WO2021108936A1 - Una celda robotizada caminante para la fabricación de edificios impresos en obra mediante un sistema multi-eje de impresión 3d; y método de operación - Google Patents

Una celda robotizada caminante para la fabricación de edificios impresos en obra mediante un sistema multi-eje de impresión 3d; y método de operación Download PDF

Info

Publication number
WO2021108936A1
WO2021108936A1 PCT/CL2019/050133 CL2019050133W WO2021108936A1 WO 2021108936 A1 WO2021108936 A1 WO 2021108936A1 CL 2019050133 W CL2019050133 W CL 2019050133W WO 2021108936 A1 WO2021108936 A1 WO 2021108936A1
Authority
WO
WIPO (PCT)
Prior art keywords
robotic
walking
cell
printed
axis
Prior art date
Application number
PCT/CL2019/050133
Other languages
English (en)
French (fr)
Inventor
Luis Felipe GONZÁLEZ BÖHME
Rodrigo Hernán GARCÍA ALVARADO
Francisco Javier QUITRAL ZAPATA
Alejandro MARTÍNEZ ROCAMORA
Fernando Alfredo AUAT CHEEIN
Original Assignee
Universidad Técnica Federico Santa María
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Universidad Técnica Federico Santa María filed Critical Universidad Técnica Federico Santa María
Priority to US17/782,623 priority Critical patent/US20230016498A1/en
Priority to PCT/CL2019/050133 priority patent/WO2021108936A1/es
Publication of WO2021108936A1 publication Critical patent/WO2021108936A1/es

Links

Classifications

    • EFIXED CONSTRUCTIONS
    • E04BUILDING
    • E04GSCAFFOLDING; FORMS; SHUTTERING; BUILDING IMPLEMENTS OR AIDS, OR THEIR USE; HANDLING BUILDING MATERIALS ON THE SITE; REPAIRING, BREAKING-UP OR OTHER WORK ON EXISTING BUILDINGS
    • E04G21/00Preparing, conveying, or working-up building materials or building elements in situ; Other devices or measures for constructional work
    • E04G21/02Conveying or working-up concrete or similar masses able to be heaped or cast
    • E04G21/04Devices for both conveying and distributing
    • E04G21/0418Devices for both conveying and distributing with distribution hose
    • E04G21/0436Devices for both conveying and distributing with distribution hose on a mobile support, e.g. truck
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B25HAND TOOLS; PORTABLE POWER-DRIVEN TOOLS; MANIPULATORS
    • B25JMANIPULATORS; CHAMBERS PROVIDED WITH MANIPULATION DEVICES
    • B25J9/00Programme-controlled manipulators
    • B25J9/0084Programme-controlled manipulators comprising a plurality of manipulators
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C64/00Additive manufacturing, i.e. manufacturing of three-dimensional [3D] objects by additive deposition, additive agglomeration or additive layering, e.g. by 3D printing, stereolithography or selective laser sintering
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C64/00Additive manufacturing, i.e. manufacturing of three-dimensional [3D] objects by additive deposition, additive agglomeration or additive layering, e.g. by 3D printing, stereolithography or selective laser sintering
    • B29C64/10Processes of additive manufacturing
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C64/00Additive manufacturing, i.e. manufacturing of three-dimensional [3D] objects by additive deposition, additive agglomeration or additive layering, e.g. by 3D printing, stereolithography or selective laser sintering
    • B29C64/10Processes of additive manufacturing
    • B29C64/106Processes of additive manufacturing using only liquids or viscous materials, e.g. depositing a continuous bead of viscous material
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C64/00Additive manufacturing, i.e. manufacturing of three-dimensional [3D] objects by additive deposition, additive agglomeration or additive layering, e.g. by 3D printing, stereolithography or selective laser sintering
    • B29C64/20Apparatus for additive manufacturing; Details thereof or accessories therefor
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C64/00Additive manufacturing, i.e. manufacturing of three-dimensional [3D] objects by additive deposition, additive agglomeration or additive layering, e.g. by 3D printing, stereolithography or selective laser sintering
    • B29C64/30Auxiliary operations or equipment
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C64/00Additive manufacturing, i.e. manufacturing of three-dimensional [3D] objects by additive deposition, additive agglomeration or additive layering, e.g. by 3D printing, stereolithography or selective laser sintering
    • B29C64/30Auxiliary operations or equipment
    • B29C64/379Handling of additively manufactured objects, e.g. using robots
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B33ADDITIVE MANUFACTURING TECHNOLOGY
    • B33YADDITIVE MANUFACTURING, i.e. MANUFACTURING OF THREE-DIMENSIONAL [3-D] OBJECTS BY ADDITIVE DEPOSITION, ADDITIVE AGGLOMERATION OR ADDITIVE LAYERING, e.g. BY 3-D PRINTING, STEREOLITHOGRAPHY OR SELECTIVE LASER SINTERING
    • B33Y10/00Processes of additive manufacturing
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B33ADDITIVE MANUFACTURING TECHNOLOGY
    • B33YADDITIVE MANUFACTURING, i.e. MANUFACTURING OF THREE-DIMENSIONAL [3-D] OBJECTS BY ADDITIVE DEPOSITION, ADDITIVE AGGLOMERATION OR ADDITIVE LAYERING, e.g. BY 3-D PRINTING, STEREOLITHOGRAPHY OR SELECTIVE LASER SINTERING
    • B33Y30/00Apparatus for additive manufacturing; Details thereof or accessories therefor
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B62LAND VEHICLES FOR TRAVELLING OTHERWISE THAN ON RAILS
    • B62DMOTOR VEHICLES; TRAILERS
    • B62D57/00Vehicles characterised by having other propulsion or other ground- engaging means than wheels or endless track, alone or in addition to wheels or endless track
    • B62D57/02Vehicles characterised by having other propulsion or other ground- engaging means than wheels or endless track, alone or in addition to wheels or endless track with ground-engaging propulsion means, e.g. walking members
    • B62D57/032Vehicles characterised by having other propulsion or other ground- engaging means than wheels or endless track, alone or in addition to wheels or endless track with ground-engaging propulsion means, e.g. walking members with alternately or sequentially lifted supporting base and legs; with alternately or sequentially lifted feet or skid

