WO2021109594A1 - 一种激光mems扫描投影模组半导体激光器调试装置 - Google Patents
一种激光mems扫描投影模组半导体激光器调试装置 Download PDFInfo
- Publication number
- WO2021109594A1 WO2021109594A1 PCT/CN2020/104716 CN2020104716W WO2021109594A1 WO 2021109594 A1 WO2021109594 A1 WO 2021109594A1 CN 2020104716 W CN2020104716 W CN 2020104716W WO 2021109594 A1 WO2021109594 A1 WO 2021109594A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- laser
- semiconductor laser
- light beam
- projection module
- scanning projection
- Prior art date
Links
Images
Classifications
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01S—DEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
- H01S5/00—Semiconductor lasers
- H01S5/005—Optical components external to the laser cavity, specially adapted therefor, e.g. for homogenisation or merging of the beams or for manipulating laser pulses, e.g. pulse shaping
- H01S5/0085—Optical components external to the laser cavity, specially adapted therefor, e.g. for homogenisation or merging of the beams or for manipulating laser pulses, e.g. pulse shaping for modulating the output, i.e. the laser beam is modulated outside the laser cavity
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01S—DEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
- H01S5/00—Semiconductor lasers
- H01S5/0014—Measuring characteristics or properties thereof
Definitions
- the invention relates to the technical field of semiconductor lasers, in particular to a laser MEMS scanning projection module semiconductor laser debugging device.
- Laser MEMS scanning projection technology is a new type of display technology. In recent years, it has achieved rapid development in AR smart glasses, mobile phone projection, smart wear, smart office and other fields. In the application of laser MEMS scanning projection technology, it is necessary to use multiple lasers and combine the light beams generated by multiple lasers in order to produce brightly colored display images. Because the core device MEMS micromirror has a small surface element, in order to ensure the efficiency of laser power utilization, the laser beam incident on the MEMS micromirror is required to have a good collimation effect. Therefore, the beam emitted by the RGB semiconductor laser needs to be collimated.
- the focal point of the collimating lens is located at the emitting point of the semiconductor laser chip, and the divergence angle of the emitted laser beam is as small as possible to obtain a higher output power And a longer transmission distance to improve the efficiency of laser utilization.
- the method of collimating and debugging of semiconductor laser is to debug each laser separately, so that the light beam emitted by each semiconductor laser corresponds to the corresponding marking point on the baffle plate after passing through the collimating lens.
- Its shortcomings are: In the debugging process, the beam emitted by one laser corresponds to one mark point. If multiple lasers are collimated and debugged, they must correspond to multiple mark points. The debugging method is more complicated, and the collimation effect and consistency are also poor. Work efficiency is low. Therefore, it is necessary to improve the existing device and method for collimating and debugging semiconductor lasers.
- the technical problem to be solved by the present invention is to provide a laser MEMS scanning projection module semiconductor laser debugging device.
- the beam emitted by each laser does not need to correspond to a reference point separately, which reduces the complexity of beam collimation and improves The consistency and accuracy of the beam collimation greatly improves the production efficiency.
- the present invention provides a laser MEMS scanning projection module semiconductor laser debugging device, including: a semiconductor laser, a collimating lens, a beam integration system and a detection system; the laser beam emitted by the semiconductor laser enters after the collimating lens
- the beam integration system enters the detection system through the beam integration system, and the size and position information of the laser spot can be obtained through the detection system.
- the semiconductor laser can emit laser beams of different wavelength bands, preferably a red wavelength semiconductor laser, a green wavelength semiconductor laser, and a blue wavelength semiconductor laser.
- the collimating lenses are all coated with an optical antireflection coating
- the collimating lens corresponding to the red laser is coated with a red antireflection coating
- the collimating lens corresponding to the green laser is coated with a green antireflection coating.
- the collimating lens corresponding to the laser is coated with blue anti-reflection coating.
- the beam integration system includes a cemented prism group in which a plurality of prisms are cemented together.
- the inclined surface of each prism forms a 45-degree angle with the laser incident surface.
- the reflection or transmission of beams of different wavelengths can be realized. Multiple beams of light can be combined into one beam of light.
- the detection system includes a detector and a display device connected to it.
