JP2017032326A - Method for predicting quality of coffee product by utilizing metabolomic analysis, and coffee product - Google Patents

Method for predicting quality of coffee product by utilizing metabolomic analysis, and coffee product Download PDF

Info

Publication number
JP2017032326A
JP2017032326A JP2015150235A JP2015150235A JP2017032326A JP 2017032326 A JP2017032326 A JP 2017032326A JP 2015150235 A JP2015150235 A JP 2015150235A JP 2015150235 A JP2015150235 A JP 2015150235A JP 2017032326 A JP2017032326 A JP 2017032326A
Authority
JP
Japan
Prior art keywords
coffee
analysis
quality
samples
coffee product
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2015150235A
Other languages
Japanese (ja)
Inventor
幸生 後藤
Yukio Goto
幸生 後藤
忠浩 平本
Tadahiro Hiramoto
忠浩 平本
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Takasago International Corp
Original Assignee
Takasago International Corp
Takasago Perfumery Industry Co
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Takasago International Corp, Takasago Perfumery Industry Co filed Critical Takasago International Corp
Priority to JP2015150235A priority Critical patent/JP2017032326A/en
Publication of JP2017032326A publication Critical patent/JP2017032326A/en
Pending legal-status Critical Current

Links

Landscapes

  • Tea And Coffee (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide: a method for easily predicting the quality of a coffee product which includes as prediction targets, the coffee products of different forms such as coffee beans, coffee liquid and instant coffee and also includes auxiliary raw material derived from material other than coffee beans such as dairy material, saccharide and pH adjuster; and a coffee product in which the predicted quality is reproduced.SOLUTION: There is provided a method for predicting the quality of a coffee product which includes a step of collating a quality prediction model of coffee products whose qualities are known, with a numerical data of a coffee product which is obtained by pretreating the coffee product, obtaining an analysis sample therefrom and converting an analysis result for the analysis sample. The quality prediction model is obtained by: pretreating plural coffee products whose qualities are known and obtaining individual analysis samples; performing instrumental analysis on the individual samples to obtain individual analysis results; converting the analysis results into numerical data; and performing multivariate analysis on a relationship between the converted numerical data and the known qualities. There is also provided a coffee product in which the predicted quality is reproduced.SELECTED DRAWING: None

Description

本発明は、メタボローム解析を活用したコーヒー製品の品質予測方法、並びに該品質予測方法を利用して製造したコーヒー製品に関する。 The present invention relates to a coffee product quality prediction method utilizing metabolomic analysis, and a coffee product manufactured using the quality prediction method.

製品のライフサイクル短縮化傾向に伴い、コーヒー製品開発のリードタイムはますます短くなる傾向と言えるが、ターゲット製品群に使用されている品種(アラビカ種、ロブスタ種)やそのブレンド比率、焙煎度などの風味と関わりの深い製品設計に関する情報を得ることは、開発品の風味設計精度向上や、リードタイム短縮の観点からも、製品設計にとって有用である。しかしながら、コーヒー製品はコーヒー豆、コーヒー液、インスタントコーヒーなど製品形態は一様ではなく、しかも乳成分、糖類、高甘度甘味料など多様な副原料を使用したものが存在し、複雑な組成であることから未だそのコーヒー製品の品質に関わる設計情報を予測することは容易ではない。
一方で、近年の目覚ましいコンピューター技術の発達に伴い、生命現象に関係する低分子代謝物を網羅的に解析する研究手法であるメタボローム解析が、急速かつ世界的に活用されてきており、特に、医療・工業分野での応用例は多い。また、農林水産・食品分野においても、食味や香りなどの農産物や食品の品質に関わる低分子代謝物に対してメタボローム解析は応用可能な技術であり、国が先導し、農林水産・食品分野への応用を強力に推進することが求められている(非特許文献1)。
With the trend of shortening the product life cycle, the lead time for coffee product development tends to be shorter, but the varieties (Arabica and Robusta) used in the target product group, their blend ratio, and roasting degree It is useful for product design from the viewpoint of improving the flavor design accuracy of the developed product and reducing the lead time. However, the product forms of coffee products such as coffee beans, coffee liquor, and instant coffee are not uniform, and there are products that use various secondary ingredients such as dairy ingredients, sugars, and high sweetness sweeteners, and have a complicated composition. For some reason, it is still not easy to predict design information related to the quality of the coffee product.
On the other hand, with the remarkable development of computer technology in recent years, metabolome analysis, which is a research method for comprehensive analysis of low molecular weight metabolites related to life phenomena, has been rapidly and globally utilized,・ There are many applications in the industrial field. In the agriculture, forestry and fisheries / food field, metabolome analysis is an applicable technology for agricultural products such as taste and aroma, and low molecular weight metabolites related to food quality. It is required to strongly promote the application of (Non-patent Document 1).

メタボローム解析を食品分野へ応用した報告としては例えば、緑茶を前処理して分析サンプルを得る工程;該分析サンプルを機器分析に供して分析結果を得る工程;該分析結果を数値データに変換して多変量解析する工程;および得られた解析結果から、品質を予測する工程を含む緑茶の品質予測方法(特許文献1)や、熟成品質既知のチーズを前処理して分析サンプルを得る前処理工程;該分析サンプルを機器分析に供して、機器分析データを得る機器分析工程;複数の前記チーズについての機器分析データと、該チーズのそれぞれの熟成品質を表す熟成品質データとを用いて多変量解析することにより、該機器分析データと、該機器分析データから予測される熟成品質との関係を表す、チーズの品質予測モデルを作成する多変量解析工程;を有する、チーズの品質予測方法(特許文献2)などが知られている。
しかしながらこれらの報告は緑茶またはチーズに関わる品質評価方法であって、コーヒー豆の品種やそのブレンド比率、焙煎度を予測する方法については言及されていない。
コーヒー豆の品種を識別し、そのブレンド比率を予測する方法としては例えば、DIP/IA−MS(Direct Inlet Probe/Ion Attachment Ionization Mass Spectrometry)を利用した方法が知られている(非特許文献2)。しかしながら該方法では、焙煎度が特定の値である場合に限定されるため、上市されている製品の品質を予測するのは困難である。また乳成分などの副原料の存在下での妥当性や、焙煎度に関わる設計情報の予測可能性については言及されていない。
このほか、コーヒー豆の品種やそのブレンド比率を予測する方法として、ラマン分光法を利用した方法も知られている(非特許文献3)。しかしながら該方法では、機器分析の前処理が煩雑で簡便とはいえず、更には乳成分などの副原料の存在下での妥当性や、焙煎度に関わる設計情報の予測可能性については言及されていない。
また、焙煎度と品種を同時予測する方法としては、近赤外分光法を利用した方法が知られている(非特許文献4)。しかしながら、該方法でも、コーヒー豆ではなく、コーヒー液に使用されているコーヒー原料の設計情報の予測方法や、乳成分などの副原料の存在下でのコーヒー製品の品質予測方法については言及されていない。
Examples of reports that apply metabolomic analysis to the food field include: a step of pre-treating green tea to obtain an analysis sample; a step of subjecting the analysis sample to instrumental analysis to obtain an analysis result; and a step of converting the analysis result into numerical data A multivariate analysis step; and a green tea quality prediction method (Patent Document 1) including a step of predicting the quality from the obtained analysis result, or a pretreatment step of pretreating cheese with a known ripening quality to obtain an analysis sample Instrument analysis step of subjecting the analysis sample to instrument analysis to obtain instrument analysis data; multivariate analysis using instrument analysis data for a plurality of the cheeses and ripening quality data representing each ripening quality of the cheese; A multivariate analysis step of creating a cheese quality prediction model that represents the relationship between the device analysis data and the ripening quality predicted from the device analysis data The a, a quality prediction method for cheese (Patent Document 2) are known.
However, these reports are quality evaluation methods related to green tea or cheese, and no mention is made of methods for predicting coffee bean varieties, blend ratios, and roasting degrees.
As a method for identifying the variety of coffee beans and predicting the blend ratio, for example, a method using DIP / IA-MS (Direct Inlet Probe / Ion Attachment Ionization Mass Spectrometry) is known (Non-patent Document 2). . However, in this method, since the roasting degree is limited to a specific value, it is difficult to predict the quality of products on the market. Further, there is no mention of the validity in the presence of auxiliary ingredients such as milk components and the predictability of design information related to the degree of roasting.
In addition, a method using Raman spectroscopy is also known as a method for predicting coffee bean varieties and blend ratios (Non-Patent Document 3). However, in this method, the pretreatment of the instrumental analysis is complicated and not easy, and further, the validity in the presence of secondary ingredients such as milk components and the predictability of design information related to the roasting degree are mentioned. It has not been.
Further, as a method for simultaneously predicting the roasting degree and the variety, a method using near infrared spectroscopy is known (Non-Patent Document 4). However, this method also mentions a method for predicting design information of coffee ingredients used in coffee liquor, not coffee beans, and a method for predicting the quality of coffee products in the presence of auxiliary ingredients such as milk components. Absent.