Definitions

  • the present invention refers to a walking robotic cell for the manufacture of buildings printed on site by means of a multi-axis 3D printing system and operation method, which can be moved over and between pre-installed reinforcement and vertical ducts and which allows the generation of trajectories multiple helicals for the simultaneous deposition of continuous filaments of a cement mortar, polymer, biomaterial or other similar material that does not require formwork to give it shape or contain it while it solidifies.
  • a walking robotic cell that has power, control and navigation systems on board, which is connectable from above to an external source of material and alternatively also to external power, control and navigation systems, which is supported and transported by a Quadruped mobile robotic system that acts autonomously and teleoperated, and that contains a multi-axis actuator device, which is reprogrammable, automatically controlled and programmable offline or online in all its degrees of freedom from an external or remote computer and that is composed of a circular displacement axis, with a plurality of carriages on which a plurality of manipulator robots move mounted on a plurality of telescopic columns in an inverted position and an interchangeable nozzle is mounted on the flange of each manipulator robot, which has an electronically controlled stopcock that connects to a flexible hose e for material transport, which is part of a feeding apparatus through which the mortar that is pumped from the outside of the walking robotic cell descends, to be extruded into filaments that are deposited in successive superimposed layers, according to a design of previous computational
  • Printed construction also known as 3D printing construction, consists of the additive manufacturing of buildings and construction components by means of the computer-controlled mechanical deposition of filaments of a mortar material in a plastic state, generally with a high content of cement, fine grains. of aggregates, usually between 2 and 3 mm in diameter, accelerators and other specific additives, which reproduces the contour of the piece to be printed, in its horizontal and vertical extension, in successive superimposed layers that adhere to each other consecutively, forming a resistant continuum that progressively solidifies, preserving its shape and position without the help of formwork.
  • the threshold of time in which each cement mortar filament best adheres to the lower filament, in successive overlapping layers, without crushing each other too much, or overturning or crumbling is a crucial parameter in the programming and control of the speeds and accelerations of deposition and pumping of mortar, especially in the impression of pieces of great horizontal extension or of rooms.
  • the composition of the mortar, the number of superimposed layers and their respective weight are also determining factors in the programming and control of the 3D printing process with cement mortar. Less frequent, until now, is the construction printed with mortar of polymer materials, biomaterials and other composite materials.
  • the shape and orientation of the nozzle through which the mortar is extruded are also essential to determine the effective reach of the tool, especially if the part to be printed contains pre-installed reinforcement or ducts, likewise if the angle that the walls of the piece form with the ground is different from ninety degrees and, in some cases, also if it is sought to expedite the exit of the mortar filament from the nozzle, reducing the friction produced by the vertical orientation of the nozzle.
  • the printed construction process can occur on site, that is, on the construction site, to fabricate buildings on their final site or in a workshop, to prefabricate constructive components that they will eventually be put into service in a place other than where they were printed.
  • the conventional way of manufacturing walls, columns, slab components and other pieces using 3D printing is to print from the bottom up, layer by layer, the contour of the piece with a continuous mortar filament and the decoration of the piece with another or the same filament, to form a structuring weft of the piece.
  • slab components can be prefabricated, preferably in the workshop, by printing them in a vertical position, as if they were hollow walls or bricks that are finally knocked down to be put into service, laid in their final position and orientation. You can also use the printed contour of the piece so that it acts as a formwork and once its walls harden and acquire sufficient strength, fill the interior of the piece with the same or another appropriate material to improve its mechanical resistance, insulation acoustic or thermal insulation.
  • Both the contour and trim mortar can also contain natural or synthetic fibers to improve their mechanical resistance.
  • supply and extraction ducts for water, electricity, gases and other means can also be installed before, during or after manufacturing the part, as allowed by the printed construction system used.
  • the same condition applies to installing windowsills and lintels, for example, to form the openings of doors and windows, before or during the 3D printing process of the walls that make up an enclosure.
  • the reinforcement of the piece must be anchored to the foundation, as well as to the adjacent pieces, if any, in order to obtain a continuous resistance, solidly based on the ground and in solidarity with the rest of the building.
  • the choice of the printed construction system used is vitally important, especially if it will not be possible to modify the position or orientation of the part during the 3D printing process, as is generally the case in construction printed on site.
  • four classes of printed construction system can be distinguished according to their mechanical structure and workspace: Cartesian, cylindrical, parallel and articulated.
  • the Cartesian system of printed construction is fundamentally composed of a gantry.
  • the links of its kinematic chain are connected by at least three prismatic (translational) joints each oriented in one of the directions of the X, Y and Z axes of the Cartesian coordinate system.
  • Your workspace is in the shape of a rectangular prism (orthohedron) and is completely contained by the supporting structure of the printed building system itself.
  • the conventional nozzle through which the material is extruded moves with three degrees of freedom and with a single fixed orientation.
  • the cylindrical system of printed construction is essentially composed of a cantilevered rotating arm.
  • the links of its kinematic chain are connected by a joint of revolution (rotational) around the vertical axis Z, a prismatic joint (translational) also in the direction of the vertical axis Z and a prismatic joint (translational) in the direction of one of the horizontal X or Y axes of the Cartesian coordinate system.
  • Your workspace is in the shape of an incomplete cylinder - if the joint of revolution around the vertical Z axis does not reach 360 angular degrees - or complete - if the joint of revolution around the vertical Z axis does reach or exceed 360 angular degrees-, which partially or totally contains the printed construction system itself.
  • the conventional nozzle through which the material is extruded moves with three degrees of freedom and with a single fixed orientation.
  • the parallel system of printed construction also known as Delta, is essentially composed of three concurrent articulated arms.
  • the links of the kinematic chain of each arm are connected by either a prismatic (translational) joint in the direction of the vertical Z axis, or a revolution (rotational) joint around one of the horizontal X or Y axes, and two universal (rotational) unions about one of the horizontal X or Y axes, and about the vertical Z axis.
  • Your workspace is roughly shaped like the lower hemisphere of a sphere or inverted umbrella and is completely contained by the supporting structure of the printed construction system itself.
  • the conventional nozzle through which the material is extruded moves with three degrees of freedom and with a single fixed orientation.
  • the articulated system of printed construction is essentially composed of a manipulator robot.
  • the links of its kinematic chain are connected by six joints of revolution (rotational), each around one of the X, Y or Z axes of the Cartesian coordinate system.
  • Your workspace is roughly shaped like an incomplete or complete sphere, containing either partially or totally the printed building system itself.
  • the conventional nozzle through which the material is extruded moves with three degrees of freedom and is oriented with three degrees of freedom.
  • Cartesian and parallel systems of printed construction take up more space for installation and operation than cylindrical and articulated systems, mainly due to the need to install larger and more robust support systems on site and sometimes also additional guidance systems.
  • Cylindrical and articulated systems of printed construction although generally self-supporting, can only print around them, unless additional support and guidance systems are installed on site that allow them to move horizontally or vertically.
  • cylindrical and articulated systems cannot fully imprint their surroundings, without being enclosed within their own printed work.
  • the need to install additional guidance systems on site for the horizontal or vertical movement of a printed construction system limits the possibilities of operating simultaneously with a plurality of replicas of the system, or subsequently repositioning the same system in different places. of a construction site.
  • the topology of the conventional path of the nozzle through which the mortar is extruded, in all kinds of printed construction system presented here forms a simple helix that advances vertically, to deposit a continuous filament of the material.
  • Invention patent KR101914524 B1 dated 02.11.2018, by Ghang Lee, entitled “3D mobile concrete building 3d printing system”, discloses a mobile 3D printing system for concrete buildings, with less space limitation than conventional technology.
  • the mobile 3D printing system of concrete buildings, according to the present invention can manufacture a wall by extruding concrete using a 3D printing method.
  • a working position is recognized by a reference point, installed in a predetermined position, and the wall can be formed in various ways.
  • the printing system can include software and hardware systems.
  • the software system can process 3D models of the desired reinforced concrete element in multiple layers.
  • the software system can use the individual layer to control the operation of the hardware system to print the desired reinforced concrete element, layer by layer.
  • the hardware system can provide a concrete nozzle, a reinforcing material nozzle, as well as dispensing mechanisms to print the materials at the desired locations and / or at the desired times for the individual layer being printed.
  • the hardware system may also include motion control mechanisms that allow the position of the nozzles to move from side to side, up and down, and zoom in or out relative to the item being printed as desired during the printing process.
  • the room 3D printer is used for on-site printing at a construction site and comprises a joist body, and a drive mechanism and a traveling mechanism which are arranged on the joist body and are connected to each other, a set concrete discharge pump that is connected with the displacement mechanism and is configured to discharge concrete in the displacement process of the displacement mechanism to complete the construction of the body of the wall of the room, a lifting mechanism to increase the height of the printer 3D rooms and an automatic control mechanism to automatically control the displacement of the concrete discharge assembly.
  • the room 3D printer can be used to print the room with reinforced concrete on the construction site, so the degree of automation of room construction is high, the cost is low, and the working efficiency is high.
  • Such a device makes it possible to control the printing of the structure to be printed, in particular the position of the print head, and reduce labor costs and the time required for installation on a lifting device (LD) such as a standard crane provided of a hook.
  • a lifting device such as a standard crane provided of a hook.
  • LD lifting device
  • a first objective of the invention is to provide a walking robotic cell for the manufacture of buildings printed on site by means of a multi-axis 3D printing system, which comprises a quadruped mobile robotic system, which acts autonomously and teleoperated, composed of four legs locomotives with five degrees of freedom each, to achieve a stable running algorithm and that carry a toroidal casing that inside houses power, control and navigation systems on board, on its upper outer face it supports three radial beams, equidistant from each other and concurrent in a hollow shaft zenith node through which hoses and cables pass, and on its lower outer face it supports a circular displacement axis, which is part of a multi-axis actuator device, and a feeding device, composed of a hose external semi-rigid for material transport, which is connected by a hose coupling to an extension tube with fixing flange that passes through It is vertically connected to a hollow shaft rotary connector and is connected to a multi-outlet rotary distributor, to whose three or more discharge ports are
  • a multi-axis actuator device which is a reprogrammable electromechanical system, automatically controlled, programmable offline or online in all its degrees of freedom from an external or remote computer, which is composed of a circular displacement axis, with three or more more trolleys on which three or more manipulator robots move mounted on three or more telescopic columns in an inverted position and the interchangeable nozzle is mounted on the flange of each manipulator robot, which has an electronically controlled stopcock and is connected to flexible hose for material transport.
  • a second objective of the invention is to provide a method to operate a walking robotic cell, for the manufacture of buildings printed on site by means of a multi-axis 3D printing system, which comprises the steps of: a) commanding the quadruped mobile robotic system of the walking robotic cell, to be positioned and leveled autonomously, or positioned and leveled by teleoperation, in a planned place of a construction site, with its power supply properly connected to an external source of material, such as, for example , a mortar pump and alternatively to external power, control and navigation systems such as, for example, an electricity generator or an installed electrical network, an external compressor and controller, to drive your multi-axis actuator device through a program executed from a computer to external or remote, and start the 3D printing on site of a building, whose construction components can have armor and vertical ducts pre-installed inside; b) actuate the three or more manipulator robots to position and orient the three or more interchangeable nozzles, at preferably distal points of the interior and exterior contour of
  • each manipulator robot independently positions and orients the interchangeable nozzle that is mounted on its flange at each required moment, according to a previous computational trajectory design that reproduces the interior and exterior contour of the building in all its horizontal extension and vertical.
  • Figure 1 depicts a top isometric view of the printed construction walking robotic cell of the invention, in an example for operating with three manipulator robots.
  • Figure 2 depicts a bottom isometric view of the printed construction walking robotic cell of the invention, in an example for operating with three manipulator robots.
  • Figure 3 depicts an oblique view of the printed construction walking robotic cell of the invention, at its minimum height, in an example for operating with three manipulator robots.
  • Figure 4 depicts an oblique view of the printed construction walking robotic cell of the invention, at an intermediate height, in an example for operating with three robot manipulators.
  • Figure 5 describes an oblique view of the printed construction walking robotic cell of the invention, at an intermediate height and its telescopic columns extended to the maximum, in an example to operate with three manipulator robots.
  • Figure 6 depicts an oblique view of the printed construction walking robotic cell of the invention, at its maximum height, in an example for operating with three manipulator robots.
  • Figure 7 depicts an oblique view of the printed construction walking robotic cell of the invention, rocking, in one example to operate with three manipulator robots.
  • Figure 8 depicts a plan view of the printed construction walking robotic cell of the invention, in an example for operating with three manipulator robots.
  • Figure 9 depicts an isometric view of the quadruped mobile robotic system of the printed construction walking robotic cell of the invention, in an example to operate with three manipulator robots.
  • Figure 10 describes an exploded isometric view of the feeding apparatus of the printed construction walking robotic cell of the invention, in an example for operating with three manipulator robots.
  • Figure 11 depicts an exploded isometric view of the multi-axis actuator apparatus of the printed construction walking robotic cell of the invention, in an example for operating with three manipulator robots.
  • Figure 12 describes a first example of operation of the walking robotic cell, in the initial stage of manufacturing a first floor of a building printed on site with reinforcement anchored to the foundation, vertical ducts pre-installed inside of some walls and sills installed or completed during the 3D printing process.
  • Figure 13 describes a second example of operation of the walking robotic cell, in the initial stage of manufacturing a second floor of a building printed on site, while it rises to a preferably prefabricated slab and moves over and between reinforcement, joints of adhesion and pre-installed vertical ducts.
  • Figure 14 describes a third example of operation of the walking robotic cell supported on a conventional, motorized or climbing scaffold and a preferably prefabricated slab, to print the interior and exterior contour of perimeter walls of a second floor of a building printed on site with pre-installed vertical truss and ducts.
  • Figure 15 describes a fourth operating example of the walking robotic cell supported on a conventional, motorized or climbing scaffold and a preferably prefabricated slab, to print the interior and exterior contour of perimeter walls of a fifth floor of a building printed on site with pre-installed vertical truss and ducts.
  • the first objective of the invention is to have a walking robotic cell for the manufacture of buildings printed on site by means of a reprogrammable 3D printing multi-axis system, automatically controlled and programmable in all its degrees of freedom from a computer external or remote.
  • the walking robotic cell itself is capable of moving autonomously, or being transferred by teleoperation, by land to a construction site and positioning itself in the required place, including the next higher or lower level of a building under construction, to proceed to 3D printing.
  • the walking robotic cell can support its locomotive legs on slabs, preferably prefabricated, and conventional, motorized or climbing scaffolding, it is leveled by activating them and it is fed from a mortar pump overhead with material, by means of a semi-rigid external hose for material transport. Due to the fact that the power, control and navigation systems on board have limited energy autonomy in time, the robotic walking cell can also be powered from a zenith with electrical energy from an electricity generator or an installed electrical network, with hydraulic or pneumatic energy from an external compressor and with control and navigation signals from an external controller and, without the need to obstruct other tasks in its environment at ground level.
  • a walking robotic cell is the main physical component for the manufacture of buildings printed on site through a proposed multi-axis 3D printing system.
  • the walking robotic cell itself is an autonomous, scalable and replicable functional unit, which can be applied in isolation or simultaneously to print buildings on site, whose constructive components can have pre-installed reinforcement and vertical ducts inside, and is composed of a quadruped mobile robotic system, a feeding apparatus and a multi-axis actuator apparatus.
  • the quadruped mobile robotic system itself is a locomotion device with autonomous and teleoperated control, which constitutes the support and transport of the power supply device, the multi-axis actuator device and the pipe that protects cables and power and control hoses, and is composed of by a toroidal casing that in the thickness of its interior houses power, control and navigation systems on board, on its upper exterior face it supports three radial beams, equidistant from each other and concurrent in a hollow shaft zenith node through which hoses and cables pass , on its lower outer face it supports a circular displacement axis, which is part of the multi-axis actuator device and on its perimeter outer face it has four locomotive legs with four revolution joints, a prismatic joint and three hydraulic or pneumatic reinforcements in each leg, to achieve a stable gait algorithm.
  • the casing, the four locomotive legs, the concurrent beams and the hollow shaft zenith node are of a size and robustness to be defined according to specifications to adequately resist the forces to which the system will be subjected.
  • quadruped mobile robotic in its commissioning, both during its movement and during the 3D printing process.
  • the operational purpose of the hollow shaft zenith node is to let in and out of the walking robotic cell a semi-rigid external hose for material transport and a plurality of power, control and other cables and hoses that are connected to external devices to replace in case necessary to the power, control and navigation systems on board.
  • the quadruped mobile robotic system is capable of varying the height and orientation of the walking robotic cell, allowing it to move from one room to another of a building under construction, overcoming obstacles such as walls, beams, trusses and vertical ducts above, below, or between them.
  • the feeding device itself is a device for conveying material, diverting and twisting cables and hoses, composed of a semi-rigid external hose for material transport, which is connected by means of a hose coupling to an extension tube with a fixing flange, which vertically through a hollow shaft rotary connector (such as the H-Through Hole Slip Ring or the SENRING TM Gas & Flow Passage Hollow Shaft Rotary Union) and is connected to a multi-outlet rotary distributor, to whose three or more discharge nozzles connect three or more flexible hoses for material transport, which lead the mortar to three or more interchangeable nozzles with electronically controlled stopcocks, respectively mounted on the flange of three or more manipulator robots that repeat a design of previous computational trajectories that reproduce the interior and exterior contour of the building or a part of it.
  • a hollow shaft rotary connector such as the H-Through Hole Slip Ring or the SENRING TM Gas & Flow Passage Hollow Shaft Rotary Union
  • the extension tube with fixing flange to which the semi-rigid external hose for material transport is attached is secured to a clamping ring that is fixed to the hollow shaft zenith node and to the same clamping ring the upper edge of a inner drum of the hollow shaft rotary connector, preventing the semi-rigid external hose for material transport from twisting and allowing an outer drum of the hollow shaft rotary connector to rotate jointly with rotating cable trays, which protect a plurality of cables and hoses of energy, control and others, which feed and communicate three or more manipulative robots that move on a circular displacement axis in an inverted position.
  • Each rotary cable tray rotates jointly with each carriage on which a robot manipulator moves and a retractable rocker hangs from the underside of each rotary cable tray that helps partially support the weight of each flexible hose for material transport while it is moving. through three-dimensional space loaded with the mortar.
  • the multi-axis actuator device itself is a reprogrammable electromechanical system, automatically controlled, programmable offline or online in all its degrees of freedom from an external or remote computer and is composed of a circular displacement axis (such as, for example, the HEPCOMOTION TM Automotive Robot Track System), with three or more carriages on which three or more manipulator robots with six degrees of freedom respectively move, with one degree of freedom, each one mounted on a telescopic column in an inverted position, which it extends and retracts, with one degree of freedom respectively.
  • the axis of circular displacement itself comprises three or more carriages driven by a motorized pinion and rack and a guide system by skates and concentric guides.
  • Each telescopic column can be operated electrically, hydraulically or pneumatically and extends and retracts independently and controlled, to move each of the three or more robot manipulators in a vertical direction, as the printing progresses layer by layer, but also to avoid colliding with a wall, beam, armor or duct, while the robotic walking cell saves them above, below, or through between them.
  • the walking robotic cell (100) for the manufacture of buildings printed on site using a multi-axis 3D printing system is composed of for a quadruped mobile robotic system (10), a power supply device (20) and a multi-axis actuator device (30), which is a reprogrammable electromechanical system, automatically controlled, programmable offline or online in all its degrees of freedom from an external or remote computer.
  • the quadruped mobile robotic system (10), which is described in figure 9, is made up of a toroidal casing (11) that houses power, control and navigation systems on board that are not shown in its interior.
  • Inner face supports pipe (12), on its upper face it supports three radial beams (13), equidistant from each other and concurrent in a hollow axis zenith node (14), on its lower face it supports a circular displacement axis (31), which is part of the multi-axis actuator device (30) and on its perimeter face it has four locomotive legs (15) with four revolution joints, a prismatic joint and three hydraulic or pneumatic reinforcements in each leg, to achieve a running algorithm stable.
  • the feeding apparatus (20) which is described in Figure 10; It is composed of a semi-rigid external hose for material transport (21), which can come from a mortar pump, which is connected by means of a hose coupling (22) to an extension tube with a fixing flange (23), which is secured to a clamping ring (24), which is fixed to the hollow shaft zenith node (14) and to said clamping ring (24) an inner drum of a hollow shaft rotary connector (25), which is a Rotating device used to transfer electrical, hydraulic or pneumatic energy, analog or digital control or data circuits and also media such as vacuum, refrigerant fluids, steam and others, from one or multiple fixed inlets - in this case arranged on the drum interior- towards one or multiple rotating outlets -in this case arranged in an external drum- and that derives a plurality of cables and power, control and other hoses (26), which feed and communicate to three or more trolleys (31 a) of a displacement axis ci rcular (31),
  • Three or more rotary cable trays (26a) rotate jointly with the outer drum of the rotary connector of hollow shaft (25) and with each carriage (31a) to prevent the plurality of cables and power, control and other hoses (26) from twisting or entangling, and retractable rocker arms (26b) hang from their lower faces that help to partially support the weight of each of the flexible material transport hoses (28), while they move through three-dimensional space loaded with mortar, as shown in figures 1 to 6.
  • the multi-axis actuator apparatus (30) which is described in Figures 3 to 7 and in plan view in Figure 8; which is a reprogrammable electromechanical system, automatically controlled, programmable offline or online in all its degrees of freedom from an external or remote computer, which is described in detail in figure 11; It is composed of a circular displacement axis (31) that is supported on the lower face of the toroidal casing (11) of the quadruped mobile robotic system (10).
  • the circular displacement axis (31) is composed of three or more carriages (31 a), which are driven respectively by a motorized pinion (31 b) and a rack (31c) and guided respectively by four runners (31 d) on two concentric guides (31 e), and on each carriage (31 a) a telescopic column (31 f) is mounted and on this a manipulator robot (31 g) in an inverted position, with all its cables and power, control and other hoses (26) protected by three or more rotating cable trays (26a), which are described in figure 10.
  • a second objective of the invention is to provide an operating method of the robotic walking cell (100), which requires the following steps: a) Commanding the quadruped mobile robotic system (10) of the robotic walking cell ( 100), so that it can be positioned and leveled autonomously, or positioned and leveled by teleoperation, in a planned place of a construction site to carry out 3D printing on site of a building or a part of it; b) Connecting the feeding apparatus (20) of the robotic walking cell (100) to an external source of material, such as, for example, a mortar pump, which is not shown; c) Alternatively, connect the power supply device (20) of the robotic walking cell (100) to external power, control and navigation systems such as, for example, an electricity generator or an installed electrical network, an external compressor and an external controller , which are not shown; d) Actuate the multi-axis actuator apparatus (30) of the walking robotic cell (100), such that each carriage (31a) of the circular
  • the quadruped mobile robotic system (10) varies the height and orientation of the walking robotic cell (100), allowing it to move from one room to another. another, even the next higher or lower level, of the building (40) under construction, overcoming obstacles such as, for example, walls, beams, reinforcement and vertical ducts above, below and in between them.
  • the robotic walking cell (100) supports its locomotive legs (15) on conventional, motorized or climbing scaffolds and preferably prefabricated slabs, to print the interior and exterior contour of the perimeter walls of the building (40).
  • the robotic walking cell (100) It supports its locomotive legs (15) on conventional, motorized or climbing scaffolding and preferably prefabricated slabs, to print the interior and exterior contour of the perimeter walls of the building (40).

