WO2021108989A1 - 电池组件、电池模组及电池储能装置 - Google Patents

电池组件、电池模组及电池储能装置 Download PDF

Info

Publication number
WO2021108989A1
WO2021108989A1 PCT/CN2019/122722 CN2019122722W WO2021108989A1 WO 2021108989 A1 WO2021108989 A1 WO 2021108989A1 CN 2019122722 W CN2019122722 W CN 2019122722W WO 2021108989 A1 WO2021108989 A1 WO 2021108989A1
Authority
WO
WIPO (PCT)
Prior art keywords
battery
flue gas
cell
battery assembly
plate
Prior art date
Application number
PCT/CN2019/122722
Other languages
English (en)
French (fr)
Inventor
朱军
陆珂伟
周定贤
陈娅琪
陈海平
刘书源
李钊
曹训文
陈丰怿
Original Assignee
上海汽车集团股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 上海汽车集团股份有限公司 filed Critical 上海汽车集团股份有限公司
Priority to US17/781,883 priority Critical patent/US20230012679A1/en
Priority to EP19955392.6A priority patent/EP4071894A4/en
Priority to PCT/CN2019/122722 priority patent/WO2021108989A1/zh
Priority to JP2022533389A priority patent/JP7326620B2/ja
Publication of WO2021108989A1 publication Critical patent/WO2021108989A1/zh

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/60Heating or cooling; Temperature control
    • H01M10/65Means for temperature control structurally associated with the cells
    • H01M10/658Means for temperature control structurally associated with the cells by thermal insulation or shielding
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/60Heating or cooling; Temperature control
    • H01M10/61Types of temperature control
    • H01M10/613Cooling or keeping cold
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/60Heating or cooling; Temperature control
    • H01M10/65Means for temperature control structurally associated with the cells
    • H01M10/655Solid structures for heat exchange or heat conduction
    • H01M10/6551Surfaces specially adapted for heat dissipation or radiation, e.g. fins or coatings
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/60Heating or cooling; Temperature control
    • H01M10/65Means for temperature control structurally associated with the cells
    • H01M10/656Means for temperature control structurally associated with the cells characterised by the type of heat-exchange fluid
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/20Mountings; Secondary casings or frames; Racks, modules or packs; Suspension devices; Shock absorbers; Transport or carrying devices; Holders
    • H01M50/204Racks, modules or packs for multiple batteries or multiple cells
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/20Mountings; Secondary casings or frames; Racks, modules or packs; Suspension devices; Shock absorbers; Transport or carrying devices; Holders
    • H01M50/289Mountings; Secondary casings or frames; Racks, modules or packs; Suspension devices; Shock absorbers; Transport or carrying devices; Holders characterised by spacing elements or positioning means within frames, racks or packs
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/30Arrangements for facilitating escape of gases
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/30Arrangements for facilitating escape of gases
    • H01M50/35Gas exhaust passages comprising elongated, tortuous or labyrinth-shaped exhaust passages
    • H01M50/358External gas exhaust passages located on the battery cover or case
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Definitions

