WO2021108935A1 - Una celda robotizada móvil para la fabricación de piezas con armadura o ductos verticales preinstalados en su interior y recintos impresos en obra mediante un sistema multi-eje de impresión 3d; y método de operación - Google Patents

Una celda robotizada móvil para la fabricación de piezas con armadura o ductos verticales preinstalados en su interior y recintos impresos en obra mediante un sistema multi-eje de impresión 3d; y método de operación Download PDF

Info

Publication number
WO2021108935A1
WO2021108935A1 PCT/CL2019/050132 CL2019050132W WO2021108935A1 WO 2021108935 A1 WO2021108935 A1 WO 2021108935A1 CL 2019050132 W CL2019050132 W CL 2019050132W WO 2021108935 A1 WO2021108935 A1 WO 2021108935A1
Authority
WO
WIPO (PCT)
Prior art keywords
printed
contour
wall
mobile robotic
site
Prior art date
Application number
PCT/CL2019/050132
Other languages
English (en)
French (fr)
Inventor
Luis Felipe GONZÁLEZ BÖHME
Rodrigo Hernán GARCÍA ALVARADO
Francisco Javier QUITRAL ZAPATA
Alejandro MARTÍNEZ ROCAMORA
Fernando Alfredo AUAT CHEEIN
Original Assignee
Universidad Técnica Federico Santa María
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Universidad Técnica Federico Santa María filed Critical Universidad Técnica Federico Santa María
Priority to PCT/CL2019/050132 priority Critical patent/WO2021108935A1/es
Publication of WO2021108935A1 publication Critical patent/WO2021108935A1/es

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B28WORKING CEMENT, CLAY, OR STONE
    • B28BSHAPING CLAY OR OTHER CERAMIC COMPOSITIONS; SHAPING SLAG; SHAPING MIXTURES CONTAINING CEMENTITIOUS MATERIAL, e.g. PLASTER
    • B28B1/00Producing shaped prefabricated articles from the material
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C64/00Additive manufacturing, i.e. manufacturing of three-dimensional [3D] objects by additive deposition, additive agglomeration or additive layering, e.g. by 3D printing, stereolithography or selective laser sintering
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C64/00Additive manufacturing, i.e. manufacturing of three-dimensional [3D] objects by additive deposition, additive agglomeration or additive layering, e.g. by 3D printing, stereolithography or selective laser sintering
    • B29C64/10Processes of additive manufacturing
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C64/00Additive manufacturing, i.e. manufacturing of three-dimensional [3D] objects by additive deposition, additive agglomeration or additive layering, e.g. by 3D printing, stereolithography or selective laser sintering
    • B29C64/10Processes of additive manufacturing
    • B29C64/106Processes of additive manufacturing using only liquids or viscous materials, e.g. depositing a continuous bead of viscous material
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C64/00Additive manufacturing, i.e. manufacturing of three-dimensional [3D] objects by additive deposition, additive agglomeration or additive layering, e.g. by 3D printing, stereolithography or selective laser sintering
    • B29C64/20Apparatus for additive manufacturing; Details thereof or accessories therefor
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B33ADDITIVE MANUFACTURING TECHNOLOGY
    • B33YADDITIVE MANUFACTURING, i.e. MANUFACTURING OF THREE-DIMENSIONAL [3-D] OBJECTS BY ADDITIVE DEPOSITION, ADDITIVE AGGLOMERATION OR ADDITIVE LAYERING, e.g. BY 3-D PRINTING, STEREOLITHOGRAPHY OR SELECTIVE LASER SINTERING
    • B33Y30/00Apparatus for additive manufacturing; Details thereof or accessories therefor
    • EFIXED CONSTRUCTIONS
    • E04BUILDING
    • E04GSCAFFOLDING; FORMS; SHUTTERING; BUILDING IMPLEMENTS OR AIDS, OR THEIR USE; HANDLING BUILDING MATERIALS ON THE SITE; REPAIRING, BREAKING-UP OR OTHER WORK ON EXISTING BUILDINGS
    • E04G21/00Preparing, conveying, or working-up building materials or building elements in situ; Other devices or measures for constructional work
    • EFIXED CONSTRUCTIONS
    • E04BUILDING
    • E04GSCAFFOLDING; FORMS; SHUTTERING; BUILDING IMPLEMENTS OR AIDS, OR THEIR USE; HANDLING BUILDING MATERIALS ON THE SITE; REPAIRING, BREAKING-UP OR OTHER WORK ON EXISTING BUILDINGS
    • E04G21/00Preparing, conveying, or working-up building materials or building elements in situ; Other devices or measures for constructional work
    • E04G21/02Conveying or working-up concrete or similar masses able to be heaped or cast
    • EFIXED CONSTRUCTIONS
    • E04BUILDING
    • E04GSCAFFOLDING; FORMS; SHUTTERING; BUILDING IMPLEMENTS OR AIDS, OR THEIR USE; HANDLING BUILDING MATERIALS ON THE SITE; REPAIRING, BREAKING-UP OR OTHER WORK ON EXISTING BUILDINGS
    • E04G21/00Preparing, conveying, or working-up building materials or building elements in situ; Other devices or measures for constructional work
    • E04G21/02Conveying or working-up concrete or similar masses able to be heaped or cast
    • E04G21/04Devices for both conveying and distributing

