WO2021109378A1 - 一种三轴mems陀螺仪 - Google Patents

一种三轴mems陀螺仪 Download PDF

Info

Publication number
WO2021109378A1
WO2021109378A1 PCT/CN2020/082892 CN2020082892W WO2021109378A1 WO 2021109378 A1 WO2021109378 A1 WO 2021109378A1 CN 2020082892 W CN2020082892 W CN 2020082892W WO 2021109378 A1 WO2021109378 A1 WO 2021109378A1
Authority
WO
WIPO (PCT)
Prior art keywords
axis
mass
beams
spring
rigid
Prior art date
Application number
PCT/CN2020/082892
Other languages
English (en)
French (fr)
Inventor
邹波
郑青龙
刘爽
Original Assignee
深迪半导体(上海)有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 深迪半导体(上海)有限公司 filed Critical 深迪半导体(上海)有限公司
Priority to EP20896595.4A priority Critical patent/EP4060287A4/en
Priority to US17/781,724 priority patent/US11639852B2/en
Publication of WO2021109378A1 publication Critical patent/WO2021109378A1/zh

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01CMEASURING DISTANCES, LEVELS OR BEARINGS; SURVEYING; NAVIGATION; GYROSCOPIC INSTRUMENTS; PHOTOGRAMMETRY OR VIDEOGRAMMETRY
    • G01C19/00Gyroscopes; Turn-sensitive devices using vibrating masses; Turn-sensitive devices without moving masses; Measuring angular rate using gyroscopic effects
    • G01C19/56Turn-sensitive devices using vibrating masses, e.g. vibratory angular rate sensors based on Coriolis forces
    • G01C19/5642Turn-sensitive devices using vibrating masses, e.g. vibratory angular rate sensors based on Coriolis forces using vibrating bars or beams
    • G01C19/5656Turn-sensitive devices using vibrating masses, e.g. vibratory angular rate sensors based on Coriolis forces using vibrating bars or beams the devices involving a micromechanical structure
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01CMEASURING DISTANCES, LEVELS OR BEARINGS; SURVEYING; NAVIGATION; GYROSCOPIC INSTRUMENTS; PHOTOGRAMMETRY OR VIDEOGRAMMETRY
    • G01C19/00Gyroscopes; Turn-sensitive devices using vibrating masses; Turn-sensitive devices without moving masses; Measuring angular rate using gyroscopic effects
    • G01C19/56Turn-sensitive devices using vibrating masses, e.g. vibratory angular rate sensors based on Coriolis forces
    • G01C19/567Turn-sensitive devices using vibrating masses, e.g. vibratory angular rate sensors based on Coriolis forces using the phase shift of a vibration node or antinode
    • G01C19/5691Turn-sensitive devices using vibrating masses, e.g. vibratory angular rate sensors based on Coriolis forces using the phase shift of a vibration node or antinode of essentially three-dimensional vibrators, e.g. wine glass-type vibrators
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01CMEASURING DISTANCES, LEVELS OR BEARINGS; SURVEYING; NAVIGATION; GYROSCOPIC INSTRUMENTS; PHOTOGRAMMETRY OR VIDEOGRAMMETRY
    • G01C19/00Gyroscopes; Turn-sensitive devices using vibrating masses; Turn-sensitive devices without moving masses; Measuring angular rate using gyroscopic effects
    • G01C19/56Turn-sensitive devices using vibrating masses, e.g. vibratory angular rate sensors based on Coriolis forces
    • G01C19/5705Turn-sensitive devices using vibrating masses, e.g. vibratory angular rate sensors based on Coriolis forces using masses driven in reciprocating rotary motion about an axis
    • G01C19/5712Turn-sensitive devices using vibrating masses, e.g. vibratory angular rate sensors based on Coriolis forces using masses driven in reciprocating rotary motion about an axis the devices involving a micromechanical structure
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01CMEASURING DISTANCES, LEVELS OR BEARINGS; SURVEYING; NAVIGATION; GYROSCOPIC INSTRUMENTS; PHOTOGRAMMETRY OR VIDEOGRAMMETRY
    • G01C19/00Gyroscopes; Turn-sensitive devices using vibrating masses; Turn-sensitive devices without moving masses; Measuring angular rate using gyroscopic effects
    • G01C19/56Turn-sensitive devices using vibrating masses, e.g. vibratory angular rate sensors based on Coriolis forces
    • G01C19/5719Turn-sensitive devices using vibrating masses, e.g. vibratory angular rate sensors based on Coriolis forces using planar vibrating masses driven in a translation vibration along an axis
    • G01C19/5733Structural details or topology