  • the embodiments of the present application relate to the field of battery technology, in particular to battery components, battery modules, and battery energy storage devices.
  • one of the technical problems solved by the embodiments of the present application is to provide a battery assembly, a battery module, and a battery energy storage device to overcome all or part of the above-mentioned defects.
  • an embodiment of the present application provides a battery assembly, including: a heat-insulating fixing frame, a top isolation plate, and at least one battery cell;
  • the heat insulation fixing frame surrounds at least one battery core to fix the position of the at least one battery core
  • the cell includes the main body of the cell, the electrode and the cell pressure relief valve.
  • the cell pressure relief valve is used to discharge the flue gas;
  • the top isolation plate is installed on the top of the heat insulation fixing frame and is attached to the top of the heat insulation fixing frame. At least one first flue gas channel is provided on the top isolation plate. The first flue gas channel is used for exhausting flue gas. The position of the channel is opposite to the position of the cell pressure relief valve; at least one first electrode through hole is provided on the top isolation plate, so that the electrode passes through the first electrode through hole for electrical connection.
  • At least one convex rib is provided on the top isolation plate, and the convex rib faces the heat insulation fixing frame to isolate the tops of adjacent cells.
  • the battery assembly further includes a top protective plate; the top protective plate is installed on the top of the battery cell, and the top protective plate is provided with at least one second flue gas channel, and the second flue gas channel is used for For exhausting flue gas, the position of the second flue gas channel is opposite to the first flue gas channel; the top protective plate is attached to the top of the battery, the top isolation plate is attached to the top protective plate, and the top protective plate is provided with at least one first Two electrode through holes, so that the electrodes pass through the second electrode through holes for electrical connection.
  • the battery assembly further includes a smoke isolation strip, and the smoke isolation strip is installed on the side of the battery assembly.
  • the battery assembly further includes an electrical connection piece, the electrical connection piece is installed above the top isolation plate, and the electrodes of the battery are electrically connected through the electrical connection piece.
  • the battery assembly further includes at least one heat insulation sheet, and the heat insulation sheet is disposed between the side walls of the battery core.
  • the battery assembly further includes a bottom plate, the bottom plate is disposed at the bottom of the battery assembly, and the bottom plate is fixedly connected to the heat insulation fixing frame to form a cavity for accommodating at least one battery cell.
  • an embodiment of the present application provides a battery module, the battery module includes at least one battery assembly, and the battery assembly is the battery assembly described in the first aspect or any one of the embodiments of the first aspect;
  • the battery module also includes a heat dissipation frame, which is installed on one side, or at least one battery assembly is installed on both sides of the heat dissipation frame, so that the battery assembly can dissipate heat through the heat dissipation frame;
  • the bottom surface of the battery assembly is arranged opposite to the heat dissipation frame, and the bottom surface of the cell of the battery assembly is attached to the heat dissipation frame.
  • the heat dissipation frame is provided with a rib at a position corresponding to the heat insulation fixing frame, and the protrusion of the heat dissipation frame is attached to or has a gap with the lower edge of the heat insulation fixing frame.
  • a cooling channel is provided inside the heat sink, and the cooling channel is used to contain the cooling liquid.
  • an embodiment of the present application provides a battery energy storage device, the battery energy storage device includes at least one battery module, and the battery module is the battery module described in the second aspect or any one of the embodiments of the second aspect .
  • the battery energy storage device further includes a housing and a smoke isolation guide plate
  • the housing is provided with a third flue gas channel, the flue gas isolation guide plate is arranged between the two battery modules, the tops of the two battery modules face the flue gas isolation guide plate, and a certain gap is left with the flue gas isolation guide plate ; So that the flue gas passes through the top isolation plate of the battery module through the first flue gas channel, and is discharged from the third flue gas channel along the flue gas isolation guide plate.
  • the third flue gas channel includes an outer hole, an inner hole and a connecting channel; the inner hole is arranged on the inner wall of the housing, the outer hole is arranged on the outer wall, and the positions of the inner hole and the outer hole are staggered, The inner hole is communicated with the outer hole through the connecting channel.
  • the housing includes a top cover, a bottom cover, two first side beams and two second side beams; a top cover, a bottom cover, two first side beams and two The second side beam is fixedly connected to form a cavity for accommodating at least one battery module.
  • the top cover and the bottom cover are respectively opposite to the two first sides of the battery module; the first side beam and the second side beam are respectively opposite to the two second sides of the battery module.
  • the side surfaces are opposite, and the area of the first side surface is larger than that of the second side surface; the second side beams are respectively opposite to the bottom of the battery module.
  • the top isolation plate and the heat insulation fixing frame are arranged in the battery assembly, when the heat is out of control, the smoke in the battery cell passes through the electricity on the battery cell. After the core pressure relief valve discharges the cell, it cannot enter other cells under the combined action of the top isolation plate and the heat insulation fixing frame, and is discharged through the guidance of the top isolation plate, reducing the safety hazard when the cell is out of control. . In addition, a part of the remaining heat in the cell that has been thermally runaway will be quickly discharged through the heat sink, reducing the shell temperature of the thermally runaway cell.
  • the battery assembly is provided with a heat-insulating fixing frame, the remaining heat of the thermally out-of-control cell will be slowly transferred to the adjacent area. After thermal equilibrium, the cell temperature of adjacent partitions is close to but not reaching the trigger threshold of thermal runaway, which may inhibit heat spread.
  • FIG. 1 is a schematic structural diagram of a battery assembly provided by an embodiment of the application
  • FIG. 2 is a cross-sectional view of a battery assembly provided by an embodiment of the application.
  • FIG. 3 is a schematic diagram of a battery assembly provided by an embodiment of the application.
  • Figure 4a is a schematic diagram of a thermal runaway effect provided by an embodiment of the application.
  • Figure 4b is a schematic diagram of a thermal runaway effect provided by an embodiment of the application.
  • FIG. 5a is a structural diagram of a battery module provided by an embodiment of the application.
  • FIG. 5b is a perspective view of a battery module provided by an embodiment of the application.
  • 5c is a cross-sectional view of a battery module provided by an embodiment of the application.
  • FIG. 6 is a schematic diagram of a heat dissipation rack provided by an embodiment of the application.
  • FIG. 7 is a structural diagram of a battery energy storage device provided by an embodiment of the application.
  • FIG. 8 is a structural diagram of a battery energy storage device provided by an embodiment of the application.
  • Figure 9 is a cross-sectional view of a housing provided by an embodiment of the application.
  • FIG. 10 is a structural diagram of a battery energy storage device provided by an embodiment of this application.
  • FIG. 11 is a cross-sectional view of a battery energy storage device provided by an embodiment of the application.
  • FIG. 12 is a cross-sectional view of a battery energy storage device provided by an embodiment of the application.
  • Top isolation board 102 Battery core 103;
  • Electrode 1032 Cell main body 1031; Electrode 1032;
  • Smoke isolation strip 105 Electrical connection piece 106;
  • Insulation sheet 107 bottom plate 108;
  • Top cover 3011 Bottom cover 3012;
  • First side beam 3013 Second side beam 3014;
  • FIG. 1 is a schematic structural diagram of a battery assembly provided by an embodiment of the application; as shown in FIG. 1, the battery assembly 10 includes: a heat insulation fixing frame 101, a top isolation plate 102, and at least one battery cell 103;
  • the heat-insulating fixing frame 101 surrounds at least one battery core 103 to fix the position of the at least one battery core 103;
  • the cell 103 includes a cell main body 1031, an electrode 1032, and a cell pressure relief valve 1033.
  • the cell pressure relief valve 1033 is used to discharge smoke;
  • the top isolation plate 102 is installed on the top of the heat insulation fixing frame 101 and is attached to the top of the heat insulation fixing frame 101.
  • the top isolation plate 102 is provided with at least one first flue gas channel 1021, and the first flue gas channel 1021 is used for exhausting smoke.
  • the position of the first flue gas channel 1021 is opposite to the position of the cell pressure relief valve 1033; the top isolation plate 102 is provided with at least one first electrode through hole 1022, so that the electrode 1032 passes through the first electrode through hole 1022 for electricity connection.
  • the top of the cell 103 is the location where the electrode 1032 and the cell pressure relief valve 1033 are located, and the top of the battery assembly 10 is the location where the top of the cell 103 is located.
  • the smoke in the cell 103 can be discharged through the cell pressure relief valve 1033, and the top isolation plate 102 is attached to the top of the cell 103, and the first flue gas channel 1021 and the cell are pressure-relieved
  • the position of the valve 1033 is opposite, and the flue gas discharged from the cell pressure relief valve 1033 is directly discharged through the top isolation plate 102 and will not enter other cells 103, which effectively slows the spread of thermal runaway.
  • At least one convex rib is provided on the top isolation plate 102, and the convex rib faces the heat insulation fixing frame 101 to isolate the tops of adjacent cells 103.
  • the ribs are provided on the top isolation class, the ribs can be closely attached to the cells 103, so that the tops of the cells 103 are separated from each other by the ribs. It should be noted that, according to the arrangement of the cells 103, the ribs may be grid-shaped.
  • the battery assembly 10 further includes a top protective plate 104; the top protective plate 104 is installed on the top of the thermal insulation fixing frame 101, and the top protective plate 104 is provided with at least A second flue gas channel 1041.
  • the second flue gas channel 1041 is used for exhausting flue gas.
  • the position of the second flue gas channel 1041 is opposite to the first flue gas channel 1021; the top protective plate 104 is attached to the top of the battery core 103,
  • the top isolation plate 102 is attached to the top protection plate 104, and the top protection plate 104 is provided with at least one second electrode through hole 1042, so that the electrode 1032 passes through the second electrode through hole 1042 for electrical connection.
  • the top protective plate 104 can shield the top surface of the cell 103 except for the cell pressure relief valve 1033 and the electrode 1032.
  • a top protective plate 104 is added between the top isolating plate 102 and the cell 103, so that the top isolating plate 102 is in contact with the electric core.
  • the core 103 fits more closely, and the flue gas passes through the cell pressure relief valve 1033, passes through the second flue gas channel 1041 and the first flue gas channel 1021, and then can be discharged, which further ensures that the flue gas will not pass through the top isolation plate
  • the gap between 102 and the cell 103 spreads to other cells 103.
  • the battery assembly 10 further includes a smoke isolation strip 105 which is installed on the side of the battery assembly 10.
  • FIG. 2 is a cross-sectional view of a battery assembly provided by an embodiment of the application, which is enclosed by the flue gas barrier 105, the side of the battery assembly 10, and the thermal insulation fixing frame 101 The space is filled with potting glue to reduce the heat spread of the battery assembly 10.
  • the battery assembly 10 further includes an electrical connection piece 106, the electrical connection piece 106 is installed above the top isolation plate 102, and the electrode 1032 of the battery core 103 is electrically connected The sheet 106 is electrically connected.
  • the electrical connection sheet 106 between the battery cells 103 may be integrated in the top isolation plate 102.
  • FIG. 3 is a schematic diagram of a battery assembly provided in an embodiment of this application; the battery assembly 10 further includes at least one heat insulation sheet 107, and the heat insulation sheet 107 is arranged between the side walls of the battery core 103.
  • the thickness of the heat insulating sheet 107 may be 1 to 4 mm. It should be noted that a heat insulating sheet 107 can be provided between the side walls of every two adjacent battery cells 103, or multiple battery cells 103 can be used as a battery cell unit, and each two adjacent battery cells A heat insulating sheet 107 is arranged between the units. If a thermal runaway occurs in the cell 103, the heat of the cell 103 is dissipated through the heat insulation sheet 107, which will not cause the adjacent cell 103 to heat up rapidly, leading to heat spread, and further reducing the safety hazard of thermal runaway.
  • a plurality of battery cells 103 form a battery cell unit, and a heat insulation sheet 107 is arranged between adjacent battery cells.
  • the battery cell units are stacked along the normal direction of the side surface of the battery core 103, so that one battery assembly 10 can contain multiple battery cell units.
  • the side with a large area is used as the first side
  • the side with a small area is used as the second side.
  • the stacking direction of the battery 103 may be in a direction perpendicular to the second side of the battery 103 , So that the number of battery cells 103 stacked in the vertical direction along the first side surface of the battery core 103 in the battery energy storage system is less than the number of battery cells 103 stacked in the vertical direction along the second side surface.
  • the thermal conductivity of the first side surface is higher than that of the second side surface, but because the number of cells 103 stacked in the direction perpendicular to the first side surface is smaller, the cells that can be destroyed by heat propagation in the direction perpendicular to the first side surface 103 is also less, and the harm to the battery energy storage system is limited.
  • ribs may be provided at positions corresponding to the top insulation plate 102 and the heat insulation sheet 107.
  • the heat insulation sheet 107 is matched with the convex ribs of the top insulation board 102, and the top insulation board 102 is closely attached to the insulation sheet 107 through the convex ribs.
  • the battery assembly 10 further includes a bottom plate 108, the bottom plate 108 is arranged at the bottom of the battery assembly 10, and the bottom plate 108 is fixedly connected with the heat insulation fixing frame 101 to form a housing at least A cavity of the battery core 103.
  • the bottom plate 108 can conduct heat conduction.
  • the heat is quickly discharged through the bottom plate 108 to disperse the heat to other cells 103 that are far away, or drain the heat out, making the thermal runaway
