature amount and the upper and lower limits of welding abnormality determination.

Description

溶接異常診断装置Welding abnormality diagnostic device
 この出願は、鋼板の連続冷間圧延ラインを主とする連続冷間処理ラインに供給される鋼板間を溶接する溶接システムに関するものである。 This application relates to a welding system for welding between steel sheets supplied to a continuous cold processing line mainly for a continuous cold rolling line for steel sheets.
 鋼板の連続冷間圧延ラインでは、連続して鋼板を供給し、冷間圧延する。連続冷間圧延ラインへ供給される鋼板は、主に、熱間圧延ラインにて圧延された厚さ1.0~10mm程度、長さ100m~1kmの鋼板である。 In the continuous cold rolling line for steel sheets, steel sheets are continuously supplied and cold rolled. The steel sheet supplied to the continuous cold rolling line is mainly a steel sheet rolled by the hot rolling line and having a thickness of about 1.0 to 10 mm and a length of 100 m to 1 km.
 連続冷間圧延ラインを主とする連続冷間処理ラインでは、先行材の尾端と後行材の先端とを溶接し、絶え間なく鋼板が供給される。これにより、生産性を向上させている。 In the continuous cold treatment line, which is mainly a continuous cold rolling line, the tail end of the leading material and the tip of the trailing material are welded, and the steel plate is continuously supplied. This improves productivity.
 ここで溶接に不良が発生した場合、冷間圧延中に溶接部から鋼板が破断する。破断によりミスロールとなってしまい、生産性の低下あるいは冷間圧延設備の破損に繋がる。このため、連続冷間圧延ラインを主とする連続冷間処理ラインにおいて、鋼板間の溶接は重要な工程のひとつである。 If a defect occurs in welding here, the steel plate will break from the weld during cold rolling. The breakage causes misrolling, which leads to a decrease in productivity or damage to the cold rolling equipment. For this reason, welding between steel sheets is one of the important processes in a continuous cold processing line mainly a continuous cold rolling line.
 先行材と後行材の溶接は、自動溶接装置で行われる。通常、自動溶接装置では、先行材の尾端と後行材の先端とをシャーにより切断し、それらの被溶接部を平行にする。その後、先行材と後行材の間隙を突合せて溶接する。材料によっては、予め加熱した後に先行材と後行材との間隙を突合せる。 Welding of the leading material and the trailing material is performed by an automatic welding device. Normally, in an automatic welding device, the tail end of the leading material and the tip of the trailing material are cut by a shear to make their welded portions parallel. After that, the gap between the leading material and the trailing material is abutted and welded. Depending on the material, after preheating, the gap between the leading material and the trailing material is abutted.
 自動溶接装置で所望の溶接を実行するために、例えば、予め定められた溶接条件(以下、プリセット情報とする)が入力される。しかしながら、プリセット情報だけでは溶接がうまくいかないこともある。溶接がうまくいかない理由の一例は、鋼板自体のゆがみである。理由の他の例は、予熱した場合に不均一に熱膨張することである。他にも、例えば、溶接の終始における温度低下による間隙の距離の変化なども理由となる。そこで、溶接設備あるいは付随計器からの実績情報を用いて、フィードバック制御により溶接を実行することもある。しかしながら、フィードバック制御に用いる有用な情報が得られない場合もある。 In order to execute the desired welding with the automatic welding device, for example, predetermined welding conditions (hereinafter referred to as preset information) are input. However, welding may not be successful with preset information alone. One example of the reason why welding does not work is the distortion of the steel sheet itself. Another example of the reason is non-uniform thermal expansion when preheated. Another reason is, for example, a change in the gap distance due to a temperature drop from the beginning to the end of welding. Therefore, welding may be executed by feedback control using the actual information from the welding equipment or the accompanying instrument. However, there are cases where useful information used for feedback control cannot be obtained.
 そこで、プリセット情報のみで自動溶接する場合、例えば、光学センサを用いて、溶接完了後の溶接ビードの形状を検出して、溶接の良不良を判断することがある。その他にも、例えば、特許文献1では、溶接直後に溶接部付近の温度を測定することで溶接の良不良を判定している。また、特許文献2は、赤外線センサを用いて、溶接直後に視認される溶接池の形状から溶接の良不良判定を行ったり、その判定結果を用いた溶接制御を実施したりすることを提案している。 Therefore, when automatic welding is performed using only preset information, for example, an optical sensor may be used to detect the shape of the weld bead after welding is completed to determine whether the welding is good or bad. In addition, for example, in Patent Document 1, the quality of welding is determined by measuring the temperature near the welded portion immediately after welding. Further, Patent Document 2 proposes to use an infrared sensor to judge the quality of welding from the shape of the welding pond that is visually recognized immediately after welding, and to perform welding control using the judgment result. ing.
日本特許第5058707号公報Japanese Patent No. 5058707 日本特開2000-351071号公報Japanese Patent Application Laid-Open No. 2000-351071
 溶接ビードの形状検出による溶接の良不良判断は、近年、主流になりつつある。しかしながら、溶接ビードに基づいて良判定が出されても連続冷間圧延で破断が起きることもあり、必ずしも正確な判定ができるとは言えなかった。また、最終的な判断は、自動溶接装置の管理者あるいは溶接システムの操業者が行うので、判断が困難であるケースもあった。 Judgment of good or bad welding by detecting the shape of the welding bead has become mainstream in recent years. However, even if a good judgment is made based on the weld bead, fracture may occur in continuous cold rolling, and it cannot always be said that an accurate judgment can be made. In addition, since the final judgment is made by the manager of the automatic welding device or the operator of the welding system, it may be difficult to make a judgment.
 特許文献1は、溶接部の周辺の温度分布が比較的視認できるような、特定の溶接方法でのみ適用可能である。よって、例えば熱影響部が小さいレーザ溶接などでは適用が難しい。特許文献2は、被溶接材における溶接ヘッド12側の表面に着目し、当該表面における溶接ビードの形状的特徴に基づいて溶接の良不良を監視している。しかし溶接ビードは、溶接部位が適正位置にある場合の形状と、溶接部位が適正位置から大きくズレたときの形状とを区別することが難しい。 Patent Document 1 can be applied only to a specific welding method in which the temperature distribution around the welded portion is relatively visible. Therefore, for example, it is difficult to apply it to laser welding having a small heat-affected zone. Patent Document 2 focuses on the surface of the material to be welded on the welding head 12 side, and monitors the quality of welding based on the shape characteristics of the welding bead on the surface. However, it is difficult to distinguish the shape of the weld bead when the welded part is in the proper position and the shape when the welded part is greatly deviated from the proper position.
 以上説明したように、従来の技術では、依然として高精度な良否判定が難しいという実情があった。そこで、本願発明者が鋭意検討を進めたところ、従来とは異なる新規な技術的思想に基づいて溶接の良不良を高精度に判定する技術が見出された。 As explained above, there was a fact that it was still difficult to make a high-precision quality judgment with the conventional technology. Therefore, as a result of diligent studies by the inventor of the present application, a technique for determining the quality of welding with high accuracy has been found based on a new technical idea different from the conventional one.
 本出願は、上記を鑑みてなされたもので、溶接の良不良を高精度に判定するように改良された溶接異常診断装置を提供することを目的とする。 This application was made in view of the above, and an object of the present application is to provide an improved welding abnormality diagnostic device so as to judge the quality of welding with high accuracy.
 本出願の実施の形態の一つとして提供される溶接異常診断装置は、被溶接材の裏面を撮影するカメラシステムと、前記被溶接材の溶接時において前記カメラシステムにより撮影された発光撮影画像を収集する溶接部撮影カメラ画像収集部と、溶接条件設定値を収集する溶接制御情報収集部と、前記被溶接材の溶接状況を診断するための溶接光特徴量を前記発光撮影画像と前記溶接条件設定値とに基づいて計算し、前記溶接光特徴量と溶接異常判定上下限値とに基づいて溶接の良不良を判定する溶接状況診断部と、を備える。 The welding abnormality diagnostic device provided as one of the embodiments of the present application captures a camera system for photographing the back surface of the material to be welded and a luminescence photographed image taken by the camera system at the time of welding the material to be welded. Welding part imaging camera image collecting unit to collect, welding control information collecting unit to collect welding condition set values, and welding light feature amount for diagnosing the welding status of the material to be welded are the luminescence photographed image and the welding condition. It is provided with a welding status diagnosis unit that calculates based on the set value and determines the quality of welding based on the welding light feature amount and the upper and lower limit values for determining welding abnormality.
 前記溶接光特徴量は、被溶接材の裏面側から撮影した溶接光の輪郭形状を数値などで量的に表したものであってもよい。前記溶接光特徴量は、発光撮影画像の溶接光が持つ空間モーメントと面積と重心と溶接光とスパーク粗さと真円度とからなる群から選択された一つの特徴量であってもよい。 The welding light feature amount may be a numerical value or the like representing the contour shape of the welding light taken from the back surface side of the material to be welded. The welding light feature amount may be one feature amount selected from the group consisting of the spatial moment, the area, the center of gravity, the welding light, the spark roughness, and the roundness of the welding light of the luminescence photographed image.
 前記溶接条件設定値は、前記溶接システムにおける溶接ヘッドに供給される電力と、溶接ヘッドの移動速度と、溶接棒の高さまたは送り速度と、先行材と後行材との間隙量と、を含んでもよい。前記溶接条件設定値は、ガイドローラの高さ位置または圧力についての設定値または実績値を含んでもよい。前記溶接条件設定値は、先行材の仕様(例えば鋼種と板厚と板幅)と、後行材の仕様(例えば鋼種と板厚と板幅)と、予熱工程の有無と、予熱時の温度設定とを含んでもよい。 The welding condition set value is the power supplied to the welding head in the welding system, the moving speed of the welding head, the height or feed speed of the welding rod, and the amount of gap between the leading material and the trailing material. It may be included. The welding condition set value may include a set value or an actual value for the height position or pressure of the guide roller. The welding condition setting values are the specifications of the preceding material (for example, steel type, plate thickness and plate width), the specifications of the trailing material (for example, steel type, plate thickness and plate width), the presence or absence of the preheating process, and the temperature at the time of preheating. May include settings and.
 データ処理の便宜のために、溶接異常判定上下限値テーブルと溶接状況情報データベースとが設けられてもよい。溶接異常判定上下限値テーブルは、溶接の良不良の判定に用いるための溶接異常判定上下限値を格納する。溶接状況情報データベースは、溶接状況の出力結果を格納する。 For convenience of data processing, a welding abnormality judgment upper and lower limit table and a welding status information database may be provided. The welding abnormality determination upper and lower limit value table stores the welding abnormality determination upper and lower limit values for use in determining the quality of welding. The welding status information database stores the output result of the welding status.
 溶接システム管理者の利便性向上のために、溶接状況出力部と溶接異常アラーム部とのうち少なくとも一方が設けられてもよい。前記溶接状況出力部は、前記溶接状況診断部の出力結果を溶接システム管理者が視認するためのインターフェイスである。前記溶接異常アラーム部は、前記溶接状況診断部のおける溶接異常の判定に基づき、溶接異常を溶接システム管理者へ通知する。 In order to improve the convenience of the welding system administrator, at least one of the welding status output unit and the welding abnormality alarm unit may be provided. The welding status output unit is an interface for the welding system administrator to visually recognize the output result of the welding status diagnosis unit. The welding abnormality alarm unit notifies the welding system administrator of the welding abnormality based on the determination of the welding abnormality in the welding condition diagnosis unit.
 上記の溶接異常診断装置によれば、被溶接材裏面の溶接光から計算した溶接光特徴量に基づいて、溶接状況を精度良く評価できる。被溶接材裏面を撮影して得られる溶接光は、溶接状況の良否に応じた違いが現れやすいという特徴を持つ。この溶接光の現れ方の違いを溶接光特徴量として取り扱うことで、溶接の良不良を精度良く判定することができる。 According to the above welding abnormality diagnosis device, the welding condition can be accurately evaluated based on the welding light feature amount calculated from the welding light on the back surface of the material to be welded. The welding light obtained by photographing the back surface of the material to be welded has a characteristic that differences are likely to appear depending on the quality of the welding condition. By treating this difference in the appearance of welding light as a welding light feature amount, it is possible to accurately determine whether the welding is good or bad.
第一の実施の形態にかかる溶接システムを示した図である。It is a figure which showed the welding system which concerns on the 1st Embodiment. 溶接異常診断装置の構成について示したブロック図である。It is a block diagram which showed the structure of the welding abnormality diagnosis apparatus. 溶接部撮影カメラ画像収集部で収集される画像の例を示した図である。It is a figure which showed the example of the image collected by the welding part photographing camera image collecting part. 溶接異常判定上下限テーブルを示した図である。It is a figure which showed the welding abnormality judgment upper and lower limit table. 溶接状況診断部における実行手順を示した図である。It is a figure which showed the execution procedure in the welding condition diagnosis part. 撮影画像毎診断機能の処理を示したフロー図である。It is a flow chart which showed the process of the diagnosis function for every photographed image. 時々刻々の溶接光の特徴と溶接の制御出力の情報の実績値を格納するためのテーブルの例を示した図である。It is the figure which showed the example of the table for storing the actual value of the information of the welding light and the welding control output from moment to moment. 撮影画像毎診断機能の他処理例を示した図である。It is a figure which showed the other processing example of the diagnosis function for every photographed image. 撮影画像毎診断機能の他処理例を示した図である。It is a figure which showed the other processing example of the diagnosis function for every photographed image. 時々刻々の溶接光の特徴と溶接異常判定上下限値および溶接異常警告上下限値の例を示した図である。It is a figure which showed the characteristic of the welding light every moment, the welding abnormality judgment upper and lower limit values, and the welding abnormality warning upper and lower limit values. 溶接完了後診断機能の処理を示したフロー図である。It is a flow chart which showed the process of the diagnostic function after welding completion. 溶接傾向診断機能の処理を示したフロー図である。It is a flow chart which showed the process of the welding tendency diagnosis function. 溶接光特徴量の統計量の傾向の一例を示した図である。It is a figure which showed an example of the tendency of the statistic of the welding light feature amount. 第二の実施の形態における撮影画像毎診断機能の処理を示したフロー図である。It is a flow chart which showed the process of the diagnosis function for every photographed image in 2nd Embodiment. 第二の実施の形態における撮影画像毎診断機能の処理を示したフロー図である。It is a flow chart which showed the process of the diagnosis function for every photographed image in 2nd Embodiment. 第二の実施の形態における溶接光の特徴の勾配の取得例を示した図である。It is a figure which showed the acquisition example of the gradient of the characteristic of the welding light in the 2nd Embodiment. 第二の実施の形態における溶接完了後診断機能の処理を示したフロー図である。It is a flow chart which showed the process of the diagnosis function after the completion of welding in the 2nd Embodiment. 第二の実施の形態における溶接完了後診断機能の処理を示したフロー図である。It is a flow chart which showed the process of the diagnosis function after the completion of welding in the 2nd Embodiment. 第二の実施の形態の溶接完了後診断機能における溶接光の特徴と上方管理限界および下方管理限界の一例を示した図である。It is a figure which showed an example of the characteristic of the welding light and the upper control limit and the lower control limit in the post-weld diagnosis function of the second embodiment. 第二の実施の形態における溶接傾向診断機能の処理を示したフロー図である。It is a flow chart which showed the process of the welding tendency diagnosis function in 2nd Embodiment. 第二の実施の形態における溶接傾向診断機能の処理を示したフロー図である。It is a flow chart which showed the process of the welding tendency diagnosis function in 2nd Embodiment. 第二の実施の形態の溶接傾向診断機能における溶接光特徴量の統計量と上方管理限界および下方管理限界の一例を示した図である。It is a figure which showed the statistic of the welding light feature amount in the welding tendency diagnosis function of the 2nd Embodiment, and an example of the upper control limit and the lower control limit. 第三の実施の形態に係る処理フローを示した図である。It is a figure which showed the processing flow which concerns on 3rd Embodiment. 第三の実施の形態に係る処理フローを示した図である。It is a figure which showed the processing flow which concerns on 3rd Embodiment. 鋼板の連続冷間圧延ラインを主とする連続冷間処理ラインに供給される鋼板間を溶接する溶接システムの一例を示す図である。It is a figure which shows an example of the welding system which welds between steel plates supplied to the continuous cold treatment line mainly which a continuous cold rolling line of a steel plate. 溶接状況に応じた溶接光の裏面への現れ方の違いを説明するための図である。It is a figure for demonstrating the difference of appearance of welding light on the back surface according to a welding situation. 溶接状況に応じた溶接光の裏面への現れ方の違いを説明するための図である。It is a figure for demonstrating the difference of appearance of welding light on the back surface according to a welding situation. 溶接状況に応じた溶接光の裏面への現れ方の違いを説明するための図である。It is a figure for demonstrating the difference of appearance of welding light on the back surface according to a welding situation. 被溶接材の切断面が非平行である場合の課題を説明するための図である。It is a figure for demonstrating the problem in the case where the cut surface of a material to be welded is non-parallel. 溶接光特徴量のバリエーションを説明するための図である。It is a figure for demonstrating the variation of the welding light feature quantity.
