WO2021109778A1 - 投影设备 - Google Patents

投影设备 Download PDF

Info

Publication number
WO2021109778A1
WO2021109778A1 PCT/CN2020/126538 CN2020126538W WO2021109778A1 WO 2021109778 A1 WO2021109778 A1 WO 2021109778A1 CN 2020126538 W CN2020126538 W CN 2020126538W WO 2021109778 A1 WO2021109778 A1 WO 2021109778A1
Authority
WO
WIPO (PCT)
Prior art keywords
module
side cover
cover
projection device
electronic box
Prior art date
Application number
PCT/CN2020/126538
Other languages
English (en)
French (fr)
Inventor
刘宪
邓高飞
王则钦
余新
李屹
Original Assignee
深圳光峰科技股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 深圳光峰科技股份有限公司 filed Critical 深圳光峰科技股份有限公司
Publication of WO2021109778A1 publication Critical patent/WO2021109778A1/zh

Links

Images

Classifications

    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03BAPPARATUS OR ARRANGEMENTS FOR TAKING PHOTOGRAPHS OR FOR PROJECTING OR VIEWING THEM; APPARATUS OR ARRANGEMENTS EMPLOYING ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ACCESSORIES THEREFOR
    • G03B21/00Projectors or projection-type viewers; Accessories therefor
    • G03B21/14Details
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03BAPPARATUS OR ARRANGEMENTS FOR TAKING PHOTOGRAPHS OR FOR PROJECTING OR VIEWING THEM; APPARATUS OR ARRANGEMENTS EMPLOYING ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ACCESSORIES THEREFOR
    • G03B21/00Projectors or projection-type viewers; Accessories therefor
    • G03B21/14Details
    • G03B21/16Cooling; Preventing overheating

