WO2021107735A2 - Method for classifying coffee raw materials, method for providing roasting profile of raw beans using same, and system for providing information on coffee raw materials - Google Patents
Method for classifying coffee raw materials, method for providing roasting profile of raw beans using same, and system for providing information on coffee raw materials Download PDFInfo
- Publication number
- WO2021107735A2 WO2021107735A2 PCT/KR2020/017319 KR2020017319W WO2021107735A2 WO 2021107735 A2 WO2021107735 A2 WO 2021107735A2 KR 2020017319 W KR2020017319 W KR 2020017319W WO 2021107735 A2 WO2021107735 A2 WO 2021107735A2
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- coffee
- information
- raw materials
- coffee raw
- raw material
- Prior art date
Links
- 235000016213 coffee Nutrition 0.000 title claims abstract description 253
- 235000013353 coffee beverage Nutrition 0.000 title claims abstract description 253
- 239000002994 raw material Substances 0.000 title claims abstract description 152
- 238000000034 method Methods 0.000 title claims abstract description 123
- 235000010627 Phaseolus vulgaris Nutrition 0.000 title abstract description 7
- 244000046052 Phaseolus vulgaris Species 0.000 title abstract description 7
- 239000000796 flavoring agent Substances 0.000 claims abstract description 55
- 235000019634 flavors Nutrition 0.000 claims abstract description 54
- 239000000126 substance Substances 0.000 claims description 158
- 241000533293 Sesbania emerus Species 0.000 claims description 120
- 238000004458 analytical method Methods 0.000 claims description 53
- 150000004676 glycans Chemical class 0.000 claims description 22
- 229920001282 polysaccharide Polymers 0.000 claims description 22
- 239000005017 polysaccharide Substances 0.000 claims description 22
- 150000002772 monosaccharides Chemical class 0.000 claims description 20
- 150000002632 lipids Chemical class 0.000 claims description 19
- 150000007524 organic acids Chemical class 0.000 claims description 18
- 102000004169 proteins and genes Human genes 0.000 claims description 16
- 108090000623 proteins and genes Proteins 0.000 claims description 16
- 230000009467 reduction Effects 0.000 claims description 16
- 235000005985 organic acids Nutrition 0.000 claims description 15
- 238000000513 principal component analysis Methods 0.000 claims description 14
- 239000000284 extract Substances 0.000 claims description 8
- 238000010801 machine learning Methods 0.000 claims description 8
- 230000008569 process Effects 0.000 claims description 8
- 125000000524 functional group Chemical group 0.000 claims description 7
- 238000000354 decomposition reaction Methods 0.000 claims description 5
- 238000004422 calculation algorithm Methods 0.000 claims description 4
- 239000004615 ingredient Substances 0.000 claims description 4
- 238000007477 logistic regression Methods 0.000 claims description 4
- 238000000638 solvent extraction Methods 0.000 claims description 4
- 238000004611 spectroscopical analysis Methods 0.000 claims description 4
- 229910052729 chemical element Inorganic materials 0.000 claims description 3
- 238000003066 decision tree Methods 0.000 claims description 3
- 238000000556 factor analysis Methods 0.000 claims description 3
- 238000007637 random forest analysis Methods 0.000 claims description 3
- 238000012706 support-vector machine Methods 0.000 claims description 3
- 240000007154 Coffea arabica Species 0.000 description 202
- RYYVLZVUVIJVGH-UHFFFAOYSA-N caffeine Chemical compound CN1C(=O)N(C)C(=O)C2=C1N=CN2C RYYVLZVUVIJVGH-UHFFFAOYSA-N 0.000 description 33
- WWNNZCOKKKDOPX-UHFFFAOYSA-N N-methylnicotinate Chemical compound C[N+]1=CC=CC(C([O-])=O)=C1 WWNNZCOKKKDOPX-UHFFFAOYSA-N 0.000 description 27
- 238000006243 chemical reaction Methods 0.000 description 20
- 238000007726 management method Methods 0.000 description 18
- 244000013123 dwarf bean Species 0.000 description 16
- WQZGKKKJIJFFOK-GASJEMHNSA-N Glucose Natural products OC[C@H]1OC(O)[C@H](O)[C@@H](O)[C@@H]1O WQZGKKKJIJFFOK-GASJEMHNSA-N 0.000 description 15
- LPHGQDQBBGAPDZ-UHFFFAOYSA-N Isocaffeine Natural products CN1C(=O)N(C)C(=O)C2=C1N(C)C=N2 LPHGQDQBBGAPDZ-UHFFFAOYSA-N 0.000 description 15
- 229960001948 caffeine Drugs 0.000 description 15
- VJEONQKOZGKCAK-UHFFFAOYSA-N caffeine Natural products CN1C(=O)N(C)C(=O)C2=C1C=CN2C VJEONQKOZGKCAK-UHFFFAOYSA-N 0.000 description 15
- KRKNYBCHXYNGOX-UHFFFAOYSA-N citric acid Chemical compound OC(=O)CC(O)(C(O)=O)CC(O)=O KRKNYBCHXYNGOX-UHFFFAOYSA-N 0.000 description 15
- 239000008103 glucose Substances 0.000 description 15
- MIDXCONKKJTLDX-UHFFFAOYSA-N 3,5-dimethylcyclopentane-1,2-dione Chemical compound CC1CC(C)C(=O)C1=O MIDXCONKKJTLDX-UHFFFAOYSA-N 0.000 description 14
- 235000013736 caramel Nutrition 0.000 description 14
- 235000001368 chlorogenic acid Nutrition 0.000 description 14
- 229940093915 gynecological organic acid Drugs 0.000 description 14
- 235000000346 sugar Nutrition 0.000 description 14
- 235000019658 bitter taste Nutrition 0.000 description 13
- 238000010586 diagram Methods 0.000 description 13
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 description 12
- 229930004069 diterpene Natural products 0.000 description 11
- 235000021331 green beans Nutrition 0.000 description 9
- CWVRJTMFETXNAD-FWCWNIRPSA-N 3-O-Caffeoylquinic acid Natural products O[C@H]1[C@@H](O)C[C@@](O)(C(O)=O)C[C@H]1OC(=O)\C=C\C1=CC=C(O)C(O)=C1 CWVRJTMFETXNAD-FWCWNIRPSA-N 0.000 description 8
- PZIRUHCJZBGLDY-UHFFFAOYSA-N Caffeoylquinic acid Natural products CC(CCC(=O)C(C)C1C(=O)CC2C3CC(O)C4CC(O)CCC4(C)C3CCC12C)C(=O)O PZIRUHCJZBGLDY-UHFFFAOYSA-N 0.000 description 8
- 229930091371 Fructose Natural products 0.000 description 8
- 239000005715 Fructose Substances 0.000 description 8
- RFSUNEUAIZKAJO-ARQDHWQXSA-N Fructose Chemical compound OC[C@H]1O[C@](O)(CO)[C@@H](O)[C@@H]1O RFSUNEUAIZKAJO-ARQDHWQXSA-N 0.000 description 8
- CWVRJTMFETXNAD-KLZCAUPSSA-N Neochlorogenin-saeure Natural products O[C@H]1C[C@@](O)(C[C@@H](OC(=O)C=Cc2ccc(O)c(O)c2)[C@@H]1O)C(=O)O CWVRJTMFETXNAD-KLZCAUPSSA-N 0.000 description 8
- CWVRJTMFETXNAD-JUHZACGLSA-N chlorogenic acid Chemical compound O[C@@H]1[C@H](O)C[C@@](O)(C(O)=O)C[C@H]1OC(=O)\C=C\C1=CC=C(O)C(O)=C1 CWVRJTMFETXNAD-JUHZACGLSA-N 0.000 description 8
- 229940074393 chlorogenic acid Drugs 0.000 description 8
- FFQSDFBBSXGVKF-KHSQJDLVSA-N chlorogenic acid Natural products O[C@@H]1C[C@](O)(C[C@@H](CC(=O)C=Cc2ccc(O)c(O)c2)[C@@H]1O)C(=O)O FFQSDFBBSXGVKF-KHSQJDLVSA-N 0.000 description 8
- BMRSEYFENKXDIS-KLZCAUPSSA-N cis-3-O-p-coumaroylquinic acid Natural products O[C@H]1C[C@@](O)(C[C@@H](OC(=O)C=Cc2ccc(O)cc2)[C@@H]1O)C(=O)O BMRSEYFENKXDIS-KLZCAUPSSA-N 0.000 description 8
- BJEPYKJPYRNKOW-REOHCLBHSA-N (S)-malic acid Chemical compound OC(=O)[C@@H](O)CC(O)=O BJEPYKJPYRNKOW-REOHCLBHSA-N 0.000 description 7
- 238000004497 NIR spectroscopy Methods 0.000 description 7
- BJEPYKJPYRNKOW-UHFFFAOYSA-N alpha-hydroxysuccinic acid Natural products OC(=O)C(O)CC(O)=O BJEPYKJPYRNKOW-UHFFFAOYSA-N 0.000 description 7
- 150000001875 compounds Chemical class 0.000 description 7
- 235000009508 confectionery Nutrition 0.000 description 7
- 239000001630 malic acid Substances 0.000 description 7
- 235000011090 malic acid Nutrition 0.000 description 7
- 238000005259 measurement Methods 0.000 description 7
- 235000019640 taste Nutrition 0.000 description 7
- 238000005979 thermal decomposition reaction Methods 0.000 description 7
- WQZGKKKJIJFFOK-VFUOTHLCSA-N beta-D-glucose Chemical compound OC[C@H]1O[C@@H](O)[C@H](O)[C@@H](O)[C@@H]1O WQZGKKKJIJFFOK-VFUOTHLCSA-N 0.000 description 6
- 150000004141 diterpene derivatives Chemical class 0.000 description 6
- 238000004519 manufacturing process Methods 0.000 description 6
- 150000001413 amino acids Chemical class 0.000 description 5
- 230000008859 change Effects 0.000 description 5
- 238000012512 characterization method Methods 0.000 description 5
- 235000015165 citric acid Nutrition 0.000 description 5
- 230000007423 decrease Effects 0.000 description 5
- 125000000567 diterpene group Chemical group 0.000 description 5
- 239000000203 mixture Substances 0.000 description 5
- 238000010295 mobile communication Methods 0.000 description 5
- 239000002243 precursor Substances 0.000 description 5
- 101001023680 Homo sapiens Ribosomal RNA small subunit methyltransferase NEP1 Proteins 0.000 description 4
- 102100035491 Ribosomal RNA small subunit methyltransferase NEP1 Human genes 0.000 description 4
- CZMRCDWAGMRECN-UGDNZRGBSA-N Sucrose Chemical compound O[C@H]1[C@H](O)[C@@H](CO)O[C@@]1(CO)O[C@@H]1[C@H](O)[C@@H](O)[C@H](O)[C@@H](CO)O1 CZMRCDWAGMRECN-UGDNZRGBSA-N 0.000 description 4
- 229930006000 Sucrose Natural products 0.000 description 4
- -1 Therobromine Chemical compound 0.000 description 4
- 238000004891 communication Methods 0.000 description 4
- IPCSVZSSVZVIGE-UHFFFAOYSA-N hexadecanoic acid Chemical compound CCCCCCCCCCCCCCCC(O)=O IPCSVZSSVZVIGE-UHFFFAOYSA-N 0.000 description 4
- 238000012545 processing Methods 0.000 description 4
- 239000005720 sucrose Substances 0.000 description 4
- 150000003626 triacylglycerols Chemical class 0.000 description 4
- QTBSBXVTEAMEQO-UHFFFAOYSA-N Acetic acid Chemical compound CC(O)=O QTBSBXVTEAMEQO-UHFFFAOYSA-N 0.000 description 3
- 241000167854 Bourreria succulenta Species 0.000 description 3
- QMMFVYPAHWMCMS-UHFFFAOYSA-N Dimethyl sulfide Chemical compound CSC QMMFVYPAHWMCMS-UHFFFAOYSA-N 0.000 description 3
- 238000005033 Fourier transform infrared spectroscopy Methods 0.000 description 3
- 150000001720 carbohydrates Chemical class 0.000 description 3
- 235000014633 carbohydrates Nutrition 0.000 description 3
- 235000019693 cherries Nutrition 0.000 description 3
- 235000014113 dietary fatty acids Nutrition 0.000 description 3
- 150000002016 disaccharides Chemical class 0.000 description 3
- 238000001035 drying Methods 0.000 description 3
- 238000011156 evaluation Methods 0.000 description 3
- 229930195729 fatty acid Natural products 0.000 description 3
- 239000000194 fatty acid Substances 0.000 description 3
- 150000004665 fatty acids Chemical class 0.000 description 3
- 238000010606 normalization Methods 0.000 description 3
- 235000021481 specialty coffee Nutrition 0.000 description 3
- OYHQOLUKZRVURQ-NTGFUMLPSA-N (9Z,12Z)-9,10,12,13-tetratritiooctadeca-9,12-dienoic acid Chemical compound C(CCCCCCC\C(=C(/C\C(=C(/CCCCC)\[3H])\[3H])\[3H])\[3H])(=O)O OYHQOLUKZRVURQ-NTGFUMLPSA-N 0.000 description 2
- RAFHQTNQEZECFL-UHFFFAOYSA-N 2-Ethyl-6-methylpyrazine Chemical compound CCC1=CN=CC(C)=N1 RAFHQTNQEZECFL-UHFFFAOYSA-N 0.000 description 2
- 238000004483 ATR-FTIR spectroscopy Methods 0.000 description 2
- QSJXEFYPDANLFS-UHFFFAOYSA-N Diacetyl Chemical compound CC(=O)C(C)=O QSJXEFYPDANLFS-UHFFFAOYSA-N 0.000 description 2
- 238000004566 IR spectroscopy Methods 0.000 description 2
- 229920000057 Mannan Polymers 0.000 description 2
- LSDPWZHWYPCBBB-UHFFFAOYSA-N Methanethiol Chemical compound SC LSDPWZHWYPCBBB-UHFFFAOYSA-N 0.000 description 2
- 238000005481 NMR spectroscopy Methods 0.000 description 2
- 235000021314 Palmitic acid Nutrition 0.000 description 2
- NBIIXXVUZAFLBC-UHFFFAOYSA-N Phosphoric acid Chemical compound OP(O)(O)=O NBIIXXVUZAFLBC-UHFFFAOYSA-N 0.000 description 2
- NBBJYMSMWIIQGU-UHFFFAOYSA-N Propionic aldehyde Chemical compound CCC=O NBBJYMSMWIIQGU-UHFFFAOYSA-N 0.000 description 2
- KYQCOXFCLRTKLS-UHFFFAOYSA-N Pyrazine Chemical compound C1=CN=CC=N1 KYQCOXFCLRTKLS-UHFFFAOYSA-N 0.000 description 2
- 230000015572 biosynthetic process Effects 0.000 description 2
- YCIMNLLNPGFGHC-UHFFFAOYSA-N catechol Chemical compound OC1=CC=CC=C1O YCIMNLLNPGFGHC-UHFFFAOYSA-N 0.000 description 2
- 239000001913 cellulose Substances 0.000 description 2
- 229920002678 cellulose Polymers 0.000 description 2
- 238000007621 cluster analysis Methods 0.000 description 2
- 238000007405 data analysis Methods 0.000 description 2
- HYBBIBNJHNGZAN-UHFFFAOYSA-N furfural Chemical compound O=CC1=CC=CO1 HYBBIBNJHNGZAN-UHFFFAOYSA-N 0.000 description 2
- 125000002791 glucosyl group Chemical group C1([C@H](O)[C@@H](O)[C@H](O)[C@H](O1)CO)* 0.000 description 2
- LHGVFZTZFXWLCP-UHFFFAOYSA-N guaiacol Chemical compound COC1=CC=CC=C1O LHGVFZTZFXWLCP-UHFFFAOYSA-N 0.000 description 2
- 238000003306 harvesting Methods 0.000 description 2
- BDAGIHXWWSANSR-UHFFFAOYSA-N methanoic acid Natural products OC=O BDAGIHXWWSANSR-UHFFFAOYSA-N 0.000 description 2
- WQEPLUUGTLDZJY-UHFFFAOYSA-N n-Pentadecanoic acid Natural products CCCCCCCCCCCCCCC(O)=O WQEPLUUGTLDZJY-UHFFFAOYSA-N 0.000 description 2
- QJGQUHMNIGDVPM-UHFFFAOYSA-N nitrogen group Chemical group [N] QJGQUHMNIGDVPM-UHFFFAOYSA-N 0.000 description 2
- TZMFJUDUGYTVRY-UHFFFAOYSA-N pentane-2,3-dione Chemical compound CCC(=O)C(C)=O TZMFJUDUGYTVRY-UHFFFAOYSA-N 0.000 description 2
- DTUQWGWMVIHBKE-UHFFFAOYSA-N phenylacetaldehyde Chemical compound O=CCC1=CC=CC=C1 DTUQWGWMVIHBKE-UHFFFAOYSA-N 0.000 description 2
- 235000018102 proteins Nutrition 0.000 description 2
- 238000012360 testing method Methods 0.000 description 2
- ZFXYFBGIUFBOJW-UHFFFAOYSA-N theophylline Chemical compound O=C1N(C)C(=O)N(C)C2=C1NC=N2 ZFXYFBGIUFBOJW-UHFFFAOYSA-N 0.000 description 2
- QAIPRVGONGVQAS-DUXPYHPUSA-N trans-caffeic acid Chemical compound OC(=O)\C=C\C1=CC=C(O)C(O)=C1 QAIPRVGONGVQAS-DUXPYHPUSA-N 0.000 description 2
- AAWZDTNXLSGCEK-LNVDRNJUSA-N (3r,5r)-1,3,4,5-tetrahydroxycyclohexane-1-carboxylic acid Chemical compound O[C@@H]1CC(O)(C(O)=O)C[C@@H](O)C1O AAWZDTNXLSGCEK-LNVDRNJUSA-N 0.000 description 1
- ACEAELOMUCBPJP-UHFFFAOYSA-N (E)-3,4,5-trihydroxycinnamic acid Natural products OC(=O)C=CC1=CC(O)=C(O)C(O)=C1 ACEAELOMUCBPJP-UHFFFAOYSA-N 0.000 description 1
- KSEBMYQBYZTDHS-HWKANZROSA-M (E)-Ferulic acid Natural products COC1=CC(\C=C\C([O-])=O)=CC=C1O KSEBMYQBYZTDHS-HWKANZROSA-M 0.000 description 1
- ZEKCQHIPQALHSP-UHFFFAOYSA-N 1-(2,3-dihydro-1h-pyrrol-5-yl)ethanone Chemical compound CC(=O)C1=CCCN1 ZEKCQHIPQALHSP-UHFFFAOYSA-N 0.000 description 1
- VNAFWALXWOAPCK-UHFFFAOYSA-N 1-phenyl-2,3-dihydro-1h-indene Chemical compound C1CC2=CC=CC=C2C1C1=CC=CC=C1 VNAFWALXWOAPCK-UHFFFAOYSA-N 0.000 description 1
- 239000001908 2-ethyl-5-methylpyrazine Substances 0.000 description 1
- PGOUFXLLZPTDIH-UHFFFAOYSA-N 2-methoxy-3-propan-2-ylpyrazine Chemical compound COC1=NC=CN=C1C(C)C.COC1=NC=CN=C1C(C)C PGOUFXLLZPTDIH-UHFFFAOYSA-N 0.000 description 1
- FZIPCQLKPTZZIM-UHFFFAOYSA-N 2-oxidanylpropane-1,2,3-tricarboxylic acid Chemical compound OC(=O)CC(O)(C(O)=O)CC(O)=O.OC(=O)CC(O)(C(O)=O)CC(O)=O FZIPCQLKPTZZIM-UHFFFAOYSA-N 0.000 description 1
- XKJUKVTZSPIGSI-UHFFFAOYSA-N 3-methylbutanal Chemical compound CC(C)CC=O.CC(C)CC=O XKJUKVTZSPIGSI-UHFFFAOYSA-N 0.000 description 1
- OSWFIVFLDKOXQC-UHFFFAOYSA-N 4-(3-methoxyphenyl)aniline Chemical compound COC1=CC=CC(C=2C=CC(N)=CC=2)=C1 OSWFIVFLDKOXQC-UHFFFAOYSA-N 0.000 description 1
- SATHPVQTSSUFFW-UHFFFAOYSA-N 4-[6-[(3,5-dihydroxy-4-methoxyoxan-2-yl)oxymethyl]-3,5-dihydroxy-4-methoxyoxan-2-yl]oxy-2-(hydroxymethyl)-6-methyloxane-3,5-diol Chemical compound OC1C(OC)C(O)COC1OCC1C(O)C(OC)C(O)C(OC2C(C(CO)OC(C)C2O)O)O1 SATHPVQTSSUFFW-UHFFFAOYSA-N 0.000 description 1
- IDVPUNSRRGGJIB-UHFFFAOYSA-N 5-ethyl-2-methoxyphenol Chemical compound C(C)C=1C=C(C(=CC1)OC)O.C(C)C=1C=C(C(=CC1)OC)O IDVPUNSRRGGJIB-UHFFFAOYSA-N 0.000 description 1
- 239000001904 Arabinogalactan Substances 0.000 description 1
- 229920000189 Arabinogalactan Polymers 0.000 description 1
- BWTBBZUYEQVYLH-UHFFFAOYSA-N C(=C)C=1C=C(C(=CC1)OC)O.C(=C)C=1C=C(C(=CC1)OC)O Chemical compound C(=C)C=1C=C(C(=CC1)OC)O.C(=C)C=1C=C(C(=CC1)OC)O BWTBBZUYEQVYLH-UHFFFAOYSA-N 0.000 description 1
- JCZHTTOYQZPBEE-UHFFFAOYSA-N C(C)C1=NC=C(N=C1C)C.C(C)C1=NC=C(N=C1C)C Chemical compound C(C)C1=NC=C(N=C1C)C.C(C)C1=NC=C(N=C1C)C JCZHTTOYQZPBEE-UHFFFAOYSA-N 0.000 description 1
- SOVIVRUMASUXGO-UHFFFAOYSA-N CCC(C)C=O.CCC(C)C=O Chemical compound CCC(C)C=O.CCC(C)C=O SOVIVRUMASUXGO-UHFFFAOYSA-N 0.000 description 1
- 241000723377 Coffea Species 0.000 description 1
- 235000007460 Coffea arabica Nutrition 0.000 description 1
- AAWZDTNXLSGCEK-UHFFFAOYSA-N Cordycepinsaeure Natural products OC1CC(O)(C(O)=O)CC(O)C1O AAWZDTNXLSGCEK-UHFFFAOYSA-N 0.000 description 1
- GXCLVBGFBYZDAG-UHFFFAOYSA-N N-[2-(1H-indol-3-yl)ethyl]-N-methylprop-2-en-1-amine Chemical compound CN(CCC1=CNC2=C1C=CC=C2)CC=C GXCLVBGFBYZDAG-UHFFFAOYSA-N 0.000 description 1
- PCNDJXKNXGMECE-UHFFFAOYSA-N Phenazine Natural products C1=CC=CC2=NC3=CC=CC=C3N=C21 PCNDJXKNXGMECE-UHFFFAOYSA-N 0.000 description 1
- AAWZDTNXLSGCEK-ZHQZDSKASA-N Quinic acid Natural products O[C@H]1CC(O)(C(O)=O)C[C@H](O)C1O AAWZDTNXLSGCEK-ZHQZDSKASA-N 0.000 description 1
- 241001107098 Rubiaceae Species 0.000 description 1
- IKHGUXGNUITLKF-XPULMUKRSA-N acetaldehyde Chemical compound [14CH]([14CH3])=O IKHGUXGNUITLKF-XPULMUKRSA-N 0.000 description 1
- 235000011054 acetic acid Nutrition 0.000 description 1
- 239000002253 acid Substances 0.000 description 1
- 229910000147 aluminium phosphate Inorganic materials 0.000 description 1
- 230000003078 antioxidant effect Effects 0.000 description 1
- 235000019312 arabinogalactan Nutrition 0.000 description 1
- 235000019568 aromas Nutrition 0.000 description 1
- 230000001174 ascending effect Effects 0.000 description 1
- 238000005102 attenuated total reflection Methods 0.000 description 1
- 230000008901 benefit Effects 0.000 description 1
- POIARNZEYGURDG-FNORWQNLSA-N beta-damascenone Chemical compound C\C=C\C(=O)C1=C(C)C=CCC1(C)C POIARNZEYGURDG-FNORWQNLSA-N 0.000 description 1
- 230000005540 biological transmission Effects 0.000 description 1
- RHDGNLCLDBVESU-UHFFFAOYSA-N but-3-en-4-olide Chemical compound O=C1CC=CO1 RHDGNLCLDBVESU-UHFFFAOYSA-N 0.000 description 1
- 235000004883 caffeic acid Nutrition 0.000 description 1
- 229940074360 caffeic acid Drugs 0.000 description 1
- 210000002421 cell wall Anatomy 0.000 description 1
- 235000013339 cereals Nutrition 0.000 description 1
- QAIPRVGONGVQAS-UHFFFAOYSA-N cis-caffeic acid Natural products OC(=O)C=CC1=CC=C(O)C(O)=C1 QAIPRVGONGVQAS-UHFFFAOYSA-N 0.000 description 1
- 238000007796 conventional method Methods 0.000 description 1
- 238000012937 correction Methods 0.000 description 1
- 239000013078 crystal Substances 0.000 description 1
- 238000007418 data mining Methods 0.000 description 1
- 238000013500 data storage Methods 0.000 description 1
- 230000003247 decreasing effect Effects 0.000 description 1
- 238000013461 design Methods 0.000 description 1
- 238000011161 development Methods 0.000 description 1
- 229910003460 diamond Inorganic materials 0.000 description 1
- 239000010432 diamond Substances 0.000 description 1
- 235000013399 edible fruits Nutrition 0.000 description 1
- KSEBMYQBYZTDHS-HWKANZROSA-N ferulic acid Chemical compound COC1=CC(\C=C\C(O)=O)=CC=C1O KSEBMYQBYZTDHS-HWKANZROSA-N 0.000 description 1
- 235000001785 ferulic acid Nutrition 0.000 description 1
- 229940114124 ferulic acid Drugs 0.000 description 1
- KSEBMYQBYZTDHS-UHFFFAOYSA-N ferulic acid Natural products COC1=CC(C=CC(O)=O)=CC=C1O KSEBMYQBYZTDHS-UHFFFAOYSA-N 0.000 description 1
- 235000019253 formic acid Nutrition 0.000 description 1
- 230000006870 function Effects 0.000 description 1
- 238000007429 general method Methods 0.000 description 1
- 238000000227 grinding Methods 0.000 description 1
- 229960001867 guaiacol Drugs 0.000 description 1
- PKPGHXHNFUGFLT-UHFFFAOYSA-N hexanal Chemical compound CCCCCC=O.CCCCCC=O PKPGHXHNFUGFLT-UHFFFAOYSA-N 0.000 description 1
- 238000007417 hierarchical cluster analysis Methods 0.000 description 1
- 235000012907 honey Nutrition 0.000 description 1
- 150000002596 lactones Chemical class 0.000 description 1
- 229910017464 nitrogen compound Inorganic materials 0.000 description 1
- 150000002830 nitrogen compounds Chemical class 0.000 description 1
- 230000003647 oxidation Effects 0.000 description 1
- 238000007254 oxidation reaction Methods 0.000 description 1
- ISWSIDIOOBJBQZ-UHFFFAOYSA-N phenol group Chemical group C1(=CC=CC=C1)O ISWSIDIOOBJBQZ-UHFFFAOYSA-N 0.000 description 1
- 229940100595 phenylacetaldehyde Drugs 0.000 description 1
- 235000011007 phosphoric acid Nutrition 0.000 description 1
- BXRNXXXXHLBUKK-UHFFFAOYSA-N piperazine-2,5-dione Chemical compound O=C1CNC(=O)CN1 BXRNXXXXHLBUKK-UHFFFAOYSA-N 0.000 description 1
- 238000002203 pretreatment Methods 0.000 description 1
- 150000003222 pyridines Chemical class 0.000 description 1
- 150000003233 pyrroles Chemical class 0.000 description 1
- 150000003384 small molecules Chemical class 0.000 description 1
- 230000003595 spectral effect Effects 0.000 description 1
- 238000001228 spectrum Methods 0.000 description 1
- 238000003860 storage Methods 0.000 description 1
- 150000008163 sugars Chemical class 0.000 description 1
- 235000019605 sweet taste sensations Nutrition 0.000 description 1
- 230000001360 synchronised effect Effects 0.000 description 1
- 229960000278 theophylline Drugs 0.000 description 1
- QURCVMIEKCOAJU-UHFFFAOYSA-N trans-isoferulic acid Natural products COC1=CC=C(C=CC(O)=O)C=C1O QURCVMIEKCOAJU-UHFFFAOYSA-N 0.000 description 1
- 238000010200 validation analysis Methods 0.000 description 1
- MWOOGOJBHIARFG-UHFFFAOYSA-N vanillin Chemical compound COC1=CC(C=O)=CC=C1O MWOOGOJBHIARFG-UHFFFAOYSA-N 0.000 description 1
- 235000012141 vanillin Nutrition 0.000 description 1
- FGQOOHJZONJGDT-UHFFFAOYSA-N vanillin Natural products COC1=CC(O)=CC(C=O)=C1 FGQOOHJZONJGDT-UHFFFAOYSA-N 0.000 description 1
- 238000012795 verification Methods 0.000 description 1
- 238000002759 z-score normalization Methods 0.000 description 1
- 229930007850 β-damascenone Natural products 0.000 description 1
Images
Classifications
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING OR COUNTING
- G06Q—INFORMATION AND COMMUNICATION TECHNOLOGY [ICT] SPECIALLY ADAPTED FOR ADMINISTRATIVE, COMMERCIAL, FINANCIAL, MANAGERIAL OR SUPERVISORY PURPOSES; SYSTEMS OR METHODS SPECIALLY ADAPTED FOR ADMINISTRATIVE, COMMERCIAL, FINANCIAL, MANAGERIAL OR SUPERVISORY PURPOSES, NOT OTHERWISE PROVIDED FOR
- G06Q50/00—Information and communication technology [ICT] specially adapted for implementation of business processes of specific business sectors, e.g. utilities or tourism
- G06Q50/02—Agriculture; Fishing; Forestry; Mining
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01N—INVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
- G01N21/00—Investigating or analysing materials by the use of optical means, i.e. using sub-millimetre waves, infrared, visible or ultraviolet light
- G01N21/17—Systems in which incident light is modified in accordance with the properties of the material investigated
- G01N21/25—Colour; Spectral properties, i.e. comparison of effect of material on the light at two or more different wavelengths or wavelength bands
- G01N21/31—Investigating relative effect of material at wavelengths characteristic of specific elements or molecules, e.g. atomic absorption spectrometry
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01N—INVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
- G01N21/00—Investigating or analysing materials by the use of optical means, i.e. using sub-millimetre waves, infrared, visible or ultraviolet light
- G01N21/84—Systems specially adapted for particular applications
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING OR COUNTING
- G06F—ELECTRIC DIGITAL DATA PROCESSING
- G06F16/00—Information retrieval; Database structures therefor; File system structures therefor
- G06F16/90—Details of database functions independent of the retrieved data types
- G06F16/903—Querying
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING OR COUNTING
- G06F—ELECTRIC DIGITAL DATA PROCESSING
- G06F16/00—Information retrieval; Database structures therefor; File system structures therefor
- G06F16/90—Details of database functions independent of the retrieved data types
- G06F16/906—Clustering; Classification
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING OR COUNTING
- G06N—COMPUTING ARRANGEMENTS BASED ON SPECIFIC COMPUTATIONAL MODELS
- G06N20/00—Machine learning
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING OR COUNTING
- G06Q—INFORMATION AND COMMUNICATION TECHNOLOGY [ICT] SPECIALLY ADAPTED FOR ADMINISTRATIVE, COMMERCIAL, FINANCIAL, MANAGERIAL OR SUPERVISORY PURPOSES; SYSTEMS OR METHODS SPECIALLY ADAPTED FOR ADMINISTRATIVE, COMMERCIAL, FINANCIAL, MANAGERIAL OR SUPERVISORY PURPOSES, NOT OTHERWISE PROVIDED FOR
- G06Q10/00—Administration; Management
- G06Q10/04—Forecasting or optimisation specially adapted for administrative or management purposes, e.g. linear programming or "cutting stock problem"
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING OR COUNTING
- G06Q—INFORMATION AND COMMUNICATION TECHNOLOGY [ICT] SPECIALLY ADAPTED FOR ADMINISTRATIVE, COMMERCIAL, FINANCIAL, MANAGERIAL OR SUPERVISORY PURPOSES; SYSTEMS OR METHODS SPECIALLY ADAPTED FOR ADMINISTRATIVE, COMMERCIAL, FINANCIAL, MANAGERIAL OR SUPERVISORY PURPOSES, NOT OTHERWISE PROVIDED FOR
- G06Q20/00—Payment architectures, schemes or protocols
- G06Q20/08—Payment architectures
- G06Q20/14—Payment architectures specially adapted for billing systems
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING OR COUNTING
- G06Q—INFORMATION AND COMMUNICATION TECHNOLOGY [ICT] SPECIALLY ADAPTED FOR ADMINISTRATIVE, COMMERCIAL, FINANCIAL, MANAGERIAL OR SUPERVISORY PURPOSES; SYSTEMS OR METHODS SPECIALLY ADAPTED FOR ADMINISTRATIVE, COMMERCIAL, FINANCIAL, MANAGERIAL OR SUPERVISORY PURPOSES, NOT OTHERWISE PROVIDED FOR
- G06Q30/00—Commerce