メタボローム解析を活用した農林水産・食品分野における産学官連携研究の推進方針 平成27年1月14日 メタボローム解析を活用した農林水産・食品分野における産学官連携研究検討会 農林水産技術会議事務局Promotion Policy for Industry-Academia-Government Collaboration Research in the Agriculture, Forestry and Fisheries / Food Field Utilizing Metabolome Analysis January 14, 2015 Industry-Academia-Government Collaboration Research Study Group in Agriculture, Forestry and Fisheries / Food Field Utilizing Metabolome Analysis 分析化学 vol.63,2014, No.10, pp825−830Analytical chemistry vol. 63, 2014, no. 10, pp825-830 Thomas Wermelinger, et al., Quantification of the Robusta Fraction in a Coffee Blend via Raman Spectroscopy:Proof of Principle, Journal of Agricaltural and Food Chemistry,59,2011,9074−9079Thomas Wermelinger, et al. , Quantification of the Robusta Fraction in a Coffee Blend via Raman Spectroscopy: Proof of Principal, Journal of Agricultural 59 E.Bertone, et al., Simultaneous determination by NIR spectroscopy of the roasting degree and Arabica/Robusta ratio in roasted and ground coffee, Food Control, 59 (2016) 683−689E. Bertone, et al. , Simulaneous determination by NIR spectroscopy of the roasting degree and Arabic / Robusta ratio in roasted and ground coffe, Food Control 68, 68 (9)

特開2009−14700号公報JP 2009-14700 A 特開2013−7732号公報JP 2013-7732 A

本発明は、コーヒー豆、コーヒー液、インスタントコーヒーなど形態が異なるコーヒー製品を予測対象として包含し、かつ乳素材、糖類、pH調整剤などのコーヒー豆以外の由来の副原料をも含むコーヒー製品の品質を、簡便に予測する方法を提供することを目的とする。 The present invention includes coffee products having different forms such as coffee beans, coffee liquor, and instant coffee as prediction targets, and also includes auxiliary materials derived from sources other than coffee beans such as milk materials, sugars, and pH adjusters. An object is to provide a method for easily predicting quality.

本発明は、コーヒー製品の品質を予測する方法であって、
[1]コーヒー製品を前処理して分析サンプルを得る工程;
該分析サンプルを機器分析に供して分析結果を得る工程;
該分析結果を数値データに変換する工程;および
得られた数値データを、
品質既知の複数のコーヒー製品を前処理して個別の分析サンプルを得る工程;
該個別の分析サンプルを機器分析に供して個別の分析結果を得る工程;
該個別の分析結果を数値データに変換する工程;および
該個別の変換された数値データと該品質との関係を多変量解析する工程;
によって得られる、コーヒー製品の品質予測モデルと照合する工程;
を含むコーヒー製品の品質予測方法。
[2]前記コーヒー製品は、コーヒー豆またはコーヒー液またはインスタントコーヒーである[1]に記載の方法。
[3]前記コーヒー製品が[2]に加え、更には乳素材、糖類、pH調整剤などの副原料を含むコーヒー製品である[1]記載の方法。
[4]前記前処理が、コーヒー豆を水性溶媒で抽出、ろ過する工程、またはコーヒー液をろ過する工程、またはインスタントコーヒーを水性溶媒で溶解、ろ過する工程を含む、[1]乃至[3]記載の方法。
[5]前記機器分析が、高速液体クロマトグラフィーの後段に検出器としてダイオードアレイ検出器が供えられたものである[1]乃至[4]記載の方法
[6]前記多変量解析が、パターン認識手法または多変量回帰分析手法から選択される[1]乃至[5]記載の方法。
[7]前記品質が、コーヒー豆の品種、コーヒー豆の品種のブレンド比率、コーヒー豆の焙煎度から選択される[1]乃至[6]記載の方法。
[8]前記品質が、コーヒー豆の品種かつ/またはコーヒー豆の品種のブレンド比率かつ/またはコーヒー豆の焙煎度である[1]乃至[7]記載の方法。
[9][1]乃至[8]記載の方法で予測した品質を再現したコーヒー製品。
The present invention is a method for predicting the quality of a coffee product comprising:
[1] A step of pretreating a coffee product to obtain an analytical sample;
Subjecting the analysis sample to instrumental analysis to obtain an analysis result;
Converting the analysis result into numerical data; and the obtained numerical data,
Pre-treating a plurality of coffee products of known quality to obtain individual analytical samples;
Subjecting the individual analytical samples to instrumental analysis to obtain individual analytical results;
Converting the individual analysis results into numerical data; and multivariate analysis of the relationship between the individual converted numerical data and the quality;
Checking with a coffee product quality prediction model obtained by
Quality prediction method for coffee products including
[2] The method according to [1], wherein the coffee product is coffee beans, coffee liquor, or instant coffee.
[3] The method according to [1], wherein the coffee product is a coffee product which contains, in addition to [2], auxiliary materials such as milk materials, sugars and pH adjusters.
[4] The pretreatment includes a step of extracting and filtering coffee beans with an aqueous solvent, a step of filtering coffee liquid, or a step of dissolving and filtering instant coffee with an aqueous solvent. [1] to [3] The method described.
[5] The method according to [1] to [4], wherein the instrumental analysis is provided with a diode array detector as a detector after the high performance liquid chromatography. [6] The multivariate analysis is pattern recognition. The method according to [1] to [5], which is selected from a method or a multivariate regression analysis method.
[7] The method according to [1] to [6], wherein the quality is selected from coffee bean varieties, blend ratio of coffee bean varieties, and roasted degree of coffee beans.
[8] The method according to [1] to [7], wherein the quality is a blend ratio of coffee bean varieties and / or coffee bean varieties and / or a roast degree of coffee beans.
[9] A coffee product that reproduces the quality predicted by the method according to [1] to [8].

本発明によれば、従来困難であったコーヒー製品の品質予測を、精度良くかつ簡便な方法で行うことができる。 ADVANTAGE OF THE INVENTION According to this invention, the quality prediction of the coffee product which was difficult conventionally can be performed with an accurate and simple method.

(品質予測対象となるコーヒー製品)
本発明において品質予測対象となるコーヒー製品は、コーヒー豆、コーヒー液、及びインスタントコーヒーなどを包含する。
(Coffee products subject to quality prediction)
The coffee products that are subject to quality prediction in the present invention include coffee beans, coffee liquor, and instant coffee.

(コーヒー豆の定義)
本発明において品質予測対象となるコーヒー製品として挙げられるコーヒー豆の種類は、アラビカ種、ロブスタ種またはリベリカ種であり、これら2種以上をブレンドしたものでもよい。コーヒー豆は生豆でもよく、焙煎豆または焙煎粉砕豆の場合、焙煎条件および焙煎装置は、任意の公知の装置、条件で行うことができ、適宜選択されたものが品質予測対象となる。焙煎度はLab色空間におけるハンターL値、CIE色空間におけるLスター値などの明度で表すことができ、例えば、ハンターL値であれば13〜32の範囲内を例示することができる。焙煎度の測定方法としては例えば、適宜チャフを除去しつつ焙煎豆を粉砕し、粉砕した豆をセルに投入し、十分にタッピングした後、色差計にて測定する。色差計としては、ZE−2000、ZE−6000(日本電色工業(株)製)などが使用できる。また、焙煎装置としては、例えば、直火式、半熱風式、熱風式などを例示することができる。焙煎粉砕豆の場合には、焙煎豆を任意の公知の方法にて粉砕して製造されたものであって、特に制限はない。
(Definition of coffee beans)
In the present invention, the types of coffee beans that are listed as the quality prediction target coffee products are Arabica, Robusta, and Revelica, and may be a blend of two or more of these. The coffee beans may be green beans, and in the case of roasted beans or roasted and ground beans, the roasting conditions and roasting equipment can be performed by any known equipment and conditions, and those appropriately selected are subject to quality prediction. It becomes. The roasting degree can be expressed by brightness such as a Hunter L value in the Lab color space and an L star value in the CIE color space. For example, in the case of the Hunter L value, the range of 13 to 32 can be exemplified. As a method for measuring the roasting degree, for example, roasted beans are pulverized while removing chaff as appropriate, the pulverized beans are put into a cell, sufficiently tapped, and then measured with a color difference meter. As the color difference meter, ZE-2000, ZE-6000 (manufactured by Nippon Denshoku Industries Co., Ltd.) and the like can be used. Moreover, as a roasting apparatus, a direct fire type, a semi-hot air type, a hot air type etc. can be illustrated, for example. In the case of roasted and ground beans, the roasted beans are produced by pulverizing roasted beans by any known method, and there is no particular limitation.