Definitions

  • the present invention refers to a mobile robotic cell for the manufacture of parts with reinforcement or vertical ducts pre-installed inside and enclosures printed on site by means of a multi-axis 3D printing system and operating method, which allows generating triple helical trajectories of simultaneous deposition of continuous filaments of a cement mortar, polymer, biomaterial or other similar material that does not require formwork to shape or contain it while it solidifies.
  • a mobile robotic cell which is zenithal connectable to external sources of material and energy, as well as to external control devices, whose self-supporting structure is self-leveling and which contains a multi-axis actuator device, which is reprogrammable, automatically controlled and programmable offline or online in all its degrees of freedom from an external or remote computer and it is composed of a circular axis of movement, with three carriages on which three manipulator robots move mounted on three telescopic columns in an inverted position and which They handle three interchangeable nozzles, which have an electronically controlled stopcock and which are connected to three flexible hoses for material transport, which are part of a feeding device through which the mortar that is pumped from outside the cell descends mobile robotized, to be extruded into filaments that are deposited in successive superimposed layers, according to a previous computational trajectory design that reproduces the contour of the piece or of the enclosure in all its horizontal and vertical extension.
  • Printed construction also known as 3D printing construction, consists of the additive manufacturing of buildings and construction components by means of the computer-controlled mechanical deposition of filaments of a mortar material in a plastic state, generally with a high content of cement, fine grains. of aggregates, usually between 2 and 3 mm in diameter, accelerators and other specific additives, which reproduces the contour of the piece to be printed, in its horizontal and vertical extension, in successive superimposed layers that adhere to each other consecutively, forming a resistant continuum that progressively solidifies, preserving its shape and position without the help of formwork.
  • the threshold of time in which each cement mortar filament best adheres to the lower filament, in successive overlapping layers, without crushing each other too much, or overturning or crumbling is a crucial parameter in the programming and control of the speeds and accelerations of deposition and pumping of mortar, especially in the impression of pieces of great horizontal extension or of rooms.
  • the composition of the mortar, the number of superimposed layers and their respective weight are also determining factors in the programming and control of the 3D printing process with cement mortar. Less frequent, until now, is the construction printed with mortar of polymer materials, biomaterials and other composite materials.
  • the shape and orientation of the nozzle through which the mortar is extruded are also essential to determine the effective reach of the tool, especially if the part to be printed contains pre-installed reinforcement or ducts, likewise if the angle that the walls of the piece form with the ground is different from ninety degrees and, in some cases, also if it is sought to expedite the exit of the mortar filament from the nozzle, reducing the friction produced by the vertical orientation of the nozzle.
  • the printed construction process can occur on site, that is, on the construction site, to manufacture buildings in their final location or in a workshop, to prefabricate construction components that will eventually be put into service in a place other than where they were printed.
  • the conventional way of manufacturing walls, columns, slab components and other parts using 3D printing is to print from the bottom up, layer by layer, the contour of the piece with a continuous mortar filament and the trim of the piece with another or the same filament, to form a structuring weft of the piece.
  • slab components can be prefabricated, preferably in the workshop, by printing them in a vertical position, as if they were hollow walls or bricks that are finally knocked down to be put into service, laid in their final position and orientation. You can also use the printed contour of the piece so that it acts as a formwork and once its walls harden and acquire sufficient strength, fill the interior of the piece with the same or another appropriate material to improve its mechanical resistance, insulation acoustic or thermal insulation.
  • Both the contour and trim mortar can also contain natural or synthetic fibers to improve their mechanical resistance.
  • supply and extraction ducts for water, electricity, gases and other means can also be installed before, during or after manufacturing the part, as allowed by the printed construction system used.
  • the same condition applies to installing windowsills and lintels, for example, to form the openings of doors and windows, before or during the 3D printing process of the walls that make up an enclosure.
  • the reinforcement of the piece must be anchored to the foundation, as well as to the adjacent pieces, if any, in order to obtain a continuous resistance, solidly based on the ground and in solidarity with the rest of the building.
  • the choice of the printed construction system used is vitally important, especially if it will not be possible to modify the position or orientation of the part during the 3D printing process, as is generally the case in construction printed on site.
  • Cartesian Cartesian
  • cylindrical Cartesian
  • articulated The Cartesian system of printed construction is fundamentally composed of a gantry.
  • the links of its kinematic chain are connected by at least three prismatic joints (translational) oriented each in one of the directions of the X, Y, and Z axes of the Cartesian coordinate system.
  • Your workspace is in the shape of a rectangular prism (orthohedron) and is completely contained by the supporting structure of the printed building system itself.
  • the conventional nozzle through which the material is extruded moves with three degrees of freedom and with a single fixed orientation.
  • the cylindrical system of printed construction is essentially composed of a cantilevered rotating arm.
  • the links of its kinematic chain are connected by a joint of revolution (rotational) around the vertical axis Z, a prismatic joint (translational) also in the direction of the vertical axis Z and a prismatic joint (translational) in the direction of one of the horizontal X or Y axes of the Cartesian coordinate system.
  • Your workspace is in the shape of an incomplete cylinder - if the joint of revolution around the vertical Z axis does not reach 360 angular degrees - or complete - if the joint of revolution around the vertical Z axis does reach or exceed 360 angular degrees-, which partially or totally contains the printed construction system itself.
  • the conventional nozzle through which the material is extruded moves with three degrees of freedom and with a single fixed orientation.
  • the parallel system of printed construction also known as Delta, is essentially composed of three concurrent articulated arms.
  • the links of the kinematic chain of each arm are connected by either a prismatic (translational) joint in the direction of the vertical axis Z, or a joint of revolution (rotational) around one of the horizontal axes X or Y and two universal (rotational) joints around one of the horizontal X or Y axes, and around the vertical Z axis.
  • Your workspace is roughly shaped like the lower hemisphere of a sphere or an inverted umbrella and is completely contained by the supporting structure of the printed construction system itself.
  • the conventional nozzle through which the material is extruded moves with three degrees of freedom and with a single fixed orientation.
  • the articulated system of printed construction is essentially composed of a manipulator robot.
  • the links of its kinematic chain are connected by six joints of revolution (rotational), each around one of the X, Y or Z axes of the Cartesian coordinate system.
  • Your workspace is roughly shaped like an incomplete or complete sphere, containing either partially or fully the proper printed construction system.
  • the conventional nozzle through which the material is extruded moves with three degrees of freedom and is oriented with three degrees of freedom.
  • Cartesian and parallel systems of printed construction take up more space for installation and operation than cylindrical and articulated systems, mainly due to the need to install larger and more robust support systems on site and sometimes also additional guidance systems.
  • Cylindrical and articulated systems of printed construction although generally self-supporting, can only print around them, unless additional support and guidance systems are installed on site that allow them to move horizontally or vertically.
  • cylindrical and articulated systems cannot fully imprint their surroundings, without being enclosed within their own printed work.
  • the need to install additional guidance systems on site for the horizontal or vertical movement of a printed construction system limits the possibilities of operating simultaneously with a plurality of replicas of the system, or subsequently repositioning the same system in different places. of a construction site.
  • the topology of the conventional path of the nozzle through which the mortar is extruded, in all kinds of printed construction system presented here forms a simple helix that advances vertically, to deposit a continuous filament of the material.
  • Invention patent KR101914524 B1 dated 01.02.2018, by Ghang Lee, entitled “3D mobile concrete building 3d printing system”, discloses a mobile 3D printing system for concrete buildings, with less space limitation than conventional technology.
  • the mobile concrete building 3D printing system according to the present invention can manufacture a wall by extruding concrete using a 3D printing method.
  • a working position is recognized by a reference point, installed in a predetermined position, and the wall can be formed in various ways.
  • the printing system can include software and hardware systems.
  • the software system can process 3D models of the desired reinforced concrete element in multiple layers.
  • the software system can use the individual layer to control the operation of the hardware system to print the desired reinforced concrete element, layer by layer.
  • the hardware system can provide a concrete nozzle, a reinforcing material nozzle, as well as dispensing mechanisms to print the materials at the desired locations and / or at the desired times for the individual layer being printed.
  • the hardware system can also include motion control mechanisms that allow the position of the nozzles to move side to side, up and down, and zoom in or out relative to the item being printed as desired during the printing process. Print.
  • the room 3D printer is used for on-site printing at a construction site and comprises a joist body, and a drive mechanism and a travel mechanism that are arranged in the joist body and are connected to each other, a concrete discharge assembly that is connected with the displacement mechanism and is configured to discharge concrete in the displacement process of the displacement mechanism to complete the construction of the body of the room wall, a lifting mechanism to increase the height of the room 3D printer, and an automatic control mechanism to automatically control the displacement of the concrete discharge assembly.
  • the room 3D printer can be used to print the room with reinforced concrete on the construction site, so the degree of automation of room construction is high, the cost is low, and the working efficiency is high.
  • a first objective of the invention is to provide a mobile robotic cell for the manufacture of parts with reinforcement or vertical ducts pre-installed inside and enclosures printed on site by means of a multi-axis 3D printing system, which comprises a self-supporting structure, composed of three concurrent beams in a hollow axis zenith node, arranged radially in a horizontal plane every 120 angular degrees, respectively provided with a pair of jaws to support a circular displacement axis that is part of a multi-axis actuator apparatus, and the peripheral ends of said beams are respectively provided with a lifting handle, the hole of which is provided for hooking and lift the mobile robotic cell by means of a crane with a three-leg strap or a three-point yoke, where the peripheral end of each beam is attached to a self-leveling telescopic pillar that rests on a base that can optionally be anchored to the ground, and together they support pipes that protect cables and power and control hoses; a feeding apparatus, consisting of a semi-
  • a second objective of the invention is to provide a method to operate a mobile robotic cell, for the manufacture of parts with reinforcement or vertical ducts pre-installed inside and enclosures printed on site by means of a multi-axis 3D printing system, which comprises the steps of: a) positioning the mobile robotic cell in a planned location of a construction site, with its supply apparatus and piping properly connected to a mortar pump, an electricity generator or an installed electrical network, an external controller and compressor , to operate the three self-leveling telescopic pillars and level its self-supporting structure and to operate its multi-axis actuator device, by means of a program executed from an external or remote computer, and to initiate 3D printing on site of the contour of a piece with reinforcement or ducts vertical pre-installed inside or an enclosure; b) actuate the three manipulator robots to position and orient the three interchangeable nozzles, in three preferably distal points of the contour of the piece or of the space ready to be printed, and start with each one, in the same direction of advance,
  • Figure 1 describes a main isometric view of the mobile robotized cell of printed construction of the invention, in an initial stage of manufacturing a piece printed on site with pre-installed armor inside.
  • Figure 2 describes a main isometric view of the mobile robotized cell of printed construction of the invention, in an intermediate stage of manufacturing a piece printed on site with pre-installed armor inside.
  • Figure 3 describes a main isometric view of the mobile robotized cell of printed construction of the invention, in a final stage of manufacturing a piece printed on site with pre-installed armor inside.
  • Figure 4 describes a partial front view of the mobile robotized cell of printed construction of the invention in an initial stage of manufacturing a printed part with pre-installed armor inside.
  • Figure 5 describes a partial front view of the mobile robotized cell of printed construction of the invention in an intermediate stage of manufacturing a piece printed on site with pre-installed armor inside.
  • Figure 6 describes a partial front view of the mobile robotized cell of printed construction of the invention, in a final stage of manufacturing a piece printed on site with pre-installed armor inside.
  • Figure 7 describes a partial side view of the mobile robotized cell of printed construction of the invention in an initial stage of manufacturing a printed part with pre-installed armor inside.
  • Figure 8 describes a partial side view of the mobile robotized cell of printed construction of the invention, in an intermediate stage of manufacturing a piece printed on site with pre-installed armor inside.
  • Figure 9 describes a partial side view of the mobile robotized cell of printed construction of the invention, in a final stage of manufacturing a part printed on site with pre-installed armor inside.
  • Figure 10 describes a plan view of the mobile robotized cell of printed construction of the invention in an initial stage of manufacturing a printed part on site with pre-installed armor inside.
  • Figure 11 describes a plan view of the mobile robotized cell of printed construction of the invention, in an intermediate stage of manufacturing a part printed on site with pre-installed armor inside.
  • Figure 12 describes a plan view of the mobile robotized cell of printed construction of the invention, in a final stage of manufacturing a part printed on site with pre-installed armor inside.
  • Figure 13 describes an isometric view of the self-supporting structure of the mobile robotized cell of printed construction of the invention.
  • Figure 14 depicts an exploded isometric view of the feeding apparatus of the mobile robotized cell of printed construction of the invention.
  • Figure 15 depicts an exploded isometric view of the multi-axis actuator apparatus of the mobile robotized cell of printed construction of the invention.
  • Figure 16 describes a first example of a wall ready to be printed on site, with pre-installed reinforcement and vertical ducts.
  • Figure 17 describes a second example of a site-printed wall with reinforcement and vertical ducts pre-installed inside, whose printed contour was obtained from a 3D printing triple helical path.
  • Figure 18 describes a third example of a wall printed on site with reinforcement and vertical ducts pre-installed inside and solid fill.
  • the first objective of the invention is to have a mobile robotic cell for the manufacture of parts with armor or vertical ducts pre-installed in its interior and enclosures printed on site by means of a reprogrammable 3D printing multi-axis system, automatically controlled and programmable in all its degrees of freedom from an external or remote computer.
  • the mobile robotic cell itself is transferable in a single piece, by air, land or water, to the site of a construction site, positionable by means of a crane in the required place of said work, including any level of a building under construction, to proceed to 3D printing.
  • the mobile robotic cell can be supported on slabs and scaffolding, it is leveled by activating its three self-leveling telescopic pillars and is fed from a zenith with material, from a mortar pump, with electrical energy, from an electricity generator or an installed electrical network, with signals control, from an external controller, and with hydraulic or pneumatic energy, from an external compressor, without the need to obstruct other construction tasks in its environment at ground level.
  • a mobile robotic cell is the main physical component for the manufacture of parts with armor or vertical ducts pre-installed inside and enclosures printed on site using a proposed multi-axis 3D printing system.
  • the mobile robotic cell itself is an autonomous, scalable and replicable functional unit that can be applied in isolation or simultaneously to print parts and enclosures of a building with reinforcement and vertical ducts pre-installed inside its walls, columns and slabs. , or to print prefabricated construction components in the workshop, and it is composed of a self-supporting structure, a feeding device and a multi-axis actuator device.
  • the self-supporting structure itself is an open frame composed of three concurrent beams in a hollow axis zenith node, provided with three pairs of clamps to support a circular displacement axis zenithal that is part of a multi-axis actuator device and that are joined respectively.
  • three electrically, hydraulically or pneumatically actuated self-leveling telescopic pillars which can be extended and retracted independently and controlled, to level the mobile robotic cell in a position suitable for 3D printing, and which are supported on bases that can optionally be anchored to the ground.
  • the mechanical purpose of the hollow shaft zenith node is to prevent rotation and displacement in any direction of each member of the shaft.
  • the operational purpose of the hollow shaft zenith node is to let in and out of the mobile robotic cell a semi-rigid external hose for material transport and a plurality of power, control and other cables and hoses that feed and communicate to three manipulator robots mounted on three telescopic columns in inverted position and these on three carriages with a circular axis of movement.
  • the mechanical purpose of the self-supporting structure is to constitute the support and support of the power supply apparatus, the multi-axis actuator and tubing apparatus that protects power and control cables and hoses.
  • the operational purpose of the self-supporting structure is to act as a transport cage for the mobile robotic cell, by including three lifting handles arranged respectively on the upper faces of the peripheral ends of its three beams, which serve to hook and hoist the robotic cell. mobile by means of a crane with a three-leg strap or a three-socket yoke.
  • the feeding device itself is a device for conveying material, diverting and twisting cables and hoses, composed of a semi-rigid external hose for material transport, which is connected by means of a hose coupling to an extension tube with a fixing flange, which vertically traverses a hollow shaft rotary connector (such as the H-Through Hole Slip Ring or the SENRING TM Gas & Flow Passage Hollow Shaft Rotary Union) and connects to a trifurcated rotary distributor, to whose three openings discharge, three flexible hoses are connected respectively to transport the material, which lead the mortar to three interchangeable nozzles with electronically controlled stopcocks, respectively mounted on the flange of three manipulator robots that repeat a previous computational trajectory design that reproduces the contour of the part or enclosure in all its horizontal and vertical extension.
  • a hollow shaft rotary connector such as the H-Through Hole Slip Ring or the SENRING TM Gas & Flow Passage Hollow Shaft Rotary Union
  • the extension tube with fixing flange to which the semi-rigid external hose for material transport is attached is secured to a clamping ring that is fixed to the hollow shaft zenith node and to the same clamping ring the upper edge of a rotary connector inner drum hollow shaft, preventing the external semi-rigid hose for material transport from twisting and allowing an outer drum of the hollow shaft rotary connector to rotate jointly with three rotating cable trays, which protect a plurality of power, control and other cables and hoses, that feed and communicate to the three manipulator robots that move on a circular axis of movement in an inverted position.
  • the three rotating cable trays rotate jointly with three carriages on which the three manipulating robots move respectively and from the lower face of each rotating cable tray hangs a retractable rocker that helps partially support the weight of each of the three flexible hoses to transport of material while they move through three-dimensional space loaded with mortar.
  • the multi-axis actuator device itself is a reprogrammable electromechanical system, automatically controlled, programmable offline or online in all its degrees of freedom from an external or remote computer and is composed of a circular displacement axis (such as, for example, the HEPCOMOTION TM Automotive Robot Track System), with three carriages on which, with one degree of freedom, three manipulator robots with six degrees of freedom respectively, mounted on three telescopic columns in an inverted position, which extend and retract, with one degree of freedom respectively.
  • the axis of circular displacement properly comprises three carriages with drive by motorized pinion and rack and guiding system by skates and concentric guides.
  • Said axis of circular displacement is supported from the top by three pairs of clamps, respectively arranged on the three beams of the self-supporting structure of the mobile robotic cell.
  • the three telescopic columns can be electrically, hydraulically or pneumatically actuated and extend and retract independently and controlled, to move each of the three robot manipulators in a vertical direction, as the printing progresses layer by layer.
  • the mobile robotic cell (100) for the manufacture of parts with armor or vertical ducts pre-installed inside and enclosures printed on site By means of a multi-axis 3D printing system, which is described in different stages of operation, in Figures 1 to 3, it is composed of a self-supporting structure (10), a feeding device (20) and a multi-actuator device.
  • axis (30) which is a reprogrammable electromechanical system, automatically controlled, programmable offline or online in all its degrees of freedom from an external or remote computer.
  • the multi-axis actuator apparatus (30) which is described in progressive operation in a front view in Figures 4 to 6, in a side view in Figures 7 to 9, and in a plan view in Figures 10 at 12.
  • the self-supporting structure (10), which is described in figure 13, is composed of three concurrent beams (12) in a hollow axis zenith node (11), arranged radially in a horizontal plane every 120 angular degrees, provided with three pairs of jaws (15) to support a circular displacement axis (31), which is part of a multi-axis actuator device (30), and the peripheral ends of said beams (12) are respectively provided with a lifting handle ( 13), whose hole is provided to hook and hoist the mobile robotic cell (100) by means of a crane with a three-leg strap or a three-tap yoke, which are not shown; the peripheral end of each beam (12) is attached to a self-leveling telescopic pillar (14) that rests on a base (16), which can optionally be anchored to the ground;
  • the feeding apparatus (20) which is described in Figure 14; It is composed of a semi-rigid external hose for material transport (21), which can come from a mortar pump, which is connected by means of a hose coupling (22) to an extension tube with a fixing flange (23), which is secured to a clamping ring (24), which is fixed to the hollow shaft zenith node (11) and to said clamping ring (24) an inner drum of a hollow shaft rotary connector (25) is secured, which is a rotary device used to transfer electrical, hydraulic or pneumatic power, control circuits or data, analog or digital and also media such as vacuum, refrigerant fluids, steam and others, from one or multiple fixed inlets -in this case arranged on the inner drum- towards one or multiple rotating outlets -in this case arranged on an outer drum- and deriving a plurality of cables and power, control and other hoses (26), which feed and communicate three carriages (31 a) of a circular displacement axis (31), with three telesco
  • Three rotating cable trays (26a) rotate jointly with the outer drum of the hollow shaft rotary connector (25) and with the three carriages (31a) to prevent the plurality of power, control and other cables and hoses (26) from twists or tangles, and retractable rocker arms (26b) hang from their lower faces that help partially support the weight of three flexible material transport hoses (28) while they move through three-dimensional space loaded with mortar, as shown better in Figures 1, 4, and 7.
  • the three flexible hoses for transporting material (28) are respectively connected to whose three discharge nozzles, which lead the mortar to three interchangeable nozzles (29) with electronically controlled stopcocks that do not shown, mounted on the flange of the three robot manipulators (31 g).
  • the multi-axis actuator apparatus (30) which is a reprogrammable electromechanical system, automatically controlled, programmable offline or online in all its degrees of freedom from an external or remote computer, which is described in detail in figure 15; It is composed of a circular displacement axis (31) that is supported from the top by three pairs of jaws (15), arranged on the three beams (12) of the self-supporting structure (10) of the mobile robotic cell (100).
  • the circular displacement axis (31) is made up of three carriages (31a), which are driven respectively by a motorized pinion (31 b) and a rack (31 c) and guided respectively by four runners (31 d) on two concentric guides.
  • a telescopic column (31 f) is mounted and on it a manipulator robot (31 g) in an inverted position, with all its cables and power, control and other hoses (26) protected by a rotating cable tray (26a), which is described in figure 14.
  • the printed part (40) which is described in Figures 16 to 18; illustrates a first example of a wall ready to be printed on site, with reinforcement and pre-installed vertical ducts (40a), figure 16; a second example of a wall printed on site with reinforcement and vertical ducts pre-installed inside, whose printed contour (40b) was obtained from a triple helical 3D printing trajectory, figure 17; and a third example of a wall printed on site with reinforcement and vertical ducts pre-installed inside and solid fill (40c), figure 18.
  • the second objective of the invention is to provide an operating method of the mobile robotic cell (100), which requires the following steps: a) Transporting the mobile robotic cell (100) to the construction site or the destination workshop, with its multi-axis actuator device (30) duly secured in its transport position; b) Hook its three lifting handles (13) with a three-leg strap or a three-socket yoke coupled to a crane; c) Positioning the mobile robotic cell (100) in a planned location of a construction site to perform 3D printing on site of parts with armor or vertical ducts pre-installed inside or enclosures of a building; d) Optionally, anchor the bases (16) of the self-supporting structure (10) of the mobile robotic cell (100) to the ground; e) Connect the power supply device (20) of the mobile robotic cell (100) to a source of material such as, for example, a mortar pump and also to an electricity generator or an installed electrical network, an external controller and a external compressor, not shown; f) Connect power and control cables and hose
  • the mobile robotic cell (100) is positioned in a planned place of the construction site, its power supply device (20) and pipe are connected (17) to a mortar pump, an electricity generator or an installed electrical network, a controller and an external compressor, its three self-leveling telescopic pillars (14) are activated, to level its self-supporting structure (10) and its device is operated multi-axis actuator (30), by means of a program executed from an external or remote computer, to initiate the 3D printing of the contour of the wall (40) in successive superimposed layers.
  • a wall (40) printed on site with reinforcement and pre-installed vertical ducts (40a) inside and solid filling (40c) of the same material as its printed contour (40b) one or two of the three manipulative robots (31 g) manufacture the printed contour (40b) of the wall (40), while the rest extrude the solid filling (40c) inside with a certain delay, in such a way that the contour walls, formed by the overlap of successive layers of mortar filaments, progressively reach sufficient height and strength to contain the solid filler (40c).
  • the three manipulative robots (31 g) simultaneously manufacture the printed contour (40b) of the wall (40) up to a certain height and when the walls of the printed contour (40b), formed by the superposition of successive layers of mortar filaments, reach sufficient resistance, the three manipulating robots (31 h) simultaneously extrude the solid filling (40c) into the interior of the wall (40), repeating the operation until completing the total height of the wall (40).
  • the three manipulative robots (31 g) simultaneously manufacture the printed contour (40b) of the wall (40) and when the walls of the printed contour (40b), formed by the superposition of successive layers of filaments of mortar, reach the total height of the wall (40) and the sufficient strength to contain the solid filling (40c) inside, the solid filling (40c) is poured into the interior of the wall, using an external tool with a hose to transport the material connected to an additional source.
  • the three manipulator robots (31 g) can indistinctly print the inner wall and the outer wall of the contour of said enclosure, because topologically it is the same as printing the contour of a wall (40).
  • Sills and lintels can be installed during the 3D printing process to form door, window and other openings.

