WO2021109538A1 - 一种适用于高压输入的dc-dc电路 - Google Patents

一种适用于高压输入的dc-dc电路 Download PDF

Info

Publication number
WO2021109538A1
WO2021109538A1 PCT/CN2020/096932 CN2020096932W WO2021109538A1 WO 2021109538 A1 WO2021109538 A1 WO 2021109538A1 CN 2020096932 W CN2020096932 W CN 2020096932W WO 2021109538 A1 WO2021109538 A1 WO 2021109538A1
Authority
WO
WIPO (PCT)
Prior art keywords
inductor
input
voltage
capacitor
circuit
Prior art date
Application number
PCT/CN2020/096932
Other languages
English (en)
French (fr)
Inventor
毛昭祺
王纪周
柯乃泉
Original Assignee
毛昭祺
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 毛昭祺 filed Critical 毛昭祺
Publication of WO2021109538A1 publication Critical patent/WO2021109538A1/zh

Links

Images

Classifications

    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M3/00Conversion of dc power input into dc power output
    • H02M3/02Conversion of dc power input into dc power output without intermediate conversion into ac
    • H02M3/04Conversion of dc power input into dc power output without intermediate conversion into ac by static converters
    • H02M3/10Conversion of dc power input into dc power output without intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode
    • H02M3/145Conversion of dc power input into dc power output without intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a triode or transistor type requiring continuous application of a control signal
    • H02M3/155Conversion of dc power input into dc power output without intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a triode or transistor type requiring continuous application of a control signal using semiconductor devices only
    • H02M3/156Conversion of dc power input into dc power output without intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a triode or transistor type requiring continuous application of a control signal using semiconductor devices only with automatic control of output voltage or current, e.g. switching regulators
    • H02M3/158Conversion of dc power input into dc power output without intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a triode or transistor type requiring continuous application of a control signal using semiconductor devices only with automatic control of output voltage or current, e.g. switching regulators including plural semiconductor devices as final control devices for a single load