Definitions

  • This application relates to the field of projection technology, and specifically to a projection device.
  • Projection equipment is usually equipped with a variety of functional modules, how to reasonably set the heat dissipation ducts of the projection equipment and arrange the positions between the functional modules to ensure the good heat dissipation effect of the projection equipment and make the volume of the projection equipment not too large, especially important.
  • the embodiment of the present application proposes a projection device to solve the above technical problem.
  • the projection device includes a housing and a core module.
  • the housing includes a first side cover, a front cover, a second side cover, and a back cover.
  • the first side cover, the front cover, and the second side The cover, the back cover and the first side cover are connected in sequence to form a containing space.
  • the first side cover is provided with air inlets
  • the second side cover is provided with air outlets
  • the distance between the first side cover and the second side cover is smaller than the front cover
  • the core module is arranged in the accommodating space.
  • the core module includes an optical engine module and an electronic box module.
  • the lower part of the electronic box module is a hollow structure, and the optical engine module is partially arranged at the hollow structure of the electronic box module.
  • the electronic box module includes a plurality of circuit boards arranged at intervals, and a heat dissipation gap is formed between the plurality of circuit boards.
  • the core module further includes a power module, which is also arranged at the hollow structure of the electronic box module, and the electronic box module further includes a baffle, which is arranged between the power module and the optical engine module.
  • the core module further includes a red light radiator, the red light radiator is arranged at the down duct of the electronic box module, and the first side cover, the heat dissipation gap, the red light radiator, and the second side cover jointly form the first side cover, the heat dissipation gap, the red light radiator, and the second side cover.
  • a cooling air duct is arranged at the down duct of the electronic box module, and the first side cover, the heat dissipation gap, the red light radiator, and the second side cover jointly form the first side cover, the heat dissipation gap, the red light radiator, and the second side cover.
  • the core module further includes a green light radiator, the green light radiator is partially disposed at the hollow structure of the electronic box module, and the first side cover, the green light radiator, and the second side cover together form a second side cover. Cooling air duct.
  • the core module further includes a blue light radiator, and the first side cover, the optical engine module, the blue light radiator, and the second side cover jointly form a third heat dissipation air duct.
  • the core module further includes two spatial light modulation device heat sinks and a color wheel module, the two spatial light modulation device heat sinks and the color wheel module are spaced from the front cover, and two spatial light modulation device heat sinks Laminated and arranged, the first side cover, the color wheel module, the spatial light modulation device heat sink, and the second side cover jointly form a fourth heat dissipation air duct.
  • the projection device further includes a peripheral module.
  • the peripheral module is distributed around the core module and is independently arranged in the containing space relative to the core module.
  • the peripheral module includes a dustproof module and a fan module.
  • the dustproof module is arranged on the first side cover
  • the fan module is arranged on the second side cover
  • the core module is located between the dustproof module and the fan. Between modules.
  • the peripheral module includes a lens module, and the lens module is disposed between the front cover and the optical engine module.
  • the projection device provided by the present application is provided with an air inlet and an air outlet respectively in the first side cover and the second side cover. Since the distance between the first side cover and the second side cover is smaller than the distance between the front cover and the rear cover, it is helpful to The projection device forms the shortest path of the air duct, which improves the heat dissipation efficiency of the projection device; in addition, because the optical engine module is partially arranged in the hollow structure of the electronic box module, the position arrangement between the optical engine module and the electronic box module is more reasonable And it helps to reduce the space occupied by the casing, and helps to improve the space utilization of the casing without affecting the heat dissipation of the projection device, and promote the miniaturization of the projection device.
  • FIG. 1 is a schematic structural diagram of a projection device provided by an embodiment of the application.
  • Fig. 2 is an exploded schematic diagram of the projection device of Fig. 1.
  • FIG. 3 is another exploded schematic diagram of the projection device provided by the embodiment of the application.
  • FIG. 4 is a schematic diagram of the structure of the power supply module, part of the core module, and part of the peripheral module of the projection device provided by the embodiment of the application.
  • FIG. 5 is a schematic diagram of the structure of the power supply module, part of the core module, and part of the peripheral module of the projection device provided by the embodiment of the application.
  • FIG. 6 is a schematic diagram of the structure of the power supply module, part of the core module, and part of the peripheral module of the projection device provided by the embodiment of the application.
  • FIG. 7 is a schematic diagram of the structure of the power supply module, part of the core module, and part of the peripheral module of the projection device provided by the embodiment of the application.
  • FIG. 8 is a schematic diagram of the structure of part of the core module and part of the peripheral module of the projection device provided by an embodiment of the application.
  • an embodiment of the present application provides a projection device 100.
  • the projection device 100 may have a cubic, rectangular parallelepiped structure, etc.
  • the projection device 100 is generally a rectangular parallelepiped structure.
  • the projection device 100 may be a cinema projector, an engineering projector, a micro projector, an education projector, a wall-mounted projector, a laser TV, and the like.
  • the projection device 100 includes a casing 10 and a core module 20.
  • the core module 20 is disposed in the casing 10 to prevent the core module 20 from being directly impacted by external impacts.
  • the housing 10 has a substantially rectangular parallelepiped structure.
  • the housing 10 includes a first side cover 11, a front cover 12, a second side cover 13, and a back cover 14.
  • the first side cover 11, the front cover 12, the second side cover 13, the back cover 14 and the first side cover 11 are in turn Connected and enclosed to form a containment space.
  • the first side cover 11 is opposite to the second side cover 13, the first side cover 11 is provided with an air inlet 110, and the second side cover 13 is provided with an air outlet 130, thereby facilitating the passage of heat in the housing 10 through the inlet
  • the air holes 110 and the air outlet holes 130 radiate to the outside of the housing 10.
  • the air inlet hole 110 and the air outlet hole 130 may be circular, elliptical, triangular, quadrilateral, other polygonal shapes, and the like.
  • the number of air inlet holes 110 and the number of air outlet holes 130 are both multiple. Multiple air inlet holes 110 can be arranged on the first side cover 11 to form a net structure, and multiple air outlet holes 130 are provided on the second side cover 13 Can be arranged to form a network structure.
  • the direction indicated by the dashed arrow in Figure 2 is the direction of wind flow.
  • the distance between the first side cover 11 and the second side cover 13 is smaller than the distance between the front cover 12 and the rear cover 14, so that a shortest path air duct is formed in the housing 10, which helps to improve the heat dissipation efficiency of the projection device 100.
  • the path of the air duct is short, the noise generated by the wind in the housing 10 is effectively reduced.
  • the extension direction of the first side cover 11 and the second side cover 13 can be used as the length direction of the housing 10, the front cover 12 and the rear cover 14 are opposite to each other, and the extension direction of the front cover 12 and the rear cover 14 can be used as the width of the housing 10 Direction, help to increase the area of the air inlet hole 110 opened in the first side cover 11, and increase the area of the air outlet hole 130 opened in the second side cover 13, thereby increasing the air inlet and outlet of the housing 10 and increasing
  • the heat dissipation space in the casing 10 is further improved, and the heat dissipation efficiency of the projection device 100 is further improved.
  • the housing 10 further includes a top cover 15 and a bottom cover 16, and both the top cover 15 and the bottom cover 16 are connected with the first side cover 11, the front cover 12, the second side cover 13 and the rear cover 14.
  • the bottom cover 16 may face the ground direction
  • the top cover 15 may face the air direction.
  • the core module 20 is located in the containing space.
  • the core module 20 includes an optical engine module 21 and an electronic box module 22.
