WO2021109119A1 - 导电膜及其制备方法、导电浆、触控面板及显示装置 - Google Patents

导电膜及其制备方法、导电浆、触控面板及显示装置 Download PDF

Info

Publication number
WO2021109119A1
WO2021109119A1 PCT/CN2019/123630 CN2019123630W WO2021109119A1 WO 2021109119 A1 WO2021109119 A1 WO 2021109119A1 CN 2019123630 W CN2019123630 W CN 2019123630W WO 2021109119 A1 WO2021109119 A1 WO 2021109119A1
Authority
WO
WIPO (PCT)
Prior art keywords
particles
nano metal
conductive
etching solution
metal wires
Prior art date
Application number
PCT/CN2019/123630
Other languages
English (en)
French (fr)
Inventor
刘洁
Original Assignee
南昌欧菲显示科技有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 南昌欧菲显示科技有限公司 filed Critical 南昌欧菲显示科技有限公司
Priority to PCT/CN2019/123630 priority Critical patent/WO2021109119A1/zh
Publication of WO2021109119A1 publication Critical patent/WO2021109119A1/zh

Links

Images

Classifications

    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F3/00Input arrangements for transferring data to be processed into a form capable of being handled by the computer; Output arrangements for transferring data from processing unit to output unit, e.g. interface arrangements
    • G06F3/01Input arrangements or combined input and output arrangements for interaction between user and computer
    • G06F3/03Arrangements for converting the position or the displacement of a member into a coded form
    • G06F3/041Digitisers, e.g. for touch screens or touch pads, characterised by the transducing means
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01BCABLES; CONDUCTORS; INSULATORS; SELECTION OF MATERIALS FOR THEIR CONDUCTIVE, INSULATING OR DIELECTRIC PROPERTIES
    • H01B13/00Apparatus or processes specially adapted for manufacturing conductors or cables