Definitions

  • the invention belongs to the technical field of DC-DC circuits, and particularly relates to a DC-DC circuit suitable for high-voltage input.
  • non-isolated DC-DC circuits are widely used in low-power power supplies due to their low cost and simple circuit.
  • Commonly used non-isolated DC-DC circuits such as Buck circuits, are used to step down the input voltage to suitable applications. But when the input voltage is high-voltage input or even ultra-high-voltage input, and the output voltage is too low, the BUCK circuit will work in a state with a very low duty cycle. In this state, the working efficiency of the circuit is also low and the loss is high. Therefore, the general Buck circuit is often used in occasions where the output voltage is narrow.
  • the purpose of the present invention is to provide a DC-DC circuit suitable for high-voltage input.
  • the input voltage is divided by the series connection of two capacitors at the input end, that is, the input voltage is stepped down to the subsequent circuit to realize the DC-DC circuit of the present application.
  • DC can be high-voltage input; through two switch tubes and two diodes, multiple inductance energy storage loops can be formed, and an energy release loop, through the combination of two switch tubes in different working states, a variety of conversion modes can be formed.
  • the conversion energy is diversified, so that the DC-DC circuit of the present application can be applied to occasions with a wide output range, which solves the existing technical problems.
  • a DC-DC circuit suitable for high voltage input including:
  • a first input capacitor and a second input capacitor connected in series at the input end;
  • a first switch tube and a first diode connected in series to both ends of the first input capacitor
  • a second switch tube and a second diode connected in series to both ends of the second input capacitor
  • the first inductor and the second inductor store energy
  • the first inductor and the second inductor release energy to the output capacitor.
  • the first input capacitor, the first switching tube, the first inductor, the output capacitor, the second inductor, and the second diode form a loop.
  • the second input capacitor, the first diode, the first inductor, the output capacitor, the second inductor, and the second switching tube form a loop.
  • the first diode, the first inductor, the output capacitor, the second inductor, and the second diode form a loop.
  • the first input capacitor, the second input capacitor, the first switching tube, the first inductor, the output capacitor, the second inductor, and the second switching tube form a loop .
  • the first diode, the first inductor, the output capacitor, the second inductor, and the second diode are connected in series, both ends of the output capacitor are used as the output ends of the DC-DC circuit, and the voltage across the two ends Is the output voltage of the DC-DC circuit.
  • it further includes a control circuit for generating a first driving signal and outputting to the control terminal of the first switching tube, and generating a second driving signal and outputting to the control terminal of the second switching tube.
  • the duty ratio and period of the first driving signal and the second driving signal are equal.
  • the phase difference between the first driving signal and the second driving signal is equal to 90°, and the value of the control duty cycle is proportional to the amplitude of the output voltage.
  • the phase difference between the first driving signal and the second driving signal is less than 90°, and the value of the phase difference is controlled to be inversely proportional to the amplitude of the output voltage.
  • An embodiment of the present invention divides the input voltage through the series connection of two capacitors at the input end, that is, the input voltage is stepped down to the subsequent circuit to realize the DC-DC high-voltage input of the present application; through two switch tubes, Two diodes can form an energy storage circuit with multiple inductances and an energy release circuit. Through the combination of two switching tubes in different working states, a variety of conversion modes can be formed, which can diversify the conversion energy and make the DC- The DC circuit can be applied to occasions with a wide output range.
  • Fig. 1 is a schematic diagram of a DC-DC circuit structure according to an embodiment of the present invention
  • Fig. 2 is a waveform diagram of a driving signal according to an embodiment of the present invention.
  • Fig. 3 is a waveform diagram of a driving signal according to another embodiment of the present invention.
  • Fig. 4 is a waveform diagram of driving signals according to other embodiments of the present invention.
  • FIG. 5 is a schematic diagram of the circuit structure of Embodiment 1 of the present invention.
  • a DC-DC circuit suitable for high-voltage input including:
  • the first switch tube S1 and the first diode D1 connected in series with both ends of the first input capacitor C1;
  • the second switch tube S2 and the second diode D2 connected in series at both ends of the second input capacitor C2;
  • the first inductor L1 and the second inductor L2 store energy
  • the first inductor L1 and the second inductor L2 release energy to the output capacitor Co.
  • the working process of the DC-DC circuit includes the following:
  • the first input capacitor C1, the first switching tube S1, the first inductor L1, the output capacitor Co, the second inductor L2, and the second diode D2 A loop is formed, and the first inductor L1 and the second inductor L2 store energy.
  • the first input capacitor C1 charges the first inductor L1 and the second inductor L2, so that the voltage on the output capacitor Co of the DC-DC circuit is the difference between the voltage of the first input capacitor C1 and the inductor voltage.
  • the inductor voltage is the sum of the voltages of the first inductor L1 and the second inductor L2.
  • the second input capacitor C2 In response to the first switching tube S1 being turned off and the second switching tube S2 being turned on, the second input capacitor C2, the first diode D1, the first inductor L1, the output capacitor Co, the second inductor L2, and the second switching tube S2 A loop is formed, and the first inductor L1 and the second inductor L2 store energy.
  • the second input capacitor C2 charges the first inductor L1 and the second inductor L2, so that the voltage on the output capacitor Co of the DC-DC circuit is the difference between the voltage of the second input capacitor C2 and the inductor voltage.
  • the inductor voltage is the sum of the voltages of the first inductor L1 and the second inductor L2.
  • the first diode D1, the first inductor L1, the output capacitor Co, the second inductor L2, and the second diode D2 form a loop, and the first inductor L1 .
  • the second inductor L2 releases energy to the output capacitor Co.
  • the current on the first inductor L1 and the second inductor L2 begins to decrease, and this current charges the output capacitor Co.
  • the DC-DC circuit releases the energy stored in the inductor at the previous stage to the output capacitor Co to complete the input power
  • the conversion to output power that is, DC-DC conversion.
  • the first input capacitor C1, the second input capacitor C2, the first switching tube S1, the first inductor L1, the output capacitor Co, the second inductor L2, and the second The switch tube S2 forms a loop, and the first inductor L1 and the second inductor L2 store energy.