  • the optical engine module 21 and the electronic box module 22 can be arranged at intervals from the front cover 12 to the rear cover 14, which helps the heat dissipation gap formed by the optical engine module 21 and the electronic box module 22 cater to the air inlet 110 and the air outlet 130
  • the formed air duct improves the heat dissipation effect of the optical engine module 21 and the electronic box module 22.
  • the direction indicated by the dashed arrow in Fig. 3 is the direction of wind flow.
  • the electronic box module 22 is generally stepped.
  • the lower part of the electronic box module 22 is a hollow structure, in other words, the direction of the electronic box module 22 facing the bottom cover 16 forms a space with the bottom cover 16, and the optical engine module 21 is partially disposed at the hollow structure or space of the electronic box module 22 This helps to reduce the space occupied by the optical engine module 21 and the electronic box module 22 between the front cover 12 and the rear cover 14 of the housing 10, and helps to improve the space utilization of the housing.
  • the first side cover 11 and the second side cover 13 are provided with an air inlet 110 and an air outlet 130, respectively. Since the distance between the first side cover 11 and the second side cover 13 is smaller than that of the front cover 12 and The spacing of the rear cover 14 helps the projection device 100 to form an air duct with the shortest path, and improves the heat dissipation efficiency of the projection device 100.
  • the position arrangement between the optical engine module 21 and the electronic box module 22 is more reasonable and helps to reduce the space occupied by the housing 10 , Without affecting the heat dissipation of the projection device 100, it is helpful to improve the space utilization rate of the casing 10 and promote the miniaturization of the projection device 100.
  • the projection device 100 further includes a circuit board 23, which is used to coordinate the functions of various modules and modules to ensure the normal operation of the projection device 100.
  • the circuit board 23 is provided with an input interface, a headphone interface, an audio interface, a USB interface, a memory card interface and other interface structures to enrich the functions of the circuit board.
  • the number of circuit boards 23 is multiple, such as two or three or four or five.
  • the top cover 15 is arranged on the electronic box module 22 at intervals in the direction.
  • One of the circuit boards 23 and the top plate 220 of the electronic box module 22 form another heat dissipation gap 91, and the other circuit board 23 and the middle plate 221 of the electronic box module 22 form another heat dissipation gap 91, and there is another heat dissipation gap 91 between the two circuit boards 23.
  • Another heat dissipation gap 91 is formed.
  • multiple circuit boards 23 are reasonably arranged in the direction from the bottom cover 16 to the top cover 15 in the electronic box module 22, making full use of the height direction of the electronic box module 22.
  • the spatial location helps to reduce the occupation of other space in the housing 10, improve the space utilization of the housing 10, and reduce the overall size and front of the projection device 100 from the first side cover 11 to the second side cover 13
  • the outer dimensions of the cover 12 in the direction of the rear cover 14 promote the miniaturization of the projection device 100.
  • the direction indicated by the dashed arrow in Fig. 4 is the direction of wind flow.
  • the projection device 100 further includes a peripheral module 80, and the peripheral module 80 is disposed in the accommodating space.
  • the peripheral module 80 is distributed on the periphery of the core module 20, and the peripheral module 80 is independently disposed in the containing space relative to the core module 20.
  • the projection device 100 of the embodiment of the present application distributes the peripheral modules 80 on the periphery of the core module 20, so that the positions between the peripheral modules and the core module 20 are arranged more reasonably, because the peripheral modules 80 are relative to the core module 20 is independent, the installation and disassembly of the peripheral module 80 does not affect the core module 20, which is convenient for equipment maintenance.
  • a heat dissipation gap 90 is provided between the peripheral module 80 and the core module 20.
  • the peripheral module 80 may include a dustproof module 30, a fan module 40, and a lens module 50.
  • Each of the peripheral modules 80 may form a corresponding heat dissipation gap 90 with the core module 20 to improve the projection device 100. The heat dissipation efficiency.
  • the dustproof module 30 and the core module 20 are arranged at intervals, and a heat dissipation gap 90 is formed between the dustproof module 30 and the core module 20 to help the outside cold wind to prevent dust.
  • the module 30 is directly blown to the core module 20 after entering the housing 10.
  • the dust-proof module 30 has a mesh structure, and the dust-proof module 30 is used to adhere impurities and dust in the air.
  • the dustproof module 30 can be arranged between the first side cover 11 and the core module 20.
  • the dustproof module 30 is detachably installed on the surface of the first side cover 11 facing the core module 20, effectively reducing the content
  • the air with more impurity dust enters the housing 10, which prevents the impurity dust from covering the surface of other modules and affecting heat dissipation.
  • the core module 20 and the fan module 40 are arranged at intervals, and a heat dissipation gap 90 is formed between the fan module 40 and the core module 20.
  • the fan module 40 may be formed by a plurality of small fans arranged regularly.
  • the fan module 40 is used to transport the air in the housing 10 to the outside of the housing 10.
  • the fan module 40 may be arranged on the second side cover 13 and the core Between the modules 20, for example, the fan module 40 is detachably installed on the surface of the second side cover 13 facing the core module 20, which helps the fan module 40 to directly transport the heat generated by the core module 20 to the housing 10 outside, speed up the improvement of the efficiency of heat dissipation in the housing 10 to the outside.
  • the lens module 50 and the core module 20 are arranged at intervals, and a heat dissipation gap 90 is formed between the lens module 50 and the core module 20.
  • the lens module 50 has a substantially cylindrical structure.
  • the lens module 50 is used to project images to the outside of the housing 10.
  • the lens module 50 can be arranged between the front cover 12 and the core module 20, for example, the lens module 50
  • the two ends can be supported on the front cover 12 and the core module 20 respectively, which avoids occupying too many positions of the first side cover 11 and the second side cover 13, and has little influence on the air intake and air output of the housing 10. This makes the arrangement position of the lens module 50 in the housing 10 more reasonable.
  • the core module 20 further includes a power module 60.
  • the power module 60 is installed in the electronic box module 22 and exposed from the side of the electronic box module 22 facing the rear cover 14 ⁇ module 22.
  • the power module 60 is used to provide power to other modules and modules. Since the power supply module 60 is located in the hollow structure of the electronic box module 22, the arrangement position between the power supply module 60 and the electronic box module 22 helps to reduce the space occupied by the housing 10 and helps to improve the space utilization of the housing 10 Rate, and promote the miniaturization of the projection device 100.
  • the electronic box module 22 further includes a baffle 222, and the baffle 222 is disposed between the power module 60 and the optical engine module 21.
  • the baffle 222 helps to limit the installation position of the power supply module 60, and prevents workers from over-installing the power supply module 60 to cause the distance between the power supply module 60 and the optical engine module 21 Too small is not conducive to the heat dissipation of the power supply module 60 and the optical engine module 21.
  • the dustproof module 30, the core module 20, and the fan module 40 are sequentially arranged in the housing 10 from the first side cover 11 toward the second side cover 13, and the lens
  • the modules 50 and the power modules 60 are arranged in the housing 10 in the direction from the front cover 12 to the rear cover 14, so that the positions between the modules are arranged more reasonably, without affecting the heat dissipation of the modules , which helps to improve the space utilization rate of the housing 10 and promote the miniaturization of the projection device 100.
  • the first side cover 11, the front cover 12, the second side cover 13 and the rear cover 14 are detachably connected, that is, the first side cover 11 can be separately removed from the housing 10.
  • the front cover 12 can also be detached from the housing 10 separately
  • the second side cover 13 can also be detached from the housing 10 separately
  • the rear cover 14 can also be detached from the housing 10 separately.
  • the connection between the side covers can be threaded or snapped.
  • the worker can directly remove the first side cover 11 to clean the dust-proof module 30 without disassembling the entire housing 10.
  • workers can disassemble the front cover 12 to inspect and repair the lens module 50, disassemble the second side cover 13 to inspect and repair the fan module 40, and disassemble the rear cover 14 to inspect and repair the power module 60. Carry out inspection and maintenance.