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Mechanical Engineering (AREA)
  • Materials Engineering (AREA)
  • Architecture (AREA)
  • Manufacturing & Machinery (AREA)
  • Physics & Mathematics (AREA)
  • Optics & Photonics (AREA)
  • Civil Engineering (AREA)
  • Structural Engineering (AREA)
  • Ceramic Engineering (AREA)

Abstract

Una celda robotizada móvil para la fabricación de piezas con armadura o ductos verticales preinstalados en su interior y recintos impresos en obra mediante un sistema multi-eje de impresión 3D, que comprende: una estructura autoportante, compuesta por tres vigas concurrentes en un nudo cenital de eje hueco, dispuestas radialmente en un plano horizontal cada 120 grados, provistas respectivamente de un par de quijeras y los extremos periféricos de dichas vigas provistos respectivamente de un asa de izado y unidos respectivamente a un pilar telescópico autonivelable que se apoya sobre una base y soportan cables y mangueras de energía y control; un aparato de alimentación, compuesto por una manguera externa semirrígida para transporte de material, que se conecta mediante un acople de manguera a un tubo de extensión con brida de fijación que atraviesa verticalmente a un conector rotativo de eje hueco y se conecta a un distribuidor rotativo trifurcado, a cuyas tres bocas de descarga se conectan para transporte de material que en su otro extremo se conectan a tres boquillas intercambiables, en donde el conector de eje hueco deriva una pluralidad de cables y mangueras, desde tres carros de un eje de desplazamiento circular hacia el nudo cenital de eje hueco; y un aparato actuador multi-eje, que está compuesto por un eje de desplazamiento circular, con tres carros que desplazan tres robots manipuladores que manipulan las tres boquillas intercambiables, que disponen de una llave de paso y que se conectan a las tres mangueras flexibles para transporte de material.