 以下の説明においては、明細書および図面のなかで同一の符号を付した構成は、互いに同一であるか、または実質的に同一であるものとする。例えばフローチャートにおいては対応するステップに同一の符号を付する。 In the following description, the configurations with the same reference numerals in the specification and the drawings are assumed to be the same or substantially the same as each other. For example, in the flowchart, the corresponding steps are designated by the same reference numerals.
第一の実施の形態.
 図1に、第一の実施の形態にかかる溶接システム10の構成例を示す。溶接ヘッド12は、装置に装備されているガイドレール、あるいは、ガイドローラ等に沿って、被溶接材9の幅方向に溶接していく。被溶接材9は、具体的には、先行材9aと後行材9bとを含む。溶接ヘッド12は先行材9aと後行材9bとを溶接する。
The first embodiment.
FIG. 1 shows a configuration example of the welding system 10 according to the first embodiment. The welding head 12 is welded in the width direction of the material 9 to be welded along a guide rail, a guide roller, or the like equipped in the device. Specifically, the material to be welded 9 includes a leading material 9a and a trailing material 9b. The welding head 12 welds the leading material 9a and the trailing material 9b.
 溶接ヘッド12の移動に追従するように、溶接部表面撮影カメラ13および溶接部裏面撮影カメラ14が移動し、溶接ヘッド12に対し常に同じ位置で溶接状況を撮影する。溶接ヘッド12は、レーザ溶接用のものでもよく、アーク溶接用のものでもよい。 The welded portion front surface photographing camera 13 and the welded portion back surface photographing camera 14 move so as to follow the movement of the welding head 12, and always photograph the welding situation at the same position with respect to the welding head 12. The welding head 12 may be for laser welding or for arc welding.
 出力装置16から供給される電力を制御装置15により制御して所望の溶接出力を得る。このとき、溶接条件を決める制御量は、被溶接材9の情報をもとに設定される。この制御量は、例えば、溶接ヘッド12に供給される電力と、溶接ヘッド12の移動速度と、溶接ヘッド12の溶接棒の高さおよび送り速度と、先行材9aと後行材9bの間隙量(以下、ギャップとも称す)と、ガイドローラの高さ位置および圧力と、を含んでもよい。被溶接材9の情報は、例えば、先行材9aの鋼種、板厚および板幅と、後行材9bの鋼種、板厚および板幅とを含んでもよい。 The electric power supplied from the output device 16 is controlled by the control device 15 to obtain a desired welding output. At this time, the control amount that determines the welding conditions is set based on the information of the material 9 to be welded. The controlled amounts are, for example, the electric power supplied to the welding head 12, the moving speed of the welding head 12, the height and feed speed of the welding rod of the welding head 12, and the amount of gap between the leading material 9a and the trailing material 9b. (Hereinafter, also referred to as a gap) and the height position and pressure of the guide roller may be included. The information of the material to be welded 9 may include, for example, the steel type, plate thickness and plate width of the leading material 9a, and the steel type, plate thickness and plate width of the trailing material 9b.
 これらの制御量と被溶接材9の情報と、プリセット情報となる。また、実際に溶接したときの実績情報は、制御装置15に取り込まれ、フィードバック制御などに用いられることもある。溶接異常診断装置20は、溶接部表面撮影カメラ13および溶接部裏面撮影カメラ14で時々刻々撮影された画像と、溶接の制御出力の情報と、その他の溶接に付随する情報とを収集する。 These control amounts, information on the material to be welded 9, and preset information. In addition, the actual information at the time of actual welding is taken into the control device 15 and may be used for feedback control or the like. The welding abnormality diagnosis device 20 collects images taken moment by moment by the welding portion front surface photographing camera 13 and the welding portion back surface photographing camera 14, information on welding control output, and other information incidental to welding.
 溶接異常診断装置20は、溶接状況を診断するための溶接光特徴量およびその統計量の計算を実行することで、溶接良不良の判断等を実施する。なお、記載した溶接システム構成は一例であり、構成の追加または省略が適宜に行われてもよい。例えば溶接部表面撮影カメラ13は省略されてもよい。 The welding abnormality diagnosis device 20 determines whether the welding is good or bad by executing the calculation of the welding light feature amount and the statistic thereof for diagnosing the welding condition. The welding system configuration described is an example, and the configuration may be added or omitted as appropriate. For example, the welded surface photographing camera 13 may be omitted.
 図20は、溶接システム10が適用される圧延システム40を図示している。溶接システム40は、ホットコイル41を供給する設備と、これらを溶接する溶接システム10と、連続冷間圧延ラインである冷間圧延機43と、圧延後の薄板を冷延コイル44として巻き取る設備とを備える。 FIG. 20 illustrates a rolling system 40 to which the welding system 10 is applied. The welding system 40 includes a facility for supplying a hot coil 41, a welding system 10 for welding these, a cold rolling mill 43 which is a continuous cold rolling line, and a facility for winding a thin plate after rolling as a cold rolled coil 44. And.
 溶接異常診断装置20は、図2に示すブロック図で構成される。溶接異常診断装置20は、溶接部撮影カメラ画像収集部21と、溶接制御情報収集部22と、溶接状況診断部23と、溶接異常判定上下限テーブル24と、溶接異常アラーム部25と、溶接状況出力部26と、溶接制御情報データベース27と、溶接状況情報データベース28と、を備えている。 The welding abnormality diagnosis device 20 is composed of the block diagram shown in FIG. The welding abnormality diagnosis device 20 includes a welding portion photographing camera image collecting unit 21, a welding control information collecting unit 22, a welding status diagnosis unit 23, a welding abnormality determination upper and lower limit table 24, a welding abnormality alarm unit 25, and a welding status. It includes an output unit 26, a welding control information database 27, and a welding status information database 28.
 溶接制御情報収集部22は、溶接の制御出力の情報や、その他の溶接に付随する情報を収集する。溶接の制御出力の情報は、例えば、溶接ヘッド12に供給される電力や、溶接ヘッド12の移動速度、溶接棒の高さや送り速度、先行材9aと後行材9bの間隙量(以下、ギャップとする)、ガイドローラの高さ位置や圧力の設定値と実績値などである。 Welding control information collecting unit 22 collects welding control output information and other welding-related information. Information on the welding control output includes, for example, the power supplied to the welding head 12, the moving speed of the welding head 12, the height and feed speed of the welding rod, and the amount of gap between the leading material 9a and the trailing material 9b (hereinafter, gap). ), The height position of the guide roller, the set value of the pressure, and the actual value.
 その他の溶接に付随する情報は、例えば、先行材9aの鋼種、板厚、板幅や、後行材9bの鋼種、板厚、板幅、予熱工程の有無や、予熱時の温度設定、など、溶接条件を設定するために用いられる情報である。溶接制御情報収集部22で収集した情報は、例えば、溶接制御情報データベース27へ格納される。 Other information associated with welding includes, for example, the steel type, plate thickness, and plate width of the preceding material 9a, the steel type, plate thickness, plate width of the trailing material 9b, the presence or absence of a preheating process, and the temperature setting during preheating. , Information used to set welding conditions. The information collected by the welding control information collecting unit 22 is stored in, for example, the welding control information database 27.
 溶接部撮影カメラ画像収集部21は、溶接部表面撮影カメラ13および溶接部裏面撮影カメラ14で時々刻々撮影された画像を収集する。 The welded portion photographing camera image collecting unit 21 collects images taken every moment by the welded portion front surface photographing camera 13 and the welded portion back surface photographing camera 14.
 図3は、溶接部撮影カメラ画像収集部21で収集される画像の例を表している。図3の下部から上部にかけて溶接ヘッド12が移動していく。溶接ヘッド12に追随するように、溶接部表面撮影カメラ13、あるいは、溶接部裏面撮影カメラ14が移動していく。溶接ヘッド12が通過した後は、溶接池Bd1が形成される。 FIG. 3 shows an example of an image collected by the welded portion photographing camera image collecting unit 21. The welding head 12 moves from the lower part to the upper part of FIG. The welded portion front surface photographing camera 13 or the welded portion back surface photographing camera 14 moves so as to follow the welding head 12. After the welding head 12 has passed, the welding pond B d1 is formed.
 溶接部表面撮影カメラ13、あるいは、溶接部裏面撮影カメラ14は、図3の点線箇所を撮影し、一例として図3に示したような溶接光Lw1が映り込んだ画像を得る。溶接部裏面撮影カメラ14が得る画像を、便宜上、溶接部裏面撮影カメラ画像19とも称す。 The welded portion front surface photographing camera 13 or the welded portion back surface photographing camera 14 photographs the dotted line portion of FIG. 3, and obtains an image in which the welding light L w1 as shown in FIG. 3 is reflected as an example. The image obtained by the welded portion back surface photographing camera 14 is also referred to as a welded portion back surface photographing camera image 19 for convenience.
 溶接部裏面撮影カメラ画像19は、コントラスト、明るさおよび露出などを調整することで、溶接光Lw1を適切に視認できるようにしておくのが望ましい。これらの調整は、溶接部撮影カメラ画像収集部21にて処理されてもよいし、溶接部表面撮影カメラ13、あるいは、溶接部裏面撮影カメラ14にて処理されてもよい。 It is desirable that the welding light L w1 can be appropriately visually recognized in the welded portion back surface photographing camera image 19 by adjusting the contrast, brightness, exposure, and the like. These adjustments may be processed by the welded portion photographing camera image collecting unit 21, the welded portion front surface photographing camera 13, or the welded portion back surface photographing camera 14.
 図21~図23は、溶接状況に応じた溶接光Lw1の裏面への現れ方の違いを説明するための図である。図21ではレーザ溶接の場合を例示している。図21に示すように、先行材9aと後行材9bとの当接部位に適切に溶接レーザ光が当たっているときには、被溶接材9の表面と裏面とに溶接光Lw1が現れる。一方、図22に示すように、当接部位から溶接レーザ光がずれると、表面には溶接光Lw1が現れるものの、裏面には溶接光Lw1が現れない。図23に示すように、何らかの理由で、照射される溶接レーザ光の強度(エネルギ)が正常時よりもが弱まることがある。この場合、図21の適切な場合と比べて、裏面に現れる溶接光Lw1の大きさや形状が小さくなる。 21 to 23 are diagrams for explaining the difference in how the welding light L w1 appears on the back surface according to the welding situation. FIG. 21 illustrates the case of laser welding. As shown in FIG. 21, when the welding laser beam is appropriately applied to the contact portion between the leading material 9a and the trailing material 9b, the welding light L w1 appears on the front surface and the back surface of the material 9 to be welded. On the other hand, as shown in FIG. 22, when the welding laser beam deviates from the contact portion, the welding light L w1 appears on the front surface, but the welding light L w1 does not appear on the back surface. As shown in FIG. 23, for some reason, the intensity (energy) of the irradiated welding laser beam may be weaker than in the normal state. In this case, the size and shape of the welding light L w1 appearing on the back surface are smaller than in the appropriate case of FIG.
 なお、図24に示すように、長さ方向に対して後行材9bの断面が斜めになっていることがある。この場合、斜めのギャップga1が生じてしまうので、溶接の途中で溶接レーザ光の当たり具合が変化する。この場合、溶接の途中で、裏面の溶接光Lw1の大きさや形状に明確な変化が現れやすい。 As shown in FIG. 24, the cross section of the trailing member 9b may be slanted with respect to the length direction. In this case, since an oblique gap ga1 is generated, the contact condition of the welding laser beam changes during welding. In this case, a clear change in the size and shape of the welding light Lw1 on the back surface tends to appear during welding.
 上記の例ではレーザ溶接の場合を例示したが、アーク溶接においても同様の事情により裏面の溶接光Lw1に違いが現れる。 In the above example, the case of laser welding has been illustrated, but in arc welding as well, a difference appears in the welding light L w1 on the back surface due to the same circumstances.
 このように、被溶接材9の裏面から撮影した溶接光Lw1は、溶接状況の良否に応じた違いが現れやすいという特徴を持つ。従って、この溶接光Lw1の現れ方の違いを特徴量として取り扱うことで、溶接の良不良を精度良く判定することができる。このような原理により、実施の形態では、被溶接材9の裏面における溶接状況に基づいて溶接状況を精度良く評価できる。 As described above, the welding light L w1 photographed from the back surface of the material 9 to be welded has a feature that a difference is likely to appear depending on the quality of the welding condition. Therefore, by treating the difference in the appearance of the welding light L w1 as a feature amount, it is possible to accurately determine whether the welding is good or bad. Based on such a principle, in the embodiment, the welding condition can be accurately evaluated based on the welding condition on the back surface of the material 9 to be welded.
 溶接状況診断部23は、溶接制御情報収集部22と溶接部撮影カメラ画像収集部21で収集された情報をもとに、溶接状況を診断するための溶接光特徴量およびその統計量を計算し、溶接異常を診断する。溶接状況を診断するための溶接光特徴量およびその統計量の計算結果は、溶接状況情報データベース28へ格納される。 The welding status diagnosis unit 23 calculates the welding light feature amount and its statistic for diagnosing the welding status based on the information collected by the welding control information collecting unit 22 and the welding unit photographing camera image collecting unit 21. , Diagnose welding abnormalities. The calculation results of the welding light features and the statistics for diagnosing the welding status are stored in the welding status information database 28.
 溶接異常の診断は、例えば、溶接状況を診断するための溶接光特徴量およびその統計量と溶接異常診断基準を比較して、基準値を超えた場合に、溶接異常と判定する。ここで、例えば、溶接状況を診断するための溶接光特徴量およびその統計量は、溶接異常判定上下限値を予め定めた、溶接異常判定上下限テーブル24の所定の値と比較して、溶接異常を判定してもよい。 For the diagnosis of welding abnormality, for example, the welding light feature amount for diagnosing the welding condition and its statistic are compared with the welding abnormality diagnosis standard, and when the standard value is exceeded, it is determined as a welding abnormality. Here, for example, the welding light feature amount for diagnosing the welding condition and its statistic are compared with a predetermined value in the welding abnormality determination upper and lower limit table 24 in which the welding abnormality determination upper and lower limit values are predetermined, and welding is performed. An abnormality may be determined.
 図4は、溶接異常判定上下限テーブル24の例である。図4に示すように、各種区分に応じて溶接異常判定上下限値の上限値と下限値とが設定されてもよい。各種区分は、先行材9aおよび後行材9bの鋼種と、先行材9aと後行材9bの平均板厚と、先行材9aと後行材9bとの間隙設定値などを含んでもよい。 FIG. 4 is an example of the welding abnormality determination upper / lower limit table 24. As shown in FIG. 4, the upper limit value and the lower limit value of the welding abnormality determination upper and lower limit values may be set according to various categories. The various categories may include the steel grades of the leading material 9a and the trailing material 9b, the average plate thickness of the leading material 9a and the trailing material 9b, the gap setting value between the leading material 9a and the trailing material 9b, and the like.