- G06Q30/02—Marketing; Price estimation or determination; Fundraising
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING OR COUNTING
- G06Q—INFORMATION AND COMMUNICATION TECHNOLOGY [ICT] SPECIALLY ADAPTED FOR ADMINISTRATIVE, COMMERCIAL, FINANCIAL, MANAGERIAL OR SUPERVISORY PURPOSES; SYSTEMS OR METHODS SPECIALLY ADAPTED FOR ADMINISTRATIVE, COMMERCIAL, FINANCIAL, MANAGERIAL OR SUPERVISORY PURPOSES, NOT OTHERWISE PROVIDED FOR
- G06Q30/00—Commerce
- G06Q30/02—Marketing; Price estimation or determination; Fundraising
- G06Q30/0201—Market modelling; Market analysis; Collecting market data
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING OR COUNTING
- G06Q—INFORMATION AND COMMUNICATION TECHNOLOGY [ICT] SPECIALLY ADAPTED FOR ADMINISTRATIVE, COMMERCIAL, FINANCIAL, MANAGERIAL OR SUPERVISORY PURPOSES; SYSTEMS OR METHODS SPECIALLY ADAPTED FOR ADMINISTRATIVE, COMMERCIAL, FINANCIAL, MANAGERIAL OR SUPERVISORY PURPOSES, NOT OTHERWISE PROVIDED FOR
- G06Q30/00—Commerce
- G06Q30/02—Marketing; Price estimation or determination; Fundraising
- G06Q30/0201—Market modelling; Market analysis; Collecting market data
- G06Q30/0206—Price or cost determination based on market factors
-
- G—PHYSICS
- G16—INFORMATION AND COMMUNICATION TECHNOLOGY [ICT] SPECIALLY ADAPTED FOR SPECIFIC APPLICATION FIELDS
- G16C—COMPUTATIONAL CHEMISTRY; CHEMOINFORMATICS; COMPUTATIONAL MATERIALS SCIENCE
- G16C60/00—Computational materials science, i.e. ICT specially adapted for investigating the physical or chemical properties of materials or phenomena associated with their design, synthesis, processing, characterisation or utilisation
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01N—INVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
- G01N21/00—Investigating or analysing materials by the use of optical means, i.e. using sub-millimetre waves, infrared, visible or ultraviolet light
- G01N21/84—Systems specially adapted for particular applications
- G01N2021/8466—Investigation of vegetal material, e.g. leaves, plants, fruits
Definitions
- the present application relates to a method for classifying coffee raw materials, a method for providing a roasting profile of green beans using the same, and a method for predicting the flavor of coffee raw materials.
- the present application also relates to a system and method for providing information on coffee raw materials.
- coffee raw materials may be divided into coffee cherries, green coffee beans, and coffee beans.
- Coffee cherries are the fruit of a coffee tree belonging to the genus Coffea of the family Familia Rubiaceae. After harvesting (picking) coffee cherries, the pulp (pulp) is peeled off through processing, and the dried parchment state is called coffee green bean, and coffee beans roasted by applying heat to the coffee beans ( Coffee beans).
- An object of the present application is to classify coffee raw materials in a rapid and objective way, and to provide a roasting profile method of green coffee beans and a method of predicting the flavor of coffee raw materials according to the classification.
- the present application also aims to provide a coffee information providing system capable of providing various information on coffee raw materials formed by an objective method.
- a method for classifying coffee raw materials includes providing analysis data by analyzing chemical characteristics of green coffee beans or coffee beans; providing reduced data by reducing the dimension of the analysis data; and analyzing the reduced data to form a cluster.
- the method of analyzing the green coffee beans or the chemical properties of coffee beans is characterized in that it is a spectroscopic analysis method.
- the step of providing the reduced data is characterized by using a linear dimensionality reduction method (Linear Dimensionality Reduction Methods) or a non-linear dimensionality reduction method (Non-Linear Dimensionality Reduction Methods).
- the step of providing the reduced data may include Principal Component Analysis (PCA), Linear Discriminant Analysis (LDA), Factor Analysis, Singular Vector Decomposition (SVD), or t- It is characterized by using t-distributed Stochastic Neighbor Embedding (t-SNE).
- PCA Principal Component Analysis
- LDA Linear Discriminant Analysis
- SVD Singular Vector Decomposition
- t-SNE t-SNE
- the forming of the cluster is characterized by using a supervised learning method or an unsupervised learning method.
- the step of forming the cluster is characterized by using partitioning, K-means, K-representative object (K-medoid), CLARA (Clustering Large Applications) or CLARANS method.
- the method of classifying coffee raw materials of the present application further comprises predicting a cluster through machine learning based on green coffee beans or chemical characteristic analysis data of coffee beans, and dimensionality reduction data of the analysis data. characterized.
- the machine learning is a k-nearest neighbor algorithm, logistic regression, naive Bayes classification, stochastic gradient descent, decision tree ), Random Forest, AdaBoost, Gradient Boosting, Support Vector Machine, or Linear discriminant analysis (LDA).
- logistic regression logistic regression
- naive Bayes classification stochastic gradient descent
- decision tree decision tree
- Random Forest AdaBoost
- Gradient Boosting Support Vector Machine
- LDA Linear discriminant analysis
- a method for providing a roasting profile of green coffee beans includes: forming a cluster of green coffee beans according to the classification method; and providing a roasting profile for the formed cluster.
- Providing a roasting profile for the clusters may include: measuring a chemical content of the clusters formed; and designing a roasting profile of green coffee beans based on the measured chemical composition.
- the chemical components include monosaccharides, polysaccharides, lipids, organic acids, proteins and water.
- a method for predicting the flavor of coffee raw materials according to another embodiment of the present application includes forming a cluster of coffee raw materials according to the classification method; measuring the chemical component content of the formed cluster; measuring the content of chemical components in the coffee raw material sample; and comparing the content of the chemical component of the coffee raw material sample with the content of the chemical component of the cluster.
- Coffee information providing system includes a coffee information management server and at least one terminal capable of accessing the coffee information management server through a network.
- the coffee information management server receives a request for information on coffee raw materials from a terminal and a transceiver for transmitting and receiving signals or information, a database for storing coffee information, and the terminal connected through a network, and a control unit equipped with a classification information providing module of coffee raw materials for controlling the transceiver to extract information about the raw material from the database and transmit it to the terminal, and the information on the coffee raw material is classified by analyzing the chemical characteristics of the coffee raw material.
- the chemical properties of the coffee raw materials include the types and contents of chemical elements, chemical functional groups, or chemical components included in the coffee raw materials.
- the control unit may further include a roasting profile information providing module for receiving a request for information on coffee raw materials from a terminal connected through a network, and controlling the transceiver to extract and transmit the requested roasting profile information of the coffee raw material to the terminal.
- a roasting profile information providing module for receiving a request for information on coffee raw materials from a terminal connected through a network, and controlling the transceiver to extract and transmit the requested roasting profile information of the coffee raw material to the terminal.
- the roasting profile information is characterized in that it is formed based on the classification information of the coffee raw material.
- the control unit receives a request for information on coffee raw materials from a terminal connected through a network, extracts the requested characteristic information of coffee raw materials, and further includes a coffee raw material characteristic information providing module for controlling the transceiver to transmit to the terminal can do.
- the characteristic information of the coffee raw material may be the type and content of a chemical component included in the coffee raw material.
- it is characterized in that the characteristic information of the coffee raw material is provided simultaneously with the requested coffee raw material and the characteristic information of the different coffee raw material.
- the control unit receives a request for information on coffee raw materials from a terminal connected through a network, extracts the requested flavor prediction information of coffee raw materials, and further includes a coffee raw material flavor information providing module that controls the transceiver to transmit to the terminal.
- a coffee raw material flavor information providing module that controls the transceiver to transmit to the terminal.
- the control unit may further include a user management module for receiving and managing login information of a user from a terminal accessed through a network.
- the control unit may further include a purchase management module for controlling the transceiver to receive payment information of coffee raw materials from a terminal connected through a network, perform a requested payment process, and transmit the result to the terminal.
- a purchase management module for controlling the transceiver to receive payment information of coffee raw materials from a terminal connected through a network, perform a requested payment process, and transmit the result to the terminal.
- the method according to an example of the present application can classify coffee raw materials in a quick and objective way, provide a roasting profile of green coffee beans according to the classification, and can quickly and objectively predict the flavor of coffee beans.
- the method according to another example of the present application may provide various information on coffee raw materials formed by an objective method.
- 1 is an exemplary view showing the results of principal component analysis on 54 green bean samples in the method of classifying coffee raw materials according to an embodiment of the present application.
- FIG. 2 is an exemplary view showing the results of forming clusters for 54 green bean samples in the method of classifying coffee raw materials according to an embodiment of the present application.
- 3 to 9 are exemplary views showing normalized average values of chemical component contents for each cluster formed by the method of classifying coffee raw materials according to an embodiment of the present application, respectively.
- FIG. 10 is a block diagram showing the configuration of a coffee information providing system according to an embodiment of the present application.
- FIG. 11 is a block diagram showing the configuration of a terminal of the coffee information providing system according to an embodiment of the present application.
- Figure 12 is a block diagram showing the configuration of the coffee information management server of the coffee information providing system according to an embodiment of the present application.
- a method of classifying coffee raw materials includes providing analysis data by analyzing chemical characteristics of green coffee beans or coffee beans; providing dimension-reduced data by reducing the dimension of the analysis data; and analyzing the reduced data to form a cluster.
- the classification method of the coffee raw material of the present invention can provide an objective classification criterion than the classification according to the general method because it is classified based on the analysis data on the chemical properties of the coffee raw material.
- the chemical properties of the green coffee beans or coffee beans include the type and content of elements or functional groups included in the green coffee beans or coffee beans.
- the green coffee beans or the chemical properties of coffee beans may further include the type and content of chemical components contained in the green coffee beans or coffee beans.
- the chemical component may include carbohydrates (monosaccharides, disaccharides or polysaccharides), organic acids, chlorogenic acids, nitrogenous compounds (proteins, amino acids, trigonelline or caffeine), lipids (triglycerides, fatty acids or diterpenes) or water. .
- a method of analyzing such chemical properties may use a spectroscopic analysis method.
- the spectrochemical method is not particularly limited as long as it can analyze the chemical properties of green coffee beans or coffee beans, and for example, nuclear magnetic resonance (NMR), infrared spectroscopy (IR), Fourier transform infrared spectroscopy (FTIR Spectroscopy), Near-infrared spectroscopy (NIRs) or attenuated total reflection Fourier transform infrared spectroscopy (ATR-FTIR Spectroscopy) may be used.
- NMR nuclear magnetic resonance
- IR infrared spectroscopy
- FTIR Spectroscopy Fourier transform infrared spectroscopy
- NIRs Near-infrared spectroscopy
- ATR-FTIR Spectroscopy attenuated total reflection Fourier transform infrared spectroscopy
- NIRs near-infrared spectroscopy
- the near-infrared wavelength region is in the range of 800 nm to 2,500 nm, and the near-infrared spectroscopy method absorbs light at a specific wavelength among the wavelength region of the above range depending on the functional group, and through this, the chemical properties contained in the coffee raw material analysis data can be obtained.
- the amount of data that can be obtained is limited because the conventional method for analyzing the chemical properties of green coffee beans or coffee beans measured only the content of specific individual components (values of only a few peaks among many peaks). For example, if you measure the content of 10 individual chemical components in one green coffee bean sample, only 10 data can be obtained from one sample. However, in the present application, chemical properties such as a wide variety of elements or functional groups included in the sample are analyzed rather than individual chemical components present in the sample. Therefore, the number of (all peak values obtainable in an arbitrary wavelength region) that can be obtained from one green coffee bean sample is about 1500 or more. For example, when measuring the content of individual components in the related art, 3,000 data can be obtained from 300 samples, but when measuring properties related to elements or functional groups, more than 450,000 data can be obtained from the same number of samples. to be.
- the step of reducing the dimension of the present application may use a linear dimensionality reduction method (Linear Dimensionality Reduction Methods: LDRM) or a non-linear dimensionality reduction method (NLDRM).
- LDRM Linear Dimensionality Reduction Methods
- NDRM non-linear dimensionality reduction method
- the step of reducing the dimension may include Principal Component Analysis (PCA), Linear Discriminant Analysis (LDA), Factor Analysis, Singular Vector Decomposition (SVD) or t-distributed Stochastic Neighbor Embedding (t-SNE) may be used, but is not limited thereto.
- PCA Principal Component Analysis
- LDA Linear Discriminant Analysis
- SVD Singular Vector Decomposition
- t-SNE t-distributed Stochastic Neighbor Embedding
- Dimension reduction refers to a method of reducing the features of analysis data according to the purpose.
- the analysis data on the chemical properties of coffee raw materials measured by spectroscopic analysis on green coffee beans or coffee beans
- the characteristics of the analysis data increase as the number of samples to be analyzed increases, and the dimension of the analysis data increases accordingly. Therefore, dimension reduction is required for faster and more efficient data analysis.
- an appropriate method of reducing the dimension may be selected according to a feature of the analysis data.
- the method of classifying coffee raw materials may further include processing the analysis data before reducing the dimension of the analysis data. For example, in order to reduce a variable normalized according to the color of the coffee raw material, a processing step of excluding the analysis data measured in the wavelength range of the visible ray band may be included. Through data processing, more meaningful analysis data of the chemical properties of coffee raw materials can be obtained.
- the step of forming the cluster of the present application is performed by cluster analysis.
- Cluster analysis is a data mining method that defines a data group (cluster) considering the characteristics of given data and finds a representative point that can represent the data group.
- a cluster means a group of chemical property data of coffee raw materials having similar properties.
- forming the cluster may use a supervised learning method or an unsupervised learning method.
- the supervised learning method is a method using an answer label (answer)
- the unsupervised learning method is a method not using an answer label (answer).
- the supervised learning forms a cluster of reduced data by finding correlations or attributes of chemical characterization data of reduced-dimensional coffee raw materials.
- the unsupervised learning method can form a cluster only with the analysis data of the chemical component of the coffee raw material in which the correct answer label is unnecessary and the dimension is reduced. Therefore, when there is no correct answer label, it may be more appropriate to form a cluster of coffee raw materials to be analyzed using an unsupervised learning method.
- the step of forming the cluster may use partitioning, K-means, K-representative object (K-medoid), CLARA (Clustering Large Applications), or CLARANS method.
- An appropriate cluster method may be used in consideration of the convenience of cluster formation, the ease of verification, and the reliability of the cluster.
- a more meaningful cluster can be formed by analyzing the reduced data using the cluster method as described above.
- forming the clusters may include finding the number of clusters to be formed. For example, an appropriate number of clusters formed from the reduced analysis data may be found through an Elbow, a silhouette, or a gap statistic method. When a cluster of reduced analysis data is formed using the derived number of clusters, it is more efficient to secure a meaningful cluster.
- the step of forming the cluster may further include the step of reclassifying the formed cluster to form a sub-cluster.
- the method used in the step of forming the cluster may be used, and a description thereof will be omitted.
- the method for classifying coffee raw materials may include predicting clusters through machine learning based on green coffee beans or chemical characteristic analysis data of coffee beans, and dimensionally reduced data of the analysis data.
- a cluster of unknown green beans or coffee beans can be easily predicted by machine learning the unknown green beans or chemical characterization data of coffee beans based on data performed in each step. Therefore, it is possible to easily predict a cluster based on the chemical characteristics analysis data of green coffee beans even for new green coffee bean varieties or green coffee beans with a changed cultivation environment.
- the machine learning is K-nearest neighbor algorithm, logistic regression (Logistic Regression), naive Bayes classification (Naive Bayes Classification), stochastic gradient descent (Stochastic Gradient Descent), Decision Tree, Random Forest, AdaBoost, Gradient Boosting, Support Vector Machine, or Linear discriminant analysis (LDA) can be used.
- logistic regression Logistic Regression
- naive Bayes classification Naive Bayes Classification
- stochastic gradient descent Stochastic Gradient Descent
- Decision Tree Random Forest
- AdaBoost AdaBoost
- Gradient Boosting Gradient Boosting
- Support Vector Machine or Linear discriminant analysis (LDA)
- LDA Linear discriminant analysis
- the machine learning may use a K-nearest neighbor algorithm. For example, for unknown green coffee beans, three analysis data closest to the chemical characterization data for unknown green coffee beans are selected from the chemical characterization data performed in each step, and the selected three data sets are selected. It can be predicted as a cluster that contains a majority of data among the included clusters.
- a method for providing a roasting profile of green coffee beans includes the steps of: providing analysis data by analyzing chemical characteristics of green coffee beans; providing dimension-reduced data by reducing the dimension of the analysis data; forming a cluster by analyzing the reduced data; and providing a roasting profile for the formed cluster.
- green coffee roasting profile may be defined as a description for producing coffee beans having a desired flavor using green coffee beans.
- three sections are passed: a drying section (input temperature ⁇ about 155 °C), an intermediate section (155 °C ⁇ 200 °C), and an expression section (200°C ⁇ discharge temperature).
- the intermediate section may be divided into a Mayar section (155 °C ⁇ 180 °C) and a caramelization section (180 °C ⁇ 200 °C) again.
- the drying section mainly refers to a section reaching from the input temperature to about 155° C. before the Mayar reaction occurs.
- the moisture present in the green coffee beans is converted to water vapor and is trapped inside the green coffee beans.
- the volume of the green coffee beans increases up to twice, the moisture content gradually decreases, and the density and overall weight of the coffee decrease. starts to become
- the intermediate section means a section corresponding to about 155 °C to 200 °C, more specifically, a section corresponding to 155 °C to 180 °C means a Mayar section, and a section corresponding to 180 °C to 200 °C is a caramel section means Most of the heat applied in this section is used to increase the temperature of the green coffee beans.
- the flavor can be controlled by adjusting the length of the Mayar section and the caramel section and the amount of heat input. For example, if the Mayar section is short and the caramel section is long, acidity may decrease and sweetness may increase. In addition, when the length of Mayar is long and the caramel section is short, sweetness may decrease and bitterness may increase. In addition, if the Mayar section and the caramel section are similar, acidity and weight may be appropriately felt.
- the expression section means a section from 200 °C to the discharge temperature. In this section, the thermal decomposition reaction occurs, and the Mayar reaction and the caramel reaction do not occur. In this section, the first crack occurs in which the green coffee beans are physically split without overcoming the internal pressure at about 203°C. It is common to give 15-25% of the total roasting length as the period from the start of the first crack to the discharge (Development Time Ratio, DTR), and by adjusting this length, light roasting, medium roasting, and dark roasting are determined.
- DTR Development Time Ratio
- the flavor of the beans can be adjusted by adjusting the input temperature of the four sections and the time required for each section.
- roasting profiles can be designed by setting the green bean input temperature for each classified cluster and the rate of change of temperature according to time for each section.
- the step of providing a roasting profile for the formed cluster may include measuring, normalizing, or normalizing the chemical component content of the formed cluster, and then, based on the measured, normalized, or normalized chemical component, the roasting profile of the green coffee beans. It may include the step of designing.
- the chemical components of the green coffee beans may refer to, for example, all of the chemical components constituting the green coffee beans.
- the chemical component of green coffee beans may mean a chemical component having a characteristic distinguishing it from other green coffee beans, and the chemical component may be one or more.
- the chemical component of green coffee beans may mean a chemical component that affects the flavor of coffee.
- the chemical component may include carbohydrates (monosaccharides, disaccharides or polysaccharides), organic acids, chlorogenic acids, nitrogenous compounds (proteins, amino acids, trigonelline or caffeine), lipids (triglycerides, fatty acids or diterpenes) or water.
- carbohydrates monosaccharides, disaccharides or polysaccharides
- chlorogenic acids nitrogenous compounds (proteins, amino acids, trigonelline or caffeine), lipids (triglycerides, fatty acids or diterpenes) or water.