  • the battery core 103 cools down quickly, which also ensures the thermal balance among the battery cells 103 inside the battery assembly 10, avoids the spread of thermal runaway, and further reduces the safety hazard of thermal runaway.
  • the battery assembly 10 can isolate the high-temperature spray (such as smoke) from the battery core 103.
  • Figure 4a is a schematic diagram of a thermal runaway effect provided by an embodiment of the application; when high-temperature ejection is ejected from the cell pressure relief valve 1033 on the top surface of the cell 103, it sequentially passes through the second flue gas channel 1041 of the top protective plate 104 The first flue gas channel 1021 of the top isolation plate 102 exits the battery assembly 10, and cannot pass through the top isolation plate 102 or the side plates of the battery assembly 10 back into the battery assembly 10.
  • FIG. 4b is a schematic diagram of a thermal runaway effect provided by an embodiment of the application; when the side of the battery core 103 that triggers the thermal runaway is broken, high-temperature ejection is ejected from the side of the battery core 103. Because two adjacent cell units are separated into two relatively independent spaces, high-temperature sprays on the side cannot reach the adjacent cell units.
  • the structure of the top isolation plate 102 is deformed under the influence of the heat of the high-temperature ejection, it slightly bulges toward the side away from the battery core 103 in the direction perpendicular to the top surface of the battery core 103, and the top protection plate 104 remains It can provide better thermal isolation protection for the battery core 103.
  • the top isolation plate 102 is provided with ribs on the side facing the battery core 103, the adjacent battery cell units are still two spaces isolated from each other, which prevents high-temperature ejections from swelling and deforming the top isolation board 102 and the cover. In the gap between the plates, flow from one cell unit to the adjacent cell unit.
  • the top isolation plate is set in the battery assembly, when the heat is out of control, the smoke in the battery cell is discharged from the battery cell through the battery pressure relief valve on the battery cell. Under the action, other batteries cannot be entered, and are discharged through the guiding effect of the top isolation plate, which reduces the hidden safety hazard when the battery core is out of control.
  • the thermally conductive bottom plate transfers part of the heat from the thermally runaway cell to other places in time, prolonging the time for the thermally runaway cell to spread to adjacent cells.
  • an embodiment of the present application provides a battery module 20, as shown in FIG. 5a, which is a structural diagram of a battery module provided by an embodiment of the application;
  • the group 20 includes at least one battery assembly 10, and the battery assembly 10 is the battery assembly 10 described in the first embodiment of the application;
  • the battery module 20 also includes a heat dissipation frame 201, which is installed on one side, or at least one battery assembly 10 is installed on both sides of the heat dissipation frame 201, so that the battery assembly 10 dissipates heat through the heat dissipation frame, and the bottom surface of the battery assembly is arranged opposite to the heat dissipation frame. And the bottom surface of the cell of the battery assembly is attached to the heat dissipation frame.
  • the heat dissipation frame 201 is provided with ribs at a position corresponding to the heat-insulating fixing frame 101, and the ribs of the heat-dissipating frame 201 fit or leave the lower edge of the heat-insulating fixing frame 101. There are gaps.
  • a cooling channel is provided inside the heat sink 201, and the cooling channel is used to contain cooling liquid.
  • the cooling liquid can circulate in the cooling flow channel, which enhances the heat dissipation effect of the heat dissipation rack 201.
  • the heat dissipation frame 201 can be arranged between two battery assemblies 10, the heat dissipation frame 201 is provided with a groove for fixing the battery assembly 10, the bottom of the battery assembly 10 is opposite to the heat dissipation frame 201, and the heat dissipation frame 201 is attached to the battery assembly 10 to This allows the battery assembly 10 to dissipate heat through the heat dissipation frame 201.
  • the top and bottom of the battery module 20 are the same, because the bottoms of the two battery assemblies 10 are opposite, so that the top and bottom of the battery module 20 are both the top of the battery assembly 10 (that is, where the cell pressure relief valve 1033 and the electrode 1032 are located The position of) is shown in FIG. 5b, which is a perspective view of a battery module provided by an embodiment of the application.
  • the battery assembly 10 is symmetrically arranged on both sides of the heat dissipation frame 201, so that the bottom surface of the battery core 103 on one side of the heat dissipation frame 201 and the bottom surface of the battery core 103 on the other side They are arranged oppositely, and are respectively installed on both sides of a heat dissipation frame 201, so that the battery assembly 10 is substantially symmetrical along the heat dissipation frame 201.
  • the side of the battery core 103 in contact with the heat dissipation frame 201 is the heat dissipation surface.
  • a thermally conductive glue is coated between the battery core 103 and the heat dissipation frame 201, which can make the contact thermal resistance of the heat dissipation surface lower, which is more conducive to the heat dissipation of the battery core 103 .
  • the heat sink 201 may also be provided with a cooling channel, and the cooling channel contains a cooling liquid.
  • the heat sink 201 can further enhance the heat dissipation effect of the battery core 103 through the cooling liquid.
  • FIG. 6 is a schematic diagram of a heat dissipation frame provided by an embodiment of the application.
  • the heat dissipation frame 201 further includes heat dissipation fins 2011, and the heat dissipation fins 2011 are closely attached to the battery assembly along the edge of the heat dissipation frame 201 On the side surface of 10, the thickness of the heat dissipation fin 2011 may be 2 to 5 mm.
  • the heat dissipation fins 2011 further increase the heat dissipation surface area from the battery core 103 to the heat dissipation frame 201, and improve the heat dissipation power.
  • the heat dissipation frame 201 extends from the heat dissipation fins between the cells 103 in a direction perpendicular to the heat dissipation surface of the battery cell. 2011.
  • the end faces of the heat dissipation fins 2011 between the electric cores 103 are in close contact with the heat insulating sheet 107, and the thickness of the heat dissipation fins 2011 between the electric cores 103 may be 2-5 mm.
  • the heat sink 201 is made of materials with high thermal conductivity, preferably aluminum alloy.
  • the temperature of the thermally runaway cell 103 rises sharply, and most of its heat is carried away from the cell 103 by the high-temperature ejection. Part of the remaining heat in the thermally runaway cell 103 will be quickly discharged through the heat sink 201, which reduces the shell temperature of the thermally runaway cell 103. At the same time, because the heat insulation sheet 107 is arranged between the adjacent cell units, the remaining heat of the thermally runaway cell 103 will be conducted to the adjacent cell units. After the thermal equilibrium, the temperature of the cell 103 of the adjacent cell unit is close to but not reaching the trigger threshold of thermal runaway, so that the heat spread is suppressed.
  • the heat dissipation frame is set between the battery components, when the heat is out of control, the heat of the battery cell is quickly discharged through the heat dissipation frame, which reduces the temperature of the battery cell that is thermally out of control, and conducts the heat to the phase. Adjacent to the battery cell reduces the potential safety hazard when the battery cell is out of control.
  • an embodiment of the present application provides a battery energy storage device 30, as shown in FIG. 7, which is provided for an embodiment of the application.
  • FIG. 7 A structural diagram of a battery energy storage device in which the battery energy storage device 30 includes at least one battery module 20, which is the battery module 20 described in the second embodiment.
  • the battery energy storage device 30 further includes a housing 301 and a smoke isolation guide plate 302;
  • FIG. 8 is a structural diagram of a battery energy storage device provided by an embodiment of the application.
  • a third flue gas channel 303 is provided on the housing 301, and the flue gas isolation guide plate 302 is provided on two battery modules. Between 20, the tops of the two battery modules 20 face the flue gas isolation guide plate 302, and leave a certain gap with the flue gas isolation guide plate 302; so that the flue gas can pass through the battery module 20 through the first flue gas channel 1021
  • the top isolation plate 102 is discharged from the third flue gas channel 303 along the flue gas isolation guide plate 302.
  • FIG. 9 is a cross-sectional view of a housing provided by an embodiment of the present application.
  • the third flue gas channel 303 includes an outer hole 3031, an inner hole 3032, and Connecting channel 3033; inner hole 3032 is provided on the inner wall of housing 301, outer hole 3031 is provided on the outer wall, inner hole 3032 and outer hole 3031 are connected through connecting channel 3033, inner hole 3032 and outer hole 3031 are staggered to increase connecting channel 3033 The distance of the high-temperature flue gas in the connecting channel 3033 is fully cooled.
  • a flue gas filter screen (not shown in the figure) can be provided at the inner hole 3032, and a pressure relief valve (not shown in the figure) is installed at the outer hole 3031.
  • the smoke filter provided at the inner hole 3032 can make the smoke discharged from the battery energy storage device 30 relatively clear and prevent air pollution.
  • the smoke filter set at the inner hole 3032 may also contain chemical substances to reduce the damage caused by the toxic substances in the smoke to surrounding personnel.
  • the housing 301 includes a top cover 3011, a bottom cover 3012, two first side beams 3013 and two second side beams 3014; a top cover 3011, a bottom cover 3012, and two first sides
  • the beam 3013 and the two second side beams 3014 are fixedly connected to form a cavity for accommodating at least one battery module 20.
  • the top cover 3011 and the bottom cover 3012 are respectively opposite to the two first sides of the battery module 20; the first side beam 3013 and the second side beam 3014 are respectively opposite to the battery module
  • the two second side surfaces of 20 are opposite, and the area of the first side surface is larger than that of the second side surface; the second side beams 3014 are opposite to the bottom of the battery module 20 respectively.
  • the third flue gas channel 303 may be provided on the first side beam 3013 or on the second measuring beam, which is not limited in this application.
  • FIG. 10 is a structural diagram of a battery energy storage device provided in an embodiment of this application, and at least one pressure relief hole 30111 is provided on the top cover 3011 .
  • the battery energy storage device 30 further includes a decorative plate 304 fixed on the top cover 3011 and opposite to the at least one pressure relief hole 30111.
  • the pressure relief hole 30111 can assist pressure relief during high temperature relief.
  • the pressure relief hole 30111 can be provided only on the top cover 3011 for flue gas discharge, or the pressure relief hole 30111 can be provided on the bottom cover 3012 for flue gas discharge, and it can also be provided on both the top cover 3011 and the bottom cover 3012.
  • the pressure relief hole 30111 is provided for exhaust of flue gas, which can be specifically selected according to actual needs, which is not specifically limited in this embodiment.
  • FIG. 11 is a cross-sectional view of a battery energy storage device provided by an embodiment of the application.
  • the battery energy storage device 30 includes a battery module 20.
  • the top isolation plate 102 of the battery module 20 and the top cover 3011 of the housing 301 are disposed opposite to each other, leaving a gap.
  • a thermal protection layer may be provided between the top cover 3011 of the housing 301 and the battery module 20 to prevent the high temperature spray from the battery module 20 from melting the top cover 3011 of the housing 301 through.
  • a third flue gas passage 303 is provided on the second side beam 3014, and a pressure relief valve may be provided on the third flue gas passage 303.
  • the high-temperature sprays are sprayed out through the first flue gas channel 1021 of the battery module 20, reflected on the top cover 3011 of the housing 301, and then pass through the circulation space and pass through the third flue gas of the second side beam 3014
  • the channel 303 discharges the battery energy storage device 30, so that the high-temperature ejection material is fully cooled, and the spark jet is blocked, effectively avoiding the phenomenon of fire.
  • FIG. 12 is a cross-sectional view of a battery energy storage device provided by an embodiment of the application.
  • the battery energy storage device 30 includes two battery modules 20.
  • the top isolation plate 102 of the battery module 20 and the first side beam 3013 of the housing 301 are arranged in parallel.
  • a third flue gas channel 303 is provided on the second side beam 3014 of the housing 301.
  • the top isolation plates 102 of adjacent battery modules 20 are arranged oppositely and have an inter-group gap, and the opposite end between two adjacent battery modules 20 has a pressure relief channel; the flue gas isolation guide plate 302 is fixed to the two battery modules Between the groups 20, the smoke isolation guide plate 302 divides the gap between the two battery modules 20 into two circulation spaces along the direction perpendicular to the top isolation plate 102, and the two circulation spaces correspond to two adjacent batteries.
  • the modules 20 are provided, and each circulation space communicates with the pressure relief channel of the adjacent battery module 20, and is connected to the third flue gas channel 303 and the pressure relief valve provided on the second side beam 3014.
  • the high-temperature ejection is sprayed to the flue gas isolation guide plate 302 through the first flue gas channel 1021 of the battery module 20, and after reflection, passes through the circulation space to reach the third flue gas channel 303. Finally, the battery energy storage device 30 is discharged through the pressure relief valve, so that the high temperature ejection material is fully cooled, and the spark jet is blocked, effectively avoiding the phenomenon of fire.
  • the battery energy storage device of the embodiment of the present application includes a flue gas isolation guide plate and a housing, because the top isolation plate is provided in the battery assembly, and when the heat is out of control, the flue gas in the battery cell is discharged through the battery cell on the battery cell. After the valve discharges the cell, it cannot enter other cells under the action of the top isolation plate, and flows through the flue gas isolation guide plate to the third flue gas channel on the shell, and exhausts through the third flue gas channel, reducing the electricity Safety hazards when the core heat is out of control.
  • orientation or positional relationship indicated by the terms “upper”, “lower”, “inner”, “bottom”, etc. is based on the orientation or positional relationship shown in the drawings, or is The orientation or positional relationship that the product of the invention is usually placed in use is only for the convenience of describing the present invention and simplifying the description, rather than indicating or implying that the device or element referred to must have a specific orientation, be constructed and operated in a specific orientation, Therefore, it cannot be understood as a limitation to the present invention.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Manufacturing & Machinery (AREA)
  • Battery Mounting, Suspending (AREA)
  • Secondary Cells (AREA)
  • Gas Exhaust Devices For Batteries (AREA)
  • Connection Of Batteries Or Terminals (AREA)

