WO2021106977A1 - Transportation route determination method, computer program, and transportation route determination device - Google Patents

Transportation route determination method, computer program, and transportation route determination device Download PDF

Info

Publication number
WO2021106977A1
WO2021106977A1 PCT/JP2020/043936 JP2020043936W WO2021106977A1 WO 2021106977 A1 WO2021106977 A1 WO 2021106977A1 JP 2020043936 W JP2020043936 W JP 2020043936W WO 2021106977 A1 WO2021106977 A1 WO 2021106977A1
Authority
WO
WIPO (PCT)
Prior art keywords
transportation
route
goods
transportation route
equipment
Prior art date
Application number
PCT/JP2020/043936
Other languages
French (fr)
Japanese (ja)
Inventor
道 酒井
富生 大堀
Original Assignee
公立大学法人 滋賀県立大学
株式会社AirBusinessClub
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 公立大学法人 滋賀県立大学, 株式会社AirBusinessClub filed Critical 公立大学法人 滋賀県立大学
Priority to JP2021561472A priority Critical patent/JPWO2021106977A1/ja
Publication of WO2021106977A1 publication Critical patent/WO2021106977A1/en

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B65CONVEYING; PACKING; STORING; HANDLING THIN OR FILAMENTARY MATERIAL
    • B65GTRANSPORT OR STORAGE DEVICES, e.g. CONVEYORS FOR LOADING OR TIPPING, SHOP CONVEYOR SYSTEMS OR PNEUMATIC TUBE CONVEYORS
    • B65G61/00Use of pick-up or transfer devices or of manipulators for stacking or de-stacking articles not otherwise provided for
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06QINFORMATION AND COMMUNICATION TECHNOLOGY [ICT] SPECIALLY ADAPTED FOR ADMINISTRATIVE, COMMERCIAL, FINANCIAL, MANAGERIAL OR SUPERVISORY PURPOSES; SYSTEMS OR METHODS SPECIALLY ADAPTED FOR ADMINISTRATIVE, COMMERCIAL, FINANCIAL, MANAGERIAL OR SUPERVISORY PURPOSES, NOT OTHERWISE PROVIDED FOR
    • G06Q10/00Administration; Management
    • G06Q10/04Forecasting or optimisation specially adapted for administrative or management purposes, e.g. linear programming or "cutting stock problem"
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06QINFORMATION AND COMMUNICATION TECHNOLOGY [ICT] SPECIALLY ADAPTED FOR ADMINISTRATIVE, COMMERCIAL, FINANCIAL, MANAGERIAL OR SUPERVISORY PURPOSES; SYSTEMS OR METHODS SPECIALLY ADAPTED FOR ADMINISTRATIVE, COMMERCIAL, FINANCIAL, MANAGERIAL OR SUPERVISORY PURPOSES, NOT OTHERWISE PROVIDED FOR
    • G06Q10/00Administration; Management
    • G06Q10/08Logistics, e.g. warehousing, loading or distribution; Inventory or stock management

Definitions

  • the present invention provides a transport route determination method, a computer program, and a transport route that optimizes the transport route of a physical distribution member on which articles such as pallets, small containers, or cardboard boxes are loaded in order to improve the distribution efficiency of the articles.
  • a transport route determination method a computer program
  • Patent Documents 1 and 2 propose to optimize the movement of goods in the backbone (trunk line) of physical distribution by sharing the loading platform of transportation equipment in pallet units.
  • Patent Document 3 discloses a method for solving a delivery planning problem assuming that a loaded load is transported in one travel of one transport vehicle from a delivery base to a delivery destination. Patent Document 3 uses a plurality of delivery vehicles to deliver a cargo from a distribution base to a plurality of delivery destinations, and a delivery plan is made by a different algorithm so that the mileage to the route returning to the original base is the shortest. The creation is repeated, and the plan with the shortest total mileage is selected.
  • Patent Document 4 discloses a method using an insertion method in which a delivery destination is inserted into a tentatively determined delivery route and the step of selecting the route having the shortest mileage is repeated.
  • Patent Document 4 provides a provisional solution in which a customer is inserted in the middle under the constraint condition that the upper limit of the traveling time and the maximum load capacity of the vehicle are not exceeded on a closed route that goes around a plurality of delivery destinations from the distribution base. Generate and reduce mileage or mileage.