- the detector has a visible light detection function.
- the position and size of the laser spot can be observed on the display device.
- the receiving surface of the detector has engraved lines arranged horizontally and vertically. These horizontal and vertical engraved lines constitute the detection cell, and the center of the detection cell is the reference point.
- the present invention can realize the beam collimation of the one-dimensional RGB array laser by adjusting the beams emitted by the one-dimensional RGB array laser corresponding to the same reference point; and the beams emitted by the adjusting two-dimensional RGB array laser correspond to the same column
- the reference point can collimate the beam of the two-dimensional RGB array laser; during debugging, the beam emitted by each laser does not need to correspond to a reference point separately, which reduces the complexity of beam collimation and improves the consistency and accuracy of beam collimation Performance, thereby greatly improving production efficiency.
- Fig. 1 is a schematic structural diagram of a collimating and debugging device for a one-dimensional RGB array semiconductor laser of the present invention.
- FIG. 2 is a schematic diagram of the prism 31 of the present invention.
- FIG. 3 is a schematic diagram of the prism 32 of the present invention.
- FIG. 4 is a schematic diagram of the prism 33 of the present invention.
- Fig. 5 is a schematic diagram of the detector receiving surface of the one-dimensional RGB array semiconductor laser collimation debugging device of the present invention.
- Fig. 6 is a schematic diagram of a two-dimensional RGB array semiconductor laser collimation debugging device of the present invention.
- Fig. 7 is a schematic diagram of the detector receiving surface of the two-dimensional RGB array semiconductor laser collimation debugging device of the present invention.
- a laser MEMS scanning projection module semiconductor laser debugging device including: a semiconductor laser, a collimator lens, a beam integration system and a detection system; the laser beam emitted by the semiconductor laser enters the beam integration system after the collimator lens, and then passes through the beam integration system. When incident on the detection system, the size and position information of the laser spot can be obtained through the detection system.
- the laser beam can be collimated by adjusting the center and the center of the detection unit to coincide.
- collimating and debugging the semiconductor lasers of different wavelength bands adjust the laser spot on the detector receiving surface to the same detection cell, and make the center of the laser spot of the different wavelength lasers coincide with the center of the detection cell. Collimation and combination of laser beams of different wavelengths.
- the beams emitted by the semiconductor laser 11, the semiconductor laser 12, and the semiconductor laser 13 are collimated by the collimator lens 21, the collimator lens 22, and the collimator lens 23 respectively, and then enter the beam integration system 3, and after passing through the beam integration system Incident to the detection system 4 or the detection system 5.
- the semiconductor laser 11 emits a red light beam with a wavelength of 638 ⁇ 5 nm; the semiconductor laser 12 emits a green light beam with a wavelength of 520 ⁇ 5 nm; and the semiconductor laser 13 emits a blue light beam with a wavelength of 450 ⁇ 5 nm.
- the collimating lens 21 is coated with a high-transmitting red light anti-reflection coating of 638 ⁇ 5nm; the collimating lens 22 is coated with a high-transmitting green light anti-reflection coating of 520 ⁇ 5nm; the collimating lens 23 is coated with a pair of A high-transmitting anti-reflection coating for blue light at 450 ⁇ 5nm.
- the beam integration system includes a cemented prism 3.
- the S1 surface, S1' surface, S2 surface, S2' surface, and S3 surface respectively form an angle of 45 degrees with the laser incident surface.
- the S1 of the prism 31 The surface is coated with an optical film that transmits red light and reflects green and blue light
- the S2 surface of the prism 32 is coated with an optical film that reflects green light and transmits blue light
- the S3 surface of the prism 33 is coated with an optical film that reflects blue light.
- the detector of the detection system 4 or the detection system 5 has a visible light detection function.
- the detector is connected to a display device, and the precise position and size of the laser spot can be observed on the display device.
- the difference between the detection system 5 and the detection system 4 is only the placement position.
- the coating on the S1 surface of the prism 31 reflects red light and transmits green light and blue light.
- the detector receiving surfaces of the detection systems 4 and 5 have scribe lines arranged horizontally and vertically, and the intervals of the scribe lines are the same, and these interval scribe lines form a plurality of detection cells of the same size.