Abstract

Una celda robotizada caminante para la fabricación de edificios impresos en obra mediante un sistema multi-eje de impresión 3D, que comprende: un sistema robótico móvil cuadrúpedo, que actúa de manera autónoma y teleoperada, compuesto por cuatro patas locomotoras, que portan una carcasa toroidal que en su interior alberga sistemas de potencia, control y navegación, que soporta vigas radiales, equidistantes entre sí y concurrentes en un nudo cenital de eje por donde pasan mangueras y cables, y en su cara exterior inferior sostiene un eje de desplazamiento circular, que es parte de un aparato actuador multi-eje; un aparato de alimentación, compuesto por una manguera externa para transporte de material, que se conecta a un tubo de extensión y a un distribuidor rotativo multi-salida, cuyas bocas de descarga se conectan a mangueras flexibles para transporte de material y en su otro extremo se conectan a boquillas intercambiables, en donde el conector rotativo de eje hueco deriva una pluralidad de cables y mangueras de energía, control, desde cada carro del eje de desplazamiento circular hacia el nudo cenital; y el aparato actuador multi-eje, que es un sistema electromecánico reprogramable, que está compuesto por un eje de desplazamiento circular, con carros sobre los cuales se desplazan robots manipuladores montados sobre columnas telescópicas en posición invertida y en la brida de cada robot manipulador se monta la boquilla intercambiable, que dispone de una llave de paso controlada y que se conecta a la manguera flexible para transporte de material.