  • the first input capacitor C1 and the first input capacitor C2 charge the first inductor L1 and the second inductor L2, so that the voltage on the output capacitor Co of the DC-DC circuit is the difference between the input voltage Vin and the inductor voltage.
  • the inductor voltage is the sum of the voltages of the first inductor L1 and the second inductor L2.
  • the first switching tube S1 and the second switching tube S2 are both turned on, and the two input capacitors C1 and C2 charge the inductance. Therefore, the energy stored at this time is compared to the previous first switching tube S1 or the second switching tube S2 alone. More energy is stored when it is turned on.
  • the first input capacitor C1 or the second input capacitor C2 is used as an energy storage provider, because the first input capacitor C1 and the second input capacitor C2 are connected in series in the DC-DC circuit Therefore, it can be understood that the energy of the first input capacitor C1 and the second input capacitor C2 is provided by the input end of the DC-DC circuit, and the DC-DC circuit is still dealing with the DC power supply at the input end. It is converted into the DC power required by the output terminal, and the input capacitor is used for filtering and voltage equalization.
  • the input voltage is divided by the series connection of the two capacitors at the input end, that is, the input voltage is stepped down to the subsequent circuit to realize the DC-DC high-voltage input of this application; through two switch tubes and two diodes, It can form multiple inductive energy storage circuits and one energy release circuit.
  • two switch tubes and two diodes Through the combination of two switch tubes in different working states, multiple conversion modes can be formed, which can diversify the conversion energy and make the DC-DC circuit of this application applicable In the occasion of wide output range.
  • the first diode D1, the first inductor L1, the output capacitor Co, the second inductor L2, and the second diode D2 of the DC-DC circuit are connected in series, and the output capacitor Co is two The terminal is the output voltage Vo.
  • the first diode D1 is connected in series with the first inductor L1, the output capacitor Co, the second inductor L2, and the second diode D2 in sequence.
  • the DC-DC circuit further includes a control circuit for generating the first driving signal Vd1 and outputting it to the control terminal of the first switching tube S1 to generate the first driving signal Vd1.
  • the second driving signal Vd2 is output to the control terminal of the second switch tube S2.
  • the control circuit generates a first driving signal Vd1 and a second driving signal Vd2 according to the detection output voltage and the magnitude of the detection signal.
  • the input terminal of the control circuit is the output voltage Vo of the DC-DC circuit.
  • control circuit controls the duty ratio and period of the first driving signal Vd1 and the second driving signal Vd2 to be equal.
  • This embodiment provides an implementation of the control circuit:
  • the closed loop adjusts the stability of the output voltage Vo of the DC-DC circuit.
  • the first driving signal Vd1 and the second driving signal Vd2 change the duty cycle when the phase difference t between the two is unchanged.
  • the control circuit makes the first The duty ratio of the driving signal Vd1 and the second driving signal Vd2 is reduced from 50% to 40%.
  • the closed loop adjusts the stability of the output voltage Vo of the DC-DC circuit.
  • the duty cycle is proportional to the output voltage Vo.
  • the phase difference t between the first driving signal Vd1 and the second driving signal Vd2 is less than 90°, and the value of the phase difference t is controlled to be inversely proportional to the amplitude of the output voltage Vo, Specifically, the value of the phase difference t decreases and increases as the amplitude of the output voltage Vo increases.
  • the closed loop adjusts the stability of the output voltage Vo of the DC-DC circuit.
  • the first drive signal Vd1 and the second drive signal Vd2 change the phase difference between the two while the duty ratios D1 and D2 are unchanged, and the phase difference changes within a range of less than 90°.
  • control circuit implements closed-loop adjustment through the voltage loop circuit and the control chip.
  • a reference signal Vref is input at the positive phase input terminal of the integrated operational amplifier U1
  • the signal input at the negative phase input terminal is the sampling signal of the output voltage Vo, which is obtained through the voltage division of R1 and R2, and the integration is achieved through the compensation network R3 and Cx.
  • the op amp U1 is a negative feedback circuit, so that the amplitude of the output voltage V1 of the integrated op amp U1 is related to the voltage difference between the positive phase input terminal and the negative phase input terminal, that is, as the sampling signal of the output voltage Vo is related to the reference signal Vrfe The difference between changes and changes. For example, if the output voltage Vo increases to make its sample value higher than the reference signal Vref, the amplitude of the output voltage V1 of the integrated operational amplifier U1 will decrease;
  • the control chip After the control chip receives the voltage V1, it controls the duty ratios D1 and D2 of the driving signals Vd1 and Vd2 to change with the amplitude of the voltage V1.
  • the control chip will adjust the duty ratios D1 and D2 of the driving signals Vd1 and Vd2 to decrease.
  • the output voltage Vo is to be 300V DC voltage
  • the output voltage Vo is greater than 1/2 of the input voltage Vin
  • the first driving signal Vd1 and the second driving signal Vd2 are accounted for
  • the phase difference shown in FIG. 4 is 60°. Compared with the phase difference of 90° in FIG. 3, the change in the phase difference can be seen.
  • the output voltage V1 of the integrated operational amplifier U1 changes with the change of the difference between the sampling signal of the output voltage Vo and the reference signal Vrfe. For example, if the output voltage Vo increases to make its sample value higher than the reference signal Vref, the amplitude of the output voltage V1 of the integrated operational amplifier U1 will decrease;
  • the control chip After the control chip receives the voltage V1, the phase difference t between the driving signals Vd1 and Vd2 that it outputs changes with the amplitude of the voltage V1.
  • the duty cycle in this embodiment includes a first duty cycle D1 and a second duty cycle D2.
  • the first duty cycle D1 is the duty cycle of the first drive signal Vd1
  • the second duty cycle D2 is the second drive signal.
  • the period in this embodiment includes a first period T1 and a second period T2.
  • the first period T1 is the period of the first driving signal Vd1
  • the second period T2 is the period of the second driving signal Vd2.
  • the description with reference to the terms “one embodiment”, “example”, “specific example”, etc. means that the specific feature, structure, material, or characteristic described in combination with the embodiment or example is included in at least the present invention. In one embodiment or example. In this specification, the schematic representations of the above-mentioned terms do not necessarily refer to the same embodiment or example. Moreover, the described specific features, structures, materials or characteristics can be combined in any one or more embodiments or examples in a suitable manner.