- the light beam emitted by the two-dimensional RGB array semiconductor laser 7 enters the two-dimensional array beam integration system 9 after passing through the two-dimensional array collimating lens 8, and then enters the detection system 10 after passing through the integration system.
- the two-dimensional RGB array semiconductor laser 7 has a 3 ⁇ 3 array.
- the first row 1 includes a red semiconductor laser 11 with a wavelength of 638 ⁇ 5nm, a green semiconductor laser 12 with a wavelength of 520 ⁇ 5nm, and a blue semiconductor laser 13 with a wavelength of 450 ⁇ 5nm;
- the semiconductor lasers in the second row 10 and the third row 100 are arranged as in the first row 1.
- the two-dimensional array collimating lens 8 has a 3 ⁇ 3 array.
- the first row 2 includes a collimating lens 21, which is coated with a high-transmitting red light anti-reflection coating of 638 ⁇ 5nm; the collimating lens 22, is plated with a 520 ⁇ 5nm high-transmitting green light antireflection coating; collimating lens 23, coated with a high-transmitting blue light antireflection coating for the band 450 ⁇ 5nm, the arrangement of the collimating lenses in the second row 20 and the third row 200 is the same as the first row 2 ;
- the two-dimensional array beam integration system 9 has a 3 ⁇ 1 array of glued prism groups, including glued prisms 3, glued prisms 30, and glued prisms 300.
- the coating conditions of the cemented prism 3 are as described in the first embodiment.
- the coating conditions of the glued prism 30 and the glued prism 300 are the same as the glued prism 3.
- the detector of the detection system 10 has a visible light detection function.
- the detector is connected with a display device, and the precise position and size of the laser spot can be observed through the display device.
- the collimation debugging method of a single-row semiconductor laser (the first row 1 or the second row 2 or the third row 3 in FIG. 6) is as described in the first embodiment.
- the reference point corresponding to the light beam emitted by the first row 1 of the semiconductor laser is the center of the detection cell A
- the reference point corresponding to the light beam emitted by the second row 2 of the semiconductor laser is the center of the detection cell B
- the reference point corresponding to the light beam is the center of the detection cell C.