Description

UNA CELDA ROBOTIZADA CAMINANTE PARA LA FABRICACIÓN DE EDIFICIOS IMPRESOS EN OBRA MEDIANTE UN SISTEMA MULTI-EJE DE IMPRESIÓN 3D; Y MÉTODO DE OPERACIÓN
CAMPO DE APLICACIÓN
La presente invención se refiere a una celda robotizada caminante para la fabricación de edificios impresos en obra mediante un sistema multi-eje de impresión 3D y método de operación, que se puede desplazar por sobre y entre armadura y ductos verticales preinstalados y que permite generar trayectorias helicoidales múltiples de deposición simultánea de filamentos continuos de un mortero de cemento, polímero, biomaterial u otro material similar que no requiera de encofrado para darle forma ni contenerlo mientras se solidifica. Más específicamente a una celda robotizada caminante que dispone de sistemas de potencia, control y navegación a bordo, que es conectable cenitalmente a una fuente externa de material y alternativamente también a sistemas de potencia, control y navegación externos, que es soportada y transportada por un sistema robótico móvil cuadrúpedo que actúa de manera autónoma y teleoperada, y que contiene un aparato actuador multi-eje, que es reprogramable, automáticamente controlado y programable de manera offline u online en todos sus grados de libertad desde un computador externo o remoto y que está compuesto por un eje de desplazamiento circular, con una pluralidad de carros sobre los cuales se desplaza una pluralidad de robots manipuladores montados sobre una pluralidad de columnas telescópicas en posición invertida y en la brida de cada robot manipulador se monta una boquilla intercambiable, que dispone de una llave de paso controlada electrónicamente y que se conecta a una manguera flexible para transporte de material, la cual es parte de un aparato de alimentación por donde desciende el mortero que es bombeado desde el exterior de la celda robotizada caminante, para ser extrudido en filamentos que se van deponiendo en capas sucesivas superpuestas, según un diseño de trayectorias computacional previo que reproduce el contorno interior y exterior del edificio en toda su extensión horizontal y vertical. DESCRIPCIÓN DEL ARTE PREVIO
La construcción impresa, también conocida como construcción mediante impresión 3D, consiste en la fabricación aditiva de edificios y componentes constructivos mediante la deposición mecánica controlada por computador, de filamentos de un mortero de material en estado plástico, generalmente con alto contenido de cemento, granos finos de áridos, usualmente entre 2 y 3 mm de diámetro, acelerantes y otros aditivos específicos, que reproduce el contorno de la pieza a imprimir, en su extensión horizontal y vertical, en capas sucesivas superpuestas que se adhieren entre sí consecutivamente, formando un continuo resistente que se solidifica progresivamente, conservando su forma y posición sin la ayuda de encofrado. Durante el fraguado inicial, el umbral de tiempo en que cada filamento de mortero de cemento se adhiere mejor al filamento inferior, en capas sucesivas superpuestas, sin aplastarse demasiado mutuamente, ni volcarse o desmoronarse, es un parámetro crucial en la programación y control de las velocidades y aceleraciones de deposición y bombeo del mortero, especialmente en la impresión de piezas de gran extensión horizontal o de recintos. Naturalmente, la composición del mortero, el número de capas superpuestas y su respectivo peso, también son factores determinantes en la programación y control del proceso de impresión 3D con mortero de cemento. Menos frecuente, hasta ahora, es la construcción impresa con mortero de materiales polímeros, biomateriales y otros materiales compuestos. En la construcción impresa de contornos de geometría compleja, la forma y la orientación de la boquilla por donde se extruye el mortero, también son fundamentales para determinar el alcance efectivo de la herramienta, especialmente si la pieza a imprimir contiene una armadura o ductos preinstalados, igualmente si el ángulo que los muros de la pieza forman con el suelo es distinto de noventa grados y, en algunos casos, también si se busca hacer más expedita la salida del filamento de mortero desde la boquilla, disminuyendo la fricción producida por la orientación vertical de la boquilla. El proceso de construcción impresa puede ocurrir en obra, es decir en el sitio de construcción, para fabricar edificios en su emplazamiento definitivo o en taller, para prefabricar componentes constructivos que finalmente serán puestos en servicio en un lugar distinto de donde fueron impresos. El modo convencional de fabricar muros, columnas, componentes de losas y otras piezas mediante impresión 3D, es imprimir de abajo hacia arriba, capa por capa, el contorno de la pieza con un filamento de mortero continuo y el dintorno de la pieza con otro o el mismo filamento, para formar una trama estructuradora de la pieza. Por ejemplo, los componentes de losas se pueden prefabricar, preferentemente en taller, imprimiéndolos en posición vertical, como si se tratara de muros o ladrillos huecos que finalmente son abatidos para ponerlos en servicio, tendidos en su posición y orientación definitivas. También se puede utilizar el contorno impreso de la pieza para que éste actúe como un encofrado y una vez que sus paredes endurezcan y adquieran la resistencia suficiente, rellenar el interior de la pieza con el mismo u otro material apropiado para mejorar su resistencia mecánica, aislación acústica o aislación térmica. Tanto el mortero del contorno como el del dintorno pueden contener además fibras naturales o sintéticas para mejorar su resistencia mecánica. En cualquier caso, también se pueden instalar ductos de suministro y extracción de agua, electricidad, gases y otros medios, antes, durante o después de fabricar la pieza, según lo permita el sistema de construcción impresa que se emplee. La misma condición rige para instalar alféizares y dinteles, por ejemplo, para conformar los vanos de puertas y ventanas, antes o durante el proceso de impresión 3D de los muros que componen un recinto. En ciertos casos es necesario instalar una armadura de barras o mallas de acero en el interior de la pieza, con el fin de mejorar su resistencia mecánica, especialmente a las fuerzas laterales producidas, por ejemplo, por un sismo. Para ese fin, la armadura de la pieza debe quedar anclada al cimiento, así como a las piezas adyacentes si las hubiere, con el fin de obtener un continuo resistente, sólidamente fundado en el suelo y solidario con el resto del edificio. En ese caso es crítico planificar en detalle la forma y el orden cronológico en que se imprimirá la pieza y se instalará dicha armadura. Igualmente, la elección del sistema de construcción impresa que se emplee adquiere vital importancia, especialmente si no va a ser posible modificar la posición o la orientación de la pieza durante el proceso de impresión 3D, como ocurre generalmente en la construcción impresa en obra. En general, se pueden distinguir cuatro clases de sistema de construcción impresa según su estructura mecánica y espacio de trabajo: cartesiano, cilindrico, paralelo y articulado. El sistema cartesiano de construcción impresa está compuesto fundamentalmente por un pórtico. Los eslabones de su cadena cinemática se conectan mediante, al menos, tres uniones prismáticas (traslacionales) orientadas cada una de ellas en una de las direcciones de los ejes X, Y y Z del sistema de coordenadas cartesiano. Su espacio de trabajo tiene la forma de un prisma rectangular (ortoedro) y está contenido completamente por la estructura portante del sistema de construcción impresa propiamente tal. La boquilla convencional por donde se extruye el material se desplaza con tres grados de libertad y con una única orientación fija. El sistema cilindrico de construcción impresa está compuesto fundamentalmente por un brazo giratorio voladizo. Los eslabones de su cadena cinemática se conectan mediante una unión de revolución (rotacional) en torno al eje vertical Z, una unión prismática (traslacional) también en la dirección del eje vertical Z y una unión prismática (traslacional) en la dirección de uno de los ejes horizontales X o Y del sistema de coordenadas cartesiano. Su espacio de trabajo tiene la forma de un cilindro incompleto -si la unión de revolución en torno al eje vertical Z no alcanza los 360 grados angulares- o completo -si la unión de revolución en torno al eje vertical Z sí alcanza o supera los 360 grados angulares-, que contiene parcial o totalmente al sistema de construcción impresa propiamente tal. La boquilla convencional por donde se extruye el material se desplaza con tres grados de libertad y con una única orientación fija. El sistema paralelo de construcción impresa, también conocido como Delta, está compuesto fundamentalmente por tres brazos articulados concurrentes. Los eslabones de la cadena cinemática de cada brazo se conectan mediante, ya sea una unión prismática (traslacional) en la dirección del eje vertical Z, o una unión de revolución (rotacional) en torno a uno de los ejes horizontales X o Y, y dos uniones universales (rotacionales) en torno a uno de los ejes horizontales X o Y, y en torno al eje vertical Z. Su espacio de trabajo tiene la forma aproximada del hemisferio inferior de una esfera o de un paraguas invertido y está contenido completamente por la estructura portante del sistema de construcción impresa propiamente tal. La boquilla convencional por donde se extruye el material se desplaza con tres grados de libertad y con una única orientación fija. El sistema articulado de construcción impresa está compuesto fundamentalmente por un robot manipulador. Los eslabones de su cadena cinemática se conectan mediante seis uniones de revolución (rotacionales), cada una en torno a uno de los ejes X, Y o Z del sistema de coordenadas cartesiano. Su espacio de trabajo tiene la forma aproximada de una esfera incompleta o completa, que contiene ya sea parcial o totalmente al sistema de construcción impresa propiamente tal. La boquilla convencional por donde se extruye el material se desplaza con tres grados de libertad y se orienta con tres grados de libertad.
En general, los sistemas cartesianos y paralelos de construcción impresa ocupan más espacio para su instalación y operación que los sistemas cilindricos y articulados, principalmente debido a la necesidad de instalar en obra sistemas de apoyo más grandes y robustos y a veces también sistemas de guiado adicionales. Los sistemas cilindricos y articulados de construcción impresa, aunque generalmente son autoportantes, sólo pueden imprimir a su alrededor, a menos que se instalen en obra sistemas de apoyo y guiado adicionales que les permitan desplazarse horizontalmente o verticalmente. Sin embargo, los sistemas cilindricos y articulados no pueden imprimir su entorno completamente, sin quedar encerrados dentro de su propia obra impresa. En todo caso, la necesidad de instalar en obra sistemas de guiado adicionales para el desplazamiento horizontal o vertical de un sistema de construcción impresa, limita las posibilidades de operar simultáneamente con una pluralidad de réplicas del sistema, o reposicionar subsecuentemente el mismo sistema en distintos lugares de una obra de construcción. La topología de la trayectoria convencional de la boquilla por donde se extruye el mortero, en todas las clases de sistema de construcción impresa aquí presentadas, forma una hélice simple que avanza verticalmente, para deponer un filamento continuo del material.
La patente de invención KR101914524 B1 de fecha 02.11 .2018, de Ghang Lee, titulada “3D mobile concrete building 3d printing system”, divulga un sistema móvil de impresión 3D de edificios de concreto, con menos limitación de espacio que la tecnología convencional. El sistema móvil de impresión 3D de edificios de concreto, según la presente invención puede manufacturar un muro extruyendo concreto mediante un método de impresión 3D. Una posición de trabajo se reconoce mediante un punto de referencia, instalado en una posición predeterminada y el muro se puede formar en varias formas.
La solicitud de patente de invención DE10342934 A1 de fecha 28.04.2005, de Helmut Kuch y otros, titulada “Moldless, geometrically-fixed, prefabricated concrete part manufacturing method, e.g. for base sections of shafts in sewage systems, by discharging material from head to form finite volume elements, and hardening”, describe que el cuerpo que se creará se forma con una geometría definida alineando elementos de volumen finitos en las tres direcciones espaciales. Inmediatamente después de descargarse desde un cabezal que contiene boquillas de material, estos elementos de volumen se unen a todos los elementos de volumen inmediatamente adyacentes, para formar un compuesto fijo por transformación química, por ejemplo, endurecimiento. Un archivo de datos 3D-CAD se utiliza como los datos geométricos para el cuerpo. La solicitud de patente de invención WO2018136475 (A1 ) de fecha 26.07.2018, de Yi-Lung Mo y otros, titulada “4-dimensional printing of reinforced concrete”, describe un sistema de impresión en 4 dimensiones y un método para imprimir concreto reforzado que puede permitir que los elementos de concreto reforzado se impriman de forma libre y/o completamente automatizada sin la necesidad de encofrado, moldeado o mano de obra. El sistema de impresión puede incluir sistemas de software y hardware. El sistema de software puede procesar modelos 3D del elemento de concreto reforzado deseado en múltiples capas. El sistema de software puede utilizar la capa individual para controlar el funcionamiento del sistema de hardware para imprimir el elemento de concreto reforzado deseado, capa por capa. El sistema de hardware puede proporcionar una boquilla de hormigón, una boquilla de material de refuerzo, así como mecanismos de dispensación para imprimir los materiales en los lugares deseados y/o en los momentos deseados para la capa individual que se está imprimiendo. El sistema de hardware también puede incluir mecanismos de control de movimiento que permiten que la posición de las boquillas se mueva de lado a lado, arriba y abajo, y acercar o alejar en relación al elemento que se está imprimiendo según se desee durante el proceso de impresión.
La patente de invención CN105715052 (B) de fecha 22.01.2019, de Jianping Wu, titulada “3D room printer and printing method for printing concrete at construction site and room”, describe una habitación, una impresora 3D de habitaciones y un método de impresión. La impresora 3D de habitaciones se utiliza para la impresión in situ en un lugar de construcción y comprende un cuerpo de vigueta, y un mecanismo de accionamiento y un mecanismo de desplazamiento que están dispuestos en el cuerpo de vigueta y están conectados entre sí, un conjunto de descarga de concreto que está conectado con el mecanismo de desplazamiento y está configurado para descargar concreto en el proceso de desplazamiento del mecanismo de desplazamiento para completar la construcción del cuerpo del muro de la habitación, un mecanismo de elevación para aumentar la altura de la impresora 3D de habitaciones y un mecanismo de control automático para controlar automáticamente el desplazamiento del conjunto de descarga de concreto. La impresora 3D de habitaciones se puede utilizar para imprimir la habitación con concreto reforzado en el sitio de construcción, por lo que el grado de automatización de la construcción de habitaciones es alto, el costo es bajo y la eficiencia de trabajo es alta.