(コーヒー液の定義)
本発明において品質予測対象となるコーヒー液には、焙煎粉砕豆と水性溶媒を接触させて液体を回収したコーヒー抽出液、通常の飲用濃度よりも可溶性固形分濃度の高いコーヒー抽出液であるコーヒーエキス、インスタントコーヒーを溶解した液、平均粒子径300μm以下程度まで微粉砕処理された微粉砕処理焙煎コーヒー豆を分散状態で含むコーヒー液、容器に詰めて冷蔵、常温保存可能な状態にした容器詰め飲料などが含まれる。さらにこれらのコーヒー液には必要に応じて乳素材や糖類などの副原料を添加しても良く、また異なる種類のコーヒー液を混合してもよい。コーヒー抽出液、コーヒーエキスは、特に抽出方法が限定されるものではなく、ドリップ式、エスプレッソ式、固定層カラム式、スラリー式、連続向流式、抽出蒸留式等の抽出方法があげられる。抽出温度、抽出圧力、抽出時間、豆/抽出溶媒比などの抽出条件についても特に制限はなく、任意の条件で製造されたものが対象となる。容器詰め飲料としては、例えば無糖ブラックコーヒー;ショ糖、液糖、甘味料等を添加した加糖ブラックコーヒー;無糖、又は加糖コーヒー飲料に牛乳、脱脂粉乳、生クリーム等の乳成分が添加されたカフェオレタイプコーヒー飲料等が品質予測対象に含まれる。容器詰め飲料を製造する際には、コーヒー液に、通常、コーヒー飲料に使用できる任意の成分を副原料として添加することができ、例えば、常法により得られるコーヒー抽出液、抗酸化剤、pH調整剤、乳化剤、香料等があげられる。通常pH調製後、均質化処理し、プレート式熱交換器等を使用して、80〜95℃に加熱してから充填、巻き締めを行い、120〜125℃、10〜40分間の殺菌処理を行い、レトルト殺菌コーヒー飲料が得られる。UHT殺菌の場合は、プレート式熱交換器等を使用して、130〜145℃、15〜60秒間の殺菌処理後、缶、ペットボトルなどの容器に充填して、容器詰め飲料得られ、これらの容器詰め飲料が品質予測対象として含まれる。
(Definition of coffee liquid)
In the present invention, the coffee liquid that is subject to quality prediction includes a coffee extract obtained by bringing a roasted ground bean and an aqueous solvent into contact with each other, and a coffee extract having a higher soluble solid content than the normal drinking concentration. Extract, liquid in which instant coffee is dissolved, coffee liquid containing finely pulverized roasted coffee beans that have been finely pulverized to an average particle size of about 300 μm or less, a container that is packed in a container and refrigerated and stored at room temperature Includes stuffed beverages. Furthermore, auxiliary materials such as milk materials and sugars may be added to these coffee liquids as necessary, and different types of coffee liquids may be mixed. The extraction method of the coffee extract and the coffee extract is not particularly limited, and examples thereof include a drip method, an espresso method, a fixed bed column method, a slurry method, a continuous countercurrent method, and an extractive distillation method. Extraction conditions such as extraction temperature, extraction pressure, extraction time, and bean / extraction solvent ratio are not particularly limited, and those manufactured under arbitrary conditions are targeted. As a container-packed beverage, for example, sugar-free black coffee; sweetened black coffee to which sucrose, liquid sugar, sweeteners, etc. are added; milk components such as milk, skim milk powder, and fresh cream are added to sugar-free or sweetened coffee beverages Café olea type coffee drinks etc. are included in the quality prediction targets. When producing a container-packed beverage, any component that can be used in a coffee beverage can be added to the coffee liquid as an auxiliary material. For example, a coffee extract obtained by a conventional method, an antioxidant, pH Examples thereof include regulators, emulsifiers, and fragrances. After normal pH adjustment, homogenize, heat to 80-95 ° C using a plate heat exchanger, etc., then fill and tighten, and sterilize at 120-125 ° C for 10-40 minutes And a retort sterilized coffee drink is obtained. In the case of UHT sterilization, a plate-type heat exchanger or the like is used, and after sterilization treatment at 130 to 145 ° C. for 15 to 60 seconds, it is filled into a container such as a can or a plastic bottle to obtain a container-packed beverage. The container-packed beverage is included as a quality prediction target.

(インスタントコーヒーの定義)
本発明において品質予測対象となるインスタントコーヒー(レギュラーソルブルコーヒー、ハイブリッドコーヒー等も包含する)は、通常の飲用濃度よりも可溶性固形分濃度の高いコーヒー抽出液であるコーヒーエキスまたは、平均粒子径300μm以下程度まで微粉砕処理された微粉砕処理焙煎コーヒー豆を分散状態で含むコーヒーエキスから噴霧乾燥法または凍結乾燥法により水分を除去したものを包含し、更にはこれらに糖類、乳素材等の副原料を添加混合したインスタントコーヒー製品も包含する。
(Definition of instant coffee)
In the present invention, instant coffee (including regular soluble coffee, hybrid coffee, etc.) that is a quality prediction target is a coffee extract that is a coffee extract having a higher soluble solid content concentration than the normal drinking concentration, or an average particle size of 300 μm. Includes coffee extract containing finely pulverized roasted coffee beans that have been finely pulverized to the following extent, in which water has been removed by spray drying or freeze drying, and sugars, milk materials, etc. Also includes instant coffee products with added and mixed ingredients.

(前処理工程)
本発明において前処理工程とは、品質予測対象となるコーヒー製品に使用されているコーヒーの品質に関わる情報を得るために、機器分析に供するのに適した形態にするために行われる工程であって、抽出、分画、濃縮、乾燥、ろ過などの単位操作が含まれる。またこれらの単位操作を適切に組み合わせてもよい。特に機器分析が高速液体クロマトグラフィー(HPLC)の場合には、分析検体にメタノールやアセトニトリルなどの有機溶媒を含む高速液体クロマトグラフィー(HPLC)の溶離液を加えて不溶物を析出させた後に、クロマトディスクなどを用いて精密ろ過する前処理工程が好適である。
また機器分析がガスクロマトグラフィー(GC)の場合には、ジエチルエーテル、イソペンタン、ペンタンなど公知の有機溶剤を用いて溶媒抽出する方法や、密閉容器中で平衡に達したコーヒーの揮発性成分をシリンジで採取または吸着剤に吸着させるヘッドスペースガス分析に用いる前処理工程、非極性のポーラスポリマービーズに吸着させた後に溶媒で溶出させる固相抽出法に用いる前処理工程、ロータリーエバポレーターなどで水蒸気蒸留を行うことにより揮発性成分を分離する減圧水蒸気蒸留法に用いる前処理工程など、公知の前処理工程が挙げられる。
(Pretreatment process)
In the present invention, the pretreatment step is a step performed to obtain a form suitable for instrumental analysis in order to obtain information related to the quality of coffee used in the coffee product that is the target of quality prediction. Unit operations such as extraction, fractionation, concentration, drying, and filtration are included. These unit operations may be appropriately combined. In particular, when the instrumental analysis is high-performance liquid chromatography (HPLC), an eluent of high-performance liquid chromatography (HPLC) containing an organic solvent such as methanol or acetonitrile is added to the analytical sample to precipitate insoluble matter, and then chromatographed. A pretreatment step of microfiltration using a disk or the like is suitable.
When the instrumental analysis is gas chromatography (GC), a solvent extraction method using a known organic solvent such as diethyl ether, isopentane or pentane, or a volatile component of coffee that has reached equilibrium in a sealed container Pretreatment step used for headspace gas analysis collected or adsorbed on adsorbent, pretreatment step used for solid phase extraction method after elution with solvent after adsorbing to non-polar porous polymer beads, steam distillation with rotary evaporator etc. Well-known pre-processing processes, such as the pre-processing process used for the vacuum steam distillation method which isolate | separates a volatile component by performing, are mentioned.