- the centers of detection cell A, detection cell B, and detection cell C form a column of three reference points.
- the beams emitted by a two-dimensional RGB array semiconductor laser correspond to these three reference points respectively, and a 3*3 array of RGB can be realized.
- the beam of the semiconductor laser is collimated and combined.
- the beams emitted by the semiconductor lasers from the first row 1 to the Nth row n can be collimated.
- the beams emitted by the two-dimensional RGB array semiconductor laser correspond to a column of n reference points, which can realize n*3 The beam collimation and combination of the array of RGB semiconductor lasers.
Landscapes
- Physics & Mathematics (AREA)
- Condensed Matter Physics & Semiconductors (AREA)
- General Physics & Mathematics (AREA)
- Electromagnetism (AREA)
- Optics & Photonics (AREA)
- Semiconductor Lasers (AREA)
Abstract
一种激光MEMS扫描投影模组半导体激光器(11,12,13)调试装置,包括:半导体激光器(11,12,13,7)、准直透镜(21,22,23,8)、光束整合系统(3,9)和检测系统(4,5,10);半导体激光器(11,12,13,7)发射的激光束经准直透镜(21,22,23,8)后进入光束整合系统(3,9),经光束整合系统(3,9)再入射到检测系统(4,5,10),通过检测系统(4,5,10)可以获取激光光斑的大小及位置信息。通过调试一维RGB阵列激光器(11,12,13)发出的光束对应同一基准点,可以实现对一维RGB阵列激光器(11,12,13)的光束准直;通过调试二维RGB阵列激光器(7)发出的光束对应同一列基准点,可以对二维RGB阵列激光器(7)的光束准直;调试中不需要每颗激光器发出的光束单独对应一个基准点,降低了光束准直的复杂度,提高了光束准直的一致性和准确性,从而大大提高了生产效率。
Description
本发明涉及半导体激光器技术领域,尤其是一种激光MEMS扫描投影模组半导体激光器调试装置。
激光MEMS扫描投影技术是一种新型显示技术,近年来在AR智能眼镜、手机投影、智能穿戴、智能办公等领域获得了较快发展。在激光MEMS扫描投影技术应用中,需要采用多颗激光器,还要对多颗激光器产生的光束进行合光,以便产生色彩鲜艳的显示画面。由于核心器件MEMS微镜的面元较小,为了保证激光功率的利用效率,要求入射到MEMS微镜上的激光束的准直效果要好,因此需要将RGB半导体激光器发射的光束进行准直。通过调试准直透镜和半导体激光器之间的空间距离和空间角度,使准直透镜的焦点位于半导体激光器的芯片发光点处,使发射激光束的发散角尽可能小,以便获得较高的输出功率和较远的传输距离,以提高激光的利用效率。
传统技术中半导体激光器准直调试方法是对每颗激光器分别进行调试,使每颗半导体激光器发出的光束经准直透镜后在挡光板上与相应的标记点一一对应,其不足之处是:在调试过程中是一颗激光器发出的光束对应一个标记点,如果对多颗激光器进行准直调试就要分别对应多个标记点,调试方法较复杂,准直的效果和一致性也较差,工作效率较低。因此,需要对现有的半导体激光器准直调试的装置和方法进行改进。
发明内容
本发明所要解决的技术问题在于,提供一种激光MEMS扫描投影模组半导体激光器调试装置,调试中不需要每颗激光器发出的光束单独对应一个基准点,降低了光束准直的复杂度,提高了光束准直的一致性和准确性,从而大大提高了生产效率。
为解决上述技术问题,本发明提供一种激光MEMS扫描投影模组半导体激光器调试装置,包括:半导体激光器、准直透镜、光束整合系统和检测系统;半导体激光器发射的激光束经准直透镜后进入光束整合系统,经光束整合系统再入射到检测系统,通过检测系统可以获取激光光斑的大小及位置信息。
优选的,半导体激光器可发射出不同波段的激光束,优选红光波段半导体激光器、绿光波段半导体激光器和蓝光波段半导体激光器。
优选的,准直透镜均镀有光学增透膜,与红光激光器对应的准直透镜镀有红光增透 膜,与绿光激光器对应的准直透镜镀有绿光增透膜,与蓝光激光器对应的准直透镜镀有蓝光增透膜。在调试过程中,调节准直透镜的空间位置和空间角度使其焦点位于半导体激光器芯片发光点处,以使激光器发出的光束经准直透镜后是准直的。
优选的,光束整合系统包括多个棱镜胶合在一起的胶合棱镜组,每个棱镜的斜面与激光入射面成45度角,通过对斜面进行镀膜处理,可以实现不同波段光束的反射或透射,进一步可以将多束光合成一束光。