La solicitud de patente de invención WO2018162858 (A1 ) de fecha 13.09.2018, de Gaél Godi y otros, titulada “3D concrete printer”, describe un dispositivo de impresión 3D móvil (TDPD0) que imprime agregando material, destinado a unirse a un dispositivo de elevación (LD) con un solo cable o cadena de elevación, el dispositivo de impresión 3D móvil (TDPD0) que comprende: - un cabezal de impresión adecuado para recibir el material y deponerlo; - medios de fijación adecuados para conectar el cabezal de impresión a un dispositivo de elevación (LD); y - medios de estabilización (MS) adecuados para estabilizar la posición del cabezal de impresión mediante efecto giroscópico. Dicho dispositivo hace posible controlar la impresión de la estructura a imprimir, en particular la posición del cabezal de impresión, y reducir los costos de mano de obra y el tiempo requerido para la instalación en un dispositivo de elevación (LD) como una grúa estándar provista de un gancho. No existe en el estado de la técnica una celda robotizada caminante para la fabricación de edificios impresos en obra mediante un sistema multi-eje de impresión 3D, que se pueda trasladar por impulso propio, para posicionarse de manera autónoma, o bien posicionarla mediante teleoperación, en cualquier lugar de una obra de construcción, salvando obstáculos como, por ejemplo, muros, vigas, armadura y ductos verticales por encima, por debajo, o bien por entre medio de ellos y en terrenos irregulares o blandos mediante cuatro patas locomotoras, sin necesidad de usar una grúa ni de instalar en obra sistemas de apoyo o guiado, que esté provista de sistemas de potencia, control y navegación a bordo, que sea conectable cenitalmente a una fuente externa de material y alternativamente también a sistemas de potencia, control y navegación externos; que sea soportada y transportada por un sistema robótico móvil cuadrúpedo, y que contenga un aparato actuador multi-eje que sea reprogramable, automáticamente controlado y programable de manera offline u online en todos sus grados de libertad desde un computador externo o remoto y que dicho aparato actuador multi-eje esté compuesto por un eje de desplazamiento circular con tres o más carros sobre los cuales se desplacen tres o más robots manipuladores montados respectivamente sobre una columna telescópica en posición invertida y en la brida de cada robot manipulador se monte una boquilla intercambiable, que disponga de una llave de paso controlada electrónicamente y que se conecte a una manguera flexible para transporte de material, la cual sea parte de un aparato de alimentación por donde descienda el mortero que sea bombeado desde el exterior de la celda robotizada caminante, para ser extrudido en filamentos que se van deponiendo en capas sucesivas superpuestas, según un diseño de trayectorias computacional previo que reproduzca el contorno interior y exterior del edificio en toda su extensión horizontal y vertical; y un método de operación, que permita generar trayectorias helicoidales múltiples de deposición simultánea de filamentos continuos de un mortero, para reducir el tiempo transcurrido entre la deposición de cada capa sucesiva, que permita realizar simultáneamente diversas tareas, como imprimir contornos y dintornos de tramas estructuradoras, o rellenos macizos; y que permita orientar con tres grados de libertad rotacionales boquillas intercambiables, que puedan tener distintas formas, simétricas o asimétricas, para hacer más expedita la extrusión de diversos tipos de morteros y optimizar la cobertura de cada filamento, especialmente entre las barras de un armadura y ductos verticales preinstalados.
RESUMEN DE LA INVENCIÓN
Un primer objetivo de la invención es proveer una celda robotizada caminante para la fabricación de edificios impresos en obra mediante un sistema multi-eje de impresión 3D, que comprende un sistema robótico móvil cuadrúpedo, que actúa de manera autónoma y teleoperada, compuesto por cuatro patas locomotoras con cinco grados de libertad cada una, para conseguir un algoritmo de marcha estable y que portan una carcasa toroidal que en su interior alberga sistemas de potencia, control y navegación a bordo, en su cara exterior superior soporta tres vigas radiales, equidistantes entre sí y concurrentes en un nudo cenital de eje hueco por donde pasan mangueras y cables, y en su cara exterior inferior sostiene un eje de desplazamiento circular, que es parte de un aparato actuador multi-eje, y un aparato de alimentación, compuesto por una manguera externa semirrígida para transporte de material, que se conecta mediante un acople de manguera a un tubo de extensión con brida de fijación que atraviesa verticalmente a un conector rotativo de eje hueco y se conecta a un distribuidor rotativo multi-salida, a cuyas tres o más bocas de descarga se conectan respectivamente tres o más mangueras flexibles para transporte de material que en su otro extremo se conectan a tres o más boquillas intercambiables provistas de llaves de paso controladas electrónicamente, en donde el conector rotativo de eje hueco deriva una pluralidad de cables y mangueras de energía, control y otros, desde cada carro del eje de desplazamiento circular hacia el nudo cenital de eje hueco, y el tubo de extensión con brida de fijación se asegura a un anillo de sujeción, al que se asegura un tambor interior del conector rotativo de eje hueco y que se fija al nudo cenital de eje hueco, para impedir que la manguera externa semirrígida para transporte de material se tuerza, mientras a un tambor exterior del conector rotativo de eje hueco se aseguran unas bandejas portacables rotatorias correspondientes con cada carro del eje de desplazamiento circular para impedir que la pluralidad de cables y mangueras de energía, control y otros también se tuerzan, y donde el distribuidor rotativo multi-salida impide que las tres o más mangueras flexibles para transporte de material se tuerzan mientras tres o más robots manipuladores que posicionan y orientan las tres o más boquillas intercambiables, se desplazan en movimiento circular y adoptan poses diversas para imprimir en 3D con el mortero; y un aparato actuador multi-eje, que es un sistema electromecánico reprogramable, automáticamente controlado, programable de manera offline u online en todos sus grados de libertad desde un computador externo o remoto, que está compuesto por un eje de desplazamiento circular, con tres o más carros sobre los cuales se desplazan tres o más robots manipuladores montados sobre tres o más columnas telescópicas en posición invertida y en la brida de cada robot manipulador se monta la boquilla intercambiable, que dispone de una llave de paso controlada electrónicamente y que se conecta a la manguera flexible para transporte de material.
Un segundo objetivo de la invención es proveer un método para operar una celda robotizada caminante, para la fabricación de edificios impresos en obra mediante un sistema multi-eje de impresión 3D, que comprende los pasos de: a) comandar al sistema robótico móvil cuadrúpedo de la celda robotizada caminante, para que se posicione y nivele de manera autónoma, o bien posicionarla y nivelarla mediante teleoperación, en un lugar previsto de una obra de construcción, con su aparato de alimentación debidamente conectado a una fuente externa de material como, por ejemplo, una bomba de mortero y alternativamente a sistemas de potencia, control y navegación externos como, por ejemplo, un generador de electricidad o una red eléctrica instalada, un compresor y un controlador externos, para accionar su aparato actuador multi-eje mediante un programa ejecutado desde un computador a externo o remoto, e iniciar la impresión 3D en obra de un edificio, cuyos componentes constructivos pueden disponer de armadura y ductos verticales preinstalados en su interior; b) accionar los tres o más robots manipuladores para posicionar y orientar las tres o más boquillas intercambiables, en puntos preferentemente distales del contorno interior y exterior del edificio o una parte del mismo presta a ser impresa, e iniciar con cada una, en el mismo sentido de avance, la deposición de filamentos continuos de mortero en capas sucesivas superpuestas, según un diseño de trayectorias computacional previo, que reproduce el contorno interior y exterior del edificio en toda su extensión horizontal y vertical y cuyo avance conjunto puede describir la topología de una hélice múltiple ascendente que, por ejemplo, puede reducir el tiempo transcurrido entre la deposición de cada capa sucesiva y evitar así que un fraguado inicial demasiado rápido impida que las capas consecutivas de mortero se adhieran adecuadamente entre sí, y en donde las tres o más boquillas intercambiables repiten la misma trayectoria en cada capa sucesiva o, alternativamente, cada boquilla intercambiable reproduce una trayectoria diferente y realiza una tarea diferente, sin perjuicio de que, debido al propio diseño del edificio, la posición y orientación de cada boquilla intercambiable varíe levemente en la capa siguiente; y c) ejecutar el programa del aparato actuador multi-eje desde un computador externo o remoto, para que cada carro del eje de desplazamiento circular y cada columna telescópica montada sobre cada carro, posicione de manera independiente cada robot manipulador a la distancia horizontal y vertical necesarias en cada instante requerido, y cada robot manipulador posicione y oriente de manera independiente la boquilla intercambiable que lleva montada en su brida en cada instante requerido, según un diseño de trayectorias computacional previo que reproduce el contorno interior y exterior del edificio en toda su extensión horizontal y vertical. BREVE DESCRIPCIÓN DE LAS FIGURAS
La figura 1 describe una vista isométrica superior de la celda robotizada caminante de construcción impresa de la invención, en un ejemplo para operar con tres robots manipuladores.
La figura 2 describe una vista isométrica inferior de la celda robotizada caminante de construcción impresa de la invención, en un ejemplo para operar con tres robots manipuladores.
La figura 3 describe una vista oblicua de la celda robotizada caminante de construcción impresa de la invención, en su altura mínima, en un ejemplo para operar con tres robots manipuladores. La figura 4 describe una vista oblicua de la celda robotizada caminante de construcción impresa de la invención, en una altura intermedia, en un ejemplo para operar con tres robots manipuladores.
La figura 5 describe una vista oblicua de la celda robotizada caminante de construcción impresa de la invención, en una altura intermedia y sus columnas telescópicas extendidas al máximo, en un ejemplo para operar con tres robots manipuladores.
La figura 6 describe una vista oblicua de la celda robotizada caminante de construcción impresa de la invención, en su altura máxima, en un ejemplo para operar con tres robots manipuladores.
La figura 7 describe una vista oblicua de la celda robotizada caminante de construcción impresa de la invención, balanceándose, en un ejemplo para operar con tres robots manipuladores.
La figura 8 describe una vista en planta de la celda robotizada caminante de construcción impresa de la invención, en un ejemplo para operar con tres robots manipuladores.
La figura 9 describe una vista isométrica del sistema robótico móvil cuadrúpedo de la celda robotizada caminante de construcción impresa de la invención, en un ejemplo para operar con tres robots manipuladores. La figura 10 describe una vista isométrica en explosión del aparato de alimentación de la celda robotizada caminante de construcción impresa de la invención, en un ejemplo para operar con tres robots manipuladores.
La figura 11 describe una vista isométrica en explosión del aparato actuador multi-eje de la celda robotizada caminante de construcción impresa de la invención, en un ejemplo para operar con tres robots manipuladores.
La figura 12 describe un primer ejemplo de operación de la celda robotizada caminante, en etapa inicial de fabricación de un primer piso de un edificio impreso en obra con armadura anclada al cimiento, ductos verticales preinstalados en el interior de algunos muros y alféizares instalados o completados durante el proceso de impresión 3D.
La figura 13 describe un segundo ejemplo de operación de la celda robotizada caminante, en etapa inicial de fabricación de un segundo piso de un edificio impreso en obra, mientras ésta sube a una losa preferentemente prefabricada y se desplaza por sobre y entre armadura, empalmes de adherencia y ductos verticales preinstalados.
La figura 14 describe un tercer ejemplo de operación de la celda robotizada caminante apoyada sobre un andamio convencional, motorizado o trepante y una losa preferentemente prefabricada, para imprimir el contorno interior y exterior de muros perimetrales de un segundo piso de un edificio impreso en obra con armadura y ductos verticales preinstalados.
La figura 15 describe un cuarto ejemplo de operación de la celda robotizada caminante apoyada sobre un andamio convencional, motorizado o trepante y una losa preferentemente prefabricada, para imprimir el contorno interior y exterior de muros perimetrales de un quinto piso de un edificio impreso en obra con armadura y ductos verticales preinstalados.
DESCRIPCIÓN DE UNA REALIZACIÓN PREFERIDA El primer objetivo de la invención es disponer de una celda robotizada caminante para la fabricación de edificios impresos en obra mediante un sistema multi- eje de impresión 3D reprogramable, automáticamente controlado y programable en todos sus grados de libertad desde un computador externo o remoto. La celda robotizada caminante propiamente es capaz de trasladarse de manera autónoma, o bien ser trasladada mediante teleoperación, por vía terrestre hasta el sitio de una obra de construcción y posicionarse en el lugar requerido, incluyendo el siguiente nivel superior, o bien inferior, de un edificio en construcción, para proceder a la impresión 3D. La celda robotizada caminante puede apoyar sus patas locomotoras sobre losas, preferentemente prefabricadas, y andamios convencionales, motorizados o trepantes, se nivela accionando las mismas y se alimenta cenitalmente con material desde una bomba de mortero, mediante una manguera externa semirrígida para transporte de material. Debido a que los sistemas de potencia, control y navegación a bordo tienen autonomía energética limitada en el tiempo, la celda robotizada caminante también se puede alimentar cenitalmente con energía eléctrica desde un generador de electricidad o una red eléctrica instalada, con energía hidráulica o neumática desde un compresor externo y con señales de control y navegación desde un controlador externo y, sin necesidad de obstaculizar a nivel de suelo otras faenas en su entorno.
Una celda robotizada caminante es el principal componente físico para la fabricación de edificios impresos en obra mediante un sistema multi-eje de impresión 3D que se propone. La celda robotizada caminante propiamente es una unidad funcional autónoma, escalable y replicable, que se puede aplicar en forma aislada o simultánea para imprimir en obra edificios, cuyos componentes constructivos pueden disponer de armadura y ductos verticales preinstalados en su interior, y está compuesta por un sistema robótico móvil cuadrúpedo, un aparato de alimentación y un aparato actuador multi-eje.
El sistema robótico móvil cuadrúpedo propiamente es un dispositivo de locomoción con control autónomo y teleoperado, que constituye el soporte y transporte del aparato de alimentación, el aparato actuador multi-eje y la tubería que protege cables y mangueras de energía y control, y está compuesto por una carcasa toroidal que en el espesor de su interior alberga sistemas de potencia, control y navegación a bordo, en su cara exterior superior soporta tres vigas radiales, equidistantes entre sí y concurrentes en un nudo cenital de eje hueco por donde pasan mangueras y cables, en su cara exterior inferior sostiene un eje de desplazamiento circular, que es parte del aparato actuador multi-eje y en su cara exterior perimetral dispone de cuatro patas locomotoras con cuatro uniones de revolución, una unión prismática y tres refuerzos hidráulicos o neumáticos en cada pata, para conseguir un algoritmo de marcha estable. La carcasa, las cuatro patas locomotoras, las vigas concurrentes y el nudo cenital de eje hueco, son de un tamaño y una robustez a ser definidos según especificaciones para resistir de manera adecuada las fuerzas a las que será sometido el sistema robótico móvil cuadrúpedo en su puesta en servicio, tanto durante su desplazamiento como durante el proceso de impresión 3D. El propósito operacional del nudo cenital de eje hueco es dejar entrar y salir de la celda robotizada caminante una manguera externa semirrígida para transporte de material y una pluralidad de cables y mangueras de energía, control y otros que se conectan a dispositivos externos para remplazar en caso necesario a los sistemas de potencia, control y navegación a bordo. El sistema robótico móvil cuadrúpedo es capaz de variar la altura y orientación de la celda robotizada caminante, permitiéndole trasladarse de un recinto a otro de un edificio en construcción, salvando obstáculos como, por ejemplo, muros, vigas, armadura y ductos verticales por encima, por debajo, o bien por entre medio de ellos.