  • the core module 20 further includes a red light radiator 24, the red light radiator 24 is arranged at the down duct of the electronic box module 22, the first side cover 11, the heat dissipation gap 91.
  • the red light radiator 24 and the second side cover 13 jointly form a first heat dissipation air duct 92.
  • the red light radiator 24 has a heat dissipation fin structure.
  • the red light radiator 24 may be located between the power module 60 and the fan module 40. Since the red light radiator 24 generates more heat, if the red light radiator 24 is arranged at the position of the air inlet 110, it will cause the red light radiator 24 to be carried when the outside wind blows to the red light radiator 24.
  • the heat is blown to other positions in the housing 10, which is not conducive to the heat dissipation of other modules in the housing 10.
  • the heat generated by the light radiator 24 is transported to the outside of the housing 10 in time.
  • the red light radiator 24 is arranged between the power module 60 and the second side cover 13
  • the space between the two side covers 13 is not only beneficial for the housing 10 to provide independent heat dissipation air ducts for the red light radiator 24 to enhance the heat dissipation effect, but also for making full use of the space position in the housing 10 to improve the housing 10.
  • the utilization rate of the space is high, and the miniaturization of the projection device 100 is promoted.
  • the direction indicated by the dashed arrow in Fig. 3 is the direction of wind flow.
  • the core module 20 includes an optical engine module 21, and the optical engine module 21 and the electronic box module 22 are sequentially arranged from the front cover 12 toward the rear cover 14.
  • the optical engine module 21 is connected to the lens module 50.
  • the optical engine module 21 is located between the lens module 50 and the electronic box module 22.
  • the optical engine module 21 is used to emit light, and the light is emitted to the outside of the projection device 100 through the lens module 50.
  • the optical engine module 21 can partially extend into the electronic box module 22, thereby reducing the space occupied by the optical engine module 21 and the electronic box module 22 in the direction from the front cover 12 to the rear cover 14 of the housing 10, which helps to improve the housing.
  • the core module 20 further includes a green light radiator 25, the green light radiator 25 is partially disposed at the hollow structure of the electronic box module 22, the first side cover 11, the green light heat sink
  • the radiator 25 and the second side cover 13 jointly form a second heat dissipation air duct 93, which helps the housing 10 to simultaneously dissipate heat for the green light radiator 25 and the electronic box module 22 through the second heat dissipation air duct 93, thereby improving the projection device 100 The heat dissipation efficiency.
  • the green light radiator 25 is a heat dissipation fin structure, and the green light radiator 25 is arranged in the space formed by the optical engine module 21 and the first side cover 11, which helps to make full use of the space position in the housing 10 and improve The space utilization of the housing 10.
  • the direction indicated by the dashed arrow in Fig. 5 is the direction of wind flow.
  • the core module 20 further includes a blue light radiator 70, and the first side cover 11, the optical engine module 21, the blue light radiator 70, and the second side cover 13 jointly form a third heat dissipation air duct 94. It is helpful for the housing 10 to simultaneously dissipate heat for the blue light radiator 70 and the optical engine module 21 through the third heat dissipation air duct, thereby improving the heat dissipation efficiency of the projection device 100.
  • the blue light radiator 70 has a heat dissipation fin structure.
  • the blue light radiator 70 can be arranged in the space formed by the optical engine module 21 and the second side cover 13, which helps to make full use of the space position in the housing 10 and improve the space utilization rate of the housing 10.
  • the direction indicated by the dashed arrow in Fig. 6 is the direction of wind flow.
  • the core module 20 further includes a color wheel radiator 26, and the color wheel radiator 26 is a heat dissipation fin structure.
  • the color wheel radiator 26 is located at the junction of the first side cover 11 and the front cover 12.
  • the color wheel radiator 26 is arranged at the corner of the housing 10, and since the color wheel radiator 26 is approximately regular
  • the rectangular parallelepiped shape makes the color wheel radiator 26 more suitable for the corner position, which helps to make full use of the space position in the housing 10 and improve the space utilization rate of the housing 10.
  • the color wheel radiator 26, the blue light radiator 70, and the red light radiator 24 are sequentially arranged from the front cover 12 toward the rear cover 14 at intervals, and heat dissipation is formed between them.
  • the air duct helps the housing 10 to simultaneously dissipate heat for the color wheel radiator 26, the blue light radiator 70 and the red light radiator 24 through the heat dissipation air duct, thereby improving the heat dissipation efficiency of the projection device 100.
  • the core module 20 also includes a color wheel module (not shown) and two spatial light modulation device heat sinks.
  • the two spatial light modulation device heat sinks may be red light digital micro
  • the mirror device heat sink 28 and the blue-green light digital micro-mirror device heat sink 29 are both heat dissipation fin structures.
  • the direction indicated by the dashed arrow in Fig. 6 is the direction of wind flow.
  • the two spatial light modulation device radiators and the color wheel module are spaced apart from the front cover 12, and the two spatial light modulation device radiators are stacked, such as a red light digital micromirror device radiator 28 and a blue-green light digital micromirror device radiator 29 can be arranged at intervals from the bottom cover 16 to the top cover 15, making full use of the spatial position of the projection device 100 in the height direction, which helps to further improve the space utilization rate of the housing 10 and reduce the total length of the projection device 100.
  • the external dimension of the side cover 11 facing the front cover 12 promotes the miniaturization of the projection device 100.
  • the first side cover 11, the color wheel module, the radiator of the spatial light modulation device, and the second side cover 13 jointly form a fourth heat dissipation air duct. Since the color wheel radiator 26 is located at the upwind position of the red light digital micromirror device radiator 28, the wind blows through the color wheel radiator 26 and then blows to the red light digital micromirror device radiator 28, as shown in the fourth heat dissipation in FIG.
  • the air duct 95; and the wind pressure of the wind blown out by the fins of the color wheel radiator 26 increases.
  • the two spatial light modulation device heat sinks are located at the connection between the second side cover 13 and the front cover 12. Since the two spatial light modulation device heat sinks are both approximately in a regular cubic shape and are arranged at the corners of the housing 10, The two spatial light modulation device heat sinks are more adapted to the corner position, which helps to make full use of the space position in the housing 10 and improve the space utilization rate of the housing 10.
  • the core module 20 further includes a front baffle 27, the lens module 50 passes through the front baffle 27, and the front baffle 27 is connected to the color wheel radiator 26, blue and green respectively.
  • the light digital micromirror device heat sink 29 is spaced apart and forms a fifth heat dissipation air duct 97, which helps the housing 10 to pass through the fifth heat dissipation air duct 97 to simultaneously provide the color wheel heat sink 26, the red light digital micromirror device heat sink 28 and the blue
  • the green light digital micromirror device heat sink 29 performs heat dissipation, which improves the heat dissipation efficiency of the projection device 100.
  • the direction indicated by the dashed arrow in Figs. 7 and 8 is the direction of wind flow.
  • connection In this application, unless expressly stipulated or limited otherwise, the terms “installation”, “connection”, “fixed” and other terms should be understood in a broad sense. For example, it can be a fixed connection, a detachable connection, or an integral connection; it can be a mechanical connection or an electrical connection; it can be a direct connection or an indirect connection through an intermediate medium, or it can be internal to two components
  • the connection can also be surface contact only, or surface contact connection through an intermediate medium.
  • the terms “first”, “second”, etc. are only used for distinguishing description, and cannot be understood as specific or special structures.
  • the description of the terms “some embodiments”, “other embodiments”, etc. means that the specific features, structures, materials, or characteristics described in conjunction with the embodiments or examples are included in at least one embodiment or example of the present invention.
  • the schematic representations of the aforementioned terms do not necessarily refer to the same embodiment or example.
  • the described specific features, structures, materials or characteristics can be combined in any one or more embodiments or examples in a suitable manner.
  • those skilled in the art can combine and combine the different embodiments or examples and the characteristics of the different embodiments or examples described in the present application under the condition of not contradicting each other.