Definitions

  • This application relates to the field of touch control, and in particular to a conductive film, a preparation method thereof, a conductive paste, a touch panel, and a display device.
  • the conductive film of a touch panel includes a touch area.
  • the conductive film includes a substrate and a conductive layer disposed on the surface of the substrate and covering the touch area.
  • the conductive layer includes several electrodes.
  • a conductive paste is coated on the surface of the substrate to form a conductive layer and cover the insulating layer, and then a number of electrodes are formed by yellow light etching.
  • the conductive paste includes an organic solvent and nano metal wires doped therein.
  • the etching solution needs to pass through the insulating layer to contact the nano metal wires to form electrodes by etching.
  • the residual organic solvent or the etching solution in the insulating layer cannot be cleaned, causing the electrode to be easily corroded and reducing the reliability of the conductive film.
  • a conductive film and a preparation method thereof, a conductive paste, a touch panel, and a display device are provided.
  • a conductive film which includes:
  • the conductive layer is provided on the surface of the substrate; the conductive layer includes a number of electrodes and a number of additional particles; at least part of the additional particles are located between adjacent electrodes; the additional particles can be in contact with the electrode
  • the etching solution reacts.
  • a conductive paste which includes an organic solvent and nano metal wires dispersed in the organic solvent, and the conductive paste further includes additional particles doped in the organic solvent;
  • the added particles can react with the etching solution of the nano metal wire; the time for the added particles to completely react with the etching solution for the nano metal wire is longer than the time for the nano metal wire to completely react with the etching solution.
  • a conductive film which includes:
  • the conductive layer is arranged on the surface of the substrate; the conductive layer is formed by the conductive paste provided in the present application.
  • a touch panel which includes the conductive film provided in the present application.
  • a display device which includes the touch panel provided in the present application.
  • a method for preparing a conductive film which includes the steps:
  • a substrate and a conductive paste are provided;
  • the conductive paste includes an organic solvent and nano metal wires dispersed in the organic solvent, and additional particles doped in the organic solvent; the additional particles can be combined with the nano metal wires
  • the etching solution reacts; the time for the added particles to completely react with the etching solution of the nano metal wire is longer than the time for the nano metal wire to completely react with the etching solution;
  • FIG. 1 is a schematic diagram of the structure of a conductive film provided by an embodiment of the application.
  • FIG. 2 is a schematic structural diagram of a conductive film provided by an embodiment of the application.
  • Figure 3.1 is a schematic diagram of the structure of the substrate provided in step S01 in the method for preparing a conductive film provided by an embodiment of the application.
  • Fig. 3.2 is a schematic diagram of the structure after performing step S02 in the method for preparing a conductive film provided by an embodiment of the application.
  • Fig. 3.3 is a schematic diagram of the structure after forming a protective layer on the conductive layer after step S02 in the preparation method of the conductive film provided by an embodiment of the application.
  • Fig. 3.4 is a schematic diagram of the structure of the conductive film formed after step S03 in the preparation method of the conductive film provided by an embodiment of the application.
  • the conductive film 100 provided by an embodiment of the present application includes a substrate 110 and a conductive layer 130.
  • the conductive layer 130 is provided on the surface of the substrate 110; the conductive layer 130 includes a plurality of electrodes 133 and a plurality of added particles 135. At least part of the added particles 135 are located between adjacent electrodes 133, and the added particles 135 can react with the etching solution of the electrode 133.
  • each electrode 133 is independent of each other, the electrodes 133 are not connected in pairs. Therefore, each additive particle 135 is not connected to the two electrodes 133 at the same time, so as to ensure the electrical performance of the conductive film 100.
  • the added particles 135 can react with the remaining etching solution, thereby preventing the remaining etching solution from corroding the electrode 133 and improving the reliability of the conductive film 100.
  • the electrode 133 includes a plurality of continuously conductive nano metal wires 1331.
  • the etching solution of the electrode 133 refers to the etching solution selected when the electrode 133 is formed by the yellow light process, and is used to etch away the nano metal wire 1331 in the predetermined area.
  • the etching solution is applied to the position deviated from the electrode 133 according to the preset position and size of the electrode 133, so that the etching solution is outside the area corresponding to the electrode 133.
  • the nano metal wires 1331 react to form several mutually independent electrodes 133. Therefore, most of the remaining etching solution is also located between adjacent electrodes 133.
  • the added particles 135 are also located between the adjacent electrodes 133, so that the remaining etching solution can react with the added particles 135 first.
  • FIG. 1 only schematically shows that the added particles 135 and the nano metal wires 1331 are uniformly distributed. It does not represent the specific shape, size and density of the added particles 135 and nano metal wires 1331.
  • the area of the conductive layer 130 corresponding to the electrode 133 is also provided with added particles 135.
  • the additive particles 135 can be uniformly blended into the organic solvent, which is convenient for operation.
  • the area of the conductive layer corresponding to the electrode may not be provided with the additional particles 135.
  • the additive particles 135 are conductive particles, the additive particles 135 are not connected to the two electrodes 133 at the same time, that is, the additive particles 135 are not in contact with the two electrodes 133 at the same time. If the added particles 135 are non-conductive particles, even if the added particles 135 are in contact with the two electrodes 133, the two electrodes 133 will not be short-circuited. That is, when the additive particles 135 are non-conductive particles, each additive particle 135 can be connected to two or more electrodes 133 at the same time.
  • the conductive film 100 includes a touch area 10 and a wiring area 20 disposed around the touch area 10.
  • the conductive layer 130 is located in the touch area 10.
  • the wiring area 20 of the substrate 110 is provided with conductive wiring 150 electrically connected to the electrode 133.
  • the arrangement of the wiring area 20 and the conductive wiring 150 only needs to adopt a conventional method in the art, which will not be repeated here.
  • the conductive film 100 includes two conductive layers 130, which are respectively disposed on two opposite surfaces of the substrate 110. It can be understood that, in another feasible embodiment, the two conductive layers may also be located on the same side of the substrate. Of course, when the two conductive layers are located on the same side of the substrate, an isolation layer needs to be arranged between the two conductive layers to avoid short-circuiting of the two conductive layers.
  • the substrate 110 may be a PET (Polyethylene terephthalate) substrate, a PC (Polycarbonate, polycarbonate) substrate, a COP (Coefficient Of Performance, heating efficiency ratio) substrate, and a transparent PI (Polyimide) substrate. , Polyimide) substrate or COC (Cyclic Olefin Copolymer) substrate.
  • the additive particles 135 are metal particles. It can be understood that the additive particles 135 are metal particles that can react with the etching solution of the electrode 133. Of course, in other feasible embodiments, the added particles are not limited to metal particles, and can react with the etching solution of the electrode 133, such as metal oxide particles.
  • the area of the conductive layer 130 corresponding to the electrode 133 is also provided with added particles 135. Adding particles are arranged in this area, and the added particles 135 are connected to the electrode 133, which can reduce the resistance of the electrode 133 and improve the conductivity of the electrode 133.
  • the additive particles 135 are not limited to metal particles, and may also be metal oxide particles and any other materials that can react with the etching solution of the electrode.
  • the electrode 133 includes a plurality of continuously conductive nano metal wires 1331.
  • the nano metal wires 1331 are nano silver wires
  • the added particles 135 are platinum particles, gold particles, gold-platinum alloy particles, copper particles, copper alloy particles, amalgam particles, silver particles, or silver alloy particles.
  • the nano metal wire is not limited to the silver nano wire, and it can satisfy the performance of the electrode 133 and the bending performance of the conductive film 100.
  • the added particles 135 are not limited to this, as long as they can react with the etching solution of the nano metal wire.
  • the length of the nano metal wire 1331 is 10 ⁇ m to 1000 ⁇ m.
  • the added particles are columnar or tubular, and the length of the added particles 135 is 0 to 10 ⁇ m.
  • the length of the nano metal wire 1331 may be 10 ⁇ m, 20 ⁇ m, 30 ⁇ m, 40 ⁇ m, 50 ⁇ m, 55 ⁇ m, 60 ⁇ m, 65 ⁇ m, 70 ⁇ m, 75 ⁇ m, 80 ⁇ m, 85 ⁇ m, 90 ⁇ m, 95 ⁇ m, 100 ⁇ m, 300 ⁇ m, 500 ⁇ m, 700 ⁇ m, 900 ⁇ m, or 1000 ⁇ m.
  • the length of the added particles 135 may be 0.1 ⁇ m, 0.5 ⁇ m, 1 ⁇ m, 2 ⁇ m, 3 ⁇ m, 4 ⁇ m, 5 ⁇ m, 6 ⁇ m, 7 ⁇ m, 8 ⁇ m, 9 ⁇ m, or 10 ⁇ m.
  • the length of the nano metal wire 1331 is less than or equal to the distance between adjacent electrodes 133, and the length of the added particles 135 is less than the length of the nano metal wire 1331, so the length of the nano metal wire 1331 is less than the distance between two adjacent electrodes 133, and thus This effectively prevents the added particles 135 from contacting the nano metal wires 1331 of the two electrodes 133 at the same time.