Definitions

  • the invention relates to the field of MEMS, in particular to a three-axis MEMS gyroscope.
  • the MEMS gyroscopes facing this market are mainly capacitive resonant gyroscopes, that is, the mass mass is vibrated in the driving mode by driving the capacitive mechanical structure, and the mass mass caused by the Coriolis force in the detection direction is detected by detecting the capacitance. Changes in capacitance caused by movement.
  • the mechanical part of the early three-axis gyroscope consists of three independent X, Y, Z single-axis gyroscopes.
  • Each single-axis gyroscope structure needs to contain independent mass blocks, drive and detection structures, and corresponding ASIC circuits.
  • Three sets of independent drive circuits are required to drive separately, resulting in a larger size of the final three-axis gyro chip.
  • the current three-axis gyroscope is mainly based on the three-axis shared driving part, and a set of driving components drives the three-axis detection part, thereby saving the total area of the MEMS gyroscope, reducing the finished chip, and reducing the power consumption of the circuit. Requirements.
  • Some of the problems faced by existing products include the inability to completely decouple the driving part and each detection part, which causes the driving or detection parts to affect other motion modes when they are moving, and the inspection mass is divided into X-axis and Y-axis And the three parts of the Z axis, resulting in low utilization of the area of the inspection mass.
  • the present invention provides a three-axis MEMS gyroscope, which includes:
  • a first mass, the first mass is set to be movable along the X-axis direction;
  • the second mass is set to be rotatable about the X-direction axis, the Y-direction axis, and the Z-direction axis, and drives the second mass when the first mass moves in the X-axis direction Rotate around the Z-direction axis;
  • the third mass is set to be movable along the X-axis direction and the Y-axis direction, and when the first mass moves in the X-axis direction, the third mass is driven along the Y-axis direction activity;
  • a fourth mass is set to be movable along the X-axis direction, and when the third mass moves in the X-axis direction, the fourth mass is driven to also move in the X-axis direction;
  • the mass blocks are connected by spring beams and/or rigid beams.
  • first rigid beam which is connected to the first mass and the third mass through spring beams, and is set to act when the first mass is along X When moving in the axial direction, the first rigid beam is driven to move, and the first rigid beam drives the third mass to move in the Y-axis direction.
  • the first rigid beam includes a plurality of sub-beams; any connection between the first rigid beam and the first mass block and the third mass block is set to connect the two sections through the same spring beam.
  • the sub-beam and the first mass are connected to two sections of the sub-beam and the third mass through the same spring beam, and the plurality of sub-beams are connected end to end in turn.
  • the three-axis MEMS gyroscope further includes a second rigid beam, the second rigid beam is respectively connected to the second mass and the first rigid beam through spring beams, and is configured to act as a
  • the first rigid beam is driven to rotate around the Z-direction axis
  • the first rigid beam drives the second rigid beam to rotate around the Z-direction axis.
  • the second rigid beam drives the second mass to rotate around the Z-direction axis.
  • the second rigid beam is also connected to a fixed anchor point through a spring beam, and is configured to restrict the movement of the second rigid beam in the X-axis direction and the Y-axis direction.
  • the three-axis MEMS gyroscope further includes a third rigid beam, the third rigid beam is respectively connected to the second mass and the fixed anchor point through spring beams, the X-direction axis and the Y-axis
  • the direction axis is defined by the spring beam connected to the third rigid beam, so that the second mass is adapted to rotate around the X-direction axis and the Y-direction axis.
  • the third mass and the fourth mass are connected by a spring beam, and are arranged to drive the fourth mass to also move along the X axis when the third mass moves in the X-axis direction Direction activity.
  • the fourth mass is also connected to a fixed anchor point through a spring beam, and is arranged so that the fourth mass can move in the X-axis direction and is restricted from moving in the Y-axis direction.
  • first fixed electrode and a second fixed electrode both the first fixed electrode and the second fixed electrode cooperate with the second mass to form corresponding detection capacitors, which are respectively used for the first fixed electrode and the second fixed electrode. Detection when the two masses rotate around the X-direction axis and the Y-direction axis.
  • the three-axis MEMS gyroscope further includes a third fixed electrode, and the third fixed electrode cooperates with the fourth mass to form a detection capacitance.
  • the decoupling between each structure is realized, including the decoupling between the driving part and the Z-axis detection part, and the decoupling between the XY-axis detection part and the Z-axis detection part.
  • the Z-axis detection can be coupled to the two parts on both sides of the overall structure to ensure the consistency of the Z-axis differential detection motion and reduce the inconsistency of motion. Interference and error.
  • the mass blocks of the X-axis detection part and the Y-axis detection part are merged, thereby reducing the waste of the mass block area and improving the overall sensitivity.
  • Figure 1 is a schematic structural diagram of a preferred embodiment of the present invention.
  • Fig. 2 is a schematic diagram of the three-axis MEMS gyroscope in Fig. 1 in a driving state;
  • Fig. 3 is a schematic diagram of the three-axis MEMS gyroscope in Fig. 1 during X-axis detection;
  • Fig. 4 is a schematic diagram of the Y-axis detection of the three-axis MEMS gyroscope in Fig. 1;
  • Fig. 5 is a schematic diagram of the Z-axis detection of the three-axis MEMS gyroscope in Fig. 1.
  • Figure 1 is a schematic structural diagram of a three-axis MEMS gyroscope according to a preferred embodiment of the present invention.
  • the overall gyroscope is laid out symmetrically along the X-axis and Y-axis ( Figure 1 shows the directions of the XYZ three-axis, and the origin of the coordinates is located here.
  • the center point of the three-axis MEMS gyroscope of the embodiment which includes fixed anchor points A1.1 to A1.4, fixed anchor points A2.1 to A2.5, fixed anchor points A3.1 to A3.4, and spring beams S1.1 ⁇ S1.4, spring beam S2.1 ⁇ S2.4, spring beam S3.1 ⁇ S3.8, spring beam S4.1 ⁇ S4.2, spring beam S5.1 ⁇ S5.2, spring beam S6.1 ⁇ S6.8, spring beams S7.1 ⁇ S7.8, spring beams S8.1 ⁇ S8.4, spring beams S9.1 ⁇ S9.4, rigid beams F1 ⁇ F6, mass blocks M1 ⁇ M7, Fixed electrodes E1.1 ⁇ E1.16, fixed electrodes E2.1 ⁇ E2.4, fixed electrodes E3.1 ⁇ E3.4, fixed electrodes E4.1 ⁇ E4.4, of which fixed electrodes E3.1 ⁇ E3.4 The fixed electrodes E4.1 to E4.4 are arranged at the bottom of the mass M7 (the direction in which the plane shown in Figure 1 extends in the drawing), so they are represented by dashed lines.
  • the mass block M1 and the mass block M2 have the same structure and are arranged symmetrically along the X axis.
  • the mass block M1 is connected to the fixed anchor points A1.1 and A1.2 through spring beams S1.1 and S1.2 respectively; the fixed electrode E1.1 ⁇ E1.4, E1.9 ⁇ E1.12 and the mass block M1 have a comb-tooth structure that cooperates with each other to form capacitors C E1.1 ⁇ C E1.4 and C E1.9 ⁇ C E1.12 respectively .
  • the mass M2 is connected to the fixed anchor points A1.3 and A1.4 through spring beams S1.3 and S1.4 respectively; between the fixed electrodes E1.5 ⁇ E1.8, E1.13 ⁇ E1.16 and the mass M2 comb-shaped structure having cooperating respectively constitute a capacitor C E1.5 ⁇ C E1.8, C E1.13 ⁇ C E1.16.
  • the spring beams S1.1 to S1.4 all adopt the same U-shaped structure and the opening direction is parallel to the Y axis.
  • the spring beams S1.1 and S1.3, and the spring beams S1.2 and S1.4 are both Arranged symmetrically along the X axis, the spring beams S1.1 and S1.2, and the spring beams S1.3 and S1.4 are all arranged symmetrically along the Y axis.
  • the fixed anchor points A1.1 and A1.3, the fixed anchor points A1.2 and A1.4 are arranged symmetrically along the X axis, the fixed anchor points A1.1 and A1.2, and the fixed anchor points A1.3 and A1.4 are all arranged symmetrically along the X axis.
  • the rigid beams F1 to F4 have the same structure and all have an L-shaped structure.
  • the rigid beams F1, F2 and the rigid beams F3, F4 are arranged symmetrically along the X axis, and the rigid beams F1, F3 and the rigid beams F2, F4 are arranged symmetrically along the Y axis.
  • the rigid beams F1 and F2, F2 and F3, F3 and F4, F4 and F1 are respectively connected by spring beams S4.1, S5.2, S4.2, and S5.1.
  • the spring beams S4.1 and S4.2 have the same structure and are arranged symmetrically along the X axis.
  • the spring beams S4.1 and S4.2 use a combination of "T" and “mountain” shapes, while the spring beam S4. 1 is also connected to the mass M1, and the spring beam S4.2 is also connected to the mass M2.
  • the spring beams S5.1 and S5.2 have the same structure and are arranged symmetrically along the Y axis.
  • the spring beams S5.1 and S5.2 adopt a "mountain" structure, and the spring beam S5.1 is also connected to the mass M3.
  • the spring beam S5.2 is also connected to the mass M4.
  • the mass M3 and the mass M4 have the same structure and are both X-axis symmetric structures, and they are symmetrically arranged on both sides of the rigid beams F1 to F4 along the Y axis.
  • the rigid beam F5 is arranged on the inner side of the structure of the rigid beams F1 to F4, and its general structure is a hollow quadrilateral, and the whole is arranged symmetrically along the X axis and the Y axis.
  • the rigid beam F5 is connected to the rigid beam F1 through spring beams S6.1 and S6.5, to the rigid beam F2 through spring beams S6.2 and S6.7, and to the rigid beam through spring beams S6.3 and S6.6 F3 is connected to the rigid beam F4 through spring beams S6.4 and S6.8.
  • the spring beams S6.1 to S6.8 are all straight beam structures, in which the spring beams S6.1 to S6.4 are arranged parallel to the X axis, and the spring beams S6.5 to S6.8 are arranged parallel to the Y axis.
  • the spring beams S6.1 and S6.3, spring beams S6.2 and S6.4, spring beams S6.5 and S6.6, and spring beams S6.7 and S6.8 are all arranged symmetrically along the X axis.
  • the spring beams S6.1 and S6.2, spring beams S6.3 and S6.4, spring beams S6.5 and S6.7, and spring beams S6.6 and S6.8 are all arranged symmetrically along the Y axis.
  • Rigid beam F5 is also connected to fixed anchor points 2.1 to A2.4 through spring beams S8.1 ⁇ S8.4, fixed anchor points A2.1 and A2.2 are located on the X axis, and fixed anchor points A2.3 and A2 .4 is located on the Y axis, and the fixed anchor points A2.3 and A2.4 are arranged symmetrically along the X axis, and the fixed anchor points A2.1 and A2.2 are arranged symmetrically along the Y axis.
  • the spring beams S8.1 to S8.4 are all straight beam structures, wherein the spring beams S8.1 and S8.2 are arranged symmetrically along the X axis, and the spring beams S8.3 and S8.4 are arranged symmetrically along the Y axis. And the spring beams S8.1 and S8.2 are located on the Y axis, and the spring beams S8.3 and S8.4 are located on the X axis.
  • the mass M7 is arranged on the inner side of the rigid beam F5 structure, and the whole is arranged symmetrically along the X axis and the Y axis, and its surroundings are respectively connected to the rigid beam F5 through spring beams S7.1 to S7.8, of which the spring beams S7.1 and S7 .2 is arranged on the side close to the mass M1, the spring beams S7.3 and S7.4 are arranged on the side close to the mass M2, and the spring beams S7.5 and S7.6 are arranged on the side close to the mass M3, The spring beams S7.7 and S7.8 are arranged on the side close to the mass M4.
  • the spring beams S7.1 to S7.8 all adopt the same U-shaped structure, wherein the openings of the U-shaped structure of the spring beams S7.1 and S7.2 extend in the negative direction of the Y axis, and the spring beam S7.
  • the openings of the U-shaped structure of 3 and S7.4 extend in the positive direction of the Y-axis
  • the openings of the U-shaped structure of the spring beams S7.5 and S7.6 extend in the positive direction of the X-axis
  • the spring beams S7.7 and S7 are adopt the same U-shaped structure, wherein the openings of the U-shaped structure of the spring beams S7.1 and S7.2 extend in the negative direction of the Y axis, and the spring beam S7.
  • the openings of the U-shaped structure of 3 and S7.4 extend in the positive direction of the Y-axis
  • the openings of the U-shaped structure of the spring beams S7.5 and S7.6 extend in the positive direction of the X-axis
  • the opening of the U-shaped structure of 8 extends in the negative direction of the X axis, and spring beams S7.1 and S7.3, spring beams S7.2 and S7.4, spring beams S7.5 and S7.6, and spring beam S7. 7 and S7.8 are arranged symmetrically along the X axis, spring beams S7.1 and S7.2, spring beams S7.3 and S7.4, spring beams S7.5 and S7.7, spring beams S7.6 and S7. 8 are arranged symmetrically along the Y axis.
  • the bottom of the mass block M7 is provided with fixed electrodes E3.1 ⁇ E3.4, E4.1 ⁇ E4.4 (indicated by dashed lines) at intervals, and the fixed electrodes E3.1 ⁇ E3.4, E4.1 ⁇ E4.4 have the same
  • the structure of the fixed electrodes E3.1 and E3.3, the fixed electrodes E3.2 and E3.4, the fixed electrodes E4.1 and E4.2, and the fixed electrodes E4.3 and E4.4 are all arranged symmetrically along the X axis
  • the fixed electrodes E3.1 and E3.2, the fixed electrodes E3.3 and E3.4, the fixed electrodes E4.1 and E4.3, and the fixed electrodes E4.2 and E4.4 are all arranged symmetrically along the Y axis.
  • the fixed electrodes E3.1 to S3.4, E4.1 to E4.4 and the mass block M7 respectively form capacitances C E3.1 to C E3.4 and C E4.1 to C E4.4 .
  • the rigid beam F6 is arranged on the inner side of the mass M7 structure, and the whole is arranged symmetrically along the X-axis and Y-axis.
  • the rigid beam F6 is connected to the fixed anchor point A2.5 through the spring beams S9.1 and S9.2, and passes through the spring beam S9. 3 and S9.4 are connected with mass M7.
  • the fixed anchor point A2.5 is arranged on the inner side of the rigid beam F6 structure, and the whole is arranged symmetrically along the X axis and the Y axis.
  • the fixed anchor point A2.5 is located at the center position of the three-axis MEMS gyroscope in this embodiment, and the center point of the fixed anchor point A2.5 is the origin of the XYZ coordinate system in this embodiment.
  • the spring beams S9.1 to S9.4 are all straight beam structures, wherein the spring beams S9.1 and S9.2 are arranged symmetrically along the X axis, and the spring beams S9.3 and S9.4 are arranged symmetrically along the Y axis. And the spring beams S9.1 and S9.2 are located on the Y axis, and the spring beams S9.3 and S9.4 are located on the X axis.
  • the mass M5 and the mass M6 have the same structure and both have an X-axis symmetric structure, and they are arranged symmetrically along the Y-axis inside the mass M3 and the mass M4, respectively.
  • the mass M5 is connected to the mass M3 through spring beams S2.1 and S2.2, and the mass M6 is connected to the mass M4 through spring beams S2.3 and S2.4, respectively.
  • the spring beams S2.1 to S2.4 all adopt the same U-shaped structure and the opening direction is parallel to the X axis.
  • the spring beams S2.1 and S2.2, and the spring beams S2.3 and S2.4 are both Arranged symmetrically along the X axis, the spring beams S2.1 and S2.3, and the spring beams S2.2 and S2.4 are all arranged symmetrically along the Y axis.
  • the mass M5 is also connected to the fixed anchor point A3.1 through the spring beams S3.1 and S3.2, and connected to the fixed anchor point A3.2 through the spring beams S3.3 and S3.4.