(機器分析工程)
本発明において機器分析工程とは、分析機器を用いて分析・測定を行う工程のことであって、分析の手法としては、高速液体クロマトグラフィー(HPLC)、ガスクロマトグラフィー(GC)、イオンクロマトグラフィー、質量分析(MS)、近赤外分光分析(NIR)、フーリエ変換赤外分光分析(FT−IR)、核磁気共鳴分析(NMR)、フーリエ変換核磁気共鳴分析(FT−NMR)、誘導結合プラズマ質量分析計(ICP−MS)などを例示することができる。
高速液体クロマトグラフィー(HPLC)の検出器は特に限定されず公知のものを適宜使用でき、例えば、ダイオードアレイ(DAD)検出器を好適に用いることができる。
また、これらの機器分析の手法は2種以上を組み合わせてもよい。
また、測定条件は、目的の予測精度にあわせた十分な再現性が得られれば、任意に選択することが可能である。
(Instrument analysis process)
In the present invention, the instrument analysis step is a step of performing analysis / measurement using an analysis instrument, and the analysis method includes high performance liquid chromatography (HPLC), gas chromatography (GC), ion chromatography. , Mass spectrometry (MS), near infrared spectroscopy (NIR), Fourier transform infrared spectroscopy (FT-IR), nuclear magnetic resonance analysis (NMR), Fourier transform nuclear magnetic resonance analysis (FT-NMR), inductive coupling A plasma mass spectrometer (ICP-MS) or the like can be exemplified.
A detector for high performance liquid chromatography (HPLC) is not particularly limited, and a known one can be used as appropriate. For example, a diode array (DAD) detector can be suitably used.
These instrumental analysis methods may be used in combination of two or more.
The measurement conditions can be arbitrarily selected as long as sufficient reproducibility according to the target prediction accuracy is obtained.

(数値データに変換する工程)
機器分析工程で得られるデータは、通常電気信号に変換されたシグナル強度の変化の結果を一定時間間隔でサンプリングした波形データや、一定時間の電気信号を積算した積分値として得られる。波形データから得られる傾き、周期性、振幅などの特徴量や、波形データを平滑化処理してピークを検出し、その面積値やピーク高さ、ピーク幅などの数値を取り出したり、特定の時間範囲のシグナル強度をそのまま使用したり、特定の化合物に着目して定量化した数値を取り出すなどの数値データに変換する工程は、公知の方法の中から任意に選択することができる。
特に高速液体クロマトグラフィー(HPLC)の後段に検出器としてダイオードアレイ検出器が供えられた機器分析を行う際には、得られるクロマトグラムデータからピークを検出し、その面積値を数値データとして得る方法が、数値の再現性の高さの観点から好ましい。そのため、対象となるピークの成分は特定しなくても品質予測モデルを作成することができるが、訓練・予測対象検体に共通して存在して比較的定量が容易な化合物の数値データを用いることが好ましく、公知のコーヒー中に含まれる化合物であれば特に限定されないが、コーヒー焙煎の化学と技術,弘学出版株式会社発行や周知慣用技術集(香料)第II部,平成12年1月14日,特許庁発行に記載されている化合物が挙げられる。
(Process to convert to numerical data)
The data obtained in the instrument analysis process is obtained as waveform data obtained by sampling the result of the change in signal intensity converted into a normal electrical signal at regular time intervals, or as an integrated value obtained by integrating electrical signals for a certain time. Feature values such as slope, periodicity, and amplitude obtained from waveform data, and smoothing processing of waveform data to detect peaks and extracting numerical values such as area value, peak height, peak width, etc., or a specific time The step of converting into numerical data such as using the signal intensity in the range as it is or taking out a numerical value quantified by paying attention to a specific compound can be arbitrarily selected from known methods.
In particular, when performing an instrumental analysis in which a diode array detector is provided as a detector after the high performance liquid chromatography (HPLC), a peak is detected from the obtained chromatogram data, and the area value is obtained as numerical data. Is preferable from the viewpoint of high reproducibility of numerical values. Therefore, although it is possible to create a quality prediction model without specifying the target peak component, use the numerical data of the compound that is common to the training and prediction target samples and is relatively easy to quantify. Is not particularly limited as long as it is a compound contained in a known coffee, but chemistry and technology of coffee roasting, published by Kogaku Publishing Co., Ltd. and well-known conventional technology collection (fragrance) part II, January 2000 On the 14th, compounds listed in the JPO issue are listed.

(多変量解析工程)
本発明において多変量解析工程は、得られた数値データを使用して品質を学習・予測するために行われる。品質が品種や格付けなどのカテゴリー変数でクラス分類の場合には、k−近傍法、決定木、SIMCA(Soft Independent Modeling of Class Analogy)、線形判別分析、ロジスティック判別分析、ステップワイズ変数選択判別分析、MT(マハラノビス・タグチ)法、フィッシャーの判別分析、ランダムフォレスト判別分析、サポートベクターマシン、バギング、学習ベクトル量子化、t−分布を用いたロバスト判別分析、ニューラルネットワーク判別分析、PLS(Partial Least Squares)判別分析などの判別分析手法および機械学習手法を含むパターン認識手法を例示することができる。
品質が連続値であらわされる焙煎度(L値)や品種のブレンド比率などの場合には、主成分回帰分析、PLS(Partial Least Squares)回帰分析、一般化線形回帰分析、バギング、サポートベクターマシン、ランダムフォレスト、ニューラルネットワーク回帰分析などの機械学習・回帰分析手法などからなる多変量回帰分析手法を例示することができる。予測する品質や、説明に使用する数値データの性質に応じて、予測精度を向上するためにこれらの方法を適宜組み合わせて使用することも可能である。
これらの多変量解析を実行するための解析ツールは、多数の市販のソフトウェアやフリーウェアの解析ツールから適宜選択することができる。
また、計算の繰り返し回数などの各種解析パラメータについても、計算にかかる時間や予測精度にあわせて改善するために適宜調整することができる。
(Multivariate analysis process)
In the present invention, the multivariate analysis step is performed in order to learn and predict quality using the obtained numerical data. When the quality is categorical classification such as varieties and ratings, k-neighbor method, decision tree, SIMCA (Soft Independent Modeling of Class Analysis), linear discriminant analysis, logistic discriminant analysis, stepwise variable selection discriminant analysis, MT (Mahalanobis Taguchi) method, Fisher discriminant analysis, random forest discriminant analysis, support vector machine, bagging, learning vector quantization, robust discriminant analysis using t-distribution, neural network discriminant analysis, PLS (Partial Last Squares) A pattern recognition method including a discriminant analysis method such as discriminant analysis and a machine learning method can be exemplified.
In the case of the roasting degree (L value) and the blend ratio of the varieties where the quality is expressed as a continuous value, principal component regression analysis, PLS (Partial Last Squares) regression analysis, generalized linear regression analysis, bagging, support vector machine A multivariate regression analysis method including machine learning / regression analysis methods such as random forest and neural network regression analysis can be exemplified. Depending on the quality to be predicted and the nature of the numerical data used for the description, these methods can be used in appropriate combination in order to improve the prediction accuracy.
An analysis tool for executing these multivariate analyzes can be appropriately selected from a large number of commercially available software and freeware analysis tools.
In addition, various analysis parameters such as the number of repetitions of calculation can be appropriately adjusted in order to improve the calculation time and prediction accuracy.

(品質予測モデルと照合する工程)
本発明においてコーヒー製品の品質とは、使用されているコーヒー豆の品種、コーヒー豆品種のブレンド比率、コーヒー豆の産地、産地が異なるコーヒー豆のブレンド比率、焙煎豆の焙煎度、生豆換算値、可溶性固形分抽出収率、風味の格付け、官能評価スコアなど、コーヒーの風味設計に関わる品質や、ヒトの感覚量に関わる品質を包含する。予測精度の高さの観点からは、特に、コーヒー豆の品種、コーヒー豆品種のブレンド比率、焙煎豆の焙煎度を好適に例示することができる。
本発明では、品質既知の複数のコーヒー製品を前処理してそれぞれ個別の分析サンプルを得、該個別の分析サンプルを機器分析に供して個別の機器分析データを得、さらに該個別の機器分析データと、複数のコーヒー製品のそれぞれの既知品質を用いて多変量解析することにより、該機器分析データと、該機器分析データから予測される品質との関係を表す、コーヒー製品の品質予測モデルを作成する。
品質予測モデルの予測精度の高さは、個別の品質既知の機器分析データを学習用とテスト用にわけて、学習用データのみを使用して品質モデルを作成し、テスト用データを該品質予測モデルと照合してテスト用データの品質を予測した結果と、テスト用データの既知品質を比較することにより評価することができる。品質予測モデルの予測精度の高さを評価することにより、適切な多変量解析手法や、機器分析データを選択することが可能となる。
(Process to compare with the quality prediction model)
In the present invention, the quality of the coffee product refers to the type of coffee beans used, the blend ratio of the coffee bean varieties, the origin of the coffee beans, the blend ratio of coffee beans of different origins, the roasting degree of roasted beans, and the raw beans It includes quality related to coffee flavor design and quality related to human sensory quantity, such as conversion value, soluble solid content extraction yield, flavor rating, and sensory evaluation score. In particular, from the viewpoint of high prediction accuracy, coffee beans varieties, blend ratios of coffee bean varieties, and roasting degree of roasted beans can be preferably exemplified.
In the present invention, a plurality of coffee products of known quality are pre-processed to obtain individual analysis samples, the individual analysis samples are subjected to instrument analysis to obtain individual instrument analysis data, and the individual instrument analysis data is further obtained. And a multivariate analysis using each of the known qualities of a plurality of coffee products to create a coffee product quality prediction model that represents the relationship between the device analysis data and the quality predicted from the device analysis data To do.
The prediction accuracy of the quality prediction model is determined by dividing the device analysis data of known quality for learning and testing, creating a quality model using only the learning data, and using the test data for the quality prediction. Evaluation can be made by comparing the result of predicting the quality of the test data against the model and the known quality of the test data. By evaluating the high prediction accuracy of the quality prediction model, it is possible to select an appropriate multivariate analysis method and instrument analysis data.