 また、溶接異常判定に近い数値を検出したことを警告するための上限値と下限値(溶接異常警告上下限値)を異常と判定される範囲よりも狭い範囲で設定してもよい。または、第二の実施の形態で説明するように、溶接状況を診断するための溶接光特徴量およびその統計量を用いて計算された溶接異常判定上下限値をともに、溶接異常を判定してもよい。 Further, the upper limit value and the lower limit value (upper and lower limit values of the welding abnormality warning) for warning that a numerical value close to the welding abnormality judgment is detected may be set in a narrower range than the range where the welding abnormality judgment is judged. Alternatively, as described in the second embodiment, the welding abnormality is determined by both the welding light feature amount for diagnosing the welding condition and the welding abnormality determination upper and lower limit values calculated using the statistic thereof. May be good.
 溶接異常と判定された場合、溶接異常アラーム部25にて、管理者へ警告を発信する。溶接状況出力部26は、時々刻々の溶接状況や、複数の溶接状況の結果などを出力する。この出力は、管理者が溶接を確認するための表示画面に表示してもよい。 When it is determined that the welding is abnormal, the welding abnormality alarm unit 25 sends a warning to the administrator. The welding status output unit 26 outputs the welding status moment by moment, the results of a plurality of welding statuses, and the like. This output may be displayed on a display screen for the administrator to confirm welding.
 溶接状況診断部23は、撮影画像毎診断機能ブロック23Aと、溶接完了後診断機能ブロック23Bと、溶接傾向診断機能ブロック23Cとを有する。 The welding status diagnosis unit 23 has a diagnosis function block 23A for each photographed image, a diagnosis function block 23B after the completion of welding, and a welding tendency diagnosis function block 23C.
 撮影画像毎診断機能ブロック23Aは、溶接工程の開始から終了までの間に時々刻々撮影した画像毎に、溶接状況を診断するための統計量を計算し、溶接の良不良を判定する。 The diagnostic function block 23A for each photographed image calculates a statistic for diagnosing the welding situation for each image photographed every moment from the start to the end of the welding process, and determines whether the welding is good or bad.
 溶接完了後診断機能ブロック23Bは、被溶接材9の溶接が完了するたびに、前述した撮影画像毎診断機能ブロック23Aで計算した溶接状況を診断するための統計量を用いて、溶接一回における溶接状況を診断するための統計量を計算し、溶接の良不良を判定する。 Each time the welding of the material 9 to be welded is completed, the post-welding diagnostic function block 23B uses the statistic for diagnosing the welding condition calculated by the above-mentioned photographed image-by-photographed image-based diagnostic function block 23A in one welding. Calculate the statistics for diagnosing the welding situation and judge the quality of welding.
 溶接傾向診断機能ブロック23Cは、溶接回数が、溶接システム起動後に所定の溶接本数Nを超えて以降に、溶接された時間が新しいものから任意の溶接本数Mでの溶接状況を診断するための統計量の傾向から溶接の良不良を判定する。 The welding tendency diagnosis function block 23C is a statistic for diagnosing the welding situation at an arbitrary number of welds M from the newest welded time after the number of welds exceeds a predetermined number of welds N after the welding system is started. Welding quality is judged from the tendency of quantity.
 いずれも機能も、溶接部撮影カメラ画像収集部21で収集された溶接部裏面撮影カメラ画像19と、溶接制御情報収集部22から収集された情報を入力源とする。 Both functions use the welding portion backside photographing camera image 19 collected by the welding portion photographing camera image collecting unit 21 and the information collected from the welding control information collecting unit 22 as input sources.
 図5は、それぞれの機能の実行手順をフロー図として表したものである。溶接の開始から終了までを判断するロジック(ステップS1)は、溶接シーケンスONを表す溶接の制御出力の情報の実績値により判断してもよい。あるいは、溶接部撮影カメラ画像収集部21から得られる溶接部表面撮影カメラ画像、または、溶接部裏面撮影カメラ画像19において、溶接光Lw1の存在確認により判断してもよい。 FIG. 5 shows a flow chart showing the execution procedure of each function. The logic for determining from the start to the end of welding (step S1) may be determined based on the actual value of the welding control output information indicating the welding sequence ON. Alternatively, it may be determined by confirming the existence of the welding light L w1 in the welding portion front surface photographing camera image or the welding portion back surface photographing camera image 19 obtained from the welding portion photographing camera image collecting unit 21.
 溶接工程ONに応じて、撮影画像毎診断機能ブロック23Aが作動する。撮影画像毎診断機能ブロック23Aには、溶接制御情報データベース27を経由して、溶接制御情報収集部22で収集された情報が与えられている。 The diagnostic function block 23A for each photographed image operates according to the welding process ON. Information collected by the welding control information collecting unit 22 is given to the diagnostic function block 23A for each captured image via the welding control information database 27.
 撮影画像毎診断機能ブロック23Aは、時々刻々撮影された画像毎の溶接状況の分析結果を計算する。分析結果は、後述する「溶接光特徴量」を含む。この時々刻々の画像毎の分析結果は、溶接状況情報データベース28へ格納される。 The diagnostic function block 23A for each captured image calculates the analysis result of the welding status for each captured image every moment. The analysis result includes the "welding light feature amount" described later. The analysis result for each image is stored in the welding status information database 28.
 ステップS2は、溶接完了を判断するロジックを含む。ステップS2は、データベース更新がされたかどうかの判定も実施する。溶接完了後には、溶接完了後診断機能ブロック23Bが作動する。溶接完了後、溶接状況情報データベース28へ格納された時々刻々撮影された画像毎の溶接状況の分析結果(溶接光特徴量)は、溶接完了後診断機能ブロック23Bにて用いられる。 Step S2 includes a logic for determining the completion of welding. In step S2, it is also determined whether or not the database has been updated. After the welding is completed, the diagnostic function block 23B operates after the welding is completed. After the welding is completed, the analysis result (welding light feature amount) of each image taken every moment stored in the welding status information database 28 is used in the post-welding diagnostic function block 23B.
 溶接完了後診断機能ブロック23Bは、一回の溶接における溶接状況の分析結果を、溶接状況情報データベース28へ出力する。分析結果は、具体的には、溶接光特徴量から計算される統計量を含む。この統計量の詳細は後述される。 The post-welding diagnostic function block 23B outputs the analysis result of the welding status in one welding to the welding status information database 28. Specifically, the analysis result includes a statistic calculated from the welding light feature amount. The details of this statistic will be described later.
 なお、溶接完了を判断するロジック(ステップS2)は、前記溶接シーケンスONを表す溶接の制御出力の情報の実績値により判断してもよいし、溶接部撮影カメラ画像収集部21から得られる溶接部表面撮影カメラ画像、あるいは、溶接部裏面撮影カメラ画像19において、溶接光Lw1の存在確認により判断してもよい。 The logic for determining the completion of welding (step S2) may be determined based on the actual value of the information of the welding control output representing the welding sequence ON, or the welding portion obtained from the welding portion photographing camera image collecting unit 21. It may be judged by confirming the existence of the welding light L w1 in the front surface photographing camera image or the welding portion back surface photographing camera image 19.
 ステップS1およびS2にて、溶接部撮影カメラ画像収集部21から得られる溶接部表面撮影カメラ画像、あるいは、溶接部裏面撮影カメラ画像19における溶接光Lw1の存在を判断する方法として、例えば、画像処理における以下の閾値処理を用いてもよい。画像の色空間の数値配列imgを、下記の式(1)および式(2)で表す。 As a method of determining the presence of the weld light L w1 in the welded portion front surface photographed camera image obtained from the welded portion photographed camera image collecting unit 21 or the welded portion back surface photographed camera image 19 in steps S1 and S2, for example, an image. The following threshold processing in the processing may be used. The numerical array img of the color space of the image is represented by the following equations (1) and (2).
Figure JPOXMLDOC01-appb-M000001
Figure JPOXMLDOC01-appb-M000001
Figure JPOXMLDOC01-appb-M000002
Figure JPOXMLDOC01-appb-M000002
 ここで、wは、画像の幅方向の画素数、hは画像の高さ方向の画素数、Iは、幅方向画素位置x、高さ方向画素位置yにおける画素値である。また、例として、色空間をRGB空間にて記述しているが、この限りではない。このとき、例えば、画像をグレースケール化した後に、全ての画素の平均値により閾値処理することで、溶接光Lw1の存在を判定することができる。 Here, w is the number of pixels in the width direction of the image, h is the number of pixels in the height direction of the image, and I is the pixel value at the width direction pixel position x and the height direction pixel position y. Further, as an example, the color space is described in RGB space, but this is not the case. At this time, for example, after the image is grayscaled, the presence of the welding light L w1 can be determined by performing threshold processing based on the average value of all the pixels.
Figure JPOXMLDOC01-appb-M000003
Figure JPOXMLDOC01-appb-M000003
Figure JPOXMLDOC01-appb-M000004
Figure JPOXMLDOC01-appb-M000004
 ここで、NoWeldingは、溶接の開始から終了までの判断である。I(x,y)は、幅方向画素位置xと高さ方向画素位置yとにおけるグレースケール後の画素値である。なお、ここで示したI(x,y)を算出するための各係数は、アナログ信号とデジタル信号の変換に係る国際規格であるITU-R BT.601(Studio encoding parameters of digital television for standard 4:3 and wide screen 16:9 aspect ratios International Telecommunication Union)にて定められたものである。ただし、各係数は他の規格に依拠してもよい。 Here, No Welding is a judgment from the start to the end of welding. I d (x, y) is a pixel value after grayscale at the width direction pixel position x and the height direction pixel position y. The coefficients for calculating Id (x, y) shown here are ITU-R BT.601 (Studio encoding parameters of digital television for standard), which is an international standard for converting analog and digital signals. 4: 3 and wide screen 16: 9 aspect ratios International Telecommunication Union). However, each coefficient may rely on other standards.
 ただし、上記平均値を用いた方法は、一例である。平均値に限られず各種の公知の閾値処理が適用されてもよい。 However, the method using the above average value is an example. Not limited to the average value, various known threshold treatments may be applied.
 また、溶接光Lw1は明滅するので、必ずしも溶接中のすべての画像において溶接光Lw1が確認できるとは限らないため、任意の枚数の画像を用いた判断が望ましい。 Further, since the welding beam L w1 flickering necessarily because the welding beam L w1 in all images during welding can not always be confirmed, determination using an image of an arbitrary number is desirable.
 次に、システム起動からの溶接本数がN以上であるか否かが判定される(ステップS3)。N以上でなければ今回のルーチンが終了する。 Next, it is determined whether or not the number of welds since the system is started is N or more (step S3). If it is not N or more, this routine ends.
 ステップS3で溶接本数がN以上であると判定された場合には、溶接傾向診断機能ブロック23Cが作動する。溶接傾向診断機能ブロック23Cは、溶接状況情報データベース28から、溶接本数J(J≧N)の溶接状況を診断するための溶接光特徴量に基づく統計量を受け取る。 When it is determined in step S3 that the number of welds is N or more, the welding tendency diagnosis function block 23C is activated. The welding tendency diagnosis function block 23C receives a statistic based on the welding light feature amount for diagnosing the welding status of the number of welds J (J ≧ N) from the welding status information database 28.
<撮影画像毎診断機能>
 撮影画像毎診断機能ブロック23Aについて、図6のフロー図を用いて説明する。まず、溶接部裏面撮影カメラ画像19が取得される。取得した溶接部裏面撮影カメラ画像19中に存在する溶接光Lw1以外の光源を除去し、溶接光Lw1に該当する部分と、それ以外の部分で二値化する(ステップS101)。
<Diagnosis function for each captured image>
The diagnostic function block 23A for each captured image will be described with reference to the flow chart of FIG. First, the back side photographed camera image 19 of the welded portion is acquired. The light source other than the welding light L w1 existing in the acquired backside photographing camera image 19 of the welded portion is removed, and the portion corresponding to the welding light L w1 and the other portion are binarized (step S101).
 溶接光Lw1のみを抽出する方法の一例として、ガウシアンフィルタと大津の二値化を適用する場合を示す。ガウシアンフィルタは、ガウス分布gにより近傍画素値に重みづけをして、画像を平滑化する。 As an example of the method of extracting only the welding light L w1, the case where the Gaussian filter and the binarization of Otsu are applied will be shown. The Gaussian filter smoothes the image by weighting the neighboring pixel values with the Gaussian distribution g.
Figure JPOXMLDOC01-appb-M000005
Figure JPOXMLDOC01-appb-M000005
 ガウシアンフィルタにより平滑化した画像に対して、大津の二値化処理を適用する。大津の二値化処理は、画像内の画素値の最大値と最小値の範囲内で分離の度合いが最も大きくなる閾値を算出する。算出した閾値により、画素値を二値化する。 Apply Otsu's binarization process to the image smoothed by the Gaussian filter. Otsu's binarization process calculates the threshold value at which the degree of separation is greatest within the range of the maximum and minimum pixel values in the image. The pixel value is binarized according to the calculated threshold value.
 上記の処理は一例であり、他の変形例も可能である。変形例として、平均値フィルタリングを用いてもよく、メディアンフィルタリングによる平滑化を用いてもよく、或いは、適応型二値化などの処理の適用も可能である。 The above process is an example, and other modified examples are also possible. As a modification, average value filtering may be used, smoothing by median filtering may be used, or processing such as adaptive binarization can be applied.
 溶接光Lw1を抽出した画像から、溶接光Lw1の輪郭を算出する(ステップS102)。輪郭の抽出方法は、一次微分フィルタまたはラプラシアンフィルタなどのフィルタリング処理を適用する方法でもよい。あるいは、輪郭の抽出方法は、単に、二値化処理により得られた一方の数値に属する面積が最大となる輪郭を抽出する方法でもよい。いずれの方法においても、溶接光Lw1の輪郭を表すための画素位置群が得られる。 From an image obtained by extracting the welding beam L w1, it calculates the contour of the welding beam L w1 (step S102). The contour extraction method may be a method of applying a filtering process such as a first-order differential filter or a Laplacian filter. Alternatively, the contour extraction method may simply be a method of extracting the contour having the maximum area belonging to one of the numerical values obtained by the binarization process. In either method, a pixel position group for expressing the contour of the welding light L w1 is obtained.
 実施の形態では、溶接光Lw1の輪郭を表す画素位置群を用いて、溶接光Lw1の特徴を表す溶接光特徴量が算出される(ステップS103)。溶接光特徴量は、溶接光Lw1の輪郭形状で表される図形の特徴を数値で表している。 In the embodiment, by using the pixel position group representing the outline of the welding beam L w1, welding light feature amount is calculated indicating a feature of the welding beam L w1 (step S103). The welding light feature amount numerically represents the feature of the figure represented by the contour shape of the welding light L w1.
 例えば、以下のような様々な溶接光特徴量を用いることができる。溶接光特徴量は、溶接光Lw1の空間モーメントでもよく、溶接光Lw1の面積でもよく、溶接光Lw1の重心でもよく、溶接光Lw1の周長でもよく、溶接光Lw1のスパーク粗さでもよく、溶接光Lw1の真円度でもよい。 For example, various welding light features such as the following can be used. Welding light feature amount may be a spatial moment of welding light L w1 may be in the area of the welding beam L w1 may be in the center of gravity of the welding beam L w1 may be a circumference of the welding beam L w1, spark welding light L w1 The roughness may be used, or the roundness of the welding light L w1 may be used.
 溶接光Lw1の空間モーメントmijfは、下記の式(6)で計算されてもよい。溶接光Lw1の面積Aは、下記の式(7)で計算されてもよい。溶接光Lw1の重心Cは、下記の式(8)で計算されてもよい。溶接光Lw1の周長Pは、下記の式(9)で計算されてもよい。溶接光Lw1のスパーク粗さRは、下記の式(10)で計算されてもよい。溶接光Lw1の真円度Circfは、下記の式(11)で計算されてもよい。 The spatial moment mijf of the welding light L w1 may be calculated by the following equation (6). The area A f of the welding light L w1 may be calculated by the following formula (7). The center of gravity C f of the welding light L w1 may be calculated by the following equation (8). The peripheral length P f of the welding light L w1 may be calculated by the following equation (9). The spark roughness R f of the welding light L w1 may be calculated by the following equation (10). Roundness C IRCF welding light L w1 may be calculated by the following equation (11).