  • Mass M6 is also connected to fixed anchor point A3.3 through spring beams S3.5 and S3.6, and connected to fixed anchor point A3.4 through spring beams S3.7 and S3.8.
  • the fixed anchor points A3.1 to A3.4 are all located on the X axis, and the fixed anchor points A3.1 and A3.4, and the fixed anchor points A3.2 and A3.3 are all arranged symmetrically along the Y axis.
  • the spring beams S3.1 to S3.8 are straight beam structures and are arranged parallel to the Y axis, wherein the spring beams S3.1 and S3.2, the spring beams S3.3 and S3.4, and the spring beam S3. 5 and S3.6, spring beams S3.7 and S3.8 are arranged symmetrically along the X axis, spring beams S3.1 and S3.7, spring beams S3.3 and S3.5, spring beams S3.2 and S3. 8.
  • the spring beams S3.4 and S3.6 are arranged symmetrically along the Y axis.
  • the fixed electrodes E2.1 and E2.2 and the mass M5 have a comb-tooth structure that cooperates with each other to form capacitors C E2.1 and C E2.2 respectively .
  • the fixed electrodes E2.3 and E2.4 and the mass M6 have a comb-tooth structure that cooperates with each other to form capacitors C E2.3 and C E2.4 respectively .
  • Mass M1 and M2 to drive mass corresponding to the capacitance C E1.1, C E1.4, C E1.5 , C E1.8 composition driving capacitor C_DR1, corresponding thereto capacitance C E1.9 , C E1.12 , C E1.13 , and C E1.16 constitute the driving capacitor C_DR2, and the corresponding capacitors C E1.2 , C E1.3 , C E1.6 , and C E1.7 constitute the driving detection capacitor C_DS1 , The corresponding capacitors C E1.10 , C E1.11 , C E1.14 , and C E1.15 constitute the drive detection capacitor C_DS2.
  • Mass M7 is the X-axis detection mass.
  • the capacitances C E4.1 and C E4.2 corresponding to the fixed electrodes E4.1 and E4.2 form the X-axis detection capacitance C_X1, which is combined with the fixed electrodes E4.3 and E4.4.
  • the corresponding capacitances C E4.3 and C E4.4 form the X-axis detection capacitance C_X2.
  • the mass M7 is also the Y-axis detection mass.
  • the capacitances C E3.1 and C E3.2 corresponding to the fixed electrodes E3.1 and E3.2 form the Y-axis detection capacitance C_Y1, and the fixed electrodes E3.3 and E3. 4
  • the corresponding capacitances C E3.3 and C E3.4 form the Y-axis detection capacitance C_Y2.
  • the masses M5 and M6 are the Z-axis detection masses, and the capacitances C E2.1 and C E2.4 corresponding to the fixed electrodes E2.1 and E2.4 form the Z-axis detection capacitance C_Z1, and the fixed electrodes E2.2 and E2. 3 Corresponding capacitances C E2.2 and C E2.3 form the Z-axis detection capacitance C_Z2.
  • the three-axis MEMS gyroscope of this embodiment can be divided into a driving part, an X-axis detection part, a Y-axis detection part, and a Z-axis detection part in terms of design, which are described in detail as follows:
  • FIG. 2 is a schematic diagram of the three-axis MEMS gyroscope in the driving state of this embodiment.
  • alternating voltages in opposite directions are applied to the two ends of the driving capacitors C_DR1 and C_DR2
  • alternating electrostatic forces will be generated, causing the masses M1 and M2 to reciprocate along the X axis.
  • the masses M1 and M2 are respectively connected to the rigid beams F1 and F3, F2 and F4 through the spring beams S4.1 and S4.2, so their motion will be transmitted to the rigid beams F1 to F4, and due to the rigid beams F1 to F1 to F4.
  • F4 is connected to rigid beam F5 through spring beams S6.1 to S6.8.
  • rigid beams F1 to F4 When rigid beams F1 to F4 move, they will drive rigid beam F5 to move together.
  • the rigid beam F5 is connected to the fixed anchor points A2.3, A2.4, A2.1, and A2.2 through the spring beams S8.1 to S8.4, which causes its movement direction to be restricted. Therefore, the rigid beams F1 to F4 and the rigid beam F5 can only be rotated clockwise or counterclockwise around the fixed anchor point A2.5 at the center of the structure.
  • the rigid beam F5 is connected to the mass M7 for XY-axis detection through the spring beams S7.1 ⁇ S7.8, so that the mass M7 is driven to move around the structure when the masses M1 and M2 are driven to reciprocate along the X axis. The point turns clockwise or counterclockwise.
  • the rigid beams F1 ⁇ F4 rotate clockwise or counterclockwise around the fixed anchor point A2.5, they are connected to the Z-axis Coriolis masses M3 and M4 through spring beams S5.1 and S5.2, thereby driving the masses M3 and M4 move.
  • the masses M3 and M4 are connected to the Z-axis inspection masses M5 and M6 through spring beams S2.1 ⁇ S2.4.
  • the spring beams S2.1 ⁇ S2.4 are U-shaped beams. The stiffness in the X-axis direction is great, but the stiffness in the Y-axis direction is small, so that the masses M3 and M4 can only move in the Y-axis direction.
  • the Z-axis Coriolis masses M3 and M4 and the Z-axis inspection masses M5 and M6 are decoupled by the spring beams S2.1 ⁇ S2.4, so that the Z-axis Coriolis masses M3 and M4 are in motion. It will not drive the movement of the Z-axis inspection masses M5 and M6.
  • the driving amplitude can also be calibrated according to the driving detection capacitors C_DS1 and C_DS2 in structure.
  • Fig. 3 is a schematic diagram of the three-axis MEMS gyroscope of the present embodiment during X-axis detection.
  • the XY axis proof mass M7 rotating clockwise or counterclockwise around the midpoint of the structure will receive Coriolis force around the X axis.
  • the distance from E4.1 to E4.4 changes, and the direction of the change of the distance from the fixed electrodes E4.1 and E4.2 is opposite to that of the distance from the fixed electrodes E4.3 and E4.4, so that the capacitance C_X1 C_X2 and C_X2 increase one by one and the other decreases.
  • the X-axis angular velocity input can be calculated through the subsequent differential circuit.
  • Fig. 4 is a schematic diagram of the three-axis MEMS gyroscope of the present embodiment during Y-axis detection.
  • the XY axis proof mass M7 that rotates clockwise or counterclockwise around the midpoint of the structure will be subjected to Coriolis force around the Y axis.
  • Fig. 5 is a schematic diagram of the three-axis MEMS gyroscope in this embodiment during Z-axis detection.
  • the Z-axis angular velocity is input, the Z-axis Coriolis masses M3 and M4 reciprocating along the Y-axis direction will receive the Coriolis force in the X-axis direction.
  • This causes the masses M3 and M4 to reciprocate along the X axis, and at the same time, the Z-axis inspection masses M5 and M6 are also driven to reciprocate along the X axis through the spring beams S2.1 to S2.4.
  • the direction of movement of the masses M3 and M4 in Figure 5 Take the direction of movement of the masses M3 and M4 in Figure 5 as an example (the direction indicated by the arrow).
  • the Z-axis inspection masses M5 and M6 move to both sides, they are designed to be in contact with the fixed electrodes E2.1 and E2.4
  • the increase in the distance between makes the capacitance C_Z1 decrease, and the distance from the fixed electrodes E2.2 and E2.3 decreases, so that the Z-axis detection capacitance C_Z2 increases, and vice versa.
  • the input of the Z-axis angular velocity can be calculated through the subsequent differential circuit.
  • the fixed anchor points A3.1 and A3.2 are located on both sides of the mass M5, and the spring beams S3.1 ⁇ S3.4 are connected to the two sides of the fixed anchor points A3.1 and A3.2.
  • the mass M5 is connected, and the spring beams S3.1 to S3.4 are straight spring beams, which have no elasticity in the Y-axis direction, so the translation of the mass M5 in the Y-axis direction and the rotation in the XY plane are restricted.
  • the mass M6 can only move in the X-axis direction, and its translation in the Y-axis direction and rotation in the XY plane are restricted.
  • the Z-axis Coriolis masses M3 and M4 will receive the Coriolis force in the X-axis direction. This makes the masses M3 and M4 reciprocate along the X axis, and at the same time, the Z-axis inspection masses M5 and M6 are also driven to reciprocate along the X axis through the spring beams S2.1 to S2.4.
  • the Z-axis Coriolis mass blocks M3 and M4 are connected with the rigid coupling beams F1 to F4 through spring beams S5.1 and S5.2.
  • the Z-axis Coriolis masses M3 and M4 move along the left and right sides of the X-axis, they will drive the spring beams S5.1 and S5.2 to move to the left and right.
  • the spring beams S5.1 and S5.2 is connected with rigid beams F1 to F4, and drives the connected section to move to the left and right sides.
  • the rigid beam F1 is an L-shaped rigid beam, and its L-shaped inflection point is connected to the rigid beam F5 through spring beams S6.1 and S6.5.
  • the rigid beam F5 is connected to the fixed anchor points A2.1 to A2.4 through the spring beams S8.1 ⁇ S8.4, which suppresses its translational mode in the X-axis and Y-axis directions, and thus passes through the rigid beam F5.
  • the translational movement of the rigid beam F1 connected by the spring beams S6.1 and S6.5 in the X-axis direction and the Y-axis direction is also suppressed, so that when the spring beam S5.1 is pulled to the left, it cannot move along X as a whole.
  • the axis moves horizontally, but rotates around its L-shaped inflection point. In the same way, for the rigid beams F2 to F4, in the Z-axis detection mode, a movement mode of rotating around its inflection point is generated.
  • the points connected with the spring beams S4.1 and S4.2 will move downward or upward, so that the spring beams S4.1 and S4.2 and the driving mass M1
  • the spring connected to M2 bends. Since the driving masses M1 and M2 are connected to the fixed anchor points A1.1 ⁇ A1.4 through U-shaped spring beams S1.1 ⁇ S1.4, the driving masses M1 and M2 can move freely only in the X-axis direction. Movement in the Y direction is restricted. It can be obtained that when the Z-axis detects the modal movement, the drive modal does not follow it, thereby realizing the decoupling of the Z-axis detection from the drive.
  • the Z-axis Coriolis masses M3 and M4 will receive the Coriolis force in the X-axis direction. This makes the masses M3 and M4 reciprocate along the X axis, and at the same time, the Z-axis inspection masses M5 and M6 are also driven to reciprocate along the X axis through the spring beams S2.1 to S2.4.
  • the Z-axis Coriolis mass blocks M3 and M4 are connected with the rigid coupling beams F1 to F4 through spring beams S5.1 and S5.2.
  • the Z-axis Coriolis masses M3 and M4 move along the left and right sides of the X-axis, they will drive the spring beams S5.1 and S5.2 to move to the left and right.
  • the spring beams S5.1 and S5.2 is connected with rigid beams F1 to F4, and drives the connected section to move to the left and right sides.
  • the rigid beam F1 is an L-shaped rigid beam, and its L-shaped inflection point is connected to the rigid beam F5 through spring beams S6.1 and S6.5.
  • the rigid beam F5 is connected to the fixed anchor points A2.1 ⁇ A2.4 through the spring beams S8.1 ⁇ S8.4, which suppresses its translational mode in the X-axis direction and the Y-axis direction. Therefore, the Z-axis detection mode In this state, the rigid beam F5 will not move, thus ensuring that the XY-axis inspection mass M7 connected to it does not follow the Z-axis detection modal movement, and realizes the decoupling of the Z-axis detection part from the XY-axis detection part.
  • the XY axis proof mass M7 When there is an angular velocity input around the X axis or the Y axis, the XY axis proof mass M7 will receive the Coriolis force around the X axis or the Y axis. This causes the mass M7 to make a reciprocating movement outside the XY plane around the horizontal line fixed by the spring beams S9.1 and S9.2 or S9.3 and S9.4. Due to the wide U-shaped beam design of the spring beams S7.1 ⁇ S7.8, when the end of the spring beam connected with the XY-axis proof mass M7 receives a force in the Z direction, it will be twisted and deformed, making it connected to the rigid beam F5.
  • the rigid beam F5 is connected to the fixed anchor points A2.1 to A2.4 through the spring beams S8.1 to S8.4, thereby restricting its movement in the Z direction.
  • the rigid beam F5 does not move and does not transmit its motion state, thereby realizing the decoupling of the XY-axis detection part from the Z-axis detection part and the driving part.
  • the detection part of the gyroscope In order to ensure the stability of the output of the detection part, the detection part of the gyroscope often adopts a differential structure, that is, there are two sets of capacitors. When there is an angular velocity input, one set of capacitors increases, and one set of capacitors decreases. The subsequent differential circuit obtains two sets of capacitors. The difference between the capacitances, thereby obtaining the magnitude of the input angular velocity. In order to ensure that the two groups of differential structures move in opposite directions and have the same change magnitude, a coupling structure that makes the differential structure symmetrical and ensures the consistency of its movement is required.
  • the Z-axis Coriolis masses M3 and M4 will receive the Coriolis force in the X-axis direction. This makes the masses M3 and M4 reciprocate along the X axis, and at the same time, the Z-axis inspection masses M5 and M6 are also driven to reciprocate along the X axis through the spring beams S2.1 to S2.4.
  • the Z-axis Coriolis mass blocks M3 and M4 are connected with the rigid coupling beams F1 to F4 through spring beams S5.1 and S5.2.
  • the Z-axis Coriolis masses M3 and M4 move along the left and right sides of the X-axis, they will drive the spring beams S5.1 and S5.2 to move to the left and right.
  • the spring beams S5.1 and S5.2 is connected with rigid beams F1 to F4, and drives the connected section to move to the left and right sides.
  • the rigid beam F1 is an L-shaped rigid beam, and its L-shaped inflection point is connected to the rigid beam F5 through spring beams S6.1 and S6.5.
  • the rigid beam F5 is connected to the fixed anchor points A2.1 to A2.4 through the spring beams S8.1 ⁇ S8.4, which suppresses its translational mode in the X-axis and Y-axis directions, and thus passes through the rigid beam F5.
  • the translational movement of the rigid beam F1 connected by the spring beams S6.1 and S6.5 in the X-axis direction and the Y-axis direction is also suppressed, so that when the spring beam S5.1 is pulled to the left, it cannot move along X as a whole.
  • the axis moves horizontally, but rotates around its L-shaped inflection point. In the same way, for the rigid beams F2 to F4, in the Z-axis detection mode, a movement mode of rotating around its inflection point is generated.
  • the Z-axis Coriolis masses M3 and M4 will move left and right along the X axis.
  • the connecting point of the rigid beam F1 and the spring beam S4.1 moves downwards.
  • the spring beam S4.1 can ensure that the rigid beam F2 moves in the same manner and size. It is ensured that the motions of F1 and F2 are equal in magnitude and in the same direction, and the rigid beam F2 is connected to the mass M4 through the spring beam S5.2, which limits its motion state, thereby ensuring the Z-axis Coriolis masses M3 and M4 The stability of the movement state on the left and right.
  • the rigid beams F1 and F3 are connected with the spring beam S5.1, and the design of the spring beam S5.1 can ensure that the rigid beams F1 and F3 move in the same magnitude and in the same direction.
  • the connection of the rigid beams F2 and F4 and the spring beam S5.2 can also ensure that their motions are equal in magnitude and in the same direction.
  • the movement magnitudes of the rigid beams F1 and F2, F3 and F4 in the Y-axis direction are made uniform, so as to ensure that the Z-axis Coriolis masses M3 and M4 do not produce additional movement in the Y-axis direction.
  • the rigid beam F6 is combined with the design of the spring beams S9.1 to S9.4 to achieve this. It can move along the X axis, that is, the linear rotation formed by the spring beams S9.3 and S9.4, and along the Y axis, that is, the linear rotation formed by the spring beams S9.1 and S9.2. Therefore, the X-axis inspection mass and the Y-axis inspection mass are combined into a XY-axis inspection mass M7, which effectively improves the area utilization rate of the inspection mass.