  • the additive particles 135 are provided between adjacent electrodes 133. Therefore, it can be ensured that the remaining etching solution between the adjacent electrodes 133 continues to etch the electrode 133.
  • the distance between adjacent electrodes 133 is smaller, the etching solution remaining in the organic film layer 131 is easier to migrate to contact with the electrode 133, that is, the etching solution remaining in the organic film layer 131 is easier to continue to etch the electrode.
  • the additional particles 135 can be arranged only between electrodes with a small distance according to the distribution of the electrodes.
  • the density of the added particles 135 may be different in different regions according to factors such as the distance between the electrodes or the bending conditions.
  • the manner of realizing adding particles to embed the conductive layer is not limited to this.
  • the surface of the substrate may be coated with conductive paste without added particles dissolved in multiple coatings, and the added particles may be coated in the process of two adjacent coatings, so as to realize that the added particles are embedded in the conductive layer.
  • the conductive film 100 further includes an insulating layer 170 covering the conductive layer 130, and a plurality of added particles 135 are embedded in the insulating layer 170.
  • the added particles 135 in the insulating layer 170 can also react with the remaining etching solution, thereby further reducing the corrosion of the electrode by the remaining etching solution.
  • the additive particles 135 in the insulating layer 170 are substantially uniformly distributed.
  • the conductive layer 130 has a gap that avoids the nano metal wires 1331 and the added particles 135; therefore, when the insulating layer 170 is formed, the material forming the insulating layer will partially fill the conductive layer. Therefore, in the area where there is no electrode 133, there is no obvious boundary between the conductive layer 130 and the insulating layer 170, which is marked in the form of a dashed line in the figure.
  • An embodiment of the present application provides a conductive paste, which includes an organic solvent, nano metal wires dispersed in the organic solvent, and additive particles doped in the organic solvent.
  • the added particles can react with the etching solution of the nano metal wire; the time for the added particles to completely react with the etching solution of the nano metal wire is longer than the time for the nano metal wire to completely react with the etching solution. In other words, if the added particles and the nano metal wires react with the etching solution at the same time, the nano metal wires will first completely react with the etching solution.
  • the conditions for the added particles to react with the etching solution are the same as the conditions for the nano metal wires to react with the etching solution.
  • the time for the added particles to completely react with the etching solution of the nano metal wire is longer than the time for the nano metal wire to completely react with the etching solution, and the comparison is based on the same reaction conditions.
  • the etching is completed after the nano metal wires in the predetermined area are completely reacted with the etching solution. After the etching is completed, there are still incompletely reacted added particles between the electrodes, that is, the conductive layer structure of the conductive film provided in the present application is formed.
  • the organic solvent includes organic additives, resins, organic solvents, and diluents.
  • the composition of the organic solvent is not limited to this, and can be set using conventional means in the art.
  • the conductive paste provided in the present application can be prepared according to the composition of the conductive paste; it is also possible to directly use the existing conductive paste used to form the conductive layer, and evenly incorporate the added particles into the conductive paste to obtain The conductive paste provided in this application.
  • the conductive paste can be coated on the substrate by coating or grid printing.
  • the additive particles are doped in an organic solvent, so the conductive paste in which the additive particles are dissolved can be directly coated on the surface of the substrate.
  • the operation steps are simple.
  • the added particles are evenly distributed in the organic solvent.
  • the additive particles are metal particles. It can be understood that, in another feasible embodiment, the added particles are not limited to metal particles, and may also be metal oxide particles and other particles that can react with the etching solution of the nano metal wire.
  • the activity of the added particles is weaker than that of the nanometal wire. Therefore, even if the added particles are set to be small, the time for the added particles to completely react with the etching solution of the nano metal wire can be longer than the time for the nano metal wire to completely react with the same etching solution. Therefore, the outer diameter of the added particles can be set to be small, and when the conductive paste is used to form the conductive layer, the added particles can be effectively prevented from being connected to the two electrodes at the same time.
  • the nano metal wires are nano silver wires
  • the added particles are platinum particles, gold particles or gold-platinum alloy particles.
  • the nano metal wires and the added particles are both columnar or tubular, and both have a diameter of 1 nm to 300 nm. It is understandable that, in another feasible embodiment, the shape and size of the nano metal wire and the additive particle can be different, and it is sufficient that the additive particle and the nano metal wire are discontinuously conductive.
  • the diameter of the nano metal wires and the added particles may be 1 nm, 5 nm, 10 nm, 20 nm, 30 nm, 40 nm, 45 nm, 50 nm, 70 nm, 100 nm, 150 nm, 200 nm, 250 nm, or 300 nm.
  • the diameter of the added particles may also be larger or smaller than the diameter of the nano metal wire.
  • the length of the nano metal wire is 10 ⁇ m to 1000 ⁇ m, and the length of the added particles is 0 to 10 ⁇ m.
  • the length of the nano metal wire may be 10 ⁇ m, 20 ⁇ m, 30 ⁇ m, 40 ⁇ m, 50 ⁇ m, 55 ⁇ m, 60 ⁇ m, 65 ⁇ m, 70 ⁇ m, 75 ⁇ m, 80 ⁇ m, 85 ⁇ m, 90 ⁇ m, 95 ⁇ m, 100 ⁇ m, 300 ⁇ m, 500 ⁇ m, 700 ⁇ m, 900 ⁇ m, or 1000 ⁇ m;
  • the length of the added particles 135 may be 0.1 ⁇ m, 0.5 ⁇ m, 1 ⁇ m, 2 ⁇ m, 3 ⁇ m, 4 ⁇ m, 5 ⁇ m, 6 ⁇ m, 7 ⁇ m, 8 ⁇ m, 9 ⁇ m, or 10 ⁇ m.
  • the length of the nano metal wire is less than or equal to the distance between adjacent electrodes, and the length of the added particles is less than the length of the nano metal wire, so the length of the nano metal wire is less than the length of two adjacent electrodes, thereby effectively avoiding the addition of particles at the same time.
  • the nano metal wires of the two electrodes are in contact.
  • the activity of the added particles is stronger than or equal to the activity of the nanometal wire. Therefore, after the conductive layer is formed, the added particles can quickly react with the remaining etching solution, so as to better prevent the etching solution from migrating to the electrode and corroding the electrode.
  • the nano metal wires are nano silver wires
  • the added particles are copper particles, copper alloy particles, amalgam particles, silver particles or silver alloy particles.
  • the activity of the added particles is stronger than or equal to the activity of the nano metal wire.
  • the nano metal wires and the added particles are both columnar or tubular, the diameter of the nano metal wires is 10 nm to 50 nm, and the diameter of the added particles is 50 nm to 1000 nm. That is, the diameter of the added particles is made larger than the diameter of the nano metal wire.
  • the shape of the nano metal wire and the added particle can be different, and the size of the nano metal wire and the size of the added particle can also be different, so as to meet the requirements of the etching solution of the added particle and the nano metal wire.
  • the reaction time of is longer than the reaction time of the nano metal wire and the etching solution.
  • the nano metal wire is not limited to the silver nano wire, and may also be copper particles, organic transparent conductive polymer particles, and the like.
  • the content of the nano metal wires is 0 to 10 wt%
  • the content of the added particles is 0 to 1 wt%.
  • the added particles can more completely react with the etching solution remaining in the organic film layer; on the other hand, it can avoid the need for more particles to be added.
  • the adjacent electrodes are short-circuited; on the other hand, when the activity of the added particles is less than or equal to the activity of the nano metal wire, it can also avoid the consumption of more etching solution during the yellowing process.
  • the content of the metal nanowires can be 1wt%, 2wt%, 3wt%, 4wt%, 5wt%, 6wt%, 7wt%, 8wt%, 9wt% or 10wt%
  • the content of the added particles can be 0.1wt%, 0.2wt%, 0.3wt%, 0.4wt%, 0.5wt%, 0.6wt%, 0.7wt%, 0.8wt%, 0.9wt% or 1wt%.
  • the content of the nano metal wires and the content of the added particles are not limited to this, and the conductive layer of the conductive film provided in the present application can be formed by the yellow light process.
  • the nano metal wires and the added particles are both columnar or tubular, the length of the nano metal wires is 10 ⁇ m to 1000 ⁇ m, and the length of the added particles is 0 to 10 ⁇ m.
  • the length of the nano metal wire may be 10 ⁇ m, 20 ⁇ m, 30 ⁇ m, 40 ⁇ m, 50 ⁇ m, 55 ⁇ m, 60 ⁇ m, 65 ⁇ m, 70 ⁇ m, 75 ⁇ m, 80 ⁇ m, 85 ⁇ m, 90 ⁇ m, 95 ⁇ m, 100 ⁇ m, 300 ⁇ m, 500 ⁇ m, 700 ⁇ m, 900 ⁇ m, or 1000 ⁇ m;
  • the length of the added particles may be 0.1 ⁇ m, 0.5 ⁇ m, 1 ⁇ m, 2 ⁇ m, 3 ⁇ m, 4 ⁇ m, 5 ⁇ m, 6 ⁇ m, 7 ⁇ m, 8 ⁇ m, 9 ⁇ m, or 10 ⁇ m.
  • the length of the nano metal wire is less than or equal to the distance between adjacent electrodes, and the length of the added particles is less than the length of the nano metal wire, so the length of the nano metal wire is less than the length of two adjacent electrodes, thereby effectively avoiding the addition of particles at the same time.
  • the nano metal wires of the two electrodes are in contact.
  • the conductive film 200 provided by an embodiment of the present application includes a substrate 210 and a conductive layer 230 provided on the surface of the substrate 210.