Figure JPOXMLDOC01-appb-M000006
Figure JPOXMLDOC01-appb-M000006
Figure JPOXMLDOC01-appb-M000007
Figure JPOXMLDOC01-appb-M000007
Figure JPOXMLDOC01-appb-M000008
Figure JPOXMLDOC01-appb-M000008
Figure JPOXMLDOC01-appb-M000009
Figure JPOXMLDOC01-appb-M000009
Figure JPOXMLDOC01-appb-M000010
Figure JPOXMLDOC01-appb-M000010
Figure JPOXMLDOC01-appb-M000011
Figure JPOXMLDOC01-appb-M000011
 ここで、m10f、m01fは、それぞれ、画像の幅方向および高さ方向の空間一次モーメントである。添え字fは、溶接開始から終了までにおける画像枚数(f=1toF,F:溶接終了画像)である。溶接光特徴量は、少なくとも、溶接光Lw1の面積と、溶接光Lw1の周長と、溶接光Lw1の重心と、溶接光Lw1の真円度とを含むことが望ましい。 Here, m 10f and m 01f are spatial primary moments in the width direction and the height direction of the image, respectively. The subscript f is the number of images (f = 1toF, F: welding end image) from the start to the end of welding. Welding light feature amount, at least, the area of the welding beam L w1, the circumferential length of the welding beam L w1, the center of gravity of the welding beam L w1, it is desirable to include a roundness of the welding beam L w1.
 上記の各溶接光特徴量のみに限定されず、他の量を用いてもよい。図25は、溶接光特徴量のバリエーションを示す図である。図25の溶接光Lw1は、重心Gに対して紙面左右に伸びる第一部分と第二部分とを含んでいる。重心Gから第一部分までの距離をr1とし、重心Gから第二部分までの距離をr2とする。このr1とr2との差分の絶対値をrbrとする。このrbrが溶接光特徴量として用いられてもよい。 The amount is not limited to each of the above welding light feature amounts, and other amounts may be used. FIG. 25 is a diagram showing variations in welding light features. The welding light Lw1 of FIG. 25 includes a first portion and a second portion extending to the left and right of the paper surface with respect to the center of gravity G. The distance from the center of gravity G to the first part is r1, and the distance from the center of gravity G to the second part is r2. Let r br be the absolute value of the difference between r1 and r2. This r br may be used as a welding light feature amount.
 溶接光特徴量は、溶接状況情報データベース28へ格納される(ステップS104)。格納時に、溶接光特徴量は、溶接制御情報収集部22から得られる溶接条件を設定するために用いられる情報に紐づけられる。また、溶接制御情報収集部22から得られる溶接の制御出力の情報の実績値とともに、溶接光特徴量が格納される。つまり、図7に示すテーブルのように、溶接条件を設定するために用いられる情報に紐づけられた所定のテーブルに、時々刻々の溶接光特徴量と溶接の制御出力の情報の実績値が格納される。 The welding light feature amount is stored in the welding status information database 28 (step S104). At the time of storage, the welding light feature amount is associated with the information used for setting the welding conditions obtained from the welding control information collecting unit 22. In addition, the welding light feature amount is stored together with the actual value of the welding control output information obtained from the welding control information collecting unit 22. That is, as in the table shown in FIG. 7, the actual value of the welding light feature amount and the welding control output information is stored in a predetermined table linked to the information used for setting the welding conditions. Will be done.
 得られた溶接光特徴量から、取得した溶接部裏面撮影カメラ画像19における溶接の良不良を評価・診断する。実施の形態では、まず、溶接異常判定基準が取得される(ステップS105)。 From the obtained welding light feature amount, the quality of welding in the acquired welded portion back surface photographed camera image 19 is evaluated and diagnosed. In the embodiment, first, the welding abnormality determination criterion is acquired (step S105).
 一例として、評価・診断に、溶接異常判定基準の一例である溶接異常判定上下限値が用いられる。溶接異常判定上下限テーブル24には、溶接異常判定上下限値が予め記憶されている。溶接制御情報収集部22から得られる溶接条件設定情報のうち、先行材9aおよび後行材9bの鋼種と、先行材9aと後行材9bの平均板厚と、先行材9aと後行材9bの間隙の設定値とが、テーブル参照用パラメータに用いられてもよい。テーブル参照用パラメータに基づいて溶接異常判定上下限テーブル24の該当区分が参照され、溶接異常判定上下限値の溶接異常判定上下限値が取得される。 As an example, the upper and lower limit values for welding abnormality judgment, which is an example of welding abnormality judgment criteria, are used for evaluation / diagnosis. The welding abnormality determination upper and lower limit values are stored in advance in the welding abnormality determination upper and lower limit table 24. Among the welding condition setting information obtained from the welding control information collecting unit 22, the steel grades of the leading material 9a and the trailing material 9b, the average plate thickness of the leading material 9a and the trailing material 9b, and the leading material 9a and the trailing material 9b The set value of the gap may be used as a table reference parameter. The corresponding category of the welding abnormality determination upper and lower limit table 24 is referred to based on the table reference parameter, and the welding abnormality determination upper and lower limit values of the welding abnormality determination upper and lower limit values are acquired.
 ここで、溶接異常警告上下限値を設けている場合、溶接異常判定上下限値と同時にこれを取得してもよい。 Here, if a welding abnormality warning upper / lower limit value is provided, this may be acquired at the same time as the welding abnormality determination upper / lower limit value.
 溶接異常警告上下限値を設けている場合、各溶接光特徴量と、それぞれに対応する溶接異常警告上下限値とが比較される(ステップS106)。さらに、各溶接光特徴量と、それぞれに対応する溶接異常判定上下限値とが比較される(ステップS107)。 When the welding abnormality warning upper and lower limit values are provided, each welding light feature amount is compared with the corresponding welding abnormality warning upper and lower limit values (step S106). Further, each welding light feature amount is compared with the corresponding welding abnormality determination upper and lower limit values (step S107).
 各溶接光特徴量が溶接異常警告上下限値を超えており溶接異常上下限値は超えていないときには、溶接異常に近い状態であることを警告通知する(ステップS108)。各溶接光Lw1の特徴が溶接異常上下限値を超えたときには、溶接異常と判定され、溶接異常が通知される(ステップS109)。このとき、溶接不良判定に使用する溶接光特徴量は、いずれかひとつに限定してもよいし、複数選択してもよい。 When each welding light feature amount exceeds the welding abnormality warning upper and lower limit values and does not exceed the welding abnormality upper and lower limit values, a warning is notified that the state is close to the welding abnormality (step S108). When the characteristics of each welding light L w1 exceed the upper and lower limits of the welding abnormality, it is determined that the welding abnormality is present and the welding abnormality is notified (step S109). At this time, the welding light feature amount used for determining the welding defect may be limited to any one, or a plurality of welding light features may be selected.
 ただし、時々刻々取得した溶接部裏面撮影カメラ画像19から得られた溶接光特徴量を用いた溶接異常判定では、種々の外乱による極端な数値の出力もあるため、溶接異常を管理者へ通知する手段としては、必ずしも有効とは言えない。 However, in the welding abnormality determination using the welding light feature amount obtained from the welded portion backside photographed camera image 19 acquired every moment, there are also extreme numerical values output due to various disturbances, so the manager is notified of the welding abnormality. As a means, it is not always effective.
 そこで、変形例として、図8Aおよび図8Bの組み合わせに記載されたフロー図が提供される。便宜上、図8Aと図8Bとをまとめて図8と称することがある。図8Aのフローでは、ステップS104のあとにステップS200~S203が追加されることで、任意の画像枚数区間(F)における溶接光特徴量が取得される。次に、ステップS203で取得した複数の溶接光特徴量の平均値あるいは中央値などを用いて平滑化が行われ(ステップS204)、溶接異常判定基準が取得される(ステップS205)。平滑化のあとに溶接異常を判定してもよい。 Therefore, as a modification, the flow chart described in the combination of FIGS. 8A and 8B is provided. For convenience, FIGS. 8A and 8B may be collectively referred to as FIG. In the flow of FIG. 8A, by adding steps S200 to S203 after step S104, the welding light feature amount in an arbitrary number of images section (Fr) is acquired. Next, smoothing is performed using the average value or the median value of the plurality of welding light features acquired in step S203 (step S204), and the welding abnormality determination criterion is acquired (step S205). Welding abnormalities may be determined after smoothing.
 図9は、時々刻々の溶接光特徴量Aと溶接異常判定上下限値Aerr1、Aerr2および溶接異常警告上下限値Awrn1、Awrn2の例を示す。溶接光特徴量Aは、前述した空間モーメントおよび面積などの各種の量から任意に選択される。横軸は、溶接の終始における画像枚数である。 Figure 9 shows an example of the welding abnormality judging a welding light feature amount A momentary lower limit A err1, A err2 and welding abnormality Warning threshold A wrn1, A wrn2. The welding light feature amount A is arbitrarily selected from various quantities such as the above-mentioned spatial moment and area. The horizontal axis is the number of images from the beginning to the end of welding.
 溶接開始から終了までの中間にて、溶接光特徴量Aが溶接異常警告下限値Awrn2を下回るため、管理者へ警告通知する。その後、さらに、溶接光特徴量Aが溶接異常判定下限値Aerr2を下回るため、溶接異常を通知することとなる。 Since the welding light feature amount A is below the welding abnormality warning lower limit value A wrn2 in the middle from the start to the end of welding, a warning is notified to the administrator. After that, since the welding light feature amount A is lower than the welding abnormality determination lower limit value Aerr2 , the welding abnormality is notified.
<溶接完了後診断機能>
 次に、溶接完了後診断機能ブロック23Bについて説明する。溶接完了後診断機能ブロック23Bの処理フローを図10に示す。溶接完了とともに、溶接状況情報データベース28から、完了した溶接の時々刻々の溶接光特徴量を取得する(ステップS300)。このとき、収集した時々刻々の溶接光特徴量の内、任意の画像枚数間の溶接光特徴量を取り出してもよいし、任意の画像枚数区間における移動平均や移動中央値により取り出してもよい。
<Diagnosis function after welding is completed>
Next, the diagnostic function block 23B after the completion of welding will be described. The processing flow of the diagnostic function block 23B after the completion of welding is shown in FIG. Upon completion of welding, the welding light feature amount of the completed welding is acquired from the welding status information database 28 every moment (step S300). At this time, the welding light feature amount between any number of images may be taken out from the collected momentary welding light feature amount, or may be taken out by the moving average or the moving median value in an arbitrary number of image number sections.
 次に、実施の形態では、収集した時々刻々の溶接光特徴量それぞれについての統計量が計算される(ステップS301)。統計量を得ることで、時々刻々の溶接光特徴量を、一溶接回数毎の特徴に落とし込む。 Next, in the embodiment, the statistics for each of the collected momentary welding light features are calculated (step S301). By obtaining the statistic, the characteristic amount of welding light from moment to moment is reduced to the characteristic for each number of weldings.
 ここで述べる統計量は、平均値であってもよく、標準偏差であってもよく、分散であってもよく、最大値であってもよく、最小値であってもよく、歪度であってもよく、尖度であってもよく、中央値であってもよい。 The statistic described here may be an average value, a standard deviation, a variance, a maximum value, a minimum value, or a skewness. It may be sharp, it may be median.
 統計量は、一般的に知られている以下の数式(12)~(19)により計算されてもよい。 The statistic may be calculated by the following generally known formulas (12) to (19).
Figure JPOXMLDOC01-appb-I000012
Figure JPOXMLDOC01-appb-I000012
 標準偏差σは、下記の式(13)で計算されてもよい。分散sは、下記の式(14)で計算されてもよい。最大値は、下記の式(15)で計算されてもよい。最小値は、下記の式(16)で計算されてもよい。歪度βは、下記の式(17)で計算されてもよい。尖度βは、下記の式(18)で計算されてもよい。中央値は、下記の式(19)で計算されてもよい。 The standard deviation σ may be calculated by the following equation (13). The variance s 2 may be calculated by the following equation (14). The maximum value may be calculated by the following formula (15). The minimum value may be calculated by the following equation (16). The skewness β 1 may be calculated by the following equation (17). The kurtosis β 2 may be calculated by the following equation (18). The median value may be calculated by the following equation (19).
Figure JPOXMLDOC01-appb-M000013
Figure JPOXMLDOC01-appb-M000013
Figure JPOXMLDOC01-appb-M000014
Figure JPOXMLDOC01-appb-M000014
Figure JPOXMLDOC01-appb-M000015
Figure JPOXMLDOC01-appb-M000015
Figure JPOXMLDOC01-appb-M000016
Figure JPOXMLDOC01-appb-M000016
Figure JPOXMLDOC01-appb-M000017
Figure JPOXMLDOC01-appb-M000017
Figure JPOXMLDOC01-appb-M000018
Figure JPOXMLDOC01-appb-M000018
Figure JPOXMLDOC01-appb-M000019
Figure JPOXMLDOC01-appb-M000019
Figure JPOXMLDOC01-appb-M000020
Figure JPOXMLDOC01-appb-M000020
 溶接光Lw1の特徴のひとつは、下記の式(20)で表される。式(6)~(11)で例示したような上述した様々な溶接光特徴量から、任意の種類の溶接光特徴量が選択される。選択された溶接光特徴量の統計量が計算される。 One of the features of the welding light L w1 is represented by the following formula (20). An arbitrary type of welding light feature is selected from the various welding light features described above as exemplified by the formulas (6) to (11). The statistics of the selected weld light features are calculated.
Figure JPOXMLDOC01-appb-M000021
Figure JPOXMLDOC01-appb-M000021
 ここで、fは、溶接開始から終了までにおける画像枚数(f=0toF、F:溶接終了画像)である。 Here, f is the number of images (f = 0toF, F: welding end image) from the start to the end of welding.
 次に、算出した溶接光特徴量の統計量は、溶接制御情報収集部22から得られる溶接条件を設定するために用いられる情報に紐づけられて、溶接状況情報データベース28へ格納される(ステップS302)。 Next, the calculated welding light feature amount statistic is linked to the information used for setting the welding conditions obtained from the welding control information collecting unit 22, and is stored in the welding status information database 28 (step). S302).
 次に、溶接光特徴量の統計量から、溶接終始における溶接の良不良を評価・診断する。ここでは、溶接異常判定基準が取得される(ステップS105)。溶接終始における溶接の良不良の評価・診断は、撮影画像毎診断機能ブロック23Aが行った処理と同様に、溶接異常判定上下限テーブル24から溶接異常判定上下限値を取得し、上下限値との比較による評価、溶接異常を判定する(ステップS105~S109)。 Next, the quality of welding is evaluated and diagnosed from the beginning to the end of welding from the statistics of welding light features. Here, the welding abnormality determination criterion is acquired (step S105). For the evaluation / diagnosis of the quality of welding from the beginning to the end of welding, the welding abnormality judgment upper / lower limit value is acquired from the welding abnormality judgment upper / lower limit table 24, and the upper / lower limit value is used as the upper / lower limit value in the same manner as the processing performed by the diagnostic function block 23A for each captured image. Evaluation by comparison and determination of welding abnormality (steps S105 to S109).
 溶接光特徴量の統計量を用いた溶接終始における溶接異常判定用の溶接異常判定上下限テーブル24には、統計量それぞれに対応した上下限値が設けられる。また、溶接不良判定に使用する溶接光特徴量とその統計量は、いずれかひとつに限定してもよいし、複数選択されてもよい。 In the welding abnormality determination upper and lower limit table 24 for welding abnormality determination at the beginning and end of welding using the statistic of the welding light feature amount, upper and lower limit values corresponding to each statistic are provided. Further, the welding light feature amount and the statistic thereof used for determining the welding defect may be limited to any one, or a plurality of them may be selected.
<溶接傾向診断機能>
 次に、溶接傾向診断機能ブロック23Cについて説明する。図11は、溶接傾向診断機能ブロック23Cの処理フローである。溶接傾向診断機能ブロック23Cでは、まず、溶接状況情報データベース28から、任意の溶接本数M分の溶接光特徴量の統計量を取得する(ステップS400)。任意の溶接本数Mは、比較的多数とすることが望ましい。
<Welding tendency diagnosis function>
Next, the welding tendency diagnosis function block 23C will be described. FIG. 11 is a processing flow of the welding tendency diagnosis function block 23C. In the welding tendency diagnosis function block 23C, first, the statistics of the welding light feature amount for an arbitrary number of welds M are acquired from the welding status information database 28 (step S400). It is desirable that the arbitrary number of welds M is relatively large.