Landscapes

  • Physics & Mathematics (AREA)
  • Engineering & Computer Science (AREA)
  • General Physics & Mathematics (AREA)
  • Radar, Positioning & Navigation (AREA)
  • Remote Sensing (AREA)
  • Gyroscopes (AREA)

Abstract

一种三轴MEMS陀螺仪,其包括第一质量块(M1,M2)、第二质量块(M7)、第三质量块(M3,M4)和第四质量块(M5,M6),各质量块间通过弹簧梁和/或刚性梁连接;第一质量块(M1,M2)被设置为可沿X轴方向活动;第二质量块(M7)被设置为可绕X方向轴线、Y方向轴线和Z方向轴线转动,并且当第一质量块(M1,M2)沿X轴方向活动时驱动第二质量块(M7)绕Z方向轴线转动;第三质量块(M3,M4)被设置为可沿X轴方向和Y轴方向活动,并且当第一质量块(M1,M2)沿X轴方向活动时驱动第三质量块(M3,M4)沿Y轴方向活动;第四质量块(M5,M6)被设置为可沿X轴方向活动,并且当第三质量块(M3,M4)沿X轴方向活动时驱动第四质量块(M5,M6)也沿X轴方向活动。

Description

一种三轴MEMS陀螺仪 技术领域
本发明涉及MEMS领域,尤其涉及一种三轴MEMS陀螺仪。
背景技术
随着各类消费电子产品逐渐向便携、轻便化发展的趋势,市场对体积更小的陀螺仪芯片的需求日益迫切。面向此市场的MEMS陀螺仪主要为电容谐振式陀螺仪,即通过驱动电容机械结构使质量块在驱动模态上振动,在通过检测电容检测由于科里奥利力导致的质量块在检测方向的运动引起的电容变化。
早期的三轴陀螺仪机械部分由三个独立的X、Y、Z单轴陀螺仪构成,每个单轴陀螺仪结构中需要分别包含独立的质量块和驱动、检测结构,并且相应的ASIC电路中需要采用三套独立的驱动电路分别驱动,导致最终三轴陀螺芯片体积较大。
目前的三轴陀螺,以三轴共享驱动部分为主,以一套驱动部件带动三轴的检测部分,从而节省了MEMS陀螺仪的总面积,降低了芯片的成品,也降低了对电路功耗的要求。
现有产品所面临的一些问题包括驱动部分和各个检测部分不能完全解耦,导致驱动或检测部件在运动时,会对其他运动模态产生影响,以及检测质量块被分为X轴、Y轴和Z轴三个部分,导致检测质量块面积利用率不高。
发明内容
鉴于现有技术中的问题,本发明提供一种三轴MEMS陀螺仪,其包括:
第一质量块,所述第一质量块被设置为可沿X轴方向活动;
第二质量块,所述第二质量块被设置为可绕X方向轴线、Y方向轴线和Z方向轴线转动,并且当所述第一质量块沿X轴方向活动时驱动所述第二质量块绕所述Z方向轴线转动;
第三质量块,所述第三质量块被设置为可沿X轴方向和Y轴方向活动,并且当所述第一质量块沿X轴方向活动时驱动所述第三质量块沿Y轴方向活动;
第四质量块,所述第四质量块被设置为可沿X轴方向活动,并且当所述第三质量块沿X轴方向活动时驱动所述第四质量块也沿X轴方向活动;
各质量块间通过弹簧梁和/或刚性梁连接。
进一步地,还包括第一刚性梁,所述第一刚性梁通过弹簧梁分别与所述第一质量块和所述第三质量块相连接,并且被设置为当所述第一质量块沿X轴方向活动时带动所述第一刚性梁活动,由所述第一刚性梁带动所述第三质量块沿Y轴方向活动。
进一步地,所述第一刚性梁包括若干子梁;所述第一刚性梁与所述第一质量块和所述第三质量块的任一连接处被设置为通过同一弹簧梁连接两段所述子梁和所述第一质量块、通过同一弹簧梁连接两段所述子梁和所述第三质量块,并且所述若干子梁依次首尾相连。
进一步地,所述三轴MEMS陀螺仪还包括第二刚性梁,所述第二刚性梁通过弹簧梁分别与所述第二质量块和所述第一刚性梁相连接,并且被设置为当所述第一质量块沿X轴方向活动时带动所述第一刚性梁绕所述Z方向轴线转动,由所述第一刚性梁带动所述第二刚性梁绕所述Z方向轴线转动,由所述第二刚性梁带动所述第二质量块绕所述Z方向轴线转动。
进一步地,所述第二刚性梁还通过弹簧梁与固定锚点相连接,并被设置为限制所述第二刚性梁沿X轴方向和Y轴方向活动。
进一步地,所述三轴MEMS陀螺仪还包括第三刚性梁,所述第三刚性梁通过弹簧梁分别与所述第二质量块和固定锚点相连接,所述X方向轴线和所述Y方向轴线由连接所述第三刚性梁的弹簧梁所限定,从而使所述第二质量块适于绕所述X方向轴线和所述Y方向轴线转动。
进一步地,所述第三质量块和所述第四质量块通过弹簧梁相连接,并且被设置为当所述第三质量块沿X轴方向活动时带动所述第四质量块也沿X轴方向活动。
进一步地,所述第四质量块还通过弹簧梁与固定锚点相连接,并被设置为使所述第四质量块可沿X轴方向活动且被限制沿Y轴方向活动。
进一步地,还包括第一固定电极和第二固定电极,所述第一固定电极和所述第二固定电极均与所述第二质量块相配合形成相应的检测电容,分别用于所述第二质量块绕所述X方向轴线和所述Y方向轴线转动时的检测。
进一步地,所述三轴MEMS陀螺仪还包括第三固定电极,所述第三固定电极与所述第四质量块相配合形成检测电容。
本发明的三轴MEMS陀螺仪具有以下技术效果:
1、通过刚性梁和弹簧梁的组合,实现各个结构之间的解耦,包括驱动部分和Z轴检测部分之间的解耦,XY轴检测部分与Z轴检测部分之间的解耦。
2、实现Z轴对称结构的耦合。在保证驱动部分,X轴检测和Y轴检测方向运动的同时,Z轴检测在整体结构两侧的两个部分可以实现耦合,从而保证Z轴差分检测运动的一致性,降低由于运动不一致产生的干扰和误差。
3、X轴检测部分和Y轴检测部分的质量块合并,从而减少质量块面积的浪费,提高了整体的灵敏度。
以下将结合附图对本发明的构思、具体结构及产生的技术效果作进一步说明,以充分地了解本发明的目的、特征和效果。
附图说明
图1是本发明的一个较佳实施例的结构示意图;
图2是图1中三轴MEMS陀螺仪驱动状态时的示意图;
图3是图1中三轴MEMS陀螺仪X轴检测时的示意图;
图4是图1中三轴MEMS陀螺仪Y轴检测时的示意图;
图5是图1中三轴MEMS陀螺仪Z轴检测时的示意图。
具体实施方式
在本发明的实施方式的描述中,需要理解的是,术语“上”、“下”、“前”、“后”、“左”、“右”、“垂直”、“水平”、“顶”、“底”、“内”、“外”、“顺时针”、“逆时针”等指示的方位或位置关系为基于附图所示的方位或位置关系,仅是为了便于描述本发明和简化描述,而不是指示或暗示所指的装置或元件必须具有特定的方位、以特定的方位构造和操作,因此不能理解为对发明的限制。附图为原理图或者概念图,各部分厚度与宽度之间的关系,以及各部分之间的比例关系等等,与其实际值并非完全一致。
图1是本发明的一个较佳实施例的三轴MEMS陀螺仪的结构示意图,陀螺仪整体沿X轴和Y轴对称布局(图1中示出了XYZ三轴的方向,坐标的原点位于本实施例的三轴MEMS陀螺仪的中心点),其中包括固定锚点A1.1~A1.4、固定锚点A2.1~A2.5、固定锚点A3.1~A3.4、弹簧梁S1.1~S1.4、弹簧梁S2.1~S2.4、弹簧梁S3.1~S3.8、弹簧梁S4.1~S4.2、弹簧梁S5.1~S5.2、弹簧梁S6.1~S6.8、弹簧梁S7.1~S7.8、弹簧梁S8.1~S8.4、弹簧梁S9.1~S9.4、刚性梁F1~F6、质量块M1~M7、固定电极E1.1~E1.16、固定电极E2.1~E2.4、固定电极E3.1~E3.4、固定电极E4.1~E4.4,其中固定电极E3.1~E3.4和固定电极E4.1~E4.4间隔地设置在质量块M7的底部(图1所示平面向图纸内延伸的方向),故采用虚线表示。
固定锚点A1.1~A1.4、固定锚点A2.1~A2.5、固定锚点A3.1~A3.4、弹簧梁S1.1~S1.4、弹簧梁S2.1~S2.4、弹簧梁S3.1~S3.8、弹簧梁S4.1~S4.2、弹簧梁S5.1~S5.2、弹簧梁S6.1~S6.8、弹簧梁S7.1~S7.8、弹簧梁S8.1~S8.4、弹簧梁S9.1~S9.4、刚性梁F1~F6和质量块M1~M7相互连接,整体组成了陀螺仪的可动 部件PM。
质量块M1和质量块M2结构相同,沿X轴对称布置,质量块M1分别通过弹簧梁S1.1和S1.2与固定锚点A1.1和A1.2相连接;固定电极E1.1~E1.4、E1.9~E1.12与质量块M1间具有相互配合的梳齿结构,分别构成电容C E1.1~C E1.4、C E1.9~C E1.12
质量块M2分别通过弹簧梁S1.3和S1.4与固定锚点A1.3和A1.4相连接;固定电极E1.5~E1.8、E1.13~E1.16与质量块M2间具有相互配合的梳齿结构,分别构成电容C E1.5~C E1.8、C E1.13~C E1.16
本实施例中,弹簧梁S1.1~S1.4均采用相同的U型结构且开口方向与Y轴平行,其中弹簧梁S1.1和S1.3、弹簧梁S1.2和S1.4均沿X轴对称布置,弹簧梁S1.1和S1.2、弹簧梁S1.3和S1.4均沿Y轴对称布置。固定锚点A1.1和A1.3、固定锚点A1.2和A1.4均沿X轴对称布置,固定锚点A1.1和A1.2、固定锚点A1.3和A1.4均沿Y轴对称布置。
刚性梁F1~F4结构相同,并且都具有L型结构。刚性梁F1、F2与刚性梁F3、F4沿X轴对称布置,刚性梁F1、F3与刚性梁F2、F4沿Y轴对称布置。刚性梁F1与F2、F2与F3、F3与F4、F4与F1分别通过弹簧梁S4.1、S5.2、S4.2、S5.1相连接。弹簧梁S4.1、S4.2结构相同,沿X轴对称布置,本实施例中弹簧梁S4.1、S4.2采用“T”型和“山”型的组合结构,同时弹簧梁S4.1还连接质量块M1,弹簧梁S4.2还连接质量块M2。