Description

UNA CELDA ROBOTIZADA MÓVIL PARA LA FABRICACIÓN DE PIEZAS CON ARMADURA O DUCTOS VERTICALES PREINSTALADOS EN SU INTERIOR Y RECINTOS IMPRESOS EN OBRA MEDIANTE UN SISTEMA MULTI-EJE DE IMPRESIÓN 3D; Y MÉTODO DE OPERACIÓN
CAMPO DE APLICACIÓN
La presente invención se refiere a una celda robotizada móvil para la fabricación de piezas con armadura o ductos verticales preinstalados en su interior y recintos impresos en obra mediante un sistema multi-eje de impresión 3D y método de operación, que permite generar trayectorias helicoidales triples de deposición simultánea de filamentos continuos de un mortero de cemento, polímero, biomaterial u otro material similar que no requiera de encofrado para darle forma ni contenerlo mientras se solidifica. Más específicamente a una celda robotizada móvil, que es conectable cenitalmente a fuentes externas de material y energía, así como a dispositivos de control externos, cuya estructura autoportante es autonivelable y que contiene un aparato actuador multi-eje, que es reprogramable, automáticamente controlado y programable de manera offline u online en todos sus grados de libertad desde un computador externo o remoto y que está compuesto por un eje de desplazamiento circular, con tres carros sobre los cuales se desplazan tres robots manipuladores montados sobre tres columnas telescópicas en posición invertida y que manipulan tres boquillas intercambiables, que disponen de una llave de paso controlada electrónicamente y que se conectan a tres mangueras flexibles para transporte de material, las cuales son parte de un aparato de alimentación por donde desciende el mortero que es bombeado desde el exterior de la celda robotizada móvil, para ser extrudido en filamentos que se van deponiendo en capas sucesivas superpuestas, según un diseño de trayectorias computacional previo que reproduce el contorno de la pieza o del recinto en toda su extensión horizontal y vertical.
DESCRIPCIÓN DEL ARTE PREVIO La construcción impresa, también conocida como construcción mediante impresión 3D, consiste en la fabricación aditiva de edificios y componentes constructivos mediante la deposición mecánica controlada por computador, de filamentos de un mortero de material en estado plástico, generalmente con alto contenido de cemento, granos finos de áridos, usualmente entre 2 y 3 mm de diámetro, acelerantes y otros aditivos específicos, que reproduce el contorno de la pieza a imprimir, en su extensión horizontal y vertical, en capas sucesivas superpuestas que se adhieren entre sí consecutivamente, formando un continuo resistente que se solidifica progresivamente, conservando su forma y posición sin la ayuda de encofrado. Durante el fraguado inicial, el umbral de tiempo en que cada filamento de mortero de cemento se adhiere mejor al filamento inferior, en capas sucesivas superpuestas, sin aplastarse demasiado mutuamente, ni volcarse o desmoronarse, es un parámetro crucial en la programación y control de las velocidades y aceleraciones de deposición y bombeo del mortero, especialmente en la impresión de piezas de gran extensión horizontal o de recintos. Naturalmente, la composición del mortero, el número de capas superpuestas y su respectivo peso, también son factores determinantes en la programación y control del proceso de impresión 3D con mortero de cemento. Menos frecuente, hasta ahora, es la construcción impresa con mortero de materiales polímeros, biomateriales y otros materiales compuestos. En la construcción impresa de contornos de geometría compleja, la forma y la orientación de la boquilla por donde se extruye el mortero, también son fundamentales para determinar el alcance efectivo de la herramienta, especialmente si la pieza a imprimir contiene una armadura o ductos preinstalados, igualmente si el ángulo que los muros de la pieza forman con el suelo es distinto de noventa grados y, en algunos casos, también si se busca hacer más expedita la salida del filamento de mortero desde la boquilla, disminuyendo la fricción producida por la orientación vertical de la boquilla. El proceso de construcción impresa puede ocurrir en obra, es decir en el sitio de construcción, para fabricar edificios en su emplazamiento definitivo o en taller, para prefabricar componentes constructivos que finalmente serán puestos en servicio en un lugar distinto de donde fueron impresos. El modo convencional de fabricar muros, columnas, componentes de losas y otras piezas mediante impresión 3D, es imprimir de abajo hacia arriba, capa por capa, el contorno de la pieza con un filamento de mortero continuo y el dintorno de la pieza con otro o el mismo filamento, para formar una trama estructuradora de la pieza. Por ejemplo, los componentes de losas se pueden prefabricar, preferentemente en taller, imprimiéndolos en posición vertical, como si se tratara de muros o ladrillos huecos que finalmente son abatidos para ponerlos en servicio, tendidos en su posición y orientación definitivas. También se puede utilizar el contorno impreso de la pieza para que éste actúe como un encofrado y una vez que sus paredes endurezcan y adquieran la resistencia suficiente, rellenar el interior de la pieza con el mismo u otro material apropiado para mejorar su resistencia mecánica, aislación acústica o aislación térmica. Tanto el mortero del contorno como el del dintorno pueden contener además fibras naturales o sintéticas para mejorar su resistencia mecánica. En cualquier caso, también se pueden instalar ductos de suministro y extracción de agua, electricidad, gases y otros medios, antes, durante o después de fabricar la pieza, según lo permita el sistema de construcción impresa que se emplee. La misma condición rige para instalar alféizares y dinteles, por ejemplo, para conformar los vanos de puertas y ventanas, antes o durante el proceso de impresión 3D de los muros que componen un recinto. En ciertos casos es necesario instalar una armadura de barras o mallas de acero en el interior de la pieza, con el fin de mejorar su resistencia mecánica, especialmente a las fuerzas laterales producidas, por ejemplo, por un sismo. Para ese fin, la armadura de la pieza debe quedar anclada al cimiento, así como a las piezas adyacentes si las hubiere, con el fin de obtener un continuo resistente, sólidamente fundado en el suelo y solidario con el resto del edificio. En ese caso es crítico planificar en detalle la forma y el orden cronológico en que se imprimirá la pieza y se instalará dicha armadura. Igualmente, la elección del sistema de construcción impresa que se emplee adquiere vital importancia, especialmente si no va a ser posible modificar la posición o la orientación de la pieza durante el proceso de impresión 3D, como ocurre generalmente en la construcción impresa en obra.
En general, se pueden distinguir cuatro clases de sistema de construcción impresa según su estructura mecánica y espacio de trabajo: cartesiano, cilindrico, paralelo y articulado. El sistema cartesiano de construcción impresa está compuesto fundamentalmente por un pórtico. Los eslabones de su cadena cinemática se conectan mediante, al menos, tres uniones prismáticas (traslacionales) orientadas cada una de ellas en una de las direcciones de los ejes X, Y, y Z del sistema de coordenadas cartesiano. Su espacio de trabajo tiene la forma de un prisma rectangular (ortoedro) y está contenido completamente por la estructura portante del sistema de construcción impresa propiamente tal. La boquilla convencional por donde se extruye el material se desplaza con tres grados de libertad y con una única orientación fija. El sistema cilindrico de construcción impresa está compuesto fundamentalmente por un brazo giratorio voladizo. Los eslabones de su cadena cinemática se conectan mediante una unión de revolución (rotacional) en torno al eje vertical Z, una unión prismática (traslacional) también en la dirección del eje vertical Z y una unión prismática (traslacional) en la dirección de uno de los ejes horizontales X o Y del sistema de coordenadas cartesiano. Su espacio de trabajo tiene la forma de un cilindro incompleto -si la unión de revolución en torno al eje vertical Z no alcanza los 360 grados angulares- o completo -si la unión de revolución en torno al eje vertical Z sí alcanza o supera los 360 grados angulares-, que contiene parcial o totalmente al sistema de construcción impresa propiamente tal. La boquilla convencional por donde se extruye el material se desplaza con tres grados de libertad y con una única orientación fija. El sistema paralelo de construcción impresa, también conocido como Delta, está compuesto fundamentalmente por tres brazos articulados concurrentes. Los eslabones de la cadena cinemática de cada brazo se conectan mediante, ya sea una unión prismática (traslacional) en la dirección del eje vertical Z, o una unión de revolución (rotacional) en torno a uno de los ejes horizontales X o Y y dos uniones universales (rotacionales) en torno a uno de los ejes horizontales X o Y, y en torno al eje vertical Z. Su espacio de trabajo tiene la forma aproximada del hemisferio inferior de una esfera o de un paraguas invertido y está contenido completamente por la estructura portante del sistema de construcción impresa propiamente tal. La boquilla convencional por donde se extruye el material se desplaza con tres grados de libertad y con una única orientación fija. El sistema articulado de construcción impresa está compuesto fundamentalmente por un robot manipulador. Los eslabones de su cadena cinemática se conectan mediante seis uniones de revolución (rotacionales), cada una en torno a uno de los ejes X, Y o Z del sistema de coordenadas cartesiano. Su espacio de trabajo tiene la forma aproximada de una esfera incompleta o completa, que contiene ya sea parcial o totalmente al sistema de construcción impresa propiamente tal. La boquilla convencional por donde se extruye el material se desplaza con tres grados de libertad y se orienta con tres grados de libertad.
En general, los sistemas cartesianos y paralelos de construcción impresa ocupan más espacio para su instalación y operación que los sistemas cilindricos y articulados, principalmente debido a la necesidad de instalar en obra sistemas de apoyo más grandes y robustos y a veces también sistemas de guiado adicionales. Los sistemas cilindricos y articulados de construcción impresa, aunque generalmente son autoportantes, sólo pueden imprimir a su alrededor, a menos que se instalen en obra sistemas de apoyo y guiado adicionales que les permitan desplazarse horizontalmente o verticalmente. Sin embargo, los sistemas cilindricos y articulados no pueden imprimir su entorno completamente, sin quedar encerrados dentro de su propia obra impresa. En todo caso, la necesidad de instalar en obra sistemas de guiado adicionales para el desplazamiento horizontal o vertical de un sistema de construcción impresa, limita las posibilidades de operar simultáneamente con una pluralidad de réplicas del sistema, o reposicionar subsecuentemente el mismo sistema en distintos lugares de una obra de construcción. La topología de la trayectoria convencional de la boquilla por donde se extruye el mortero, en todas las clases de sistema de construcción impresa aquí presentadas, forma una hélice simple que avanza verticalmente, para deponer un filamento continuo del material.
La patente de invención KR101914524 B1 de fecha 02.1 1 .2018, de Ghang Lee, titulada “3D mobile concrete building 3d printing system”, divulga un sistema móvil de impresión 3D de edificios de concreto, con menos limitación de espacio que la tecnología convencional. El sistema móvil de impresión 3D de edificios de concreto, según la presente invención puede manufacturar un muro extruyendo concreto mediante un método de impresión 3D. Una posición de trabajo se reconoce mediante un punto de referencia, instalado en una posición predeterminada y el muro se puede formar en varias formas.
La solicitud de patente de invención DE10342934 A1 de fecha 28.04.2005, de Helmut Kuch y otros, titulada “Moldless, geometrically-fixed, prefabricated concrete part manufacturing method, e.g. for base sections of shafts in sewage Systems, by discharging material from head to form finite volume elements, and hardening”, describe que el cuerpo que se creará se forma con una geometría definida alineando elementos de volumen finitos en las tres direcciones espaciales. Inmediatamente después de descargarse desde un cabezal que contiene boquillas de material, estos elementos de volumen se unen a todos los elementos de volumen inmediatamente adyacentes, para formar un compuesto fijo por transformación química, por ejemplo, endurecimiento. Un archivo de datos 3D-CAD se utiliza como los datos geométricos para el cuerpo.
La solicitud de patente de invención WO2018136475 (A1 ) de fecha 26.07.2018, de Yi-Lung Mo y otros, titulada “4-dimensional printing of reinforced concrete”, describe un sistema de impresión en 4 dimensiones y un método para imprimir concreto reforzado que puede permitir que los elementos de concreto reforzado se impriman de forma libre y/o completamente automatizada sin la necesidad de encofrado, moldeado o mano de obra. El sistema de impresión puede incluir sistemas de software y hardware. El sistema de software puede procesar modelos 3D del elemento de concreto reforzado deseado en múltiples capas. El sistema de software puede utilizar la capa individual para controlar el funcionamiento del sistema de hardware para imprimir el elemento de concreto reforzado deseado, capa por capa. El sistema de hardware puede proporcionar una boquilla de hormigón, una boquilla de material de refuerzo, así como mecanismos de dispensación para imprimir los materiales en los lugares deseados y/o en los momentos deseados para la capa individual que se está imprimiendo. El sistema de hardware también puede incluir mecanismos de control de movimiento que permiten que la posición de las boquillas se mueva de lado a lado, arriba y abajo, y acercar o alejar en relación al elemento que se está imprimiendo según se desee durante el proceso de impresión.
La patente de invención CN105715052 (B) de fecha 22.01 .2019, de Jianping Wu, titulada “3D room printer and printing method for printing concrete at construction site and room”, describe una habitación, una impresora 3D de habitaciones y un método de impresión. La impresora 3D de habitaciones se utiliza para la impresión in situ en un lugar de construcción y comprende un cuerpo de vigueta, y un mecanismo de accionamiento y un mecanismo de desplazamiento que están dispuestos en el cuerpo de vigueta y están conectados entre sí, un conjunto de descarga de concreto que está conectado con el mecanismo de desplazamiento y está configurado para descargar concreto en el proceso de desplazamiento del mecanismo de desplazamiento para completar la construcción del cuerpo del muro de la habitación, un mecanismo de elevación para aumentar la altura de la impresora 3D de habitaciones y un mecanismo de control automático para controlar automáticamente el desplazamiento del conjunto de descarga de concreto. La impresora 3D de habitaciones se puede utilizar para imprimir la habitación con concreto reforzado en el sitio de construcción, por lo que el grado de automatización de la construcción de habitaciones es alto, el costo es bajo y la eficiencia de trabajo es alta.
La solicitud de patente de invención WO2018162858 (A1 ) de fecha 13.09.2018, de Gaél Godi y otros, titulada “3D concrete printer”, describe un dispositivo de impresión 3D móvil (TDPD0) que imprime agregando material, destinado a unirse a un dispositivo de elevación (LD) con un solo cable o cadena de elevación, el dispositivo de impresión 3D móvil (TDPD0) que comprende: - un cabezal de impresión adecuado para recibir el material y deponerlo; - medios de fijación adecuados para conectar el cabezal de impresión a un dispositivo de elevación (LD); y - medios de estabilización (MS) adecuados para estabilizar la posición del cabezal de impresión mediante efecto giroscópico. Dicho dispositivo hace posible controlar la impresión de la estructura a imprimir, en particular la posición del cabezal de impresión, y reducir los costos de mano de obra y el tiempo requerido para la instalación en un dispositivo de elevación (LD) como una grúa estándar provista de un gancho.