また、品質予測モデルの予測精度の高さは、高い方が好ましいとも言えるが、目的とする品質の種類、品質予測モデル作成のための訓練データ収集にかかるコストや、時間の制約に応じて変わるものであって、その予測精度の範囲は目的に応じて任意に設定することができる。 The higher the accuracy of the quality prediction model, the better. However, it varies depending on the type of target quality, the cost of training data collection for creating the quality prediction model, and time constraints. The range of the prediction accuracy can be arbitrarily set according to the purpose.

そして、品質未知のコーヒー製品について、同様にして、前処理して分析サンプルを得、該分析サンプルを機器分析に供して機器分析データ得、該機器分析データを、上記で作成したコーヒー製品の品質予測モデルと照合することにより、該品質未知のコーヒー製品の品質を予測することができる。   In the same manner, the coffee product of unknown quality is pre-processed to obtain an analysis sample, the analysis sample is subjected to instrument analysis, instrument analysis data is obtained, and the instrument analysis data is obtained from the quality of the coffee product prepared above. By comparing with the prediction model, the quality of the coffee product whose quality is unknown can be predicted.

予測したコーヒー製品の品質を元に、予測された産地のアラビカ種、ロブ種およびリベリカ種のコーヒー豆を入手し、予測された焙煎度となるように焙煎を行い、予測されたブレンド比率となるようにブレンドし、更にコーヒー製品の形態に応じて適宜抽出および加工することで、予測された品質を再現したコーヒー製品を得ることができる。   Based on the predicted coffee product quality, obtain Arabica, Rob and Revelica coffee beans from the predicted origin, roast to the expected degree of roasting, and the predicted blend ratio By further blending so as to be, and further appropriately extracting and processing according to the form of the coffee product, a coffee product that reproduces the predicted quality can be obtained.

以下、実施例をあげて本発明を更に具体的に説明するが、本発明はこれらの実施例により何ら限定されるものではない。 Hereinafter, the present invention will be described more specifically with reference to examples. However, the present invention is not limited to these examples.

(実施例1)
(品種の予測)
Example 1
(Prediction of variety)

<コーヒー液の調製と前処理工程>
アラビカ種焙煎豆191検体(ブラジル158検体、コロンビア33検体、L値15〜24、高砂珈琲(株)より入手)、ロブスタ種(ベトナム)焙煎豆58検体(L値16〜23、高砂珈琲(株)より入手)について、市販のディッディングミル(Ditting Maschinen AG製)を用いて粉砕した後、粉砕豆1重量部に対して10〜20重量部の熱水と1〜10分間接触させて抽出し、ろ紙ろ過を行いコーヒー抽出液を得た。
得られたコーヒー抽出液のうち174検体については、そのままHPLC分析の前処理に供した。
得られたコーヒー抽出液のうち、75検体については、重曹水を使用してpHを5.9に調整した後、イオン交換水を使用して可溶性固形分濃度1.2重量%となるように希釈し、缶に充填して巻締めしてからF0=10の条件でレトルト殺菌を行ってブラックタイプ容器詰め飲料を得た。得られた容器詰め飲料のうち、36検体についてはそのままHPLC分析の前処理に供するまで室温保存した(ブラックタイプ容器詰め飲料)。残りの39検体については、60℃、1週間加温保存してから、HPLC分析の前処理に供するまで室温保存した(加温処理ブラックタイプ容器詰め飲料)。
得られたコーヒー液(コーヒー抽出液174検体、ブラックタイプ容器詰め飲料36検体、加温処理ブラックタイプ容器詰め飲料39検体)1.5gを秤量し、10mLメスフラスコにてHPLC溶離液(A液:0.05M酢酸、5容積%アセトニトリル水溶液)を加えて定容した後に0.45μm水系クロマトディスク(倉敷紡績(株)製)にて精密ろ過してからHPLC分析に供した。
<Preparation of coffee liquor and pretreatment process>
Arabica roasted beans 191 samples (Brazil 158 samples, Colombia 33 samples, L value 15-24, obtained from Takasago Coffee Co., Ltd.), Robusta (Vietnam) roasted beans 58 samples (L value 16-23, Takasago coffee) (Obtained from Co., Ltd.) using a commercially available dipping mill (manufactured by Ditting Machinen AG), and then brought into contact with 10 to 20 parts by weight of hot water for 1 to 10 minutes per 1 part by weight of the ground beans Extraction and filtration with filter paper were performed to obtain a coffee extract.
Of the obtained coffee extract, 174 samples were directly subjected to pretreatment for HPLC analysis.
Of the obtained coffee extract, 75 samples were adjusted to pH 5.9 using sodium bicarbonate water, and then the ion exchanged water was used to obtain a soluble solid content concentration of 1.2% by weight. Diluted, filled into a can and wound, and then retort sterilized under the condition of F0 = 10 to obtain a black type container-packed beverage. Of the obtained container-packed beverages, 36 samples were stored as they were at room temperature until they were subjected to pretreatment for HPLC analysis (black type container-packed beverages). The remaining 39 specimens were stored at 60 ° C. for 1 week, and then stored at room temperature until they were subjected to HPLC analysis pretreatment (warmed black type container-packed beverage).
1.5 g of the obtained coffee liquid (coffee extract 174 samples, black type container-packed beverage 36 samples, warmed black type container-packed beverage 39 sample) was weighed, and HPLC eluent (liquid A: 0.05M acetic acid, 5% by volume acetonitrile aqueous solution) was added and the volume was adjusted.

<機器分析工程>
精密ろ過後のコーヒー液10μLをHPLCの後段に検出器としてダイオードアレイ検出器が供えられた機器分析(1100シリーズ、アジレント・テクノロジー(株)製)に供した。
<Instrument analysis process>
10 μL of the microfiltrated coffee liquid was subjected to instrumental analysis (1100 series, manufactured by Agilent Technologies) provided with a diode array detector as a detector after the HPLC.

〔HPLC条件〕
カラム:カプセルパックMGIII (4.6×150mm、3μm、(株)資生堂製)
溶媒:A:0.05M酢酸、5容積%アセトニトリル水溶液、B:アセトニトリル
流速:1mL/分
[HPLC conditions]
Column: Capsule pack MGIII (4.6 × 150 mm, 3 μm, manufactured by Shiseido Co., Ltd.)
Solvent: A: 0.05 M acetic acid, 5% by volume acetonitrile aqueous solution, B: acetonitrile flow rate: 1 mL / min

<数値データに変換する工程>
HPLC分析の結果得られたクロマトグラムにおいて、保持時間、UV−Visスペクトルから分析に供与した検体に共通して存在すると推定された合計29個のピークを選択し、それぞれの面積値を算出した(Agilent OpenLAB クロマトデータシステム バージョン C.01.07(アジレント・テクノロジー(株)製)使用)。また、これらの29個のピーク面積値の和を算出した。次に29個のそれぞれのピーク面積値を、29個のピーク面積値の和で除したピーク面積比率を算出し、多変量解析工程へ供した。
<Process to convert to numerical data>
In the chromatogram obtained as a result of the HPLC analysis, a total of 29 peaks presumed to exist in common with the specimen donated to the analysis were selected from the retention time and the UV-Vis spectrum, and each area value was calculated ( Agilent OpenLAB chromatographic data system version C.01.07 (manufactured by Agilent Technologies) was used). In addition, the sum of these 29 peak area values was calculated. Next, a peak area ratio obtained by dividing each of the 29 peak area values by the sum of the 29 peak area values was calculated and subjected to a multivariate analysis step.