- nitrogenous compounds proteins, amino acids, trigonelline or caffeine
- lipids triglycerides, fatty acids or diterpenes
- Sugar is a disaccharide made by combining two monosaccharides. During thermal decomposition, it is decomposed into monosaccharides to produce various flavors.
- Monosaccharides are the most basic units of carbohydrates, including glucose and fructose.
- Mayar reaction and caramel reaction which are the most important reactions in coffee, it participates in all chemical reactions during the roasting process and contributes to creating various flavors of coffee. In particular, it contributes to the sweetness of my coffee by creating a sweet flavor through the caramel reaction.
- Polysaccharides are complexly linked monosaccharides and exist as cellulose and mannan constituting the cell wall in green coffee beans. Polysaccharides are hardly decomposed during the roasting process and do not directly contribute to the flavor of coffee as they are insoluble in water. However, during thermal decomposition, some of the polysaccharides are decomposed to form monosaccharides, which can indirectly affect the flavor of coffee. In addition, some of the water-soluble polysaccharides remaining after decomposition may be extracted into water and contribute to the weight of coffee.
- lipids in green beans exist in the form of triglycerides. It is stable against thermal decomposition during the roasting process, and the flavor created by moving from the inside of the green beans to the surface during roasting can be maintained constant. However, the flavor of coffee may change due to oxidation of lipids during storage of the beans.
- diterpene a type of lipid, is not stable to thermal decomposition, unlike triglycerides, and combines with amino acids during roasting to create fruity and malt flavor.
- Proteins form compounds with various flavors through Mayar reaction and Straker decomposition reaction during roasting.
- Trigonelline is a kind of nitrogen compound in green beans, and it is a compound that helps antioxidant action. As the roasting progresses, it is decomposed by heat to create a sweet flavor.
- Chlorogenic acid is a representative precursor of a compound that gives coffee a bitter taste. It is decomposed by heat to produce a smoky flavor compound.
- Caffeine is known to be a representative substance for the bitter taste of coffee, but in reality it does not significantly affect the bitter taste.
- Chemical components to be measured in one embodiment are trigonelline, glucose, fructose, other monosaccharides, sugar (sucrose), polysaccharides (Poly sugar), citric acid (Citric acid), malic acid (Malic acid) ), Other Organic Acids, Chlorogenic Acids, Proteins, Caffeine, Caffeine Sub, Lipids, Diterpenes, and/or Water not limited
- a known method may be used without limitation.
- representative of chemical components for example, if there are 7 clusters formed, the values corresponding to 7 clusters for each chemical component are ranked in ascending order, and the chemical component with the highest content is given 7 points, and the chemical component with the highest content is given 7 points. Less chemical components can represent the content of chemical components by giving 1 point.
- known methods for normalizing data such as min-max normalization or Z-score normalization, may be used, but the present invention is not limited thereto.
- the normalization of the chemical component content may be normalized by converting it to a value between 0 and 1 according to the following general formula (1). In addition, using this, it is possible to obtain a normalized average value of the chemical component content for each cluster.
- the maximum value of the population means the highest value among the content values of the specific chemical component measured in the population
- the minimum value of the population means the lowest value among the content values of the specific chemical component measured in the population
- the normalized value for cluster 1 is the highest among the glucose content values for 54 green coffee beans as the maximum value of the population, and the lowest content value can be taken as the minimum value of the population.
- the measured value of the chemical component content for each cluster may be the content value of the coffee glucose included in the cluster 1.
- the normalized average value for the chemical content of cluster 1 is obtained by adding up all the normalized values of the chemical component content for each coffee included in cluster 1 measured in the same manner as above, and dividing by the number of coffees included in cluster 1 can
- Coffee beans with excellent flavor by identifying the reaction temperature and reaction rate of chemical components for each cluster, and designing a roasting profile by setting the green bean input temperature and temperature change rate according to time according to the content of representative or normalized chemical components for each section can provide Specifically, because it provides a roasting profile for each cluster based on chemical characterization data, it is possible to predict the flavor more objectively and provide coffee beans with excellent flavor. In addition, when chemical properties of green coffee are analyzed by near-infrared spectroscopy (NIRs), it is possible to provide a roasting profile of green coffee non-destructively and quickly.
- NIRs near-infrared spectroscopy
- a method for predicting the flavor of coffee raw materials includes providing analysis data by analyzing chemical properties of green coffee beans or coffee beans; providing dimension-reduced data by reducing the dimension of the analysis data; forming a cluster by analyzing the reduced data; measuring the chemical component content of the formed cluster; measuring the content of chemical components in the coffee raw material sample; and comparing the content of the chemical component of the coffee raw material sample with the content of the chemical component of the cluster.
- the flavor prediction of coffee raw materials includes a flavor prediction of green coffee beans and a flavor prediction of coffee beans.
- the measured chemical component content of the cluster may use the average value of the chemical components of all coffee raw materials belonging to the cluster. .
- the average value of all clusters measured in this way that is, the average value of chemical components of all coffee raw materials belonging to all clusters may be used.
- the comparison of the content of the chemical component of the coffee raw sample with the content of the chemical component of the cluster is performed for all coffees belonging to the cluster.
- the normalized average value of the chemical composition of the raw material may be used.
- the normalized average value of all clusters measured in this way that is, the normalized average value of chemical components of all coffee raw materials belonging to all clusters may be used. It can be normalized to a value between 0 and 1 according to Formula 2 below.
- the normalized average value of the chemical component content of each cluster or of all coffee raw materials can be obtained by using General Formula 2.
- the maximum value of the population means the highest value among the content values of the specific chemical component measured in the population
- the minimum value of the population means the lowest value among the content of the specific chemical component measured in the population
- the chemical component content value of the measurement target means the content value of a specific chemical component included in the cluster to be normalized or the content value of all coffee raw material chemical components.
- the normalized values for all the coffee raw material chemical component content values the highest value among the glucose content values for 54 green coffee beans is the maximum value of the population, , the lowest content value may be the minimum value of the population.
- the measured value may be the content value of the chemical component of the coffee raw material sample.
- the normalized average value for the chemical component content of the 54 coffees can be obtained by substituting the glucose content value of the 54 coffees as the measured value in Formula 1 above. Specifically, obtain the normalized value of the chemical component content of 54 coffees measured according to Formula 1, add them all, and then divide by 54, the number of coffees, to obtain the normalized average value for the chemical component content of 54 coffees. .
- the coffee raw materials When the amounts of organic acids and monosaccharides included in the coffee raw materials are equal to or less than the normalized average value, it can be predicted that the coffee raw materials have little acidity. In addition, when the amount of chlorogenic acid contained in the coffee raw material is higher than the normalized average value, it can be expected that the bitter taste is large.
- the flavor potential of the green coffee beans can be predicted, and when used together with the roasting profile providing method, the flavor can be more accurately predicted.
- a brewing method may be determined in consideration of the flavor predicted according to the present method, and when the brewing method is determined, a more accurate ring flavor may be predicted.
- Predictable flavors include, but are not limited to, acidity, sweetness, bitterness, body, and aroma.
- the predictable acidity and related compounds are shown in Table 1 below.
- Acidity Malic acid, Citric acid, Acetic acid, Formic acid, Phosphoric acid, Quinic acid bitter (Bitterness) Caffeine, Therobromine, Theophylline, 2,5-diketopiperazine, Caffeic acid, Ferulic acid, Chlorogenic acid, Lactone, Phenylindane Sweetness Sugar, Fructose, Glucose mouth feel Linoleic acid, Palmitic acid, Fatty acids (C16-C18) weight (body) Cellulose, Mannan, Arabinogalactan, Lipid (Linoleic acid, Palmitic acid), Protein Sweet / Buttery 2,3-butanedione, 2,3-pentanedione, Damascenone, Pyridines Honey / Caramel Furfural, Vanillin, Furanone Fruity Acetaldehyde, Propanal, Phenylacetaldehyde Malty 2-methylbutanal (2-methylbutanal), 3-methylbutanal
- the purchased green coffee samples were stored for about 12 to 24 hours in an environment of a temperature of 20°C to 26°C and a relative humidity of 40% to 50%.
- each of the stored 54 green coffee beans was sufficiently mixed and the surface was lightly pressed before measurement so that there was no space on the surface of the NIR analysis device as much as possible.
- the NIR of the green coffee sample was measured using an NIR analysis device ('DS2500 F' of FOSS analytics beyond measure, Ltd).
- the measurement conditions were 4 repetitions and 32 subscans per one time. Therefore, when 200g of a green coffee sample is added and executed, 32 subscans are output at one time, and this is repeated 3 times for a total of 96 Subscans were performed and their average values were obtained as analysis data.
- the length of the measured total wavelength is 400 nm to 2500 nm, and it is output in the form of a csv (comma-separated values) file at intervals of 2 nm.
- the wavelength range representing the color (400 nm to 700 nm) and the wavelength range corresponding to the boundary wavelength range (700 nm to 900 nm) among all wavelengths (400 nm to 2,500 nm, in 0.5 units) are Except, it was carried out using only the wavelength range value of 900nm to 2,500nm.
- Principal component analysis was performed with the analysis data obtained from 900 nm to 2,500 nm. Since there are 1,600 wavelength points to be analyzed in the 900 nm to 2,500 nm wavelength range, dimension reduction was required for data analysis containing high-dimensional information.
- 1 is an exemplary view showing the results of principal component analysis (Principal Component Analysis) with analysis data of 900 nm to 2,500 nm.
- a cluster for green coffee beans was formed using a K-mean clustering method.
- K-mean clustering method the number of suitable clustering was found through Elbow, silhouette, or gap statistic method, and K-mean clustering was calculated using this. .
- the cluster was well formed through hierarchical clustering analysis, and the significance was confirmed through the value of Approximately unbiased p-value (AU) of pvclust packages.
- AU unbiased p-value
- all analyzes related to clusters based on chemical properties of green coffee were performed in R.
- clustering for 54 green coffee samples it could be classified into 7 clusters (C1 to C7).
- 2 is an exemplary view showing the results of forming clusters on 54 green bean samples in the method for classifying coffee raw materials according to the present application.
- Example 1 the chemical component content of the cluster formed in Example 1 was normalized according to the above-mentioned general formula 1, and a normalized average value was obtained for the chemical component content of each cluster using this.
- cluster 1 is an exemplary diagram showing the normalized average value of the chemical component content of cluster 1 (C1).
- the overall characteristics of cluster 1 (C1) include a small amount of organic acid that can give acidity, and a relatively large amount of caffeine and chlorogenic acid that can give bitter taste. It also contains relatively high amounts of precursors of the Mayar reaction, such as sugars, monosaccharides and proteins. In addition, it is expected that the weight (body) is good because the amount of polysaccharides and lipids is high.
- cluster 2 is an exemplary diagram showing the normalized average value of the chemical component content of cluster 2 (C2).
- the overall characteristics of cluster 2 (C2) include a lot of organic acids, and sugar, protein, chlorogenic acid, and trigonelline are also appropriately included.
- polysaccharides, water content, and lipids that contribute to the feeling of weight are included at average levels, and chlorogenic acid and caffeine, which cause bitter taste, are contained relatively little.
- Cluster 3 contains many chemical components such as sugar, monosaccharides, amino acids, and trigonelline, which are low molecular compounds related to rich flavor and acidity, but relatively few chemical components related to weight and bitterness are included. have.
- Cluster 4 (C4) has a small amount of precursors (sugar, monosaccharide, and protein) of the Mayar reaction and caramel reaction, but the content of complex polysaccharides is relatively high. Sweetness produced due to monosaccharides generated by thermal decomposition can be expected. In addition, the content of polysaccharides and lipids is relatively high.
- cluster 5 is an exemplary diagram showing the normalized average value of the chemical component content of cluster 5 (C5).
- the overall characteristics of cluster 5 (C5) include the highest amount of all chemical components except for organic acids and complex polysaccharides.
- FIG 8 is an exemplary diagram showing the normalized average value of the chemical component content of cluster 6 (C6).
- C6 cluster 6
- the sugar content is relatively low among the precursors of the Mayar reaction, and the amount of complex polysaccharides is relatively high.
- cluster 7 is an exemplary diagram showing the normalized average value of the chemical component content of cluster 7 (C7).
- cluster 7 As an overall characteristic of cluster 7 (C7), the amount of organic acid and polysaccharide is relatively high, but the amount of precursor or low molecular weight compound of the Mayar reaction is relatively small. In addition, the amount of derivatives of trigonelline and caffeine is relatively high.
- a roasting profile was designed by setting the green bean input temperature and the temperature change rate according to time for each section based on the content of chemical components normalized for each cluster, and the results are shown in Table 2.
- the subjects were BRZ12 (Sehado, Brazil), PRU1 (Chanchamayo, Peru) and NEP1 (Shindupalchok, Nepal) coffee beans.
- cluster 5 C5
- the normalized chemical composition of cluster 5 contains a lot of other chemical components (sugar, monosaccharide, amino acid, lipid, diterpene, trigonelline, chlorokenic acid, and caffeine) except for organic acids and complex polysaccharides. is characterized. Therefore, diterpenes and trigonelline can create a sweet aroma in the Mayar section, and when the expression section is long with a lot of protein, there is a high possibility that the bitter taste and miscellaneous taste increase. Therefore, in consideration of the characteristics of the chemical composition of cluster 5, the roasting profile was designed with a Mayar section of 142 seconds, a caramel section of 131 seconds, and an expression section of 125 seconds. Then, BRZ12 (Sehado, Brazil), PRU1 (Chanchamayo, Peru) and NEP1 (Shindupalchok, Nepal) were roasted by the method of the designed roasting profile, and then the specialty coffee taste was evaluated.
- other chemical components sucrose, monosaccharide, amino acid, lipid
- the aforementioned 54 green coffee samples were roasted by 30 g using a roaster (IKAWA pro v3 sample roaster) through the recommended roasting profile for each cluster.
- the roasted bean sample was stored at a temperature of 20 °C to 26 °C and a relative humidity of 40% to 50% for about 12 hours to 24 hours. Thereafter, the analysis was performed by grinding the grinder to a thickness of 0 with a grinder (HARIO V60 electric coffee grinder, EVCG-8B-K).
- Thermo Fisher Scientific, Ltd was measured using ATR-FTIR analysis equipment ('Nicolet IS50' and ATR diamond crystals accessory of Thermo Fisher Scientific, Ltd).
- the measurement conditions are per the sub-scan (subscan) 13 times, the resolution (resolution) 4cm -1, spacing data (data spacing) to 0.482cm -1 and the background collection (collection background) spectrum of the post 600 to 4,000 cm -1 range (spectral range) was repeated 10 times per sample.
- the output data was subjected to baseline correction through “ALS” of the rampy.baseline method of Python, and normalized using the average value of each sample to secure analysis data.
- clusters for coffee beans could be formed using principal component analysis (PCA) and K-mean clustering methods, and flavor for each cluster could be predicted.
- PCA principal component analysis
- K-mean clustering methods K-mean clustering methods
- Example 1 As measured by NIR values for 54 green coffee beans, the chemical components (Organic_acids, Sucrose, Mono_sugar, Proteins, Poly_sugar, Lipids, Diterpene, Water, Chlorogenic_acids, Caffeine, Caffeine_sub and Trigonelline) The content value was measured. The measured content value of the chemical component was normalized by converting it to a value between 0 and 1 according to the following general formula (2).
- the maximum value of the population means the highest value among the content values of the specific chemical component measured in the population, and the minimum value of the population means the lowest value among the content of the specific chemical component measured in the population
- the chemical component content value of the measurement target means the content value of a specific chemical component included in the cluster to be normalized or the content value of all coffee raw material chemical components. Meanwhile, the population was defined as the content of specific chemical components measured in 54 green coffee beans.
- the normalized average value for the chemical component content of 54 coffees was obtained by substituting the glucose content value of 54 coffees as the measured value in Formula 1 above. Specifically, the normalized value of the chemical component content of 54 coffees measured according to Formula 1 was obtained, and after adding them all, the normalized average value of the chemical component content of 54 coffees was obtained by dividing by 54, the number of coffees.
- the present application also relates to a coffee information providing system.
- 10 is a block diagram showing the configuration of the coffee information providing system according to the present invention
- Figure 11 is a block diagram showing the configuration of the terminal of the coffee information providing system according to the present invention.
- the coffee information providing system according to the present invention is connected to at least one terminal 10 and the terminal 10 and the network 20 through a network 20 to provide information on coffee raw materials. It is configured to include a management server (30).
- the terminal 10 is a broad concept including a wired terminal or a wireless terminal managed by various users, and includes a PC (Personal Computer), an IP television (Internet Protocol Television), a notebook (Notebook-sized personal computer), a tablet PC, PDA (Personal Digital Assistant), smart phone, IMT-2000 (International Mobile Telecommunication 2000) phone, GSM (Global System for Mobile Communication) phone, GPRS (General Packet Radio Service) phone, WCDMA (Wideband Code Division Multiple Access) phone, Including a UMTS (Universal Mobile Telecommunication Service) phone, a MBS (Mobile Broadband System) phone, etc., data of different terminals, a coffee information management server 30 and a coffee information providing system and signals, information, voice and video data A function for performing transmission and reception may be provided.
- a PC Personal Computer
- IP television Internet Protocol Television
- notebook Notebook-sized personal computer
- tablet PC PDA (Personal Digital Assistant)
- smart phone IMT-2000 (International Mobile Telecommunication 2000) phone
- GSM Global System
- the terminal 10 includes a producer terminal 11 used by a producer who produces green coffee beans at a production area, a roaster terminal 12 used by a roaster who produces coffee beans by roasting green coffee beans, and green coffee beans and / or the consumer terminal 13 used by the consumer who purchases coffee beans, but is not limited thereto.
- the network 20 is a communication network capable of providing high-capacity, long-distance voice and data services, and may be a next-generation wired or wireless network for providing Internet or high-speed multimedia services.
- the network 20 may be a synchronous mobile communication network or an asynchronous mobile communication network.
- the asynchronous mobile communication network there may be a wideband code division multiple access (WCDMA) type communication network.
- WCDMA wideband code division multiple access
- the network 20 may include a Radio Network Controller (RNC).
- RNC Radio Network Controller
- the WCDMA network is taken as an example, it may be a 3G LTE network, a 4G network, a 5G network, a next-generation communication network, or other IP-based IP networks.
- the network 20 serves to mutually transmit signals and data between each user terminal 10 , the coffee information management server 30 , and other systems.
- the coffee information management server 30 is connected to a plurality of terminals 10 through a network, and when a request for information of coffee raw materials is input from the terminal 10, various information about the corresponding coffee raw materials to the terminal 100 is provided. It is provided by searching the database.
- the raw materials for coffee may include various types of green coffee beans or coffee bean varieties, harvest time of green coffee beans, origin of green coffee beans, producer of coffee beans, production time, or production region. You can specify the coffee ingredient by entering the information.
- FIG. 12 is a block diagram showing the components of the coffee information management server 30 of FIG.
- the coffee information management server 30 includes a transceiver 31 , a controller 32 , and a database 33 .
- the transceiver 31 transmits and receives signals and data through a wired and/or wireless communication method with each of the user terminals 11 , 12 , and 13 through the network 20 .
- the database 33 may refer to a functional and structural combination of software and hardware for storing information.
- the database 33 may be implemented as at least one table, and may further include a separate database management system (DBMS) for searching, storing, and managing information stored in the database 33 .
- DBMS database management system
- the database 33 may be implemented in various ways, such as in the form of a linked-list, a tree, and a relational database, and includes all data storage media and data structures capable of storing corresponding information. .
- the control unit 32 includes a coffee raw material classification information providing module 32b, a user management module 32a, a roasting profile information providing module 32c, a coffee raw material characteristic information providing module 32d, a coffee raw material flavor information providing module 32e, and a purchase management module 32f.
- the control unit 32 may further include a community formation and management module (not shown).
- a module may mean a functional and structural combination of hardware for carrying out the technical idea of the present invention and software for driving the hardware.
- the module may mean a logical unit of a predetermined code and a hardware resource for executing the predetermined code, and does not necessarily mean physically connected code or one type of hardware. It can be easily inferred to an average expert in the technical field of
- the coffee raw material classification information providing module 32b receives a request for information on coffee raw materials from the terminal connected through the network, extracts the requested coffee raw material information from the database, and controls the transceiver to transmit to the terminal .
- the information on the coffee raw material is classification information of the coffee raw material classified by analyzing the chemical characteristics of the coffee raw material.
- the chemical properties of the coffee raw material may include the type and content of a chemical element, a chemical functional group, or a chemical component (compound) contained in the coffee raw material.
- the classification information of the coffee raw material may be formed by the method of classifying the coffee raw material described above, and a description thereof will be omitted.
- the control unit of the present application receives a request for information on coffee raw materials from a terminal connected through a network, extracts the requested roasting profile information of the coffee raw materials, and adds a roasting profile information providing module for controlling the transceiver to be transmitted to the terminal can be included as
- the roasting profile information is characterized in that it is formed based on the classification information of the coffee raw material.
- the roasting profile of green coffee beans may be formed by the above-described method of providing a roasting profile of green coffee beans, and a description thereof will be omitted.
- the control unit of another embodiment of the present application receives a request for information on coffee raw materials from a terminal connected through a network, extracts the requested characteristic information of coffee raw materials, and controls the transceiver to transmit to the terminal characteristic information of coffee raw materials It may further include a provision module.
- the characteristic information of the coffee raw material includes the type and content of chemical components included in the coffee raw material.
- the producer of coffee raw materials may request a specific testing institution to analyze the ingredients, but in this case, only the characteristic information of a single coffee raw material can be obtained, so its utilization is limited.
- the characteristic information of the coffee raw material is characterized in that it is provided simultaneously with the requested coffee raw material and the different characteristic information of the coffee raw material.
- different coffee raw materials may be selected in consideration of the variety, production region and/or production time of the requested coffee raw material.
- cultivar A produced in the same year on different continents and compare the two data, select cultivar A grown in Brazil in 2015 and compare both data, or compare data from both cultivars in Brazil in 2020. You can compare the data of both by selecting the B cultivar grown in .
- the control unit of another embodiment of the present application receives a request for information on coffee raw materials from a terminal connected through a network, extracts the requested flavor prediction information of coffee raw materials, and controls the transceiver to transmit the requested coffee raw material flavor to the terminal It may further include an information providing module.
- the flavor prediction information of the coffee raw material may be formed by the above-described flavor prediction method, and a description thereof will be omitted.
- the control unit may further include a user management module for receiving and managing login information of a user from a terminal accessed through a network.
- the control unit of another embodiment of the present application further includes a purchase management module for controlling the transceiver to receive payment information of coffee raw materials from a terminal connected through a network, perform a requested payment process, and transmit the result to the terminal can do.
Landscapes
- Engineering & Computer Science (AREA)
- Business, Economics & Management (AREA)
- Theoretical Computer Science (AREA)
- Physics & Mathematics (AREA)
- General Physics & Mathematics (AREA)
- Strategic Management (AREA)
- Accounting & Taxation (AREA)
- Development Economics (AREA)
- Finance (AREA)
- Economics (AREA)
- General Business, Economics & Management (AREA)
- Data Mining & Analysis (AREA)
- Databases & Information Systems (AREA)
- Entrepreneurship & Innovation (AREA)
- Marketing (AREA)
- Life Sciences & Earth Sciences (AREA)
- General Engineering & Computer Science (AREA)
- Human Resources & Organizations (AREA)
- Computing Systems (AREA)
- Game Theory and Decision Science (AREA)
- Health & Medical Sciences (AREA)
- General Health & Medical Sciences (AREA)
- Software Systems (AREA)
- Tourism & Hospitality (AREA)
- Spectroscopy & Molecular Physics (AREA)
- Chemical & Material Sciences (AREA)
- Analytical Chemistry (AREA)
- Biochemistry (AREA)
- Immunology (AREA)
- Pathology (AREA)
- Marine Sciences & Fisheries (AREA)
- Bioinformatics & Cheminformatics (AREA)
- Artificial Intelligence (AREA)
- Computer Vision & Pattern Recognition (AREA)
- Animal Husbandry (AREA)
- Evolutionary Computation (AREA)
- Medical Informatics (AREA)
- Bioinformatics & Computational Biology (AREA)
- Mining & Mineral Resources (AREA)
- Mathematical Physics (AREA)
Abstract
The present application relates to a method for classifying coffee raw materials in a rapid and objective manner, a method for providing a roasting profile of raw beans using same, and a method for predicting the flavor of coffee raw materials. The present application also relates to a system for providing coffee information capable of providing a variety of information on coffee raw materials, established by an objective method.
Description
본 출원은 2019년 11월 29일자 제출된 대한민국 특허출원 제10-2019-0156268 호에 기초한 우선권의 이익을 주장하며, 해당 대한민국 특허출원의 문헌에 개시된 모든 내용은 본 명세서의 일부로서 포함된다.This application claims the benefit of priority based on the Republic of Korea Patent Application No. 10-2019-0156268 filed on November 29, 2019, and all contents disclosed in the documents of the Korean patent application are incorporated as a part of this specification.
본 출원은 커피 원료의 분류 방법, 이를 이용한 생두의 로스팅 프로파일 제공 방법 및 커피 원료의 향미 예측 방법에 관한 것이다. The present application relates to a method for classifying coffee raw materials, a method for providing a roasting profile of green beans using the same, and a method for predicting the flavor of coffee raw materials.
본 출원은 또한, 커피 원료의 정보 제공 시스템 및 방법에 관한 것이다.The present application also relates to a system and method for providing information on coffee raw materials.
일반적으로, 커피 원료는 커피 체리, 커피 생두 및 커피 원두로 구분될 수 있다. 꼭두서니과(Familia Rubiaceae)의 커피속(Genus Coffea)에 속하는 커피나무의 열매를 일반적으로 커피 체리라 한다. 커피 체리를 수확(피킹)한 후 가공을 통해 과육(펄프)를 벗겨내고 건조시킨 파치먼트(Parchment) 상태를 커피 생두(coffee green bean)라하고, 커피 생두에 열을 가하여 로스팅한 것을 커피 원두(Coffee bean)라 한다.In general, coffee raw materials may be divided into coffee cherries, green coffee beans, and coffee beans. Coffee cherries are the fruit of a coffee tree belonging to the genus Coffea of the family Familia Rubiaceae. After harvesting (picking) coffee cherries, the pulp (pulp) is peeled off through processing, and the dried parchment state is called coffee green bean, and coffee beans roasted by applying heat to the coffee beans ( Coffee beans).