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Dc-Dc Converters (AREA)

Abstract

本发明公开了一种适用于高压输入的DC-DC电路,涉及DC-DC电路技术领域。本发明包括:第一电感、第二电感、输出电容、输入端、串联在输入端的第一输入电容和第二输入电容、串联在第一输入电容两端的第一开关管和第一二极管、串联在第二输入电容两端的第二开关管和第二二极管。本发明通过输入端的两个电容的串联连接将输入电压分压,即将输入电压进行降压给后级电路,实现本申请的DC-DC可高压输入;通过两个开关管、两个二极管,可以形成多个电感的储能回路,和一个释能回路,通过两个开关管不同工作状态的组合,形成多种转换模式,可以使转换能量多样化,使本申请的DC-DC电路可以适用于宽输出范围的场合中。

Description

一种适用于高压输入的DC-DC电路 技术领域
本发明属于DC-DC电路技术领域,特别是涉及一种适用于高压输入的DC-DC电路。
背景技术
在开关电源中,非隔离DC-DC电路以其成本低、电路简单被广泛使用在小功率电源中。常用的非隔离DC-DC电路,如Buck电路,用于将输入电压降压至适宜使用的场合中。但当输入电压为高压输入甚至超高压输入,而输出电压由过低时,BUCK电路将工作在占空比极低的状态下,这种状态下会导致电路的工作效率也低,损耗高。因此,一般的Buck电路往往用于输出电压窄范围的场合。
发明内容
本发明的目的在于提供一种适用于高压输入的DC-DC电路,通过输入端的两个电容的串联连接将输入电压分压,即将输入电压进行降压给后级电路,实现本申请的DC-DC可高压输入;通过两个开关管、两个二极管,可以形成多个电感的储能回路,和一个释能回路,通过两个开关管不同工作状态的组合,形成多种转换模式,可以使转换能量多样化,使本申请的DC-DC电路可以适用于宽输出范围的场合中,解决了现有的技术问题。
为解决上述技术问题,本发明是通过以下技术方案实现的:
一种适用于高压输入的DC-DC电路,包括:
第一电感、第二电感、输出电容、输入端;
串联在输入端的第一输入电容、第二输入电容;
串联在第一输入电容两端的第一开关管、第一二极管;
串联在第二输入电容两端的第二开关管、第二二极管;
响应于第一开关管和/或第二开关管导通,第一电感、第二电感储存能量;
响应于第一开关管、第二开关管关断,第一电感、第二电感释放能量给输出电容。
可选的,响应于第一开关管导通、第二开关管关断,第一输入电容、第一开关管、第一电感、输出电容、第二电感、第二二极管形成回路。
可选的,响应于第一开关管关断、第二开关管导通,第二输入电容、第一二极管、第一电感、输出电容、第二电感、第二开关管形成回路。
可选的,响应于第一开关管、第二开关管关断,第一二极管、第一电感、输出电容、第二电感、第二二极管形成回路。
可选的,响应于第一开关管、第二开关管导通,第一输入电容、第二输入电容、第一开关管、第一电感、输出电容、第二电感、第二开关管形成回路。
可选的,第一二极管、第一电感、输出电容、第二电感、第二二极管之间串联,输出电容两端作为所述DC-DC电路的输出端,且该两端的电压为所述DC-DC电路的输出电压。
可选的,还包括控制电路,控制电路用于生成第一驱动信号并输出至 第一开关管的控制端、生成第二驱动信号并输出至第二开关管的控制端。
可选的,第一驱动信号、第二驱动信号的占空比和周期均相等。
可选的,响应于输出电压小于1/2输入电压,第一驱动信号和第二驱动信号的相位差等于90°,并控制占空比的值与输出电压的幅值成正比例关系。
可选的,响应于输出电压大于1/2输入电压,第一驱动信号和第二驱动信号的相位差小于90°,并控制相位差的值与输出电压的幅值成反比例关系。
本发明的实施例具有以下有益效果:
本发明的一个实施例通过在输入端的两个电容的串联连接将输入电压分压,即将输入电压进行降压给后级电路,实现本申请的DC-DC可高压输入;通过两个开关管、两个二极管,可以形成多个电感的储能回路,和一个释能回路,通过两个开关管不同工作状态的组合,形成多种转换模式,可以使转换能量多样化,使本申请的DC-DC电路可以适用于宽输出范围的场合中。
当然,实施本发明的任一产品并不一定需要同时达到以上所述的所有优点。
附图说明
为了更清楚地说明本发明实施例的技术方案,下面将对实施例描述所需要使用的附图作简单地介绍,显而易见地,下面描述中的附图仅仅是本发明的一些实施例,对于本领域普通技术人员来讲,在不付出创造性劳动 的前提下,还可以根据这些附图获得其他的附图。
图1为本发明实施例的DC-DC电路结构示意图;
图2为本发明一实施例的驱动信号波形图;
图3为本发明另一实施例的驱动信号波形图;
图4为本发明其它实施例的驱动信号波形图。
图5为本发明实施例1的电路结构示意图。
具体实施方式
下面将结合本发明实施例中的附图,对本发明实施例中的技术方案进行清楚、完整地描述,显然,所描述的实施例仅仅是本发明一部分实施例,而不是全部的实施例。基于本发明中的实施例,本领域普通技术人员在没有作出创造性劳动前提下所获得的所有其它实施例,都属于本发明保护的范围。