Abstract

本申请实施例提供了一种电池组件、电池模组及电池储能装置,电池组件10,包括:隔热固定框101、顶部隔离板102、及至少一个电芯103;隔热固定框101围绕至少一个电芯103,以固定至少一个电芯103的位置;电芯103包括电芯主体1031、电极1032和电芯泄压阀1033,电芯泄压阀1033用于排泄烟气;顶部隔离板102安装在隔热固定框101顶部,与隔热固定框101的顶部贴合,顶部隔离板102上设置有至少一个第一烟气通道1021,第一烟气通道1021用于排泄烟气,第一烟气通道1021的位置与电芯泄压阀1033的位置相对;顶部隔离板102上设置有至少一个第一电极通孔1022,以便电极1032穿过第一电极通孔1022进行电连接。减小了电芯热失控时的安全隐患。

Description

电池组件、电池模组及电池储能装置 技术领域
本申请实施例涉及电池技术领域,尤其涉及电池组件、电池模组及电池储能装置。
背景技术
随着各类新能源交通工具对搭载电量需求的不断增加以及电池储能产业的发展,以锂离子电池为代表的各种电池能量密度不断提升,对电池储能技术的安全、成本、电量集成效率等方面提出了更高的要求。在相关技术中,若干个电芯集成在一起作为电池模组使用,如果电芯热失控后,电芯迅速升温,并产生大量热量以固液气三相共存的烟气状喷发物喷出电芯单体,电芯的剩余热量传导至相邻电芯使其迅速升温,导致热失控会在电芯间蔓延开,存在安全隐患。
发明内容
有鉴于此,本申请实施例所解决的技术问题之一在于提供一种电池组件、电池模组及电池储能装置,用以克服全部或者部分上述缺陷。
第一方面,本申请实施例提供一种电池组件,包括:隔热固定框、顶部隔离板、及至少一个电芯;
隔热固定框围绕至少一个电芯,以固定至少一个电芯的位置;
电芯包括电芯主体、电极和电芯泄压阀,电芯泄压阀用于排泄烟气;
顶部隔离板安装在隔热固定框顶部,与隔热固定框的顶部贴合,顶部隔离板上设置有至少一个第一烟气通道,第一烟气通道用于排泄烟气,第一烟气通道的位置与电芯泄压阀的位置相对;顶部隔离板上设置有至少一个第一电极通孔,以便电极穿过第一电极通孔进行电连接。
可选地,在本申请的一个实施例中,顶部隔离板上设置有至少一个凸筋,凸筋朝向隔热固定框,将相邻电芯的顶部隔离。
可选地,在本申请的一个实施例中,电池组件还包括顶部防护板;顶部防护板安装在电芯顶部,顶部防护板上设置有至少一个第二烟气通道,第二烟气通道用于排泄烟气,第二烟气通道的位置与第一烟气通道相对;顶部防护板 与电芯的顶部贴合,顶部隔离板与顶部防护板贴合,顶部防护板上设置有至少一个第二电极通孔,以便电极穿过第二电极通孔进行电连接。
可选地,在本申请的一个实施例中,电池组件还包括烟气隔离条,烟气隔离条安装在电池组件的侧面。
可选地,在本申请的一个实施例中,电池组件还包括电连接片,电连接片安装于顶部隔离板上方,电芯的电极通过电连接片实现电连接。
可选地,在本申请的一个实施例中,电池组件还包括至少一个隔热片,隔热片设置于电芯的侧壁之间。
可选地,在本申请的一个实施例中,电池组件还包括底板,底板设置于电池组件底部,底板与隔热固定框固定连接,形成容纳至少一个电芯的空腔。
第二方面,本申请实施例提供一种电池模组,电池模组包括至少一个电池组件,电池组件为第一方面或第一方面的任意一个实施例中所描述的电池组件;
电池模组还包括散热架,散热架单面安装,或者散热架的两面各安装至少一个电池组件,以使得电池组件通过散热架散热;
电池组件底面与散热架相对设置,且电池组件的电芯底面与散热架贴合。
可选地,在本申请的一个实施例中,散热架在对应隔热固定框的位置设置有凸筋,且散热架的凸筋与隔热固定框的下边缘贴合或留有间隙。
可选地,在本申请的一个实施例中,散热架内部设置有冷却流道,冷却流道用于容纳冷却液。
第三方面,本申请实施例提供一种电池储能装置,电池储能装置包括至少一个电池模组,电池模组为第二方面或第二方面的任意一个实施例中所描述的电池模组。
可选地,在本申请的一个实施例中,电池储能装置还包括外壳和烟气隔离导向板;
外壳上设置有第三烟气通道,烟气隔离导向板设置于两个电池模组之间,两个电池模组的顶部朝向烟气隔离导向板,并与烟气隔离导向板留有一定间隙;以使得烟气通过第一烟气通道穿过电池模组的顶部隔离板,沿着烟气隔离导向板从第三烟气通道排出。
可选地,在本申请的一个实施例中,第三烟气通道包括外孔、内孔及连接通道;内孔设置于外壳的内壁,外孔设置于外壁,内孔与外孔位置交错,内 孔与外孔通过连接通道连通。
可选地,在本申请的一个实施例中,外壳包括顶盖、底盖、两个第一侧梁和两个第二侧梁;顶盖、底盖、两个第一侧梁及两个第二侧梁固定连接形成容纳至少一个电池模组的腔体。
可选地,在本申请的一个实施例中,顶盖和底盖分别与电池模组的两个第一侧面相对;第一侧梁和第二侧梁分别与电池模组的两个第二侧面相对,第一侧面的面积大于第二侧面;第二侧梁分别与电池模组的底部相对。
本申请实施例的电池组件、电池模组及电池储能装置,因为在电池组件中设置了顶部隔离板和隔热固定框,在热失控时,电芯中的烟气通过电芯上的电芯泄压阀排出电芯后,在顶部隔离板和隔热固定框的共同作用下,无法进入其他电芯,并且通过顶部隔离板的导向作用排出,减小了电芯热失控时的安全隐患。此外,已发生热失控电芯内剩余的热量,一部分会通过散热架迅速导出,降低已热失控电芯的壳体温度。同时,因为电池组件中设置有隔热固定框,已热失控电芯的剩余热量将缓慢的传导至相邻区域。热平衡后,相邻分区的电芯温度接近却未达到热失控的触发阈值,可能抑制热蔓延。
附图说明
后文将参照附图以示例性而非限制性的方式详细描述本申请实施例的一些具体实施例。附图中相同的附图标记标示了相同或类似的部件或部分。本领域技术人员应该理解,这些附图未必是按比例绘制的。附图中:
图1为本申请实施例提供的电池组件的结构示意图;
图2为本申请实施例提供的一种电池组件的截面图;
图3为本申请实施例提供的一种电池组件的示意图;
图4a为本申请实施例提供的一种热失控效果示意图;
图4b为本申请实施例提供的一种热失控效果示意图;
图5a为本申请实施例提供的一种电池模组的结构图;
图5b为本申请实施例提供的一种电池模组的立体图;
图5c为本申请实施例提供的一种电池模组的截面图;
图6为本申请实施例提供的一种散热架的示意图;
图7为本申请实施例提供的一种电池储能装置的结构图;
图8为本申请实施例提供的一种电池储能装置的结构图;
图9为本申请实施例提供的一种外壳的截面图;
图10为本申请实施例提供的一种电池储能装置的结构图;
图11为本申请实施例提供的一种电池储能装置的截面图;
图12为本申请实施例提供的一种电池储能装置的截面图;
附图标记:
电池组件10;                          隔热固定框101;
顶部隔离板102;                       电芯103;
电芯主体1031;                        电极1032;
电芯泄压阀1033;                      第一烟气通道1021;
第一电极通孔1022;                    顶部防护板104;
第二烟气通道1041;                    第二电极通孔1042;
烟气隔离条105;                       电连接片106;
隔热片107;                           底板108;
电池模组20;                          散热架201;
散热翅片2011;                        电池储能装置30;
外壳301;                             烟气隔离导向板302;
第三烟气通道303;                     外孔3031;
内孔3032;                            连接通道3033;
顶盖3011;                            底盖3012;
第一侧梁3013;                        第二侧梁3014;
泄压孔30111;                         饰板304。
具体实施方式
实施本申请实施例的任一技术方案必不一定需要同时达到以上的所有优点。
为了使本领域的人员更好地理解本申请实施例中的技术方案,下面将结合本申请实施例中的附图,对本申请实施例中的技术方案进行清楚、完整地描述,显然,所描述的实施例仅是本申请实施例一部分实施例,而不是全部的实施例。基于本申请实施例中的实施例,本领域普通技术人员所获得的所有其他实施例,都应当属于本申请实施例保护的范围。
下面结合本申请实施例附图进一步说明本申请实施例具体实现。
实施例一、