No existe en el estado de la técnica una celda robotizada móvil para la fabricación de piezas con armadura o ductos verticales preinstalados en su interior y recintos impresos en obra mediante un sistema multi-eje de impresión 3D, que sea trasladable en una sola pieza para poder posicionarla en cualquier lugar de una obra de construcción mediante una grúa o similar, sin necesidad de instalar en obra sistemas de apoyo o guiado adicionales, que sea conectable cenitalmente a fuentes externas de material y energía, así como a dispositivos de control externos; cuya estructura autoportante sea autonivelable y contenga un aparato actuador multi-eje que sea reprogramable, automáticamente controlado y programable de manera offline u online en todos sus grados de libertad desde un computador externo o remoto y que dicho aparato actuador multi-eje esté compuesto por un eje de desplazamiento circular con tres carros sobre los cuales se desplacen tres robots manipuladores montados sobre tres columnas telescópicas en posición invertida y que manipulen tres boquillas intercambiables, que dispongan de una llave de paso controlada electrónicamente y que se conecten a tres mangueras flexibles para transporte de material, por donde descienda un mortero de cemento, polímero, biomaterial u otro material similar, que sea bombeado desde el exterior de la celda robotizada móvil, para ser extrudido en filamentos que se van deponiendo en capas sucesivas superpuestas, según un diseño de trayectorias computacional previo que reproduzca el contorno de la pieza o del recinto en toda su extensión horizontal y vertical; y un método de operación, que permita generar trayectorias helicoidales triples de deposición simultánea de filamentos continuos de un mortero, para reducir el tiempo transcurrido entre la deposición de cada capa sucesiva; que permita realizar simultáneamente diversas tareas, como imprimir contornos y dintornos de tramas estructuradoras, o rellenos macizos; y que permita orientar con tres grados de libertad rotacionales boquillas intercambiables, que puedan tener distintas formas, simétricas o asimétricas, para hacer más expedita la extrusión de diversos tipos de morteros y optimizar la cobertura de cada filamento, especialmente entre las barras de una armadura y ductos verticales preinstalados.
RESUMEN DE LA INVENCIÓN
Un primer objetivo de la invención es proveer una celda robotizada móvil para la fabricación de piezas con armadura o ductos verticales preinstalados en su interior y recintos impresos en obra mediante un sistema multi-eje de impresión 3D, que comprende una estructura autoportante, compuesta por tres vigas concurrentes en un nudo cenital de eje hueco, dispuestas radialmente en un plano horizontal cada 120 grados angulares, provistas respectivamente de un par de quijeras para sostener un eje de desplazamiento circular que es parte de un aparato actuador multi-eje, y los extremos periféricos de dichas vigas están provistos respectivamente de un asa de izado, cuyo orificio está previsto para enganchar e izar la celda robotizada móvil mediante una grúa con un estrobo de tres ramales o un yugo de tres tomas, en donde el extremo periférico de cada viga está unido a un pilar telescópico autonivelable que se apoya sobre una base que opcionalmente puede ser anclada al suelo, y en conjunto soportan tubería que protege cables y mangueras de energía y control; un aparato de alimentación, compuesto por una manguera externa semirrígida para transporte de material, que se conecta mediante un acople de manguera a un tubo de extensión con brida de fijación que atraviesa verticalmente a un conector rotativo de eje hueco y se conecta a un distribuidor rotativo trifurcado, a cuyas tres bocas de descarga se conectan tres mangueras flexibles para transporte de material que en su otro extremo se conectan a tres boquillas intercambiables provistas de llaves de paso controladas electrónicamente, en donde el conector rotativo de eje hueco deriva una pluralidad de cables y mangueras de energía, control y otros, desde tres carros de un eje de desplazamiento circular hacia el nudo cenital de eje hueco, y el tubo de extensión con brida de fijación se asegura a un anillo de sujeción, al que se asegura un tambor interior del conector rotativo de eje hueco y que se fija al nudo cenital de eje hueco, para impedir que la manguera externa semirrígida para transporte de material se tuerza, mientras a un tambor exterior del conector rotativo de eje hueco se aseguran tres bandejas portacables rotatorias correspondientes a los tres carros del eje de desplazamiento circular para impedir que la pluralidad de cables y mangueras de energía, control y otros también se tuerzan, y donde el distribuidor rotativo trifurcado impide que las tres mangueras flexibles para transporte de material se tuerzan mientras tres robots manipuladores que posicionan y orientan las boquillas intercambiables, se desplazan en movimiento circular y adoptan poses diversas para imprimir en 3D con el mortero; y un aparato actuador multi-eje, que es un sistema electromecánico reprogramable, automáticamente controlado, programable de manera offline u online en todos sus grados de libertad desde un computador externo o remoto, que está compuesto por un eje de desplazamiento circular, con tres carros sobre los cuales se desplazan tres robots manipuladores montados sobre tres columnas telescópicas en posición invertida, que manipulan las tres boquillas intercambiables, que disponen de una llave de paso controlada electrónicamente y que se conectan a las tres mangueras flexibles para transporte de material. Un segundo objetivo de la invención es proveer un método para operar una celda robotizada móvil, para la fabricación de piezas con armadura o ductos verticales preinstalados en su interior y recintos impresos en obra mediante un sistema multi-eje de impresión 3D, que comprende los pasos de: a) posicionar la celda robotizada móvil en un lugar previsto de una obra de construcción, con su aparato de alimentación y tubería debidamente conectados a una bomba de mortero, un generador de electricidad o una red eléctrica instalada, un controlador y un compresor externos, para accionar los tres pilares telescópicos autonivelables y nivelar su estructura autoportante y para accionar su aparato actuador multi-eje, mediante un programa ejecutado desde un computador externo o remoto, e iniciar la impresión 3D en obra del contorno de una pieza con armadura o ductos verticales preinstalados en su interior o de un recinto; b) accionar los tres robots manipuladores para posicionar y orientar las tres boquillas intercambiables, en tres puntos preferentemente distales del contorno de la pieza o del recinto presto a ser impreso, e iniciar con cada una, en el mismo sentido de avance, la deposición de filamentos continuos de mortero en capas sucesivas superpuestas, según un diseño de trayectorias computacional previo, que reproduce el contorno de la pieza o del recinto en toda su extensión horizontal y vertical y cuyo avance conjunto puede describir la topología de una hélice triple ascendente que, por ejemplo, puede reducir el tiempo transcurrido entre la deposición de cada capa sucesiva y evitar así que un fraguado inicial demasiado rápido impida que las capas consecutivas de mortero se adhieran adecuadamente entre sí, y en donde las tres boquillas intercambiables repiten la misma trayectoria en cada capa sucesiva o, alternativamente, cada boquilla intercambiable reproduce una trayectoria diferente y realiza una tarea diferente, sin perjuicio de que, debido al propio diseño de la pieza o del recinto, la posición y orientación de cada boquilla intercambiable varíe levemente en la capa siguiente; y c) ejecutar el programa del aparato actuador multi-eje desde un computador externo o remoto, para que los tres carros del eje de desplazamiento circular y las tres columnas telescópicas montadas sobre dichos carros, posicionen de manera independiente cada robot manipulador a la distancia horizontal y vertical necesarias en cada instante requerido, y cada robot manipulador posicione y oriente de manera independiente la boquilla intercambiable que lleva montada en su brida en cada instante requerido, según un diseño de trayectorias computacional previo que reproduce el contorno de la pieza o del recinto en toda su extensión horizontal y vertical.
BREVE DESCRIPCIÓN DE LAS FIGURAS
La figura 1 describe una vista isométrica principal de la celda robotizada móvil de construcción impresa de la invención, en una etapa inicial de fabricación de una pieza impresa en obra con armadura preinstalada en su interior.
La figura 2 describe una vista isométrica principal de la celda robotizada móvil de construcción impresa de la invención, en una etapa intermedia de fabricación de una pieza impresa en obra con armadura preinstalada en su interior.
La figura 3 describe una vista isométrica principal de la celda robotizada móvil de construcción impresa de la invención, en una etapa final de fabricación de una pieza impresa en obra con armadura preinstalada en su interior.
La figura 4 describe una vista frontal parcial de la celda robotizada móvil de construcción impresa de la invención en una etapa inicial de fabricación de una pieza impresa en obra con armadura preinstalada en su interior.
La figura 5 describe una vista frontal parcial de la celda robotizada móvil de construcción impresa de la invención en una etapa intermedia de fabricación de una pieza impresa en obra con armadura preinstalada en su interior.
La figura 6 describe una vista frontal parcial de la celda robotizada móvil de construcción impresa de la invención, en una etapa final de fabricación de una pieza impresa en obra con armadura preinstalada en su interior.
La figura 7 describe una vista lateral parcial de la celda robotizada móvil de construcción impresa de la invención en una etapa inicial de fabricación de una pieza impresa en obra con armadura preinstalada en su interior.
La figura 8 describe una vista lateral parcial de la celda robotizada móvil de construcción impresa de la invención, en una etapa intermedia de fabricación de una pieza impresa en obra con armadura preinstalada en su interior. La figura 9 describe una vista lateral parcial de la celda robotizada móvil de construcción impresa de la invención, en una etapa final de fabricación de una pieza impresa en obra con armadura preinstalada en su interior.
La figura 10 describe una vista en planta de la celda robotizada móvil de construcción impresa de la invención en una etapa inicial de fabricación de una pieza impresa en obra con armadura preinstalada en su interior.
La figura 11 describe una vista en planta de la celda robotizada móvil de construcción impresa de la invención, en una etapa intermedia de fabricación de una pieza impresa en obra con armadura preinstalada en su interior. La figura 12 describe una vista en planta de la celda robotizada móvil de construcción impresa de la invención, en una etapa final de fabricación de una pieza impresa en obra con armadura preinstalada en su interior.
La figura 13 describe una vista isométrica de la estructura autoportante de la celda robotizada móvil de construcción impresa de la invención. La figura 14 describe una vista isométrica en explosión del aparato de alimentación de la celda robotizada móvil de construcción impresa de la invención.
La figura 15 describe una vista isométrica en explosión del aparato actuador multi-eje de la celda robotizada móvil de construcción impresa de la invención.
La figura 16 describe un primer ejemplo de un muro presto a ser impreso en obra, con armadura y ductos verticales preinstalados.
La figura 17 describe un segundo ejemplo de un muro impreso en obra con armadura y ductos verticales preinstalados en su interior, cuyo contorno impreso fue obtenido de una trayectoria helicoidal triple de impresión 3D.
La figura 18 describe un tercer ejemplo de un muro impreso en obra con armadura y ductos verticales preinstalados en su interior y relleno macizo.
DESCRIPCIÓN DE UNA REALIZACIÓN PREFERIDA
El primer objetivo de la invención es disponer de una celda robotizada móvil para la fabricación de piezas con armadura o ductos verticales preinstalados en su interior y recintos impresos en obra mediante un sistema multi-eje de impresión 3D reprogramable, automáticamente controlado y programable en todos sus grados de libertad desde un computador externo o remoto. La celda robotizada móvil propiamente es trasladable en una sola pieza, por vía aérea, terrestre o acuática, hasta el sitio de una obra de construcción, posicionable mediante una grúa en el lugar requerido de dicha obra, incluyendo cualquier nivel de un edificio en construcción, para proceder a la impresión 3D. La celda robotizada móvil se puede apoyar sobre losas y andamios, se nivela accionando sus tres pilares telescópicos autonivelables y se alimenta cenitalmente con material, desde una bomba de mortero, con energía eléctrica, desde un generador de electricidad o una red eléctrica instalada, con señales de control, desde un controlador externo, y con energía hidráulica o neumática, desde un compresor externo, sin necesidad de obstaculizar a nivel de suelo otras faenas de construcción en su entorno.
Una celda robotizada móvil es el principal componente físico para la fabricación de piezas con armadura o ductos verticales preinstalados en su interior y recintos impresos en obra mediante un sistema multi-eje de impresión 3D que se propone. La celda robotizada móvil propiamente es una unidad funcional autónoma, escalable y replicable, que se puede aplicar en forma aislada o simultánea para imprimir en obra piezas y recintos de un edificio con armadura y ductos verticales preinstalados en el interior de sus muros, columnas y losas, o para imprimir en taller componentes constructivos prefabricados, y está compuesta por una estructura autoportante, un aparato de alimentación y un aparato actuador multi-eje.
La estructura autoportante propiamente es una armazón abierta compuesta por tres vigas concurrentes en un nudo cenital de eje hueco, provistas de tres pares de quijeras para sostener cenitalmente un eje de desplazamiento circular que es parte de un aparato actuador multi-eje y que están unidas respectivamente a tres pilares telescópicos autonivelables accionados eléctrica, hidráulica o neumáticamente, que se pueden extender y retraer de manera independiente y controlada, para nivelar la celda robotizada móvil en una posición adecuada para realizar la impresión 3D, y que se apoyan sobre bases que opcionalmente pueden ser ancladas al suelo. El propósito mecánico del nudo cenital de eje hueco es impedir la rotación y el desplazamiento en cualquier dirección de cada miembro de la estructura autoportante con respecto al otro; todos los miembros de la estructura autoportante -incluido el propio nudo cenital de eje hueco- de un tamaño y una robustez a ser definidos según especificaciones para resistir adecuadamente las fuerzas a las que será sometida la estructura autoportante en su puesta en servicio. El propósito operacional del nudo cenital de eje hueco es dejar entrar y salir de la celda robotizada móvil una manguera externa semirrígida para transporte de material y una pluralidad de cables y mangueras de energía, control y otros que alimentan y comunican a tres robots manipuladores montados sobre tres columnas telescópicas en posición invertida y éstas sobre tres carros de un eje de desplazamiento circular. El propósito mecánico de la estructura autoportante es constituir el apoyo y sostén del aparato de alimentación, el aparato actuador multi- eje y tubería que protege cables y mangueras de energía y control. El propósito operacional de la estructura autoportante es actuar como una jaula de transporte de la celda robotizada móvil, al incluir tres asas de izado dispuestas respectivamente en las caras superiores de los extremos periféricos de sus tres vigas, que sirven para enganchar e izar la celda robotizada móvil mediante una grúa con un estrobo de tres ramales o un yugo de tres tomas.
El aparato de alimentación propiamente es un dispositivo transportador de material, derivador y destorcedor de cables y mangueras, compuesto por una manguera externa semirrígida para transporte de material, que se conecta mediante un acople de manguera a un tubo de extensión con brida de fijación, que atraviesa verticalmente a un conector rotativo de eje hueco (como, por ejemplo, el H-Through Hole Slip Ring o el Gas & Flow Passage Hollow Shaft Rotary Union de SENRING™) y se conecta a un distribuidor rotativo trifurcado, a cuyas tres bocas de descarga se conectan respectivamente tres mangueras flexibles para transporte de material, que conducen el mortero hacia tres boquillas intercambiables con llaves de paso controladas electrónicamente, montadas respectivamente en la brida de tres robots manipuladores que repiten un diseño de trayectorias computacional previo que reproduce el contorno de la pieza o del recinto en toda su extensión horizontal y vertical. El tubo de extensión con brida de fijación al que se acopla la manguera externa semirrígida para transporte de material, se asegura a un anillo de sujeción que se fija al nudo cenital de eje hueco y al mismo anillo de sujeción se asegura el canto superior de un tambor interior del conector rotativo de eje hueco, impidiendo que la manguera externa semirrígida para transporte de material se tuerza y permitiendo que un tambor exterior del conector rotativo de eje hueco gire solidariamente con tres bandejas portacables rotatorias, que protegen una pluralidad de cables y mangueras de energía, control y otros, que alimentan y comunican a los tres robots manipuladores que se desplazan sobre un eje de desplazamiento circular en posición invertida. Las tres bandejas portacables rotatorias giran solidariamente con tres carros sobre los cuales se desplazan respectivamente los tres robots manipuladores y de la cara inferior de cada bandeja portacables rotatoria cuelga un balancín retráctil que ayuda a sostener parcialmente el peso de cada una de las tres mangueras flexibles para transporte de material mientras éstas se desplazan por el espacio tridimensional cargada con el mortero.