 図12は、取得した任意の溶接本数M分の溶接光特徴量の統計量の傾向例を示す。図12には、ある溶接光特徴量Cの統計量Cが図示されている。図12には、統計量Cに対する溶接異常判定上限値C err1と溶接異常判定下限値C err2と溶接異常警告上限値C wrn1と溶接異常警告下限値C wrn2と回帰直線L ,statとが例示されている。 FIG. 12 shows an example of a tendency of the statistical amount of the welding light feature amount for an arbitrary number of welds M. FIG. 12 shows a statistic C d of a certain welding light feature amount C. Figure 12, statistics C welding abnormality judging upper limit for the d value C d err1 welding abnormality determination lower limit C d err2 welding abnormality warning upper limit C d WRN1 welding abnormality warning limit value C d Wrn2 the regression line L C d and stat are exemplified.
 次に、取得した溶接本数M分の溶接光特徴量の統計量について、溶接状況情報データベース28で定めた区分ごとに、回帰直線を得る(ステップS401)。溶接光特徴量の統計量の回帰直線は、下記の式(21)で計算されてもよい。 Next, a regression line is obtained for each category defined in the welding status information database 28 for the acquired statistic of the welding light feature amount for the number of welds M (step S401). The regression line of the welding light feature statistic may be calculated by the following equation (21).
Figure JPOXMLDOC01-appb-M000022
Figure JPOXMLDOC01-appb-M000022
 ここで、featは溶接光Lw1の特徴であり、statは統計量であり、afeat,statは回帰直線の傾きであり、bfeat,statは回帰直線の切片である。 Here, feat is a feature of the welding light L w1 , stat is a statistic, a feat and stat are slopes of the regression line, and b feat and stat are intercepts of the regression line.
 これにより、回帰直線の傾きが得られる(ステップS402)。得られた回帰直線の傾きより、溶接光Lw1の特徴の長期傾向を評価・診断する。撮影画像毎診断機能ブロック23Aおよび溶接完了後診断機能ブロック23Bと同様に、溶接異常判定上下限値を予め定めた溶接異常判定上下限テーブル24から、溶接光Lw1の特徴、統計量に対応する溶接傾向に対する溶接異常判定上下限値の上下限値を取得する(ステップS403)。 As a result, the slope of the regression line is obtained (step S402). From the slope of the obtained regression line, the long-term tendency of the characteristics of the welding light L w1 is evaluated and diagnosed. Similar to the diagnostic function block 23A for each captured image and the diagnostic function block 23B after the completion of welding, the welding abnormality determination upper and lower limit values are set in advance from the welding abnormality determination upper and lower limit table 24, which corresponds to the features and statistics of the welding light L w1. Acquire the upper and lower limit values of the welding abnormality determination upper and lower limit values for the welding tendency (step S403).
 回帰直線の傾きが溶接傾向異常における溶接異常判定上下限値の上下限値を超えている場合、第一条件が成立している(ステップS404)。溶接時間の新しい溶接からP本さかのぼった本数分の溶接光Lw1の特徴が、溶接異常判定上下限値の上下限値を超えている場合、第二条件が成立している(ステップS405)。これら第一条件と第二条件との両方が成立した場合、溶接光Lw1の特徴に関する傾向に長期的な変化があると診断される。診断結果は外部へ通知される(ステップS406)。 When the slope of the regression line exceeds the upper and lower limit values of the welding abnormality determination upper and lower limit values in the welding tendency abnormality, the first condition is satisfied (step S404). The second condition is satisfied when the characteristics of the welding light L w1 corresponding to the number of welding lights L w1 going back from the new welding of the welding time exceed the upper and lower limit values of the welding abnormality determination upper and lower limit values (step S405). When both the first condition and the second condition are satisfied, it is diagnosed that there is a long-term change in the tendency regarding the characteristics of the welding light L w1. The diagnosis result is notified to the outside (step S406).
 例えば、長期的な使用による溶接部裏面撮影カメラ14のレンズの汚れは、溶接光Lw1の真円度の傾向変化をとらえればよい。また、溶接光特徴量は、溶接光Lw1の面積あるいは周長を含んでいる。これらの溶接光特徴量の傾向変化における回帰直線の傾きが減少傾向にあれば、溶接出力における異常の恐れがあることがわかる。特に、溶接システムが、レーザ溶接であった場合は、レーザ出力元の保護ガラスが汚れている可能性を示唆することもできる。 For example, the dirt on the lens of the welded portion back surface photographing camera 14 due to long-term use may be obtained by capturing the tendency change in the roundness of the welding light L w1. Further, the welding light feature amount includes the area or the peripheral length of the welding light L w1. If the slope of the regression line in these changes in the welding light feature amount tends to decrease, it can be seen that there is a risk of abnormality in the welding output. In particular, if the welding system is laser welding, it can be suggested that the protective glass of the laser output source may be dirty.
第二の実施の形態.
 次に、第二の実施の形態について説明する。なお、第一の実施の形態と重複する箇所は説明を省略する。第一の実施の形態では、種々の溶接異常判定上下限値を予め設定した数値として取得し、溶接異常判定に用いている。これに対し、第二の実施の形態では、種々の溶接異常判定上下限値を計算により求める。
The second embodiment.
Next, the second embodiment will be described. The description of the parts that overlap with the first embodiment will be omitted. In the first embodiment, various welding abnormality determination upper and lower limit values are acquired as preset numerical values and used for welding abnormality determination. On the other hand, in the second embodiment, various welding abnormality determination upper and lower limit values are calculated.
<撮影画像毎診断機能>
 第二の実施の形態における撮影画像毎診断機能ブロック23Aを、図13Aと図13Bとの組み合わせで示す。便宜上、図13Aと図13Bとをまとめて図13と称することがある。
<Diagnosis function for each captured image>
The diagnostic function block 23A for each captured image in the second embodiment is shown in combination with FIGS. 13A and 13B. For convenience, FIGS. 13A and 13B may be collectively referred to as FIG.
 撮影画像毎診断機能ブロック23Aでは、任意の画像枚数区間Rにおいて取得した溶接光特徴量から、溶接光特徴量の1次微分成分を計算し(つまり、区間Rにおける溶接光特徴量の勾配である)、その変化により、溶接の良不良を評価・診断する。ここで、Rは、1回の溶接の終始の間で、比較的長い区間とするとよい。また、第一の実施の形態でも説明したように、時々刻々取得した溶接部裏面撮影カメラ画像19から得られた溶接光特徴量は、種々の外乱による極端な数値の出力もあるため、別の任意の画像枚数区間(F )で平滑化した溶接光特徴量を使用して、1次微分を計算してもよい。ただしこの場合、R>F とする必要がある。 In the diagnostic function block 23A for each captured image, the first-order differential component of the welding light feature amount is calculated from the welding light feature amount acquired in the arbitrary number of images section R (that is, the gradient of the welding light feature amount in the section R). ), The quality of welding is evaluated and diagnosed based on the change. Here, R may be a relatively long section between the beginning and end of one welding. Further, as described in the first embodiment, the welding light feature quantity obtained from the welded portion back surface photographed camera image 19 acquired every moment has an extreme numerical output due to various disturbances, and thus is different. use welding light feature amount smoothed in any number of images section (F d r), it may calculate the first derivative. However, in this case, it is necessary to make the R> F d r.
 図13では、前述したステップS101~S104の処理が実行されたあと、ステップS500で画像枚数カウント用の識別子FrmCntと、所定値Rとが比較される。図13のステップS503の手前までは、第一の実施の形態と同様の処理をする。ステップS503では、Rにおいて、溶接光特徴量を取得する。取得した溶接光特徴量は、任意の画像取得区間Frで平滑化されてもよい(ステップS504)。 In FIG. 13, after the processes of steps S101 to S104 described above are executed, the identifier FrmCnt for counting the number of images is compared with the predetermined value R in step S500. Up to the point before step S503 in FIG. 13, the same processing as in the first embodiment is performed. In step S503, the welding light feature amount is acquired in R. Obtained welded light feature quantity may be smoothed by any image acquisition sections F d r (step S504).
Figure JPOXMLDOC01-appb-I000023
Figure JPOXMLDOC01-appb-I000023
Figure JPOXMLDOC01-appb-M000024
Figure JPOXMLDOC01-appb-M000024
Figure JPOXMLDOC01-appb-I000025
Figure JPOXMLDOC01-appb-I000025
Figure JPOXMLDOC01-appb-M000026
Figure JPOXMLDOC01-appb-M000026
 直近の勾配Qkとその一つ前の勾配Qk-1とが比較される。ここで、画像枚数区間位置kは、1回の溶接の終始における画像枚数区間位置の数(k=0toK(K=F/R、F:溶接終了画像))である。 The latest gradient Qk and the previous gradient Qk -1 are compared. Here, the number of image section positions k is the number of number of image section positions at the beginning and end of one welding (k = 0toK (K = F / R, F: welding end image)).
 溶接光特徴量の勾配の取得例を図14に示す。画像枚数区間位置k、k-1、k-2それぞれと、位置kにおける勾配Qと、位置k-1における勾配Qk-1とが図示されている。 FIG. 14 shows an example of acquiring the gradient of the welding light feature amount. Each of the image number section positions k, k-1, and k-2, the gradient Q k at the position k, and the gradient Q k-1 at the position k-1 are shown.
 これらの勾配の差が任意の閾値(Dgrad)を超えた場合に、溶接光特徴量に有意な変化が生じたと判定される(ステップS506)。この場合、管理者へ溶接異常を通知する(ステップS109)。 If the difference between the gradient exceeds an arbitrary threshold value (D grad), significant change is determined to have occurred welding light feature quantity (step S506). In this case, the manager is notified of the welding abnormality (step S109).
<溶接完了後診断機能>
 第二の実施の形態における溶接完了後診断機能ブロック23Bでは、品質管理手法のひとつである管理図を適用する。管理図では、一般に、上方管理限界および下方管理限界を3σ(σ:標準偏差)として、それらを超えた場合に異常と判定する。
<Diagnosis function after welding is completed>
In the post-welding diagnostic function block 23B in the second embodiment, a control chart, which is one of the quality control methods, is applied. In the control chart, generally, the upper control limit and the lower control limit are set to 3σ (σ: standard deviation), and when they are exceeded, it is determined to be abnormal.
 第二の実施の形態における溶接完了後診断機能ブロック23Bでは、正常に溶接が完了した場合の溶接光特徴量を用いて、時系列毎に溶接光特徴量に対する上方管理限界および下方管理限界を計算する。これらの管理限界を溶接異常判定上下限値として使用して、溶接の良不良を診断する。 In the post-welding diagnostic function block 23B in the second embodiment, the upper control limit and the lower control limit for the welding light feature amount are calculated for each time series using the welding light feature amount when welding is completed normally. To do. These control limits are used as the upper and lower limits for determining welding abnormalities to diagnose the quality of welding.
 ただし、溶接毎に、溶接の良不良を示す符号を予め付与していく必要がある。この符号の付与は、管理者が行ってもよく、第一の実施の形態における診断手法の結果として行われてもよく、他の溶接良不良判定設備(例えば、ビード検査装置など)により行われてもよい。 However, it is necessary to give a code indicating the quality of welding in advance for each welding. This code may be assigned by the administrator, as a result of the diagnostic method in the first embodiment, or by another welding quality determination facility (for example, a bead inspection device). You may.
 図15Aおよび図15Bは、第二の実施の形態における溶接完了後診断機能ブロック23Bのフロー図である。図15Aと図15Bとをまとめて図15と称することがある。溶接完了後、溶接が正常であった場合の溶接本数が、N本以上かどうかを確認する(ステップS600)。 15A and 15B are flow charts of the post-welding diagnostic function block 23B in the second embodiment. 15A and 15B may be collectively referred to as FIG. After the welding is completed, it is confirmed whether or not the number of welds when the welding is normal is N d or more (step S600).
 N本を下回る場合は、第一の実施の形態における溶接完了後診断機能ブロック23Bと同様の処理をする。 If the number is less than N d , the same processing as that of the post-welding diagnostic function block 23B in the first embodiment is performed.
 N本以上である場合、溶接が正常であった溶接本数のうち、任意の溶接本数M本における溶接光特徴量が取得される(ステップS601)。 When the number is N d or more, the welding light feature amount at an arbitrary number of welds M d among the number of welds in which welding was normal is acquired (step S601).
 収集された溶接光特徴量から、画像枚数毎に上方管理限界および下方管理限界を計算する(ステップS602)。上方管理限界および下方管理限界は、例えば、シューハート管理図における上方管理限界および下方管理限界の定義(JIS Z 9020-2:2016 管理図―第2部:シューハート管理図)に従って計算されてもよい。具体的には、以下の式(22)~(25a)および(25b)が用いられてもよい。 From the collected welding light features, the upper control limit and the lower control limit are calculated for each number of images (step S602). Even if the upper control limit and the lower control limit are calculated according to the definition of the upper control limit and the lower control limit in the Shewhart control chart (JIS Z 9020-2: 2016 control chart-Part 2: Shewhart control chart), for example. Good. Specifically, the following formulas (22) to (25a) and (25b) may be used.
 上方管理限界UCLは、下記の式(22)で計算されてもよい。下方管理限界LCLは、下記の式(23)で計算されてもよい。正規化した画像枚数iにおける溶接光Lw1の特徴の平均値は、下記の式(24)で計算されてもよい。正規化した画像枚数iにおける溶接光Lw1の特徴の標準偏差は、下記の式(25a)で計算されてもよい。 The upper control limit UCL i may be calculated by the following equation (22). The lower control limit LCL i may be calculated by the following equation (23). The average value of the features of the welding light L w1 in the normalized number of images i may be calculated by the following equation (24). The standard deviation of the characteristics of the welding light L w1 in the normalized number of images i may be calculated by the following formula (25a).
Figure JPOXMLDOC01-appb-M000027
Figure JPOXMLDOC01-appb-M000027
Figure JPOXMLDOC01-appb-M000028
Figure JPOXMLDOC01-appb-M000028
Figure JPOXMLDOC01-appb-M000029
Figure JPOXMLDOC01-appb-M000029
Figure JPOXMLDOC01-appb-M000030
Figure JPOXMLDOC01-appb-M000030
Figure JPOXMLDOC01-appb-M000031
Figure JPOXMLDOC01-appb-M000031
 ここで、iは正規化した画像枚数(i=0toI)である。 Here, i is a number image normalized (i = 0toI d).
Figure JPOXMLDOC01-appb-I000032
Figure JPOXMLDOC01-appb-I000032
 σは、正規化した画像枚数iにおける溶接本数M本の標準偏差である。画像枚数は、それぞれの溶接の条件によって異なる場合があるので、正規化した画像枚数に対応する溶接光特徴量を、近似値などから得て補完してもよい。この場合、例えば、単なる線形補完を用いてもよく、スプライン関数による補完などを用いてもよい。 sigma i is the standard deviation of the welding number M d present in the number of images i normalized. Since the number of images may differ depending on the welding conditions, the welding light feature amount corresponding to the normalized number of images may be obtained from an approximate value or the like and complemented. In this case, for example, simple linear interpolation may be used, or interpolation by a spline function may be used.
 また、ここでは、上方管理限界および下方管理限界を、3σとしている。しかし、変形例として、3σではなく2σなどとしてもよく、上下限の設定を変更してもよい。 Also, here, the upper control limit and the lower control limit are set to 3σ. However, as a modification, 2σ may be used instead of 3σ, and the upper and lower limit settings may be changed.
 また、上方管理限界および下方管理限界は、溶接異常判定上下限テーブル24と同様の区分毎に設定してもよい。溶接異常判定上下限テーブル24の区分は、溶接制御情報収集部22の溶接条件設定情報から得られる先行材9aおよび後行材9bの鋼種、先行材9aと後行材9bの平均板厚、先行材9aと後行材9bの間隙の設定値などである。 Further, the upper control limit and the lower control limit may be set for each category similar to the welding abnormality determination upper / lower limit table 24. The classification of the welding abnormality determination upper and lower limit table 24 is the steel type of the leading material 9a and the trailing material 9b obtained from the welding condition setting information of the welding control information collecting unit 22, the average plate thickness of the leading material 9a and the trailing material 9b, and the leading material. It is a set value of the gap between the material 9a and the trailing material 9b.
 得られた上方管理限界および下方管理限界が溶接異常判定基準としてセットされることで、溶接の良不良の判定に使用される(ステップS603)。すなわち、上方管理限界および下方管理限界を超えた点数が多い場合、溶接異常と判定し、管理者へ溶接異常を通知する。 The obtained upper control limit and lower control limit are set as welding abnormality determination criteria, and are used for determining the quality of welding (step S603). That is, when there are many points exceeding the upper control limit and the lower control limit, it is determined that the welding abnormality is found, and the manager is notified of the welding abnormality.