优选的,检测系统包括探测器以及与其相连的显示设备,探测器具有可见光探测功能,在显示设备上可以观察到激光光斑位置和大小的信息,探测器的接收面上有横竖排列的刻线,这些横竖的刻线构成了检测单元格,检测单元格的中心即为基准点。
本发明的有益效果为:本发明通过调试一维RGB阵列激光器发出的光束对应同一基准点,可以实现对一维RGB阵列激光器的光束准直;通过调试二维RGB阵列激光器发出的光束对应同一列基准点,可以对二维RGB阵列激光器的光束准直;调试中不需要每颗激光器发出的光束单独对应一个基准点,降低了光束准直的复杂度,提高了光束准直的一致性和准确性,从而大大提高了生产效率。
图1为本发明的一维RGB阵列半导体激光器准直调试装置结构示意图。
图2为本发明的棱镜31示意图。
图3为本发明的棱镜32示意图。
图4为本发明的棱镜33示意图。
图5为本发明的一维RGB阵列半导体激光器准直调试装置探测器接收面示意图。
图6为本发明的二维RGB阵列半导体激光器准直调试装置示意图。
图7为本发明的二维RGB阵列半导体激光器准直调试装置探测器接收面示意图。
一种激光MEMS扫描投影模组半导体激光器调试装置,包括:半导体激光器、准直透镜、光束整合系统和检测系统;半导体激光器发射的激光束经准直透镜后进入光束整合系统,经光束整合系统再入射到检测系统,通过检测系统可以获取激光光斑的大小及位置信息。
对单颗半导体激光器发出的光束进行准直调试时,在检测系统的显示设备上观察激光光斑的位置和大小,将激光光斑调节到探测器接收面上对应的检测单元格内,使激光 光斑的中心和检测单元格的中心调节至重合即可实现激光束的准直。对不同波段的半导体激光器分别进行准直调试时,将激光光斑在探测器接收面上调至同一检测单元格内,并且使不同波段激光器的激光光斑中心都和检测单元格的中心重合,即可实现不同波段激光束的准直和合光。
如图1所示,半导体激光器11、半导体激光器12、半导体激光器13发射的光束分别经准直透镜21、准直透镜22、准直透镜23准直后进入光束整合系统3,经过光束整合系统后入射到检测系统4或检测系统5。
半导体激光器11发射红光波段光束,波长638±5nm;半导体激光器12发射绿光波段光束,波长520±5nm;半导体激光器13发射蓝光波段光束,波长450±5nm。
准直透镜21,镀有对波段638±5nm高透的红光增透膜;准直透镜22,镀有对波段520±5nm高透的绿光增透膜;准直透镜23,镀有对波段450±5nm高透的蓝光增透膜。
如图2、图3和图4所示,光束整合系统包括胶合棱镜3,S1面、S1’面、S2面、S2’面、S3面分别与激光入射面成45度角,棱镜31的S1面镀有透射红光反射绿光和蓝光的光学膜,棱镜32的S2面镀有反射绿光透射蓝光的光学膜,棱镜33的S3面镀有反射蓝光的光学膜。
如图5所示,检测系统4或者检测系统5的探测器具有可见光探测功能,探测器与显示设备连接,可以在显示设备上观察激光光斑的精确位置和大小。检测系统5和检测系统4的区别仅仅是放置的位置不同,当处于检测系统5的位置时,棱镜31的S1面的镀膜是反射红光透射绿光和蓝光。检测系统4和5的探测器接收面上有横竖排列的刻线,刻线的间隔距离相同,这些间隔刻线组成了多个大小相同的检测单元格。
对红光半导体激光器31发出的光束进行准直调试时,调节准直透镜的空间位置和空间角度,在显示设备上观察,使经过准直透镜的红光光斑的中心与探测器接收面检测单元格A的中心重合。利用同样的方法对绿光和蓝光半导体激光器分别进行准直调试。通过此操作,红光光斑、绿光光斑、蓝光光斑的中心都和检测单元格A的中心重合,既实现了对RGB半导体激光器的光束准直,又实现了RGB激光束的合光。
如图6和图7所示,二维RGB阵列半导体激光器7发出的光束经过二维阵列准直透镜8后进入二维阵列光束整合系统9,光束经过整合系统后入射到检测系统10。
二维RGB阵列半导体激光器7具有3×3阵列,第一行1包括红光半导体激光器11,波 长638±5nm,绿光半导体激光器12,波长520±5nm,蓝光半导体激光器13,波长450±5nm;第二行10和第三行100半导体激光器的排列如同第一行1。
二维阵列准直透镜8具有3×3阵列,第一行2包括准直透镜21,镀有对波段638±5nm高透的红光增透膜;准直透镜22,镀有对波段520±5nm高透的绿光增透膜;准直透镜23,镀有对波段450±5nm高透的蓝光增透膜,第二行20和第三行200的准直透镜的排列如同第一行2;
二维阵列光束整合系统9具有3×1阵列的胶合棱镜组,包括胶合棱镜3、胶合棱镜30、胶合棱镜300。胶合棱镜3的镀膜情况如实施例1中的说明。胶合棱镜30、胶合棱镜300的镀膜情况如同胶合棱镜3。
检测系统10的探测器具有可见光探测功能,探测器与显示设备相连接,通过显示设备可以观察激光光斑的精确位置和大小。单行半导体激光器(如图6的第一行1或第二行2或第三行3)的准直调试方法如实施例1所述。半导体激光器第一行1发出的光束对应的基准点为检测单元格A的中心,半导体激光器第二行2发出的光束对应的基准点为检测单元格B的中心,半导体激光器第三行3发出的光束对应的基准点为检测单元格C的中心。检测单元格A、检测单元格B、检测单元格C的中心组成了一列三个基准点,通过二维RGB阵列半导体激光器发出的光束分别对应这三个基准点,即可实现3*3阵列RGB半导体激光器的光束准直和合光。
利用同样的方法,可以对从第一行1到第N行n的半导体激光器发射的光束进行准直调试,通过二维RGB阵列半导体激光器发出的光束对应一列n个基准点,可实现n*3阵列RGB半导体激光器的光束准直和合光。