<多変量解析工程>
アラビカ種191検体、ロブスタ種58検体からそれぞれランダムに128検体、38検体、合計166検体を選択し、訓練用の検体群とした。残りの83検体をテスト用の検体群とした。
訓練用の検体群に属するそれぞれの検体の29個のHPLC分析ピーク面積比率を説明変数とし、コーヒー品種(即ちアラビカ種またはロブスタ種)を応答変数として、SIMCA(Soft Independent Modeling of Class Analogy)、線形判別分析、ステップワイズ変数選択判別分析、フィッシャーの判別分析、ランダムフォレスト判別分析、学習ベクトル量子化、t−分布を用いたロバスト判別分析、k−近傍法、ニューラルネットワーク判別分析の9種類の多変量解析手法を選択し、9種類の品質予測モデルを作成した。
<Multivariate analysis process>
A total of 166 samples, 128 samples and 38 samples, were selected at random from Arabica type 191 samples and Robusta type 58 samples, respectively, and used as a sample group for training. The remaining 83 specimens were used as test specimen groups.
SIMCA (Soft Independent Modeling of Class Analog), linear, with 29 HPLC analysis peak area ratios of each sample belonging to the training sample group as explanatory variables, coffee varieties (that is, Arabica or Robusta) as response variables Discriminant analysis, stepwise variable selection discriminant analysis, Fisher discriminant analysis, random forest discriminant analysis, learning vector quantization, robust discriminant analysis using t-distribution, k-neighbor method, neural network discriminant analysis The analysis method was selected and nine types of quality prediction models were created.

<品質予測モデルと照合する工程>
テスト用の検体群に属するそれぞれの検体の29個のHPLC分析ピーク面積比率を説明変数として、9種の品質予測モデルを使用して計算を実行し、応答変数であるコーヒー品種の予測を行い、その正解率を算出した。その結果、ニューラルネットワーク判別分析:0.91、学習ベクトル量子化:0.94、線形判別分析:0.97、その他の6種類の品質予測モデル(SIMCA、ステップワイズ変数選択判別分析、フィッシャーの判別分析、ランダムフォレスト判別分析、t−分布を用いたロバスト判別分析、k−近傍法)では正解率1と高い予測精度が得られた。
実施例記載の多変量解析工程と、品質予測モデルと照合する工程の解析ツールにはフリーの統計分析ソフトウェアであるR(version 3.1.2)を使用した。
<Process to compare with quality prediction model>
Using the 29 HPLC analysis peak area ratios of each sample belonging to the test sample group as explanatory variables, calculation is performed using nine kinds of quality prediction models, and the coffee varieties that are response variables are predicted, The accuracy rate was calculated. As a result, neural network discriminant analysis: 0.91, learning vector quantization: 0.94, linear discriminant analysis: 0.97, and other six types of quality prediction models (SIMCA, stepwise variable selection discriminant analysis, Fisher discriminant) Analysis, random forest discriminant analysis, robust discriminant analysis using t-distribution, k-neighbor method), a high accuracy rate of 1 and high prediction accuracy was obtained.
R (version 3.1.2), which is free statistical analysis software, was used as an analysis tool for the multivariate analysis process described in the examples and the process for matching with the quality prediction model.

(実施例2)
(加糖・乳入りタイプ容器詰め飲料のコーヒー品種の予測)
(Example 2)
(Prediction of coffee varieties of sweetened and milk-filled container-packed beverages)

<コーヒー液の調製と前処理工程>
実施例1で得られたコーヒー抽出液のうち、ランダムに選択したアラビカ種30検体、ロブスタ種20検体について、グラニュー糖6重量%、牛乳12重量%、乳化剤(三菱化学フーズ(株)より入手)0.25重量%にイオン交換水を添加して均質化処理し、重曹水を使用してpHを6.9に調整した後、更にイオン交換水を使用してコーヒー由来の可溶性固形分濃度1.3重量%となるように希釈し、缶に充填して巻締めしてからF0=25の条件でレトルト殺菌を行って加糖・乳入りタイプ容器詰め飲料を50検体得た。
得られた加糖・乳入りタイプ容器詰め飲料について、実施例1記載の方法と同様にして前処理を行い、HPLC分析に供した。
<Preparation of coffee liquor and pretreatment process>
Of the coffee extract obtained in Example 1, 30 randomly selected arabica species and 20 lobsta species were analyzed. 6% by weight of granulated sugar, 12% by weight of milk, and emulsifier (obtained from Mitsubishi Chemical Foods Co., Ltd.) Add ion-exchanged water to 0.25% by weight, homogenize, adjust pH to 6.9 using sodium bicarbonate water, and then use ion-exchanged water to add 1 soluble solid content derived from coffee. The sample was diluted to 3% by weight, filled into a can and wound, and then retort sterilized under the condition of F0 = 25 to obtain 50 samples of a sugared / milk-containing container-packed beverage.
The obtained sweetened / milk-filled type container-packed beverage was pretreated in the same manner as in Example 1 and subjected to HPLC analysis.

<機器分析工程と数値データに変換する工程>
実施例1記載の方法と同様にして、加糖・乳入りタイプ容器詰め飲料50検体につきピーク面積比率を算出した。
<Instrument analysis process and conversion to numerical data>
In the same manner as in the method described in Example 1, the peak area ratio was calculated for 50 samples of a sugar-filled / milk-containing container-packed beverage.

<品質予測モデルと照合する工程>
加糖・乳入りタイプ容器詰め飲料50検体分のピーク面積比率を説明変数として、実施例1で得られたステップワイズ変数選択判別分析の品質予測モデルを使用して、応答変数であるコーヒー品種の予測を行ったところ、正解率は1であり、加糖・乳入りタイプ容器詰め飲料でも、ブラックタイプと同じ品質予測モデルを利用することにより高いコーヒー品種予測精度が得られた。
<Process to compare with quality prediction model>
Using the quality prediction model of the stepwise variable selection discriminant analysis obtained in Example 1 using the peak area ratio for 50 samples of a sweetened / milk-containing container-packed beverage as an explanatory variable, the prediction of coffee varieties that are response variables As a result, the correct answer rate was 1, and high coffee variety prediction accuracy was obtained by using the same quality prediction model as that of the black type even in the case of a sweetened / milk-filled type container-packed beverage.

(実施例3)
(品種のブレンド比率の予測)
(Example 3)
(Prediction of blend ratio of varieties)

<コーヒー液と前処理工程>
アラビカ種焙煎豆18検体(ブラジル9検体、コロンビア9検体、L値15〜24、高砂珈琲(株)より入手)、ロブスタ種(ベトナム)焙煎豆19検体(L値16〜23、高砂珈琲(株)より入手)、アラビカ種とロブスタ種のブレンド焙煎豆34検体(ロブスタ種焙煎豆のブレンド比率として15重量%、25重量%、40重量%、50重量%、60重量%、75重量%、80重量%)について、実施例1記載の方法と同様にして粉砕・抽出・ろ紙ろ過を行いコーヒー抽出液71検体を得た。得られたコーヒー抽出液について、実施例1記載の方法と同様にして前処理を行い、HPLC分析に供した。
これとは別にコーヒーエキス10検体(Brix15〜55、アラビカ種4種、ロブスタ種3種、アラビカ種とロブスタ種のブレンド3種を高砂珈琲(株)より入手)についてもBrix1.5にイオン交換水にて希釈後、実施例1記載の方法と同様にして前処理を行い、HPLC分析に供した。
<Coffee liquor and pretreatment process>
18 Arabica roasted beans (9 Brazil samples, 9 Colombia samples, L value 15-24, obtained from Takasago Coffee Co., Ltd.), Robusta (Vietnam) 19 roasted beans (L value 16-23, Takasago coffee) (Obtained from Co., Ltd.), 34 specimens of Arabica and Robusta blend roasted beans (Robusta seed roasted beans blend ratios of 15 wt%, 25 wt%, 40 wt%, 50 wt%, 60 wt%, 75 In the same manner as in Example 1, grinding, extraction, and filter paper filtration were performed to obtain 71 coffee extract liquids. The obtained coffee extract was pretreated in the same manner as described in Example 1 and subjected to HPLC analysis.
Separately, 10 samples of coffee extract (Brix 15-55, 4 types of Arabica, 3 types of Robusta, 3 types of blends of Arabica and Robusta were obtained from Takasago Coffee Co., Ltd.) After dilution with, pretreatment was performed in the same manner as described in Example 1 and subjected to HPLC analysis.