 溶接光特徴量と各時系列に該当する上方管理限界および下方管理限界の例を図16に示す。図16には、ある溶接光特徴量Dの上方管理限界Dm1と、下方管理限界Dm2とが図示されている。第一溶接例Dex1は、上方管理限界Dm1を超えた場合を例示している。第二溶接例Dex2は、正常に溶接が完了した例である。なお正規化した画像枚数iはIである。 FIG. 16 shows an example of the welding light feature amount and the upper control limit and the lower control limit corresponding to each time series. FIG. 16 shows an upper control limit D m1 and a lower control limit D m2 of a certain welding light feature amount D. The first welding example D ex1 illustrates the case where the upper control limit D m1 is exceeded. The second welding example D ex2 is an example in which welding is completed normally. The normalized number of images i is I d .
<溶接傾向診断機能>
 第二の実施の形態における溶接傾向診断機能ブロック23Cでは、第二の実施の形態における溶接完了後診断機能ブロック23Bと同様に、管理図における上方管理限界および下方管理限界を溶接異常判定上下限値に用いる。
<Welding tendency diagnosis function>
In the welding tendency diagnosis function block 23C in the second embodiment, the upper control limit and the lower control limit in the control chart are set to the upper and lower limit values for welding abnormality determination, as in the case of the post-welding diagnosis function block 23B in the second embodiment. Used for.
 図17Aおよび図17Bは、第二の実施の形態における溶接傾向診断機能ブロック23Cの処理に関するフロー図を示す。図17Aと図17Bとをまとめて図17と称することがある。第二の実施の形態では、溶接完了後診断機能ブロック23Bが、正常に溶接が完了した本数がN本以上であるかどうかを判定する(ステップS600)。 17A and 17B show a flow chart relating to the processing of the welding tendency diagnosis function block 23C in the second embodiment. 17A and 17B may be collectively referred to as FIG. In the second embodiment, the post-welding diagnostic function block 23B determines whether or not the number of normally completed welds is N d or more (step S600).
 正常に溶接が完了した本数がN本以上である場合には、溶接が正常であった溶接本数のうち、任意の溶接本数M本における溶接光特徴量の統計量が取得される(ステップS601)。さらに、取得した統計量から、上方管理限界および下方管理限界が計算される(ステップS702)。これらの管理限界が溶接異常判定基準としてセットされる(ステップS603)。その後、図11のフロー図と同様にステップS400~S406の処理が実行される。 When the number of welds completed normally is N d or more, the statistic of the welding light feature amount at an arbitrary number of welds M d among the number of welds in which welding was normal is acquired (step). S601). Further, the upper control limit and the lower control limit are calculated from the acquired statistics (step S702). These control limits are set as welding abnormality determination criteria (step S603). After that, the processes of steps S400 to S406 are executed in the same manner as in the flow chart of FIG.
 すなわち、図18のように、ある溶接本数に対して上方管理限界D mx1および下方管理限界D mx2が一意に定まる。得られた上方管理限界D mx1および下方管理限界D mx2を溶接異常判定上下限値に用いて、溶接の良不良を評価する。 That is, as shown in FIG. 18, the upper control limit D d mx 1 and the lower control limit D d mx 2 are uniquely determined for a certain number of welds. The obtained upper control limit D d mx1 and lower control limit D d mx2 are used as the upper and lower limit values for determining welding abnormality to evaluate the quality of welding.
 なお、溶接異常判定上下限値の決定手法の一つとして、管理図より得られる上方管理限界および下方管理限界を示したが、必ずしもこれに限定されるわけではなく、例えば、パターン認識のような手法を用いてもよい。 As one of the methods for determining the upper and lower limits of welding abnormality determination, the upper control limit and the lower control limit obtained from the control chart are shown, but they are not necessarily limited to this, and for example, pattern recognition is used. The method may be used.
 この場合、ある溶接本数Mddにおいて、溶接毎に得られる溶接光特徴量間の距離を計算し、その距離も基づき、正常に溶接が完了した場合と、溶接異常となった場合の境界を求める。ここで、溶接本数Mddは、溶接の良不良に係らず溶接が完了した本数である。溶接毎に得られた各溶接光特徴量の間の距離は、例えば、平均二乗誤差などで求めてもよく、例えば以下の式(26)で計算されてもよい。 In this case, the distance between the welding light features obtained for each welding is calculated for a certain number of welds M dd , and the boundary between the case where the welding is completed normally and the case where the welding becomes abnormal is obtained based on the distance. .. Here, the number of welds M dd is the number of welds completed regardless of whether the welds are good or bad. The distance between each welding light feature amount obtained for each welding may be obtained by, for example, a mean square error, or may be calculated by, for example, the following equation (26).
Figure JPOXMLDOC01-appb-M000033
Figure JPOXMLDOC01-appb-M000033
 ここで、ds,tは、溶接本数Mdd内の、s番目の溶接における溶接光特徴量とt番目の溶接における溶接光特徴量との間の距離(s>t,s,t=1toMdd)である。平均二乗誤差は、一例であって、他の方法によって特徴量間の距離を計算してもよい。正常に溶接が完了した場合と、溶接異常となった場合の境界をもとに、溶接の良不良を判定する。 Here, d s and t are the distances (s> t, s, t = 1 toM) between the welding light feature amount in the sth welding and the welding light feature amount in the tth welding within the number of welds M dd. dd ). The mean square error is an example, and the distance between features may be calculated by another method. Welding quality is judged based on the boundary between the case where welding is completed normally and the case where welding becomes abnormal.
 境界を求める方法には、様々な機械学習を用いてもよい。例えば、サポートベクターマシンやニューラルネットワークなどを用いて、正常に溶接が完了した場合と溶接異常となった場合の境界を求めてもよい。 Various machine learning may be used as a method for finding boundaries. For example, a support vector machine, a neural network, or the like may be used to determine the boundary between when welding is completed normally and when welding becomes abnormal.
第三の実施の形態.
 第三の実施の形態では、撮影画像毎診断機能ブロック23Aが、溶接工程の開始から終了までの間に時々刻々撮影した画像毎に計算した溶接状況を診断するための溶接光特徴量から溶接の制御出力の情報を補正する。
Third embodiment.
In the third embodiment, the diagnostic function block 23A for each photographed image is used for welding from the welding light feature amount for diagnosing the welding condition calculated for each image photographed every moment from the start to the end of the welding process. Correct the control output information.
 制御出力には、溶接ヘッド12に供給される電力や、溶接ヘッド12の移動速度、ギャップがある。 例えば、溶接システムが、アーク溶接であった場合、溶接トーチの送り速度が補正対象に含まれてもよい。他の各種の制御出力が補正対象とされてもよい。これらの制御出力は、溶接システム10における「溶接条件設定値」である。 The control output includes the electric power supplied to the welding head 12, the moving speed of the welding head 12, and the gap. For example, when the welding system is arc welding, the feed rate of the welding torch may be included in the correction target. Various other control outputs may be corrected. These control outputs are "welding condition set values" in the welding system 10.
 第三の実施の形態について、図19Aと図19Bとの組み合わせにより説明する。図19Aと図19Bとをまとめて図19と称することがある。なお、第一の実施の形態および第二の実施の形態と重複する箇所は、言及しない。 The third embodiment will be described with reference to FIGS. 19A and 19B. 19A and 19B may be collectively referred to as FIG. It should be noted that the parts that overlap with the first embodiment and the second embodiment are not mentioned.
 図19のフロー図では、図8で述べたのと同様に、ステップS100~S104およびステップS200~S204が実行される。第三の実施の形態における撮影画像毎診断機能ブロック23Aでは、取得した溶接部裏面撮影カメラ画像19から得られた溶接光特徴量と、一致する画像枚数における、溶接本数W本分の溶接光特徴量の平均値の差から、溶接の制御出力の情報への補正量を計算し、対象の制御出力へ補正を加える(ステップS800~S802)。このとき、制御対象への補正量は、例えば、以下の式(27)の計算式で与えられてもよい。 In the flow chart of FIG. 19, steps S100 to S104 and steps S200 to S204 are executed in the same manner as described in FIG. In the diagnostic function block 23A for each photographed image in the third embodiment, the welding light feature amount obtained from the acquired welded portion back surface photographed camera image 19 and the welding light feature equivalent to the number of welds W in the number of matching images. From the difference in the average value of the amounts, the correction amount for the welding control output information is calculated, and the correction is added to the target control output (steps S800 to S802). At this time, the correction amount for the controlled object may be given by, for example, the calculation formula (27) below.
Figure JPOXMLDOC01-appb-M000034
Figure JPOXMLDOC01-appb-M000034
 ここで、αは、対象の制御出力に対する補正係数である。curは、当該溶接における溶接開始からの画像枚数である。fmatchは、curと一致する画像枚数である。 Here, α S is a correction coefficient for the target control output. cur is the number of images from the start of welding in the welding. f match is the number of images that matches cur.
 例えば、対象の制御出力を、溶接ヘッド12に供給される電力とする。このとき、溶接光特徴量のひとつとして、例えば面積を用いる。この面積が、ある時刻curにおいて、fmatch における溶接光Lw1の面積の溶接本数W本の平均値よりも小さくなった場合を想定する。この場合、溶接光Lw1の面積を一定とするように、溶接ヘッド12に供給される電力を、補正量分だけ大きくしてもよい。 For example, the target control output is the electric power supplied to the welding head 12. At this time, for example, an area is used as one of the welding light feature quantities. This area is, at a certain time cur d, it is assumed that is smaller than the average value of the welding number W present in the area of the welding beam L w1 in f match d. In this case, the electric power supplied to the welding head 12 may be increased by a correction amount so that the area of the welding light L w1 is constant.
 例えば、対象の制御出力を、溶接ヘッド12の移動速度とする。このとき、溶接光特徴量のひとつとして、例えば周長を用いる。この周長が、ある時刻curddにおいて、fmatch ddにおける溶接光Lw1の周長の溶接本数W本の平均値よりも小さくなった場合を想定する。この場合、溶接光Lw1の周長を一定とするように、溶接ヘッド12の移動速度を、補正量分遅くしてもよい。 For example, the target control output is the moving speed of the welding head 12. At this time, for example, the peripheral length is used as one of the welding light feature quantities. It is assumed that this circumference becomes smaller than the average value of the number of welds W of the circumference of the welding light L w1 in f match dd at a certain time cur dd. In this case, the moving speed of the welding head 12 may be slowed by the correction amount so that the peripheral length of the welding light L w1 is constant.
 また、制御出力への補正係数は、溶接制御情報収集部22から得られる溶接条件を設定するために用いられる情報から得られる先行材9aおよび後行材9bの鋼種、先行材9aと後行材9bの平均板厚、先行材9aと後行材9bの間隙の設定値などを区分とする溶接異常判定上下限テーブル24と同様の区分毎に設けることが望ましい。さらに、対象の制御出力は、必ずしも、1つではなく、複数としてもよい。 Further, the correction coefficient to the control output is the steel type of the leading material 9a and the trailing material 9b, the leading material 9a and the trailing material obtained from the information used for setting the welding conditions obtained from the welding control information collecting unit 22. It is desirable to provide each of the same categories as the welding abnormality determination upper and lower limit table 24, which divides the average plate thickness of 9b, the set value of the gap between the leading member 9a and the trailing member 9b, and the like. Further, the target control output is not necessarily one, but may be a plurality.
 時々刻々の溶接光特徴量をもとに、制御出力に補正量を加えるが、溶接光Lw1の特徴が、溶接異常警告上下限値を超えた場合は、第一の実施の形態と同様に、管理者へ警告通知する。さらに、溶接異常判定上下限値を超えた場合は、溶接異常を通知する。 A correction amount is added to the control output based on the welding light feature amount every moment, but when the feature of the welding light L w1 exceeds the welding abnormality warning upper and lower limit values, the same as in the first embodiment. , Notify the administrator with a warning. Further, when the welding abnormality judgment upper and lower limit values are exceeded, a welding abnormality is notified.
 以上説明したように、実施の形態に係る溶接異常診断装置20は、被溶接材9の裏面を撮影した映像から得られた溶接時の発光(すなわち溶接光)の特徴を利用して溶接状況を分析し、溶接中および溶接後に、溶接の良不良を判定する。溶接中に判定した溶接の良不良状態から溶接条件を自動調整し、その後の溶接状態を良好とする。さらに、溶接後に、溶接中の良不良判定の分析に使用した判断基準と、溶接条件を利用して、溶接状況を予測するとともに、溶接不良に起因する状況を回避すべく管理者へ措置勧告する。 As described above, the welding abnormality diagnosis device 20 according to the embodiment utilizes the characteristics of light emission (that is, welding light) at the time of welding obtained from the image obtained by photographing the back surface of the material 9 to be welded to determine the welding status. Analyze and determine the quality of the weld during and after the weld. Welding conditions are automatically adjusted from the good or bad state of welding judged during welding, and the subsequent welding state is made good. Furthermore, after welding, the judgment criteria used in the analysis of good / bad judgment during welding and the welding conditions are used to predict the welding situation and recommend measures to the manager to avoid the situation caused by the welding failure. ..
 なお、実施の形態では被溶接材9の裏面に対して溶接光に基づく溶接状況診断が適用されているが、被溶接材9の表面に対して実施の形態の溶接状況診断が適用されてもよい。 In the embodiment, the welding status diagnosis based on the welding light is applied to the back surface of the material 9 to be welded, but even if the welding status diagnosis of the embodiment is applied to the front surface of the material 9 to be welded. Good.
 なお、実施の形態にかかる溶接異常診断装置20が実行する各フローチャートの処理ステップを方法ステップとして読み替えることによって実施の形態にかかる溶接異常診断方法が提供されてもよい。 The welding abnormality diagnosis method according to the embodiment may be provided by reading the processing step of each flowchart executed by the welding abnormality diagnosis device 20 according to the embodiment as a method step.
9 被溶接材、9a 先行材、9b 後行材、10 溶接システム、12 溶接ヘッド、13 溶接部表面撮影カメラ、14 溶接部裏面撮影カメラ、15 制御装置、16 出力装置、19 溶接部裏面撮影カメラ画像、20 溶接異常診断装置、21 溶接部撮影カメラ画像収集部、22 溶接制御情報収集部、23 溶接状況診断部、23A 撮影画像毎診断機能ブロック、23B 溶接完了後診断機能ブロック、23C 溶接傾向診断機能ブロック、24 溶接異常判定上下限テーブル、25 溶接異常アラーム部、26 溶接状況出力部、27 溶接制御情報データベース、28 溶接状況情報データベース、A、C、D 溶接光特徴量、C、D 統計量、Aerr1、C err1 溶接異常判定上限値、Aerr2、C err2 溶接異常判定下限値、Awrn1、C wrn1 溶接異常警告上限値、Awrn2、C wrn2 溶接異常警告下限値、Bd1 溶接池、Dm1、D mx1、UCL 上方管理限界、Dm2、D mx2、LCL 下方管理限界、Fr 画像取得区間、FrmCnt 画像枚数識別子、L  回帰直線、Lw1 溶接光、Q、Qk-1 勾配、x 幅方向画素位置、y 方向画素位置 9 Welded material, 9a leading material, 9b trailing material, 10 welding system, 12 welding head, 13 welded part front surface photographing camera, 14 welded part back surface photographing camera, 15 control device, 16 output device, 19 welded part back surface photographing camera Image, 20 Welding abnormality diagnostic device, 21 Welding part imaging camera image collecting unit, 22 Welding control information collecting unit, 23 Welding status diagnosis unit, 23A Diagnostic function block for each photographed image, 23B Diagnostic function block after welding completion, 23C Welding tendency diagnosis Functional block, 24 Welding abnormality judgment upper and lower limit table, 25 Welding abnormality alarm unit, 26 Welding status output unit, 27 Welding control information database, 28 Welding status information database, A, C, D Welding light feature quantity, C d , D d statistics, A err1, C d err1 welding abnormality determination upper limit, A err2, C d err2 welding abnormality judging lower limit, A wrn1, C d wrn1 welding error warning limit, A wrn2, C d wrn2 welding abnormality warning lower limit , B d1 weld pool, D m1, D d mx1, UCL i upper control limit, D m2, D d mx2, LCL i lower control limit, F d r image acquisition sections, FRMCNT number of images identifiers, L C d regression line, L w1 welding light, Q k , Q k-1 gradient, x width direction pixel position, y direction pixel position