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Projection Apparatus (AREA)

Abstract

一种投影设备(100),包括壳体(10)和核心模组(20),壳体(10)包括第一侧盖(11)、前盖(12)、第二侧盖(13)和后盖(14),第一侧盖(11)、前盖(12)、第二侧盖(13)、后盖(14)和第一侧盖(11)依次相连围合成收容空间,第一侧盖(11)设有进风孔(110),第二侧盖(13)设有出风孔(130),第一侧盖(11)与第二侧盖(13)的间距小于前盖(12)与后盖(14)的间距,核心模组(20)设置于收容空间内,核心模组(20)包括光学引擎模块(21)和电子箱模块(22),电子箱模块(22)下部为中空结构,光学引擎模块(21)部分地设置在电子箱模块(22)的中空结构处。投影设备(100)有助于提高散热效率和空间利用率,促进投影设备(100)的小型化。

Description

投影设备 技术领域
本申请涉及投影技术领域,具体而言,涉及一种投影设备。
背景技术
投影设备内通常设置有多种功能模块,如何合理地设置投影设备的散热风道以及排布各功能模块之间的位置以保证投影设备的良好散热效果且使得投影设备的体积不至于过大尤为重要。
实用新型内容
本申请实施例提出了一种投影设备,以解决上述技术问题。
本申请实施例通过以下技术方案来实现上述目的。
本申请实施例提供一种投影设备,投影设备包括壳体和核心模组,壳体包括第一侧盖、前盖、第二侧盖和后盖,第一侧盖、前盖、第二侧盖、后盖和第一侧盖依次相连围合成收容空间,第一侧盖设有进风孔,第二侧盖设有出风孔,第一侧盖与第二侧盖的间距小于前盖与后盖的间距,核心模组设置于收容空间内,核心模组包括光学引擎模块和电子箱模块,电子箱模块下部为中空结构,光学引擎模块部分地设置在电子箱模块的中空结构处。
在一些实施例中,电子箱模块包括多块间隔设置的电路板,多块电路板之间形成有散热间隙。
在一些实施例中,核心模组还包括电源模块,电源模块也设置在电子箱模块的中空结构处,电子箱模块还包括挡板,挡板设置于电源模块与光学引擎模块之间。
在一些实施例中,核心模组还包括红光散热器,红光散热器设置在电子箱模块的下风道处,第一侧盖、散热间隙、红光散热器、第二侧盖共同形成第一散热风道。
在一些实施例中,核心模组还包括绿光散热器,绿光散热器部分地设置在电子箱模块的中空结构处,第一侧盖、绿光散热器、第二侧盖共同形成第二散热风道。
在一些实施例中,核心模组还包括蓝光散热器,第一侧盖、光学引擎模块、蓝光散热器、第二侧盖共同形成第三散热风道。
在一些实施例中,核心模组还包括两个空间光调制装置散热器、色轮模块,两个空间光调制装置散热器和色轮模块均与前盖间隔,两个空间光调制装置散热器层叠设置,第一侧盖、色轮模块、空间光调制装置散热器、第二侧盖共同形成第四散热风道。
在一些实施例中,投影设备还包括外围模组,外围模组分布于核心模组的周边,并相对核心模组独立地设置于收容空间内。
在一些实施例中,外围模组包括防尘模组和风扇模组,防尘模组设置于第一侧盖,风扇模组设置于第二侧盖,核心模组位于防尘模组与风扇模组之间。
在一些实施例中,外围模组包括镜头模组,镜头模组设置于前盖与光学引擎模块之间。
本申请提供的投影设备在第一侧盖和第二侧盖分别开设进风孔和出风孔,由于第一侧盖与第二侧盖的间距小于前盖与后盖的间距,有助于投影设备形成最短路径的风道,提高投影设备的散热效率;此外,由于光学引擎模块部分地设置在电子箱模块的中空结构处,光学引擎模块和电子箱模块之间的位置排布得较为合理且有助于减少占据壳体的空间位置,在不影响投影设备的散热的情况下,有助于提高壳体的空间利用率,促进投影设备的小型化。
附图说明
为了更清楚地说明本申请实施例中的技术方案,下面将对实施例描述中所需要使用的附图作简单地介绍,显而易见地,下面描述中的附图仅仅是本申请的一些实施例,对于本领域技术人员来讲,在不付出创造性劳动的前提下,还可以根据这些附图获得其他的附图。
图1为本申请实施例提供的投影设备的结构示意图。
图2为图1的投影设备的分解示意图。
图3为本申请实施例提供的投影设备的另一分解示意图。
图4为本申请实施例提供的投影设备的电源模块、部分的核心模组和部分的外围模组结构示意图。
图5为本申请实施例提供的投影设备的电源模块、部分的核心模组和部分的外围模组结构示意图。
图6为本申请实施例提供的投影设备的电源模块、部分的核心模组和部分的外围模组结构示意图。
图7为本申请实施例提供的投影设备的电源模块、部分的核心模组和部分的外围模组结构示意图。
图8为本申请实施例提供的投影设备的部分的核心模组和部分的外围模组结构示意图。
具体实施方式
为了使本技术领域的人员更好地理解本申请方案,下面将结合本申请实施例中的附图,对本申请实施例中的技术方案进行清楚、完整地描述。显然,所描述的实施例仅仅是本申请一部分实施例,而不是全部的实施例。基于本申请中的实施例,本领域技术人员在没有做出创造性劳动前提下所获得的所有其他实施例,都属于本申请保护的范围。
下面将结合本申请实施例中的附图,对本申请实施例中的技术方案进行清楚、完整地描述。
请参阅图1,本申请实施例提供一种投影设备100。投影设备100可以呈 立方体、长方体等结构,本实施例中,投影设备100大体呈长方体结构。投影设备100可以为影院投影机、工程投影机、微型投影机、教育投影机、拼墙投影机、激光电视等。
请参阅图2,投影设备100包括壳体10和核心模组20,核心模组20设置于壳体10内,避免核心模组20直接受到外界的碰撞冲击。
壳体10大体呈长方体结构。壳体10包括第一侧盖11、前盖12、第二侧盖13和后盖14,第一侧盖11、前盖12、第二侧盖13、后盖14和第一侧盖11依次相连围合形成收容空间。
第一侧盖11与第二侧盖13相背,第一侧盖11设有进风孔110,第二侧盖13设有出风孔130,从而有助于壳体10内的热量通过进风孔110和出风孔130散发至壳体10外。进风孔110和出风孔130可以呈圆形、椭圆形、三角形、四边形、其他多边形等形状。进风孔110的数量和出风孔130的数量均为多个,多个进风孔110在第一侧盖11可以排布形成网状结构,多个出风孔130在第二侧盖13可以排布形成网状结构。图2中虚线箭头所指的方向为风流动的方向。
第一侧盖11与第二侧盖13的间距小于前盖12与后盖14的间距,使得壳体10内形成最短路径的风道,有助于提高投影设备100的散热效率。此外,由于风道的路径较短,有效地降低了风在壳体10内而产生的噪音。
第一侧盖11与第二侧盖13的延伸方向可以作为壳体10的长度方向,前盖12与后盖14相背,前盖12与后盖14的延伸方向可以作为壳体10的宽度方向,有助于增加进风孔110在第一侧盖11开设的面积,并且增加出风孔130在第二侧盖13开设的面积,从而增加了壳体10的进风量和出风量以及增加了壳体10内的散热空间,进一步提高了投影设备100的散热效率。