El aparato de alimentación propiamente es un dispositivo transportador de material, derivador y destorcedor de cables y mangueras, compuesto por una manguera externa semirrígida para transporte de material, que se conecta mediante un acople de manguera a un tubo de extensión con brida de fijación, que atraviesa verticalmente a un conector rotativo de eje hueco (como, por ejemplo, el H-Through Hole Slip Ring o el Gas & Flow Passage Hollow Shaft Rotary Union de SENRING™) y se conecta a un distribuidor rotativo multi-salida, a cuyas tres o más bocas de descarga se conectan tres o más mangueras flexibles para transporte de material, que conducen el mortero hacia tres o más boquillas intercambiables con llaves de paso controladas electrónicamente, montadas respectivamente en la brida de tres o más robots manipuladores que repiten un diseño de trayectorias computacional previo que reproduce el contorno interior y exterior del edificio o una parte del mismo. El tubo de extensión con brida de fijación al que se acopla la manguera externa semirrígida para transporte de material, se asegura a un anillo de sujeción que se fija al nudo cenital de eje hueco y al mismo anillo de sujeción se asegura el canto superior de un tambor interior del conector rotativo de eje hueco, impidiendo que la manguera externa semirrígida para transporte de material se tuerza y permitiendo que un tambor exterior del conector rotativo de eje hueco gire solidariamente con unas bandejas portacables rotatorias, que protegen una pluralidad de cables y mangueras de energía, control y otros, que alimentan y comunican a tres o más robots manipuladores que se desplazan sobre un eje de desplazamiento circular en posición invertida. Cada bandeja portacables rotatoria gira solidariamente con cada carro sobre el cual se desplaza un robot manipulador y de la cara inferior de cada bandeja portacables rotatoria cuelga un balancín retráctil que ayuda a sostener parcialmente el peso de cada manguera flexible para transporte de material mientras ésta se desplaza por el espacio tridimensional cargada con el mortero.
El aparato actuador multi-eje propiamente es un sistema electromecánico reprogramable, automáticamente controlado, programable de manera offline u online en todos sus grados de libertad desde un computador externo o remoto y está compuesto por un eje de desplazamiento circular (como, por ejemplo, el Automotive Robot Track System de HEPCOMOTION™), con tres o más carros sobre los cuales se desplazan, con un grado de libertad, tres o más robots manipuladores de seis grados de libertad respectivamente, cada uno montado sobre una columnas telescópica en posición invertida, que se extiende y retrae, con un grado de libertad respectivamente. El eje de desplazamiento circular propiamente comprende tres o más carros con accionamiento por piñón motorizado y cremallera y sistema de guiado por patines y guías concéntricas. Dicho eje de desplazamiento circular se sostiene en la cara exterior inferior de la carcasa toroidal del sistema robótico móvil cuadrúpedo de la celda robotizada caminante. Cada columna telescópica puede ser accionada eléctrica, hidráulica o neumáticamente y se extiende y retrae de manera independiente y controlada, para desplazar a cada uno de los tres o más robots manipuladores en dirección vertical, según avanza en altura la impresión capa por capa, pero también para evitar colisionar con un muro, viga, armadura o ducto, mientras la celda robotizada caminante les salva por encima, por debajo, o bien por entre medio de ellos.
DESCRIPCIÓN DETALLADA DE UNA REALIZACIÓN PREFERIDA
La celda robotizada caminante (100) para la fabricación de edificios impresos en obra mediante un sistema multi-eje de impresión 3D, que se describe en las figuras 1 y 2, y en distintas etapas de configuración en las figuras 3 a 8, está compuesta por un sistema robótico móvil cuadrúpedo (10), un aparato de alimentación (20) y un aparato actuador multi-eje (30), que es un sistema electromecánico reprogramable, automáticamente controlado, programable de manera offline u online en todos sus grados de libertad desde un computador externo o remoto.
El sistema robótico móvil cuadrúpedo (10), que se describe en la figura 9, está compuesto por una carcasa toroidal (11) que en el espesor de su interior alberga sistemas de potencia, control y navegación a bordo que no se muestran, en su cara interior soporta tubería (12), en su cara superior soporta tres vigas (13) radiales, equidistantes entre sí y concurrentes en un nudo cenital de eje hueco (14), en su cara inferior sostiene un eje de desplazamiento circular (31), que es parte del aparato actuador multi-eje (30) y en su cara perimetral dispone de cuatro patas locomotoras (15) con cuatro uniones de revolución, una unión prismática y tres refuerzos hidráulicos o neumáticos en cada pata, para conseguir un algoritmo de marcha estable.
El aparato de alimentación (20), que se describe en la figura 10; está compuesto por una manguera externa semirrígida para transporte de material (21), que puede provenir de una bomba de mortero, que se conecta mediante un acople de manguera (22) a un tubo de extensión con brida de fijación (23), el cual se asegura a un anillo de sujeción (24), que se fija al nudo cenital de eje hueco (14) y a dicho anillo de sujeción (24) se asegura un tambor interior de un conector rotativo de eje hueco (25), que es un dispositivo giratorio que se utiliza para transferir energía eléctrica, hidráulica o neumática, circuitos de control o datos, analógicos o digitales y también medios como vacío, fluidos refrigerantes, vapor y otros, desde una o múltiples entradas fijas -en este caso dispuestas en el tambor interior- hacia una o múltiples salidas giratorias -en este caso dispuestas en un tambor exterior- y que deriva una pluralidad de cables y mangueras de energía, control y otros (26), que alimentan y comunican a tres o más carros (31 a) de un eje de desplazamiento circular (31), con tres o más columnas telescópicas (31 f) y tres o más robots manipuladores (31 g), que se detallan en la figura 10, hacia un generador de electricidad o una red eléctrica instalada, un compresor y un controlador externos, que no se muestran. Tres o más bandejas portacables rotatorias (26a), giran solidariamente con el tambor exterior del conector rotativo de eje hueco (25) y con cada carro (31a) para impedir que la pluralidad de cables y mangueras de energía, control y otros (26) se tuerza o se enrede, y de sus caras inferiores cuelgan balancines retráctiles (26b) que ayudan a sostener parcialmente el peso de cada una de las mangueras flexibles para transporte de material (28), mientras éstas se desplazan por el espacio tridimensional cargadas con el mortero, como se muestra en las figuras 1 a la 6. El tubo de extensión con brida de fijación (23), atraviesa verticalmente al conector rotativo de eje hueco (25) y se conecta por su extremo inferior a un distribuidor rotativo multi-salida (27), a cuyas tres o más bocas de descarga se conectan tres o más mangueras flexibles para transporte de material (28), que conducen el mortero hacia tres o más boquillas intercambiables (29) con llaves de paso controladas electrónicamente que no se muestran, montadas en la brida de tres o más robots manipuladores (31 g).
El aparato actuador multi-eje (30), que se describe en las figuras 3 a la 7 y en una vista en planta en la figura 8; que es un sistema electromecánico reprogramable, automáticamente controlado, programable de manera offline u online en todos sus grados de libertad desde un computador externo o remoto, que se describe en detalle en la figura 11 ; está compuesto por un eje de desplazamiento circular (31) que está sostenido en la cara inferior de la carcasa toroidal (11) del sistema robótico móvil cuadrúpedo (10). El eje de desplazamiento circular (31 ) está compuesto por tres o más carros (31 a), que son accionados respectivamente por un piñón motorizado (31 b) y una cremallera (31c) y guiados respectivamente por cuatro patines (31 d) sobre dos guías concéntricas (31 e), y sobre cada carro (31 a) se monta una columna telescópica (31 f) y sobre ésta un robot manipulador (31 g) en posición invertida, con todos sus cables y mangueras de energía, control y otros (26) protegidos por tres o más bandejas portacables rotatorias (26a), que se describen en la figura 10.
El edificio (40) impreso en obra mediante la generación de trayectorias helicoidales múltiples de deposición simultánea de filamentos continuos de un mortero de cemento, que se describe en las figuras 12 a la 15; ilustra un primer ejemplo de una etapa inicial de fabricación de un primer piso con armadura (40a) anclada al cimiento, ductos verticales preinstalados en el interior de algunos muros y alféizares instalados o completados durante el proceso de impresión 3D, figura 12; un segundo ejemplo de una losa preferentemente prefabricada (40b) de un segundo piso, a la cual la celda robotizada caminante (100) sube, mientras se desplaza por sobre y entre armadura (40a), empalmes de adherencia y ductos verticales preinstalados, figura 13; un tercer ejemplo de un andamio convencional, motorizado o trepante (40c), sobre el cual la celda robotizada caminante (100) apoya una de sus cuatro patas locomotoras (15) para imprimir el contorno interior y exterior de muros perimetrales de un segundo piso con armadura (40a) y ductos verticales preinstalados, figura 14; y un cuarto ejemplo de un andamio convencional, motorizado o trepante (40c) sobre el cual la celda robotizada caminante (100) se apoya parcialmente para imprimir el contorno interior y exterior de muros perimetrales de un quinto piso con armadura (40a) y ductos verticales preinstalados, figura 15.
DESCRIPCIÓN DEL MÉTODO OPERATIVO DEL SISTEMA Un segundo objetivo de la invención es proporcionar un método operativo de la celda robotizada caminante (100), que requiere de los siguientes pasos: a) Comandar al sistema robótico móvil cuadrúpedo (10) de la celda robotizada caminante (100), para que se posicione y nivele de manera autónoma, o bien posicionarla y nivelarla mediante teleoperación, en un lugar previsto de una obra de construcción para realizar la impresión 3D en obra de un edificio o una parte del mismo; b) Conectar el aparato de alimentación (20) de la celda robotizada caminante (100) a una fuente externa de material como, por ejemplo, una bomba de mortero, que no se muestra; c) Alternativamente, conectar el aparato de alimentación (20) de la celda robotizada caminante (100) a sistemas de potencia, control y navegación externos como, por ejemplo, un generador de electricidad o una red eléctrica instalada, un compresor y un controlador externos, que no se muestran; d) Accionar el aparato actuador multi-eje (30) de la celda robotizada caminante (100), tal que cada carro (31a) del eje de desplazamiento circular (31) desplace un robot manipulador (31 g) hasta un punto preferentemente distal del contorno interior y exterior del edificio, o de una parte del mismo, presta a ser impresa y extender o retraer cada columna telescópica (31 f) hasta una altura adecuada desde donde cada robot manipulador (31 g) pueda posicionar y orientar adecuadamente cada boquilla intercambiable (29) montada en su brida y proceder a la deposición de filamentos continuos de mortero; e) Iniciar el bombeo del mortero que entra por la manguera externa semirrígida para transporte de material (21) y desciende a través del tubo de extensión con brida de fijación (23), el distribuidor rotativo multi-salida (27) y cada manguera flexible para transporte de material (28), hasta salir extrudido por cada boquilla intercambiable (29) montada en la brida de cada robot manipulador (31 g); f) Ejecutar el programa del aparato actuador multi-eje (30) desde un computador externo o remoto, que no se muestra, para iniciar la deposición de filamentos continuos de mortero en capas sucesivas superpuestas, según un diseño de trayectorias computacional previo que reproduce el contorno interior y exterior del edificio, o de una parte del mismo, en toda su extensión horizontal y vertical; g) Detener el proceso de impresión 3D, una vez alcanzada la altura deseada para el contorno a fabricar, o la altura máxima desde donde pueden imprimir adecuadamente los tres o más robots manipuladores (31 g) en la situación actual; h) Desconectar, solo si es necesario, el aparato de alimentación (20) de la celda robotizada caminante (100) de los sistemas de potencia, control y navegación externos como, por ejemplo, un generador de electricidad o una red eléctrica instalada, un compresor y un controlador externos, o también de la bomba de mortero, que no se muestran; y i) Repetir el procedimiento desde el paso a). De otro modo, comandar al sistema robótico móvil cuadrúpedo (10) de la celda robotizada caminante (100), para que se retire de la obra de construcción de manera autónoma, o bien retirarla mediante teleoperación.
EJEMPLOS DE APLICACIONES En un primer ejemplo de aplicación en una zona de conflicto armado, para reconstruir mediante impresión 3D un edificio (40) con armadura (40a) anclada a un cimiento (40b) y que no supere la altura máxima desde donde pueden imprimir los robots manipuladores (31 g), la celda robotizada caminante (100) es comandada para que se posicione y nivele de manera autónoma, o bien teleoperada, en un lugar previsto, con su aparato de alimentación (20) debidamente conectado a una bomba de mortero, que no se muestra, y su aparato actuador multi-eje accionado mediante un programa ejecutado desde un computador externo o remoto (30) realiza la deposición de filamentos continuos de mortero en capas sucesivas superpuestas, según un diseño de trayectorias computacional previo, que reproduce el contorno interior y exterior del edificio (40) en toda su extensión horizontal y vertical y cuyo avance conjunto describe la topología de una hélice múltiple ascendente.
En un segundo ejemplo de aplicación para fabricar un segundo piso de un edificio (40) sismorresistente impreso en obra, el sistema robótico móvil cuadrúpedo (10) varía la altura y orientación de la celda robotizada caminante (100), permitiéndole trasladarse de un recinto a otro, incluso del siguiente nivel superior, o bien inferior, del edificio (40) en construcción, salvando obstáculos como, por ejemplo, muros, vigas, armadura y ductos verticales por encima, por debajo y por entre medio, de ellos.
En un tercer ejemplo de aplicación para fabricar un segundo piso o superior de un edificio (40) sismorresistente impreso en obra, la celda robotizada caminante (100) apoya sus patas locomotoras (15) sobre andamios convencionales, motorizados o trepantes y losas preferentemente prefabricadas, para imprimir el contorno interior y exterior de los muros perimetrales del edificio (40).
En un cuarto ejemplo de aplicación para fabricar un piso a gran altura de un edificio (40) sismorresistente impreso en obra, la celda robotizada caminante (100) apoya sus patas locomotoras (15) sobre andamios convencionales, motorizados o trepantes y losas preferentemente prefabricadas, para imprimir el contorno interior y exterior de los muros perimetrales del edificio (40).