Claims (10)

  1.  被溶接材の裏面を撮影するカメラシステムと、
     前記被溶接材の溶接時において前記カメラシステムにより撮影された発光撮影画像を収集する溶接部撮影カメラ画像収集部と、
     溶接条件設定値を収集する溶接制御情報収集部と、
     前記被溶接材の溶接状況を診断するための溶接光特徴量を前記発光撮影画像と前記溶接条件設定値とに基づいて計算し、前記溶接光特徴量に基づいて溶接の良不良を判定する溶接状況診断部と、
     を備える溶接異常診断装置。
    A camera system that captures the back side of the material to be welded,
    A welded part photographing camera image collecting unit that collects luminescence photographed images taken by the camera system at the time of welding the material to be welded
    Welding control information collection unit that collects welding condition setting values,
    Welding that calculates the welding light feature amount for diagnosing the welding condition of the material to be welded based on the luminescence photographed image and the welding condition set value, and determines the quality of welding based on the welding light feature amount. Situation diagnosis department and
    Welding abnormality diagnostic device equipped with.
  2.  前記溶接状況診断部は、撮影画像毎診断手段を含み、
     前記撮影画像毎診断手段は、一本分の溶接工程のなかで前記溶接部撮影カメラ画像収集部から得られる時々刻々の前記発光撮影画像から時々刻々の前記溶接光特徴量を計算し、前記溶接光特徴量と溶接異常判定上下限値とに基づいて溶接の良不良を判定する請求項1に記載の溶接異常診断装置。
    The welding status diagnosis unit includes a diagnostic means for each photographed image.
    The diagnostic means for each photographed image calculates the welding light feature amount from moment to moment from the light emission photographed image obtained from the welding part photographing camera image collecting unit in one welding process, and the welding. The welding abnormality diagnostic apparatus according to claim 1, wherein the quality of welding is determined based on the amount of optical features and the upper and lower limits of welding abnormality determination.
  3.  前記撮影画像毎診断手段は、一本分の溶接工程のなかで前記溶接部撮影カメラ画像収集部から得られる時々刻々の前記発光撮影画像から時々刻々の前記溶接光特徴量を計算し、予め定めた期間内における前記溶接光特徴量の勾配を比較することで、溶接の良不良を判定する請求項2に記載の溶接異常診断装置。 The diagnostic means for each photographed image calculates the welding light feature amount from moment to moment from the light emission photographed image obtained from the welding part photographing camera image collecting unit in one welding process, and determines in advance. The welding abnormality diagnostic apparatus according to claim 2, wherein the quality of welding is determined by comparing the gradients of the welding light feature amount within the period.
  4.  前記撮影画像毎診断手段は、一本分の前記溶接部撮影カメラ画像収集部から得られる時々刻々の前記発光撮影画像により得られる時々刻々の前記溶接光特徴量に基づき前記溶接条件設定値を補正する請求項2に記載の溶接異常診断装置。 The diagnostic means for each photographed image corrects the welding condition setting value based on the momentary welding light feature amount obtained from the momentarily emitted light emission image obtained from the one welding portion photographing camera image collecting unit. The welding abnormality diagnostic apparatus according to claim 2.
  5.  前記溶接状況診断部は、溶接完了後診断手段を含み、
     前記溶接完了後診断手段は、複数の前記溶接光特徴量から統計量を計算し、前記統計量と溶接異常判定上下限値とに基づいて溶接の良不良を判定する請求項1に記載の溶接異常診断装置。
    The welding status diagnosis unit includes a post-welding diagnostic means.
    The welding according to claim 1, wherein the post-welding diagnostic means calculates a statistic from a plurality of the welding light feature quantities, and determines whether the welding is good or bad based on the statistic and the upper and lower limit values for determining welding abnormality. Abnormality diagnostic device.
  6.  前記溶接完了後診断手段は、前記統計量に基づいて統計的手法を用いて前記溶接異常判定上下限値を決定する請求項5に記載の溶接異常診断装置。 The welding abnormality diagnostic apparatus according to claim 5, wherein the welding abnormality diagnosis means determines the upper and lower limits of the welding abnormality determination by using a statistical method based on the statistic.
  7.  前記溶接完了後診断手段は、前記統計量に基づいて機械学習を用いて前記溶接異常判定上下限値を決定する請求項5に記載の溶接異常診断装置。 The welding abnormality diagnostic apparatus according to claim 5, wherein the welding abnormality diagnosis means determines the upper and lower limits of the welding abnormality determination by using machine learning based on the statistic.
  8.  前記溶接状況診断部は、溶接傾向診断手段を含み、
     前記溶接傾向診断手段は、複数の前記溶接光特徴量から統計量を計算し、前記統計量が持つ傾向と溶接異常判定上下限値とに基づいて溶接の良不良を判定する請求項1に記載の溶接異常診断装置。
    The welding status diagnosis unit includes a welding tendency diagnosis means.
    The welding tendency diagnosing means is described in claim 1, wherein a statistic is calculated from a plurality of the welding light feature quantities, and the quality of welding is determined based on the tendency of the statistic and the upper and lower limits of welding abnormality determination. Welding abnormality diagnostic device.
  9.  前記溶接傾向診断手段は、前記統計量に基づいて統計的手法を用いて前記溶接異常判定上下限値を決定する請求項8に記載の溶接異常診断装置。 The welding abnormality diagnosing device according to claim 8, wherein the welding tendency diagnosing means determines the welding abnormality determination upper and lower limit values by using a statistical method based on the statistic.
  10.  前記溶接傾向診断手段は、前記統計量に基づいて機械学習を用いて前記溶接異常判定上下限値を決定する請求項8に記載の溶接異常診断装置。 The welding abnormality diagnosing device according to claim 8, wherein the welding tendency diagnosing means determines the welding abnormality determination upper and lower limit values by using machine learning based on the statistic.
PCT/JP2019/047421 2019-12-04 2019-12-04 Welding abnormality diagnosis device WO2021111545A1 (en)