壳体10还包括顶盖15和底盖16,顶盖15和底盖16均与第一侧盖11、前盖12、第二侧盖13和后盖14连接。在投影设备100处于正常使用状态下,底盖16可以朝向地面方向,顶盖15可以朝向空中方向。
请结合图2和图3,核心模组20位于收容空间内。核心模组20包括光 学引擎模块21和电子箱模块22。光学引擎模块21和电子箱模块22可以依次自前盖12朝后盖14的方向间隔排布,有助于光学引擎模块21和电子箱模块22形成的散热间隙迎合进风孔110和出风孔130形成的风道,提高光学引擎模块21和电子箱模块22的散热效果。图3中虚线箭头所指的方向为风流动的方向。
电子箱模块22大体呈阶梯状。电子箱模块22下部为中空结构,或者说,电子箱模块22的朝向底盖16的方向与底盖16形成间隔空间,光学引擎模块21部分地设置在电子箱模块22的中空结构处或间隔空间处,有助于减少光学引擎模块21和电子箱模块22占据壳体10在前盖12和后盖14之间的空间位置,有助于提高壳体的空间利用率。
本申请提供的投影设备100在第一侧盖11和第二侧盖13分别开设进风孔110和出风孔130,由于第一侧盖11与第二侧盖13的间距小于前盖12与后盖14的间距,有助于投影设备100形成最短路径的风道,提高投影设备100的散热效率。此外,由于光学引擎模块21部分地设置在电子箱模块22的中空结构处,光学引擎模块21和电子箱模块22之间的位置排布得较为合理且有助于减少占据壳体10的空间位置,在不影响投影设备100的散热的情况下,有助于提高壳体10的空间利用率,促进投影设备100的小型化。
在一些实施例中,请参阅图2和图3,投影设备100还包括电路板23,电路板23用于协调各模组和模块的功能,保证投影设备100的正常工作。电路板23设有输入接口、耳机接口、音频接口、USB接口、内存卡接口等接口结构以丰富电路板的功能。
请结合图4,电路板23的数量为多块,例如两块或三块或四块或五块,本实施例中,电路板23为两块,两块电路板23依次自底盖16朝顶盖15的方向间隔设置于电子箱模块22。其中一块电路板23与电子箱模块22的顶板220形成另一个散热间隙91,另一块电路板23与电子箱模块22的中板221形成另一个散热间隙91,并且两块电路板23之间又形成另一散热间隙91,本实施例通过将多块电路板23在电子箱模块22内自底盖16朝顶盖15的方 向上进行合理地排布,充分利用电子箱模块22的高度方向的空间位置,有助于减少占用壳体10内的其他空间,提高壳体10的空间利用率,减小投影设备100整机自第一侧盖11朝第二侧盖13方向的外形尺寸以及前盖12朝后盖14方向的外形尺寸,促进投影设备100的小型化。图4中虚线箭头所指的方向为风流动的方向。
在一些实施例中,请参阅图2,投影设备100还包括外围模组80,外围模组80设置于收容空间内。外围模组80分布于核心模组20的周边,外围模组80相对核心模组20独立地设置于收容空间。本申请实施例的投影设备100通过将外围模组80分布于核心模组20的周边,使得外围模块和核心模组20之间的位置排布得较为合理,由于外围模组80相对核心模组20独立,外围模组80的安装和拆卸不影响核心模组20,方便设备维护。
在一些实施例中,请结合图2和图3,外围模组80和核心模组20之间设有散热空隙90。外围模组80可以包括防尘模组30、风扇模组40和镜头模组50,外围模组80中的每个模组均可以与核心模组20形成相应的散热空隙90以提高投影设备100的散热效率。
在一些实施例中,请参阅图2,防尘模组30与核心模组20间隔排布,散热空隙90形成于防尘模组30与核心模组20之间,助于外界冷风经防尘模组30进入壳体10内后直接吹向核心模组20。防尘模组30呈网状结构,防尘模组30用于粘附空气中的杂质尘埃。防尘模组30可以设置于第一侧盖11与核心模组20之间,例如防尘模组30可拆卸地安装于第一侧盖11的朝向核心模组20的表面,有效地减少含有较多杂质尘埃的空气进入壳体10内,避免了该杂质尘埃覆盖在其他模组的表面而影响散热。
在一些实施例中,请参阅图2,核心模组20与风扇模组40间隔排布,散热空隙90形成于风扇模组40与核心模组20之间。风扇模组40可以由多个小风扇规则地排布形成,风扇模组40用于将壳体10内的空气运输至壳体10外,风扇模组40可以设置于第二侧盖13与核心模组20之间,例如风扇模组40可拆卸地安装于第二侧盖13的朝向核心模组20的表面,有助于风扇 模组40将核心模组20产生的热量直接运输至壳体10外,加快了提高壳体10内的热量散发至外界的效率。
在一些实施例中,请参阅图2,镜头模组50与核心模组20间隔排布,散热空隙90形成于镜头模组50与核心模组20之间。镜头模组50大体呈筒状结构,镜头模组50用于将影像投射至壳体10外,镜头模组50可以设置于靠近前盖12与核心模组20之间,例如镜头模组50的两端可以分别承托于前盖12与核心模组20,避免了占用第一侧盖11和第二侧盖13的过多位置,对壳体10的进风量和出风量的影响较小,使得镜头模组50在壳体10内的排布位置较为合理。
在一些实施例中,请参阅图2和图3,核心模组20还包括电源模块60,电源模块60安装于电子箱模块22内并自电子箱模块22的朝向后盖14一侧外露于电子箱模块22。电源模块60用于为其他模组和模块提供电力。由于电源模块60位于电子箱模块22的中空结构处,电源模块60和电子箱模块22之间的排布位置有助于减少占据壳体10的空间位置,有助于提高壳体10的空间利用率,促进投影设备100的小型化。
请参阅图4,电子箱模块22还包括挡板222,挡板222设置于电源模块60与光学引擎模块21之间。在将电源模块60安装于电子箱模块22的过程中,挡板222有助于限定电源模组60的安装位置,避免工人将电源模块60安装过度而使得电源模块60与光学引擎模块21的间距过小而不利于电源模块60和光学引擎模块21的散热。
在一些实施例中,请参阅图2,防尘模组30、核心模组20和风扇模组40依次自第一侧盖11朝第二侧盖13的方向排布于壳体10内,镜头模组50和电源模块60依次自前盖12朝后盖14的方向排布于壳体10内,使得各模组之间的位置排布得较为合理,在不影响各模组的散热的情况下,有助于提高壳体10的空间利用率,促进投影设备100的小型化。
在一些实施例中,请参阅图2,第一侧盖11、前盖12、第二侧盖13和后盖14之间拆卸地连接,即第一侧盖11可以单独地从壳体10上拆卸下来, 前盖12也可以单独地从壳体10上拆卸下来,第二侧盖13也可以单独地从壳体10上拆卸下来,后盖14也可以单独地从壳体10上拆卸下来,从而有助于投影设备100的维修。侧盖之间的连接方式可以采用螺纹连接方式,也可以采用卡扣连接方式。在工作人员需要清理防尘模组30的灰尘的情况下,工作人员可直接将第一侧盖11拆卸下对理防尘模组30进行清理而不需要将整个壳体10都拆开。同样地,工作人员将前盖12拆开可对镜头模组50进行检测维修,将第二侧盖13拆开可对风扇模组40进行检测维修,将后盖14拆开可对电源模块60进行检测维修。