El aparato actuador multi-eje propiamente es un sistema electromecánico reprogramable, automáticamente controlado, programable de manera offline u online en todos sus grados de libertad desde un computador externo o remoto y está compuesto por un eje de desplazamiento circular (como, por ejemplo, el Automotive Robot Track System de HEPCOMOTION™), con tres carros sobre los cuales se desplazan, con un grado de libertad, tres robots manipuladores de seis grados de libertad respectivamente, montados sobre tres columnas telescópicas en posición invertida, que se extienden y retraen, con un grado de libertad respectivamente. El eje de desplazamiento circular propiamente comprende tres carros con accionamiento por piñón motorizado y cremallera y sistema de guiado por patines y guías concéntricas. Dicho eje de desplazamiento circular está sostenido cenitalmente por tres pares de quijeras, dispuestos respectivamente en las tres vigas de la estructura autoportante de la celda robotizada móvil. Las tres columnas telescópicas pueden ser accionadas eléctrica, hidráulica o neumáticamente y se extienden y retraen de manera independiente y controlada, para desplazar a cada uno de los tres robots manipuladores en dirección vertical, según avanza en altura la impresión capa por capa.
DESCRIPCIÓN DETALLADA DE UNA REALIZACIÓN PREFERIDA
La celda robotizada móvil (100) para la fabricación de piezas con armadura o ductos verticales preinstalados en su interior y recintos impresos en obra mediante un sistema multi-eje de impresión 3D, que se describe en distintas etapas de operación, en las figuras 1 a la 3, está compuesta por una estructura autoportante (10), un aparato de alimentación (20) y un aparato actuador multi-eje (30), que es un sistema electromecánico reprogramable, automáticamente controlado, programable de manera offline u online en todos sus grados de libertad desde un computador externo o remoto.
El aparato actuador multi-eje (30), que se describe en operación progresiva en una vista frontal en las figuras 4 a la 6, en una vista lateral en las figuras 7 a la 9, y en una vista en planta en las figuras 10 a la 12.
La estructura autoportante (10), que se describe en la figura 13, está compuesta por tres vigas (12) concurrentes en un nudo cenital de eje hueco (11 ), dispuestas radialmente en un plano horizontal cada 120 grados angulares, provistas de tres pares de quijeras (15) para sostener cenitalmente un eje de desplazamiento circular (31 ), que es parte de un aparato actuador multi-eje (30), y los extremos periféricos de dichas vigas (12) están provistos respectivamente de un asa de izado (13), cuyo orificio está previsto para enganchar e izar la celda robotizada móvil (100) mediante una grúa con un estrobo de tres ramales o un yugo de tres tomas, que no se muestran; el extremo periférico de cada viga (12) está unido a un pilar telescópico autonivelable (14) que se apoya sobre una base (16), que opcionalmente puede ser anclada al suelo; cada viga (12), en conjunto con su correspondiente pilar telescópico autonivelable (14), soportan tubería (17) que protege cables y mangueras de energía y control, que se conectan a un generador de electricidad o una red eléctrica instalada, un controlador y un compresor externos, que no se muestran.
El aparato de alimentación (20), que se describe en la figura 14; está compuesto por una manguera externa semirrígida para transporte de material (21 ), que puede provenir de una bomba de mortero, que se conecta mediante un acople de manguera (22) a un tubo de extensión con brida de fijación (23), el cual se asegura a un anillo de sujeción (24), que se fija al nudo cenital de eje hueco (11 ) y a dicho anillo de sujeción (24) se asegura un tambor interior de un conector rotativo de eje hueco (25), que es un dispositivo giratorio que se utiliza para transferir energía eléctrica, hidráulica o neumática, circuitos de control o datos, analógicos o digitales y también medios como vacío, fluidos refrigerantes, vapor y otros, desde una o múltiples entradas fijas -en este caso dispuestas en el tambor interior- hacia una o múltiples salidas giratorias -en este caso dispuestas en un tambor exterior- y que deriva una pluralidad de cables y mangueras de energía, control y otros (26), que alimentan y comunican a tres carros (31 a) de un eje de desplazamiento circular (31 ), con tres columnas telescópicas (31 f) y tres robots manipuladores (31 g), que se detallan en la figura 15, hacia el generador de electricidad o la red eléctrica instalada, el controlador externo y el compresor externo, que no se muestran. Tres bandejas portacables rotatorias (26a), giran solidariamente con el tambor exterior del conector rotativo de eje hueco (25) y con los tres carros (31a) para impedir que la pluralidad de cables y mangueras de energía, control y otros (26) se tuerza o se enrede, y de sus caras inferiores cuelgan balancines retráctiles (26b) que ayudan a sostener parcialmente el peso de tres mangueras flexibles para transporte de material (28) mientras éstas se desplazan por el espacio tridimensional cargadas con el mortero, como se muestra mejor en las figuras 1 , 4, y 7. El tubo de extensión con brida de fijación (23), atraviesa verticalmente al conector rotativo de eje hueco (25) y se conecta por su extremo inferior a un distribuidor rotativo trifurcado (27), a cuyas tres bocas de descarga se conectan respectivamente las tres mangueras flexibles para transporte de material (28), que conducen el mortero hacia tres boquillas intercambiables (29) con llaves de paso controladas electrónicamente que no se muestran, montadas en la brida de los tres robots manipuladores (31 g).
El aparato actuador multi-eje (30), que es un sistema electromecánico reprogramable, automáticamente controlado, programable de manera offline u online en todos sus grados de libertad desde un computador externo o remoto, que se describe en detalle en la figura 15; está compuesto por un eje de desplazamiento circular (31 ) que está sostenido cenitalmente por tres pares de quijeras (15), dispuestos en las tres vigas (12) de la estructura autoportante (10) de la celda robotizada móvil (100). El eje de desplazamiento circular (31 ) está compuesto por tres carros (31a), que son accionados respectivamente por un piñón motorizado (31 b) y una cremallera (31 c) y guiados respectivamente por cuatro patines (31 d) sobre dos guías concéntricas (31 e), y sobre cada carro (31 a) se monta una columna telescópica (31 f) y sobre ésta un robot manipulador (31 g) en posición invertida, con todos sus cables y mangueras de energía, control y otros (26) protegidos por una bandeja portacables rotatoria (26a), que se describe en la figura 14.
La pieza impresa (40), que se describe en las figuras 16 a la 18; ilustra un primer ejemplo de un muro presto a ser impreso en obra, con armadura y ductos verticales preinstalados (40a), figura 16; un segundo ejemplo de un muro impreso en obra con armadura y ductos verticales preinstalados en su interior, cuyo contorno impreso (40b) fue obtenido de una trayectoria helicoidal triple de impresión 3D, figura 17; y un tercer ejemplo de un muro impreso en obra con armadura y ductos verticales preinstalados en su interior y relleno macizo (40c), figura 18.
DESCRIPCIÓN DEL MÉTODO OPERATIVO DEL SISTEMA
El segundo objetivo de la invención es proporcionar un método operativo de la celda robotizada móvil (100), que requiere de los siguientes pasos: a) T rasladar la celda robotizada móvil (100) a la obra de construcción o el taller de destino, con su aparato actuador multi-eje (30) debidamente asegurado en su posición de transporte; b) Enganchar sus tres asas de izado (13) con un estrobo de tres ramales o un yugo de tres tomas acoplado a una grúa; c) Posicionar la celda robotizada móvil (100) en un lugar previsto de una obra de construcción para realizar la impresión 3D en obra de piezas con armadura o ductos verticales preinstalados en su interior o recintos de un edificio; d) Opcionalmente, anclar al suelo las bases (16) de la estructura autoportante (10) de la celda robotizada móvil (100); e) Conectar el aparato de alimentación (20) de la celda robotizada móvil (100) a una fuente de material como, por ejemplo, una bomba de mortero y también a un generador de electricidad o una red eléctrica instalada, un controlador externo y un compresor externo, que no se muestran; f) Conectar cables y mangueras de energía y control, que salen de la tubería (17) que soporta la estructura autoportante (10) de la celda robotizada móvil (100) al generador de electricidad o la red eléctrica instalada, al controlador externo y al compresor externo, que no se muestran; g) Accionar los tres pilares telescópicos autonivelables (14) de la celda robotizada móvil (100) para nivelarla en una posición adecuada para realizar la impresión 3D; h) Liberar el aparato actuador multi-eje (30) de su posición de transporte y accionar el eje de desplazamiento circular (31), tal que los tres carros (31a) desplacen los tres robots manipuladores (31 g) hasta tres puntos preferentemente distales del contorno de la pieza presta a ser impresa, y extender o retraer cada columna telescópica (31 f) hasta una altura adecuada desde donde cada robot manipulador (31 g) pueda posicionar y orientar adecuadamente cada boquilla intercambiable (29) que porta y proceder a la deposición de filamentos continuos de mortero en capas sucesivas superpuestas, según un diseño de trayectorias computacional previo, que reproduce el contorno de la pieza o del recinto en toda su extensión horizontal y vertical; i) Iniciar el bombeo del mortero que entra por la manguera externa semirrígida para transporte de material (21) y desciende a través del tubo de extensión con brida de fijación (23), el distribuidor rotativo trifurcado (27) y las tres mangueras flexibles para transporte de material (28), hasta salir extrudido por las tres boquillas intercambiables (29), que están montadas en la brida de los tres robots manipuladores (31 g); j) Ejecutar el programa del aparato actuador multi-eje (30) desde un computador externo o remoto, que no se muestra, para iniciar la deposición de filamentos continuos de mortero en capas sucesivas superpuestas, según un diseño de trayectorias computacional previo que reproduce el contorno de la pieza o del recinto en toda su extensión horizontal y vertical; k) Detener el proceso de impresión 3D, una vez alcanzada la altura deseada para la pieza impresa (40) o la altura máxima desde donde pueden imprimir adecuadamente los dos robots manipuladores (31 g) en la situación actual; L) Desconectar el aparato de alimentación (20) de la celda robotizada móvil (100) de la bomba de mortero, del generador de electricidad o de la red eléctrica instalada, del controlador y el compresor externos, que no se muestran; m) Desconectar cables y mangueras de energía y control que salen de la tubería (17) que soporta la estructura autoportante (10) de la celda robotizada móvil (100) del generador de electricidad o la red eléctrica instalada, del controlador y el compresor externos, que no se muestran; n) Asegurar el aparato actuador multi-eje (30) en su posición de transporte; y o) Repetir el procedimiento desde el paso b). De otro modo, retirar con una grúa la celda robotizada móvil (100) de la obra de construcción.
EJEMPLOS DE APLICACIONES
En un primer ejemplo de aplicación para fabricar un muro (40) impreso en obra con armadura y ductos verticales preinstalados (40a) en su interior, que no superen la altura máxima desde donde pueden imprimir los tres robots manipuladores (31 g), con la armadura debidamente anclada a un cimiento y a muros adyacentes si los hubiere -y que no se muestran-, se posiciona la celda robotizada móvil (100) en un lugar previsto de la obra de construcción, se conectan su aparato de alimentación (20) y tubería (17) a una bomba de mortero, un generador de electricidad o una red eléctrica instalada, un controlador y un compresor externos, se accionan sus tres pilares telescópicos autonivelables (14), para nivelar su estructura autoportante (10) y se acciona su aparato actuador multi- eje (30), mediante un programa ejecutado desde un computador externo o remoto, para iniciar la impresión 3D del contorno del muro (40) en capas sucesivas superpuestas.
En un segundo ejemplo de aplicación para fabricar un muro (40) impreso en obra con armadura y ductos verticales preinstalados (40a) en su interior, cuyo contorno impreso (40b) fue obtenido de una trayectoria helicoidal triple de impresión 3D, el diseño de trayectorias computacional previo, que reproduce el contorno del muro en toda su extensión horizontal y vertical, debe considerar la geometría y posición de la armadura y ductos verticales preinstalados (40a) en el interior del muro (40), para que el movimiento sincronizado multi-eje del conjunto compuesto por el eje de desplazamiento circular (31 ), que comprende los tres carros (31 a), las tres columnas telescópicas (31 f) y los tres robots manipuladores (31 g), permita imprimir el contorno del muro (40) en capas sucesivas superpuestas, evitando que el aparato actuador multi-eje (30) y las tres boquillas intercambiables (29) colisionen con la armadura y ductos verticales preinstalados (40a) mientras el avance conjunto de las tres boquillas intercambiables (29) describe la topología de una hélice triple ascendente, que puede reducir el tiempo transcurrido entre la deposición de cada capa sucesiva y evitar que un fraguado inicial demasiado rápido impida que las capas consecutivas de mortero se adhieran adecuadamente entre sí.
En un tercer ejemplo de aplicación para fabricar un muro (40) impreso en obra con armadura y ductos verticales preinstalados (40a) en su interior y relleno macizo (40c) del mismo material que su contorno impreso (40b), uno o dos de los tres robots manipuladores (31 g) fabrica el contorno impreso (40b) del muro (40), mientras el resto extruye el relleno macizo (40c) en su interior con cierto retraso, de tal manera que las paredes del contorno, formadas por la superposición de capas sucesivas de filamentos de mortero, alcancen progresivamente altura y resistencia suficientes para contener el relleno macizo (40c). Alternativamente, los tres robots manipuladores (31 g) fabrican simultáneamente el contorno impreso (40b) del muro (40) hasta una altura determinada y cuando las paredes del contorno impreso (40b), formadas por la superposición de capas sucesivas de filamentos de mortero, alcanzan la resistencia suficiente, los tres robots manipuladores (31 h) extruyen simultáneamente el relleno macizo (40c) en el interior del muro (40), repitiendo la operación hasta completar la altura total del muro (40).
En un cuarto ejemplo de aplicación para fabricar un muro (40) impreso en obra con armadura y ductos verticales preinstalados (40a) en su interior y relleno macizo (40c) de otro material, distinto de aquel empleado en su contorno impreso (40b) como, por ejemplo, concreto de azufre, los tres robots manipuladores (31 g) fabrican simultáneamente el contorno impreso (40b) del muro (40) y cuando las paredes del contorno impreso (40b), formadas por la superposición de capas sucesivas de filamentos de mortero, alcanzan la altura total del muro (40) y la resistencia suficiente para contener el relleno macizo (40c) en su interior, se vierte el relleno macizo (40c) en el interior del muro, utilizando una herramienta externa con una manguera para transporte de material conectada a una fuente adicional.
En un quinto ejemplo de aplicación para fabricar un recinto impreso en obra, los tres robots manipuladores (31 g) pueden imprimir indistintamente la pared interna y la pared externa del contorno de dicho recinto, debido a que topológicamente es lo mismo que imprimir el contorno de un muro (40). Alféizares y dinteles se pueden instalar durante el proceso de impresión 3D para conformar vanos de puertas, ventanas y otros.