<機器分析工程と数値データに変換する工程>
実施例1記載の方法と同様にして、コーヒー抽出液71検体、コーヒーエキス10検体につきピーク面積比率を算出した。
<Instrument analysis process and conversion to numerical data>
In the same manner as in the method described in Example 1, the peak area ratio was calculated for 71 samples of coffee extract and 10 samples of coffee extract.

<多変量解析工程>
アラビカ種抽出液18検体、ロブスタ種抽出液19検体、アラビカ種とロブスタ種のブレンド抽出液34検体からそれぞれランダムに10検体、10検体、26検体、合計46検体を訓練用に選択した。更にアラビカ種コーヒーエキス4検体、ロブスタ種コーヒーエキス3検体からそれぞれランダムに2検体、合計4検体を訓練用に選択した。コーヒー抽出液46検体と、コーヒーエキス4検体を合計して50検体を訓練用の検体群とした。残りのコーヒー抽出液25検体とコーヒーエキス6検体、合計31検体をテスト用の検体群とした。
訓練用の検体群に属するそれぞれの検体の29個のHPLC分析ピーク面積比率を説明変数とし、ロブスタ種のブレンド比率を応答変数として、主成分回帰分析、PLS(Partial Least Squares)回帰分析、サポートベクターマシン、ランダムフォレスト、ニューラルネットワーク回帰分析、一般化線形回帰分析の6種類の多変量解析手法を選択し、6種類の品質予測モデルを作成した。
<Multivariate analysis process>
A total of 46 samples, 10 samples, 10 samples, 26 samples, were selected for training from 18 samples of Arabica seed extract, 19 samples of Robusta seed extract, and 34 samples of blend extract of Arabica and Robusta. Further, 4 samples were randomly selected from 4 Arabica coffee extracts and 3 Robusta coffee extracts, for a total of 4 samples. A total of 46 samples of the coffee extract and 4 samples of the coffee extract were used as a sample group for training. The remaining 25 samples of coffee extract and 6 samples of coffee extract, 31 samples in total, were used as test sample groups.
Principal component regression analysis, PLS (Partial Least Squares) regression analysis, support vector, with 29 HPLC analysis peak area ratios of each sample belonging to the training sample group as explanatory variables, and Robusta blend ratio as response variables Six types of quality prediction models were created by selecting six types of multivariate analysis methods: machine, random forest, neural network regression analysis, and generalized linear regression analysis.

<品質予測モデルと照合する工程>
テスト用の検体群に属するそれぞれの検体の29個のHPLC分析ピーク面積比率を説明変数として、6種の品質予測モデルを使用して計算を実行し、応答変数であるロブスタ種のブレンド比率の予測を行い、その予測精度をRMSEP(Root Mean Square Error of Prediction)、決定係数にて評価した。その結果、主成分回帰分析:RMSEP=89.7、決定係数=0.95、PLS回帰分析:RMSEP=37.8、決定係数=0.98、サポートベクターマシン:RMSEP=68.5、決定係数=0.96、ランダムフォレスト:RMSEP=56.8、決定係数=0.97、ニューラルネットワーク回帰分析:RMSEP=46.7、決定係数=0.97、一般化線形回帰分析:RMSEP=30.7、決定係数=0.98と高い予測精度が得られた。また、コーヒーエキスの予測精度が特異的に低下する傾向も観察されず、コーヒー抽出液とコーヒーエキスは実質的に同様の予測精度で品種のブレンド比率を予測することが可能であった。
<Process to compare with quality prediction model>
Calculation is performed using six quality prediction models using 29 HPLC analysis peak area ratios of each sample belonging to the test sample group as explanatory variables, and prediction of the blend ratio of Robusta species as response variables The prediction accuracy was evaluated using RMSEP (Root Mean Square Error of Prediction) and a coefficient of determination. As a result, principal component regression analysis: RMSEP = 89.7, determination coefficient = 0.95, PLS regression analysis: RMSEP = 37.8, determination coefficient = 0.98, support vector machine: RMSEP = 68.5, determination coefficient = 0.96, random forest: RMSEP = 56.8, coefficient of determination = 0.97, neural network regression analysis: RMSEP = 46.7, coefficient of determination = 0.97, generalized linear regression analysis: RMSEP = 30.7 A high prediction accuracy was obtained with a coefficient of determination = 0.98. Moreover, the tendency for the prediction accuracy of the coffee extract to decrease specifically was not observed, and the blend ratio of the varieties of the coffee extract and the coffee extract could be predicted with substantially the same prediction accuracy.

(実施例4)
(焙煎度の予測)
Example 4
(Prediction of roasting degree)

<コーヒー液の調製と前処理工程および機器分析工程および数値データに変換する工程>
実施例1と同様のデータを使用した。
<Preparation of coffee liquor, pretreatment process, instrument analysis process, and conversion to numerical data>
Data similar to Example 1 was used.

<多変量解析工程>
アラビカ種191検体からランダムに128検体を選択して、アラビカ種訓練用の検体群とし、残りの63検体をテスト用の検体群とした。同様にロブスタ種58検体からランダムに38検体を選択して、ロブスタ種訓練用の検体群とし、残りの20検体をテスト用の検体群とした。
アラビカ種の訓練用の検体群、ロブスタ種の訓練用の検体群それぞれについて、訓練用の検体群に属するそれぞれの検体の29個のHPLC分析ピーク面積比率を説明変数とし、使用されているコーヒーの焙煎度(L値)を応答変数として、PLS回帰分析、ニューラルネットワーク回帰分析、ランダムフォレストの3種類の多変量解析手法を選択し、3種類の品質予測モデルを作成した。
<Multivariate analysis process>
128 samples were selected at random from 191 samples of the arabica species and used as a sample group for arabica species training, and the remaining 63 samples were used as a test sample group. Similarly, 38 samples were selected at random from 58 samples of Robusta, and used as a sample group for Robusta training, and the remaining 20 samples were used as a test sample group.
For each of the Arabica training sample group and Robusta training sample group, the 29 HPLC analysis peak area ratios of each sample belonging to the training sample group are used as explanatory variables, and the coffee used Using the roasting degree (L value) as a response variable, three types of multivariate analysis methods were selected: PLS regression analysis, neural network regression analysis, and random forest, and three types of quality prediction models were created.

<品質予測モデルと照合する工程>
テスト用の検体群に属するそれぞれの検体の29個のHPLC分析ピーク面積比率を説明変数として、アラビカ種、ロブスタ種それぞれにつき3種の品質予測モデルを使用して計算を実行し、応答変数であるコーヒーの焙煎度(L値)の予測を行い、その予測精度をRMSEP、決定係数にて評価した。その結果、アラビカ種については、PLS回帰分析:RMSEP=0.37、決定係数=0.86、ニューラルネットワーク回帰分析:RMSEP=0.25、決定係数=0.91、ランダムフォレスト:RMSEP=0.15、決定係数=0.95と高い予測精度が得られた。ロブスタ種については、PLS回帰分析:RMSEP=0.34、決定係数=0.82、ニューラルネットワーク回帰分析:RMSEP=0.24、決定係数=0.82、ランダムフォレスト:RMSEP=0.20、決定係数=0.87の予測精度が得られた。
<Process to compare with quality prediction model>
Calculation is performed using three quality prediction models for each of Arabica and Robusta, using 29 HPLC analysis peak area ratios of each sample belonging to the test sample group as explanatory variables, which are response variables. The degree of coffee roasting (L value) was predicted, and the prediction accuracy was evaluated using RMSEP and a coefficient of determination. As a result, for Arabica species, PLS regression analysis: RMSEP = 0.37, coefficient of determination = 0.86, neural network regression analysis: RMSEP = 0.25, coefficient of determination = 0.91, random forest: RMSEP = 0. 15. A high prediction accuracy was obtained with a coefficient of determination = 0.95. For Robusta species, PLS regression analysis: RMSEP = 0.34, coefficient of determination = 0.82, neural network regression analysis: RMSEP = 0.24, coefficient of determination = 0.82, random forest: RMSEP = 0.20, determination A prediction accuracy of coefficient = 0.87 was obtained.

本発明によれば、コーヒー豆、コーヒー液、インスタントコーヒーなど形態が異なるコーヒー製品を予測対象として包含し、かつ乳素材、糖類、pH調整剤などのコーヒー以外の由来の副原料をも含むコーヒー製品について、直接測定することが困難または不可能な品質を、高精度でかつ簡便に予測することができる。 According to the present invention, coffee products including coffee beans having different forms, such as coffee beans, coffee liquor, and instant coffee, are included as prediction targets, and also include auxiliary materials derived from other than coffee such as milk materials, sugars, and pH adjusters. The quality that is difficult or impossible to measure directly can be accurately and easily predicted.