  • the conductive layer 230 is formed of the conductive paste provided in the present application.
  • the conductive paste may be coated on the surface of the substrate 210 by coating.
  • the conductive film 100 provided in the foregoing embodiment can be formed after the conductive film 200 is etched.
  • conductive layers 230 are provided on both surfaces of the substrate 210. It can be understood that, in another feasible embodiment, a conductive layer may also be provided on only one surface of the substrate.
  • the conductive film 200 further includes an insulating layer 250 covering the conductive layer 230.
  • a number of conductive particles are embedded in the insulating layer 250.
  • An embodiment of the present application provides a touch panel, which includes the conductive film provided in the present application.
  • the conductive film here refers to a conductive film including a conductive layer with electrodes and particles added.
  • the added particles can react with the etching solution remaining in the organic film layer, thereby slowing the remaining etching solution from corroding the electrode, improving the reliability of the conductive film, and further improving the reliability of the touch panel.
  • An embodiment of the present application provides a display device, which includes the touch panel provided in the present application.
  • the added particles can react with the etching solution remaining in the organic film layer, thereby slowing the remaining etching solution from corroding the electrode, improving the reliability of the conductive film, and further improving the reliability of the display device.
  • An embodiment of the present application provides a method for preparing a conductive film, which includes the steps:
  • the conductive paste includes an organic solvent, nano metal wires dispersed in the organic solvent, and additive particles doped in the organic solvent.
  • the added particles can react with the etching solution of the nano metal wire; the time for the added particles to completely react with the etching solution of the nano metal wire is longer than the time for the nano metal wire to completely react with the etching solution. In other words, if the added particles and the nano metal wires react with the etching solution at the same time, the nano metal wires will first completely react with the etching solution.
  • the structure of the substrate 110 is described in Figure 3.1.
  • step S02 a step is further included: forming an insulating layer 170 on the conductive layer 120, see FIG. 3.3 for details.
  • step S03 the process of patterning several nano metal wires 1331 in the conductive layer 120 is a process of etching part of the nano metal wires in the conductive layer.
  • the conductive paste provided in step S01 since the added particles and the nano metal wires are dispersed in the organic solvent, the conditions for the added particles to react with the etching solution are the same as the conditions for the nano metal wires to react with the etching solution. In other words, the time for the added particles to completely react with the etching solution of the nano metal wire is longer than the time for the nano metal wire to completely react with the etching solution, and the comparison is based on the same reaction conditions.
  • the etching is completed after the nano metal wires in the predetermined area are completely reacted with the etching solution. After the etching is completed, there are still incompletely reacted added particles between the electrodes, that is, the conductive layer structure of the conductive film provided in the present application is formed.
  • the organic solvent includes organic additives, resins, organic solvents, and diluents.
  • the composition of the organic solvent is not limited to this, and can be set using conventional means in the art.
  • the conductive paste can be coated on the substrate by coating or grid printing.
  • the additive particles are doped in an organic solvent, so the conductive paste in which the additive particles are dissolved can be directly coated on the surface of the substrate.
  • the operation steps are simple.
  • the added particles are evenly distributed in the organic solvent.
  • the additive particles are metal particles. It can be understood that, in another feasible embodiment, the added particles are not limited to metal particles, and may also be metal oxide particles and other particles that can react with the etching solution of the nano metal wire.
  • the activity of the added particles is weaker than that of the nanometal wire. Therefore, even if the added particles are set to be small, the time for the added particles to completely react with the etching solution of the nano metal wire can be longer than the time for the nano metal wire to completely react with the same etching solution. Therefore, the outer diameter of the added particles can be set to be small, and when the conductive paste is used to form the conductive layer, the added particles can be effectively prevented from being connected to the two electrodes at the same time.
  • the nano metal wires are nano silver wires
  • the added particles are platinum particles, gold particles or gold-platinum alloy particles.
  • the nano metal wires and the added particles are both columnar or tubular, and both have a diameter of 1 nm to 300 nm. It is understandable that, in another feasible embodiment, the shape and size of the nano metal wire and the additive particle can be different, and it is sufficient that the additive particle and the nano metal wire are discontinuously conductive.
  • the diameter of the nano metal wires and the added particles may be 1 nm, 5 nm, 10 nm, 20 nm, 30 nm, 40 nm, 45 nm, 50 nm, 70 nm, 100 nm, 150 nm, 200 nm, 250 nm, or 300 nm.
  • the diameter of the added particles may also be larger or smaller than the diameter of the nano metal wire.
  • the length of the nano metal wire is 10 ⁇ m to 1000 ⁇ m, and the length of the added particles is 0 to 10 ⁇ m.
  • the length of the nano metal wire may be 10 ⁇ m, 20 ⁇ m, 30 ⁇ m, 40 ⁇ m, 50 ⁇ m, 55 ⁇ m, 60 ⁇ m, 65 ⁇ m, 70 ⁇ m, 75 ⁇ m, 80 ⁇ m, 85 ⁇ m, 90 ⁇ m, 95 ⁇ m, 100 ⁇ m, 300 ⁇ m, 500 ⁇ m, 700 ⁇ m, 900 ⁇ m, or 1000 ⁇ m;
  • the length of the added particles 135 may be 0.1 ⁇ m, 0.5 ⁇ m, 1 ⁇ m, 2 ⁇ m, 3 ⁇ m, 4 ⁇ m, 5 ⁇ m, 6 ⁇ m, 7 ⁇ m, 8 ⁇ m, 9 ⁇ m, or 10 ⁇ m.
  • the length of the nano metal wire is less than or equal to the distance between adjacent electrodes 133, and the length of the added particles 135 is less than the length of the nano metal wire, so the length of the nano metal wire is less than the length of two adjacent electrodes 133, thereby effectively avoiding adding The particles 135 are in contact with the nano metal wires of the two electrodes 133 at the same time.
  • the activity of the added particles is stronger than or equal to the activity of the nanometal wire.
  • the nano metal wires and the added particles are both columnar or tubular, the diameter of the nano metal wires is 10 nm to 50 nm, and the diameter of the added particles is 50 nm to 1000 nm. Even if the diameter of the added particles is larger than the diameter of the nano metal wire.
  • the shape of the nano metal wire and the added particle may be different, and the size of the nano metal wire and the size of the added particle can also be different, so as to satisfy the requirement of the etching solution for the added particle and the nano metal wire.
  • the reaction time is longer than the reaction time between the nano metal wire and the etching solution.
  • the nano metal wires are nano silver wires
  • the added particles are copper particles, copper alloy particles, amalgam particles, silver particles or silver alloy particles.
  • the activity of the added particles is stronger than or equal to the activity of the nano metal wire.
  • the nano metal wire is not limited to the silver nano wire, and may also be copper particles, organic transparent conductive polymer particles, and the like.
  • the content of the nano metal wires is 0 to 10 wt%
  • the content of the added particles is 0 to 1 wt%.
  • the added particles can more completely react with the etching solution remaining in the organic film layer; on the other hand, it can avoid the need for more particles to be added.
  • the adjacent electrodes are short-circuited; on the other hand, when the activity of the added particles is less than or equal to the activity of the nano metal wire, it can also avoid the consumption of more etching solution during the yellowing process.
  • the content of the metal nanowires can be 1wt%, 2wt%, 3wt%, 4wt%, 5wt%, 6wt%, 7wt%, 8wt%, 9wt% or 10wt%
  • the content of the added particles can be 0.1wt%, 0.2wt%, 0.3wt%, 0.4wt%, 0.5wt%, 0.6wt%, 0.7wt%, 0.8wt%, 0.9wt% or 1wt%.
  • the content of the nano metal wires and the content of the added particles are not limited to this, and the conductive layer of the conductive film provided in the present application can be formed by the yellow light process.
  • the nano metal wires and the added particles are both columnar or tubular, the length of the nano metal wires is 10 ⁇ m to 1000 ⁇ m, and the length of the added particles is 0 to 10 ⁇ m.
  • the length of the nano metal wire may be 10 ⁇ m, 20 ⁇ m, 30 ⁇ m, 40 ⁇ m, 50 ⁇ m, 55 ⁇ m, 60 ⁇ m, 65 ⁇ m, 70 ⁇ m, 75 ⁇ m, 80 ⁇ m, 85 ⁇ m, 90 ⁇ m, 95 ⁇ m, 100 ⁇ m, 300 ⁇ m, 500 ⁇ m, 700 ⁇ m, 900 ⁇ m, or 1000 ⁇ m;
  • the length of the added particles may be 0.1 ⁇ m, 0.5 ⁇ m, 1 ⁇ m, 2 ⁇ m, 3 ⁇ m, 4 ⁇ m, 5 ⁇ m, 6 ⁇ m, 7 ⁇ m, 8 ⁇ m, 9 ⁇ m, or 10 ⁇ m.
  • the length of the nano metal wire is less than or equal to the distance between adjacent electrodes, and the length of the added particles is less than the length of the nano metal wire, so the length of the nano metal wire is less than the length of two adjacent electrodes, thereby effectively avoiding the addition of particles at the same time.
  • the nano metal wires of the two electrodes are in contact.
  • step S01 the operation of providing the conductive slurry is: providing a primary conductive slurry, and uniformly adding additional particles in the primary conductive slurry.
  • the conductive paste precursor includes an organic solvent and nano metal wires doped in the organic solvent.
  • step S03 is: patterning the conductive layer through a yellow light process.
  • the formed conductive layer there are added particles between the two electrodes that have not completely reacted with the etching solution of the electrode.
  • the added particles can react with the remaining etching solution, thereby preventing the remaining etching solution from corroding the electrode and improving the reliability of the conductive film.