전세계적으로 고품질의 커피(specialty)에 대한 수요와 다양성은 빠르게 증가하고 있다. 그러나 아직도 많은 커피 농가와 산업계에서는 커피의 품질 예측과 실제 맛의 평가가 전문가의 주관적인 의견에만 의존하고 있다. 이러한 주관적 방법은 전문가에 따라서 결과가 상이할 수 있고, 동일인이라도 시간과 환경에 따라서 결과가 달라지는 문제가 있다. 따라서 전문가의 주관적 의견에 따른 방식은 다양한 고품질 커피의 맛을 유지하거나 관리하는데 부적합하다. Worldwide, the demand and variety for high-quality coffee (specialty) is growing rapidly. However, in many coffee farmers and industries, the prediction of coffee quality and the evaluation of actual taste depend only on the subjective opinion of experts. This subjective method may have different results depending on the expert, and there is a problem in that the results vary depending on time and environment even for the same person. Therefore, the method according to the subjective opinion of experts is not suitable for maintaining or managing the taste of various high-quality coffees.
따라서, 커피 원료를 객관적인 방법으로 분류하고, 이를 이용하여 커피 생두의 로스팅 프로파일을 제공하고, 커피 생두 수준에서 커피 원두의 향미를 신속하고 객관적으로 예측할 수 있는 방법과 이러한 방법에 의해 형성된 정보를 제공하는 시스템이 요구된다.Therefore, it is a method of classifying coffee raw materials in an objective method, using the method to provide a roasting profile of green coffee beans, a method for rapidly and objectively predicting the flavor of coffee beans at the level of green coffee beans, and providing information formed by this method system is required.
본 출원은 신속하고, 객관적인 방법으로 커피 원료를 분류하고, 상기 분류에 따른 커피 생두의 로스팅 프로파일 방법 및 커피 원료의 향미 예측 방법을 제공하는 것을 목적으로 한다. 본 출원 또한, 객관적인 방법으로 형성된 커피 원료에 대한 다양한 정보를 제공할 수 있는 커피 정보 제공 시스템을 제공하는 것을 목적으로 한다.An object of the present application is to classify coffee raw materials in a rapid and objective way, and to provide a roasting profile method of green coffee beans and a method of predicting the flavor of coffee raw materials according to the classification. The present application also aims to provide a coffee information providing system capable of providing various information on coffee raw materials formed by an objective method.
본 출원의 실시예에 따른 커피 원료의 분류 방법은 커피 생두 또는 원두의 화학적 특성을 분석하여 분석 데이터를 제공하는 단계; 상기 분석 데이터의 차원을 축소하여 축소된 데이터를 제공하는 단계; 상기 축소된 데이터를 분석하여 클러스터를 형성하는 단계를 포함하는 것을 특징으로 한다.A method for classifying coffee raw materials according to an embodiment of the present application includes providing analysis data by analyzing chemical characteristics of green coffee beans or coffee beans; providing reduced data by reducing the dimension of the analysis data; and analyzing the reduced data to form a cluster.
상기 커피 생두 또는 커피 원두의 화학적 특성을 분석하는 방법은 분광학적 분석법인 것을 특징으로 한다.The method of analyzing the green coffee beans or the chemical properties of coffee beans is characterized in that it is a spectroscopic analysis method.
상기 축소된 데이터를 제공하는 단계는 선형 차원 축소 방법(Linear Dimensionality Reduction Methods) 또는 비선형 차원 축소 방법(Non-Linear Dimensionality Reduction Methods)을 사용하는 것을 특징으로 한다.The step of providing the reduced data is characterized by using a linear dimensionality reduction method (Linear Dimensionality Reduction Methods) or a non-linear dimensionality reduction method (Non-Linear Dimensionality Reduction Methods).
상기 축소된 데이터를 제공하는 단계는 주성분 분석(Principal Component Analysis: PCA), 선형판별분석(Linear Discriminant Analysis: LDA), 인자분석(Factor Analysis), 특이값 분해(Singular Vector Decomposition: SVD) 또는 t-분포 확률적 임베딩(t-distributed Stochastic Neighbor Embedding: t-SNE)을 사용하는 것을 특징으로 한다.The step of providing the reduced data may include Principal Component Analysis (PCA), Linear Discriminant Analysis (LDA), Factor Analysis, Singular Vector Decomposition (SVD), or t- It is characterized by using t-distributed Stochastic Neighbor Embedding (t-SNE).
하나의 예로서, 상기 클러스터를 형성하는 단계는 지도 학습(Supervised learning) 방법 또는 비지도 학습(Unsupervised learning) 방법을 이용하는 것을 특징으로 한다.As an example, the forming of the cluster is characterized by using a supervised learning method or an unsupervised learning method.
상기 클러스터를 형성하는 단계는 파티셔닝(partitioning), K-평균(K-means), K-대표객체(K-medoid), CLARA(Clustering Large Applications) 또는 CLARANS 방법을 사용하는 것을 특징으로 한다.The step of forming the cluster is characterized by using partitioning, K-means, K-representative object (K-medoid), CLARA (Clustering Large Applications) or CLARANS method.
본 출원의 커피 원료의 분류 방법은 커피 생두 또는 커피 원두의 화학적 특성 분석 데이터, 및 상기 분석 데이터의 차원 축소 데이터를 기반으로 기계 학습(machine learning)을 통하여 클러스터를 예측하는 단계를 추가로 포함하는 것을 특징으로 한다.The method of classifying coffee raw materials of the present application further comprises predicting a cluster through machine learning based on green coffee beans or chemical characteristic analysis data of coffee beans, and dimensionality reduction data of the analysis data. characterized.
상기 기계 학습은 K-최근접 이웃 알고리즘(k-nearest neighbor algorithm), 로지스틱 회귀 (Logistic Regression), 나이브 베이즈 분류 (Naive Bayes Classification), 확률적 경사 하강(Stochastic Gradient Descent), 결정 트리 (Decision Tree), 랜덤 포레스트 (Random Forest), 에이다부스트 (AdaBoost), 그래디언트 부스팅(Gradient Boosting), 서포트 벡터 머신 (Support Vector Machine), 또는 선형 판별 분석(Linear discriminant analysis: LDA)을 사용하는 것을 특징으로 한다. The machine learning is a k-nearest neighbor algorithm, logistic regression, naive Bayes classification, stochastic gradient descent, decision tree ), Random Forest, AdaBoost, Gradient Boosting, Support Vector Machine, or Linear discriminant analysis (LDA).
본 출원의 다른 실시예에 따른 커피 생두의 로스팅 프로파일 제공 방법은 상기 분류 방법에 따라 커피 생두의 클러스터를 형성하는 단계; 및 상기 형성된 클러스터에 대한 로스팅 프로파일을 제공하는 단계를 포함한다.According to another embodiment of the present application, a method for providing a roasting profile of green coffee beans includes: forming a cluster of green coffee beans according to the classification method; and providing a roasting profile for the formed cluster.
상기 클러스터에 대한 로스팅 프로파일을 제공하는 단계는 형성된 클러스터의 화학 성분 함량을 측정하는 단계; 및 상기 측정된 화학 성분을 기초로 생두의 로스팅 프로파일을 설계하는 단계를 포함하는 것을 특징으로 한다.Providing a roasting profile for the clusters may include: measuring a chemical content of the clusters formed; and designing a roasting profile of green coffee beans based on the measured chemical composition.
상기 화학 성분은 단당류, 다당류, 지질, 유기산, 단백질 및 수분을 포함한다.The chemical components include monosaccharides, polysaccharides, lipids, organic acids, proteins and water.
본 출원의 또 다른 실시예에 따른 커피 원료의 향미 예측 방법은 상기 분류 방법에 따라 커피 원료의 클러스터를 형성하는 단계; 상기 형성된 클러스터의 화학 성분 함량을 측정하는 단계; 커피 원료 시료의 화학 성분의 함량을 측정하는 단계; 및 상기 커피 원료 시료의 화학 성분의 함량과 클러스터의 화학성분의 함량을 비교하는 단계를 포함한다.A method for predicting the flavor of coffee raw materials according to another embodiment of the present application includes forming a cluster of coffee raw materials according to the classification method; measuring the chemical component content of the formed cluster; measuring the content of chemical components in the coffee raw material sample; and comparing the content of the chemical component of the coffee raw material sample with the content of the chemical component of the cluster.
본 출원의 또 다른 실시예에 따른 커피 정보 제공 시스템은 커피 정보 관리 서버 및 네트워크를 통하여 상기 커피 정보 관리 서버에 접속할 수 있는 적어도 하나의 단말기를 포함한다. Coffee information providing system according to another embodiment of the present application includes a coffee information management server and at least one terminal capable of accessing the coffee information management server through a network.
상기 커피 정보 관리 서버는 단말기와 신호 또는 정보를 송수신하는 송수신부와, 커피 정보를 저장하는 데이터베이스와, 네트워크를 통해 접속한 상기 단말기에서 커피 원료에 대한 정보의 요청을 수신하고, 요청된 커피 원료에 대한 정보를 데이터베이스로부터 추출하여 상기 단말기로 송신하도록 송수신부를 제어하는 커피 원료의 분류 정보 제공 모듈이 구비된 제어부를 포함하고, 상기 커피 원료에 대한 정보는 커피 원료의 화학적 특성을 분석하여 분류된 것이다.The coffee information management server receives a request for information on coffee raw materials from a terminal and a transceiver for transmitting and receiving signals or information, a database for storing coffee information, and the terminal connected through a network, and a control unit equipped with a classification information providing module of coffee raw materials for controlling the transceiver to extract information about the raw material from the database and transmit it to the terminal, and the information on the coffee raw material is classified by analyzing the chemical characteristics of the coffee raw material.
상기 커피 정보 제공 시스템에서 커피 원료의 화학적 특성은 커피 원료에 포함된 화학원소, 화학 작용기 또는 화학 성분의 종류와 함량을 포함하는 것을 특징으로 한다.In the coffee information providing system, the chemical properties of the coffee raw materials include the types and contents of chemical elements, chemical functional groups, or chemical components included in the coffee raw materials.
제어부는 네트워크를 통해 접속한 단말기에서 커피 원료에 대한 정보의 요청을 수신하고, 요청된 커피 원료의 로스팅 프로파일 정보를 추출하여 상기 단말기로 송신하도록 송수신부를 제어하는 로스팅 프로파일 정보 제공 모듈을 추가로 포함할 수 있다.The control unit may further include a roasting profile information providing module for receiving a request for information on coffee raw materials from a terminal connected through a network, and controlling the transceiver to extract and transmit the requested roasting profile information of the coffee raw material to the terminal. can
상기 로스팅 프로파일 정보는 커피 원료의 분류 정보에 기초하여 형성된 것을 특징으로 한다.The roasting profile information is characterized in that it is formed based on the classification information of the coffee raw material.
제어부는 네트워크를 통해 접속한 단말기에서 커피 원료에 대한 정보의 요청을 수신하고, 요청된 커피 원료의 특성 정보를 추출하여 상기 단말기로 송신하도록 송수신부를 제어하는 커피 원료의 특성 정보 제공 모듈을 추가로 포함할 수 있다. The control unit receives a request for information on coffee raw materials from a terminal connected through a network, extracts the requested characteristic information of coffee raw materials, and further includes a coffee raw material characteristic information providing module for controlling the transceiver to transmit to the terminal can do.
상기 커피 원료의 특성 정보는 커피 원료에 포함된 화학 성분의 종류와 함량일 수 있다. 또한 커피 원료의 특성 정보는 요청된 커피 원료와 상이한 커피 원료의 특성 정보와 동시에 제공되는 것을 특징으로 한다.The characteristic information of the coffee raw material may be the type and content of a chemical component included in the coffee raw material. In addition, it is characterized in that the characteristic information of the coffee raw material is provided simultaneously with the requested coffee raw material and the characteristic information of the different coffee raw material.
제어부는 네트워크를 통해 접속한 단말기에서 커피 원료에 대한 정보의 요청을 수신하고, 요청된 커피 원료의 향미 예측 정보를 추출하여 상기 단말기로 송신하도록 송수신부를 제어하는 커피 원료의 향미 정보 제공 모듈을 추가로 포함할 수 있다.The control unit receives a request for information on coffee raw materials from a terminal connected through a network, extracts the requested flavor prediction information of coffee raw materials, and further includes a coffee raw material flavor information providing module that controls the transceiver to transmit to the terminal. may include
제어부는 네트워크를 통해 접속한 단말기에서 사용자의 로그인 정보를 수신하고 관리하는 사용자 관리 모듈을 추가로 포함할 수 있다.The control unit may further include a user management module for receiving and managing login information of a user from a terminal accessed through a network.
제어부는 네트워크를 통해 접속한 단말기에서 커피 원료의 결제 정보를 수신하고, 요청된 결제 과정을 수행하고 그 결과를 상기 단말기로 송신하도록 송수신부를 제어하는 구매 관리 모듈을 추가로 포함할 수 있다.The control unit may further include a purchase management module for controlling the transceiver to receive payment information of coffee raw materials from a terminal connected through a network, perform a requested payment process, and transmit the result to the terminal.
본 출원의 일예에 따른 방법은 신속하고, 객관적인 방법으로 커피 원료를 분류하고, 상기 분류에 따른 커피 생두의 로스팅 프로파일을 제공할 수 있으며, 커피 원두의 향미를 신속하고 객관적으로 예측할 수 있다. 본 출원의 또 다른 일예에 따른 방법은 객관적인 방법으로 형성된 커피 원료에 대한 다양한 정보를 제공할 수 있다.The method according to an example of the present application can classify coffee raw materials in a quick and objective way, provide a roasting profile of green coffee beans according to the classification, and can quickly and objectively predict the flavor of coffee beans. The method according to another example of the present application may provide various information on coffee raw materials formed by an objective method.
도 1은 본 출원의 일 실시예에 따른 커피 원료의 분류 방법에서 54개 생두 샘플에 대한 주성분 분석(Principal Component Analysis)의 결과를 보여주는 예시적인 도면이다.1 is an exemplary view showing the results of principal component analysis on 54 green bean samples in the method of classifying coffee raw materials according to an embodiment of the present application.
도 2는 본 출원의 일 실시예에 따른 커피 원료의 분류 방법에서 54개 생두 샘플에 대한 클러스터를 형성한 결과를 보여주는 예시적인 도면이다.2 is an exemplary view showing the results of forming clusters for 54 green bean samples in the method of classifying coffee raw materials according to an embodiment of the present application.
도 3 내지 도 9는 각각 본 출원의 일 실시예에 따른 커피 원료의 분류 방법으로 형성된 클러스터별 화학 성분 함량의 정규화 평균값을 보여주는 예시적인 도면이다.3 to 9 are exemplary views showing normalized average values of chemical component contents for each cluster formed by the method of classifying coffee raw materials according to an embodiment of the present application, respectively.
도 10은 본 출원의 일 실시예에 따른 커피 정보 제공 시스템의 구성을 나타낸 블록도이다.10 is a block diagram showing the configuration of a coffee information providing system according to an embodiment of the present application.
도 11은 본 출원의 일 실시예에 따른 커피 정보 제공 시스템의 단말의 구성을 나타낸 블록도이다.11 is a block diagram showing the configuration of a terminal of the coffee information providing system according to an embodiment of the present application.
도 12는 본 출원의 일 실시예에 따른 커피 정보 제공 시스템의 커피 정보 관리 서버의 구성을 나타낸 블록도이다.Figure 12 is a block diagram showing the configuration of the coffee information management server of the coffee information providing system according to an embodiment of the present application.
이하 실시예를 통하여 본 출원을 구체적으로 설명하지만, 본 출원의 범위가 하기 실시예에 의해 제한되는 것은 아니다.Hereinafter, the present application will be described in detail through Examples, but the scope of the present application is not limited by the Examples below.
본 출원의 일 실시예에 따른 커피 원료의 분류 방법은 커피 생두 또는 커피 원두의 화학적 특성을 분석하여 분석 데이터를 제공하는 단계; 상기 분석 데이터의 차원을 축소하여 차원 축소된 데이터를 제공하는 단계; 및 상기 축소된 데이터를 분석하여 클러스터를 형성하는 단계를 포함한다. A method of classifying coffee raw materials according to an embodiment of the present application includes providing analysis data by analyzing chemical characteristics of green coffee beans or coffee beans; providing dimension-reduced data by reducing the dimension of the analysis data; and analyzing the reduced data to form a cluster.
현재 커피 생두나 커피 원두와 같은 커피 원료를 분류하는 일반적인 방법은 커피 품종, 생두 크기, 생산지, 생산자 또는 재배 환경 등을 고려하는 것이다. 그러나 본 발명의 커피 원료의 분류 방법은 커피 원료의 화학적 특성에 대한 분석 데이터를 기초로 분류하기 때문에 상기 일반적인 방법에 따른 분류보다 객관적인 분류 기준을 제공할 수 있다.Currently, a common method of classifying coffee raw materials such as green coffee beans or coffee beans is to consider the coffee variety, size of green coffee beans, production area, producer or growing environment, and the like. However, the classification method of the coffee raw material of the present invention can provide an objective classification criterion than the classification according to the general method because it is classified based on the analysis data on the chemical properties of the coffee raw material.
하나의 예로서, 상기 커피 생두 또는 커피 원두의 화학적 특성은 커피 생두 또는 커피 원두에 포함된 원소 또는 작용기의 종류 및 함량을 포함한다. 또한 상기 커피 생두 또는 커피 원두의 화학적 특성은 커피 생두 또는 원두에 포함된 화학 성분의 종류와 함량을 추가로 포함할 수 있다. As an example, the chemical properties of the green coffee beans or coffee beans include the type and content of elements or functional groups included in the green coffee beans or coffee beans. In addition, the green coffee beans or the chemical properties of coffee beans may further include the type and content of chemical components contained in the green coffee beans or coffee beans.
하나의 예로서 화학 성분은 탄수화물(단당류, 이당류 또는 다당류), 유기산, 클로로겐산, 질소화합물(단백질, 아미노산, 트리고넬린 또는 카페인), 지질(중성지방, 지방산 또는 디테르펜) 또는 수분 등이 포함될 수 있다.As an example, the chemical component may include carbohydrates (monosaccharides, disaccharides or polysaccharides), organic acids, chlorogenic acids, nitrogenous compounds (proteins, amino acids, trigonelline or caffeine), lipids (triglycerides, fatty acids or diterpenes) or water. .
이러한 화학적 특성을 분석하는 방법은 분광학적 분석법을 이용할 수 있다. 분광화학적 방법으로는 커피 생두 또는 커피 원두의 화학적 특성을 분석할 수 있는 것이라면 특별히 제한되지 않으며, 예를 들면, 핵자기공명(NMR), 적외선분광법(IR), 푸리에 변환 적외선 분광법(FTIR Spectroscopy), 근적외분광 분석법(NIRs) 또는 감쇠전반사 푸리에 변환 적외선 분광법(ATR-FTIR Spectroscopy)을 이용할 수 있다. 바람직하게는 전처리 과정을 거치지 않고 비파괴적이고 신속하게 커피 원료의 화학 적 특성에 대한 분석데이터를 확보 할 수 있는 근적외분광 분석법(NIRs)을 이용할 수 있다. 근적외선 파장 영역은 800 nm 내지 2,500nm의 범위내이며, 근적외분광 분석법은 작용기(functional group)에 따라 상기 범위의 파장 영역 중 특정 파장에서 빛이 흡수 되며 이를 통해 커피 원료에 포함되어 있는 화학적 특성에 대한 분석 데이터를 확보할 수 있다.A method of analyzing such chemical properties may use a spectroscopic analysis method. The spectrochemical method is not particularly limited as long as it can analyze the chemical properties of green coffee beans or coffee beans, and for example, nuclear magnetic resonance (NMR), infrared spectroscopy (IR), Fourier transform infrared spectroscopy (FTIR Spectroscopy), Near-infrared spectroscopy (NIRs) or attenuated total reflection Fourier transform infrared spectroscopy (ATR-FTIR Spectroscopy) may be used. Preferably, it is possible to use near-infrared spectroscopy (NIRs), which can obtain analytical data on the chemical properties of coffee raw materials non-destructively and quickly without undergoing a pre-treatment process. The near-infrared wavelength region is in the range of 800 nm to 2,500 nm, and the near-infrared spectroscopy method absorbs light at a specific wavelength among the wavelength region of the above range depending on the functional group, and through this, the chemical properties contained in the coffee raw material analysis data can be obtained.
종래의 커피 생두 또는 커피 원두의 화학적 특성을 분석하는 방법은 특정 개별 성분의 함량(많은 피크 중 극히 일부 피크의 값)만을 측정하였기 때문에 얻을 수 있는 데이터의 양이 제한적이었다. 예를 들어 하나의 커피 생두 시료에서 10개의 개별 화학 성분의 함량을 측정하는 경우 하나의 시료에서 얻을 수 있는 데이터의 양은 10개에 불과하다. 그러나 본 출원의 경우 시료 내에 존재하는 개별 화학 성분이 아닌 시료에 포함된 매우 다양한 원소 또는 작용기와 같은 화학적 특성을 분석한다. 따라서 하나의 커피 생두 시료에서 얻을 수 있는 (임의의 파장 영역에서 얻을 수 있는 모든 피크 값)은 약 1500개 이상이다. 일 예를 들어, 종래의 개별 성분 함량을 측정하는 경우 300개의 시료로부터 얻을 수 있는 데이터는 3000개이지만, 원소 또는 작용기와 관련된 특성을 측정하는 경우 동일한 개수의 시료로부터 얻을 수 있는 데이터는 45만개 이상이다. The amount of data that can be obtained is limited because the conventional method for analyzing the chemical properties of green coffee beans or coffee beans measured only the content of specific individual components (values of only a few peaks among many peaks). For example, if you measure the content of 10 individual chemical components in one green coffee bean sample, only 10 data can be obtained from one sample. However, in the present application, chemical properties such as a wide variety of elements or functional groups included in the sample are analyzed rather than individual chemical components present in the sample. Therefore, the number of (all peak values obtainable in an arbitrary wavelength region) that can be obtained from one green coffee bean sample is about 1500 or more. For example, when measuring the content of individual components in the related art, 3,000 data can be obtained from 300 samples, but when measuring properties related to elements or functional groups, more than 450,000 data can be obtained from the same number of samples. to be.
본 출원의 상기 차원을 축소하는 단계는 선형 차원 축소 방법(Linear Dimensionality Reduction Methods: LDRM) 또는 비선형 차원 축소 방법(Non-Linear Dimensionality Reduction Methods: NLDRM)을 사용할 수 있다. The step of reducing the dimension of the present application may use a linear dimensionality reduction method (Linear Dimensionality Reduction Methods: LDRM) or a non-linear dimensionality reduction method (NLDRM).
일 구체예로 상기 차원을 축소하는 단계는 주성분 분석(Principal Component Analysis: PCA), 선형판별분석(Linear Discriminant Analysis: LDA), 인자분석(Factor Analysis), 특이값 분해(Singular Vector Decomposition: SVD) 또는 t-분포 확률적 임베딩(t-distributed Stochastic Neighbor Embedding: t-SNE)을 이용할 수 있으나 이에 제한되는 것은 아니다. In one embodiment, the step of reducing the dimension may include Principal Component Analysis (PCA), Linear Discriminant Analysis (LDA), Factor Analysis, Singular Vector Decomposition (SVD) or t-distributed Stochastic Neighbor Embedding (t-SNE) may be used, but is not limited thereto.
차원 축소는 목적에 따라 분석 데이터의 특징(feature)를 줄이는 방법을 의미한다. 커피 생두 또는 커피 원두에 대한 분광학적 분석법으로 측정한 커피 원료의 화학적 특성에 대한 분석 데이터는 분석 대상인 시료의 개수가 증가할수록 분석 데이터의 특징이 증가하고 이에 따라 분석 데이터의 차원도 증가된다. 따라서 보다 빠르고 효율적인 데이터 분석을 위해서는 차원 축소가 필요하다. 분석데이터의 차원 축소 방법은 분석 데이터의 특징(feature)에 따라 적절한 차원 축소 방법이 선택될 수 있다.Dimension reduction refers to a method of reducing the features of analysis data according to the purpose. As for the analysis data on the chemical properties of coffee raw materials measured by spectroscopic analysis on green coffee beans or coffee beans, the characteristics of the analysis data increase as the number of samples to be analyzed increases, and the dimension of the analysis data increases accordingly. Therefore, dimension reduction is required for faster and more efficient data analysis. As for the method of reducing the dimension of the analysis data, an appropriate method of reducing the dimension may be selected according to a feature of the analysis data.
하나의 예로서, 커피 원료의 분류 방법은 분석 데이터의 차원을 축소하기 전에 분석 데이터를 가공하는 단계를 추가로 포함할 수 있다. 예를 들면 커피 원료의 색상에 따라 정규화(Normalized)되는 변수를 줄이기 위해서 가시광선 영역대의 파장 범위에서 측정된 분석 데이터를 제외시키는 가공 단계를 포함시킬 수 있다. 데이터 가공을 통해 보다 유의미한 커피 원료의 화학적 특성의 분석 데이터를 확보할 수 있다. As an example, the method of classifying coffee raw materials may further include processing the analysis data before reducing the dimension of the analysis data. For example, in order to reduce a variable normalized according to the color of the coffee raw material, a processing step of excluding the analysis data measured in the wavelength range of the visible ray band may be included. Through data processing, more meaningful analysis data of the chemical properties of coffee raw materials can be obtained.
본 출원의 상기 클러스터를 형성하는 단계는 클러스터 분석(Cluster analysis)에 의해 수행된다. 클러스터 분석이란, 데이터 마이닝의 한 방법으로, 주어진 데이터들의 특성을 고려해 데이터 집단(클러스터)을 정의하고 데이터 집단을 대표할 수 있는 대표점을 찾는 것이다. 본 출원에서 클러스터란 비슷한 특성을 가진 커피 원료의 화학적 특성 데이터들의 집단을 의미한다.The step of forming the cluster of the present application is performed by cluster analysis. Cluster analysis is a data mining method that defines a data group (cluster) considering the characteristics of given data and finds a representative point that can represent the data group. In the present application, a cluster means a group of chemical property data of coffee raw materials having similar properties.
하나의 예로서, 상기 클러스터를 형성하는 단계는 지도 학습(Supervised learning) 방법 또는 비지도 학습(Unsupervised learning) 방법을 이용할 수 있다. 상기 지도 학습 방법은 정답 레이블(answer)을 사용하는 방법이고, 비지도 학습(Unsupervised learning) 방법은 정답 레이블(answer)을 사용하지 않는 방법이다. 상기 지도학습은 차원이 축소된 커피 원료의 화학적 특성 분석 데이터의 상관관계나 속성을 찾아 축소된 데이터의 클러스터를 형성한다.As an example, forming the cluster may use a supervised learning method or an unsupervised learning method. The supervised learning method is a method using an answer label (answer), and the unsupervised learning method is a method not using an answer label (answer). The supervised learning forms a cluster of reduced data by finding correlations or attributes of chemical characterization data of reduced-dimensional coffee raw materials.