为了保持本发明实施例的以下说明清楚且简明,本发明省略了已知功能和已知部件的详细说明。
请参阅图1所示,在本实施例中提供了一种适用于高压输入的DC-DC电路,包括:
第一电感L1、第二电感L2、输出电容Co、输入端;
串联在输入端的第一输入电容C1、第二输入电容C2;
串联在第一输入电容C1两端的第一开关管S1、第一二极管D1;
串联在第二输入电容C2两端的第二开关管S2、第二二极管D2;
响应于第一开关管S1和/或第二开关管S2导通,第一电感L1、第二电 感L2储存能量;
响应于第一开关管S1、第二开关管S2关断,第一电感L1、第二电感L2释放能量给输出电容Co。
具体的,在本实施例中,该DC-DC电路的工作过程包括以下:
响应于第一开关管S1导通、第二开关管S2关断,第一输入电容C1、第一开关管S1、第一电感L1、输出电容Co、第二电感L2、第二二极管D2形成回路,第一电感L1、第二电感L2储存能量。该过程中,第一输入电容C1为第一电感L1和第二电感L2充电,使DC-DC电路的输出电容Co上的电压为第一输入电容C1的电压和电感电压之差。其中,电感电压为第一电感L1和第二电感L2的电压之和。当第一输入电容C1和第二输入电容C2的容值相等时,第一输入电容上C1上的为输入电压Vin的一半。
响应于第一开关管S1关断、第二开关管S2导通,第二输入电容C2、第一二极管D1、第一电感L1、输出电容Co、第二电感L2、第二开关管S2形成回路,第一电感L1、第二电感L2储存能量。该过程中,第二输入电容C2为第一电感L1和第二电感L2充电,使DC-DC电路的输出电容Co上的电压为第二输入电容C2的电压和电感电压之差。其中,电感电压为第一电感L1和第二电感L2的电压之和。当第一输入电容C1和第二输入电容C2的容值相等时,第二输入电容上C2上的为输入电压Vin的一半。
响应于第一开关管S1、第二开关管S2关断,第一二极管D1、第一电感L1、输出电容Co、第二电感L2、第二二极管D2形成回路,第一电感L1、第二电感L2释放能量给输出电容Co。该过程中,第一电感L1和第二电感L2上的电流开始减小,该电流为输出电容Co充电,DC-DC电路将前一阶段 存储在电感的能量释放给输出电容Co,完成输入功率到输出功率的转换,即DC-DC转换。
响应于第一开关管S1、第二开关管S2导通,第一输入电容C1、第二输入电容C2、第一开关管S1、第一电感L1、输出电容Co、第二电感L2、第二开关管S2形成回路,第一电感L1、第二电感L2储存能量。该过程中,第一输入电容C1第一输入电容C2为第一电感L1和第二电感L2充电,使DC-DC电路的输出电容Co上的电压为输入电压Vin和电感电压之差。其中,电感电压为第一电感L1和第二电感L2的电压之和。第一开关管S1和第二开关管S2皆导通,由两个输入电容C1和C2为电感充电,因此,此时存储的能量相比于前面第一开关管S1或第二开关管S2单独导通时存储的能量要多。
另外,需要说明的是,上述几个工作过程中,第一输入电容C1或第二输入电容C2作为能量存储的提供者,由于第一输入电容C1和第二输入电容C2串联在DC-DC电路的输入端,因此,可以理解的是,第一输入电容C1和第二输入电容C2的能量是DC-DC电路的输入端提供的,DC-DC电路处理的仍然是输入端的直流电源,将其转换为输出端所需的直流电源,而输入电容用于起到滤波和均压的作用。
本实施例通过输入端的两个电容的串联连接将输入电压分压,即将输入电压进行降压给后级电路,实现本申请的DC-DC可高压输入;通过两个开关管、两个二极管,可以形成多个电感的储能回路,和一个释能回路,通过两个开关管不同工作状态的组合,形成多种转换模式,可以使转换能量多样化,使本申请的DC-DC电路可以适用于宽输出范围的场合中。
在本实施例的一个方面中,该DC-DC电路的第一二极管D1、第一电感L1、输出电容Co、第二电感L2、第二二极管D2之间串联,输出电容Co两端为输出电压Vo。具体的,第一二极管D1依次串联第一电感L1、输出电容Co、第二电感L2和第二二极管D2。
在本实施例的另一方面中,如图2所示,该DC-DC电路还包括控制电路,控制电路用于生成第一驱动信号Vd1并输出至第一开关管S1的控制端、生成第二驱动信号Vd2并输出至第二开关管S2的控制端。控制电路根据检测输出电压、根据检测信号大小生成第一驱动信号Vd1、第二驱动信号Vd2。该控制电路的输入端为DC-DC电路的输出电压Vo。
在本实施例的一个方面中,控制电路控制第一驱动信号Vd1、第二驱动信号Vd2的占空比和周期均相等。本实施例提供了该控制电路的实施方式:
响应于输出电压Vo<1/2输入电压Vin,第一驱动信号Vd1和第二驱动信号Vd2的相位差t=90°,并控制占空比的值与输出电压Vo的幅值成正比例关系,具体的,占空比的值随输出电压Vo的幅值增大而增大、减小而减小。通过占空比的变化,闭环调节DC-DC电路的输出电压Vo的稳定。