  • Patent Documents 1 and 2 The inventors examined the optimization disclosed in Patent Documents 1 and 2 in detail and came up with a method for finding the optimum solution.
  • each transport vehicle loads and delivers the cargo to the delivery destination.
  • the transportation vehicle does not assume that the parcel loaded at the delivery base will be transshipped to another vehicle on the way. Since the vehicle loads each package to the delivery destination, the load rate of the vehicle's package decreases each time the package is unloaded on the way, and it is difficult to derive the optimum delivery plan.
  • An object of the present invention is to provide a transportation route determination method, a computer program, and a transportation route determination device that optimize the transportation route of a physical distribution member.
  • the transportation route determination method of the embodiment of the present disclosure is a transportation route determination method for determining a transportation route from a collection point to a distribution point of the article by sequentially selecting a transportation base through which the transportation equipment for transporting the article passes. Therefore, a simulation in which the transportation equipment repeats a selection process of sequentially and probabilistically selecting a transportation base or a distribution point to be passed through from a transportation base or a collection point until the transportation of the goods to the delivery point is completed.
  • the transportation route determination method includes a plurality of collection and delivery points for collecting and delivering articles, and a plurality of member accommodating portions for transporting the articles and accommodating distribution members for accommodating the articles. It is a transportation route determination method for determining a route of a transportation device between points including a plurality of transportation bases through which a transportation device having a provided loading platform passes, and is a method of determining the type of goods to be loaded on the distribution member and the number of distribution members. And the process of acquiring the information on the collection and delivery point where the goods are collected and delivered, the collection and delivery point or the transportation base which is the final destination of the goods, and the desired arrival time information on the destination.
  • the number of transportation equipment required for each region, and the transportation route within the region are calculated by simulation based on a mathematical model that includes a probabilistic selection process using random numbers when selecting one from multiple options for transit points.
  • the process of selecting any partial route of the derived transportation route and determining the transportation route for each of the transportation devices is included.
  • the computer program of the embodiment of the present disclosure causes a computer to execute a process of sequentially selecting a transportation base through which a transportation device for transporting an article passes and determining a transportation route from a collection point to the distribution point of the article.
  • the computer is subjected to a selection process of sequentially and probabilistically selecting a transportation base or a distribution point through which the transportation equipment passes from a transportation base or a collection point to the delivery point of the article.
  • a simulation step that repeats until the transportation is completed, a step of calculating a predetermined evaluation amount for the transportation route obtained in the simulation step, and a step of calculating the simulation step and the predetermined evaluation amount are repeated within a predetermined range.
  • the step of determining the transportation route based on the predetermined evaluation amount is executed from the plurality of transportation routes.
  • the transport route determining device is a transport route determining device that determines a transport route from a collection point to a distribution point of the article by sequentially selecting a transport base through which the transport device for transporting the article passes. Therefore, a simulation in which the transportation equipment repeats a selection process of sequentially and probabilistically selecting a transportation base or a distribution point to be passed through from a transportation base or a collection point until the transportation of the goods to the delivery point is completed. It is obtained by repeating the execution unit that executes the process, the calculation unit that calculates a predetermined evaluation amount for the transportation route obtained in the simulation process, and the simulation process and the calculation process of the predetermined evaluation amount within a predetermined range.
  • a determination unit for determining a transportation route based on the predetermined evaluation amount from a plurality of transportation routes is provided.
  • the required number of transportation devices can be obtained as the optimum number of agents by setting the transportation equipment as an agent based on agent-based modeling and simulating the agents with conditions. It is possible. In this respect, agent-based modeling is useful in solving logistics problems.
  • the number of transportation equipment required for each region and the transportation route are optimized by executing a simulation by an agent-based model according to the situation in each step step by step by a mathematical model. To. If it can be assumed that one distribution member (for example, a pallet) is transported by sharing the transportation equipment, that is, by connecting, an optimum solution can be obtained.
  • one distribution member for example, a pallet
  • the steps of sequentially and probabilistically selecting the waypoints from the collection point to the transportation destination of the goods are repeated until a plurality of goods have been transported to the transportation destination.
  • the calculated transportation route is evaluated with a predetermined evaluation amount.
  • the predetermined evaluation amount includes the time required to complete transportation, the number of steps required, the total distance traveled by the transportation equipment, the required number of movements, the estimated emission amount of carbon dioxide due to the movement of the transportation equipment, and the cost required for transportation. It may be a value calculated from any one or a plurality of combinations, or a plurality of combinations.