Claims

REIVINDICACIONES
1. Una celda robotizada caminante (100) para la fabricación de edificios (40) impresos en obra mediante un sistema multi-eje de impresión 3D, CARACTERIZADA porque comprende:
Un sistema robótico móvil cuadrúpedo (10), compuesto por una carcasa toroidal (11) que en el espesor de su interior alberga sistemas de potencia, control y navegación a bordo que no se muestran, en su cara interior soporta tubería (12), en su cara superior soporta tres vigas (13) radiales, equidistantes entre sí y concurrentes en un nudo cenital de eje hueco (14), en su cara inferior sostiene un eje de desplazamiento circular (31), que es parte del aparato actuador multi-eje (30) y en su cara perimetral dispone de cuatro patas locomotoras (15) con cuatro uniones de revolución, una unión prismática y tres refuerzos hidráulicos o neumáticos en cada pata, para conseguir una marcha estable;
Un aparato de alimentación (20), compuesto por una manguera externa semirrígida para transporte de material (21), que se conecta mediante un acople de manguera (22) a un tubo de extensión con brida de fijación (23), el cual se asegura a un anillo de sujeción (24), que se fija al nudo cenital de eje hueco (14) y a dicho anillo de sujeción (24) se asegura un tambor interior de un conector rotativo de eje hueco (25), que deriva una pluralidad de cables y mangueras de energía, control y otros (26), protegidos por bandejas portacables rotatorias (26a), que giran solidariamente con el tambor exterior del conector rotativo de eje hueco (25) y con los tres o más carros (31a) de un eje de desplazamiento circular (31), y que de sus caras inferiores cuelgan balancines retráctiles (26b), y donde el tubo de extensión con brida de fijación (23), atraviesa verticalmente al conector rotativo de eje hueco (25) y se conecta por su extremo inferior a un distribuidor rotativo multi-salida (27), a cuyas tres o más bocas de descarga se conectan tres o más mangueras flexibles para transporte de material (28), que conducen el mortero hacia tres o más boquillas intercambiables (29) con llaves de paso controladas electrónicamente;
Un aparato actuador multi-eje (30), que es un sistema electromecánico reprogramable, automáticamente controlado, programable de manera offline u online en todos sus grados de libertad desde un computador externo o remoto, compuesto por un eje de desplazamiento circular (31 ) que está sostenido en la cara inferior de la carcasa toroidal (11) del sistema robótico móvil cuadrúpedo (10) de la celda robotizada caminante (100), en donde el eje de desplazamiento circular (31 ) está compuesto por tres o más carros (31a), que son accionados respectivamente por un piñón motorizado (31 b) y una cremallera (31c) y guiados respectivamente por cuatro patines (31 d) sobre dos guías concéntricas (31 e), y sobre cada carro (31a) se monta una columna telescópica (31 f) y sobre ésta un robot manipulador (31 g) en posición invertida, con todos sus cables y mangueras de energía, control y otros (26) protegidos por una bandeja portacables rotatoria (26a).
2. La celda robotizada caminante (100) según la reivindicación 1 ,
CARACTERIZADA porque comprende al menos cuatro patas locomotoras (15) con al menos tres grados de libertad para conseguir una marcha estable.
3. La celda robotizada caminante (100) según la reivindicación 1 ,
CARACTERIZADA porque cada una de sus cuatro patas locomotoras (15) cuenta con cinco grados de libertad, para conseguir una marcha estable.
4. La celda robotizada caminante (100) según la reivindicación 1 ,
CARACTERIZADA porque el tambor interior de un conector rotativo de eje hueco (25), que es un dispositivo giratorio que se utiliza para transferir energía eléctrica, hidráulica o neumática, circuitos de control o datos, analógicos o digitales, y también medios como vacío, fluidos refrigerantes, vapor y otros, desde una o múltiples entradas fijas -en este caso dispuestas en el tambor interior- hacia una o múltiples salidas giratorias -en este caso dispuestas en un tambor exterior- deriva una pluralidad de cables y mangueras de energía, control y otros (26), que alimentan y comunican a tres o más piñones motorizados (31 b), tres o más columnas telescópicas (31 f) y tres o más robots manipuladores (31 g), hacia un generador de electricidad o una red eléctrica instalada, un compresor y un controlador externos.
5. La celda robotizada caminante (100) según la reivindicación 1 , CARACTERIZADA porque las tres o más mangueras flexibles para transporte de material (28), conducen el mortero hacia tres o más boquillas intercambiables (29) con llaves de paso controladas electrónicamente, montadas en la brida de los tres o más robots manipuladores (31 g).
6. La celda robotizada caminante (100) según la reivindicación 1 ,
CARACTERIZADA porque el eje de desplazamiento circular (31) está compuesto por tres o más carros (31 a), que son accionados respectivamente por un piñón motorizado (31 b) y una cremallera (31c) y guiados respectivamente por cuatro patines (31 d) sobre dos guías concéntricas (31 e), y sobre cada carro
(31 a) se monta una columna telescópica (31 f) y sobre ésta un robot manipulador (31 g) en posición invertida, con todos sus cables y mangueras de energía, control y otros (26) protegidos por una bandeja portacables rotatoria (26a).
7. La celda robotizada caminante (100) según la reivindicación 1 , CARACTERIZADA porque el edificio (40) impreso en obra mediante la generación de trayectorias helicoidales múltiples de deposición simultánea de filamentos continuos de un mortero de cemento, es una etapa inicial de fabricación de un primer piso con armadura (40a) anclada al cimiento, ductos verticales preinstalados en el interior de algunos muros y alféizares instalados o completados durante el proceso de impresión 3D.
8. La celda robotizada caminante (100) según la reivindicación 1 , CARACTERIZADA porque el edificio (40) impreso en obra mediante la generación de trayectorias helicoidales múltiples de deposición simultánea de filamentos continuos de un mortero de cemento, es una etapa inicial de fabricación de un segundo piso con una losa preferentemente prefabricada (40b), a la cual la celda robotizada caminante (100) sube, mientras se desplaza por sobre y entre armadura (40a), empalmes de adherencia y ductos verticales preinstalados.
9. La celda robotizada caminante (100) según la reivindicación 1 ,
CARACTERIZADA porque el edificio (40) impreso en obra mediante la generación de trayectorias helicoidales múltiples de deposición simultánea de filamentos continuos de un mortero de cemento, es un andamio convencional, motorizado o trepante (40c), sobre el cual la celda robotizada caminante (100) apoya una de sus cuatro patas locomotoras (15) para imprimir el contorno interior y exterior de muros perimetrales de un segundo piso con armadura (40a) y ductos verticales preinstalados.
10. La celda robotizada caminante (100) según la reivindicación 1 ,
CARACTERIZADA porque el edificio (40) impreso en obra mediante la generación de trayectorias helicoidales múltiples de deposición simultánea de filamentos continuos de un mortero de cemento, es un andamio convencional, motorizado o trepante (40d) sobre el cual la celda robotizada caminante (100) se apoya parcialmente para imprimir el contorno interior y exterior de muros perimetrales de un quinto piso con armadura (40a) y ductos verticales preinstalados.
11. Un método para operar una celda robotizada caminante (100) para la fabricación de edificios impresos en obra mediante un sistema multi-eje de impresión 3D, CARACTERIZADO porque comprende disponer de una celda robotizada caminante (100), de acuerdo con las reivindicaciones 1 a 10; a) comandar al sistema robótico móvil cuadrúpedo (10) de la celda robotizada caminante (100), para que se posicione y nivele de manera autónoma, o bien posicionarla y nivelarla mediante teleoperación, en un lugar previsto de una obra de construcción, con su aparato de alimentación (20) debidamente conectado a una fuente externa de material como, por ejemplo, una bomba de mortero y alternativamente a sistemas de potencia, control y navegación externos como, por ejemplo, un generador de electricidad o una red eléctrica instalada, un compresor y un controlador externos, para accionar su aparato actuador multi-eje (30) mediante un programa ejecutado desde un computador a externo o remoto, e iniciar la impresión 3D en obra de un edificio (40), cuyos componentes constructivos pueden disponer de armadura (40a) y ductos verticales preinstalados en su interior; b) accionar los tres o más robots manipuladores (31 g) para posicionar y orientar las tres o más boquillas intercambiables (29), en puntos preferentemente distales del contorno interior y exterior del edificio (40) o una parte del mismo presta a ser impresa, e iniciar con cada una, en el mismo sentido de avance, la deposición de filamentos continuos de mortero en capas sucesivas superpuestas, según un diseño de trayectorias computacional previo, que reproduce el contorno interior y exterior del edificio (40) en toda su extensión horizontal y vertical y cuyo avance conjunto puede describir la topología de una hélice múltiple ascendente que, por ejemplo, puede reducir el tiempo transcurrido entre la deposición de cada capa sucesiva y evitar así que un fraguado inicial demasiado rápido impida que las capas consecutivas de mortero se adhieran adecuadamente entre sí, y en donde las tres o más boquillas intercambiables (29) repiten la misma trayectoria en cada capa sucesiva o, alternativamente, cada boquilla intercambiable (29) reproduce una trayectoria diferente y realiza una tarea diferente, sin perjuicio de que, debido al propio diseño del edificio (40), la posición y orientación de cada boquilla intercambiable varíe levemente en la capa siguiente; y c) ejecutar el programa del aparato actuador multi-eje (30) desde un computador externo o remoto, para que cada carro (31 a) del eje de desplazamiento circular (31) y cada columna telescópica (31 f) montada sobre cada carro (31a), posicione de manera independiente cada robot manipulador (31 g) a la distancia horizontal y vertical necesarias en cada instante requerido, y cada robot manipulador (31 g) posicione y oriente de manera independiente la boquilla intercambiable (29) que lleva montada en su brida en cada instante requerido, según un diseño de trayectorias computacional previo que reproduce el contorno interior y exterior del edificio (40) en toda su extensión horizontal y vertical.
12. El método para operar una celda robotizada caminante (100), de acuerdo con la reivindicación 10, CARACTERIZADO porque para reconstruir un edificio (40) impreso en obra, con armadura y ductos preinstalados (40a) en el interior de sus muros, que no superen la altura máxima desde donde pueden imprimir los robots manipuladores (31 g), con la armadura debidamente anclada a un cimiento (40b), la celda robotizada caminante (100) es comandada para que mediante sus sistemas de potencia, control y navegación, se posicione y nivele de manera autónoma en el lugar previsto, y con su aparato de alimentación (20) previamente conectado a una bomba de mortero se acciona su aparato actuador multi-eje (30), mediante un programa ejecutado desde un computador externo o remoto, para iniciar la impresión 3D del contorno interior y exterior del primer piso del edificio (40) en toda su extensión horizontal y vertical.
PCT/CL2019/050133 2019-12-05 2019-12-05 Una celda robotizada caminante para la fabricación de edificios impresos en obra mediante un sistema multi-eje de impresión 3d; y método de operación WO2021108936A1 (es)