如图3所示,第一驱动信号Vd1、第二驱动信号Vd2在二者的相位差t不变的情况下改变占空比,图3所示由于输出电压Vo的降低,控制电路使第一驱动信号Vd1、第二驱动信号Vd2的占空比从50%减小为40%。通过占空比的变化,闭环调节DC-DC电路的输出电压Vo的稳定。
当输入电压Vin固定不变时,占空比与输出电压Vo成正比例关系。
响应于输出电压Vo>1/2输入电压Vin,第一驱动信号Vd1和第二驱动信号Vd2的相位差t<90°,并控制相位差t的值与输出电压Vo的幅值成反 比例关系,具体的,相位差t的值随输出电压Vo的幅值增大而减小、减小而增大。通过相位差的变化,闭环调节DC-DC电路的输出电压Vo的稳定。
如图4所示,第一驱动信号Vd1、第二驱动信号Vd2在占空比D1和D2不变的情况下改变二者的相位差、且相位差在小于90°范围内变化,图4为调节相位差t=60°。通过相位差的变化,闭环调节DC-DC电路的输出电压Vo的稳定。
实施例1:
如图5所示,在本实施例中,控制电路通过电压环电路和控制芯片实现闭环调整的。
以输入电压Vin为400V直流电压为例,欲得到输出电压Vo为100V直流电压时,此时输出电压Vo小于输入电压Vin的1/2,通过第一驱动信号Vd1和第二驱动信号Vd2的相位差t=90°方式输出,并闭环调整驱动信号的占空比D1和D2的值,使输出电压Vo为设定值。如图3中示出的占空比变化。具体的工作原理:
电压环电路中,集成运放U1正相输入端输入一个基准信号Vref,负相输入端输入的信号为输出电压Vo的采样信号,通过R1和R2分压获得,通过补偿网络R3、Cx使集成运放U1为负反馈电路,这样集成运放U1的输出电压V1的幅值与正相输入端和负相输入端的电压差值相关,也即随着输出电压Vo的采样信号与基准信号Vrfe之间的差值变化而变化。例如输出电压Vo升高,使其采样值高于基准信号Vref,则集成运放U1的输出电压V1的幅值将降低;
控制芯片接收到电压V1之后,控制其输出的驱动信号Vd1和Vd2的占 空比D1和D2随着电压V1的幅值变化而变化,如上例中,当集成运放U1的输出电压V1的幅值降低时,控制芯片将调整驱动信号Vd1和Vd2的占空比D1和D2减小,具体的占空比被调整到满足该关系式D1=D2=Vo/Vin时,整个电路系统处于稳定状态,集成运放V1的幅值相对不变,控制芯片输出的驱动信号相对恒定。
以输入电压Vin为400V直流电压为例,欲得到输出电压Vo为300V直流电压时,此时输出电压Vo大于输入电压Vin的1/2,通过第一驱动信号Vd1和第二驱动信号Vd2的占空比D1=D2=50%方式输出,并闭环调整驱动信号的相位差t的值,使输出电压Vo为设定值。如图4中示出的相位差为60°,与图3中相位差为90°相比,可以看出相位差的变化。具体的工作原理:
电压环电路的工作原理同上,集成运放U1的输出电压V1随着输出电压Vo的采样信号与基准信号Vrfe之间的差值变化而变化。例如输出电压Vo升高,使其采样值高于基准信号Vref,则集成运放U1的输出电压V1的幅值将降低;
控制芯片接收到电压V1之后,控制其输出的驱动信号Vd1和Vd2的相位差t随着电压V1的幅值变化而变化,如上例中,当集成运放U1的输出电压V1的幅值降低时,控制芯片将调整驱动信号Vd1和Vd2的相位差t增大,当相位差t=0°时Vo=Vin、当相位差t=90°时Vo=1/2Vin(以占空比近似等于99%为例),因此,当相位差在[0°,90°]之间变化时,输出电压Vo的幅值在[1/2Vin,Vin]的区间内变化。当相位差被调整到在该区间中的对应输出电压幅值的某一值,使输出电压Vo的采样值等于基准信号Vref时,整个电路系统处于稳定状态,集成运放V1的幅值相对不变,控制芯片 输出的驱动信号相对恒定。
本实施例中的占空比包括第一占空比D1、第二占空比D2,第一占空比D1为第一驱动信号Vd1的占空比,第二占空比D2为第二驱动信号Vd2的占空比。本实施例中的周期包括第一周期T1、第二周期T2,第一周期T1为第一驱动信号Vd1的周期,第二周期T2为第二驱动信号Vd2的周期。
上述实施例可以相互结合。
需要注意的是,在本说明书的描述中,诸如“第一”、“第二”等的描述仅仅是用于区分各特征,并没有实际的次序或指向意义,本申请并不以此为限。
在本说明书的描述中,参考术语“一个实施例”、“示例”、“具体示例”等的描述意指结合该实施例或示例描述的具体特征、结构、材料或者特点包含于本发明的至少一个实施例或示例中。在本说明书中,对上述术语的示意性表述不一定指的是相同的实施例或示例。而且,描述的具体特征、结构、材料或者特点可以在任何的一个或多个实施例或示例中以合适的方式结合。
以上公开的本发明优选实施例只是用于帮助阐述本发明。优选实施例并没有详尽叙述所有的细节,也不限制该发明仅为所述的具体实施方式。显然,根据本说明书的内容,可作很多的修改和变化。本说明书选取并具体描述这些实施例,是为了更好地解释本发明的原理和实际应用,从而使所属技术领域技术人员能很好地理解和利用本发明。本发明仅受权利要求书及其全部范围和等效物的限制。