  • the number of obtained transportation routes is within the upper limit of the number of predetermined transportation routes, or the calculation time of the simulation process and the process of calculating the evaluation amount is the predetermined calculation time. It may be within the upper limit.
  • the simulation step may be executed on the condition that the transportation equipment moves to a predetermined collection point when all the articles to be loaded are delivered.
  • the simulation step may be executed with the probability of selecting a transportation base or a distribution point in the selection process being a pre-weighted probability.
  • the simulation is performed under the conditions that the article is a plurality of types of articles, the transport device is permitted to load the plurality of types of articles, and the plurality of types of articles are permitted to be loaded or unloaded at a transportation base.
  • the process may be performed.
  • a numerical value related to the evaluation amount is calculated, and the numerical value sets a preset termination condition of the calculation process. If so, the simulation process may be terminated.
  • the progress rate until the completion of transportation is calculated, and the state is the same as the progress rate in the transportation route determined to be optimal based on the predetermined evaluation amount among the already obtained transportation routes.
  • the censoring condition may be that the predetermined index exceeds the reference value for comparison.
  • the predetermined index includes the time required for transportation to the progress rate, the number of steps required, the distance traveled by the transportation equipment to the progress rate, the number of movements of the transportation equipment to the progress rate, and the estimation of carbon dioxide to the progress rate. It may be the amount of emissions or the cost of transportation.
  • the conditions of the transportation equipment are set as the preconditions of the simulation process, the conditions of the transportation equipment are changed, the simulation process is executed, and the conditions of the transportation equipment are different.
  • the optimum transportation route and the conditions of the transportation equipment may be determined based on the predetermined evaluation amount for the transportation route obtained by the execution simulation step.
  • the condition of the transport equipment is the number of the transport equipment, and the predetermined evaluation amount does not decrease even if the condition is changed by increasing the number of the transport equipment by 1 and the number of the transport equipment is increased.
  • the minimum value of transport equipment may be determined as the number of transport equipment.
  • the plurality of articles are selected differently from the next selection point in the stored transportation route in the step of probabilistically selecting from the stage of the waypoint.
  • a new transportation route of the transportation equipment may be calculated repeatedly until the transportation to the transportation destination is completed.
  • the transport route determination method of the embodiment of the present disclosure uses the number of transport devices and a part or all of the transport routes stored in the storage unit previously derived by the calculation, and may be used for the calculation. Good.
  • the transportation route determination method is stored in the storage unit when the number of transportation devices and a part or all of the transportation routes are stored in the storage unit in advance by the calculation. Only the part corresponding to the type of goods, the number of pallets, the collection / delivery point, and the difference from the destination, which are the conditions for deriving the transportation route, is the new derivation target, and the result of the new derivation and the storage unit are described. It may be integrated with the derivation result stored in.
  • the transportation route determination may be used without executing the determination of the transportation route from the initial state by using the number of transportation routes and the transportation route stored in the calculation up to that point.
  • the calculation may be started from the waypoint of the transportation route obtained by the calculation in the past.
  • the learning effect can be obtained by selecting a transportation route with a smaller number of movements and a shorter movement distance.
  • each The optimum transportation route for distribution materials is derived.
  • FIG. 1 is a schematic diagram of the distribution system 100 of the present disclosure.
  • the distribution system 100 includes a transportation device 1 for transporting goods, for example, agricultural products, a base center (base) 2 which is a transfer center where the transportation device 1 stops, a collection / delivery center 3 which is a distribution center for collecting and delivering goods, and a control center 400. And include.
  • the distribution system 100 is operated based on the route information determined by the transportation route determination device 4.
  • the transportation route determination device 4 can be connected to the transportation device 1, the device in the base center 2, and the device in the collection / delivery center 3 by communication. Further, the transportation route determination device 4 can be connected to the terminal device 5 used by the operator of the producer or the manufacturer, the base center 2 and the collection / delivery center 3.
  • Transport equipment 1 is a vehicle such as a transport truck, a train, a transport aircraft, or a ship.
  • the transport device 1 may be a transport robot that travels by automatic operation.
  • the base center 2 is a transit center provided on a so-called trunk line in logistics, and is installed at a place that serves as a base for transportation equipment 1, such as an interchange (IC) in a port, an airport, a freight station, or a road network.