弹簧梁S5.1、S5.2结构相同,沿Y轴对称布置,本实施例中弹簧梁S5.1、S5.2采用“山”型结构,同时弹簧梁S5.1还连接质量块M3,弹簧梁S5.2还连接质量块M4。质量块M3和质量块M4结构相同且都是X轴对称结构,两者沿Y轴对称地布置于刚性梁F1~F4的两侧。
刚性梁F5设置在刚性梁F1~F4结构的内侧,其大致结构为一中空四边形,整体沿X轴和Y轴对称设置。刚性梁F5通过弹簧梁S6.1和S6.5与刚性梁F1相连接、通过弹簧梁S6.2和S6.7与刚性梁F2相连接、通过弹簧梁S6.3和S6.6与刚性梁F3相连接、通过弹簧梁S6.4和S6.8与刚性梁F4相连接。本实施例中,弹簧梁S6.1~S6.8均为直梁结构,其中弹簧梁S6.1~S6.4平行于X轴布置,弹簧梁S6.5~S6.8平行于Y轴布置,其中弹簧梁S6.1和S6.3、弹簧梁S6.2和S6.4、弹簧梁S6.5和S6.6、弹簧梁S6.7和S6.8均沿X轴对称布置,弹簧梁S6.1和S6.2、弹簧梁S6.3和S6.4、弹簧梁S6.5和S6.7、弹簧梁S6.6和S6.8均沿Y轴对称布置。
刚性梁F5还通过弹簧梁S8.1~S8.4分别与固定锚点2.1~A2.4相连接,固定锚点A2.1和A2.2位于X轴上,固定锚点A2.3和A2.4位于Y轴上,并且固定锚点A2.3和A2.4沿X轴对称布置,固定锚点A2.1和A2.2沿Y轴对称布置。本实施例中弹簧梁S8.1~S8.4均为直梁结构,其中弹簧梁S8.1和S8.2沿X轴对称布置,弹簧梁S8.3和S8.4沿Y轴对称布置,并且弹簧梁S8.1和S8.2位于Y轴上,弹簧 梁S8.3和S8.4位于X轴上。
质量块M7设置在刚性梁F5结构的内侧,整体沿X轴和Y轴对称设置,其四周分别通过弹簧梁S7.1~S7.8与刚性梁F5相连接,其中弹簧梁S7.1和S7.2布置在靠近质量块M1的一侧,弹簧梁S7.3和S7.4布置在靠近质量块M2的一侧,弹簧梁S7.5和S7.6布置在靠近质量块M3的一侧,弹簧梁S7.7和S7.8布置在靠近质量块M4的一侧。本实施例中,弹簧梁S7.1~S7.8均采用相同的U型结构,其中弹簧梁S7.1和S7.2的U型结构的开口沿Y轴的负方向延伸,弹簧梁S7.3和S7.4的U型结构的开口沿Y轴的正方向延伸,弹簧梁S7.5和S7.6的U型结构的开口沿X轴的正方向延伸,弹簧梁S7.7和S7.8的U型结构的开口沿X轴的负方向延伸,并且弹簧梁S7.1和S7.3、弹簧梁S7.2和S7.4、弹簧梁S7.5和S7.6、弹簧梁S7.7和S7.8均沿X轴对称布置,弹簧梁S7.1和S7.2、弹簧梁S7.3和S7.4、弹簧梁S7.5和S7.7、弹簧梁S7.6和S7.8均沿Y轴对称布置。
质量块M7的底部间隔地设置有固定电极E3.1~E3.4、E4.1~E4.4(虚线表示),固定电极E3.1~E3.4、E4.1~E4.4具有相同的结构,其中固定电极E3.1和E3.3、固定电极E3.2和E3.4、固定电极E4.1和E4.2、固定电极E4.3和E4.4均沿X轴对称布置,固定电极E3.1和E3.2、固定电极E3.3和E3.4、固定电极E4.1和E4.3、固定电极E4.2和E4.4均沿Y轴对称布置。固定电极E3.1~S3.4、E4.1~E4.4与质量块M7相互分别构成电容C E3.1~C E3.4、C E4.1~C E4.4
刚性梁F6设置在质量块M7结构的内侧,整体沿X轴和Y轴对称设置,刚性梁F6通过弹簧梁S9.1和S9.2与固定锚点A2.5相连接,通弹簧梁S9.3和S9.4与质量块M7相连接。
固定锚点A2.5设置在刚性梁F6结构的内侧,整体沿X轴和Y轴对称设置。固定锚点A2.5位于本实施例的三轴MEMS陀螺仪的中心位置,固定锚点A2.5的中心点即本实施例中XYZ坐标系的原点。
本实施例中弹簧梁S9.1~S9.4均为直梁结构,其中弹簧梁S9.1和S9.2沿X轴对称布置,弹簧梁S9.3和S9.4沿Y轴对称布置,并且弹簧梁S9.1和S9.2位于Y轴上,弹簧梁S9.3和S9.4位于X轴上。
质量块M5和质量块M6结构相同且都是X轴对称结构,两者沿Y轴对称地分别布置于质量块M3和质量块M4的内侧。质量块M5分别通过弹簧梁S2.1和S2.2与质量块M3相连接,质量块M6分别通过弹簧梁S2.3和S2.4与质量块M4相连接。本实施例中,弹簧梁S2.1~S2.4均采用相同的U型结构且开口方向与X轴平行,其中弹簧梁S2.1和S2.2、弹簧梁S2.3和S2.4均沿X轴对称布置,弹簧梁S2.1和S2.3、弹簧梁S2.2和S2.4均沿Y轴对称布置。
质量块M5还通过弹簧梁S3.1和S3.2与固定锚点A3.1相连接,通过弹簧梁S3.3和S3.4与固定锚点A3.2相连接。质量块M6还通过弹簧梁S3.5和S3.6与固 定锚点A3.3相连接,通过弹簧梁S3.7和S3.8与固定锚点A3.4相连接。固定锚点A3.1~A3.4均位于X轴上,并且固定锚点A3.1和A3.4、固定锚点A3.2和A3.3均沿Y轴对称布置。本实施例中弹簧梁S3.1~S3.8均为直梁结构且平行于Y轴布置,其中弹簧梁S3.1和S3.2、弹簧梁S3.3和S3.4、弹簧梁S3.5和S3.6、弹簧梁S3.7和S3.8均沿X轴对称布置,弹簧梁S3.1和S3.7、弹簧梁S3.3和S3.5、弹簧梁S3.2和S3.8、弹簧梁S3.4和S3.6均沿Y轴对称布置。
固定电极E2.1和E2.2与质量块M5间具有相互配合的梳齿结构,分别构成电容C E2.1和C E2.2。固定电极E2.3和E2.4与质量块M6间具有相互配合的梳齿结构,分别构成电容C E2.3和C E2.4
本实施例的三轴MEMS陀螺仪的电位构成如下:
质量块M1和M2为驱动质量块,与之相对应的电容C E1.1、C E1.4、C E1.5、C E1.8组成驱动电容C_DR1,与之相对应的电容C E1.9、C E1.12、C E1.13、C E1.16组成驱动电容C_DR2,与之相对应的电容C E1.2、C E1.3、C E1.6、C E1.7组成驱动检测电容C_DS1,与之相对应的电容C E1.10、C E1.11、C E1.14、C E1.15组成驱动检测电容C_DS2。
质量块M7为X轴的检测质量块,与固定电极E4.1和E4.2对应的电容C E4.1和C E4.2组成X轴检测电容C_X1,与固定电极E4.3和E4.4对应的电容C E4.3和C E4.4组成X轴检测电容C_X2。
质量块M7同时也是Y轴的检测质量块,与固定电极E3.1和E3.2对应的电容C E3.1和C E3.2组成Y轴检测电容C_Y1,与固定电极E3.3和E3.4对应的电容C E3.3和C E3.4组成Y轴检测电容C_Y2。
质量块M5和M6为Z轴检测质量块,与固定电极E2.1和E2.4对应的电容C E2.1和C E2.4组成Z轴检测电容C_Z1,与固定电极E2.2和E2.3对应的电容C E2.2和C E2.3组成Z轴检测电容C_Z2。
本实施例的三轴MEMS陀螺仪从功能来看,设计上可分为驱动部分、X轴检测部分、Y轴检测部分和Z轴检测部分,详述如下:
图2是本实施例的三轴MEMS陀螺仪驱动状态时的示意图。当在驱动电容C_DR1和C_DR2的两端施加方向相反的交变电压时,会产生交变静电力,使得质量块M1和M2会沿X轴做往复运动。同时,质量块M1和M2通过弹簧梁S4.1、S4.2分别与刚性梁F1和F3、F2和F4相连接,因此会把其运动传递给刚性梁F1~F4,而由于刚性梁F1~F4通过弹簧梁S6.1~S6.8与刚性梁F5相连接,在刚性梁F1~F4运动时,会带动刚性梁F5一起运动。而刚性梁F5分别通过弹簧梁S8.1~S8.4与固定锚点A2.3、A2.4、A2.1、A2.2相连接,导致其运动方向受到限制。从而使得刚性梁F1~F4和刚性梁F5,仅可以结构中点为圆心,即绕固定锚点A2.5顺时针或逆时针方向转动。刚性梁F5通过弹簧梁S7.1~S7.8与用于XY轴检测的质量块M7相连接,从而在驱动质量块M1和M2沿X轴往复运动时带动质量块M7,使其绕 结构中点顺时针或逆时针方向转动。
刚性梁F1~F4在绕固定锚点A2.5顺时针或逆时针方向转动时,通过弹簧梁S5.1和S5.2与Z轴科氏力质量块M3和M4相连接,从而带动质量块M3和M4运动,同时质量块M3和M4通过弹簧梁S2.1~S2.4与Z轴检测质量块M5和M6相连接,弹簧梁S2.1~S2.4为U型梁设计,从而其在X轴方向刚度很大,而在Y轴方向刚度较小,使得质量块M3和M4仅可沿Y轴方向运动。而Z轴科氏力质量块M3和M4以及Z轴检测质量块M5和M6,通过弹簧梁S2.1~S2.4的解耦,使得Z轴科氏力质量块M3和M4在其运动时并不会带动Z轴检测质量块M5和M6的运动。
在一种更优的方式中,为了能够准确地控制驱动幅度,结构上还可以根据驱动检测电容C_DS1和C_DS2来标定驱动的幅度。
图3是本实施例的三轴MEMS陀螺仪X轴检测时的示意图。当有绕X轴角速度输入时,绕结构中点顺时针或逆时针方向转动的XY轴检测质量块M7,会受到绕X轴方向的科里奥利力。这使得质量块M7会围绕整个结构的Y中轴线,即弹簧梁S8.1、S8.2、S9.1和S9.2限定的水平线做XY平面外的往复转动运动,从而使其与固定电极E4.1~E4.4的距离发生变化,其中相对固定电极E4.1和E4.2的距离值变化方向与相对固定电极E4.3和E4.4的距离值变化方向相反,从而使得电容C_X1和C_X2一个增大一个减小,通过后续差分电路可计算出X轴角速度输入。