图1为本申请实施例提供的电池组件的结构示意图;如图1所示,电池组件10包括:隔热固定框101、顶部隔离板102、及至少一个电芯103;
隔热固定框101围绕至少一个电芯103,以固定至少一个电芯103的位置;
电芯103包括电芯主体1031、电极1032和电芯泄压阀1033,电芯泄压阀1033用于排泄烟气;
顶部隔离板102安装在隔热固定框101顶部,与隔热固定框101的顶部贴合,顶部隔离板102上设置有至少一个第一烟气通道1021,第一烟气通道1021用于排泄烟气,第一烟气通道1021的位置与电芯泄压阀1033的位置相对;顶部隔离板102上设置有至少一个第一电极通孔1022,以便电极1032穿过第一电极通孔1022进行电连接。
在本申请中,电芯103的顶部为电极1032和电芯泄压阀1033所在的部位,电池组件10的顶部为电芯103的顶部所在的部位。
如果电芯103发生热失控,电芯103内的烟气可以通过电芯泄压阀1033排出,而顶部隔离板102与电芯103顶部贴合,且第一烟气通道1021与电芯泄压阀1033位置相对,从电芯泄压阀1033排出的烟气直接通过顶部隔离板102排出,不会进入其他电芯103,有效减缓了热失控的蔓延。
可选地,在本申请的一个实施例中,顶部隔离板102上设置有至少一个凸筋,凸筋朝向隔热固定框101,将相邻电芯103的顶部隔离。
因为顶部隔离班上设置了凸筋,可以使得凸筋处与电芯103紧密贴合,使得各个电芯103的顶部之间被凸筋相互隔离。需要说明的是,按照电芯103的排列方式,凸筋可以是栅格状。
可选地,在本申请的一个实施例中,如图1所示,电池组件10还包括顶部防护板104;顶部防护板104安装在隔热固定框101顶部,顶部防护板104上设置有至少一个第二烟气通道1041,第二烟气通道1041用于排泄烟气,第二烟气通道1041的位置与第一烟气通道1021相对;顶部防护板104与电芯103的顶部贴合,顶部隔离板102与顶部防护板104贴合,顶部防护板104上设置有至少一个第二电极通孔1042,以便电极1032穿过第二电极通孔1042进行电连接。
顶部防护板104可以遮挡电芯103顶面除电芯泄压阀1033和电极1032 以外的部分,在顶部隔离板102与电芯103之间添加了顶部防护板104,使得顶部隔离板102与电芯103之间贴合更加紧密,烟气通过电芯泄压阀1033,穿过第二烟气通道1041以及第一烟气通道1021后即可排出,进一步保证了烟气不会通过顶部隔离板102与电芯103之间的缝隙蔓延至其他电芯103。
可选地,在本申请的一个实施例中,电池组件10还包括烟气隔离条105,烟气隔离条105安装在电池组件10的侧面。
烟气隔离条105设置在电池组件10的侧壁,烟气隔离条105过盈配合在电池组件10的侧面间隙内。可选的,如图2所示,图2为本申请实施例提供的一种电池组件的截面图,在烟气隔离条105、电池组件10的侧面、以及隔热固定框101所围成的空间内填充灌封胶,减少电池组件10的热蔓延。
可选地,在本申请的一个实施例中,如图1所示,电池组件10还包括电连接片106,电连接片106安装于顶部隔离板102上方,电芯103的电极1032通过电连接片106实现电连接。可选的,电芯103间的电连接片106可以集成于顶部隔离板102中。
可选地,在本申请的一个实施例中,如图3所示,图3为本申请实施例提供的一种电池组件的示意图;电池组件10还包括至少一个隔热片107,隔热片107设置于电芯103的侧壁之间。
隔热片107的厚度可以是1~4mm。需要说明的是,可以在每两个相邻的电芯103侧壁之间设置一个隔热片107,也可以将多个电芯103作为一个电芯单元,在每两个相邻的电芯单元之间设置一个隔热片107。如果电芯103发生热失控,电芯103的热量通过隔热片107散发,不会引起相邻电芯103迅速升温,导致热蔓延,进一步减少了热失控的安全隐患。
可选地,如图3所示;多个电芯103组成一个电芯单元,相邻的电芯单元之间设置有隔热片107。在所述电池组件10中,电芯单元沿着电芯103侧面的法线方向堆叠,使一个电池组件10中可以包含多个电芯单元。
可选的,电芯103的四个侧面中,将面积大的侧面作为第一侧面,面积小的侧面作为第二侧面,电芯103的堆叠方向可以沿垂直于电芯103第二侧面的方向,使电池储能系统中沿电芯103的第一侧面垂直方向堆叠的电芯103数量,少于沿第二侧面垂直方向堆叠的电芯103数量,第一侧面作为电池单体之间的主要传热面,第一侧面的导热量会高于第二侧面,但因为垂直第一侧面的方向上所堆叠的电芯103数量更少,在垂直第一侧面的方向热蔓延可破坏的电 芯103也较少,对电池储能系统造成的危害有限。
可选的,在顶部隔离板102与隔热片107对应的位置可以设置有凸筋。隔热片107与顶部隔离板102的凸筋相匹配,顶部隔离板102通过凸筋与隔热片107实现紧密贴合。
可选地,在本申请的一个实施例中,如图1所示,电池组件10还包括底板108,底板108设置于电池组件10底部,底板108与隔热固定框101固定连接,形成容纳至少一个电芯103的空腔。
需要说明的是,底板108可以进行导热,在电芯103发生热失控时,热量通过底板108迅速导出,将热量分散至其他距离较远的电芯103,或者将热量排泄出去,使得热失控的电芯103迅速降温,也保证了电池组件10内部各个电芯103之间热均衡,避免热失控蔓延,进一步减小了热失控的安全隐患。
如果发生热失控,电池组件10可将高温喷出物(例如烟气)与电芯103隔离。
图4a为本申请实施例提供的一种热失控效果示意图;当高温喷出物从电芯103顶面的电芯泄压阀1033喷出,依次通过顶部防护板104的第二烟气通道1041、顶部隔离板102的第一烟气通道1021排出电池组件10,且无法穿过顶部隔离板102或电池组件10的侧板回到电池组件10内。
图4b为本申请实施例提供的一种热失控效果示意图;当触发热失控的电芯103侧面破裂,高温喷出物从电芯103侧面喷出。因相邻两个电芯单元被分隔成相对独立的两个空间,侧面的高温喷出物无法抵达相邻的电芯单元内。此外,如果在高温喷出物的热影响下,顶部隔离板102的结构发生变形,使其沿垂直于电芯103顶面的方向朝背离电芯103的一侧略微隆起,顶部防护板104依然可以为电芯103提供较好的热隔离防护。同时,还因为顶部隔离板102朝向电芯103的一侧设置了凸筋,相邻电芯单元依然是相互隔离的两个空间,阻止了高温喷出物在隆起变形的顶部隔离板102和盖板之间的间隙中,从一个电芯单元流通至相邻的电芯单元。
本申请实施例的电池组件,因为在电池组件中设置了顶部隔离板,在热失控时,电芯中的烟气通过电芯上的电芯泄压阀排出电芯后,在顶部隔离板的作用下,无法进入其他电芯,并且通过顶部隔离板的导向作用排出,减小了电芯热失控时的安全隐患。此外,导热的底板及时将部分热量从热失控的电芯转移到其他地方,延长了热失控电芯热蔓延到相邻电芯的时间。
实施例二、
基于上述实施例一所描述的电池组件10,本申请实施例提供一种电池模组20,如图5a所示,图5a为本申请实施例提供的一种电池模组的结构图;电池模组20包括至少一个电池组件10,电池组件10为本申请实施例一中所描述的电池组件10;
电池模组20还包括散热架201,散热架201单面安装,或者散热架201的两面各安装至少一个电池组件10,以使得电池组件10通过散热架散热,电池组件底面与散热架相对设置,且电池组件的电芯底面与散热架贴合。
可选地,在本申请的一个实施例中,散热架201在对应隔热固定框101的位置设置有凸筋,且散热架201的凸筋与隔热固定框101的下边缘贴合或留有间隙。
可选地,在本申请的一个实施例中,散热架201内部设置有冷却流道,冷却流道用于容纳冷却液。优选的,冷却液可以在冷却流道中循环流动,增强了散热架201的散热效果。
散热架201可以设置于两个电池组件10之间,散热架201上设置有固定电池组件10的凹槽,电池组件10的底部与散热架201相对,散热架201与电池组件10贴合,以使得电池组件10通过散热架201散热。电池模组20的顶部和底部是相同的,因为两个电池组件10的底部相对,使得电池模组20的顶部和底部均为电池组件10的顶部(即电芯泄压阀1033和电极1032所在的部位)如图5b所示,图5b为本申请实施例提供的一种电池模组的立体图。
图5c为本申请实施例提供的一种电池模组的截面图,电池组件10在散热架201两侧对称布置,使散热架201一侧的电芯103底面与另一侧的电芯103底面相对设置,并分别安装在一个散热架201的两侧,使电池组件10沿着散热架201基本对称。
电芯103与散热架201接触的一面为散热面,可选的,在电芯103与散热架201之间涂覆导热胶,可以使散热面的接触热阻更低,更利于电芯103散热。
散热架201内还可以设置有冷却通道,冷却通道内容纳有冷却液,散热架201通过冷却液可以进一步增强对电芯103的散热效果。