  • the base center 2 is provided, for example, at predetermined distances.
  • the base center 2 is provided with a group of devices that accept the receipt of the transportation device 1 at the base center 2 and carry out / carry in the pallet P from the transportation device 1, and a base controller 20 that controls the device group.
  • the base controller 20 can be connected to the transportation route determination device 4 by communication, and controls the device group based on the instruction from the transportation route determination device 4.
  • the transportation target is loaded on the distribution material and transported.
  • the physical distribution members are the pallet P and the small container C.
  • the distribution member may be a flexible container, a so-called flexible container, an iron container, or a cardboard box.
  • bags, plates, and box materials used for placing and accommodating goods in physical distribution are included in physical distribution members.
  • the pallet center 22 should be installed side by side in the base center 2. Pallets P are collected and delivered at the pallet center 22.
  • the pallet center 22 is provided with a pallet controller 23 that controls a device for loading and unloading the pallet P.
  • the pallet controller 23 can be connected to the transportation route determination device 4 by communication, and controls the device group based on the instruction from the transportation route determination device 4.
  • the collection and delivery center 3 collects the goods to be transported from the producer or manufacturer's base and transports them to the base center 2, or conversely, receives and stores the cargo from the base center 2 and stores the end user. It is a base for transporting goods to.
  • the collection and delivery center 3 corresponds to a wholesale or distribution center.
  • a plurality of collection and delivery centers 3 may be provided for the base center 2.
  • the collection and delivery center 3 may be managed by a consignee who is a retailer.
  • the collection / delivery center 3 collects the goods to be transported to the base center 2, the goods may be loaded on the pallet P at the collection / delivery center 3.
  • the collection and delivery center 3 is equipped with a collection and delivery site device 30 that receives instructions from the transportation route determination device 4.
  • the collection / delivery site device 30 accepts the input of the shipping goods and the pallet P from the operator at the collection / delivery center 3, and receives the input of the arriving goods.
  • the collection / delivery device 30 corresponds to the correspondence between the pallet identification information of the pallet P on which the goods to be shipped are loaded and the identification information of the goods, and the pallet identification information of the arrived goods and the pallets P on which the goods are loaded.
  • the correspondence is memorized and transmitted to the transportation route determination device 4.
  • transportation is not completed from the departure point where the same transportation device 1 collects the goods to the arrival point where the goods are delivered, but the goods are a plurality of goods. It may be transported so as to transfer to the transportation device 1. That is, the transportation device 1 is allowed to load and unload goods at the transit point. Under such conditions, in the distribution system 100 of the present disclosure, it is determined by simulating how the transportation device 1 and the pallet P on which the articles are loaded are optimally moved.
  • the transportation route is transportation on a trunk line such as an expressway, an air route, or a railroad connecting a plurality of base centers 2, and until or after the arrival of the pallet P at the base center 2 in the area including the collection point or the distribution point.
  • the transportation in the area is determined by classifying it hierarchically. Transportation on the trunk line is optimized by allowing loading and unloading at the base center 2 existing on the trunk line as disclosed in Patent Documents 1 and 2.
  • the base center 2 existing in the area under the condition that the pallet P, which has a collection point and a distribution point in the area, is also transported without going through the main line, and loading and unloading is permitted at the waypoint of the pallet P.
  • the collection / delivery center 3 is used as a collection point or a distribution point (collection / delivery point), and the routes of the transportation equipment 1 and the pallet P are determined respectively.
  • the area is not limited to the administrative division, but is defined to be divided into arbitrary units, and is stored in the latitude / longitude information, the identification data of the base center 2 and the collection / delivery center 3, and the identification data of the area to which the area belongs. Regions may overlap.
  • the collection and delivery center 3 may belong to different areas.
  • the base center 2 and the collection / delivery center 3 are both collection points and distribution points for transportation within the area (corresponding to "collection / delivery points").
  • the base center 2 transports the pallet P within the target area. It is a collection point for the device 1.
  • the base center 2 is treated as a distribution point in the target area.
  • Each of the plurality of collection and delivery centers 3 in the area is both a collection point and a distribution point. Any collection and delivery center 3 may function only as a collection point, and similarly any other collection and delivery center 3 may function only as a collection point.