Claims (5)
- 一种激光MEMS扫描投影模组半导体激光器调试装置,其特征在于,包括:半导体激光器、准直透镜、光束整合系统和检测系统;半导体激光器发射的激光束经准直透镜后进入光束整合系统,经光束整合系统再入射到检测系统,通过检测系统可以获取激光光斑的大小及位置信息。
- 如权利要求1所述的激光MEMS扫描投影模组半导体激光器调试装置,其特征在于,半导体激光器包括红光波段半导体激光器、绿光波段半导体激光器和蓝光波段半导体激光器。
- 如权利要求1所述的激光MEMS扫描投影模组半导体激光器调试装置,其特征在于,准直透镜均镀有光学增透膜,与红光波段半导体激光器对应的准直透镜镀有红光增透膜,与绿光波段半导体激光器对应的准直透镜镀有绿光增透膜,与蓝光波段半导体激光器对应的准直透镜镀有蓝光增透膜。
- 如权利要求1所述的激光MEMS扫描投影模组半导体激光器调试装置,其特征在于,光束整合系统包括多个棱镜胶合在一起的胶合棱镜组,每个棱镜的斜面与激光入射面成45度角,通过对斜面进行镀膜处理,实现不同波段光束的反射或透射,将多束光合成一束光。
- 如权利要求1所述的激光MEMS扫描投影模组半导体激光器调试装置,其特征在于,检测系统包括探测器以及与其相连的显示设备,探测器具有可见光探测功能,在显示设备上可以观察到激光光斑位置和大小的信息,探测器的接收面上有横竖排列的刻线,这些横竖的刻线构成了检测单元格,检测单元格的中心即为基准点。
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN201911226411.1A CN110854667A (zh) | 2019-12-04 | 2019-12-04 | 一种激光mems扫描投影模组半导体激光器调试装置 |
CN201911226411.1 | 2019-12-04 |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2021109594A1 true WO2021109594A1 (zh) | 2021-06-10 |
Family
ID=69607485
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/CN2020/104716 WO2021109594A1 (zh) | 2019-12-04 | 2020-07-27 | 一种激光mems扫描投影模组半导体激光器调试装置 |
Country Status (2)
Country | Link |
---|---|
CN (1) | CN110854667A (zh) |
WO (1) | WO2021109594A1 (zh) |
Families Citing this family (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN110854667A (zh) * | 2019-12-04 | 2020-02-28 | 南京先进激光技术研究院 | 一种激光mems扫描投影模组半导体激光器调试装置 |
Citations (7)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN103543495A (zh) * | 2013-08-05 | 2014-01-29 | 华中科技大学 | 一种图像采集和原位投影的光学装置 |
CN204028412U (zh) * | 2014-09-01 | 2014-12-17 | 北京杏林睿光科技有限公司 | 双波长半导体激光光束耦合结构 |
US9774172B1 (en) * | 2016-10-28 | 2017-09-26 | Lumentum Operations Llc | Multi-laser package using shared optics |
CN207625073U (zh) * | 2017-12-06 | 2018-07-17 | 北京万集科技股份有限公司 | 一种基于mems的扫描式半导体激光器 |
CN108572493A (zh) * | 2017-03-09 | 2018-09-25 | 中国科学院苏州纳米技术与纳米仿生研究所 | Mems振镜激光微显示器 |
CN208092416U (zh) * | 2018-04-27 | 2018-11-13 | 歌尔科技有限公司 | 激光模组、激光光源及激光投影装置 |
CN110854667A (zh) * | 2019-12-04 | 2020-02-28 | 南京先进激光技术研究院 | 一种激光mems扫描投影模组半导体激光器调试装置 |
Family Cites Families (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN104898363B (zh) * | 2012-08-06 | 2018-07-24 | 深圳市光峰光电技术有限公司 | 发光装置及相关投影系统 |
CN106596511A (zh) * | 2016-12-27 | 2017-04-26 | 南京先进激光技术研究院 | 一种反射式同轴结构激光诱导击穿光谱分析装置 |
CN109406479A (zh) * | 2019-01-02 | 2019-03-01 | 苏州昊通仪器科技有限公司 | 一种微反应器的实时荧光检测设备及其操作方法 |
-
2019