Priority Applications (4)

Application Number Priority Date Filing Date Title
JP2021562251A JP7184211B2 (en) 2019-12-04 2019-12-04 Welding abnormality diagnosis device
KR1020217017719A KR102536439B1 (en) 2019-12-04 2019-12-04 Welding abnormal diagnosis device
CN201980081139.4A CN113226633B (en) 2019-12-04 2019-12-04 Welding abnormality diagnosis device
PCT/JP2019/047421 WO2021111545A1 (en) 2019-12-04 2019-12-04 Welding abnormality diagnosis device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2019/047421 WO2021111545A1 (en) 2019-12-04 2019-12-04 Welding abnormality diagnosis device

Publications (1)

Publication Number Publication Date
WO2021111545A1 true WO2021111545A1 (en) 2021-06-10

Family

ID=76222496

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2019/047421 WO2021111545A1 (en) 2019-12-04 2019-12-04 Welding abnormality diagnosis device

Country Status (4)

Country Link
JP (1) JP7184211B2 (en)
KR (1) KR102536439B1 (en)
CN (1) CN113226633B (en)
WO (1) WO2021111545A1 (en)

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH08267241A (en) * 1995-03-31 1996-10-15 Kobe Steel Ltd Judging method of back bead forming condition at welding
JP2001025867A (en) * 1999-07-13 2001-01-30 Hitachi Ltd Method and equipment for controlling penetration weld
JP2019188406A (en) * 2018-04-19 2019-10-31 株式会社ダイヘン Consumable electrode type arc welding method and consumable electrode type arc welding device

Family Cites Families (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6475184A (en) * 1987-09-14 1989-03-20 Toyota Auto Body Co Ltd Method and device for detecting disconnection of welding secondary cable
JP3087478B2 (en) * 1992-12-01 2000-09-11 松下電器産業株式会社 Welding quality monitoring device for resistance welding
JP2000351071A (en) 1999-06-10 2000-12-19 Toshiba Corp Automatic welding system
JP5058707B2 (en) 2007-08-07 2012-10-24 新日本製鐵株式会社 Equipment management method for steel sheet flash butt welder
CN101870030A (en) * 2010-06-29 2010-10-27 哈尔滨工业大学 Device and method for detecting visual reverse molten pool images in aluminum alloy TIG welding with additional auxiliary light source
KR101581132B1 (en) 2014-10-06 2015-12-31 주식회사 제이지테크윈 Monitoring of arc welding process and method for controlling the same
JP2016198805A (en) 2015-04-13 2016-12-01 株式会社日立製作所 Welding quality determination method and welding equipment comprising welding quality determination mechanism
JP6636284B2 (en) * 2015-08-21 2020-01-29 株式会社ダイヘン Arc welding quality judgment system
KR101822018B1 (en) * 2016-03-18 2018-01-29 임국화 Server for discriminating quality of welding integratingly and method for discriminating quality of welding integratingly thereof
CN109702293B (en) * 2019-01-22 2020-01-14 清华大学 Welding penetration quality real-time control method based on visual detection
CN109759738A (en) * 2019-02-26 2019-05-17 淇淩智能科技(上海)有限公司 A kind of online integral solder quality detection device and its method

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH08267241A (en) * 1995-03-31 1996-10-15 Kobe Steel Ltd Judging method of back bead forming condition at welding
JP2001025867A (en) * 1999-07-13 2001-01-30 Hitachi Ltd Method and equipment for controlling penetration weld
JP2019188406A (en) * 2018-04-19 2019-10-31 株式会社ダイヘン Consumable electrode type arc welding method and consumable electrode type arc welding device

Also Published As

Publication number Publication date
KR20210088687A (en) 2021-07-14
JP7184211B2 (en) 2022-12-06
KR102536439B1 (en) 2023-05-26
JPWO2021111545A1 (en) 2021-06-10
CN113226633A (en) 2021-08-06
CN113226633B (en) 2023-02-17

Similar Documents

Publication Publication Date Title
DE102013017795B3 (en) Process monitoring method and apparatus
JP5354335B2 (en) Laser processing quality determination method and apparatus
EP2567773B1 (en) Method for inspecting seam quality during a laser welding process
US8633419B2 (en) Laser welding quality evaluation method and apparatus
JP5158406B2 (en) Welding situation analysis apparatus and method
DE102018214063A1 (en) Machine learning device, machine learning system and machine learning method
JP2017148841A (en) Welding processing system and welding failure detection method
CN102455171A (en) Method for detecting geometric shape of back of tailor-welding weld and implementing device thereof
JP2005014027A (en) Weld zone image processing method, welding management system, feedback system for welding machine, and butt line detection system
JP5679912B2 (en) Welding abnormality detection method and welding abnormality detection device
JP3230447B2 (en) ERW pipe seam detecting device and method
US20190039314A1 (en) Three-Dimensional Shaping Method
JP2018020356A (en) Weldment monitoring method in electroseamed steel pipe welding process and weldment monitoring device
WO2021111545A1 (en) Welding abnormality diagnosis device
JP5651054B2 (en) Surface abnormality identification device for measured object
CA2973456C (en) Three-dimensional shaping method
JP2007330987A (en) Apparatus and method for analyzing welding condition using weld zone visualizing apparatus
JP7428197B2 (en) Steel plate shape discrimination method, shape measurement method, shape control method, manufacturing method, shape discrimination model generation method, and shape discrimination device
EP3434393B1 (en) Three-dimensional shaping method
JP7447874B2 (en) Method for generating a model for estimating the amount of meandering in a steel plate, method for estimating the amount of meandering in a steel plate, method for controlling meandering in a steel plate, and method for manufacturing a steel plate
DE102011085677A1 (en) Monitoring a laser machining operation to be performed on a workpiece, comprises learning a process environment and classifying a current process result, where learning step comprises monitoring a laser machining process by a camera
JP6094690B2 (en) Laser irradiation position deviation detection method for laser welded steel pipe, steel pipe manufacturing method, laser irradiation position deviation detection apparatus, steel pipe laser welding apparatus, and steel pipe manufacturing apparatus
JP6745655B2 (en) Welding monitoring device and welding monitoring method for ERW steel pipe
CN117620512A (en) Welding quality detection system
JP2023182081A (en) Welding management device for erw steel pipes, welding management system, welding management method for erw steel pipes, and method for manufacturing erw steel pipes

Legal Events

Date Code Title Description
ENP Entry into the national phase

Ref document number: 20217017719

Country of ref document: KR

Kind code of ref document: A

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 19955204

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2021562251

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 19955204

Country of ref document: EP

Kind code of ref document: A1