图4是本实施例的三轴MEMS陀螺仪Y轴检测时的示意图。当有绕Y轴角速度输入时,绕结构中点顺时针或逆时针方向转动的XY轴检测质量块M7,会受到绕Y轴方向的科里奥利力。这使得质量块M7会围绕整个结构的Y中轴线,即弹簧梁S8.3、S8.4、S9.3和S9.4限定的水平线做XY平面外的往复转动运动,从而使其与固定电极E3.1~E3.4的距离发生变化,其中相对固定电极E3.1和E3.2的距离值变化方向与相对固定电极E3.3和E3.4的距离值变化方向相反,从而使得电容C_Y1和C_Y2一个增大一个减小,通过后续差分电路可计算出Y轴角速度输入。
图5是本实施例的三轴MEMS陀螺仪Z轴检测时的示意图。当有Z轴角速度输入时,沿Y轴方向做往复运动的Z轴科氏力质量块M3和M4会受到X轴方向的科里奥利力。这使得质量块M3和M4会沿X轴方向做往复运动,同时通过弹簧梁S2.1~S2.4带动Z轴检测质量块M5和M6也沿着X轴方向做往复运动。以图5中质量块M3和M4的运动方向为例(箭头指示的方向),当Z轴检测质量块M5和M6向两侧运动时,其被设计为与固定电极E2.1和E2.4的距离增大,使得电容C_Z1减小,并且与固定电极E2.2和E2.3的距离减小,使得Z轴检测电容C_Z2增大,反之亦然。通过后续差分电路可计算Z轴角速度的输入。
以下对于本实施例的实现方式和效果做进一步说明。
一、实现驱动部分对Z轴检测部分的解耦。
为了保证结构和输出的稳定性和一致性,在驱动或检测模态的任一运动状态下,其他结构部分不希望出现被影响的运动状态。所以在驱动和检测的各个部分之间,实现运动上的解耦是非常重要的。
在驱动模态下,刚性梁F1~F4在绕固定锚点A2.5顺时针或逆时针方向转动时,通过弹簧梁S5.1和S5.2与Z轴科氏力质量块M3和M4相连接,从而带动质量块M3和M4的运动,而质量块M3和M4通过弹簧梁S2.1~S2.4与Z轴检测质量块M5和M6相连接。Z轴检测质量块M5和M6通过弹簧梁S3.1~S3.8与固定锚点A2.1~A2.4相连接。以质量块M5为例,固定锚点A3.1和A3.2位于质量块M5的两侧,而弹簧梁S3.1~S3.4在固定锚点A3.1和A3.2的两侧与质量块M5相连接,弹簧梁S3.1~S3.4为直弹簧梁,在Y轴方向没有弹性,所以限制了质量块M5在Y轴方向的平动及在XY平面内的转动。
同理,对质量块M6也仅能产生在X轴方向的运动,其Y轴方向的平动及XY平面内的转动被限制。
通过以上描述,在驱动模态下,在Z轴科氏力质量块M3和M4及弹簧梁S2.1~S2.4、弹簧梁S3.1~S3.8的作用下,实现了驱动模块对Z轴检测质量块的解耦,即在驱动模态下,Z轴检测质量块不会发生运动。
二、实现Z轴检测部分对驱动部分的解耦。
在Z轴检测模态下,Z轴科氏力质量块M3和M4会受到X轴方向的科里奥利力。这使得质量块M3和M4会沿X轴方向做往复运动,同时通过弹簧梁S2.1~S2.4带动Z轴检测质量块M5和M6也沿着X轴做往复运动。Z轴科氏力质量块M3和M4通过弹簧梁S5.1和S5.2与刚性耦合梁F1~F4相连接。如图5所示,当Z轴科氏力质量块M3和M4沿X轴向左右两侧运动时,会带动弹簧梁S5.1和S5.2向左右两侧运动,弹簧梁S5.1和S5.2与刚性梁F1~F4连接,并带动其连接的一段向左右两侧运动。以刚性梁F1为例,刚性梁F1为L型刚性梁,且其L型拐点部分通过弹簧梁S6.1和S6.5与刚性梁F5相连接。而刚性梁F5通过弹簧梁S8.1~S8.4与固定锚点A2.1~A2.4相连接,抑制了其在X轴方向和Y轴方向的平动模式,从而与刚性梁F5通过弹簧梁S6.1和S6.5相连接的刚性梁F1在X轴方向和Y轴方向的平动也被抑制,使其在受到弹簧梁S5.1的向左的拉力时,无法整体沿X轴水平运动,而是绕其L型拐点转动。同理,对于刚性梁F2~F4,在Z轴检测模态下,均产生绕其拐点转动的运动方式。在刚性梁F1~F4转动的作用下,会带动其与弹簧梁S4.1和S4.2相连接的点向下或向上运动,从而使弹簧梁S4.1和S4.2与驱动质量块M1和M2相连接的弹簧产生弯曲。由于驱动质量块M1和M2通过U型的弹簧梁S1.1~S1.4与固定锚点A1.1~A1.4相连接,使得驱动质量块M1和M2仅在X轴方向可自由运动,而在Y方向运动受到限制。由此可得到在Z轴检测模态运动时,驱动模态不会随之运动,从而实现了Z轴检测对驱动的解耦。
三、实现Z轴检测部分对XY轴检测部分的解耦。
在Z轴检测模态下,Z轴科氏力质量块M3和M4会受到X轴方向的科里奥利力。这使得质量块M3和M4会沿X轴方向做往复运动,同时通过弹簧梁S2.1~S2.4带动Z轴检测质量块M5和M6也沿着X轴做往复运动。Z轴科氏力质量块M3和M4通过弹簧梁S5.1和S5.2与刚性耦合梁F1~F4相连接。如图5所示,当Z轴科氏力质量块M3和M4沿X轴向左右两侧运动时,会带动弹簧梁S5.1和S5.2向左右两侧运动,弹簧梁S5.1和S5.2与刚性梁F1~F4连接,并带动其连接的一段向左右两侧运动。以刚性梁F1为例,刚性梁F1为L型刚性梁,且其L型拐点部分通过弹簧梁S6.1和S6.5与刚性梁F5相连接。而刚性梁F5通过弹簧梁S8.1~S8.4与固定锚点A2.1~A2.4相连接,抑制了其在X轴方向和Y轴方向的平动模式,因此在Z轴检测模态下,刚性梁F5并不会产生运动,从而保证了与其连接的XY轴检测质量块M7不跟随Z轴检测模态运动,实现了Z轴检测部分对XY轴检测部分的解耦。
四、实现XY轴检测部分对驱动部分和Z轴检测部分的解耦。
当有绕X轴或Y轴角速度输入时,XY轴检测质量块M7会受到绕X轴或Y轴方向的科里奥利力。这使得质量块M7会围绕弹簧梁S9.1和S9.2或S9.3和S9.4固定的水平线做XY平面外的往复转动运动。由于弹簧梁S7.1~S7.8的宽U型梁设计,在其与XY轴检测质量块M7相连接的一端受到向Z方向力时,会产生扭转变形,使其与刚性梁F5连接的另一端并不会产生明显的运动,且刚性梁F5通过弹簧梁S8.1~S8.4与固定锚点A2.1~A2.4连接,从而限制了其在Z方向的运动。使得在X轴或Y轴的检测状态下,刚性梁F5并未产生运动,并未将其运动状态传导出去,从而实现了XY轴检测部分对Z轴检测部分及驱动部分的解耦。
五、实现Z轴检测部分对称结构的耦合。
为保证检测部分输出的稳定,陀螺仪的检测部分常采用差分结构,即存在两组电容,在有角速度输入时,一组电容增大,一组电容减小,通过后续差分电路得出两组电容的差值,从而得出输入角速度的大小。为保证两组差分结构运动方向相反,变化大小相同,即需要使差分结构对称且保证其运动一致性的耦合结构。
在Z轴检测模态下,Z轴科氏力质量块M3和M4会受到X轴方向的科里奥利力。这使得质量块M3和M4会沿X轴方向做往复运动,同时通过弹簧梁S2.1~S2.4带动Z轴检测质量块M5和M6也沿着X轴做往复运动。Z轴科氏力质量块M3和M4通过弹簧梁S5.1和S5.2与刚性耦合梁F1~F4相连接。如图5所示,当Z轴科氏力质量块M3和M4沿X轴向左右两侧运动时,会带动弹簧梁S5.1和S5.2向左右两侧运动,弹簧梁S5.1和S5.2与刚性梁F1~F4连接,并带动其连接的一段向左右两侧运动。以刚性梁F1为例,刚性梁F1为L型刚性梁,且其L型拐点部分通过弹簧梁S6.1和S6.5与刚性梁F5相连接。而刚性梁F5通过弹簧梁S8.1~S8.4与 固定锚点A2.1~A2.4相连接,抑制了其在X轴方向和Y轴方向的平动模式,从而与刚性梁F5通过弹簧梁S6.1和S6.5相连接的刚性梁F1在X轴方向和Y轴方向的平动也被抑制,使其在受到弹簧梁S5.1的向左的拉力时,无法整体沿X轴水平运动,而是绕其L型拐点转动。同理,对于刚性梁F2~F4,在Z轴检测模态下,均产生绕其拐点转动的运动方式。在Z轴检测模态下,Z轴科氏力质量块M3和M4会沿X轴方向产生左右运动。如图5所示,在质量块M3向左运动时,刚性梁F1与弹簧梁S4.1连接点产生向下运动,通过弹簧梁S4.1可保证刚性梁F2产生同样方式和大小的运动,保证了F1与F2的运动大小相等且方向相同,而刚性梁F2通过弹簧梁S5.2与质量块M4相连接,限制了其运动状态,从而保证了Z轴科氏力质量块M3和M4的运动状态的在左右的稳定性。在质量块M3向左运动时,刚性梁F1和F3与弹簧梁S5.1相连接,而弹簧梁S5.1的设计可以保证刚性梁F1和F3的运动大小相等且方向相同。同理,刚性梁F2和F4与弹簧梁S5.2的连接,也可以保证其运动大小相等且方向相同。使得刚性梁F1和F2、F3和F4在Y轴方向上的运动大小一致,从而保证Z轴科氏力质量块M3和M4在Y轴方向上不产生额外的运动。由此可以得出,通过刚性梁F1~F4的作用,使得Z轴科氏力质量块在有Z轴角速度输入的情况下,仅产生沿X轴方向的运动,且大小相等方向相反。从而带动Z轴检测质量块M5和M6,使其运动方式完全对称,达到耦合的效果。
此外,本实施例的三轴MEMS陀螺仪的检测部分中,为了能够更好的缩小芯片尺寸,有效的降低面积,通过刚性梁F6配合弹簧梁S9.1~S9.4的设计,实现了其既可沿X轴,即弹簧梁S9.3和S9.4构成的直线转动,又可沿Y轴,即弹簧梁S9.1和S9.2构成的直线转动的运动方式。从而将X轴检测质量块和Y轴检测质量块合并为一块XY轴检测质量块M7,有效地提高了检测质量块的面积利用率。
以上详细描述了本发明的较佳具体实施例。应当理解,本领域的普通技术人员无需创造性劳动就可以根据本发明的构思做出诸多修改和变化。因此,凡本技术领域中技术人员依本发明的构思在现有技术的基础上通过逻辑分析、推理或者有限的实验可以得到的技术方案,皆应在由权利要求书所确定的保护范围内。