한편, 상기 비지도 학습 방법은 정답 레이블이 불필요하고 차원이 축소된 커피 원료의 화학적 성분의 분석 데이터만으로 클러스터를 형성할 수 있다. 따라서 정답 레이블이 존재하지 않는 경우에는 비지도 학습 방법을 이용하여 분석 대상인 커피 원료의 클러스터를 형성하는 것이 보다 적절할 수 있다.On the other hand, the unsupervised learning method can form a cluster only with the analysis data of the chemical component of the coffee raw material in which the correct answer label is unnecessary and the dimension is reduced. Therefore, when there is no correct answer label, it may be more appropriate to form a cluster of coffee raw materials to be analyzed using an unsupervised learning method.
하나의 예로서, 상기 클러스터를 형성하는 단계는 파티셔닝(partitioning), K-평균(K-means), K-대표객체(K-medoid), CLARA(Clustering Large Applications) 또는 CLARANS 방법을 사용할 수 있다. 클러스터 형성의 편의성, 검증의 용이성 및 클러스터의 신뢰성을 고려하여 적절한 클러스터 방법을 사용할 수 있다. 상기와 같은 클러스터 방법을 이용하여 축소된 데이터를 분석함으로써 보다 유의미한 클러스터를 형성할 수 있다.As an example, the step of forming the cluster may use partitioning, K-means, K-representative object (K-medoid), CLARA (Clustering Large Applications), or CLARANS method. An appropriate cluster method may be used in consideration of the convenience of cluster formation, the ease of verification, and the reliability of the cluster. A more meaningful cluster can be formed by analyzing the reduced data using the cluster method as described above.
하나의 예로서, 클러스터를 형성하는 단계는 형성되는 클러스터의 개수를 찾는 단계를 포함할 수 있다. 예를 들면 엘보우(Elbow), 실루엣(silhouette) 또는 갭 통계 방법(gap statistic method)을 통하여 축소된 분석 데이터로 형성되는 적절한 클러스터 개수를 찾을 수 있다. 상기 도출된 클러스터 개수를 이용하여 축소된 분석 데이터의 클러스터를 형성하는 경우, 유의미한 클러스터를 확보하는데 보다 효율적이다.As an example, forming the clusters may include finding the number of clusters to be formed. For example, an appropriate number of clusters formed from the reduced analysis data may be found through an Elbow, a silhouette, or a gap statistic method. When a cluster of reduced analysis data is formed using the derived number of clusters, it is more efficient to secure a meaningful cluster.
또한 클러스터를 형성하는 단계는 형성된 클러스터를 다시 재분류하여 서브 클러스터를 형성하는 단계를 추가로 포함할 수 있다. 서브 클러스터를 형성하는 단계는 상기 클러스터를 형성하는 단계에서 사용한 방법을 사용할 수 있고, 이에 대한 설명은 생략한다.In addition, the step of forming the cluster may further include the step of reclassifying the formed cluster to form a sub-cluster. In the step of forming the sub-cluster, the method used in the step of forming the cluster may be used, and a description thereof will be omitted.
하나의 예로서, 상기 커피 원료의 분류 방법은 커피 생두 또는 커피 원두의 화학적 특성 분석 데이터, 및 상기 분석 데이터의 차원 축소된 데이터를 기반으로 기계 학습을 통하여 클러스터를 예측하는 단계를 포함할 수 있다. As an example, the method for classifying coffee raw materials may include predicting clusters through machine learning based on green coffee beans or chemical characteristic analysis data of coffee beans, and dimensionally reduced data of the analysis data.
일구체예로, 각 단계에서 수행된 데이터를 기반으로 미지의 생두 또는 원두에 대한 화학적 특성 분석 데이터를 기계 학습시켜 미지의 생두 또는 원두에 대한 클러스터를 용이하게 예측할 수 있다. 따라서 신규한 커피 생두 품종 또는 재배 환경이 변경된 커피 생두 등에 대해서도 생두의 화학적 특성 분석 데이터 기반으로 클러스터를 용이하게 예측할 수 있다.In one embodiment, a cluster of unknown green beans or coffee beans can be easily predicted by machine learning the unknown green beans or chemical characterization data of coffee beans based on data performed in each step. Therefore, it is possible to easily predict a cluster based on the chemical characteristics analysis data of green coffee beans even for new green coffee bean varieties or green coffee beans with a changed cultivation environment.
하나의 예로서, 상기 기계 학습은 K-최근접 이웃 알고리즘(k-nearest neighbor algorithm), 로지스틱 회귀 (Logistic Regression), 나이브 베이즈 분류 (Naive Bayes Classification), 확률적 경사 하강(Stochastic Gradient Descent), 결정 트리 (Decision Tree), 랜덤 포레스트 (Random Forest), 에이다부스트 (AdaBoost), 그래디언트 부스팅(Gradient Boosting), 서포트 벡터 머신 (Support Vector Machine), 또는 선형 판별 분석(Linear discriminant analysis: LDA)를 이용할 수 있지만, 이에 제한되는 것은 아니며, 분석 데이터의 특징(feature) 또는 클러스터 예측의 용이성을 고려하여 적절한 방법이 선택될 수 있다. As an example, the machine learning is K-nearest neighbor algorithm, logistic regression (Logistic Regression), naive Bayes classification (Naive Bayes Classification), stochastic gradient descent (Stochastic Gradient Descent), Decision Tree, Random Forest, AdaBoost, Gradient Boosting, Support Vector Machine, or Linear discriminant analysis (LDA) can be used. However, the present invention is not limited thereto, and an appropriate method may be selected in consideration of features of analysis data or ease of cluster prediction.
하나의 구체적인 실시태양을 살펴보면, 상기 기계 학습으로 K-최근접 이웃 알고리즘을 사용할 수 있다. 예를 들면 미지의 생두는 각 단계에서 수행된 화학적 특성 분석 데이터 중에서 미지의 생두에 대한 화학적 특성 분석 데이터와 가장 가까운 거리(Euclidean Distance)에 있는 분석 데이터 3개를 선택하게 하고, 선택된 3개의 데이터가 포함되는 클러스터 중에서 과반수의 데이터가 포함되어 있는 클러스터로 예측할 수 있다.Looking at one specific embodiment, the machine learning may use a K-nearest neighbor algorithm. For example, for unknown green coffee beans, three analysis data closest to the chemical characterization data for unknown green coffee beans are selected from the chemical characterization data performed in each step, and the selected three data sets are selected. It can be predicted as a cluster that contains a majority of data among the included clusters.
본 출원의 다른 실시예에 따른 생두의 로스팅 프로파일 제공 방법은 커피 생두의 화학적 특성을 분석하여 분석 데이터를 제공하는 단계; 상기 분석 데이터의 차원을 축소하여 차원 축소된 데이터를 제공하는 단계; 상기 축소된 데이터를 분석하여 클러스터를 형성하는 단계; 및 상기 형성된 클러스터에 대한 로스팅 프로파일을 제공하는 단계를 포함할 수 있다. According to another exemplary embodiment of the present application, a method for providing a roasting profile of green coffee beans includes the steps of: providing analysis data by analyzing chemical characteristics of green coffee beans; providing dimension-reduced data by reducing the dimension of the analysis data; forming a cluster by analyzing the reduced data; and providing a roasting profile for the formed cluster.
분석 데이터 및 차원 축소된 데이터를 제공하는 단계와 클러스터를 형성하는 단계는 앞서 설명한 것과 동일하고 이에 대한 설명은 생략한다.The steps of providing the analysis data and the dimension-reduced data and the steps of forming the cluster are the same as described above, and a description thereof will be omitted.
상기 용어, “생두의 로스팅 프로파일”이란 커피 생두를 이용하여 목적하는 향미를 가지는 커피 원두로 생산하기 위한 설명서라고 정의될 수 있다. 커피 생두를 커피 원두로 생산하기 위해서는 건조 구간(투입온도 ~ 약 155 ℃), 중간 구간(155 ℃ ~ 200 ℃), 및 발현 구간(200℃ ~ 배출온도)의 3개 구간을 거친다. 상기 중간 구간은 다시 마야르 구간(155 ℃ ~ 180 ℃)과 카라멜화 구간(180 ℃ ~ 200 ℃)으로 구분될 수 있다.The term “green coffee roasting profile” may be defined as a description for producing coffee beans having a desired flavor using green coffee beans. In order to produce green coffee beans as coffee beans, three sections are passed: a drying section (input temperature ~ about 155 ℃), an intermediate section (155 ℃ ~ 200 ℃), and an expression section (200℃ ~ discharge temperature). The intermediate section may be divided into a Mayar section (155 ℃ ~ 180 ℃) and a caramelization section (180 ℃ ~ 200 ℃) again.
상기 건조 구간은 투입온도에서부터 마야르 반응이 일어나기 전까지인 약 155 ℃까지 도달하는 구간을 주로 의미한다. 상기 건조 구간에서는 생두에 존재하는 수분이 수증기로 변하여 커피 생두 내부에 갇히게 되며, 이 구간을 지나면서 커피 생두의 부피는 최대 2배로 커지고, 수분 함량은 점점 감소하며, 커피의 밀도와 전체 무게가 감소되기 시작한다. The drying section mainly refers to a section reaching from the input temperature to about 155° C. before the Mayar reaction occurs. In the drying section, the moisture present in the green coffee beans is converted to water vapor and is trapped inside the green coffee beans. During this section, the volume of the green coffee beans increases up to twice, the moisture content gradually decreases, and the density and overall weight of the coffee decrease. starts to become
상기 중간 구간은 약 155 ℃ 내지 200 ℃에 해당하는 구간을 의미하며, 보다 구체적으로 155℃ 내지 180℃에 해당하는 구간은 마야르 구간을 의미하고, 180℃ 내지 200 ℃에 해당하는 구간은 카라멜 구간을 의미한다. 이 구간에서 가해지는 열의 대부분은 생두의 온도를 높이는데 사용한다. 한편, 마야르 구간 및 카라멜 구간의 길이 및 투입되는 열량 조절을 통하여 향미를 조절할 수 있다. 예를 들면 마야르 구간이 짧고 카라멜 구간이 길면 산미는 감소하고, 단맛이 증가 할 수 있다. 또한, 마야르 길이가 길고, 카라멜 구간이 짧은 경우, 단맛이 감소하고 쓴맛이 증가할 수 있다. 또한, 마야르 구간과 카라멜 구간이 비슷한 경우, 산미와 무게감이 적절하게 느껴질 수 있다.The intermediate section means a section corresponding to about 155 °C to 200 °C, more specifically, a section corresponding to 155 °C to 180 °C means a Mayar section, and a section corresponding to 180 °C to 200 °C is a caramel section means Most of the heat applied in this section is used to increase the temperature of the green coffee beans. On the other hand, the flavor can be controlled by adjusting the length of the Mayar section and the caramel section and the amount of heat input. For example, if the Mayar section is short and the caramel section is long, acidity may decrease and sweetness may increase. In addition, when the length of Mayar is long and the caramel section is short, sweetness may decrease and bitterness may increase. In addition, if the Mayar section and the caramel section are similar, acidity and weight may be appropriately felt.
상기 발현 구간은 200℃에서 배출온도까지의 구간을 의미한다. 상기 구간에서는 열분해 반응이 일어나며, 마야르 반응 및 카라멜 반응은 일어나지 않는다. 이 구간에서는 약 203℃에서 내부 압력을 이기지 못하고 커피 생두가 물리적으로 쪼개지는 1차크랙이 발생한다. 1차 크랙 시작부터 배출까지의 구간 (Development Time Ratio, DTR) 으로 전체 로스팅 길이에서 15-25%를 주는 것이 일반적이며, 이 길이를 조절함으로서 라이트 로스팅(light roasting), 미디엄 로스팅(medium roasting), 및 다크 로스팅(dark roasting)이 결정된다.The expression section means a section from 200 °C to the discharge temperature. In this section, the thermal decomposition reaction occurs, and the Mayar reaction and the caramel reaction do not occur. In this section, the first crack occurs in which the green coffee beans are physically split without overcoming the internal pressure at about 203°C. It is common to give 15-25% of the total roasting length as the period from the start of the first crack to the discharge (Development Time Ratio, DTR), and by adjusting this length, light roasting, medium roasting, and dark roasting are determined.
커피 생두의 로스팅에서는 상기 4개 구간의 투입 온도 및 구간별 소요 시간을 조절하여 원두의 향미를 조절할 수 있다. In the roasting of green coffee beans, the flavor of the beans can be adjusted by adjusting the input temperature of the four sections and the time required for each section.
분류된 클러스터별로 생두 투입 온도 및 시간에 따른 온도의 변화율을 구간별로 설정하여, 다양한 로스팅 프로파일을 설계할 수 있다. 또한, 상기 다양하게 설계된 로스팅 프로파일에 따라 제조되는 원두에 대해서 향미를 평가하여 그 결과에 대한 데이터를 확보할 수 있다. 따라서 향미에 대한 결과 데이터를 기초로 클러스터별 구현 가능한 향미에 대해서 로스팅 프로파일을 제공할 수 있다. Various roasting profiles can be designed by setting the green bean input temperature for each classified cluster and the rate of change of temperature according to time for each section. In addition, it is possible to evaluate the flavor of coffee beans manufactured according to the variously designed roasting profiles, and obtain data on the results. Therefore, it is possible to provide a roasting profile for a flavor that can be implemented for each cluster based on the result data on the flavor.
하나의 예로서, 형성된 클러스터에 대한 로스팅 프로파일을 제공하는 단계는 형성된 클러스터의 화학 성분 함량을 측정, 대표화, 또는 정규화한 후, 측정, 대표화, 또는 정규화된 화학 성분을 기초로 생두의 로스팅 프로파일을 설계하는 단계를 포함할 수 있다. As an example, the step of providing a roasting profile for the formed cluster may include measuring, normalizing, or normalizing the chemical component content of the formed cluster, and then, based on the measured, normalized, or normalized chemical component, the roasting profile of the green coffee beans. It may include the step of designing.
상기 커피 생두의 화학 성분은 일예로 커피 생두를 구성하는 화학 성분 전체를 의미할 수 있다. 다른 예로 커피 생두의 화학 성분은 다른 커피 생두와 구별되는 특징을 가지는 화학 성분을 의미할 수 있고, 이러한 화학 성분은 하나 이상일 수 있다. 또 다른 예로 커피 생두의 화학 성분은 커피의 향미에 영향을 주는 화학 성분을 의미할 수 있다. The chemical components of the green coffee beans may refer to, for example, all of the chemical components constituting the green coffee beans. As another example, the chemical component of green coffee beans may mean a chemical component having a characteristic distinguishing it from other green coffee beans, and the chemical component may be one or more. As another example, the chemical component of green coffee beans may mean a chemical component that affects the flavor of coffee.
하나의 예로서 화학 성분은 탄수화물(단당류, 이당류 또는 다당류), 유기산, 클로로겐산, 질소화합물(단백질, 아미노산, 트리고넬린 또는 카페인), 지질(중성지방, 지방산 또는 디테르펜) 또는 수분 등이 포함될 수 있다. 상기 화합물들은 커피 생두의 로스팅이 진행됨에 일련의 화학반응(마야르 반응, 카라멜 반응, 및 열분해 반응) 등을 통해 변화되어 향미에 영향을 줄 수 있다.As an example, the chemical component may include carbohydrates (monosaccharides, disaccharides or polysaccharides), organic acids, chlorogenic acids, nitrogenous compounds (proteins, amino acids, trigonelline or caffeine), lipids (triglycerides, fatty acids or diterpenes) or water. . The compounds may be changed through a series of chemical reactions (Mayar reaction, caramel reaction, and thermal decomposition reaction) as the green coffee beans are roasted, and may affect flavor.
로스팅 전 생두에는 다양한 유기산이 있는데, 대표적인 유기산은 말산과 시트르산이다. 로스팅 시 열에 의해 대부분 분해되지만, 일부는 남아 커피의 산도에 영향을 줄 수 있다.There are various organic acids in green coffee beans before roasting, and the representative organic acids are malic acid and citric acid. Most of it is decomposed by heat during roasting, but some remains and can affect the acidity of the coffee.
설탕은 단당류 2개가 결합된 이당류이다. 열분해시 단당류로 분해되어 다양한 향미를 만들어내다.Sugar is a disaccharide made by combining two monosaccharides. During thermal decomposition, it is decomposed into monosaccharides to produce various flavors.
단당류는 탄수화물의 가장 기본적인 단위로서 포도당과 과당이 있다. 커피에서 제일 중요한 반응인 마야르 반응과 카라멜 반응에 주로 참여하는 물질로써 로스팅 과정에서 모든 화학 반응에 참여하여 커피의 다양한 향미를 만드는데 기여한다. 특히, 카라멜 반응을 통해 단 향미를 만들어 내 커피의 단맛에 기여한다.Monosaccharides are the most basic units of carbohydrates, including glucose and fructose. As a substance that mainly participates in the Mayar reaction and caramel reaction, which are the most important reactions in coffee, it participates in all chemical reactions during the roasting process and contributes to creating various flavors of coffee. In particular, it contributes to the sweetness of my coffee by creating a sweet flavor through the caramel reaction.
다당류는 단당류가 복합적으로 연결된 형태로서 생두에서는 세포벽을 구성하는 셀룰로스와 만난으로 존재한다. 다당류는 로스팅 과정에서 거의 분해되비 않고, 물에도 녹지 않아 커피의 향미에 적접적으로 기여하지는 않는다. 다만 열 분해시 다당류의 일부가 분해되면서 단당류가 생성되어 간접적으로 커피의 향미에 영향을 줄 수 있다. 또한 분해되고 남은 수용성 다당류는 일부가 물에 추출되어 커피의 무게감(body)에 기여할 수 있다.Polysaccharides are complexly linked monosaccharides and exist as cellulose and mannan constituting the cell wall in green coffee beans. Polysaccharides are hardly decomposed during the roasting process and do not directly contribute to the flavor of coffee as they are insoluble in water. However, during thermal decomposition, some of the polysaccharides are decomposed to form monosaccharides, which can indirectly affect the flavor of coffee. In addition, some of the water-soluble polysaccharides remaining after decomposition may be extracted into water and contribute to the weight of coffee.
생두 속의 지질은 대부분 중성 지방 형태로 존재한다. 로스팅 과정에서 열분해에 안정적이고, 로스팅 시에 생두 내부에서 표면으로 이동함으로써 생성된 향미를 일정하게 유지할 수 있다. 그러나 원두의 보관 중에 지질의 산화로 인해 커피의 향미가 변화될 수 있다. 특히 지질의 한 종류인 디테르펜은 중성 지방과 달리 열분해에 안정적이지 않고, 로스팅시 아미노산과 결합하여 과일향, 맥아 향의 향미를 만들어낸다.Most of the lipids in green beans exist in the form of triglycerides. It is stable against thermal decomposition during the roasting process, and the flavor created by moving from the inside of the green beans to the surface during roasting can be maintained constant. However, the flavor of coffee may change due to oxidation of lipids during storage of the beans. In particular, diterpene, a type of lipid, is not stable to thermal decomposition, unlike triglycerides, and combines with amino acids during roasting to create fruity and malt flavor.
단백질은 로스팅 시에 마야르 반응과 스트래커 분해 반응을 통해 다양한 향미를 가지는 화합물을 형성한다.Proteins form compounds with various flavors through Mayar reaction and Straker decomposition reaction during roasting.
트리고넬린은 생두 속 질소 화합물의 한 종류로서, 항산화 작용에 도움을 주는 화합물이다. 로스팅이 진행됨에 따라 열에 분해되어 단 향미를 만들어 낸다.Trigonelline is a kind of nitrogen compound in green beans, and it is a compound that helps antioxidant action. As the roasting progresses, it is decomposed by heat to create a sweet flavor.
클로로겐산은 커피의 쓴 맛을 내는 화합물의 대표적인 전구체이다. 열에 의해 분해되어 스모키한 향미 화합물을 생성한다.Chlorogenic acid is a representative precursor of a compound that gives coffee a bitter taste. It is decomposed by heat to produce a smoky flavor compound.
카페인은 커피의 쓴 맛에 대표적인 물질로 알려져 있으나, 실제로는 쓴 맛에 큰 영향을 주지는 않는다.Caffeine is known to be a representative substance for the bitter taste of coffee, but in reality it does not significantly affect the bitter taste.
일 구체예로 측정되는 화학 성분은 트리고넬린, 포도당(glucose), 과당(fructose), 기타 단당류(mono sugar), 설탕(sucrose), 다당류(Poly sugar), 시트르산(Citric acid), 말산(Malic acid), 기타 유기산, 클로로겐산(Chlorogenic acids), 단백질(Proteins), 카페인(Caffeine), 카페인 유도체(Caffeine sub), 지질(Lipids), 디테르펜(Diterpene), 및/또는 수분(Water)을 포함하나 이에 제한되지 않는다. Chemical components to be measured in one embodiment are trigonelline, glucose, fructose, other monosaccharides, sugar (sucrose), polysaccharides (Poly sugar), citric acid (Citric acid), malic acid (Malic acid) ), Other Organic Acids, Chlorogenic Acids, Proteins, Caffeine, Caffeine Sub, Lipids, Diterpenes, and/or Water not limited
상기 화학 성분 함량을 측정하는 방법은 공지된 방법을 제한 없이 사용할 수 있다. 한편 화학 성분의 대표화는, 예를 들면 형성된 클러스터가 7개인 경우, 각 화학 성분 별로 클러스터 7개에 해당하는 값들을 오름차순으로 순위를 매겨서 가장 함량이 많은 화학 성분은 7점을 주고, 가장 함량이 적은 화학성분은 1점을 주는 방법으로 화학 성분의 함량을 대표화 할 수 있다. 또한 데이터를 정규화하는 공지의 방법인 최소-최대 정규화나 Z-점수 정규화 방법 등을 사용할 수 있으나, 이에 제한되지 않는다. 일 구체예로 화학 성분 함량의 정규화는 하기 일반식 1에 따라 0과 1 사이의 값으로 변환하여 정규화 할 수 있다. 또한, 이를 이용하여 클러스터별 화학 성분 함량의 정규화 평균값을 구할 수 있다. As a method for measuring the content of the chemical component, a known method may be used without limitation. On the other hand, representative of chemical components, for example, if there are 7 clusters formed, the values corresponding to 7 clusters for each chemical component are ranked in ascending order, and the chemical component with the highest content is given 7 points, and the chemical component with the highest content is given 7 points. Less chemical components can represent the content of chemical components by giving 1 point. Also, known methods for normalizing data, such as min-max normalization or Z-score normalization, may be used, but the present invention is not limited thereto. In one embodiment, the normalization of the chemical component content may be normalized by converting it to a value between 0 and 1 according to the following general formula (1). In addition, using this, it is possible to obtain a normalized average value of the chemical component content for each cluster.
<일반식 1><General formula 1>
(클러스터별 화학성분 함량 측정값 -모집단의 최소값) / (모집단의 최대값-모집단의 최소값)(Measured value of chemical component content by cluster - minimum value of population) / (maximum value of population - minimum value of population)
상기 일반식 1에서, 모집단의 최대값은 모집단에서 측정된 특정 화학 성분의 함량 값 중 가장 높은 값을 의미하고, 모집단의 최소값은 모집단에서 측정된 특정 화학 성분의 함량 중 가장 낮은 값을 의미한다. In Formula 1, the maximum value of the population means the highest value among the content values of the specific chemical component measured in the population, and the minimum value of the population means the lowest value among the content values of the specific chemical component measured in the population.
예를 들면, 모집단이 생두 54개이고 특정 화학 성분이 포도당인 경우 클러스터 1에 대한 정규화 값은, 54개의 생두에 대한 포도당의 함량 값 중에서 가장 높은 함량 값을 모집단의 최대값으로 하고, 가장 낮은 함량 값을 모집단의 최소 값으로 할 수 있다. 한편, 클러스터별 화학성분 함량 측정값은 클러스터 1에 포함되는 커피 포도당의 함량 값으로 할 수 있다. For example, if the population is 54 green coffee beans and a specific chemical component is glucose, the normalized value for cluster 1 is the highest among the glucose content values for 54 green coffee beans as the maximum value of the population, and the lowest content value can be taken as the minimum value of the population. On the other hand, the measured value of the chemical component content for each cluster may be the content value of the coffee glucose included in the cluster 1.
상기와 같은 방법으로 측정한 클러스터 1에 포함되는 각각의 커피에 대한 화학 성분 함량의 정규화 값을 모두 합한 다음에 클러스터 1에 포함되는 커피의 개수로 나누어서 클러스터 1의 화학 성분 함량에 대한 정규화 평균값을 구할 수 있다.The normalized average value for the chemical content of cluster 1 is obtained by adding up all the normalized values of the chemical component content for each coffee included in cluster 1 measured in the same manner as above, and dividing by the number of coffees included in cluster 1 can
클러스터별로 화학 성분들의 반응 온도 및 반응 속도를 파악하고, 대표화 또는 정규화된 화학 성분의 함량에 따라 생두 투입 온도 및 시간에 따른 온도의 변화율을 구간별로 설정하여 로스팅 프로파일을 설계함으로써, 향미가 우수한 원두를 제공할 수 있다. 구체적으로 화학적 특성 분석 데이터를 기반으로 클러스터별 로스팅 프로파일을 제공하기 때문에 향미를 보다 객관적으로 예측 할 수 있고, 향미가 우수한 원두를 제공할 수 있다. 또한, 근적외분광 분석법(NIRs)으로 생두의 화학적 특성을 분석하는 경우 비파괴적이고 신속하게 생두의 로스팅 프로파일을 제공할 수 있다.Coffee beans with excellent flavor by identifying the reaction temperature and reaction rate of chemical components for each cluster, and designing a roasting profile by setting the green bean input temperature and temperature change rate according to time according to the content of representative or normalized chemical components for each section can provide Specifically, because it provides a roasting profile for each cluster based on chemical characterization data, it is possible to predict the flavor more objectively and provide coffee beans with excellent flavor. In addition, when chemical properties of green coffee are analyzed by near-infrared spectroscopy (NIRs), it is possible to provide a roasting profile of green coffee non-destructively and quickly.
본 출원의 또 다른 실시예에 따른 커피 원료의 향미 예측 방법은 커피 생두 또는 커피 원두의 화학적 특성을 분석하여 분석 데이터를 제공하는 단계; 상기 분석 데이터의 차원을 축소하여 차원 축소된 데이터를 제공하는 단계; 상기 축소된 데이터를 분석하여 클러스터를 형성하는 단계; 상기 형성된 클러스터의 화학 성분 함량을 측정하는 단계; 커피 원료 시료의 화학 성분의 함량을 측정하는 단계; 및 상기 커피 원료 시료의 화학 성분의 함량과 클러스터의 화학성분의 함량을 비교하는 단계를 포함할 수 있다. A method for predicting the flavor of coffee raw materials according to another embodiment of the present application includes providing analysis data by analyzing chemical properties of green coffee beans or coffee beans; providing dimension-reduced data by reducing the dimension of the analysis data; forming a cluster by analyzing the reduced data; measuring the chemical component content of the formed cluster; measuring the content of chemical components in the coffee raw material sample; and comparing the content of the chemical component of the coffee raw material sample with the content of the chemical component of the cluster.