  • the transportation route determination device 4 sequentially acquires the position of the transportation device 1, and sequentially collects the information of the pallet P housed in the transportation device 1 and the information of the pallet P waiting to be shipped at the collection / delivery center 3.
  • the transportation route determination device 4 includes the position sequentially acquired from the transportation device 1, the position information including the existence position of each pallet P, the destination information of the collection / delivery center 3 to which each pallet P should be delivered, and the time to be delivered. From the information, the movement route of the pallet P and the transportation route of the transportation device 1 are sequentially determined.
  • the transportation route determination device 4 instructs the transportation equipment 1 to stop at the base center 2 based on the determined transportation routes of the transportation equipment 1 and the movement route of the pallet P.
  • the transportation route determination device 4 instructs the base center 2 the pallet P to be carried out from the arriving transportation equipment 1 and the pallet P to be carried into the transportation equipment 1.
  • the transportation route determining device 4 instructs each center of the pallet P to be shipped from the collection / delivery center 3 and the pallet center 22, and sends the pallet P to be carried out to the transportation equipment 1. Instruct.
  • the transport route determining device 4 sequentially optimizes the movement route of the pallet P and the transport route of the transport device 1 from the information of the goods to be transported, the position information of the transport device 1, and the like will be described. ..
  • the pallet P is a physical distribution member having a size of 90 cm square like a pallet widely used in a physical distribution field, and is more preferably made of resin.
  • the pallet P may be made of various other materials such as wood, stainless steel, and corrugated cardboard, and may be provided with a lift hole suitable for transportation by a forklift.
  • As the pallet P it is preferable to use a pallet made of a material that conforms to import / export regulations.
  • a tag storing pallet identification information is attached to the pallet P.
  • the tag is preferably a wireless tag using RFID or the like.
  • the palette identification information of the palette P given in advance is readable and stored by the wireless reader.
  • the pallet identification information of the pallet P in the tag is not rewritable, the tag can be written with information of one or more articles loaded on the pallet P by the writer.
  • the goods information includes the type and item of the goods, the weight, the date of collection, the delivery number of the goods, the base identification information of the base center 2 that has recently passed through, the base center 2 of the destination, the consignee information, the sender information, etc. Is. It may be a predetermined medium on which a one-dimensional code or a two-dimensional code corresponding to the palette identification information of the palette P given in advance instead of the tag is printed. A one-dimensional code or a two-dimensional code may be printed on the tag.
  • the information of the article is stored in association with the pallet identification information on the transportation route determining device 4 side.
  • the transportation device 1 is a transport truck in the present embodiment.
  • 2A and 2B are schematic views showing an example of the transportation device 1.
  • FIG. 2A shows an example of a loading platform having a side-opening door
  • FIG. 2B shows an example of a loading platform having a rear door.
  • the transportation device 1 is provided with a pallet frame 11 inside the loading platform in order to transport articles in units of pallets P.
  • the pallet frame 11 is a stand that divides the loading platform from the floor surface to the ceiling in half in two upper and lower stages.
  • the loading platform has an internal dimension that allows two pallets P to be juxtaposed in the vehicle width direction.
  • the accommodation position of the pallet P can be specified by the top and bottom and the left and right divided by the pallet frame 11.
  • the pallet frame 11 may have a configuration in which the entire pallet frame 11 can be pulled out from the rear door of the loading platform.
  • the pallet frame 11 is also managed in a nested state in which a plurality of pallets P are loaded on the pallets as distribution members and a plurality of small containers C are loaded on each of the pallets P. It is also possible to do.
  • the pallet frame 11 may be in the shape of a plate laid on the floor surface of the loading platform, instead of being divided into two stages as shown in FIGS. 2A and 2B.
  • the transportation device 1 is a vehicle such as a train, a transport aircraft, or a ship
  • a large container having the same structure as the loading platform portion of FIG. 2A or FIG. 2B may be used, and the large container may be configured to include the pallet frame 11.
  • the transportation device 1 includes a reader that reads pallet identification information from the tags of the on-board unit 10 and the pallet P.
  • the on-board unit 10 has a GPS receiver, sequentially acquires the position information of the transportation device 1, and transmits the position information to the transportation route determination device 4.
  • the on-board unit 10 reads the pallet identification information from the tag of the pallet P with a reader.
  • the pallet identification information of the pallet P being accommodated and the accommodation unit identification information for identifying the accommodation position in the pallet frame 11 are transmitted to the transportation route determination device 4 in association with the identification information of the transportation device 1 stored in advance. ..