Landscapes

  • Engineering & Computer Science (AREA)
  • General Engineering & Computer Science (AREA)
  • Theoretical Computer Science (AREA)
  • Manufacturing & Machinery (AREA)
  • Human Computer Interaction (AREA)
  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Electroluminescent Light Sources (AREA)
  • Manufacturing Of Electric Cables (AREA)

Abstract

本申请涉及一种导电膜及其制备方法、导电浆、触控面板及显示装置。一种导电膜,包括:基板;以及导电层,设于基板的表面;导电层包括若干个电极和若干个添加颗粒;至少部分添加颗粒位于相邻电极之间;添加颗粒可与电极的蚀刻液反应。

Description

导电膜及其制备方法、导电浆、触控面板及显示装置 技术领域
本申请涉及触控领域,特别是涉及一种导电膜及其制备方法、导电浆、触控面板及显示装置。
背景技术
一般地,触控面板的导电膜包括触控区。具体地,导电膜包括基板以及设于基板表面并覆盖触控区的导电层。导电层包括若干个电极。在制作由纳米银等纳米金属材料形成电极的的新型触控面板的过程中,首先在基板的表面涂覆导电浆形成导电层并覆盖绝缘层,然后通过黄光工艺蚀刻形成若干个电极。导电浆包括有机溶剂以及掺杂其中的纳米金属线。在通过黄光工艺形成若干个电极的过程中,蚀刻液需穿过绝缘层与纳米金属线接触,以蚀刻形成电极。然而,在此过程中,残存在有机溶剂或绝缘层内的蚀刻液无法被清洗干净,造成电极易被腐蚀,降低导电膜的可靠性。
发明内容
根据本申请的各种实施例,提供一种导电膜及其制备方法、导电浆、触控面板及显示装置。
根据本申请的一个方面,提供了一种导电膜,其包括:
基板;以及
导电层,设于所述基板的表面;所述导电层包括若干个电极和若干个添加颗粒;至少部分所述添加颗粒位于相邻所述电极之间;所述添加颗粒可与所述电极的蚀刻液反应。
根据本申请的另一个方面,提供了一种导电浆,其包括有机溶剂以及分散在所述有机溶剂中的纳米金属线,所述导电浆还包括掺杂在所述有机溶剂中的添加颗粒;所述添加颗粒可与所述纳米金属线的蚀刻液反应;所述添加颗粒与所述纳米金属线的蚀刻液完全反应的时间大于所述纳米金属线与所述蚀刻液完全反应的时间。
根据本申请的又一个方面,提供了一种导电膜,其包括:
基板;以及
导电层,设于所述基板表面;所述导电层由本申请提供的导电浆形成。
根据本申请的又一个方面,提供了一种触控面板,其包括本申请提供的导电膜。
根据本申请的又一个方面,提供了一种显示装置,其包括本申请提供的触控面板。
根据本申请的又一个方面,提供了一种导电膜的制备方法,其包括步骤:
提供基板和导电浆;所述导电浆包括有机溶剂以及分散在所述有机溶剂中的纳米金属线,以及掺杂在所述有机溶剂中的添加颗粒;所述添加颗粒可与所述纳米金属线的蚀刻液反应;所述添加颗粒与所述纳米金属线的蚀刻液完全反应的时间大于所述纳米金属线与所述蚀刻液完全反应的时间;
在基板表面涂覆导电浆以形成导电层;以及
对若干所述纳米金属线进行图案化,以形成包括若干个电极的导电层,得到导电膜;其中,所述导电层包括有机膜层以及嵌入所述有机膜层中的若干个电极和添加颗粒;至少部分所述添加颗粒位于相邻所述电极之间。
本申请的多个实施例的细节在下面的附图和描述中提出。本申请的其他特征、目的和优点将从说明书、附图以及权利要求书变得明显。
附图说明
为了更好地描述和说明这里公开的那些发明的实施例或示例,可以参考一幅或多幅附图。用于描述附图的附加细节或示例不应当被认为是对所公开的发明、目前描述的实施例或示例以及目前理解的这些发明的最佳模式中的任何一者的范围的限制。
图1为本申请一实施例提供的导电膜的结构示意图。
图2为本申请一实施例提供的导电膜的结构示意图。
图3.1为本申请一实施例提供的导电膜的制备方法中,步骤S01提供的基板的结构示意图。
图3.2为本申请一实施例提供的导电膜的制备方法中,实施步骤S02后的结构示意图。
图3.3为本申请一实施例提供的导电膜的制备方法中,在步骤S02后在导电层上形成保护层后的结构示意图。
图3.4为本申请一实施例提供的导电膜的制备方法中,步骤S03后形成的导电膜的结构示意图。
具体实施方式
为了使本申请的目的、技术方案及优点更加清楚明白,以下结合附图及实施例,对本申请进行进一步详细说明。应当理解,此处描述的具体实施例仅仅用以解释本申请,并不用于限定本申请。
需要说明的是,当元件被称为“设置于”另一个元件,它可以直接在另一个元件上或者也可以存在居中的元件。当一个元件被认为是“连接”另一个元件,它可以是直接连接到另一个元件或者可能同时存在居中元件。本文所使用的术语“垂直的”、“水平的”、“左”、“右”以及类似的表述只是为了说明的目的,并不表示是唯一的实施方式。
除非另有定义,本文所使用的所有的技术和科学术语与属于本申请的 技术领域的技术人员通常理解的含义相同。本文中在本申请的说明书中所使用的术语只是为了描述具体的实施例的目的,不是旨在于限制本申请。以上实施例的各技术特征可以进行任意的组合,为使描述简洁,未对上述实施例中的各个技术特征所有可能的组合都进行描述,然而,只要这些技术特征的组合不存在矛盾,都应当认为是本说明书记载的范围。
如图1所示,本申请一实施例提供的导电膜100,包括基板110及导电层130。
其中,导电层130设于基板110的表面;导电层130包括若干个电极133和若干个添加颗粒135。至少部分添加颗粒135位于相邻电极133之间,添加颗粒135可与电极133的蚀刻液反应。
可以理解的是,由于每个电极133相互独立,电极133两两不导通。故每个添加颗粒135不同时与两个电极133导通,以保证导电膜100的电学性能。
导电膜100中,添加颗粒135可与残存的蚀刻液反应,从而避免残存的蚀刻液腐蚀电极133,提高导电膜100的可靠性。
可以理解的是,电极133包括脱若干个连续导通的纳米金属线1331。电极133的蚀刻液,指在通过黄光工艺形成电极133时选用的蚀刻液,用以蚀刻掉预设区域的纳米金属线1331。
可以理解的是,在通过黄光工艺形成电极133的过程中,根据预设的电极133的位置和尺寸,将蚀刻液涂覆在偏离电极133的位置,以使得蚀刻液与电极133对应区域外的纳米金属线1331反应,以形成若干个相互独立的电极133。故残存的蚀刻液也大都位于相邻电极133之间。而添加颗粒135同样位于相邻电极133之间,从而使得残存的蚀刻液能够首先与添加颗粒135反应。
需要说明的是,图1仅示意性的表示添加颗粒135和纳米金属线1331均匀分布。并不代表添加颗粒135和纳米金属线1331的具体形状、大小和 密度。
本实施例中,导电层130的与电极133对应的区域也设置有添加颗粒135。在形成嵌入有添加颗粒135的涂层时,将添加颗粒135均匀融入有机溶剂内即可,便于操作。当然,可以理解的是,在另外可行的实施例中,导电层的与电极对应的区域还可以不设置添加颗粒135。
另外,可以理解的是,当添加颗粒135为导电颗粒时,添加颗粒135不同时与两个电极133导通,即添加颗粒135不同时与两个电极133接触。若添加颗粒135为非导电颗粒时,添加颗粒135即使与两个电极133接触,也不会造成两个电极133短路。即当添加颗粒135为非导电颗粒时,每个添加颗粒135可以同时与两个或两个以上的电极133导通。
可以理解的是,导电膜100包括触控区10以及围绕触控区10设置的走线区20。导电层130位于触控区10。基板110的走线区20设有与电极133电连接的导电走线150。走线区20及导电走线150的设置采用本领域的惯用手段即可,此处不再赘述。
本实施例中,导电膜100包括两层导电层130,分别设于基板110的相对的两个表面。可以理解的是,在另外可行的实施例中,两层导电层还可以位于基板的同一侧。当然,当两层导电层位于基板的同一侧时,两层导电层之间需设置隔离层,以避免两层导电层短路。
可选地,基板110可以是PET(Polyethylene terephthalate,聚对苯二甲酸类塑料)基板、PC(Polycarbonate,聚碳酸酯)基板、COP(Coefficient Of Performance,制热能效比)基板、透明PI(Polyimide,聚酰亚胺)基板或COC(环烯烃共聚物)基板。
具体地,本实施例中,添加颗粒135为金属颗粒。可以理解的是,添加颗粒135为可与电极133的蚀刻液反应的金属颗粒。当然,在另外可行的实施例总,添加颗粒不限于金属颗粒,能与电极133的蚀刻液反应即可,如金属氧化物颗粒等。
本实施例中,导电层130的与电极133对应的区域也设置有添加颗粒135。在该区域设置添加颗粒,添加颗粒135与电极133连通,可以减小电极133的电阻,提高电极133的导电性能。