- 2019-12-04 CN CN201911226411.1A patent/CN110854667A/zh active Pending
-
2020
- 2020-07-27 WO PCT/CN2020/104716 patent/WO2021109594A1/zh active Application Filing
Patent Citations (7)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN103543495A (zh) * | 2013-08-05 | 2014-01-29 | 华中科技大学 | 一种图像采集和原位投影的光学装置 |
CN204028412U (zh) * | 2014-09-01 | 2014-12-17 | 北京杏林睿光科技有限公司 | 双波长半导体激光光束耦合结构 |
US9774172B1 (en) * | 2016-10-28 | 2017-09-26 | Lumentum Operations Llc | Multi-laser package using shared optics |
CN108572493A (zh) * | 2017-03-09 | 2018-09-25 | 中国科学院苏州纳米技术与纳米仿生研究所 | Mems振镜激光微显示器 |
CN207625073U (zh) * | 2017-12-06 | 2018-07-17 | 北京万集科技股份有限公司 | 一种基于mems的扫描式半导体激光器 |
CN208092416U (zh) * | 2018-04-27 | 2018-11-13 | 歌尔科技有限公司 | 激光模组、激光光源及激光投影装置 |
CN110854667A (zh) * | 2019-12-04 | 2020-02-28 | 南京先进激光技术研究院 | 一种激光mems扫描投影模组半导体激光器调试装置 |
Also Published As
Publication number | Publication date |
---|---|
CN110854667A (zh) | 2020-02-28 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
EP3598229B1 (en) | Light source apparatus and projection system | |
US8403496B2 (en) | High efficiency micro projection optical engine | |
CN102141683B (zh) | 光束整形方法和装置及激光显示光源模组和设备 | |
JP6245994B2 (ja) | レーザ光源装置及びプロジェクタ | |
WO2018209723A1 (zh) | 一种投影照明光路及其投影装置 | |
CN105511087A (zh) | 基于复眼透镜的激光显示匀场整形装置 | |
CN102314053A (zh) | 投影机 | |
US20070019912A1 (en) | Illuminateur laser | |
CN113934097B (zh) | 投影光源和投影设备 | |
TW201209344A (en) | Optical system | |
CN110376755A (zh) | 消激光散斑装置及扫描投影设备 | |
WO2021109594A1 (zh) | 一种激光mems扫描投影模组半导体激光器调试装置 | |
CN102156352B (zh) | 光束整形方法和装置及激光显示光源模组和设备 | |
CN114791688B (zh) | 一种激光光源及激光投影设备 | |
CN108803217B (zh) | 激发光源系统及投影设备 | |
CN103855600A (zh) | 激光模块和扫描投影仪 | |
CN113960868A (zh) | 激光光源及激光投影设备 | |
CN102213585B (zh) | 单光源双光路并行共焦测量系统 | |
CN102709804A (zh) | 集成激光光源 | |
CN207114901U (zh) | 光束整形装置 | |
CN205353467U (zh) | 基于复眼透镜的激光显示匀场整形装置 | |
CN211236319U (zh) | 微透镜阵列、光发射模组、深度相机和电子设备 | |
TW201418838A (zh) | 彩色分光系統 | |
CN206906709U (zh) | 一种基于复眼透镜的激光显示起偏匀场整形装置 | |
CN202119408U (zh) | 单光源双光路并行共焦测量系统 |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 20895980 Country of ref document: EP Kind code of ref document: A1 |
|
NENP | Non-entry into the national phase |
Ref country code: DE |
|
122 | Ep: pct application non-entry in european phase |
Ref document number: 20895980 Country of ref document: EP Kind code of ref document: A1 |