可选的,如图6所示,图6为本申请实施例提供的一种散热架的示意图,散热架201还包括散热翅片2011,散热翅片2011沿着散热架201边缘紧贴电 池组件10的侧面,散热翅片2011的厚度可以是2~5mm。散热翅片2011进一步增大了电芯103到散热架201的散热面面积,提升了散热功率。
进一步可选的,如图6所示,在相邻电芯单元之间的隔热片107的位置,散热架201沿垂直于电池单体散热面的方向延伸出电芯103间的散热翅片2011。电芯103间的散热翅片2011的端面与隔热片107紧贴,电芯103间散热翅片2011的厚度可以是2~5mm。
每个电芯单元内所有电芯103与散热架201紧贴的散热面面积总和A,每个电芯单元内所有电芯103的体积总和V,如果二者的比值A/V大于或等于于10,则可以确保电芯103在热失控后具有足够的散热量。散热架201采用导热率高的材料,优选的采用铝合金。
在出现热失控时,热失控的电芯103会温度骤升,其大部分热量通过高温喷出物带离电芯103。热失控的电芯103内剩余的热量,一部分会通过散热架201迅速导出,降低了热失控的电芯103的壳体温度。同时,因为到相邻电芯单元之间设置有隔热片107,已热失控电芯103的剩余热量将传导至相邻电芯单元。热平衡后,相邻电芯单元的电芯103温度接近却未达到热失控的触发阈值,使热蔓延得到抑制。
本申请实施例的电池模组,因为在电池组件之间设置了散热架,在热失控时,电芯的热量通过散热架迅速导出,降低了热失控的电芯的温度,将热量传导至相邻电芯,减小了电芯热失控时的安全隐患。
实施例三、
基于上述实施例一所描述的电池组件10以及实施例二所描述的电池模组20,本申请实施例提供一种电池储能装置30,如图7所示,图7为本申请实施例提供的一种电池储能装置的结构图,该电池储能装置30包括至少一个电池模组20,电池模组20为实施例二中所描述的电池模组20。
可选地,在本申请的一个实施例中,如图7所示,电池储能装置30还包括外壳301和烟气隔离导向板302;
如图8所示,图8为本申请实施例提供的一种电池储能装置的结构图,外壳301上设置有第三烟气通道303,烟气隔离导向板302设置于两个电池模组20之间,两个电池模组20的顶部朝向烟气隔离导向板302,并与烟气隔离导向板302留有一定间隙;以使得烟气通过第一烟气通道1021穿过电池模组20的顶部隔离板102,沿着烟气隔离导向板302从第三烟气通道303排出。
可选地,在本申请的一个实施例中,如图9所示,图9为本申请实施例提供的一种外壳的截面图,第三烟气通道303包括外孔3031、内孔3032及连接通道3033;内孔3032设置于外壳301的内壁,外孔3031设置于外壁,内孔3032与外孔3031通过连接通道3033连通,内孔3032与外孔3031位置交错,以增大连接通道3033的距离,使得高温烟气在连接通道3033内充分进行降温。
可选地,内孔3032处可以设置有烟气滤网(图中未示出),外孔3031处安装有泄压阀(图中未示出)。内孔3032处设置的烟气滤网,可以使得排出于电池储能装置30的烟气比较清澈,防止空气污染。内孔3032处设置的烟气滤网还可包含化学物质,以降低烟气中的有毒物质对周边人员造成伤害。
可选地,如图8所示,外壳301包括顶盖3011、底盖3012、两个第一侧梁3013和两个第二侧梁3014;顶盖3011、底盖3012、两个第一侧梁3013及两个第二侧梁3014固定连接形成容纳至少一个电池模组20的腔体。
可选地,在本申请的一个实施例中,顶盖3011和底盖3012分别与电池模组20的两个第一侧面相对;第一侧梁3013和第二侧梁3014分别与电池模组20的两个第二侧面相对,第一侧面的面积大于第二侧面;第二侧梁3014分别与电池模组20的底部相对。
第三烟气通道303可以设置在第一侧梁3013上,也可以设置在第二测梁上,本申请对此不作限制。
可选地,在本申请的一个实施例中,如图10所示,图10为本申请实施例提供的一种电池储能装置的结构图,顶盖3011上设置有至少一个泄压孔30111。
可选地,在本申请的一个实施例中,电池储能装置30还包括饰板304,饰板304固定于顶盖3011上,与至少一个泄压孔30111位置相对。
泄压孔30111可以在高温泄压时辅助泄压。可以仅在顶盖3011上设置泄压孔30111,用于烟气排出,也可以在底盖3012上设置泄压孔30111,用于烟气排出,还可以在顶盖3011和底盖3012上都设置泄压孔30111,用于烟气排出,具体可以根据实际需要选择,本实施例对此不作具体限定。
图11为本申请实施例提供的一种电池储能装置的截面图,如图11所示,电池储能装置30包含一个电池模组20。电池模组20的顶部隔离板102与外壳301的顶盖3011相对设置,且留有间隙。可选的,在外壳301的顶盖3011和电池模组20之间,可以设置有热防护层,避免电池模组20的高温喷出物将外 壳301的顶盖3011熔穿。第二侧梁3014上设置有第三烟气通道303,在第三烟气通道303上可以设置泄压阀。在热失控时,高温喷出物通过电池模组20的第一烟气通道1021喷出后,在外壳301顶盖3011上反射,再经过流通空间,通过第二侧梁3014的第三烟气通道303排出电池储能装置30,使高温喷出物充分降温,并阻挡了火星射流,有效的避免了喷火的现象。
图12为本申请实施例提供的一种电池储能装置的截面图,如图12所示,电池储能装置30包含两个电池模组20。电池模组20的顶部隔离板102与外壳301的第一侧梁3013平行设置。在外壳301的第二侧梁3014上设置第三烟气通道303。相邻电池模组20的顶部隔离板102相对设置且具有组间间隙,相邻两个电池模组20之间相对设置的一端具有泄压通道;烟气隔离导向板302固定于两个电池模组20之间,烟气隔离导向板302将两个电池模组20之间的间隙沿垂直于顶部隔离板102的方向分割为两个流通空间,两个流通空间分别对应相邻的两个电池模组20设置,每一流通空间与相邻的电池模组20的泄压通道连通,且都连通至第二侧梁3014上设置的第三烟气通道303和泄压阀。在电芯103发生热失控后,高温喷出物通过电池模组20的第一烟气通道1021喷向烟气隔离导向板302,经过反射后,再经过流通空间到达第三烟气通道303,最后通过泄压阀排出电池储能装置30,使高温喷出物充分降温,并阻挡了火星射流,有效的避免了喷火的现象。
本申请实施例的电池储能装置,包括烟气隔离导向板和外壳,因为在电池组件中设置了顶部隔离板,在热失控时,电芯中的烟气通过电芯上的电芯泄压阀排出电芯后,在顶部隔离板的作用下,无法进入其他电芯,并通过烟气隔离导向板流通至外壳上的第三烟气通道,过第三烟气通道排出,减小了电芯热失控时的安全隐患。
上述产品可执行本申请实施例所提供的方法,具备执行方法相应的功能模块和有益效果。未在本实施例中详尽描述的技术细节,可参见本申请实施例所提供的方法。
应注意的是,在本说明书中,相似的标号和字母在下面的附图中表示类似项,因此,一旦某一项在一个附图中被定义,则在随后的附图中不需要对其进行进一步定义和解释。
在本实施例的描述中,需要说明的是,术语“上”、“下”、“内”、“底”等指示的方位或位置关系为基于附图所示的方位或位置关系,或者是该 发明产品使用时惯常摆放的方位或位置关系,仅是为了便于描述本发明和简化描述,而不是指示或暗示所指的装置或元件必须具有特定的方位、以特定的方位构造和操作,因此不能理解为对本发明的限制。
术语“第一”、“第二”等仅用于区分描述,而不能理解为指示或暗示相对重要性、顺序或者必要性等。
在本实施例的描述中,还需要说明的是,除非另有明确的规定和限定,术语“设置”、“相连”、“连接”应做广义理解,例如,可以是固定连接,也可以是可拆卸连接,或一体地连接;可以是机械连接,也可以是电连接;可以是直接相连,也可以通过中间媒介间接相连,可以是两个元件内部的连通。对于本领域的普通技术人员而言,可以具体情况理解上述术语在本实施例中的具体含义。
还需要说明的是,术语“包括”、“包含”或者其任何其他变体意在涵盖非排他性的包含,从而使得包括一系列要素的过程、方法、商品或者设备不仅包括那些要素,而且还包括没有明确列出的其他要素,或者是还包括为这种过程、方法、商品或者设备所固有的要素。在没有更多限制的情况下,由语句“包括一个……”限定的要素,并不排除在包括所述要素的过程、方法、商品或者设备中还存在另外的相同要素。
本说明书中的各个实施例均采用递进的方式描述,各个实施例之间相同相似的部分互相参见即可,每个实施例重点说明的都是与其他实施例的不同之处。尤其,对于系统实施例而言,由于其基本相似于方法实施例,所以描述的比较简单,相关之处参见方法实施例的部分说明即可。
以上所述仅为本申请的实施例而已,并不用于限制本申请。对于本领域技术人员来说,本申请可以有各种更改和变化。凡在本申请的精神和原理之内所作的任何修改、等同替换、改进等,均应包含在本申请的权利要求范围之内。