可以理解的是,在另外可行的实施例中,添加颗粒135不限于金属颗粒,还可以是金属氧化物颗粒等其它任何可以与电极的蚀刻液反应的材料。
更具体地,本实施例中,电极133包括若干个连续导通的纳米金属线1331。可选地,纳米金属线1331为纳米银线,添加颗粒135为铂颗粒、金颗粒、金铂合金颗粒、铜颗粒、铜合金颗粒、汞合金颗粒、银颗粒或银合金颗粒。当然,可以理解的是,在另外可行的实施例中,纳米金属线不限于纳米银线,能满足电极133性能及导电膜100的弯折性能即可。相应的,添加颗粒135也不限于此,能与纳米金属线的蚀刻液反应即可。
可选地,纳米金属线1331的长度为10μm至1000μm。添加颗粒呈柱状或管状,添加颗粒135的长度为0至10μm。具体地,纳米金属线1331的长度可以为10μm、20μm、30μm、40μm、50μm、55μm、60μm、65μm、70μm、75μm、80μm、85μm、90μm、95μm、100μm、300μm、500μm、700μm、900μm或1000μm;添加颗粒135的长度可以为0.1μm、0.5μm、1μm、2μm、3μm、4μm、5μm、6μm、7μm、8μm、9μm或10μm。一般地,纳米金属线1331的长度小于等于相邻电极133的间距,而添加颗粒135的长度小于纳米金属线1331的长度,故纳米金属线1331的长度小于相邻两个电极133的间距,进而有效避免添加颗粒135同时与两个电极133的纳米金属线1331接触。
本实施例中,相邻电极133之间均设有添加颗粒135。从而能够确保相邻电极133之间的残存的蚀刻液继续蚀刻电极133。当然,可以理解的是,若相邻电极133的间距越小,残留在有机膜层131中的蚀刻液越容易迁移至与电极133接触,即有机膜层131残存的蚀刻液越容易继续蚀刻电极133。故在另外可行的实施例中,可根据电极的分布,仅在间距较小的 电极之间设置添加颗粒135。
当然,在另外可行的实施例中,也可以根据电极的间距或弯折情况等因素,使得不同区域的添加颗粒135的密度不同。
当然,可以理解的是,在另外可行的实施例中,实现添加颗粒嵌入导电层的方式不限于此。例如,可通过多次涂布等方式在基板的表面涂覆未溶有添加颗粒的导电浆,并在相邻两次涂布的过程涂覆添加颗粒,以实现添加颗粒嵌入导电层中。
本实施例中,导电膜100还包括覆盖导电层130的绝缘层170,绝缘层170内嵌设有若干个添加颗粒135。绝缘层170内的添加颗粒135也可与残留的蚀刻液反应,从而进一步减缓残存的蚀刻液对电极的腐蚀。
本实施例中,绝缘层170内的添加颗粒135基本呈均匀分布。
另外,可以理解的是,由于在形成绝缘层170时,导电层130存在避开纳米金属线1331和添加颗粒135的间隙;故在形成绝缘层170时,形成绝缘层的材料会部分填充导电层130的间隙,故在无电极133的区域,导电层130与绝缘层170无明显界限,图中以虚线形式标出。
本申请一实施例提供一种导电浆,其包括有机溶剂以及分散在有机溶剂中的纳米金属线以及掺杂在有机溶剂中的添加颗粒。添加颗粒可与纳米金属线的蚀刻液反应;添加颗粒与纳米金属线的蚀刻液完全反应的时间大于纳米金属线与蚀刻液完全反应的时间。换言之,若添加颗粒与纳米金属线同时与蚀刻液反应,纳米金属线将首先与蚀刻液完全反应。
可以理解的是,由于添加颗粒和纳米金属线均掺杂在有机溶剂内,故添加颗粒与蚀刻液反应的条件和纳米金属线与蚀刻液反应的条件相同。换言之,添加颗粒与纳米金属线的蚀刻液完全反应的时间大于纳米金属线与蚀刻液完全反应的时间,是基于相同反应条件进行比较的。
具体地,在通过导电浆形成导电膜的导电层时,预设区域的纳米金属线与蚀刻液完全反应后,蚀刻完成。在蚀刻完成后,电极之间还存在未完 全反应的添加颗粒,即形成本申请提供的导电膜的导电层结构。
上述导电浆,在通过黄光工艺形成导电膜的导电层时,预设位置的纳米金属线与蚀刻液反应完全后,添加颗粒未完全与蚀刻液反应。故残存的蚀刻液会继续与添加颗粒反应,从而减缓残存的蚀刻液腐蚀电极,提高导电膜的可靠性。
可选地,有机溶剂包括有机添加剂、树脂、有机溶剂和稀释剂。当然,在另外可行的实施例中,有机溶剂的成分不限于此,可利用本领域常规手段进行设置。
当然,在制备本申请提供的导电浆时,可根据导电浆的成分制备而成;也可直接使用现有的用以形成导电层的导电浆,并在导电浆内均匀融入添加颗粒,以得到本申请提供的导电浆。
具体地,在通过黄光工艺形成导电膜的导电层时,可通过涂布或网格印刷的方法将导电浆涂覆在基板上。
本实施例中,本实施例提供的导电浆,添加颗粒掺杂在有机溶剂内,故可直接将溶有添加颗粒的导电浆涂覆在基板表面。操作步骤简单。
可选地,添加颗粒均匀的分布在有机溶剂内。
可选地,添加颗粒为金属颗粒。可以理解的是,在另外可行的实施例中,添加颗粒不限于金属颗粒,还可以是金属氧化物颗粒等其它可以与纳米金属线的蚀刻液反应的颗粒。
可选地,添加颗粒的活性弱于纳米金属线的活性。从而即使添加颗粒设置的较小,也可以使得添加颗粒与纳米金属线的蚀刻液完全反应的时间大于纳米金属线与相同蚀刻液完全反应的时间。从而可以设置添加颗粒的外径较小,在利用导电浆形成导电层时,可有效防止添加颗粒与两个电极同时导通。
可选地,纳米金属线为纳米银线,添加颗粒为铂颗粒、金颗粒或金铂合金颗粒。
进一步地,可选地,纳米金属线和添加颗粒均呈柱状或管状,且直径均为1nm至300nm。可以理解的是,在另外可行的实施例中,纳米金属线和添加颗粒的形状可以不同,大小也可以不同,能满足添加颗粒与纳米金属线不连续导通即可。
具体地,纳米金属线和添加颗粒的直径可以是1nm、5nm、10nm、20nm、30nm、40nm、45nm、50nm、70nm、100nm、150nm、200nm、250nm或300nm。当然,可选的,在另外可行的实施例中,添加颗粒的直径也可大于或小于纳米金属线的直径。
可选地,纳米金属线的长度为10μm至1000μm,添加颗粒的长度为0至10μm。具体地,纳米金属线的长度可以为10μm、20μm、30μm、40μm、50μm、55μm、60μm、65μm、70μm、75μm、80μm、85μm、90μm、95μm、100μm、300μm、500μm、700μm、900μm或1000μm;添加颗粒135的长度可以为0.1μm、0.5μm、1μm、2μm、3μm、4μm、5μm、6μm、7μm、8μm、9μm或10μm。一般地,纳米金属线的长度小于等于相邻电极的间距,而添加颗粒的长度小于纳米金属线的长度,故纳米金属线的长度小于相邻两个电极的长度,进而有效避免添加颗粒同时与两个电极的纳米金属线接触。
可选地,添加颗粒的活性强于或等于纳米金属线的活性。从而,在形成导电层后,使得添加颗粒可以快速的与残留的蚀刻液反应,从而能够更好的防止蚀刻液迁移至电极处腐蚀电极。
可选地,纳米金属线为纳米银线,添加颗粒为铜颗粒、铜合金颗粒、汞合金颗粒、银颗粒或银合金颗粒。此时,添加颗粒的活性强于或等于纳米金属线的活性。
进一步地,可选地,纳米金属线和添加颗粒均呈柱状或管状,纳米金属线的直径为10nm至50nm,添加颗粒的直径为50nm至1000nm。即,使得添加颗粒的直径大于纳米金属线的直径。当然,可以理解的是,在另外可 行的实施例中,纳米金属线和添加颗粒的形状可以不同,纳米金属线的大小和添加颗粒的大小也可以不同,满足添加颗粒与纳米金属线的蚀刻液的反应时间大于纳米金属线与蚀刻液的反应时间即可。
可以理解的是,在另外可行的实施例中,纳米金属线不限于纳米银线,还可以是铜颗粒、有机透明导电高分子颗粒等。
可选地,导电浆中,纳米金属线的含量为0至10wt%,添加颗粒的含量为0至1wt%。在通过本实施例提供的导电浆形成导电膜的导电层时,一方面可以使得添加颗粒能够更完全的与残存在有机膜层内的蚀刻液反应;另一方面可以避免因添加颗粒设置较多而导致相邻电极短路;再一方面当添加颗粒的活性小于等于纳米金属线的活性时,也能避免在黄光工艺过程中,耗费较多的蚀刻液。
具体地,纳米金属线的含量可以为1wt%、2wt%、3wt%、4wt%、5wt%、6wt%、7wt%、8wt%、9wt%或10wt%,添加颗粒的含量可以为0.1wt%、0.2wt%、0.3wt%、0.4wt%、0.5wt%、0.6wt%、0.7wt%、0.8wt%、0.9wt%或1wt%。
可以理解的是,在另外可行的实施例中,纳米金属线的含量和添加颗粒的含量不限于此,能通过黄光工艺形成本申请提供的导电膜的导电层即可。
可选地,纳米金属线和添加颗粒均呈柱状或管状,纳米金属线的长度为10μm至1000μm,添加颗粒的长度为0至10μm。具体地,纳米金属线的长度可以为10μm、20μm、30μm、40μm、50μm、55μm、60μm、65μm、70μm、75μm、80μm、85μm、90μm、95μm、100μm、300μm、500μm、700μm、900μm或1000μm;添加颗粒的长度可以为0.1μm、0.5μm、1μm、2μm、3μm、4μm、5μm、6μm、7μm、8μm、9μm或10μm。一般地,纳米金属线的长度小于等于相邻电极的间距,而添加颗粒的长度小于纳米金属线的长度,故纳米金属线的长度小于相邻两个电极的长度,进而有效避免添加颗粒同时与两个电极的纳米金属线接触。