Claims (10)

  1. 一种三轴MEMS陀螺仪,其特征在于,包括:
    第一质量块,所述第一质量块被设置为可沿X轴方向活动;
    第二质量块,所述第二质量块被设置为可绕X方向轴线、Y方向轴线和Z方向轴线转动,并且当所述第一质量块沿X轴方向活动时驱动所述第二质量块绕所述Z方向轴线转动;
    第三质量块,所述第三质量块被设置为可沿X轴方向和Y轴方向活动,并且当所述第一质量块沿X轴方向活动时驱动所述第三质量块沿Y轴方向活动;
    第四质量块,所述第四质量块被设置为可沿X轴方向活动,并且当所述第三质量块沿X轴方向活动时驱动所述第四质量块也沿X轴方向活动;
    各质量块间通过弹簧梁和/或刚性梁连接。
  2. 如权利要求1所述的三轴MEMS陀螺仪,其特征在于,还包括第一刚性梁,所述第一刚性梁通过弹簧梁分别与所述第一质量块和所述第三质量块相连接,并且被设置为当所述第一质量块沿X轴方向活动时带动所述第一刚性梁活动,由所述第一刚性梁带动所述第三质量块沿Y轴方向活动。
  3. 如权利要求2所述的三轴MEMS陀螺仪,其特征在于,所述第一刚性梁包括若干子梁;所述第一刚性梁与所述第一质量块和所述第三质量块的任一连接处被设置为通过同一弹簧梁连接两段所述子梁和所述第一质量块、通过同一弹簧梁连接两段所述子梁和所述第三质量块,并且所述若干子梁依次首尾相连。
  4. 如权利要求2所述的三轴MEMS陀螺仪,其特征在于,还包括第二刚性梁,所述第二刚性梁通过弹簧梁分别与所述第二质量块和所述第一刚性梁相连接,并且被设置为当所述第一质量块沿X轴方向活动时带动所述第一刚性梁绕所述Z方向轴线转动,由所述第一刚性梁带动所述第二刚性梁绕所述Z方向轴线转动,由所述第二刚性梁带动所述第二质量块绕所述Z方向轴线转动。
  5. 如权利要求4所述的三轴MEMS陀螺仪,其特征在于,所述第二刚性梁还通过弹簧梁与固定锚点相连接,并被设置为限制所述第二刚性梁沿X轴方向和Y轴方向活动。
  6. 如权利要求5所述的三轴MEMS陀螺仪,其特征在于,还包括第三刚性梁,所述第三刚性梁通过弹簧梁分别与所述第二质量块和固定锚点相连接,所述X方向轴线和所述Y方向轴线由连接所述第三刚性梁的弹簧梁所限定,从而使所述第二质量块适于绕所述X方向轴线和所述Y方向轴线转动。
  7. 如权利要求1所述的三轴MEMS陀螺仪,其特征在于,所述第三质量块和所述第四质量块通过弹簧梁相连接,并且被设置为当所述第三质量块沿X轴方向活动时带动所述第四质量块也沿X轴方向活动。
  8. 如权利要求7所述的三轴MEMS陀螺仪,其特征在于,所述第四质量块还通过弹簧梁与固定锚点相连接,并被设置为使所述第四质量块可沿X轴方向活动且被限制沿Y轴方向活动。
  9. 如权利要求1所述的三轴MEMS陀螺仪,其特征在于,还包括第一固定电极和第二固定电极,所述第一固定电极和所述第二固定电极均与所述第二质量块相配合形成相应的检测电容,分别用于所述第二质量块绕所述X方向轴线和所述Y方向轴线转动时的检测。
  10. 如权利要求1所述的三轴MEMS陀螺仪,其特征在于,还包括第三固定电极,所述第三固定电极与所述第四质量块相配合形成检测电容。
PCT/CN2020/082892 2019-12-06 2020-04-02 一种三轴mems陀螺仪 WO2021109378A1 (zh)