분석 데이터 및 차원 축소된 데이터를 제공하는 단계, 클러스터를 형성하는 단계, 및 클러스터와 임의의 커피 시료의 화학 성분의 함량을 측정하는 단계는 앞서 설명한 것과 동일하고 이에 대한 설명은 생략한다.The steps of providing the analysis data and the dimension-reduced data, forming the clusters, and measuring the content of the clusters and chemical components of any coffee sample are the same as described above, and a description thereof will be omitted.
하나의 예로서, 커피 원료의 향미 예측은 커피 생두의 향미 예측 및 커피 원두의 향미 예측을 포함한다. 일 구체예로 커피 원료 시료의 화학 성분의 함량과 클러스터의 화학성분의 함량을 비교하는 단계에서, 클러스터의 측정된 화학 성분 함량은 해당 클러스터에 속한 모든 커피 원료의 화학 성분의 평균 값을 사용할 수 있다. 또한 이와 같이 측정된 모든 클러스터의 평균 값, 즉 모든 클러스터에 속하는 모든 커피 원료의 화학성분의 평균 값을 사용할 수 있다.As an example, the flavor prediction of coffee raw materials includes a flavor prediction of green coffee beans and a flavor prediction of coffee beans. In one embodiment, in the step of comparing the content of the chemical component of the coffee raw material sample with the content of the chemical component of the cluster, the measured chemical component content of the cluster may use the average value of the chemical components of all coffee raw materials belonging to the cluster. . In addition, the average value of all clusters measured in this way, that is, the average value of chemical components of all coffee raw materials belonging to all clusters may be used.
다른 구체예로, 커피 원료 시료의 화학 성분의 함량과 클러스터의 화학성분의 함량을 비교하는 단계에서, 커피 원료 시료의 화학 성분의 함량과 클러스터의 화학성분의 함량을 비교는 해당 클러스터에 속한 모든 커피 원료의 화학 성분의 정규화 평균 값을 사용할 수 있다. 또한 이와 같이 측정된 모든 클러스터의 정규화 평균 값, 즉 모든 클러스터에 속하는 모든 커피 원료의 화학성분의 정규화 평균 값을 사용할 수 있다. 하기 일반식 2에 따라 0 과 1 사이의 값으로 정규화할 수 있다. 또한, 일반식 2를 이용하여 클러스터별 또는 모든 커피 원료 화학 성분 함량의 정규화 평균값을 구할 수 있다. In another embodiment, in the step of comparing the content of the chemical component of the raw coffee sample with the content of the chemical component of the cluster, the comparison of the content of the chemical component of the coffee raw sample with the content of the chemical component of the cluster is performed for all coffees belonging to the cluster. The normalized average value of the chemical composition of the raw material may be used. In addition, the normalized average value of all clusters measured in this way, that is, the normalized average value of chemical components of all coffee raw materials belonging to all clusters may be used. It can be normalized to a value between 0 and 1 according to Formula 2 below. In addition, the normalized average value of the chemical component content of each cluster or of all coffee raw materials can be obtained by using General Formula 2.
<일반식 2><General formula 2>
(측정대상의 화학 성분 함량 값 -모집단의 최소값) / (모집단의 최대값-모집단의 최소값)(Chemical component content value of measurement target - minimum value of population) / (maximum value of population - minimum value of population)
상기 일반식 2에서, 모집단의 최대값은 모집단에서 측정된 특정 화학 성분의 함량 값 중 가장 높은 값을 의미하고, 모집단의 최소값은 모집단에서 측정된 특정 화학 성분의 함량 중 가장 낮은 값을 의미하며, 측정대상의 화학 성분 함량 값은 정규화하고자 하는 클러스터에 포함되어 있는 특정 화학 성분의 함량 값 또는 모든 커피 원료 화학 성분 함량 값을 의미한다. In the general formula 2, the maximum value of the population means the highest value among the content values of the specific chemical component measured in the population, and the minimum value of the population means the lowest value among the content of the specific chemical component measured in the population, The chemical component content value of the measurement target means the content value of a specific chemical component included in the cluster to be normalized or the content value of all coffee raw material chemical components.
예를 들면, 모집단이 생두 54개이고 특정 화학 성분이 포도당인 경우 모든 커피 원료 화학 성분 함량 값에 대한 정규화 값은, 54개의 생두에 대한 포도당의 함량 값 중에서 가장 높은 함량 값을 모집단의 최대값으로 하고, 가장 낮은 함량 값을 모집단의 최소 값으로 할 수 있다. 한편, 측정 값은 커피 원료 시료의 화학 성분의 함량 값으로 할 수 있다. For example, if the population is 54 green coffee beans and the specific chemical component is glucose, the normalized values for all the coffee raw material chemical component content values, the highest value among the glucose content values for 54 green coffee beans is the maximum value of the population, , the lowest content value may be the minimum value of the population. On the other hand, the measured value may be the content value of the chemical component of the coffee raw material sample.
한편, 54개 커피의 화학 성분 함량에 대한 정규화 평균 값은 상기 일반식 1에서 측정 값으로 54개 커피의 포도당의 함량 값을 대입하여 구할 수 있다. 구체적으로 일반식 1에 따라 측정한 54개의 커피에 대한 화학 성분 함량의 정규화 값을 구하고, 이를 모두 합한 다음에 커피의 개수인 54로 나누어서 54개의 커피의 화학 성분 함량에 대한 정규화 평균값을 구할 수 있다. On the other hand, the normalized average value for the chemical component content of the 54 coffees can be obtained by substituting the glucose content value of the 54 coffees as the measured value in Formula 1 above. Specifically, obtain the normalized value of the chemical component content of 54 coffees measured according to Formula 1, add them all, and then divide by 54, the number of coffees, to obtain the normalized average value for the chemical component content of 54 coffees. .
커피 원료에 포함된 유기산, 및 단당류의 양이 정규화 평균 값 이하인 경우 해당 커피 원료의 산미는 적게 형성된다고 예측할 수 있다. 또한, 커피 원료에 포함된 클로로겐산의 양이 정규화 평균 값 보다 높은 경우 쓴맛이 클 것으로 예상할 수 있다.When the amounts of organic acids and monosaccharides included in the coffee raw materials are equal to or less than the normalized average value, it can be predicted that the coffee raw materials have little acidity. In addition, when the amount of chlorogenic acid contained in the coffee raw material is higher than the normalized average value, it can be expected that the bitter taste is large.
커피 생두의 경우 로스팅 방법에 따라 향미가 변화할 수 있기 때문에 생두가 가지는 향미의 잠재력을 예측할 수 있고, 상기 로스팅 프로파일 제공 방법과 함께 활용하면 보다 정확하게 향미를 예측할 수 있다. 커피 원두의 경우 본 방법에 따라 예측된 향미를 고려하여 브로잉 방법을 결정할 수도 있고, 브로잉 방법이 결정되는 경우 보다 정확환 향미를 예측할 수 있다. In the case of green coffee beans, since the flavor may change depending on the roasting method, the flavor potential of the green coffee beans can be predicted, and when used together with the roasting profile providing method, the flavor can be more accurately predicted. In the case of coffee beans, a brewing method may be determined in consideration of the flavor predicted according to the present method, and when the brewing method is determined, a more accurate ring flavor may be predicted.
예측할 수 있는 향미는 산미, 단맛, 쓴맛, 무게감(body), 및 아로마를 포함하나 이에 제한되지 않는다. 예측할 수 있는 산미와 이와 관련된 화합물을 하기 표 1에 나타내었다.Predictable flavors include, but are not limited to, acidity, sweetness, bitterness, body, and aroma. The predictable acidity and related compounds are shown in Table 1 below.
산미
(Acidity)acidity (Acidity) |
말산(Malic acid), 시트르산(Citric acid), 아세트산 (Acetic acid), 포름산(Formic acid), 인산(Phosphoric acid), 퀴닉산(Quinic acid)Malic acid, Citric acid, Acetic acid, Formic acid, Phosphoric acid, Quinic acid |
쓴맛
(Bitterness)bitter (Bitterness) |
카페인, 테로브로민(Therobromine), 테오필린(Theophylline), 2,5-디케토피페라진 (2,5-diketopiperazine), 카페인산 (Caffeic acid), 페룰산(Ferulic acid), 클로로겐산(Chlorogenic acid), 락톤(Lactone), 케닐린다네(Phenylindane)Caffeine, Therobromine, Theophylline, 2,5-diketopiperazine, Caffeic acid, Ferulic acid, Chlorogenic acid, Lactone, Phenylindane |
단맛(Sweetness)Sweetness | 설탕(sucrose), 과당(Fructose), 포도당(Glucose)Sugar, Fructose, Glucose |
구강촉감(mouth feel)mouth feel | 리놀레산(Linoleic acid), 팔미트산(Palmitic acid), 지방산(Fatty acids(C16-C18))Linoleic acid, Palmitic acid, Fatty acids (C16-C18) |
무게감(body)weight (body) | 셀룰로오스(Cellulose), 만난(Mannan), 아라비노갈락탄(Arabinogalactan), 지질(리놀렌산(Linoleic acid), 팔미트산(Palmitic acid)), 단백질Cellulose, Mannan, Arabinogalactan, Lipid (Linoleic acid, Palmitic acid), Protein |
단향/버터향(Sweet / Buttery)Sweet / |
2,3- 부탄디온(2,3-butanedione), 2,3- 펜탄 디온(2,3-pentanedione), 다마스첸(Damascenone), 피리딘(Pyridines)2,3-butanedione, 2,3-pentanedione, Damascenone, Pyridines |
허니향/카라멜향(Honey / Caramel)Honey / Caramel | 푸르푸랄(Furfural), 바닐린(Vanillin), 푸라노네(Furanone)Furfural, Vanillin, Furanone |
과일향(Fruity)Fruity | 아세트 알데히드(Acetaldehyde), 프로 파날 (Propanal), 페닐 아세트 알데히드 (Phenylacetaldehyde)Acetaldehyde, Propanal, Phenylacetaldehyde |
맥아 향(Malty)Malty | 2- 메틸부타날(2-methylbutanal), 3- 메틸부타 날(3-methylbutanal), 헥사날(Hexanal)2-methylbutanal (2-methylbutanal), 3-methylbutanal (3-methylbutanal), hexanal (Hexanal) |
견과향/곡물향(Nutty / Cereal)Nutty / Cereal | 피롤(Pyrroles), 2-아세틸피롤린(2-acetyl pyrroline)Pyrroles, 2-acetyl pyrroline |
흙향/구운향(Earthy / Roasty)Earthy / Roasty | 2- 에틸 -3,5- 디메틸 피라진 (2-ethyl-3,5-dimethylpyrazine), 2-에틸-6-메틸 피라진 (피라진) (2-ethyl-6-methylpyrazine(pyrazine)), 2-메톡시-3-이소프로필피라진(2-methoxy-3-isopropylpyrazine)2-ethyl-3,5-dimethylpyrazine (2-ethyl-3,5-dimethylpyrazine), 2-ethyl-6-methylpyrazine (pyrazine) (2-ethyl-6-methylpyrazine(pyrazine)), 2-methoxy -3-Isopropylpyrazine (2-methoxy-3-isopropylpyrazine) |
페놀향/매운향(Phenolic / Spicy)Phenolic / Spicy | 4- 비닐과이아콜 (4-vinylguaiacol), 4- 에틸과이아콜 (4-ethylguaiacol)4-vinylguaiacol (4-vinylguaiacol), 4-ethylguaiacol (4-ethylguaiacol) |
재향/탄향(Ashy / Burn)Ashy / Burn | 카테콜(Catechol), 과이아콜(Guaiacol)Catechol, Guaiacol |
썩은향/유황향
(Putrid / Sulphurous )Rotten / Sulfurous Scent (Putrid / Sulfurous) |
메탄 티올(Methanethiol), 디메틸 설파이드 (Dimethylsulfide)Methanethiol, Dimethylsulfide |
실시예 1. 커피 원료의 분류 방법Example 1. Classification method of coffee raw materials
분석 대상인 생두 샘플로 알마씨엘로(ALMACIELO)에서 구입한 19개 생두, 아름다운 커피에서 구입한 1개 생두 및 지에스씨 인터네셔널(GSC International)에서 구입한 34개 생두를 포함하는 품종이 상이한 총 54개의 생두를 이용하였다. 상기 구입한 생두 샘플은 온도가 20 ℃ 내지 26℃이고, 상대습도가 40% 내지 50%인 환경에서 약 12 시간 내지 24 시간 보관하였다. NIR을 찍기 전에 상기 보관된 54개의 생두 각각을 충분히 섞어주고 측정 전에 표면을 살짝 눌러주어 최대한 NIR 분석장비에서 찍히는 면에 공백이 없도록 하였다.A total of 54 green coffee beans of different varieties, including 19 green coffee beans purchased from ALMACIELO, 1 green coffee purchased from Beautiful Coffee, and 34 green coffee beans purchased from GSC International as a sample of green coffee to be analyzed. was used. The purchased green coffee samples were stored for about 12 to 24 hours in an environment of a temperature of 20°C to 26°C and a relative humidity of 40% to 50%. Before taking NIR, each of the stored 54 green coffee beans was sufficiently mixed and the surface was lightly pressed before measurement so that there was no space on the surface of the NIR analysis device as much as possible.
다음으로, NIR 분석장비(FOSS analytics beyond measure, Ltd의 'DS2500 F')를 이용하여 생두 샘플의 NIR을 측정하였다. 측정 조건은 1회당 레퍼티션(repetition) 4회 및 서브스캔(subscan) 32회로 하였으며, 따라서 생두 샘플 200g을 넣고 실행하면 1번에 32회의 서브스캔이 출력되며, 이를 3번 반복하여 총 96개의 서브스캔하고 이들의 평균 값을 분석 데이터로 확보하였다.Next, the NIR of the green coffee sample was measured using an NIR analysis device ('DS2500 F' of FOSS analytics beyond measure, Ltd). The measurement conditions were 4 repetitions and 32 subscans per one time. Therefore, when 200g of a green coffee sample is added and executed, 32 subscans are output at one time, and this is repeated 3 times for a total of 96 Subscans were performed and their average values were obtained as analysis data.
한편, 측정된 총 파장의 길이는 400 nm 내지 2500nm 이며, 2nm 간격으로 csv(comma-separated values)파일 형태로 출력되었다. 생두의 색상에 따른 변수를 줄이기 위하여 분석에서는 전체 파장(400 nm ~ 2,500 nm, 0.5 단위) 중에서 색상을 나타내는 파장 범위(400nm 내지 700nm)와 그 경계 파장 범위(700nm 내지 900nm)에 해당되는 파장 범위는 제외하고, 900nm 내지 2,500nm의 파장 범위 값만을 이용하여 진행하였다.On the other hand, the length of the measured total wavelength is 400 nm to 2500 nm, and it is output in the form of a csv (comma-separated values) file at intervals of 2 nm. In order to reduce the variables depending on the color of green coffee beans, in the analysis, the wavelength range representing the color (400 nm to 700 nm) and the wavelength range corresponding to the boundary wavelength range (700 nm to 900 nm) among all wavelengths (400 nm to 2,500 nm, in 0.5 units) are Except, it was carried out using only the wavelength range value of 900nm to 2,500nm.
900nm 내지 2,500nm에서 확보한 분석 데이터를 가지고 주성분 분석(PCA)를 진행하였다. 900nm 내지 2,500nm 파장범위에 분석될 파장 포인트(point)들은 1,600개이기 때문에 높은 차원의 정보를 함유하는 데이터 분석을 위해서는 차원 축소가 필요로 하였다. 도 1은 900nm 내지 2,500nm의 분석 데이터를 가지고 주성분 분석(Principal Component Analysis)한 결과를 보여주는 예시적인 도면이다.Principal component analysis (PCA) was performed with the analysis data obtained from 900 nm to 2,500 nm. Since there are 1,600 wavelength points to be analyzed in the 900 nm to 2,500 nm wavelength range, dimension reduction was required for data analysis containing high-dimensional information. 1 is an exemplary view showing the results of principal component analysis (Principal Component Analysis) with analysis data of 900 nm to 2,500 nm.
상기 주성분 분석 데이터에 대해서 K-평균 클러스터링(K-mean Clustering) 방법을 사용하여 커피 생두에 대한 클러스터를 형성하였다. 클러스터링 분석을 위해 엘보우(Elbow), 실루엣(silhouette) 또는 갭 통계 방법(gap statistic method)을 통하여 적합한 클러스터링(clustering)의 개수를 찾았고, 이를 이용하여 K-평균 클러스터링(K-mean clustering)을 계산하였다. 또한, 계층적 클러스터링(Hierarchical clustering) 분석을 통해 클러스터가 잘 형성되었는지 확인했으며, 이는 pvclust packages의 AU(Approximately unbiased p-value)의 값을 통해 유의성을 확인하였다. 한편, 생두의 화학적 특성 기반의 클러스터와 관련된 모든 분석은 R에서 진행하였다. 54개 생두 샘플에 대한 클러스터링 진행 결과, 7개의 클러스터(C1 내지 C7)로 분류할 수 있었다. 도 2는 본 출원에 따른 커피 원료의 분류 방법에서 54개 생두 샘플에 대한 클러스터 형성한 결과를 보여주는 예시적인 도면이다. For the principal component analysis data, a cluster for green coffee beans was formed using a K-mean clustering method. For clustering analysis, the number of suitable clustering was found through Elbow, silhouette, or gap statistic method, and K-mean clustering was calculated using this. . In addition, it was confirmed that the cluster was well formed through hierarchical clustering analysis, and the significance was confirmed through the value of Approximately unbiased p-value (AU) of pvclust packages. Meanwhile, all analyzes related to clusters based on chemical properties of green coffee were performed in R. As a result of clustering for 54 green coffee samples, it could be classified into 7 clusters (C1 to C7). 2 is an exemplary view showing the results of forming clusters on 54 green bean samples in the method for classifying coffee raw materials according to the present application.
실시예 2. 로스팅 프로파일 설계 방법Example 2. Roast Profile Design Method
이어서, 실시예 1에서 형성된 클러스터의 화학 성분 함량을 전술한 일반식 1에 따라 정규화하고, 이를 이용하여 클러스터별 화학 성분 함량에 대해서 정규화 평균값을 구하였다. Then, the chemical component content of the cluster formed in Example 1 was normalized according to the above-mentioned general formula 1, and a normalized average value was obtained for the chemical component content of each cluster using this.
도 3은 클러스터 1(C1)의 화학 성분 함량의 정규화 평균값을 보여주는 예시적인 도면이다. 클러스터 1(C1)의 전반적인 특징으로는 산미를 줄 수 있는 유기산의 양이 적게 포함되어 있고, 쓴맛을 낼 수 있는 카페인, 클로로겐산의 양이 상대적으로 많이 포함되어 있다. 또한 설탕, 단당류 및 단백질과 같은 마야르 반응의 전구 물질의 양이 상대적으로 많이 포함되어 있다. 또한, 다당류와 지질의 양이 많아 무게감(body)이 좋을 것으로 예상된다.3 is an exemplary diagram showing the normalized average value of the chemical component content of cluster 1 (C1). The overall characteristics of cluster 1 (C1) include a small amount of organic acid that can give acidity, and a relatively large amount of caffeine and chlorogenic acid that can give bitter taste. It also contains relatively high amounts of precursors of the Mayar reaction, such as sugars, monosaccharides and proteins. In addition, it is expected that the weight (body) is good because the amount of polysaccharides and lipids is high.
도 4는 클러스터 2(C2)의 화학 성분 함량의 정규화 평균값을 보여주는 예시적인 도면이다. 클러스터 2(C2)의 전반적인 특징으로는 유기산이 많이 포함되어 있고, 설탕, 단백질, 클로로겐산, 트리고넬린도 적절하게 포함되어 있다. 그 외에도 무게감에 기여하는 다당류, 수분함량, 지질의 양도 평균 수준으로 포함되어 있으며, 쓴 맛을 내는 클로로겐산과 카페인은 상대적으로 적게 포함되어 있다. 4 is an exemplary diagram showing the normalized average value of the chemical component content of cluster 2 (C2). The overall characteristics of cluster 2 (C2) include a lot of organic acids, and sugar, protein, chlorogenic acid, and trigonelline are also appropriately included. In addition, polysaccharides, water content, and lipids that contribute to the feeling of weight are included at average levels, and chlorogenic acid and caffeine, which cause bitter taste, are contained relatively little.
도 5는 클러스터 3(C3)의 화학 성분 함량의 정규화 평균값을 보여주는 예시적인 도면이다. 클러스터 3(C3)의 전반적인 특징으로는 풍부한 향미 및 산미와 관련된 저분자 화합물인 설탕, 단당류, 아미노산, 트리고넬린 등의 화학 성분이 많이 포함되어 있으나, 무게감, 쓴맛과 관련된 화학 성분은 상대적으로 적게 포함되어 있다.5 is an exemplary diagram showing the normalized average value of the chemical component content of cluster 3 (C3). Cluster 3 (C3) contains many chemical components such as sugar, monosaccharides, amino acids, and trigonelline, which are low molecular compounds related to rich flavor and acidity, but relatively few chemical components related to weight and bitterness are included. have.
도 6은 클러스터 4(C4)의 화학 성분 함량의 정규화 평균값을 보여주는 예시적인 도면이다. 클러스터 4(C4)의 전반적인 특징으로는 마야르 반응 및 카라멜 반응의 전구물질(설탕, 단당류 및 단백질)의 양은 적지만, 복합 다당류의 함량이 상대적으로 높아 열분해로 인해 생성된 단당류로 인하여 생성되는 단맛을 기대해 볼 수 있다. 또한 다당류 및 지질의 함량은 상대적으로 많이 포함되어 있다. 6 is an exemplary diagram showing the normalized average value of the chemical component content of cluster 4 (C4). Cluster 4 (C4) has a small amount of precursors (sugar, monosaccharide, and protein) of the Mayar reaction and caramel reaction, but the content of complex polysaccharides is relatively high. Sweetness produced due to monosaccharides generated by thermal decomposition can be expected. In addition, the content of polysaccharides and lipids is relatively high.
도 7는 클러스터 5(C5)의 화학 성분 함량의 정규화 평균값을 보여주는 예시적인 도면이다. 클러스터 5(C5)의 전반적인 특징으로는 유기산과 복합 다당류를 제외하고는 모든 화학 성분이 가장 많이 포함되어 있다. 7 is an exemplary diagram showing the normalized average value of the chemical component content of cluster 5 (C5). The overall characteristics of cluster 5 (C5) include the highest amount of all chemical components except for organic acids and complex polysaccharides.
도 8는 클러스터 6(C6)의 화학 성분 함량의 정규화 평균값을 보여주는 예시적인 도면이다. 클러스터 6(C6)의 전반적인 특징으로는 마야르 반응의 전구 물질 중에서 설탕의 함량이 상대적을 낮게 포함되어 있고, 복합 다당류의 양은 상대적으로 많이 포함되어 있다.8 is an exemplary diagram showing the normalized average value of the chemical component content of cluster 6 (C6). As an overall characteristic of cluster 6 (C6), the sugar content is relatively low among the precursors of the Mayar reaction, and the amount of complex polysaccharides is relatively high.
도 9는 클러스터 7(C7)의 화학 성분 함량의 정규화 평균값을 보여주는 예시적인 도면이다. 클러스터 7(C7)의 전반적인 특징으로는 유기산과 다당류의 양은 상대적으로 많이 포함되어 있으나, 마야르 반응의 전구체나 저분자 화합물의 양이 상대적으로 적게 포함되어 있다. 또한, 트리고넬린과 카페인의 유도체의 양이 상대적으로 많이 포함되어 있다.9 is an exemplary diagram showing the normalized average value of the chemical component content of cluster 7 (C7). As an overall characteristic of cluster 7 (C7), the amount of organic acid and polysaccharide is relatively high, but the amount of precursor or low molecular weight compound of the Mayar reaction is relatively small. In addition, the amount of derivatives of trigonelline and caffeine is relatively high.
상기 클러스터별 정규화된 화학성분의 함량을 기초로 생두 투입 온도 및 시간에 따른 온도의 변화율을 구간별로 설정하여, 로스팅 프로파일을 설계하였고, 이를 표 2에 나타내었다.A roasting profile was designed by setting the green bean input temperature and the temperature change rate according to time for each section based on the content of chemical components normalized for each cluster, and the results are shown in Table 2.
C1C1 | C2C2 | C3C3 | C4C4 | C5C5 | C6C6 | C7C7 | |
투입온도input temperature | 약 138℃ ~ 142℃About 138℃ ~ 142℃ | 약 153℃ ~ 157℃Approx. 153℃ ~ 157℃ | 약 153℃ ~ 157℃Approx. 153℃ ~ 157℃ | 약 118℃ ~ 122℃Approx. 118℃ ~ 122℃ | 약 103℃ ~ 107℃Approx. 103℃ ~ 107℃ | 약 118℃ ~ 122℃Approx. 118℃ ~ 122℃ | 약 153℃ ~ 157℃Approx. 153℃ ~ 157℃ |
마야르 구간(M) Mayar Section (M) | 100초100 seconds | 105초105 seconds | 59초59 seconds | 102초102 seconds | 142초142 seconds | 93초93 seconds | 76초76 seconds |
카라멜 구간(C) Caramel section (C) | 107초107 seconds | 98초98 seconds | 132초132 seconds | 89초89 seconds | 131초131 seconds | 106초106 seconds | 144초144 seconds |
발현 구간(D)Expression section (D) | 111초111 seconds | 84초84 seconds | 214초214 seconds | 105초105 seconds | 125초125 seconds | 169초169 seconds | 74초74 seconds |
배출온도exhaust temperature | 약 203℃ ~ 207℃Approx. 203℃ ~ 207℃ | 약 204℃ ~ 208℃Approx. 204℃ ~ 208℃ | 약 208℃ ~ 212℃Approx. 208℃ ~ 212℃ | 약 207℃ ~ 211℃Approx. 207℃ ~ 211℃ | 약 216℃ ~ 220℃Approx. 216℃ ~ 220℃ | 약 218℃ ~ 222℃Approx. 218℃ ~ 222℃ |
약 201℃ ~ 205℃Approx. 201℃ ~ 205 |
MCD 비율MCD rate | 31%:34%:35%31%:34%:35% | 37%:34%:29%37%:34%:29% | 15%:32%:53%15%:32%:53% | 34%:30%:36%34%:30%:36% | 36%:33%:31%36%:33%:31% | 25%:29%:46%25%:29%:46% | 26%:49%:25%26%:49%:25% |
실시예 3. 클러스터 5의 로스팅 프로파일의 검증Example 3. Validation of the roasting profile of cluster 5
BRZ12 (브라질 세하도), PRU1 (페루 찬차마요) 및 NEP1 (네팔 신두팔촉) 커피 생두를 대상으로 하였다. 상기 커피 생두는 본원 발명에 따른 화학적 특성을 분석하여 클러스터링 한 결과, 모두 클러스터 5(C5)에 해당되었다. The subjects were BRZ12 (Sehado, Brazil), PRU1 (Chanchamayo, Peru) and NEP1 (Shindupalchok, Nepal) coffee beans. As a result of clustering the green coffee beans by analyzing the chemical properties according to the present invention, all of them corresponded to cluster 5 (C5).