Claims (10)

  1. 一种适用于高压输入的DC-DC电路,其特征在于,包括:
    第一电感、第二电感、输出电容、输入端;
    串联在输入端的第一输入电容、第二输入电容;
    串联在第一输入电容两端的第一开关管、第一二极管;
    串联在第二输入电容两端的第二开关管、第二二极管;
    响应于第一开关管和/或第二开关管导通,第一电感、第二电感储存能量;
    响应于第一开关管、第二开关管关断,第一电感、第二电感释放能量给输出电容。
  2. 如权利要求1所述的一种适用于高压输入的DC-DC电路,其特征在于,响应于第一开关管导通、第二开关管关断,第一输入电容、第一开关管、第一电感、输出电容、第二电感、第二二极管形成回路。
  3. 如权利要求1所述的一种适用于高压输入的DC-DC电路,其特征在于,响应于第一开关管关断、第二开关管导通,第二输入电容、第一二极管、第一电感、输出电容、第二电感、第二开关管形成回路。
  4. 如权利要求1所述的一种适用于高压输入的DC-DC电路,其特征在于,响应于第一开关管、第二开关管关断,第一二极管、第一电感、输出电容、第二电感、第二二极管形成回路。
  5. 如权利要求1所述的一种适用于高压输入的DC-DC电路,其特征在于,响应于第一开关管、第二开关管导通,第一输入电容、第二输入电容、第一开关管、第一电感、输出电容、第二电感、第二开关管形成回路。
  6. 如权利要求1-5任一项所述的一种适用于高压输入的DC-DC电路, 其特征在于,第一二极管、第一电感、输出电容、第二电感、第二二极管之间串联,输出电容两端作为所述DC-DC电路的输出端,且该两端的电压为所述DC-DC电路的输出电压。
  7. 如权利要求1-6任一项所述的一种适用于高压输入的DC-DC电路,其特征在于,还包括控制电路,控制电路用于生成第一驱动信号并输出至第一开关管的控制端、生成第二驱动信号并输出至第二开关管的控制端。
  8. 如权利要求7所述的一种适用于高压输入的DC-DC电路,其特征在于,第一驱动信号、第二驱动信号的占空比和周期均相等。
  9. 如权利要求8所述的一种适用于高压输入的DC-DC电路,其特征在于,响应于输出电压小于1/2输入电压,第一驱动信号和第二驱动信号的相位差等于90°,并控制占空比的值与输出电压的幅值成正比例关系。
  10. 如权利要求8所述的一种适用于高压输入的DC-DC电路,其特征在于,响应于输出电压大于1/2输入电压,第一驱动信号和第二驱动信号的相位差小于90°,并控制相位差的值与输出电压的幅值成反比例关系。
PCT/CN2020/096932 2019-12-05 2020-06-19 一种适用于高压输入的dc-dc电路 WO2021109538A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201911234239.4A CN110719027A (zh) 2019-12-05 2019-12-05 一种适用于高压输入的dc-dc电路
CN201911234239.4 2019-12-05