在一些实施例中,请参阅图3和图4,核心模组20还包括红光散热器24,红光散热器24设置在电子箱模块22的下风道处,第一侧盖11、散热间隙91、红光散热器24、第二侧盖13共同形成第一散热风道92。红光散热器24为散热鳍片结构。红光散热器24可以位于电源模块60与风扇模组40之间。由于红光散热器24产生的热量较多,若将红光散热器24设置于进风孔110位置处,则会导致外界的风吹至红光散热器24时将携带红光散热器24的热量吹至壳体10内的其他位置,不利于壳体10内的其他模组的散热。本实施例通过将红光散热器24设置于电子箱模块22的下风道处,即将红光散热器24设置于电子箱模块22和风扇模组40之间,有助于风扇模组40将红光散热器24产生的热量及时地运输至壳体10外。此外,由于电源模块60沿第一侧盖11朝第二侧盖13的方向的长度小于第一侧盖11与第二侧盖13的间距,将红光散热器24设置于电源模块60与第二侧盖13之间的间隔空间中不仅有利于壳体10为红光散热器24提供独立的散热风道以增强散热效果,还有利于充分利用壳体10内的空间位置,提高壳体10的空间利用率,促进投影设备100的小型化。图3中虚线箭头所指的方向为风流动的方向。
在一些实施例中,请参阅图4,核心模组20包括光学引擎模块21,光学引擎模块21和电子箱模块22依次自前盖12朝后盖14的方向排布。光学引擎模块21与镜头模组50连接,光学引擎模块21位于镜头模组50与电子箱模块22之间,光学引擎模块21用于发出光线,光线经由镜头模组50射出至 投影设备100外。光学引擎模块21可以部分地伸入电子箱模块22内,从而减小了光学引擎模块21和电子箱模块22占据壳体10的自前盖12朝后盖14的方向的空间,有助于提高壳体10的空间利用率。
在一些实施例中,请参阅图5,核心模组20还包括绿光散热器25,绿光散热器25部分地设置在电子箱模块22的中空结构处,第一侧盖11、绿光散热器25和第二侧盖13共同形成第二散热风道93,有助于壳体10通过该第二散热风道93同时为绿光散热器25和电子箱模块22进行散热,提高投影设备100的散热效率。此外,绿光散热器25为散热鳍片结构,绿光散热器25设置于光学引擎模块21与第一侧盖11形成的间隔空间中,有助于充分利用壳体10内的空间位置,提高壳体10的空间利用率。图5中虚线箭头所指的方向为风流动的方向。
在一些实施例中,请参阅图6,核心模组20还包括蓝光散热器70,第一侧盖11、光学引擎模块21、蓝光散热器70和第二侧盖13共同形成第三散热风道94,有助于壳体10通过该第三散热风道同时为蓝光散热器70和光学引擎模块21进行散热,提高了投影设备100的散热效率。此外,蓝光散热器70为散热鳍片结构。蓝光散热器70可以设置于光学引擎模块21与第二侧盖13形成的间隔空间中,有助于充分利用壳体10内的空间位置,提高壳体10的空间利用率。图6中虚线箭头所指的方向为风流动的方向。
在一些实施例中,请参阅图5,核心模组20还包括色轮散热器26,色轮散热器26为散热鳍片结构。色轮散热器26位于位于第一侧盖11与前盖12的连接处,本实施例通过将色轮散热器26设置于壳体10的角落位置,并且由于色轮散热器26近似呈规则的长方体状外形,使得色轮散热器26与该角落位置更加相适配,有助于充分利用壳体10内的空间位置,提高壳体10的空间利用率。
在一些实施例中,请参阅图4和图5,色轮散热器26、蓝光散热器70和红光散热器24依次自前盖12朝后盖14的方向间隔排布并两两之间形成散热风道,有助于壳体10通过该散热风道同时为色轮散热器26、蓝光散热器 70和红光散热器24进行散热,提高投影设备100的散热效率。
在一些实施例中,请参阅图6,核心模组20还包括色轮模块(图未示)和两个空间光调制装置散热器,两个空间光调制装置散热器可以分别为红光数字微镜装置散热器28和蓝绿光数字微镜装置散热器29,两者均为散热鳍片结构。图6中虚线箭头所指的方向为风流动的方向。
两个空间光调制装置散热器和色轮模块均与前盖12间隔,两个空间光调制装置散热器层叠设置,例如红光数字微镜装置散热器28和蓝绿光数字微镜装置散热器29可以依次自底盖16朝顶盖15的方向间隔设置,充分利用投影设备100的高度方向的空间位置,有助于进一步提高壳体10的空间利用率,减小投影设备100整机自第一侧盖11朝前盖12方向的外形尺寸,促进投影设备100的小型化。
第一侧盖11、色轮模块、空间光调制装置散热器、第二侧盖13共同形成第四散热风道。由于色轮散热器26位于红光数字微镜装置散热器28的上风位置,风经色轮散热器26吹出后吹向红光数字微镜装置散热器28,如图6所示的第四散热风道95;并且经色轮散热器26的鳍片吹出后形成的风的风压增大,在该增大风压后的风吹向红光数字微镜装置散热器28后,有一部分的风自底盖16朝顶盖15的方向吹向蓝绿光数字微镜装置散热器29,如图3所示的第四散热风道95,有助于提高红光数字微镜装置散热器28和蓝绿光数字微镜装置散热器29的散热效果。
两个空间光调制装置散热器位于第二侧盖13与前盖12的相连处,由于两个空间光调制装置散热器均近似呈规则的立方体状外形且设置于壳体10的角落位置,使得两个空间光调制装置散热器与该角落位置更加相适配,有助于充分利用壳体10内的空间位置,提高壳体10的空间利用率。
在一些实施例中,请参阅图7和图8,核心模组20还包括前挡板27,镜头模组50穿设前挡板27,前挡板27分别与色轮散热器26、蓝绿光数字微镜装置散热器29间隔并形成第五散热风道97,有助于壳体10通过第五散热风道97同时为色轮散热器26、红光数字微镜装置散热器28和蓝绿光数字微镜 装置散热器29进行散热,提高投影设备100的散热效率。图7和图8中虚线箭头所指的方向为风流动的方向。
在本申请中,除非另有明确的规定或限定,术语“安装”、“连接”、“固定”等术语应做广义理解。例如,可以是固定连接,也可以是可拆卸连接,或一体连接;可以是机械连接,也可以是电连接;可以是直接连接,也可以通过中间媒介间接相连,也可以是两个元件内部的连通,也可以是仅为表面接触,或者通过中间媒介的表面接触连接。对于本领域的普通技术人员而言,可以根据具体情况理解上述术语在本申请中的具体含义。
此外,术语“第一”、“第二”等仅用于区分描述,而不能理解为特指或特殊结构。术语“一些实施例”、“其他实施例”等的描述意指结合该实施例或示例描述的具体特征、结构、材料或者特点包含于本实用新型的至少一个实施例或示例中。在本申请中,对上述术语的示意性表述不必须针对的是相同的实施例或示例。而且,描述的具体特征、结构、材料或者特点可以在任一个或多个实施例或示例中以合适的方式结合。此外,在不相互矛盾的情况下,本领域的技术人员可以将本申请中描述的不同实施例或示例以及不同实施例或示例的特征进行结合和组合。
以上实施例仅用以说明本申请的技术方案,而非对其限制;尽管参照前述实施例对本申请进行了详细的说明,本领域的普通技术人员应当理解:其依然可以对前述各实施例所记载的技术方案进行修改,或者对其中部分技术特征进行等同替换;而这些修改或者替换,并不使相应技术方案的本质脱离本申请各实施例技术方案的精神和范围,均应包含在本申请的保护范围之内。