Claims

REIVINDICACIONES
1. Una celda robotizada móvil (100) para la fabricación de piezas (40) con armadura o ductos verticales preinstalados (40a) en su interior y recintos impresos en obra mediante un sistema multi-eje de impresión 3D, CARACTERIZADA porque comprende:
Una estructura autoportante (10), compuesta por tres vigas (12) concurrentes en un nudo cenital de eje hueco (11), dispuestas radialmente en un plano horizontal cada 120 grados angulares, provistas de tres pares de quijeras (15) para sostener cenitalmente un eje de desplazamiento circular (31), que es parte de un aparato actuador multi- eje (30), y los extremos periféricos de dichas vigas (12) están provistos respectivamente de un asa de izado (13), cuyo orificio está previsto para enganchar e izar la celda robotizada móvil (100) mediante una grúa con un estrobo de tres ramales o un yugo de tres tomas; el extremo periférico de cada viga (12) está unido a un pilar telescópico autonivelable (14) que se apoya sobre una base (16);
Un aparato de alimentación (20), compuesto por una manguera externa semirrígida para transporte de material (21), que se conecta mediante un acople de manguera (22) a un tubo de extensión con brida de fijación (23), el cual se asegura a un anillo de sujeción (24), que se fija al nudo cenital de eje hueco (11 ) y a dicho anillo de sujeción (24) se asegura un tambor interior de un conector rotativo de eje hueco (25), que deriva una pluralidad de cables y mangueras de energía, control y otros (26), protegidos por tres bandejas portacables rotatorias (26a) que giran solidariamente con el tambor exterior del conector rotativo de eje hueco (25) y con los tres carros (31 a) de un eje de desplazamiento circular (31 ), y que de sus caras inferiores cuelgan balancines retráctiles (26b), y donde el tubo de extensión con brida de fijación (23) atraviesa verticalmente al conector rotativo de eje hueco (25) y se conecta por su extremo inferior a un distribuidor rotativo trifurcado (27), a cuyas tres bocas de descarga se conectan respectivamente tres mangueras flexibles para transporte de material (28), que conducen el mortero hacia tres boquillas intercambiables (29) con llaves de paso controladas electrónicamente; y
Un aparato actuador multi-eje (30), que es un sistema electromecánico reprogramable, automáticamente controlado, programable de manera offline u online en todos sus grados de libertad desde un computador externo o remoto, compuesto por un eje de desplazamiento circular (31) que está sostenido cenitalmente por tres pares de quijeras (15), dispuestos en las tres vigas (12) de la estructura autoportante (10) de la celda robotizada móvil (100), en donde el eje de desplazamiento circular (31) está compuesto por tres carros (31a), que son accionados respectivamente por un piñón motorizado (31 b) y una cremallera (31 c) y guiados respectivamente por cuatro patines (31 d) sobre dos guías concéntricas (31 e), y sobre cada carro (31a) se monta una columna telescópica (31 f) y sobre ésta un robot manipulador (31 g) en posición invertida, con todos sus cables y mangueras de energía, control y otros (26) protegidos por una bandeja portacables rotatoria (26a).
2. La celda robotizada móvil (100) según la reivindicación 1 , CARACTERIZADA porque la base (16) opcionalmente puede ser anclada al suelo.
3. La celda robotizada móvil (100) según la reivindicación 1 , CARACTERIZADA porque cada viga (12), en conjunto con su correspondiente pilar telescópico autonivelable (14), soportan tubería (17) que protege cables y mangueras de energía y control.
4. La celda robotizada móvil (100) según la reivindicación 1 , CARACTERIZADA porque el tambor interior de un conector rotativo de eje hueco (25), que es un dispositivo giratorio que se utiliza para transferir energía eléctrica, hidráulica o neumática, circuitos de control o datos, analógicos o digitales, y también medios como vacío, fluidos refrigerantes, vapor y otros, desde una o múltiples entradas fijas -en este caso dispuestas en el tambor interior- hacía una o múltiples salidas giratorias -en este caso dispuestas en un tambor exterior-, deriva una pluralidad de cables y mangueras de energía, control y otros (26), que alimentan y comunican a tres piñones motorizados (31b), tres columnas telescópicas (31 f) y tres robots manipuladores (31 g), hacia un generador de electricidad o una red eléctrica instalada, un controlador y un compresor externos.
5. La celda robotizada móvil (100) según la reivindicación 1 , CARACTERIZADA porque las tres mangueras flexibles para transporte de material (28), conducen el mortero hacia tres boquillas intercambiables (29) con llaves de paso controladas electrónicamente que no se muestran, montadas en la brida de los tres robots manipuladores (31 g).
6. La celda robotizada móvil (100) según la reivindicación 1 , CARACTERIZADA porque el eje de desplazamiento circular (31 ) está compuesto por tres carros (31a), que son accionados respectivamente por un piñón motorizado (31b) y una cremallera (31c) y guiados respectivamente por cuatro patines (31 d) sobre dos guías concéntricas (31 e), y sobre cada carro (31a) se monta una columna telescópica (31 f) y sobre ésta un robot manipulador (31 g) en posición invertida, con todos sus cables y mangueras de energía, control y otros (26) protegidos por una bandeja portacables rotatoria (26a).
7. La celda robotizada móvil (100) según la reivindicación 1 , CARACTERIZADA porque la pieza impresa (40), es una armadura y ductos verticales preinstalados (40a) en el interior de un muro presto a ser impreso, mediante una trayectoria helicoidal triple de impresión 3D de su contorno.
8. La celda robotizada móvil (100) según la reivindicación 1 , CARACTERIZADA porque la pieza impresa (40), es un muro impreso en obra con armadura y ductos verticales preinstalados (40a) en su interior, cuyo contorno impreso (40b), fue obtenido de una trayectoria helicoidal triple de impresión 3D.
9. La celda robotizada móvil (100) según la reivindicación 1 , CARACTERIZADA porque la pieza impresa (40), es un muro impreso en obra con armadura y ductos verticales preinstalados (40a) en su interior y relleno macizo (40c).
10. Un método para operar una celda robotizada móvil (100) para la fabricación de piezas (40) con armadura o ductos verticales preinstalados (40a) en su interior y recintos impresos en obra mediante un sistema multi-eje de impresión 3D, CARACTERIZADO porque comprende disponer de una celda robotizada móvil (100), de acuerdo con las reivindicaciones 1 a 9; a) posicionar la celda robotizada móvil (100) en un lugar previsto de una obra de construcción, con su aparato de alimentación (20) y tubería (17) debidamente conectados a una bomba de mortero, un generador de electricidad o una red eléctrica instalada, un controlador y un compresor externos, para accionar los tres pilares telescópicos autonivelables (14) y nivelar su estructura autoportante (10) y para accionar su aparato actuador multi-eje (30), mediante un programa ejecutado desde un computador externo o remoto, e iniciar la impresión 3D del contorno de una pieza (40) con armadura o ductos verticales preinstalados (40a) en su interior o de un recinto; b) accionar los tres robots manipuladores (31 g) para posicionar y orientar las tres boquillas intercambiables (29), en tres puntos preferentemente distales del contorno de la pieza (40) presta a ser impresa, para iniciar con cada una, en el mismo sentido de avance, la deposición de filamentos continuos de mortero en capas sucesivas superpuestas, según un diseño de trayectorias computacional previo, que reproduce el contorno de la pieza (40) o del recinto en toda su extensión horizontal y vertical y cuyo avance conjunto puede describir la topología de una hélice triple ascendente, por ejemplo, para reducir el tiempo transcurrido entre la deposición de cada capa sucesiva y evitar que un fraguado inicial demasiado rápido impida que las capas consecutivas de mortero se adhieran adecuadamente entre sí, y en donde las tres boquillas intercambiables (29) repiten la misma trayectoria en cada capa sucesiva, o alternativamente, cada boquilla intercambiable (29) reproduce una trayectoria diferente y realiza una tarea diferente, sin perjuicio de que, debido al propio diseño de la pieza (40) o del recinto, la posición y orientación de cada boquilla intercambiable (29) varíe levemente en la capa siguiente; y c) ejecutar el programa del aparato actuador multi-eje (30) desde un computador externo o remoto, para que los tres carros (31a) del eje de desplazamiento circular (31) y las tres columnas telescópicas (31 f) montadas sobre dichos carros (31a), posicionen de manera independiente cada uno de los tres robots manipuladores (31 g) a la distancia horizontal y vertical necesarias en cada instante requerido, y cada robot manipulador (31 g) posicione y oriente de manera independiente la boquilla intercambiable (29) que lleva montada en su brida en cada instante requerido, según un diseño de trayectorias computacional previo que reproduce el contorno de la pieza (40) o del recinto en toda su extensión horizontal y vertical.
11. El método para operar una celda robotizada móvil (100), de acuerdo con la reivindicación 10, CARACTERIZADO porque para fabricar un muro (40) impreso en obra con armadura y ductos verticales preinstalados (40a) en su interior, que no superen la altura máxima desde donde pueden imprimir los tres robots manipuladores (31 g), con la armadura debidamente anclada a un cimiento y a muros adyacentes si los hubiere, se posiciona la celda robotizada móvil (100) en un lugar previsto de la obra de construcción, se conectan su aparato de alimentación (20) y tubería (17) a una bomba de mortero, un generador de electricidad o una red eléctrica instalada, un controlador y un compresor externos, se accionan sus tres pilares telescópicos autonivelables (14), para nivelar su estructura autoportante (10) y se acciona su aparato actuador multi-eje (30), mediante el programa ejecutado desde un computador externo o remoto, para iniciar la impresión 3D del contorno del muro (40) en capas sucesivas superpuestas.
12. El método para operar una celda robotizada móvil (100), de acuerdo con la reivindicación 10, CARACTERIZADO porque para fabricar un muro (40) impreso en obra con armadura y ductos verticales preinstalados (40a) en su interior, cuyo contorno impreso (40b) fue obtenido de una trayectoria helicoidal triple de impresión 3D, el diseño de trayectorias computacional previo, que reproduce el contorno del muro en toda su extensión horizontal y vertical, debe considerar la geometría y posición de la armadura y ductos verticales preinstalados (40a) en el interior del muro (40), para que el movimiento sincronizado multi-eje del conjunto compuesto por el eje de desplazamiento circular (31), que comprende los tres carros (31a), las tres columnas telescópicas (31 f) y los tres robots manipuladores (31 g), permita imprimir el contorno del muro (40) en capas sucesivas superpuestas, evitando que el aparato actuador multi-eje (30) y las tres boquillas intercambiables (29) colisionen con la armadura y ductos verticales preinstalados (40a) mientras el avance conjunto de las tres boquillas intercambiables (29) describe la topología de una hélice triple ascendente, que puede reducir el tiempo transcurrido entre la deposición de cada capa sucesiva y evitar que un fraguado inicial demasiado rápido impida que las capas consecutivas de mortero se adhieran adecuadamente entre sí.
13. El método para operar una celda robotizada móvil (100), de acuerdo con la reivindicación 10, CARACTERIZADO porque para fabricar un muro (40) impreso en obra con armadura y ductos verticales preinstalados (40a) en su interior y relleno macizo (40c) del mismo material que su contorno impreso (40b), uno o dos de los tres robots manipuladores (31 g) fabrica el contorno impreso (40b) del muro (40), mientras el resto extruye el relleno macizo (40c) en su interior con cierto retraso, de tal manera que las paredes del contorno, formadas por la superposición de capas sucesivas de filamentos de mortero, alcancen progresivamente altura y resistencia suficientes para contener el relleno macizo (40c); y alternativamente, los tres robots manipuladores (31 g) fabrican simultáneamente el contorno impreso (40b) del muro (40) hasta una altura determinada y cuando las paredes del contorno impreso (40b), formadas por la superposición de capas sucesivas de filamentos de mortero, alcanzan la resistencia suficiente, los tres robots manipuladores (31 h) extruyen simultáneamente el relleno macizo (40c) en el interior del muro (40), repitiendo la operación hasta completar la altura total del muro (40).
14. El método para operar una celda robotizada móvil (100), de acuerdo con la reivindicación 10, CARACTERIZADO porque para fabricar un muro (40) impreso en obra con armadura y ductos verticales preinstalados (40a) en su interior y relleno macizo (40c) de otro material, distinto de aquel empleado en su contorno impreso (40b) como, por ejemplo, concreto de azufre, los tres robots manipuladores (31 g) fabrican simultáneamente el contorno impreso (40b) del muro (40) y cuando las paredes del contorno impreso (40b), formadas por la superposición de capas sucesivas de filamentos de mortero, alcanzan la altura total del muro (40) y la resistencia suficiente para contener el relleno macizo (40c) en su interior, se vierte el relleno macizo (40c) en el interior del muro, utilizando una herramienta externa con una manguera para transporte de material conectada a una fuente adicional.
15. El método para operar una celda robotizada móvil (100), de acuerdo con la reivindicación 10, CARACTERIZADO porque para fabricar un recinto impreso en obra, los tres robots manipuladores (31 g) pueden imprimir indistintamente la pared interna y la pared externa del contorno de dicho recinto, debido a que topológicamente es lo mismo que imprimir el contorno de un muro (40).
PCT/CL2019/050132 2019-12-05 2019-12-05 Una celda robotizada móvil para la fabricación de piezas con armadura o ductos verticales preinstalados en su interior y recintos impresos en obra mediante un sistema multi-eje de impresión 3d; y método de operación WO2021108935A1 (es)