Priority Applications (2)

Application Number Priority Date Filing Date Title
US17/782,623 US20230016498A1 (en) 2019-12-05 2019-12-05 A walking robotic cell for the manufacture of buildings printed on site by means of a multi-axis 3d printing system; and method of operation
PCT/CL2019/050133 WO2021108936A1 (es) 2019-12-05 2019-12-05 Una celda robotizada caminante para la fabricación de edificios impresos en obra mediante un sistema multi-eje de impresión 3d; y método de operación

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/CL2019/050133 WO2021108936A1 (es) 2019-12-05 2019-12-05 Una celda robotizada caminante para la fabricación de edificios impresos en obra mediante un sistema multi-eje de impresión 3d; y método de operación

Publications (1)

Publication Number Publication Date
WO2021108936A1 true WO2021108936A1 (es) 2021-06-10

Family

ID=76221279

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CL2019/050133 WO2021108936A1 (es) 2019-12-05 2019-12-05 Una celda robotizada caminante para la fabricación de edificios impresos en obra mediante un sistema multi-eje de impresión 3d; y método de operación

Country Status (2)

Country Link
US (1) US20230016498A1 (es)
WO (1) WO2021108936A1 (es)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN115257996A (zh) * 2022-07-19 2022-11-01 长沙理工大学 一种可动态重构躯体的八足特种机器人

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2016016887A1 (en) * 2014-07-28 2016-02-04 Beyon 3D Ltd Method and system for fabrication of custom-made molds and concrete-architectural components
WO2016156626A1 (es) * 2015-03-30 2016-10-06 Huritrabe, S. L. Robot de construcción por capas e instalación de construcción que comprende un enjambre de robots
WO2018069750A1 (en) * 2016-10-13 2018-04-19 Juris Klava Device for the movement and positioning of at least two end-effectors in space
CN109703016A (zh) * 2019-01-23 2019-05-03 河北工业大学 一种四臂多功能建造机器人
CN208918302U (zh) * 2018-10-24 2019-05-31 北京依蓝时代商贸有限公司 一种机械臂及3d打印机器人
US20190217527A1 (en) * 2013-10-30 2019-07-18 Branch Technology, Inc. Additive manufacturing of buildings and other structures
US10399325B2 (en) * 2016-12-13 2019-09-03 Caterpillar Inc. Systems and methods for preparing a worksite for additive construction
CN110253709A (zh) * 2019-06-20 2019-09-20 中城投股份有限公司 一种3d建筑打印机器人及建筑打印方法

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20190217527A1 (en) * 2013-10-30 2019-07-18 Branch Technology, Inc. Additive manufacturing of buildings and other structures
WO2016016887A1 (en) * 2014-07-28 2016-02-04 Beyon 3D Ltd Method and system for fabrication of custom-made molds and concrete-architectural components
WO2016156626A1 (es) * 2015-03-30 2016-10-06 Huritrabe, S. L. Robot de construcción por capas e instalación de construcción que comprende un enjambre de robots
WO2018069750A1 (en) * 2016-10-13 2018-04-19 Juris Klava Device for the movement and positioning of at least two end-effectors in space
US10399325B2 (en) * 2016-12-13 2019-09-03 Caterpillar Inc. Systems and methods for preparing a worksite for additive construction
CN208918302U (zh) * 2018-10-24 2019-05-31 北京依蓝时代商贸有限公司 一种机械臂及3d打印机器人
CN109703016A (zh) * 2019-01-23 2019-05-03 河北工业大学 一种四臂多功能建造机器人
CN110253709A (zh) * 2019-06-20 2019-09-20 中城投股份有限公司 一种3d建筑打印机器人及建筑打印方法

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN115257996A (zh) * 2022-07-19 2022-11-01 长沙理工大学 一种可动态重构躯体的八足特种机器人
CN115257996B (zh) * 2022-07-19 2023-07-25 长沙理工大学 一种可动态重构躯体的八足特种机器人

Also Published As

Publication number Publication date
US20230016498A1 (en) 2023-01-19

Similar Documents

Publication Publication Date Title
US11059065B2 (en) Robotic device
US7641461B2 (en) Robotic systems for automated construction
CN101360873B (zh) 一种用于由多块砖建造建筑物的自动砌砖系统
EP2999829B1 (en) Method of covering a surface of a building and robot therefor
WO2018052469A2 (en) Method of reinforced cementitious construction by high speed extrusion printing and apparatus for using same
EP2610417A1 (en) Apparatus for automated construction comprising an extrusion nozzle and a robotic arm
ES2726921B2 (es) Sistema de construccion robotizado.
KR20190036466A (ko) 물질 증착을 위한 재구성가능한 노즐
WO2015127247A2 (en) Spray printing construction
CN107605167A (zh) 砌砖机器人直角墙体砌筑方法
WO2021108936A1 (es) Una celda robotizada caminante para la fabricación de edificios impresos en obra mediante un sistema multi-eje de impresión 3d; y método de operación
ES2726918B2 (es) Robot para reformas y rehabilitaciones.
WO2021108933A1 (es) Una celda robotizada móvil para la fabricación de piezas y recintos impresos en obra mediante un sistema multi-eje de impresión 3d; y método operativo
WO2021108934A1 (es) Una celda robotizada móvil para la fabricación de piezas con armadura o ductos verticales preinstalados en su interior y recintos impresos en obra mediante un sistema multi-eje de impresión 3d; y método de operación
WO2021108935A1 (es) Una celda robotizada móvil para la fabricación de piezas con armadura o ductos verticales preinstalados en su interior y recintos impresos en obra mediante un sistema multi-eje de impresión 3d; y método de operación
US20200354949A1 (en) Construction automation system and method
US11485026B2 (en) Construction automation system and method
JP2019214081A (ja) 表面処理装置
ES2957717A1 (es) Sistema de fabricacion aditiva multifuncion, procedimiento asociado de construccion de un edificio y procedimiento de montaje
PL232804B1 (pl) Głowica obrotowa do przyrostowego formowania konstrukcji budowlanych
DE202022000506U1 (de) Ein Roboter-System zum (teil-)autonomen Bau, Rückbau, Sarnierung oder Modifizierung von Häusern, Gebäuden oder Objekten, welches zur oder in die Nähe der Baustelle gebracht und dort aufgebaut werden kann.
PL232803B1 (pl) Głowica obrotowa do przyrostowego formowania konstrukcji budowlanych
OA19503A (en) Method of reinforced cementitious construction by high speed extrusion printing and apparatus for using same.

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 19955139

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 19955139

Country of ref document: EP

Kind code of ref document: A1