Claims (15)

  1. 一种电池组件,其特征在于,包括:隔热固定框、顶部隔离板、及至少一个电芯;
    所述隔热固定框围绕所述至少一个电芯,以固定所述至少一个电芯的位置;
    所述电芯包括电芯主体、电极和电芯泄压阀,所述电芯泄压阀用于排泄烟气;
    所述顶部隔离板安装在所述隔热固定框顶部,与所述隔热固定框的顶部贴合,所述顶部隔离板上设置有至少一个第一烟气通道,所述第一烟气通道用于排泄烟气,所述第一烟气通道的位置与所述电芯泄压阀的位置相对;所述顶部隔离板上设置有至少一个第一电极通孔,以便所述电极穿过所述第一电极通孔进行电连接。
  2. 根据权利要求1所述的电池组件,其特征在于,所述顶部隔离板上设置有至少一个凸筋,所述凸筋朝向所述隔热固定框,将相邻电芯的顶部隔离。
  3. 根据权利要求1所述的电池组件,其特征在于,所述电池组件还包括顶部防护板;
    所述顶部防护板安装在所述隔热固定框顶部,所述顶部防护板上设置有至少一个第二烟气通道,所述第二烟气通道用于排泄烟气,所述第二烟气通道的位置与所述第一烟气通道相对;
    所述顶部防护板与所述电芯的顶部贴合,所述顶部隔离板与所述顶部防护板贴合,所述顶部防护板上设置有至少一个第二电极通孔,以便所述电极穿过所述第二电极通孔进行电连接。
  4. 根据权利要求1所述的电池组件,其特征在于,所述电池组件还包括烟气隔离条,所述烟气隔离条安装在所述电池组件的侧面。
  5. 根据权利要求1所述的电池组件,其特征在于,所述电池组件还包括电连接片,所述电连接片安装于所述顶部隔离板上方,所述电芯的电极通过所述电连接片实现电连接。
  6. 根据权利要求1所述的电池组件,其特征在于,所述电池组件还包括至少一个隔热片,所述隔热片设置于所述电芯的侧壁之间。
  7. 根据权利要求1所述的电池组件,其特征在于,所述电池组件还包括底板,所述底板设置于所述电池组件底部,所述底板与所述隔热固定框固定连接,形成容纳所述至少一个电芯的空腔。
  8. 一种电池模组,其特征在于,所述电池模组包括至少一个电池组件,所 述电池组件为权利要求1-7任一项所述的电池组件;
    所述电池模组还包括散热架,所述散热架单面安装,或者所述散热架的两面各安装至少一个所述电池组件,以使得所述电池组件通过所述散热架散热;
    所述电池组件底面与所述散热架相对设置,且所述电池组件的电芯底面与所述散热架贴合。
  9. 根据权利要求8所述的电池模组,其特征在于,
    所述散热架在对应隔热固定框的位置设置有凸筋,且所述散热架的凸筋与所述隔热固定框的下边缘贴合或留有间隙。
  10. 根据权利要求8所述的电池模组,其特征在于,
    所述散热架内部设置有冷却流道,所述冷却流道用于容纳冷却液。
  11. 一种电池储能装置,其特征在于,所述电池储能装置包括至少一个电池模组,所述电池模组为权利要求8-10任一项所述的电池模组。
  12. 根据权利要求11所述的电池储能装置,其特征在于,所述电池储能装置还包括外壳和烟气隔离导向板;
    所述外壳上设置有第三烟气通道,所述烟气隔离导向板设置于两个所述电池模组之间,两个所述电池模组的顶部朝向所述烟气隔离导向板,并与所述烟气隔离导向板设有间隙;以使得烟气通过第一烟气通道穿过所述电池模组的顶部隔离板,沿着所述烟气隔离导向板从所述第三烟气通道排出。
  13. 根据权利要求12所述的电池储能装置,其特征在于,所述第三烟气通道包括外孔、内孔及连接通道;所述内孔设置于所述外壳的内壁,所述外孔设置于所述外壁,所述内孔与所述外孔位置交错,所述内孔与所述外孔通过所述连接通道连通。
  14. 根据权利要求11所述的电池储能装置,其特征在于,所述外壳包括顶盖、底盖、两个第一侧梁和两个第二侧梁;所述顶盖、所述底盖、两个所述第一侧梁及两个所述第二侧梁固定连接形成容纳所述至少一个电池模组的腔体。
  15. 根据权利要求14所述的电池储能装置,其特征在于,所述顶盖和所述底盖分别与所述电池模组的两个第一侧面相对;所述第一侧梁和所述第二侧梁分别与所述电池模组的两个第二侧面相对,所述第一侧面的面积大于所述第二侧面;所述第二侧梁分别与所述电池模组的底部相对。
PCT/CN2019/122722 2019-12-03 2019-12-03 电池组件、电池模组及电池储能装置 WO2021108989A1 (zh)