  • the on-board unit 10 reads the pallet identification information from the tag of the pallet P carried out from the loading platform of the transportation device 1 with a reader, and the pallet identification information of the pallet P carried out is stored in advance as the identification information of the transportation device 1. It is associated and transmitted to the transportation route determination device 4.
  • the on-board unit 10 may notify the transport route determination device 4 that the pallet P to be carried out is to be carried out by associating it with the accommodating portion identification information of the accommodating portion in which the pallet P is accommodated.
  • FIG. 3 is a block diagram showing the configuration of the transportation route determination device 4.
  • the transportation route determination device 4 is a server computer, and includes a processing unit 40, a storage unit 41, and a communication unit 42.
  • the transport route determination device 4 may be configured not only by using one server computer (hardware) but also by distributing processing among a plurality of server computers, or a plurality of server computers virtually generated by a large computer. It may be one of (instances).
  • the transportation route determination device 4 may execute the calculation by the quantum computer except for the processing of updating the information of the distribution DB 410 of the storage unit 41.
  • the processing unit 40 is a processor using a CPU (Central Processing Unit) or a GPU (Graphics Processing Unit).
  • the processing unit 40 executes processing using the built-in memory such as ROM (Read Only Memory) and RAM (Random Access Memory).
  • the processing unit 40 can sequentially acquire time information by the built-in timer.
  • the storage unit 41 includes a hard disk or a non-volatile storage medium such as an SSD (Solid State Drive).
  • the storage unit 41 stores the computer program 40P.
  • the storage unit 41 stores the model 4M.
  • the processing unit 40 executes a process of deriving the optimum path by an operation described later using the model 4M based on the computer program 40P stored in the storage unit 41.
  • a Web server program is stored in the storage unit 41, and the processing unit 40 exerts a Web server function, and the terminal device 5 may accept a request for sharing the loading platform of the transportation device 1 or the like by the Web server function. ..
  • a distribution DB (DataBase) 410 is constructed in the storage unit 41 or an external storage device.
  • the processing unit 40 can read and write to the physical distribution DB 410 by the database operation module.
  • user information 411, first pallet information 412, second pallet information 413, and transportation equipment information 414 are stored in the distribution DB 410, as will be described later.
  • the communication unit 42 realizes communication on the public communication network N1 or the carrier network N2.
  • the processing unit 40 can transmit and receive information to and from the terminal device 5 via the public communication network N1 or the carrier network N2 by the communication unit 42. Further, the processing unit 40 can transmit / receive information to / from the in-vehicle device mounted on the transportation device 1 via the carrier network N2 by the communication unit 42.
  • the processing unit 40 can be communicated with the base controller 20 of the base center 2 and the collection / delivery site device 30 of the collection / delivery center 3 via the public communication network N1, the carrier network N2, or a dedicated line by the communication unit 42.
  • FIG. 4 is a diagram showing an example of the contents of the information stored in the distribution DB 410.
  • the distribution DB 410 as the first pallet information 412, the identification information given to each base center 2, the pallet center 22, the collection / delivery center 3, and the production base is associated with each place.
  • the pallet identification information of the pallet P that should exist is sequentially stored.
  • the second pallet information 413 device identification information for identifying the transportation device 1 on which the pallet P is loaded and information on the articles loaded on the pallet P are stored in association with the pallet identification information.
  • the information on the goods may be the container identification information of the small container C or other distribution member loaded on the pallet P.
  • the information on the goods may include information on the transportation number, information for identifying the shipper and the consignee, and information on the weight of the pallet P including the goods.
  • the distribution DB 410 includes the transportation device information 414, which is associated with the device identification information that identifies the transportation device 1, and includes the position information (latitude and longitude) of the transportation device 1, the departure point, the destination, and the waypoint with time. Information and pallet identification information of the loaded pallet P are stored.
  • the transportation route determination device 4 configured in this way is the distribution DB 410 based on the information obtained from the in-vehicle device 10 by moving the transportation device 1, the shipping of the goods, and the location information of the goods obtained from the base center 2 and the collection / delivery center 3. Is updated sequentially.
  • the transportation route determination device 4 determines the movement routes of the transportation equipment 1 and the pallet P of the transportation equipment 1 together with the update of the distribution DB 410, and based on this, transports, carries in, and transports the transportation equipment 1, the base center 2, and the collection and delivery center 3. Control carry-out.