전술한 바와 같이, 클러스터 5의 정규화한 화학성분은 유기산과 복합 다당류를 제외하고는 다른 화학 성분(설탕, 단당류, 아미노산, 지질, 디테르펜, 트리고넬린, 클로로켄산, 및 카페인)이 많이 포함되어 있는 것이 특징이다. 따라서, 디테르펜 및 트리고넬린은 마야르 구간에서 달달한 아로마를 만들 수 있고, 단백질이 많이 발현구간이 길어지면 쓴맛과 잡맛이 많아질 가능성이 높다. 따라서 상기 클러스터 5의 화학 성분의 특징을 고려하여 마야르 구간은 142초, 카라멜 구간은 131초, 및 발현구간은 125초으로 로스팅 프로파일 설계하였다. 이어서, 상기 설계된 로스팅 프로파일의 방법으로 BRZ12 (브라질 세하도), PRU1 (페루 찬차마요) 및 NEP1 (네팔 신두팔촉)을 로스팅 한 후 생산된 원두의 스페셜티 커피 맛 평가를 하였다. As described above, the normalized chemical composition of cluster 5 contains a lot of other chemical components (sugar, monosaccharide, amino acid, lipid, diterpene, trigonelline, chlorokenic acid, and caffeine) except for organic acids and complex polysaccharides. is characterized. Therefore, diterpenes and trigonelline can create a sweet aroma in the Mayar section, and when the expression section is long with a lot of protein, there is a high possibility that the bitter taste and miscellaneous taste increase. Therefore, in consideration of the characteristics of the chemical composition of cluster 5, the roasting profile was designed with a Mayar section of 142 seconds, a caramel section of 131 seconds, and an expression section of 125 seconds. Then, BRZ12 (Sehado, Brazil), PRU1 (Chanchamayo, Peru) and NEP1 (Shindupalchok, Nepal) were roasted by the method of the designed roasting profile, and then the specialty coffee taste was evaluated.
한편, 비교 대상으로는 로스터가 임의로 선정한 마야르 구간 120초, 카라멜 구간 120초, 및 발현구간 120초로 설계하여, BRZ12 (브라질 세하도), PRU1 (페루 찬차마요) 및 NEP1 (네팔 신두팔촉)을 로스팅 한 후 생산된 원두의 스페셜티 커피 맛 평가한 것과 비교하였다.On the other hand, for comparison, it was designed with 120 seconds of Mayar section, 120 seconds of caramel section, and 120 seconds of expression section randomly selected by the roaster, BRZ12 (Sehado, Brazil), PRU1 (Chanchamayo, Peru) and NEP1 (Shindupalchok, Nepal) was compared with the evaluation of the specialty coffee taste of beans produced after roasting.
블라인드 테스트 결과, BRZ12 (브라질 세하도), PRU1 (페루 찬차마요) 및 NEP1 (네팔 신두팔촉)의 경우 모두, 클러스터 5에 대한 제공된 로스팅 프로파일에 의해 생산된 원두가 로스터가 임의로 선정한 기준에 의해 생산된 원두보다, 좋지 않은 쓴맛이 줄어 들었고, 단맛이 증가되었으며, 단 아로마가 증가되었고 스페셜티 커피 맛 평가의 기준 중에 클린 컵(Clean cup: 잡맛이 없고 깔끔함 평가) 부분에서 높은 평가를 받았다. 한편, 클린 컵(Clean cup)의 점수가 높을수록 향미에 영향을 미치는 화학 성분의 로스팅 과정에서 화학적 반응이 제대로/충분히 이뤄졌다고 볼 수 있다. As a result of the blind test, in all cases of BRZ12 (Sehado, Brazil), PRU1 (Chanchamayo, Peru) and NEP1 (Shindupalchok, Nepal), the beans produced by the provided roasting profile for cluster 5 were produced according to the criteria randomly selected by the roaster. Compared to ground coffee beans, the unfavorable bitterness decreased, the sweetness increased, and the sweet aroma was increased, and among the criteria for evaluating the taste of specialty coffee, it was highly evaluated in the Clean cup (cleanness evaluation without harsh taste). On the other hand, the higher the score of the Clean cup, the better/sufficient the chemical reaction in the roasting process of chemical ingredients that affect flavor.
실시예 4. 원두의 향미 예측Example 4. Prediction of flavor of coffee beans
전술한 54 개의 생두 샘플을 로스터기(IKAWA pro v3 sample roaster)를 이용하여 클러스터별 추천 로스팅 프로파일을 통해 30g씩 로스팅한 것을 이용하였다. 상기 로스팅한 원두 샘플은 온도가 20 ℃ 내지 26℃이고, 상대습도가 40% 내지 50%인 환경에서 약 12 시간 내지 24 시간 보관하였다. 그 후 그라인더(HARIO V60 전동 커피 그라인더, EVCG-8B-K)로 분쇄도 0의 굵기로 갈아 분석을 진행하였다.The aforementioned 54 green coffee samples were roasted by 30 g using a roaster (IKAWA pro v3 sample roaster) through the recommended roasting profile for each cluster. The roasted bean sample was stored at a temperature of 20 °C to 26 °C and a relative humidity of 40% to 50% for about 12 hours to 24 hours. Thereafter, the analysis was performed by grinding the grinder to a thickness of 0 with a grinder (HARIO V60 electric coffee grinder, EVCG-8B-K).
다음으로, ATR-FTIR 분석장비(Thermo Fisher Scientific, Ltd의 'Nicolet IS50'와 ATR diamond crystals accessory)를 사용하여 측정하였다. 측정조건은 1회당 서브스캔(subscan) 13회, 해상도(resolution) 4cm
-1, 데이터 스페이싱(data spacing) 0.482cm
-1로 하고, 백그라운드 콜렉션(background collection) 후 600 내지 4,000 cm
-1의 스펙트럼 레인지(spectral range)로 샘플당 10번 반복 측정하였다. 상기 출력된 데이터는 파이썬(python) 의 rampy.baseline method의 “ALS”을 통해 기준선 조정(baseline correction)을 진행하고, 각 샘플의 평균값을 이용하여 정규화(Normalize)를 진행하여 분석 데이터를 확보하였다. Next, it was measured using ATR-FTIR analysis equipment ('Nicolet IS50' and ATR diamond crystals accessory of Thermo Fisher Scientific, Ltd). The measurement conditions are per the sub-scan (subscan) 13 times, the resolution (resolution) 4cm -1, spacing data (data spacing) to 0.482cm -1 and the background collection (collection background) spectrum of the post 600 to 4,000 cm -1 range (spectral range) was repeated 10 times per sample. The output data was subjected to baseline correction through “ALS” of the rampy.baseline method of Python, and normalized using the average value of each sample to secure analysis data.
상기 분석 데이터를 가지고 주성분 분석(PCA) 및 K-평균 클러스터링(K-mean Clustering) 방법을 사용하여 커피 원두에 대한 클러스터를 형성할 수 있었고, 클러스터별 향미를 예측할 수 있었다.With the above analysis data, clusters for coffee beans could be formed using principal component analysis (PCA) and K-mean clustering methods, and flavor for each cluster could be predicted.
실시예 5. 생두의 향미 예측Example 5. Prediction of flavor of green beans
전술한 실시예 1 에서, 54개의 생두에 대한 NIR 측정 값으로 생두 54개에 포함된 화학 성분(Organic_acids, Sucrose, Mono_sugar, Proteins, Poly_sugar, Lipids, Diterpene, Water, Chlorogenic_acids, Caffeine, Caffeine_sub 및 Trigonelline)의 함량 값을 측정하였다. 상기 측정된 화학 성분의 함량 값을 하기 일반식 2에 따라 0과 1 사이의 값으로 변환하여 정규화 하였다.In Example 1, as measured by NIR values for 54 green coffee beans, the chemical components (Organic_acids, Sucrose, Mono_sugar, Proteins, Poly_sugar, Lipids, Diterpene, Water, Chlorogenic_acids, Caffeine, Caffeine_sub and Trigonelline) The content value was measured. The measured content value of the chemical component was normalized by converting it to a value between 0 and 1 according to the following general formula (2).
<일반식 2><General formula 2>
(측정대상의 화학 성분 함량 값 -모집단의 최소값) / (모집단의 최대값-모집단의 최소값)(Chemical component content value of measurement target - minimum value of population) / (maximum value of population - minimum value of population)
상기 일반식 2에서, 모집단의 최대값은 모집단에서 측정된 특정 화학 성분의 함량 값 중 가장 높은 값을 의미하고, 모집단의 최소값은 모집단에서 측정된 특정 화학 성분의 함량 중 가장 낮은 값을 의미하며, 측정대상의 화학 성분 함량 값은 정규화하고자 하는 클러스터에 포함되어 있는 특정 화학 성분의 함량 값 또는 모든 커피 원료 화학 성분 함량 값을 의미한다. 한편, 상기 모집단은 54개 생두에서 측정된 특정 화학 성분의 함량으로 하였다.In the general formula 2, the maximum value of the population means the highest value among the content values of the specific chemical component measured in the population, and the minimum value of the population means the lowest value among the content of the specific chemical component measured in the population, The chemical component content value of the measurement target means the content value of a specific chemical component included in the cluster to be normalized or the content value of all coffee raw material chemical components. Meanwhile, the population was defined as the content of specific chemical components measured in 54 green coffee beans.
한편, 54개 커피의 화학 성분 함량에 대한 정규화 평균 값은 상기 일반식 1에서 측정 값으로 54개 커피의 포도당의 함량 값을 대입하여 구하였다. 구체적으로 일반식 1에 따라 측정한 54개의 커피에 대한 화학 성분 함량의 정규화 값을 구하고, 이를 모두 합한 다음에 커피의 개수인 54로 나누어서 54개의 커피의 화학 성분 함량에 대한 정규화 평균값을 구하였다.On the other hand, the normalized average value for the chemical component content of 54 coffees was obtained by substituting the glucose content value of 54 coffees as the measured value in Formula 1 above. Specifically, the normalized value of the chemical component content of 54 coffees measured according to Formula 1 was obtained, and after adding them all, the normalized average value of the chemical component content of 54 coffees was obtained by dividing by 54, the number of coffees.
다음으로, 테라로사(Terarosa)에서 구입한 부룬디 카린지(Burundi Karinzi) 커피 생두(이하, 분석 대상 커피)에 대해서 실시예 1 에서의 방법과 동일한 방법으로 화학 성분(Organic_acids, Sucrose, Mono_sugar, Proteins, Poly_sugar, Lipids, Diterpene, Water, Chlorogenic_acids, Caffeine, Caffeine_sub 및 Trigonelline)의 함량 값을 측정하고, 전술한 일반식 1의 측정값으로 대입하여 정규화 하였다.Next, the chemical components (Organic_acids, Sucrose, Mono_sugar, Proteins, Poly_sugar, Lipids, Diterpene, Water, Chlorogenic_acids, Caffeine, Caffeine_sub and Trigonelline) content values were measured, and normalized by substituting the measured values of General Formula 1 above.
분석대상 커피의 정규화 값 및 모집단 커피의 정규화 평균 값을 하기 표 3에 나타내었다. The normalized values of the coffee to be analyzed and the normalized average values of the population coffee are shown in Table 3 below.
화학 성분chemical composition |
분석대상 커피의 정규화
(모집단 커피 대비 증감%)Normalization of the target coffee (% increase or decrease compared to population coffee) |
모집단 커피(54개의 생두)의 정규화 평균Normalized mean of population coffee (54 green beans) |
트리고넬린(Trigonelline)Trigonelline | 0.284(-19.77)0.284 (-19.77) | 0.3540.354 |
기타 단당류(Mono_sugar)Other monosaccharides (Mono_sugar) | 0.364(-4.21%)0.364 (-4.21%) | 0.380.38 |
포도당(glucose)glucose | 0.263(-27.95%)0.263 (-27.95%) | 0.3650.365 |
과당(fructose)fructose | 0.493(-8.02%)0.493 (-8.02%) | 0.5360.536 |
설탕(sucrose)sugar (sucrose) | 0.27(-17.93%)0.27 (-17.93%) | 0.3290.329 |
다당류(Poly_sugar)Polysaccharide (Poly_sugar) | 0.726(+18.05%)0.726 (+18.05%) | 0.6150.615 |
기타 유기산(Organic acid)Other organic acids | 0.447(-21.85%)0.447 (-21.85%) | 0.5720.572 |
시트르산(Citric acid)Citric acid | 0.454(-21.18%)0.454 (-21.18%) | 0.5760.576 |
말산(Malic acid)Malic acid | 0.454(-21.18%)0.454 (-21.18%) | 0.5760.576 |
클로로겐산(Chlorogenic acids)Chlorogenic acids | 0.67(+21.38%)0.67 (+21.38%) | 0.5520.552 |
단백질(Proteins)Proteins | 0.542(+0.18%)0.542 (+0.18%) | 0.5410.541 |
카페인(Caffeine)Caffeine | 0.472(+12.11%)0.472 (+12.11%) | 0.4210.421 |
카페인 유도체(Caffeine sub)Caffeine sub | 0.552(+19.74%)0.552 (+19.74%) | 0.4610.461 |
지질(Lipids)Lipids | 0.606(+41.26%)0.606 (+41.26%) | 0.4290.429 |
디테르펜(Diterpene)Diterpene | 0.36(+10.77%)0.36 (+10.77%) | 0.3250.325 |
수분(Water)Water | 0.563(+2.93%)0.563 (+2.93%) | 0.5470.547 |
분석대상커피는 모집단 커피와 비교하면, 다당류, 클로로겐산, 단백질, 카페인, 카페인 유도체, 지질, 디테르펜 및 수분 성분들이 높은 수치를 보였다. 반면에 트리고넬린, 기타 단당류, 포도당, 과당, 설탕, 유기산, 시트르산, 말산은 낮은 수치를 보였다. 따라서, 분석 대상 커피는 하기와 같은 향미를 예측 할 수 있다. * 분석대상커피는 모집단 커피 대비 기타 유기산(0.447), 말산(0.454), 시트르산(0.454)의 함량이 평균 이하이며, 설탕(0.270), 포도당(0.263), 과당(0.493)등 단당류의 함량 또한 평균 이하이기 때문에 산미가 상대적으로 적게 형성 될 것으로 예상이 된다.Compared with the coffee of the population, polysaccharides, chlorogenic acid, protein, caffeine, caffeine derivatives, lipids, diterpenes, and water components showed higher levels in the coffee to be analyzed. On the other hand, trigonelline, other monosaccharides, glucose, fructose, sugar, organic acid, citric acid, and malic acid showed low levels. Therefore, the coffee to be analyzed can predict the following flavor. * Compared to the population coffee, the content of other organic acids (0.447), malic acid (0.454), and citric acid (0.454) of the coffee to be analyzed is below the average, and the content of monosaccharides such as sugar (0.270), glucose (0.263), and fructose (0.493) is also average It is expected that relatively little acidity will be formed.
* 다당류(0.726)의 함량이 평균 이상이기 때문에 수용성 다당류의 단 맛이 평균 이상일 것으로 예상이 되나, 아로마를 형성하는데 필수적인 설탕, 포도당, 과당의 함량은 평균 이하이기에 단 아로마가 많이 형성되지는 않을 것으로 예상이 되므로, 전체적으로는 평균적인 단맛을 가질 것으로 예상이 된다.* Because the content of polysaccharides (0.726) is above average, the sweet taste of water-soluble polysaccharides is expected to be above average, but the content of sugar, glucose, and fructose, which are essential to form aroma, is below average, so sweet aroma will not be formed. As expected, it is expected to have an average sweetness overall.
* 클로로겐산(0.67)의 함량이 평균 이상이기 때문에 커피 특유의 쓴맛이 평균 이상일 것으로 예상이 된다.* Since the content of chlorogenic acid (0.67) is above average, it is expected that the characteristic bitter taste of coffee is above average.
* 다당류(0.726)의 함량과 수분(0.563)의 함량이 평균 이상이며, 지질(0.606)의 함량이 많기 때문에 풍부한 무게감(body)을 형성할 것으로 예상이 되며, 많은 지질의 양으로 인해 혀를 감싸는 듯한 무게감(body)이 주로 형성이 될 것으로 예상된다.* The content of polysaccharides (0.726) and moisture (0.563) are above average, and the content of lipids (0.606) is high, so it is expected to form a rich body, and due to the amount of lipids, It is expected that a feeling of weight (body) will be mainly formed.
* 아로마를 형성하는 성분인 단백질(0. 542)의 함량이 상당량 존재하며, 향미 생성에 결정적인 설탕, 포도당, 과당 등 단당류의 함량 또한 일정량 존재하기에 분석대상커피 특유의 아로마가 어느 정도 형성 될 것으로 예상이 된다. 한편, 디테르펜(0.36)의 함량이 평균 이상이기 때문에 과일향(fruity) 및 맥아향(malty)의 아로마가 있을 것이며 트리고넬린(0.284)의 함량은 평균 이하이기 때문에 단향(Sweet), 버터향(buttery)의 아로마는 평균 이하일 것으로 예상이 된다.* There is a significant amount of protein (0.542), a component that forms the aroma, and the content of monosaccharides such as sugar, glucose, and fructose, which are crucial for flavor generation, also exists in a certain amount, so it is expected that the specific aroma of the coffee to be analyzed will be formed to some extent. it is expected On the other hand, since the content of diterpene (0.36) is above average, there will be aromas of fruity and malty, and since the content of trigonelline (0.284) is below average, sweet and buttery ( The aroma of buttery) is expected to be below average.
본 출원의 또한, 커피 정보 제공 시스템에 관한 것이다. 도 10은 본 발명에 따른 커피 정보 제공 시스템의 구성을 나타낸 블록도이고, 도 11는 본 발명에 따른 커피 정보 제공 시스템의 단말의 구성을 나타낸 블록도이다. 도 10 및 도 11에 나타낸 바와 같이, 본 발명에 따른 커피 정보 제공 시스템은 적어도 하나 이상의 단말(10)과 상기 단말(10)과 네트워크(20)를 통해 연결되어 커피 원료의 정보를 제공하는 커피 정보 관리 서버(30)를 포함하여 구성된다.The present application also relates to a coffee information providing system. 10 is a block diagram showing the configuration of the coffee information providing system according to the present invention, Figure 11 is a block diagram showing the configuration of the terminal of the coffee information providing system according to the present invention. As shown in FIGS. 10 and 11 , the coffee information providing system according to the present invention is connected to at least one terminal 10 and the terminal 10 and the network 20 through a network 20 to provide information on coffee raw materials. It is configured to include a management server (30).
단말(10)은 다양한 사용자에 의해 관리되는 유선단말 또는 무선단말을 포함하는 광범위한 개념으로, PC(Personal Computer), IP 텔레비전(Internet Protocol Television), 노트북(Notebook-sized personal computer), 테플릿 PC, PDA(Personal Digital Assistant), 스마트폰, IMT-2000(International Mobile Telecommunication 2000)폰, GSM(Global System for Mobile Communication)폰, GPRS(General Packet Radio Service)폰, WCDMA(Wideband Code Division Multiple Access)폰, UMTS(Universal Mobile Telecommunication Service)폰, MBS(Mobile Broadband System)폰 등을 포함하며, 서로 다른 단말들, 커피 정보 관리 서버(30) 및 커피 정보 제공 시스템과 신호, 정보, 음성 및 영상에 대한 데이터의 송수신을 수행하도록 하는 기능을 제공받을 수 있다.The terminal 10 is a broad concept including a wired terminal or a wireless terminal managed by various users, and includes a PC (Personal Computer), an IP television (Internet Protocol Television), a notebook (Notebook-sized personal computer), a tablet PC, PDA (Personal Digital Assistant), smart phone, IMT-2000 (International Mobile Telecommunication 2000) phone, GSM (Global System for Mobile Communication) phone, GPRS (General Packet Radio Service) phone, WCDMA (Wideband Code Division Multiple Access) phone, Including a UMTS (Universal Mobile Telecommunication Service) phone, a MBS (Mobile Broadband System) phone, etc., data of different terminals, a coffee information management server 30 and a coffee information providing system and signals, information, voice and video data A function for performing transmission and reception may be provided.
단말(10)은 사용자에 따라, 커피 생두를 산지에서 생산하는 생산자가 사용하는 생산자 단말(11), 커피 생두를 로스팅하여 커피 원두를 생산하는 로스터가 사용하는 로스터 단말(12), 및 커피 생두 및/또는 원두를 구입하는 소비자가 사용하는 소비자 단말(13)을 포함하나 이에 제한되지 않는다.According to the user, the terminal 10 includes a producer terminal 11 used by a producer who produces green coffee beans at a production area, a roaster terminal 12 used by a roaster who produces coffee beans by roasting green coffee beans, and green coffee beans and / or the consumer terminal 13 used by the consumer who purchases coffee beans, but is not limited thereto.
네트워크(20)는 대용량, 장거리 음성 및 데이터 서비스가 가능한 통신망이며, 인터넷(Internet) 또는 고속의 멀티미디어 서비스를 제공하기 위한 차세대 유선 및 무선 망일 수 있다. 네트워크(20)가 이동통신망일 경우 동기식 이동 통신망일 수도 있고, 비동기식 이동 통신망일 수도 있다. 비동기식 이동 통신망의 일 실시 예로서, WCDMA(Wideband Code Division Multiple Access) 방식의 통신망을 들 수 있다. 이 경우 도면에 도시되진 않았지만, 네트워크(20)는 RNC(Radio Network Controller)을 포함할 수 있다. 한편, WCDMA망을 일 예로 들었지만, 3G LTE망, 4G망, 5G망, 또는 차세대 통신망, 그 밖의 IP를 기반으로 한 IP망일 수 있다. 네트워크(20)는 각 사용자 단말(10), 커피 정보 관리 서버(30), 및 그 밖의 시스템 상호 간의 신호 및 데이터를 상호 전달하는 역할을 한다.The network 20 is a communication network capable of providing high-capacity, long-distance voice and data services, and may be a next-generation wired or wireless network for providing Internet or high-speed multimedia services. When the network 20 is a mobile communication network, it may be a synchronous mobile communication network or an asynchronous mobile communication network. As an example of the asynchronous mobile communication network, there may be a wideband code division multiple access (WCDMA) type communication network. In this case, although not shown in the drawing, the network 20 may include a Radio Network Controller (RNC). Meanwhile, although the WCDMA network is taken as an example, it may be a 3G LTE network, a 4G network, a 5G network, a next-generation communication network, or other IP-based IP networks. The network 20 serves to mutually transmit signals and data between each user terminal 10 , the coffee information management server 30 , and other systems.
상기 커피 정보 관리 서버(30)는 네트워크를 통해 복수의 단말(10)과 연결되고, 단말(10)로부터 커피 원료의 정보 요청이 입력되면, 상기 단말(100)로 해당 커피 원료에 대한 다양한 정보를 데이터베이스에서 검색하여 제공한다.The coffee information management server 30 is connected to a plurality of terminals 10 through a network, and when a request for information of coffee raw materials is input from the terminal 10, various information about the corresponding coffee raw materials to the terminal 100 is provided. It is provided by searching the database.
사용자가 단말(10)을 통해 커피 원료의 정보를 요청할 경우, 커피 원료는 커피 생두 또는 원두의 품종, 커피 생두의 수확 시기, 커피 생두의 원산지, 원두의 생산자, 생산시기, 또는 생산지역 등의 다양한 정보를 입력하여 커피 원료를 특정할 수 있다. When the user requests information on raw materials for coffee through the terminal 10, the raw materials for coffee may include various types of green coffee beans or coffee bean varieties, harvest time of green coffee beans, origin of green coffee beans, producer of coffee beans, production time, or production region. You can specify the coffee ingredient by entering the information.
도 12는 도 10의 커피 정보 관리 서버(30)의 구성요소를 나타내는 블록도이다.12 is a block diagram showing the components of the coffee information management server 30 of FIG.
먼저, 도 12를 참조하면, 커피 정보 관리 서버(30)는 송수신부(31), 제어부(32), 그리고 데이터베이스(33)를 포함한다.First, referring to FIG. 12 , the coffee information management server 30 includes a transceiver 31 , a controller 32 , and a database 33 .
송수신부(31)는 네트워크(20)를 통해 각 사용자 단말(11,12,13)과 유선 및/또는 무선 통신 방식을 통해 신호 및 데이터 송수신을 수행한다.The transceiver 31 transmits and receives signals and data through a wired and/or wireless communication method with each of the user terminals 11 , 12 , and 13 through the network 20 .
데이터베이스(33)는 정보를 저장하는 소프트웨어 및 하드웨어의 기능적 구조적 결합을 의미할 수 있다. 데이터베이스(33)는 적어도 하나의 테이블로 구현될 수도 있으며, 데이터베이스(33)에 저장된 정보를 검색, 저장, 및 관리하기 위한 별도의 DBMS(Database Management System)을 더 포함할 수도 있다. 또한, 데이터베이스(33)는 링크드 리스트(linked-list), 트리(Tree), 관계형 데이터베이스의 형태 등 다양한 방식으로 구현될 수 있으며, 대응되는 정보를 저장할 수 있는 모든 데이터 저장매체 및 데이터 구조를 포함한다.The database 33 may refer to a functional and structural combination of software and hardware for storing information. The database 33 may be implemented as at least one table, and may further include a separate database management system (DBMS) for searching, storing, and managing information stored in the database 33 . In addition, the database 33 may be implemented in various ways, such as in the form of a linked-list, a tree, and a relational database, and includes all data storage media and data structures capable of storing corresponding information. .
제어부(32)는 커피 원료 분류 정보 제공 모듈(32b)을 포함하고, 사용자 관리 모듈(32a), 로스팅 프로파일 정보 제공 모듈(32c), 커피 원료 특성 정보 제공 모듈(32d), 커피 원료 향미 정보 제공 모듈(32e), 및 구매 관리 모듈(32f)을 포함할 수 있다. 제어부(32)는 추가로 커뮤니티 형성 및 관리 모듈(미도시)을 구비할 수 있다.The control unit 32 includes a coffee raw material classification information providing module 32b, a user management module 32a, a roasting profile information providing module 32c, a coffee raw material characteristic information providing module 32d, a coffee raw material flavor information providing module 32e, and a purchase management module 32f. The control unit 32 may further include a community formation and management module (not shown).