Publications (1)

Publication Number Publication Date
WO2021109538A1 true WO2021109538A1 (zh) 2021-06-10

Family

ID=69216560

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2020/096932 WO2021109538A1 (zh) 2019-12-05 2020-06-19 一种适用于高压输入的dc-dc电路

Country Status (2)

Country Link
CN (1) CN110719027A (zh)
WO (1) WO2021109538A1 (zh)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110719027A (zh) * 2019-12-05 2020-01-21 毛昭祺 一种适用于高压输入的dc-dc电路

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN202841033U (zh) * 2012-09-28 2013-03-27 深圳市瀚美特科技有限公司 一种永磁无刷直流电机及其驱动电路
EP2782235A1 (en) * 2013-03-21 2014-09-24 Mitsubishi Electric R&D Centre Europe B.V. Converter composed of at least a first and a second switches and a snubber circuit which protects the second switch
CN105610323A (zh) * 2016-03-17 2016-05-25 天津大学 一种光伏发电用宽范围输入型升降压三电平直流变换器
CN109361316A (zh) * 2018-10-12 2019-02-19 苏州汇川联合动力系统有限公司 一种降压dc-dc变换器及电子设备
CN110719027A (zh) * 2019-12-05 2020-01-21 毛昭祺 一种适用于高压输入的dc-dc电路

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN202841033U (zh) * 2012-09-28 2013-03-27 深圳市瀚美特科技有限公司 一种永磁无刷直流电机及其驱动电路
EP2782235A1 (en) * 2013-03-21 2014-09-24 Mitsubishi Electric R&D Centre Europe B.V. Converter composed of at least a first and a second switches and a snubber circuit which protects the second switch
CN105610323A (zh) * 2016-03-17 2016-05-25 天津大学 一种光伏发电用宽范围输入型升降压三电平直流变换器
CN109361316A (zh) * 2018-10-12 2019-02-19 苏州汇川联合动力系统有限公司 一种降压dc-dc变换器及电子设备
CN110719027A (zh) * 2019-12-05 2020-01-21 毛昭祺 一种适用于高压输入的dc-dc电路

Also Published As

Publication number Publication date
CN110719027A (zh) 2020-01-21

Similar Documents

Publication Publication Date Title
US10790742B1 (en) Multi-level power converter with improved transient load response
US7443148B2 (en) Constant on-time regulator with increased maximum duty cycle
US7482791B2 (en) Constant on-time regulator with internal ripple generation and improved output voltage accuracy
US8004253B2 (en) Duty cycle dependent non-linear slope compensation for improved dynamic response
US9455626B2 (en) Hysteretic buck DC-DC converter
JP2010516223A (ja) スナバを有する電力コンバータ
US11228243B2 (en) Power converter with reduced RMS input current
US20050040796A1 (en) Voltage regulator
TWI636648B (zh) Ripple suppression method, circuit and load driving circuit using same
US8901900B2 (en) Buck power factor correction system
US9985520B2 (en) Pulse width modulator for DC/DC converters
JP2002233139A (ja) Dc−dcコンバータ
CN104660040A (zh) 一种通过自耦线圈实现辅助输出的buck电源
US11456663B2 (en) Power converter with reduced root mean square input current
CN111224555B (zh) 一种llc谐振变换电路的宽范围输出控制方法
TWI382640B (zh) Global switched power supply and its serial - to - parallel DC - to - DC power conversion circuit
US9998005B2 (en) Single inductor dual output voltage converter and the method thereof
WO2021109538A1 (zh) 一种适用于高压输入的dc-dc电路
US9621108B2 (en) Flyback amplifier with direct feedback
CN114421761A (zh) 一种带有飞跨电容的三电平变换器及控制方法
Tintu et al. Tapped inductor technology based DC-DC converter
CN105958825B (zh) 一种原边电流控制驱动电路
WO2023051520A1 (zh) 开关电源的控制方法和开关电源
WO2019177685A1 (en) Coupled-inductor cascaded buck convertor with fast transient response
TW202241044A (zh) 用於控制有源鉗位元返馳變換器電源的死區時間的裝置和方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 20895650

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 20895650

Country of ref document: EP

Kind code of ref document: A1

32PN Ep: public notification in the ep bulletin as address of the adressee cannot be established

Free format text: NOTING OF LOSS OF RIGHTS PURSUANT TO RULE 112(1) EPC (EPO FORM 1205A DATED 09.11.2022)

122 Ep: pct application non-entry in european phase

Ref document number: 20895650

Country of ref document: EP

Kind code of ref document: A1