Priority Applications (2)

Application Number Priority Date Filing Date Title
EP20896595.4A EP4060287A4 (en) 2019-12-06 2020-04-02 TRI-AXIS MEMS GYROSCOPE
US17/781,724 US11639852B2 (en) 2019-12-06 2020-04-02 Three-axis microelectromechanical system (MEMS) gyroscope

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201911240938.XA CN110926445B (zh) 2019-12-06 2019-12-06 一种三轴mems陀螺仪
CN201911240938.X 2019-12-06

Publications (1)

Publication Number Publication Date
WO2021109378A1 true WO2021109378A1 (zh) 2021-06-10

Family

ID=69858143

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2020/082892 WO2021109378A1 (zh) 2019-12-06 2020-04-02 一种三轴mems陀螺仪

Country Status (4)

Country Link
US (1) US11639852B2 (zh)
EP (1) EP4060287A4 (zh)
CN (1) CN110926445B (zh)
WO (1) WO2021109378A1 (zh)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110926445B (zh) * 2019-12-06 2022-03-08 深迪半导体(绍兴)有限公司 一种三轴mems陀螺仪
CN114526718B (zh) * 2022-02-11 2023-04-11 绍兴圆方半导体有限公司 陀螺仪
CN116660570A (zh) * 2022-02-18 2023-08-29 华为技术有限公司 角速度传感器、惯性传感器和电子设备

Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1568968A2 (en) * 2004-02-27 2005-08-31 The Regents of the University of California Nonresonant micromachined gyroscopes with structural mode-decoupling
US20150114112A1 (en) * 2013-10-30 2015-04-30 Stmicroelectroncs S.R.L. Microelectromechanical gyroscope with compensation of quadrature error drift
CN104897147A (zh) * 2015-06-29 2015-09-09 歌尔声学股份有限公司 一种mems三轴陀螺仪
CN106066175A (zh) * 2015-04-24 2016-11-02 意法半导体股份有限公司 用于感测角速率的微机电陀螺仪及感测角速率的方法
CN107270883A (zh) * 2016-03-31 2017-10-20 意法半导体股份有限公司 具有对应的电气参数的降低的漂移的mems多轴陀螺仪的微机械检测结构
CN107782297A (zh) * 2016-08-27 2018-03-09 深迪半导体(上海)有限公司 一种三轴mems陀螺仪
CN107782298A (zh) * 2016-08-27 2018-03-09 深迪半导体(上海)有限公司 一种三轴mems陀螺仪
CN110307833A (zh) * 2019-06-27 2019-10-08 深迪半导体(上海)有限公司 一种高精度z轴陀螺仪
CN110926445A (zh) * 2019-12-06 2020-03-27 深迪半导体(上海)有限公司 一种三轴mems陀螺仪

Family Cites Families (21)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE10203515A1 (de) * 2002-01-30 2003-08-07 Bosch Gmbh Robert Mikromechanischer Drehratensensor
WO2007086849A1 (en) * 2006-01-25 2007-08-02 The Regents Of The University Of California Robust six degree-of-freedom micromachined gyroscope with anti-phase drive scheme and method of operation of the same
CN1948906B (zh) * 2006-11-10 2011-03-23 北京大学 一种电容式全解耦水平轴微机械陀螺
US7934423B2 (en) * 2007-12-10 2011-05-03 Invensense, Inc. Vertically integrated 3-axis MEMS angular accelerometer with integrated electronics
US8322213B2 (en) * 2009-06-12 2012-12-04 The Regents Of The University Of California Micromachined tuning fork gyroscopes with ultra-high sensitivity and shock rejection
US8534127B2 (en) * 2009-09-11 2013-09-17 Invensense, Inc. Extension-mode angular velocity sensor
US8549915B2 (en) * 2009-10-23 2013-10-08 The Regents Of The University Of California Micromachined gyroscopes with 2-DOF sense modes allowing interchangeable robust and precision operation
ITTO20091042A1 (it) * 2009-12-24 2011-06-25 St Microelectronics Srl Giroscopio integrato microelettromeccanico con migliorata struttura di azionamento
CN102221361B (zh) * 2011-05-20 2013-04-03 西北工业大学 一种电容式微机械陀螺
CN102798386A (zh) * 2011-05-25 2012-11-28 上海飞恩微电子有限公司 三自由度谐振硅微机械陀螺仪
CN103245340B (zh) 2012-02-01 2016-07-13 苏州敏芯微电子技术股份有限公司 一种单芯片三轴陀螺仪
FI125695B (en) * 2013-09-11 2016-01-15 Murata Manufacturing Co Improved gyroscope construction and gyroscope
CN203837718U (zh) * 2014-04-22 2014-09-17 东南大学 双质量式硅微振动陀螺仪
ITUA20161498A1 (it) * 2016-03-09 2017-09-09 St Microelectronics Srl Struttura di rilevamento micromeccanica di un dispositivo sensore mems, in particolare di un giroscopio mems, con migliorate caratteristiche di azionamento
CN107782296B (zh) * 2016-08-27 2023-10-27 深迪半导体(绍兴)有限公司 一种三轴mems陀螺仪
US10697994B2 (en) * 2017-02-22 2020-06-30 Semiconductor Components Industries, Llc Accelerometer techniques to compensate package stress
CN107192384B (zh) * 2017-07-24 2022-04-05 深迪半导体(绍兴)有限公司 一种mems三轴陀螺仪
CN108507555B (zh) * 2018-04-16 2024-04-05 四川知微传感技术有限公司 一种mems微机械全解耦闭环陀螺仪
CN109737943B (zh) * 2019-03-12 2024-05-10 苏州感测通信息科技有限公司 高精度mems陀螺仪
CN110319822B (zh) * 2019-06-27 2020-12-01 深迪半导体(上海)有限公司 一种高灵敏度的单轴mems陀螺仪
US11193771B1 (en) * 2020-06-05 2021-12-07 Analog Devices, Inc. 3-axis gyroscope with rotational vibration rejection

Patent Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1568968A2 (en) * 2004-02-27 2005-08-31 The Regents of the University of California Nonresonant micromachined gyroscopes with structural mode-decoupling
US20150114112A1 (en) * 2013-10-30 2015-04-30 Stmicroelectroncs S.R.L. Microelectromechanical gyroscope with compensation of quadrature error drift
CN106066175A (zh) * 2015-04-24 2016-11-02 意法半导体股份有限公司 用于感测角速率的微机电陀螺仪及感测角速率的方法
CN104897147A (zh) * 2015-06-29 2015-09-09 歌尔声学股份有限公司 一种mems三轴陀螺仪
CN107270883A (zh) * 2016-03-31 2017-10-20 意法半导体股份有限公司 具有对应的电气参数的降低的漂移的mems多轴陀螺仪的微机械检测结构
CN107782297A (zh) * 2016-08-27 2018-03-09 深迪半导体(上海)有限公司 一种三轴mems陀螺仪
CN107782298A (zh) * 2016-08-27 2018-03-09 深迪半导体(上海)有限公司 一种三轴mems陀螺仪
CN110307833A (zh) * 2019-06-27 2019-10-08 深迪半导体(上海)有限公司 一种高精度z轴陀螺仪
CN110926445A (zh) * 2019-12-06 2020-03-27 深迪半导体(上海)有限公司 一种三轴mems陀螺仪

Also Published As

Publication number Publication date
EP4060287A4 (en) 2023-02-01
US11639852B2 (en) 2023-05-02
US20230010336A1 (en) 2023-01-12
CN110926445A (zh) 2020-03-27
CN110926445B (zh) 2022-03-08
EP4060287A1 (en) 2022-09-21

Similar Documents

Publication Publication Date Title
WO2021109378A1 (zh) 一种三轴mems陀螺仪
CN102788576B (zh) 陀螺仪传感器和电子设备
CN103900545B (zh) 一种单片集成全对称三轴硅微音叉陀螺仪
CN102636162B (zh) 一种三轴微机械陀螺仪
CN103900546B (zh) 一种微机电六轴惯性传感器
WO2016101611A1 (zh) 惯性测量模块及三轴加速度计
JP2003194545A (ja) 垂直振動質量体を有するmemsジャイロスコープ
US11085767B2 (en) Three-axis MEMS gyroscope
CN108020220A (zh) 一种切向驱动双差分蝶翼式硅微陀螺及其应用方法
CN107782299B (zh) 一种两轴mems陀螺仪
CN110307833A (zh) 一种高精度z轴陀螺仪
US20230314139A1 (en) Three-axis mems gyroscope
US20230266125A1 (en) Mems gyroscope for three-axis detection
CN116147599B (zh) 一种四质量全差分双轴mems陀螺仪
CN103900547A (zh) 一种单片集成的全解耦三轴硅微陀螺仪
CN117268361A (zh) 一种mems单轴陀螺仪
CN109737943B (zh) 高精度mems陀螺仪
US11009350B2 (en) Proof mass offset compensation
CN107167123B (zh) 一种微机电两轴陀螺仪
CN107782297B (zh) 一种三轴mems陀螺仪
CN105424020A (zh) 一种带解耦功能的音叉型微机电陀螺敏感结构
CN106441261B (zh) 一种微机械陀螺仪
CN116124110A (zh) 一种面内扭摆式四质量块mems陀螺仪
CN110319822A (zh) 一种高灵敏度的单轴mems陀螺仪
CN113686325B (zh) Mems全解耦陀螺仪

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 20896595

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2020896595

Country of ref document: EP

Effective date: 20220617

NENP Non-entry into the national phase

Ref country code: DE