Priority Applications (4)

Application Number Priority Date Filing Date Title
US17/781,883 US20230012679A1 (en) 2019-12-03 2019-12-03 Battery assembly, battery module and battery energy storage device
EP19955392.6A EP4071894A4 (en) 2019-12-03 2019-12-03 BATTERY ASSEMBLY, BATTERY MODULE AND BATTERY ENERGY STORAGE DEVICE
PCT/CN2019/122722 WO2021108989A1 (zh) 2019-12-03 2019-12-03 电池组件、电池模组及电池储能装置
JP2022533389A JP7326620B2 (ja) 2019-12-03 2019-12-03 電池モジュール、電池パックおよび電池エネルギー貯蔵装置

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/CN2019/122722 WO2021108989A1 (zh) 2019-12-03 2019-12-03 电池组件、电池模组及电池储能装置

Publications (1)

Publication Number Publication Date
WO2021108989A1 true WO2021108989A1 (zh) 2021-06-10

Family

ID=76220898

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2019/122722 WO2021108989A1 (zh) 2019-12-03 2019-12-03 电池组件、电池模组及电池储能装置

Country Status (4)

Country Link
US (1) US20230012679A1 (zh)
EP (1) EP4071894A4 (zh)
JP (1) JP7326620B2 (zh)
WO (1) WO2021108989A1 (zh)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113540614A (zh) * 2021-06-21 2021-10-22 深圳市科陆电子科技股份有限公司 基于侧面散热的软包电芯模组及电池包
WO2023016472A1 (zh) * 2021-08-10 2023-02-16 比亚迪股份有限公司 电池模组、电池包和车辆
CN116435656A (zh) * 2023-03-17 2023-07-14 梵智达科技(深圳)有限公司 一种高效隔热结构的储能电池箱
WO2023183802A3 (en) * 2022-03-21 2024-02-01 Georgia Tech Research Corporation Battery thermal management systems and methods

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20100136396A1 (en) * 2009-08-21 2010-06-03 Tesla Motors, Inc. Cell Separator for Minimizing Thermal Runaway Propagation within a Battery Pack
CN107579177A (zh) * 2017-08-17 2018-01-12 安徽安凯汽车股份有限公司 一种动力电池烟雾扩散装置
CN206992202U (zh) * 2017-04-12 2018-02-09 苏州科易新动力科技有限公司 一种模块排烟隔热结构
CN110197935A (zh) * 2018-02-27 2019-09-03 格朗吉斯铝业(上海)有限公司 一种用于电池模组的水冷板
CN110444835A (zh) * 2019-08-29 2019-11-12 蜂巢能源科技有限公司 电池包和车辆

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9985259B2 (en) * 2013-03-29 2018-05-29 Sanyo Electric Co., Ltd. Battery pack
WO2018022964A1 (en) * 2016-07-29 2018-02-01 Crynamt Management Llc Battery packs having structural members for improving thermal management
CN110323372B (zh) * 2018-03-29 2021-05-18 宁德时代新能源科技股份有限公司 复合端板以及电池模组

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20100136396A1 (en) * 2009-08-21 2010-06-03 Tesla Motors, Inc. Cell Separator for Minimizing Thermal Runaway Propagation within a Battery Pack
CN206992202U (zh) * 2017-04-12 2018-02-09 苏州科易新动力科技有限公司 一种模块排烟隔热结构
CN107579177A (zh) * 2017-08-17 2018-01-12 安徽安凯汽车股份有限公司 一种动力电池烟雾扩散装置
CN110197935A (zh) * 2018-02-27 2019-09-03 格朗吉斯铝业(上海)有限公司 一种用于电池模组的水冷板
CN110444835A (zh) * 2019-08-29 2019-11-12 蜂巢能源科技有限公司 电池包和车辆

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113540614A (zh) * 2021-06-21 2021-10-22 深圳市科陆电子科技股份有限公司 基于侧面散热的软包电芯模组及电池包
WO2023016472A1 (zh) * 2021-08-10 2023-02-16 比亚迪股份有限公司 电池模组、电池包和车辆
WO2023183802A3 (en) * 2022-03-21 2024-02-01 Georgia Tech Research Corporation Battery thermal management systems and methods
CN116435656A (zh) * 2023-03-17 2023-07-14 梵智达科技(深圳)有限公司 一种高效隔热结构的储能电池箱
CN116435656B (zh) * 2023-03-17 2024-05-03 梵智达科技(深圳)有限公司 一种高效隔热结构的储能电池箱

Also Published As

Publication number Publication date
US20230012679A1 (en) 2023-01-19
EP4071894A1 (en) 2022-10-12
EP4071894A4 (en) 2023-09-06
JP2023519469A (ja) 2023-05-11
JP7326620B2 (ja) 2023-08-15

Similar Documents

Publication Publication Date Title
WO2021108989A1 (zh) 电池组件、电池模组及电池储能装置
CN110444835B (zh) 电池包和车辆
CN113013531A (zh) 电池组件、电池模组及电池储能装置
EP2911233B1 (en) Battery block and battery module having same
KR102058688B1 (ko) 간접 냉각 방식의 배터리 모듈
CN116759697A (zh) 电池模块组件、电池包和使用电池作为电源的设备
CN214124043U (zh) 电池托盘、电池包及电动汽车
JP2015088236A (ja) 電池モジュール及び電池システム
CN113937403A (zh) 单元模块及电池包
CN215816252U (zh) 电池系统
WO2024087801A1 (zh) 电芯托盘、电池模组及车辆
CN210926234U (zh) 方形锂电池模组及电池模组系统
US20240063458A1 (en) Battery pack and thermal runaway protection method
CN218896774U (zh) 电池模块液冷板热失控排气烟道结构及电池包
WO2021092754A1 (zh) 电池储能模块及电池储能装置
WO2023284133A1 (zh) 一种电池设备及其制备方法
CN112652838A (zh) 一种延缓热失控的集成式结构
CN218123559U (zh) 电池箱体组件、电池包和电池系统
CN117080667B (zh) 电池箱体及电池包
WO2024036536A1 (zh) 排放组件、箱体、电池和用电装置
TWM538280U (zh) 電池裝置
CN220321454U (zh) 电池包以及车辆
CN219759740U (zh) 电池和用电设备
CN221239666U (zh) 电池模组、包含环形电池的模组及用电设备
CN220652266U (zh) 电池包及新能源汽车

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 19955392

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2022533389

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 2019955392

Country of ref document: EP

Effective date: 20220704