Priority Applications (1)

Application Number Priority Date Filing Date Title
PCT/CL2019/050132 WO2021108935A1 (es) 2019-12-05 2019-12-05 Una celda robotizada móvil para la fabricación de piezas con armadura o ductos verticales preinstalados en su interior y recintos impresos en obra mediante un sistema multi-eje de impresión 3d; y método de operación

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/CL2019/050132 WO2021108935A1 (es) 2019-12-05 2019-12-05 Una celda robotizada móvil para la fabricación de piezas con armadura o ductos verticales preinstalados en su interior y recintos impresos en obra mediante un sistema multi-eje de impresión 3d; y método de operación

Publications (1)

Publication Number Publication Date
WO2021108935A1 true WO2021108935A1 (es) 2021-06-10

Family

ID=76220941

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CL2019/050132 WO2021108935A1 (es) 2019-12-05 2019-12-05 Una celda robotizada móvil para la fabricación de piezas con armadura o ductos verticales preinstalados en su interior y recintos impresos en obra mediante un sistema multi-eje de impresión 3d; y método de operación

Country Status (1)

Country Link
WO (1) WO2021108935A1 (es)

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20160361834A1 (en) * 2015-06-10 2016-12-15 Nikita CHEN-IUN-TAI 3-d printer in polar coordinates
CN107447985A (zh) * 2017-08-04 2017-12-08 北京华商陆海科技有限公司 建筑装置及房屋
US20180093373A1 (en) * 2015-04-12 2018-04-05 Imprimere Ag Concrete Printer and Method for Erecting Structures Using a Concrete Printer
CN108356955A (zh) * 2018-04-26 2018-08-03 同济大学 一种实验用水泥基材料3d打印机
CN108908928A (zh) * 2018-07-10 2018-11-30 深圳市三帝梦工场科技开发有限公司 采用热熔水泥的大型3d打印机
CN107000247B (zh) * 2014-12-16 2019-07-09 X·罗谢 用于制备以连续层形式形成的三维结构的设备和方法
KR101995637B1 (ko) * 2017-12-04 2019-09-30 홍국선 복합재료용 3d 프린터

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN107000247B (zh) * 2014-12-16 2019-07-09 X·罗谢 用于制备以连续层形式形成的三维结构的设备和方法
US20180093373A1 (en) * 2015-04-12 2018-04-05 Imprimere Ag Concrete Printer and Method for Erecting Structures Using a Concrete Printer
US20160361834A1 (en) * 2015-06-10 2016-12-15 Nikita CHEN-IUN-TAI 3-d printer in polar coordinates
CN107447985A (zh) * 2017-08-04 2017-12-08 北京华商陆海科技有限公司 建筑装置及房屋
KR101995637B1 (ko) * 2017-12-04 2019-09-30 홍국선 복합재료용 3d 프린터
CN108356955A (zh) * 2018-04-26 2018-08-03 同济大学 一种实验用水泥基材料3d打印机
CN108908928A (zh) * 2018-07-10 2018-11-30 深圳市三帝梦工场科技开发有限公司 采用热熔水泥的大型3d打印机

Similar Documents

Publication Publication Date Title
US8029258B2 (en) Automated plumbing, wiring, and reinforcement
EP2610417A1 (en) Apparatus for automated construction comprising an extrusion nozzle and a robotic arm
US20180071949A1 (en) Method of reinforced cementitious constrauction by high speed extrusion printing and apparatus for using same
CN101360873B (zh) 一种用于由多块砖建造建筑物的自动砌砖系统
EP3733354B1 (en) Robotized construction system and corresponding method for fabricating a buildung
WO2021108933A1 (es) Una celda robotizada móvil para la fabricación de piezas y recintos impresos en obra mediante un sistema multi-eje de impresión 3d; y método operativo
CN107605167B (zh) 砌砖机器人直角墙体砌筑方法
WO2015127247A2 (en) Spray printing construction
US20170283297A1 (en) Method for 3d printing of buildings and a device for implementation thereof
ES2893457T3 (es) Robot paralelo con cables y procedimiento de mando de un robot de este tipo
CN107740591A (zh) 砌砖机器人t型墙体砌筑方法
ES2726918B2 (es) Robot para reformas y rehabilitaciones.
WO2021108936A1 (es) Una celda robotizada caminante para la fabricación de edificios impresos en obra mediante un sistema multi-eje de impresión 3d; y método de operación
WO2021108935A1 (es) Una celda robotizada móvil para la fabricación de piezas con armadura o ductos verticales preinstalados en su interior y recintos impresos en obra mediante un sistema multi-eje de impresión 3d; y método de operación
WO2021108934A1 (es) Una celda robotizada móvil para la fabricación de piezas con armadura o ductos verticales preinstalados en su interior y recintos impresos en obra mediante un sistema multi-eje de impresión 3d; y método de operación
US20200354949A1 (en) Construction automation system and method
US11485026B2 (en) Construction automation system and method
Travush et al. Mathematical description of concrete laying robots
PL232804B1 (pl) Głowica obrotowa do przyrostowego formowania konstrukcji budowlanych
DE202022000506U1 (de) Ein Roboter-System zum (teil-)autonomen Bau, Rückbau, Sarnierung oder Modifizierung von Häusern, Gebäuden oder Objekten, welches zur oder in die Nähe der Baustelle gebracht und dort aufgebaut werden kann.
PL232803B1 (pl) Głowica obrotowa do przyrostowego formowania konstrukcji budowlanych
ES2957717A1 (es) Sistema de fabricacion aditiva multifuncion, procedimiento asociado de construccion de un edificio y procedimiento de montaje
PL232802B1 (pl) Głowica obrotowa do przyrostowego formowania konstrukcji budowlanych
OA19503A (en) Method of reinforced cementitious construction by high speed extrusion printing and apparatus for using same.

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 19955283

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 19955283

Country of ref document: EP

Kind code of ref document: A1