如图2所示,本申请一实施例提供的导电膜200,包括基板210以及设于基板210表面的导电层230。其中导电层230由本申请提供的导电浆形成。具体地,可以通过涂覆的方式将导电浆涂覆在基板210表面。
可以理解的是,导电膜200蚀刻后可以形成前述实施例提供的导电膜100。
本实施例中,基板210的两个表面上均设有导电层230。可以理解的是,在另外可行的实施例中,还可以仅在基板的一个表面上设置导电层。
本实施例中,导电膜200还包括覆盖导电层230的绝缘层250。绝缘层250内嵌设有若干个导电颗粒。与导电膜100相同,绝缘层250与导电层230之间没有明显的界限,图中通过虚线表示。
本申请一实施例提供一种触控面板,其包括本申请提供的导电膜。可以理解的是,此处的导电膜指包含具有电极和添加颗粒的导电层的导电膜。
上述触控面板,添加颗粒可与残存在有机膜层的蚀刻液反应,从而减缓残存的蚀刻液腐蚀电极,提高导电膜的可靠性,进而提高触控面板的可靠性。
本申请一实施例提供一种显示装置,其包括本申请提供的触控面板。
上述显示装置,添加颗粒可与残存在有机膜层的蚀刻液反应,从而减缓残存的蚀刻液腐蚀电极,提高导电膜的可靠性,进而提高显示装置的可靠性。
本申请一实施例提供一种导电膜的制备方法,其包括步骤:
S01、提供基板110和导电浆。具体地,导电浆包括有机溶剂以及分散在有机溶剂中的纳米金属线以及掺杂在有机溶剂中的添加颗粒。添加颗粒可与纳米金属线的蚀刻液反应;添加颗粒与纳米金属线的蚀刻液完全反应的时间大于纳米金属线与蚀刻液完全反应的时间。换言之,若添加颗粒与纳米金属线同时与蚀刻液反应,纳米金属线将首先与蚀刻液完全反应。基板110结构参图3.1所述。
S02、在基板110表面涂覆导电浆以形成导电层120。详参图3.2。
S03、对所述导电层120中的若干纳米金属线1331进行图案化,以形成包括若干个电极133的导电层130,得到导电膜;其中,所述导电层130包括有机膜层131以及嵌入所述有机膜层中的若干个电极133和添加颗粒135;至少部分所述添加颗粒135位于相邻电极133之间,详参图3.4。
当然,可以理解的是,在步骤S02和步骤S03之间还包括步骤:在导电层120上形成绝缘层170,详参图3.3。
可以理解的是,步骤S03中,对导电层120中的若干纳米金属线1331进行图案化的过程,即对导电层中的部分纳米金属线进行蚀刻的过程。
可以理解的是,步骤S01提供的导电浆,由于添加颗粒和纳米金属线均分散在有机溶剂内,故添加颗粒与蚀刻液反应的条件和纳米金属线与蚀刻液反应的条件相同。换言之,添加颗粒与纳米金属线的蚀刻液完全反应的时间大于纳米金属线与蚀刻液完全反应的时间,是基于相同反应条件进行比较的。
具体地,在通过导电浆形成导电膜的导电层时,预设区域的纳米金属线与蚀刻液完全反应后,蚀刻完成。在蚀刻完成后,电极之间还存在未完全反应的添加颗粒,即形成本申请提供的导电膜的导电层结构。
可选地,有机溶剂包括有机添加剂、树脂、有机溶剂和稀释剂。当然,在另外可行的实施例中,有机溶剂的成分不限于此,可利用本领域常规手段进行设置。
具体地,在通过黄光工艺形成导电膜的导电层时,可通过涂布或网格印刷的方法将导电浆涂覆在基板上。
本实施例中,本实施例提供的导电浆,添加颗粒掺杂在有机溶剂内,故可直接将溶有添加颗粒的导电浆涂覆在基板表面。操作步骤简单。
可选地,添加颗粒均匀的分布在有机溶剂内。
可选地,添加颗粒为金属颗粒。可以理解的是,在另外可行的实施例 中,添加颗粒不限于金属颗粒,还可以是金属氧化物颗粒等其它可以与纳米金属线的蚀刻液反应的颗粒。
可选地,添加颗粒的活性弱于纳米金属线的活性。从而即使添加颗粒设置的较小,也可以使得添加颗粒与纳米金属线的蚀刻液完全反应的时间大于纳米金属线与相同蚀刻液完全反应的时间。从而可以设置添加颗粒的外径较小,在利用导电浆形成导电层时,可有效防止添加颗粒与两个电极同时导通。
可选地,纳米金属线为纳米银线,添加颗粒为铂颗粒、金颗粒或金铂合金颗粒。
进一步地,可选地,纳米金属线和添加颗粒均呈柱状或管状,且直径均为1nm至300nm。可以理解的是,在另外可行的实施例中,纳米金属线和添加颗粒的形状可以不同,大小也可以不同,能满足添加颗粒与纳米金属线不连续导通即可。
具体地,纳米金属线和添加颗粒的直径可以是1nm、5nm、10nm、20nm、30nm、40nm、45nm、50nm、70nm、100nm、150nm、200nm、250nm或300nm。当然,可选的,在另外可行的实施例中,添加颗粒的直径也可大于或小于纳米金属线的直径。
可选地,纳米金属线的长度为10μm至1000μm,添加颗粒的长度为0至10μm。具体地,纳米金属线的长度可以为10μm、20μm、30μm、40μm、50μm、55μm、60μm、65μm、70μm、75μm、80μm、85μm、90μm、95μm、100μm、300μm、500μm、700μm、900μm或1000μm;添加颗粒135的长度可以为0.1μm、0.5μm、1μm、2μm、3μm、4μm、5μm、6μm、7μm、8μm、9μm或10μm。一般地,纳米金属线的长度小于等于相邻电极133的间距,而添加颗粒135的长度小于纳米金属线的长度,故纳米金属线的长度小于相邻两个电极133的长度,进而有效避免添加颗粒135同时与两个电极133的纳米金属线接触。
可选地,添加颗粒的活性强于或等于纳米金属线的活性。进一步地,可选地,纳米金属线和添加颗粒均呈柱状或管状,纳米金属线的直径为10nm至50nm,添加颗粒的直径为50nm至1000nm。即使得添加颗粒的直径大于纳米金属线的直径。当然,可以理解的是,在另外可行的实施例中,纳米金属线和添加颗粒的形状可以不同,纳米金属线的大小和添加颗粒的大小也可以不同,满足添加颗粒与纳米金属线的蚀刻液的反应时间大于纳米金属线与蚀刻液的反应时间即可。
可选地,纳米金属线为纳米银线,添加颗粒为铜颗粒、铜合金颗粒、汞合金颗粒、银颗粒或银合金颗粒。此时,添加颗粒的活性强于或等于纳米金属线的活性。
可以理解的是,在另外可行的实施例中,纳米金属线不限于纳米银线,还可以是铜颗粒、有机透明导电高分子颗粒等。
可选地,导电浆中,纳米金属线的含量为0至10wt%,添加颗粒的含量为0至1wt%。在通过本实施例提供的导电浆形成导电膜的导电层时,一方面可以使得添加颗粒能够更完全的与残存在有机膜层内的蚀刻液反应;另一方面可以避免因添加颗粒设置较多而导致相邻电极短路;再一方面当添加颗粒的活性小于等于纳米金属线的活性时,也能避免在黄光工艺过程中,耗费较多的蚀刻液。
具体地,纳米金属线的含量可以为1wt%、2wt%、3wt%、4wt%、5wt%、6wt%、7wt%、8wt%、9wt%或10wt%,添加颗粒的含量可以为0.1wt%、0.2wt%、0.3wt%、0.4wt%、0.5wt%、0.6wt%、0.7wt%、0.8wt%、0.9wt%或1wt%。
可以理解的是,在另外可行的实施例中,纳米金属线的含量和添加颗粒的含量不限于此,能通过黄光工艺形成本申请提供的导电膜的导电层即可。
可选地,纳米金属线和添加颗粒均呈柱状或管状,纳米金属线的长度为10μm至1000μm,添加颗粒的长度为0至10μm。具体地,纳米金属线 的长度可以为10μm、20μm、30μm、40μm、50μm、55μm、60μm、65μm、70μm、75μm、80μm、85μm、90μm、95μm、100μm、300μm、500μm、700μm、900μm或1000μm;添加颗粒的长度可以为0.1μm、0.5μm、1μm、2μm、3μm、4μm、5μm、6μm、7μm、8μm、9μm或10μm。一般地,纳米金属线的长度小于等于相邻电极的间距,而添加颗粒的长度小于纳米金属线的长度,故纳米金属线的长度小于相邻两个电极的长度,进而有效避免添加颗粒同时与两个电极的纳米金属线接触。
可选地,在步骤S01中,提供导电浆的操作为:提供导电浆初体,在导电浆初体内均匀添加添加颗粒。
可以理解的是,导电浆初体包括有机溶剂以及掺杂在所述有机溶剂中的纳米金属线
具体地,步骤S03的操作为:通过黄光工艺对导电层进行图案化处理。
上述导电膜的制备方法,形成的导电层中,两电极之间具有未完全与电极的蚀刻液反应的添加颗粒。添加颗粒可与残存的蚀刻液反应,从而避免残存的蚀刻液腐蚀电极,提高导电膜的可靠性。
以上所述实施例的各技术特征可以进行任意的组合,为使描述简洁,未对上述实施例中的各个技术特征所有可能的组合都进行描述,然而,只要这些技术特征的组合不存在矛盾,都应当认为是本说明书记载的范围。
以上所述实施例仅表达了本申请的几种实施方式,其描述较为具体和详细,但并不能因此而理解为对专利范围的限制。应当指出的是,对于本领域的普通技术人员来说,在不脱离本申请构思的前提下,还可以做出若干变形和改进,这些都属于本申请的保护范围。因此,本申请的保护范围应以所附权利要求为准。