Claims (7)

コーヒー製品を前処理して分析サンプルを得る工程;
該分析サンプルを機器分析に供して分析結果を得る工程;
該分析結果を数値データに変換する工程;および
得られた数値データを、
品質既知の複数のコーヒー製品を前処理して個別の分析サンプルを得る工程;
該個別の分析サンプルを機器分析に供して個別の分析結果を得る工程;
該個別の分析結果を数値データに変換する工程;および
該個別の変換された数値データと該品質との関係を多変量解析する工程;
によって得られる、コーヒー製品の品質予測モデルと照合する工程;
を含むコーヒー製品の品質予測方法。
Pre-treating the coffee product to obtain an analytical sample;
Subjecting the analysis sample to instrumental analysis to obtain an analysis result;
Converting the analysis result into numerical data; and the obtained numerical data,
Pre-treating a plurality of coffee products of known quality to obtain individual analytical samples;
Subjecting the individual analytical samples to instrumental analysis to obtain individual analytical results;
Converting the individual analysis results into numerical data; and multivariate analysis of the relationship between the individual converted numerical data and the quality;
Checking with a coffee product quality prediction model obtained by
Quality prediction method for coffee products including
コーヒー製品がコーヒー豆またはコーヒー液またはインスタントコーヒーである、請求項1に記載の方法。 The method of claim 1, wherein the coffee product is coffee beans or coffee liquor or instant coffee. 前処理が、コーヒー豆を水性溶媒で抽出、ろ過する工程、またはコーヒー液をろ過する工程、またはインスタントコーヒーを水性溶媒で溶解、ろ過する工程を含む、請求項1または2に記載の方法。 The method according to claim 1 or 2, wherein the pretreatment comprises a step of extracting and filtering coffee beans with an aqueous solvent, a step of filtering coffee liquid, or a step of dissolving and filtering instant coffee with an aqueous solvent. 機器分析が、高速液体クロマトグラフィーの後段に検出器としてダイオードアレイ検出器が供えられたものである、請求項1乃至請求項3記載の方法。 4. The method according to claim 1, wherein the instrumental analysis is performed by providing a diode array detector as a detector after the high performance liquid chromatography. 多変量解析が、パターン認識手法または多変量回帰分析手法から選択される請求項1乃至請求項4記載の方法。 The method according to any one of claims 1 to 4, wherein the multivariate analysis is selected from a pattern recognition method or a multivariate regression analysis method. 品質が、コーヒー豆の品種、コーヒー豆の品種のブレンド比率、コーヒー豆の焙煎度から選択される請求項1乃至5記載の方法。 6. The method according to claim 1, wherein the quality is selected from coffee bean varieties, blend ratio of coffee bean varieties, and roasted degree of coffee beans. 請求項1乃至6記載の方法で予測した品質を再現したコーヒー製品。 A coffee product that reproduces the quality predicted by the method according to claim 1.
JP2015150235A 2015-07-30 2015-07-30 Method for predicting quality of coffee product by utilizing metabolomic analysis, and coffee product Pending JP2017032326A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2015150235A JP2017032326A (en) 2015-07-30 2015-07-30 Method for predicting quality of coffee product by utilizing metabolomic analysis, and coffee product

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2015150235A JP2017032326A (en) 2015-07-30 2015-07-30 Method for predicting quality of coffee product by utilizing metabolomic analysis, and coffee product

Publications (1)

Publication Number Publication Date
JP2017032326A true JP2017032326A (en) 2017-02-09

Family

ID=57987045

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2015150235A Pending JP2017032326A (en) 2015-07-30 2015-07-30 Method for predicting quality of coffee product by utilizing metabolomic analysis, and coffee product

Country Status (1)

Country Link
JP (1) JP2017032326A (en)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2018157482A (en) * 2017-03-21 2018-10-04 Kddi株式会社 Gateway unit and control method thereof, and program
JP2018173395A (en) * 2017-03-31 2018-11-08 株式会社日立ハイテクサイエンス Process liquid evaluation method and data processing device
WO2021107735A3 (en) * 2019-11-29 2021-07-22 정지훈 Method for classifying coffee raw materials, method for providing roasting profile of raw beans using same, and system for providing information on coffee raw materials
CN113189222A (en) * 2021-05-20 2021-07-30 云南农业大学 Method for identifying coffee beans by using UHPLC-QE-MS fingerprint
KR20220020086A (en) * 2020-08-11 2022-02-18 롯데푸드 주식회사 Quality prediction system for finished coffee products
CN115586275A (en) * 2022-10-17 2023-01-10 中国水产科学研究院东海水产研究所 Liquid chromatography-tandem mass spectrometry determination method of methyltestosterone in aquatic product

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2018157482A (en) * 2017-03-21 2018-10-04 Kddi株式会社 Gateway unit and control method thereof, and program
JP2018173395A (en) * 2017-03-31 2018-11-08 株式会社日立ハイテクサイエンス Process liquid evaluation method and data processing device
JP6994749B2 (en) 2017-03-31 2022-02-04 株式会社日立ハイテクサイエンス Plating liquid judgment method and data processing equipment
WO2021107735A3 (en) * 2019-11-29 2021-07-22 정지훈 Method for classifying coffee raw materials, method for providing roasting profile of raw beans using same, and system for providing information on coffee raw materials
KR20220020086A (en) * 2020-08-11 2022-02-18 롯데푸드 주식회사 Quality prediction system for finished coffee products
KR102469544B1 (en) * 2020-08-11 2022-11-23 롯데제과 주식회사 Quality prediction system for finished coffee products
CN113189222A (en) * 2021-05-20 2021-07-30 云南农业大学 Method for identifying coffee beans by using UHPLC-QE-MS fingerprint
CN115586275A (en) * 2022-10-17 2023-01-10 中国水产科学研究院东海水产研究所 Liquid chromatography-tandem mass spectrometry determination method of methyltestosterone in aquatic product

Similar Documents

Publication Publication Date Title
Cubero-Leon et al. Review on metabolomics for food authentication
Utpott et al. Metabolomics: An analytical technique for food processing evaluation
Dong et al. Comparative evaluation of the volatile profiles and taste properties of roasted coffee beans as affected by drying method and detected by electronic nose, electronic tongue, and HS-SPME-GC-MS
JP2017032326A (en) Method for predicting quality of coffee product by utilizing metabolomic analysis, and coffee product
Consonni et al. The potentiality of NMR‐based metabolomics in food science and food authentication assessment
Plutowska et al. Aromagrams–Aromatic profiles in the appreciation of food quality
JP2018018354A (en) Quality prediction method for food and drink using deep learning, and food and drink
Tran et al. Assessing cocoa aroma quality by multiple analytical approaches
Pang et al. Identification of aroma-active compounds in Jiashi muskmelon juice by GC-O-MS and OAV calculation
Consonni et al. Nuclear magnetic resonance and chemometrics to assess geographical origin and quality of traditional food products
Starowicz Analysis of volatiles in food products
Boscaini et al. Gas Chromatography− Olfactometry (GC-O) and proton transfer Reaction− Mass spectrometry (PTR-MS) analysis of the flavor profile of Grana Padano, Parmigiano Reggiano, and Grana trentino cheeses
Özdestan et al. Differentiation of specialty coffees by proton transfer reaction-mass spectrometry
Yener et al. Tracing coffee origin by direct injection headspace analysis with PTR/SRI-MS
Welke et al. Comprehensive two-dimensional gas chromatography for analysis of volatile compounds in foods and beverages
Tang et al. Magnetic resonance applications in food analysis
Karoui Spectroscopic technique: Mid-infrared (MIR) and Fourier transform mid-infrared (FT-MIR) spectroscopies
Majchrzak et al. Revealing dynamic changes of the volatile profile of food samples using PTR–MS
Sunarharum The compositional basis of coffee flavour
Franca et al. Potential uses of fourier transform infrared spectroscopy (FTIR) in food processing and engineering
Sobolev et al. Advances in nuclear magnetic resonance spectroscopy for food authenticity testing
Aspromonte et al. Solid-phase microextraction coupled to comprehensive multidimensional gas chromatography for food analysis
Wang et al. The identification of soy sauce adulterated with bean species and the origin using headspace solid-phase microextraction coupled with gas chromatography-mass spectrometry
Preti Progress in beverages authentication by the application of analytical techniques and chemometrics
Osorio et al. Transformation of organic acids and sugars in the mucilage and coffee beans during prolonged fermentation