Claims (10)

  1. 一种投影设备,其特征在于,包括:
    壳体,包括第一侧盖、前盖、第二侧盖和后盖,所述第一侧盖、所述前盖、所述第二侧盖、所述后盖和所述第一侧盖依次相连围合成收容空间,所述第一侧盖设有进风孔,所述第二侧盖设有出风孔,所述第一侧盖与所述第二侧盖的间距小于所述前盖与所述后盖的间距;和
    核心模组,设置于所述收容空间内,所述核心模组包括光学引擎模块和电子箱模块,所述电子箱模块下部为中空结构,所述光学引擎模块部分地设置在所述电子箱模块的中空结构处。
  2. 根据权利要求1所述的投影设备,其特征在于,所述电子箱模块设置有多块电路板,多块所述电路板之间间隔设置并形成有散热间隙。
  3. 根据权利要求2所述的投影设备,其特征在于,所述核心模组还包括电源模块,所述电源模块也设置在所述电子箱模块的中空结构处,所述电子箱模块还包括挡板,所述挡板设置于所述电源模块与所述光学引擎模块之间。
  4. 根据权利要求2或3所述的投影设备,其特征在于,所述核心模组还包括红光散热器,所述红光散热器设置在所述电子箱模块的下风道处,所述第一侧盖、所述散热间隙、所述红光散热器、所述第二侧盖共同形成第一散热风道。
  5. 根据权利要求1-3任一项所述的投影设备,其特征在于,所述核心模组还包括绿光散热器,所述绿光散热器部分地设置在所述电子箱模块的中空结构处,所述第一侧盖、所述绿光散热器、所述第二侧盖共同形成第二散热风道。
  6. 根据权利要求1-3任一项所述的投影设备,其特征在于,所述核心模组还 包括蓝光散热器,所述第一侧盖、所述光学引擎模块、所述蓝光散热器、所述第二侧盖共同形成第三散热风道。
  7. 根据权利要求1-3任一项所述的投影设备,其特征在于,所述核心模组还包括两个空间光调制装置散热器、色轮模块,所述两个空间光调制装置散热器和所述色轮模块均与所述前盖间隔,所述两个空间光调制装置散热器层叠设置,所述第一侧盖、所述色轮模块、所述空间光调制装置散热器、所述第二侧盖共同形成第四散热风道。
  8. 根据权利要求1所述的投影设备,其特征在于,所述投影设备还包括外围模组,所述外围模组分布于所述核心模组的周边,并相对所述核心模组独立地设置于所述收容空间内。
  9. 根据权利要求8所述的投影设备,其特征在于,所述外围模组包括防尘模组和风扇模组,所述防尘模组设置于所述第一侧盖,所述风扇模组设置于所述第二侧盖,所述核心模组位于所述防尘模组与所述风扇模组之间。
  10. 根据权利要求8所述的投影设备,其特征在于,所述外围模组包括镜头模组,所述镜头模组设置于所述前盖与所述光学引擎模块之间。
PCT/CN2020/126538 2019-12-03 2020-11-04 投影设备 WO2021109778A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201922137889.9U CN211086888U (zh) 2019-12-03 2019-12-03 投影设备
CN201922137889.9 2019-12-03

Publications (1)

Publication Number Publication Date
WO2021109778A1 true WO2021109778A1 (zh) 2021-06-10

Family

ID=71631825

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2020/126538 WO2021109778A1 (zh) 2019-12-03 2020-11-04 投影设备

Country Status (2)

Country Link
CN (1) CN211086888U (zh)
WO (1) WO2021109778A1 (zh)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN211086888U (zh) * 2019-12-03 2020-07-24 深圳光峰科技股份有限公司 投影设备
CN114114799A (zh) * 2020-08-27 2022-03-01 青岛海信激光显示股份有限公司 投影设备

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101726974A (zh) * 2008-10-20 2010-06-09 鸿富锦精密工业(深圳)有限公司 投影机
US20110157560A1 (en) * 2009-12-30 2011-06-30 Qisda Corporation Electronic apparatus and projector
CN106896629A (zh) * 2015-12-18 2017-06-27 鸿富锦精密工业(武汉)有限公司 投影仪
CN207216248U (zh) * 2017-05-11 2018-04-10 深圳市光峰光电技术有限公司 投影机
CN207249338U (zh) * 2017-09-06 2018-04-17 深圳市信方达科技发展股份有限公司 投影机
CN211086888U (zh) * 2019-12-03 2020-07-24 深圳光峰科技股份有限公司 投影设备

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101726974A (zh) * 2008-10-20 2010-06-09 鸿富锦精密工业(深圳)有限公司 投影机
US20110157560A1 (en) * 2009-12-30 2011-06-30 Qisda Corporation Electronic apparatus and projector
CN106896629A (zh) * 2015-12-18 2017-06-27 鸿富锦精密工业(武汉)有限公司 投影仪
CN207216248U (zh) * 2017-05-11 2018-04-10 深圳市光峰光电技术有限公司 投影机
CN207249338U (zh) * 2017-09-06 2018-04-17 深圳市信方达科技发展股份有限公司 投影机
CN211086888U (zh) * 2019-12-03 2020-07-24 深圳光峰科技股份有限公司 投影设备

Also Published As

Publication number Publication date
CN211086888U (zh) 2020-07-24

Similar Documents

Publication Publication Date Title
WO2021109778A1 (zh) 投影设备
US8246171B2 (en) Cooling device and projector using the same
US8087788B2 (en) Projector with cooling configuration
TWI417635B (zh) 電子裝置及投影機
US8974062B2 (en) Projection apparatus
US8007114B2 (en) Small-sized projector with high heat dissipating efficiency
TWI405945B (zh) 氣冷式熱交換器及其適用之電子設備
US20100053896A1 (en) Heat dissipation system and electronic device utilizing the same
WO2022152300A1 (zh) 一种激光投影装置
WO2018077036A1 (zh) 一种投影装置及其冷却散热系统
CN103499909A (zh) 一种投影装置
CN101644881B (zh) 投影机
CN211457242U (zh) 一种用于公交站投影装置
CN114721210B (zh) 投影设备
US20200201151A1 (en) Projector
JPH0822074A (ja) 冷却構造を備えた部材収容装置および光学装置
CN207219266U (zh) 防尘组件及电子设备
JP2012189836A (ja) 投影装置
US9488900B2 (en) Projection apparatus including light sources and heat radiating members
CN112835252A (zh) 一种激光投影装置
CN211528892U (zh) 一种投影仪
US12001127B2 (en) Optical device and projector
US20230384658A1 (en) Projection apparatus
CN203397071U (zh) Led投影设备整机散热结构
CN214474384U (zh) 一种投影仪

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 20895764

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 20895764

Country of ref document: EP

Kind code of ref document: A1