Claims (17)

  1. 一种导电膜,包括:
    基板;以及
    导电层,设于所述基板的表面;所述导电层包括若干个电极和若干个添加颗粒;至少部分所述添加颗粒位于相邻所述电极之间;所述添加颗粒可与所述电极的蚀刻液反应。
  2. 根据权利要求1所述的导电膜,所述添加颗粒为金属颗粒或金属氧化物颗粒。
  3. 根据权利要求1所述的导电膜,所述电极包括若干个连续导通的纳米金属线,所述纳米金属线为纳米银线,所述添加颗粒为铂颗粒、金颗粒、金铂合金颗粒、铜颗粒、铜合金颗粒、汞合金颗粒、银颗粒或银合金颗粒。
  4. 根据权利要求2所述的导电膜,所述电极包括若干个连续导通的纳米金属线,所述添加颗粒呈柱状或管状;所述纳米金属线的长度为10μm至1000μm,所述添加颗粒的长度为0至10μm。
  5. 根据权利要求1所述的导电膜,还包括覆盖所述导电层的绝缘层,所述绝缘层嵌设有若干个所述添加颗粒。
  6. 一种导电浆,包括有机溶剂以及分散在所述有机溶剂中的纳米金属线,所述导电浆还包括掺杂在所述有机溶剂中的添加颗粒;所述添加颗粒可与所述纳米金属线的蚀刻液反应;所述添加颗粒与所述纳米金属线的蚀刻液完全反应的时间大于所述纳米金属线与所述蚀刻液完全反应的时间。
  7. 根据权利要求6所述的导电浆,所述添加颗粒为金属颗粒,所述添加颗粒的活性弱于所述纳米金属线的活性。
  8. 根据权利要求7所述的导电浆,所述纳米金属线为纳米银线,所述添加颗粒为铂颗粒、金颗粒或金铂合金颗粒。
  9. 根据权利要求7所述的导电浆,所述纳米金属线和所述添加颗粒均呈柱状或管状,且直径均为1nm至300nm。
  10. 根据权利要求6所述的导电浆,所述添加颗粒为金属颗粒,所述添加颗粒的活性强于或等于所述纳米金属线的活性;所述纳米金属线和所述添加颗粒均呈柱状或管状,所述纳米金属线的直径为10nm至50nm,所述添加颗粒的直径为50nm至1000nm。
  11. 根据权利要求10所述的导电浆,所述纳米金属线为纳米银线,所述添加颗粒为铜颗粒、铜合金颗粒、汞合金颗粒、银颗粒或银合金颗粒。
  12. 根据权利要求6所述的导电浆,所述导电浆中,所述纳米金属线的含量为0至10wt%,所述添加颗粒的含量为0至1wt%。
  13. 根据权利要求6所述的导电浆,所述纳米金属线和所述添加颗粒均呈柱状或管状,所述纳米金属线的长度为10μm至1000μm,所述添加颗粒的长度为0至10μm。
  14. 一种导电膜,包括:
    基板;以及
    导电层,设于所述基板表面;所述导电层由导电浆形成;所述导电浆包括有机溶剂以及分散在所述有机溶剂中的纳米金属线,所述导电浆还包括掺杂在所述有机溶剂中的添加颗粒;所述添加颗粒可与所述纳米金属线的蚀刻液反应;所述添加颗粒与所述纳米金属线的蚀刻液完全反应的时间大于所述纳米金属线与所述蚀刻液完全反应的时间。
  15. 一种触控面板,包括导电膜;所述导电膜包括:
    基板;以及
    导电层,设于所述基板的表面;所述导电层包括若干个电极和若干个添加颗粒;至少部分所述添加颗粒位于相邻所述电极之间;所述添加颗粒可与所述电极的蚀刻液反应。
  16. 一种显示装置,包括触控面板;所述触控面板包括导电膜;所述导电膜包括:
    基板;以及
    导电层,设于所述基板的表面;所述导电层包括若干个电极和若干个 添加颗粒;至少部分所述添加颗粒位于相邻所述电极之间;所述添加颗粒可与所述电极的蚀刻液反应。
  17. 一种导电膜的制备方法,包括步骤:
    提供基板和导电浆;所述导电浆包括有机溶剂以及分散在所述有机溶剂中的纳米金属线,以及掺杂在所述有机溶剂中的添加颗粒;所述添加颗粒可与所述纳米金属线的蚀刻液反应;所述添加颗粒与所述纳米金属线的蚀刻液完全反应的时间大于所述纳米金属线与所述蚀刻液完全反应的时间;
    在基板表面涂覆导电浆以形成导电层;以及
    对若干所述纳米金属线进行图案化,以形成包括若干个电极的导电层,得到导电膜;其中,所述导电层包括有机膜层以及嵌入所述有机膜层中的若干个电极和添加颗粒;至少部分所述添加颗粒位于相邻所述电极之间。
PCT/CN2019/123630 2019-12-06 2019-12-06 导电膜及其制备方法、导电浆、触控面板及显示装置 WO2021109119A1 (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
PCT/CN2019/123630 WO2021109119A1 (zh) 2019-12-06 2019-12-06 导电膜及其制备方法、导电浆、触控面板及显示装置

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/CN2019/123630 WO2021109119A1 (zh) 2019-12-06 2019-12-06 导电膜及其制备方法、导电浆、触控面板及显示装置

Publications (1)

Publication Number Publication Date
WO2021109119A1 true WO2021109119A1 (zh) 2021-06-10

Family

ID=76222180

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2019/123630 WO2021109119A1 (zh) 2019-12-06 2019-12-06 导电膜及其制备方法、导电浆、触控面板及显示装置

Country Status (1)

Country Link
WO (1) WO2021109119A1 (zh)

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002196887A (ja) * 2000-12-27 2002-07-12 Fujikura Ltd 透明タッチパネル
CN104221098A (zh) * 2012-03-23 2014-12-17 富士胶片株式会社 导电性部件的制造方法、导电性部件、使用了该导电性部件的触控面板
CN105378854A (zh) * 2013-07-08 2016-03-02 东洋纺株式会社 导电浆料
CN110221718A (zh) * 2018-03-02 2019-09-10 宸鸿光电科技股份有限公司 触控面板的直接图案化方法及其触控面板

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002196887A (ja) * 2000-12-27 2002-07-12 Fujikura Ltd 透明タッチパネル
CN104221098A (zh) * 2012-03-23 2014-12-17 富士胶片株式会社 导电性部件的制造方法、导电性部件、使用了该导电性部件的触控面板
CN105378854A (zh) * 2013-07-08 2016-03-02 东洋纺株式会社 导电浆料
CN110221718A (zh) * 2018-03-02 2019-09-10 宸鸿光电科技股份有限公司 触控面板的直接图案化方法及其触控面板

Similar Documents

Publication Publication Date Title
US10306752B2 (en) Transparent conductor and device
JP5694427B2 (ja) 透明電極及びこれを含む電子材料
JP6134053B2 (ja) 表面機能化金属ナノワイヤを備える透明導電性電極、その構造設計及び構造の製造方法
TWI689853B (zh) 觸控面板及其製備方法
TWI510372B (zh) 電極、含其之電子裝置及其製造方法
TW201416935A (zh) 觸控面板及其製備方法
CN111309175B (zh) 触控面板及其制备方法、触控显示装置
JP5447117B2 (ja) 電子機器の製造方法
TWI749630B (zh) 觸控面板及其製作方法
TWM607109U (zh) 觸控面板
JPWO2009001649A1 (ja) Esd保護素子の製造方法
JP2018107138A (ja) 透明導電体の製造方法
WO2021109119A1 (zh) 导电膜及其制备方法、导电浆、触控面板及显示装置
TWI743883B (zh) 觸控面板及其製作方法
KR20170067204A (ko) 금속 나노선 전극의 제조 방법
KR101627799B1 (ko) 메쉬 구조 기반의 투명 전극 및 인쇄 공정을 이용한 상기 투명 전극의 제조 방법
CN110333793B (zh) 可挠触控结构
CN211319188U (zh) 触控面板
CN112927838A (zh) 导电膜及其制备方法、导电浆、触控面板及显示装置
TW202101184A (zh) 觸控裝置
TWI533331B (zh) 導電結構及其製造方法
CN211403408U (zh) 触控面板
JP4156021B1 (ja) 電極基板
CN107293591B (zh) 印刷线路、薄膜晶体管及其制造方法
TWI585030B (zh) 於電子裝置中線跡上塗覆奈米線的技術

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 19955055

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 19955055

Country of ref document: EP

Kind code of ref document: A1