그리고 본 명세서에서 모듈이라 함은, 본 발명의 기술적 사상을 수행하기 위한 하드웨어 및 상기 하드웨어를 구동하기 위한 소프트웨어의 기능적, 구조적 결합을 의미할 수 있다. 예컨대, 상기 모듈은 소정의 코드와 상기 소정의 코드가 수행되기 위한 하드웨어 리소스의 논리적인 단위를 의미할 수 있으며, 반드시 물리적으로 연결된 코드를 의미하거나, 한 종류의 하드웨어를 의미하는 것은 아님은 본 발명의 기술분야의 평균적 전문가에게는 용이하게 추론될 수 있다.And, in this specification, a module may mean a functional and structural combination of hardware for carrying out the technical idea of the present invention and software for driving the hardware. For example, the module may mean a logical unit of a predetermined code and a hardware resource for executing the predetermined code, and does not necessarily mean physically connected code or one type of hardware. It can be easily inferred to an average expert in the technical field of
커피 원료 분류 정보 제공 모듈(32b)은 네트워크를 통해 접속한 상기 단말에서 커피 원료에 대한 정보의 요청을 수신하고, 요청된 커피 원료에 대한 정보를 데이터베이스로부터 추출하여 상기 단말기로 송신하도록 송수신부를 제어한다. 상기 커피 원료에 대한 정보는 커피 원료의 화학적 특성을 분석하여 분류된 커피 원료의 분류 정보이다. 커피 원료의 화학적 특성은 커피 원료에 포함된 화학원소, 화학 작용기 또는 화학 성분(화합물)의 종류와 함량을 포함할 수 있다.The coffee raw material classification information providing module 32b receives a request for information on coffee raw materials from the terminal connected through the network, extracts the requested coffee raw material information from the database, and controls the transceiver to transmit to the terminal . The information on the coffee raw material is classification information of the coffee raw material classified by analyzing the chemical characteristics of the coffee raw material. The chemical properties of the coffee raw material may include the type and content of a chemical element, a chemical functional group, or a chemical component (compound) contained in the coffee raw material.
상기 커피 원료의 분류 정보는 앞서 설명한 커피 원료의 분류 방법에 의하여 형성할 수 있고, 이에 대한 설명은 생략한다.The classification information of the coffee raw material may be formed by the method of classifying the coffee raw material described above, and a description thereof will be omitted.
본 출원의 제어부는 네트워크를 통해 접속한 단말기에서 커피 원료에 대한 정보의 요청을 수신하고, 요청된 커피 원료의 로스팅 프로파일 정보를 추출하여 상기 단말기로 송신하도록 송수신부를 제어하는 로스팅 프로파일 정보 제공 모듈을 추가로 포함할 수 있다.The control unit of the present application receives a request for information on coffee raw materials from a terminal connected through a network, extracts the requested roasting profile information of the coffee raw materials, and adds a roasting profile information providing module for controlling the transceiver to be transmitted to the terminal can be included as
상기 로스팅 프로파일 정보는 커피 원료의 분류 정보에 기초하여 형성된 것을 특징으로 한다. 생두의 로스팅 프로파일은 앞서 설명한 생두의 로스팅 프로파일 제공 방법에 의하여 형성할 수 있고, 이에 대한 설명은 생략한다.The roasting profile information is characterized in that it is formed based on the classification information of the coffee raw material. The roasting profile of green coffee beans may be formed by the above-described method of providing a roasting profile of green coffee beans, and a description thereof will be omitted.
본 출원의 다른 실시예의 제어부는 네트워크를 통해 접속한 단말기에서 커피 원료에 대한 정보의 요청을 수신하고, 요청된 커피 원료의 특성 정보를 추출하여 상기 단말기로 송신하도록 송수신부를 제어하는 커피 원료의 특성 정보 제공 모듈을 추가로 포함할 수 있다. 상기 커피 원료의 특성 정보는 커피 원료에 포함된 화학 성분의 종류와 함량을 포함한다.The control unit of another embodiment of the present application receives a request for information on coffee raw materials from a terminal connected through a network, extracts the requested characteristic information of coffee raw materials, and controls the transceiver to transmit to the terminal characteristic information of coffee raw materials It may further include a provision module. The characteristic information of the coffee raw material includes the type and content of chemical components included in the coffee raw material.
커피 원료의 생산자, 특히 커피 생두의 생산자는 자신의 생산한 커피 원두 또는 생두의 특성을 소수의 전문가의 주관적 판단인 커핑 결과에만 의존하고 있다. 따라서 예를 들어 화학 성분별 함량과 같은 객관적이고 정량적인 커피 원료의 특성에 관한 데이터를 제공받기를 원할 것이다. Producers of coffee raw materials, especially producers of green coffee beans, rely only on cupping results, which are subjective judgments of a few experts, on the characteristics of their produced coffee beans or green beans. Therefore, you will want to be provided with objective and quantitative data on the characteristics of coffee raw materials, such as, for example, the content of each chemical component.
이를 위해 커피 원료의 생산자가 특정 시험 기관에 성분 분석을 의뢰할 수 있으나, 이 방법의 경우 단일의 커피 원료의 특성 정보만을 얻을 수 있어 그 활용이 제한적이다. 본 출원의 실시예에 따르면, 커피 원료의 특성 정보는 요청된 커피 원료와 상이한 커피 원료의 특성 정보와 동시에 제공되는 것을 특징으로 한다.To this end, the producer of coffee raw materials may request a specific testing institution to analyze the ingredients, but in this case, only the characteristic information of a single coffee raw material can be obtained, so its utilization is limited. According to an embodiment of the present application, the characteristic information of the coffee raw material is characterized in that it is provided simultaneously with the requested coffee raw material and the different characteristic information of the coffee raw material.
일 실시예에서, 요청된 커피 원료가 브라질에서 2020년에 재배된 A 품종의 생두일 경우, 상이한 커피 원료는 요청된 커피 원료의 품종, 생산지 및/또는 생산시기를 고려하여 선택할 수 있다.In one embodiment, when the requested coffee raw material is green coffee of variety A grown in Brazil in 2020, different coffee raw materials may be selected in consideration of the variety, production region and/or production time of the requested coffee raw material.
예를 들어 상이한 커피 원료는 다른 대륙에서 동일한 연도에 생산된 A 품종을 선택하여 양자의 데이터를 비교하거나, 브라질에서 2015년에 재배된 A 품종을 선택하여 양자의 데이터를 비교하거나, 브라질에서 2020년에 재배된 B 품종을 선택하여 양자의 데이터를 비교할 수 있다.For example, for different coffee sources, select cultivar A produced in the same year on different continents and compare the two data, select cultivar A grown in Brazil in 2015 and compare both data, or compare data from both cultivars in Brazil in 2020. You can compare the data of both by selecting the B cultivar grown in .
본 출원의 다른 실시예의 제어부는 네트워크를 통해 접속한 단말기에서 커피 원료에 대한 정보의 요청을 수신하고, 요청된 커피 원료의 향미 예측 정보를 추출하여 상기 단말기로 송신하도록 송수신부를 제어하는 커피 원료의 향미 정보 제공 모듈을 추가로 포함할 수 있다.The control unit of another embodiment of the present application receives a request for information on coffee raw materials from a terminal connected through a network, extracts the requested flavor prediction information of coffee raw materials, and controls the transceiver to transmit the requested coffee raw material flavor to the terminal It may further include an information providing module.
상기 커피 원료의 향미 예측 정보는 앞서 설명한 향미 예측 방법에 의하여 형성할 수 있고, 이에 대한 설명은 생략한다.The flavor prediction information of the coffee raw material may be formed by the above-described flavor prediction method, and a description thereof will be omitted.
본 출원의 다른 실시예의 제어부는 네트워크를 통해 접속한 단말기에서 사용자의 로그인 정보를 수신하고 관리하는 사용자 관리 모듈을 추가로 포함할 수 있다.The control unit according to another embodiment of the present application may further include a user management module for receiving and managing login information of a user from a terminal accessed through a network.
본 출원의 다른 실시예의 제어부는 네트워크를 통해 접속한 단말기에서 커피 원료의 결제 정보를 수신하고, 요청된 결제 과정을 수행하고 그 결과를 상기 단말기로 송신하도록 송수신부를 제어하는 구매 관리 모듈을 추가로 포함할 수 있다.The control unit of another embodiment of the present application further includes a purchase management module for controlling the transceiver to receive payment information of coffee raw materials from a terminal connected through a network, perform a requested payment process, and transmit the result to the terminal can do.
Claims (21)
- 커피 생두 또는 커피 원두의 화학적 특성을 분석하여 분석 데이터를 제공하는 단계; providing analysis data by analyzing chemical properties of green coffee beans or coffee beans;상기 분석 데이터의 차원을 축소하여 차원 축소된 데이터를 제공하는 단계; 및providing dimension-reduced data by reducing the dimension of the analysis data; and상기 축소된 데이터를 분석하여 클러스터를 형성하는 단계를 포함하는 커피 원료의 분류 방법.A method of classifying coffee raw materials comprising the step of forming a cluster by analyzing the reduced data.
- 제 1 항에 있어서, 상기 커피 생두 또는 커피 원두의 화학적 특성을 분석하는 방법은 분광학적 분석법인 커피 원료의 분류 방법.The method according to claim 1, wherein the method of analyzing the green coffee beans or the chemical properties of the coffee beans is a spectroscopic analysis method.
- 제 1 항에 있어서, 상기 차원 축소된 데이터를 제공하는 단계는 선형 차원 축소 방법(Linear Dimensionality Reduction Methods) 또는 비선형 차원 축소 방법(Non-Linear Dimensionality Reduction Methods)을 사용하는 커피 원료의 분류 방법.According to claim 1, wherein the step of providing the dimensionally reduced data is a method of classifying coffee raw materials using a linear dimensionality reduction method (Linear Dimensionality Reduction Methods) or a non-linear dimensionality reduction method (Non-Linear Dimensionality Reduction Methods).
- 제 1 항에 있어서, 상기 차원 축소된 데이터를 제공하는 단계는 주성분 분석(Principal Component Analysis: PCA), 선형판별분석(Linear Discriminant Analysis: LDA), 인자분석(Factor Analysis), 특이값 분해(Singular Vector Decomposition: SVD) 또는 t-분포 확률적 임베딩(t-distributed Stochastic Neighbor Embedding: t-SNE)을 사용하는 커피 원료의 분류 방법.The method of claim 1 , wherein the providing of the dimensionally reduced data comprises Principal Component Analysis (PCA), Linear Discriminant Analysis (LDA), Factor Analysis, and Singular Vector Classification of coffee ingredients using Decomposition (SVD) or t-distributed Stochastic Neighbor Embedding (t-SNE).
- 제 1 항에 있어서, 상기 클러스터를 형성하는 단계는 지도 학습(Supervised learning) 방법 또는 비지도 학습(Unsupervised learning) 방법을 이용하는 커피 원료의 분류 방법.The method of claim 1 , wherein the forming of the cluster uses a supervised learning method or an unsupervised learning method.
- 제 1 항에 있어서, 상기 클러스터를 형성하는 단계는 파티셔닝(partitioning), K-평균(K-means), K-대표객체(K-medoid), CLARA(Clustering Large Applications) 또는 CLARANS 방법을 사용하는 커피 원료의 분류 방법.According to claim 1, wherein the step of forming the cluster partitioning (partitioning), K-means (K-means), K- representative object (K-medoid), CLARA (Clustering Large Applications) or CLARANS coffee using the method How to classify raw materials.
- 제 1 항에 있어서, 커피 생두 또는 커피 원두의 화학적 특성 분석 데이터, 및 상기 분석 데이터의 차원 축소 데이터를 기반으로 기계 학습(machine learning)을 통하여 클러스터를 예측하는 단계를 추가로 포함하는 커피 원료의 분류 방법. The classification of coffee raw materials according to claim 1, further comprising predicting clusters through machine learning based on green coffee beans or chemical characteristic analysis data of coffee beans, and dimensionality reduction data of the analysis data. Way.
- 제 7 항에 있어서, 상기 기계 학습은 K-최근접 이웃 알고리즘(k-nearest neighbor algorithm), 로지스틱 회귀 (Logistic Regression), 나이브 베이즈 분류 (Naive Bayes Classification), 확률적 경사 하강(Stochastic Gradient Descent), 결정 트리 (Decision Tree), 랜덤 포레스트 (Random Forest), 에이다부스트 (AdaBoost), 그래디언트 부스팅(Gradient Boosting), 서포트 벡터 머신 (Support Vector Machine), 또는 선형 판별 분석(Linear discriminant analysis: LDA)을 사용하는 커피 원료의 분류 방법.The method of claim 7, wherein the machine learning is a K-nearest neighbor algorithm, logistic regression, naive Bayes classification, stochastic gradient descent. , using Decision Tree, Random Forest, AdaBoost, Gradient Boosting, Support Vector Machine, or Linear discriminant analysis (LDA). How to classify coffee raw materials.
- 제1항 내지 제8항 중 어느 한 항의 분류 방법에 따라 커피 생두의 클러스터를 형성하는 단계; 및Forming clusters of green coffee beans according to the classification method of any one of claims 1 to 8; and상기 형성된 클러스터에 대한 로스팅 프로파일을 제공하는 단계를 포함하는 생두의 로스팅 프로파일 제공 방법.and providing a roasting profile for the formed cluster.
- 제 9 항에 있어서, 형성된 클러스터에 대한 로스팅 프로파일을 제공하는 단계는 10. The method of claim 9, wherein providing a roasting profile for the formed cluster comprises:형성된 클러스터의 화학 성분 함량을 측정하는 단계; 및measuring the chemical component content of the formed clusters; and상기 측정된 화학 성분의 함량을 기초로 생두의 로스팅 프로파일을 설계하는 단계를 포함하는 생두의 로스팅 프로파일 제공 방법. and designing a roasting profile of green coffee beans based on the measured content of the chemical component.
- 제 10 항에 있어서, 화학 성분은 단당류, 다당류, 지질, 유기산, 단백질 및 수분을 포함하는 생두의 로스팅 프로파일 제공 방법.The method of claim 10 , wherein the chemical components include monosaccharides, polysaccharides, lipids, organic acids, proteins, and moisture.
- 제1항 내지 제8항 중 어느 한 항에 따른 분류 방법에 따라 커피 원료의 클러스터를 형성하는 단계;Forming a cluster of coffee raw materials according to the classification method according to any one of claims 1 to 8;상기 형성된 클러스터의 화학 성분 함량을 측정하는 단계; measuring the chemical component content of the formed cluster;커피 원료 시료의 화학 성분의 함량을 측정하는 단계; 및measuring the content of chemical components in the coffee raw material sample; and상기 커피 원료 시료의 화학 성분의 함량과 클러스터의 화학성분의 함량을 비교하는 단계를 포함하는 커피 원료의 향미 예측 방법.A method for predicting the flavor of a coffee raw material comprising the step of comparing the content of the chemical component of the coffee raw material sample with the content of the chemical component of the cluster.
- 커피 정보 관리 서버 및 네트워크를 통하여 상기 커피 정보 관리 서버에 접속할 수 있는 적어도 하나의 단말기를 포함하는 커피 정보 제공 시스템에 있어서,In the coffee information providing system comprising a coffee information management server and at least one terminal capable of accessing the coffee information management server through a network,상기 커피 정보 관리 서버는 단말기와 신호 또는 정보를 송수신하는 송수신부와, 커피 정보를 저장하는 데이터베이스와, 네트워크를 통해 접속한 상기 단말기에서 커피 원료에 대한 정보의 요청을 수신하고, 요청된 커피 원료에 대한 정보를 데이터베이스로부터 추출하여 상기 단말기로 송신하도록 송수신부를 제어하는 커피 원료의 분류 정보 제공 모듈이 구비된 제어부를 포함하고,The coffee information management server receives a request for information on coffee raw materials from a terminal and a transceiver for transmitting and receiving signals or information, a database for storing coffee information, and the terminal connected through a network, and a control unit equipped with a classification information providing module of coffee raw materials for controlling the transceiver to extract information about the data from the database and transmit it to the terminal,상기 커피 원료에 대한 정보는 커피 원료의 화학적 특성을 분석하여 분류된 커피 원료의 분류 정보인 커피 정보 제공 시스템.The information on the coffee raw material is a coffee information providing system that is classification information of the coffee raw material classified by analyzing the chemical characteristics of the coffee raw material.
- 제13항에 있어서, 커피 원료의 화학적 특성은 커피 원료에 포함된 화학원소, 화학 작용기 또는 화학 성분의 종류와 함량을 포함하는 커피 정보 제공 시스템.The system for providing coffee information according to claim 13, wherein the chemical properties of the coffee raw material include the type and content of a chemical element, a chemical functional group, or a chemical component included in the coffee raw material.
- 제13항에 있어서, 제어부는 네트워크를 통해 접속한 단말기에서 커피 원료에 대한 정보의 요청을 수신하고, 요청된 커피 원료의 로스팅 프로파일 정보를 추출하여 상기 단말기로 송신하도록 송수신부를 제어하는 로스팅 프로파일 정보 제공 모듈을 추가로 포함하는 커피 정보 제공 시스템.15. The method of claim 13, wherein the control unit receives a request for information on coffee raw materials from a terminal connected through a network, extracts roasting profile information of the requested coffee raw material, and controls the transceiver to transmit the roasting profile information to the terminal. A coffee information providing system further comprising a module.
- 제15항에 있어서, 로스팅 프로파일 정보는 커피 원료의 분류 정보에 기초하여 형성된 것을 특징으로 하는 커피 정보 제공 시스템.The coffee information providing system according to claim 15, wherein the roasting profile information is formed based on classification information of coffee raw materials.
- 제13항에 있어서, 제어부는 네트워크를 통해 접속한 단말기에서 커피 원료에 대한 정보의 요청을 수신하고, 요청된 커피 원료의 특성 정보를 추출하여 상기 단말기로 송신하도록 송수신부를 제어하는 커피 원료의 특성 정보 제공 모듈을 추가로 포함하고, 상기 커피 원료의 특성 정보는 커피 원료에 포함된 화학 성분의 종류와 함량인 커피 정보 제공 시스템.According to claim 13, wherein the control unit receives a request for information on coffee raw materials from a terminal connected through a network, extracts the requested characteristic information of coffee raw materials, and controls the transceiver to transmit the requested coffee raw material characteristic information to the terminal A system for providing coffee information, further comprising a providing module, wherein the characteristic information of the coffee raw material is the type and content of a chemical component included in the coffee raw material.
- 제17항에 있어서, 커피 원료의 특성 정보는 요청된 커피 원료와 상이한 커피 원료의 특성 정보와 동시에 제공되는 것을 특징으로 하는 커피 정보 제공 시스템.The coffee information providing system according to claim 17, wherein the characteristic information of the coffee raw material is provided simultaneously with the characteristic information of the coffee raw material different from the requested coffee raw material.
- 제13항에 있어서, 제어부는 네트워크를 통해 접속한 단말기에서 커피 원료에 대한 정보의 요청을 수신하고, 요청된 커피 원료의 향미 예측 정보를 추출하여 상기 단말기로 송신하도록 송수신부를 제어하는 커피 원료의 향미 정보 제공 모듈을 추가로 포함하는 커피 정보 제공 시스템.The flavor of coffee raw materials according to claim 13, wherein the control unit receives a request for information on coffee raw materials from a terminal connected through a network, and controls the transceiver to extract and transmit the requested flavor prediction information of the coffee raw materials to the terminal. Coffee information providing system further comprising an information providing module.
- 제13항에 있어서, 제어부는 네트워크를 통해 접속한 단말기에서 사용자의 로그인 정보를 수신하고 관리하는 사용자 관리 모듈을 추가로 포함하는 커피 정보 제공 시스템.The coffee information providing system according to claim 13, wherein the control unit further comprises a user management module for receiving and managing login information of a user from a terminal accessed through a network.
- 제13항에 있어서, 제어부는 네트워크를 통해 접속한 단말기에서 커피 원료의 결제 정보를 수신하고, 요청된 결제 과정을 수행하고 그 결과를 상기 단말기로 송신하도록 송수신부를 제어하는 구매 관리 모듈을 추가로 포함하는 커피 정보 제공 시스템.The method according to claim 13, wherein the control unit further comprises a purchase management module for controlling the transceiver to receive payment information of coffee raw materials from a terminal connected through a network, perform a requested payment process, and transmit the result to the terminal coffee information providing system.
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
KR10-2019-0156268 | 2019-11-29 | ||
KR20190156268 | 2019-11-29 |
Publications (3)
Publication Number | Publication Date |
---|---|
WO2021107735A2 true WO2021107735A2 (en) | 2021-06-03 |
WO2021107735A3 WO2021107735A3 (en) | 2021-07-22 |
WO2021107735A9 WO2021107735A9 (en) | 2021-09-02 |
Family
ID=76129555
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/KR2020/017319 WO2021107735A2 (en) | 2019-11-29 | 2020-11-30 | Method for classifying coffee raw materials, method for providing roasting profile of raw beans using same, and system for providing information on coffee raw materials |
Country Status (2)
Country | Link |
---|---|
KR (2) | KR20210067965A (en) |
WO (1) | WO2021107735A2 (en) |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN114982846A (en) * | 2022-06-21 | 2022-09-02 | 北京金米兰咖啡有限公司 | Control method and device suitable for coffee roasting and electronic equipment |
Family Cites Families (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2013210217A (en) * | 2012-03-30 | 2013-10-10 | Fuji Oil Co Ltd | Method for evaluating quality of cocoa bean |
KR101586541B1 (en) * | 2013-11-21 | 2016-01-19 | 서인정 | System and method for providing coffee data |
JP2017032326A (en) * | 2015-07-30 | 2017-02-09 | 高砂香料工業株式会社 | Method for predicting quality of coffee product by utilizing metabolomic analysis, and coffee product |
KR20180051239A (en) * | 2016-11-08 | 2018-05-16 | 수원대학교산학협력단 | A intelligent classification method for preprocessing based of a black plastic sorting by raman spectroscopy |
KR101935712B1 (en) * | 2018-01-29 | 2019-01-04 | 조원세 | Apparatus and method for providing of coffee bean information |
-
2020
- 2020-11-30 KR KR1020200164966A patent/KR20210067965A/en not_active Application Discontinuation
- 2020-11-30 KR KR1020200164967A patent/KR20210067966A/en not_active Application Discontinuation
- 2020-11-30 WO PCT/KR2020/017319 patent/WO2021107735A2/en active Application Filing
Cited By (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN114982846A (en) * | 2022-06-21 | 2022-09-02 | 北京金米兰咖啡有限公司 | Control method and device suitable for coffee roasting and electronic equipment |
CN114982846B (en) * | 2022-06-21 | 2024-02-09 | 北京金米兰咖啡有限公司 | Control method and device suitable for coffee roasting and electronic equipment |
Also Published As
Publication number | Publication date |
---|---|
KR20210067966A (en) | 2021-06-08 |
WO2021107735A3 (en) | 2021-07-22 |
KR20210067965A (en) | 2021-06-08 |
WO2021107735A9 (en) | 2021-09-02 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
Magagna et al. | Comprehensive chemical fingerprinting of high-quality cocoa at early stages of processing: Effectiveness of combined untargeted and targeted approaches for classification and discrimination | |
WO2021107735A2 (en) | Method for classifying coffee raw materials, method for providing roasting profile of raw beans using same, and system for providing information on coffee raw materials | |
Caporaso et al. | Prediction of coffee aroma from single roasted coffee beans by hyperspectral imaging | |
Tuenter et al. | Non-volatile and volatile composition of West African bulk and Ecuadorian fine-flavor cocoa liquor and chocolate | |
Caligiani et al. | Application of 1H NMR for the characterisation and authentication of ‘‘Tonda Gentile Trilobata” hazelnuts from Piedmont (Italy) | |
Liu et al. | Research on moisture content detection method during green tea processing based on machine vision and near-infrared spectroscopy technology | |
Akiyama et al. | Characterization of headspace aroma compounds of freshly brewed arabica coffees and studies on a characteristic aroma compound of Ethiopian coffee | |
Yang et al. | Characterization of volatile compounds in differently coloured Chenopodium quinoa seeds before and after cooking by headspace-gas chromatography-ion mobility spectrometry | |
Caligiani et al. | 1H NMR study of fermented cocoa (Theobroma cacao L.) beans | |
Chen et al. | Study on discrimination of white tea and albino tea based on near‐infrared spectroscopy and chemometrics | |
Machado Cuellar et al. | Organoleptic quality assessment of Theobroma cacao L. in cocoa farms in northern Huila, Colombia | |
Cusano et al. | Integrated analytical methodology to investigate bioactive compounds in Crocus sativus L. flowers | |
Zhou et al. | Dynamic analysis of polar metabolites and volatile compounds in sesame seeds during roasting | |
Wang et al. | Spatial distribution of total polyphenols in multi-type of tea using near-infrared hyperspectral imaging | |
Xiong et al. | Discrimination of two kinds of geographical origin protected Chinese vinegars using the characteristics of aroma compounds and multivariate statistical analysis | |
Bork et al. | Structural characterization of polar melanoidins deriving from Maillard reaction intermediates–A model approach | |
EP1651065B1 (en) | Process for obtaining tobacco leaves with a standardized nicotine content and/or improved combustibility | |
Ou et al. | Identification of Pu'er raw tea with different storage years by infrared spectroscopy | |
Pan et al. | Comparison of characterization of cold brew and hot brew coffee prepared at various roasting degrees | |
Chindapan et al. | Profiles of volatile compounds and sensory characteristics of Robusta coffee beans roasted by hot air and superheated steam | |
Walker et al. | Analysis of volatile profiles of green Hawai'ian coffee beans damaged by the coffee berry borer (Hypothenemus hampei) | |
Vázquez et al. | Changes in physico-chemical properties, hydroxymethylfurfural and volatile compounds during concentration of honey and sugars in Alicante and Jijona turrón | |
Xu et al. | Multi-steps infrared macro-fingerprint analysis for thermal processing of Fructus viticis | |
Rodriguez et al. | Comparison of sensory attributes and chemical markers of the infrared spectrum between defective and non-defective Colombian coffee samples | |
Wang et al. | Comparative studies of fermented coffee fruits post-treatments on chemical and sensory properties of roasted beans in Yunnan, China |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 20892290 Country of ref document: EP Kind code of ref document: A2 |
|
NENP | Non-entry into the national phase |
Ref country code: DE |
|
122 | Ep: pct application non-entry in european phase |
Ref document number: 20892290 Country of ref document: EP Kind code of ref document: A2 |