  • the pallet P is loaded with one or a plurality of articles of the same type that should arrive at the same time zone at the collection and delivery center 3 with the same final destination. It is assumed that there is.
  • the pallet may be another physical distribution member for accommodating the article, the article itself, or a group of articles in which a plurality of articles are put together.
  • 5 and 6 are flowcharts showing an example of a transportation route determination processing procedure executed by the transportation route determination device 4.
  • the transportation route determination device 4 sorts pallet information including the destination of the pallet P to be shipped, the desired arrival time, etc. for each area to which the collection / delivery center 3 to which the pallet P is collected / delivered belongs (S101).
  • the processing unit 40 selects one area (S102). In the process of S102, the base center 2 may be selected.
  • the processing unit 40 is based on the pallet information for each pallet P sorted in the processing of S101, the number of a plurality of pallets P shipped from the base center 2 selected in the processing of S102, and the collection / delivery center which is the destination of each pallet P. 3 or the base center 2, the desired arrival time of each pallet is acquired in association with the pallet identification information of each pallet P (S103).
  • the processing of S103 corresponds to the "acquisition unit".
  • the processing unit 40 executes an operation for deriving the transportation route of the transportation device 1 using the information of the pallet P acquired in the processing of S103 (S104). Details of the derivation of the transport route of the transport device 1 in the processing of S104 will be described later.
  • the process of S104 corresponds to the "deriving unit".
  • the processing unit 40 transports the required number of transport devices to the selected base center 2 based on the required number of transport devices 1 and the number of accommodating sections, which are the calculation results of S104.
  • the type, number, and number of pallet accommodating portions of the power pallets P are acquired and stored (S105).
  • the process of S105 corresponds to the "storage unit".
  • the processing unit 40 identifies the transportation equipment 1 existing in or scheduled to arrive at the selected base center 2 from the acquired type and number of pallets P and the required number of pallet accommodating units (S106).
  • the processing unit 40 tentatively assigns the pallet identification information to the pallet accommodating unit of the loading platform of the transportation device 1 specified in the processing of S106, and stores the allocation (S107).
  • the processing unit 40 determines whether or not the processing of S103-S107 has been executed for all areas (S108).
  • the processing unit 40 When it is determined in the processing of S108 that the processing is not executed for all areas (S108: NO), the processing unit 40 returns the processing to S102.
  • the processing unit 40 selects the optimum transportation route for each area for each transportation device 1 and determines the entire transportation route. (S109).
  • the processing unit 40 stores the determined transportation route in the storage unit 41 (S110).
  • the processing unit 40 may read the previously derived route from the storage unit 41.
  • the process of S109 corresponds to the "decision unit”.
  • the processing unit 40 determines the movement route of the pallet P for each pallet P, that is, the pallet accommodating unit of the transportation device 1 to be transferred to the destination (S111).
  • the processing unit 40 is based on the movement route of each pallet P, for each transportation device 1, the pallet identification information of the pallet P to be carried out at the base center 2 which is a transit point, and the storage unit in which the pallet P is housed.
  • the storage unit identification information is listed (S112).
  • the processing unit 40 Based on the movement route of each pallet P, the processing unit 40 has pallet identification information of the pallet P to be carried in at the base center 2 which is a transit point for each transportation device 1, and a pallet accommodating unit in which the pallet P is to be accommodated.
  • the accommodation unit identification information of the above is listed (S113).
  • the processing unit 40 outputs a list of the determined transportation route of the transportation equipment 1, the movement route of the pallet P, and the pallet P to be carried in / out at each base center 2 (S114).
  • the processing unit 40 transmits an instruction to the on-board unit 10, the base controller 20, the collection / delivery site device 30, and the pallet controller 23 based on the output content (S115), and ends the processing.
  • FIG. 7 is a flowchart showing an example of the calculation process of the transportation route.
  • the processing procedure shown in the flowchart of FIG. 7 corresponds to the details of the processing of S104 among the processing procedures shown in the flowcharts of FIGS. 5 and 6.
  • the processing unit 40 tentatively determines a rough route from the selected base center 2 to the final destination of the pallet P to be shipped as the movement route of the pallet P (S401). In the processing of S401, the processing unit 40 may determine based on the final destination, the collection / delivery center 3 or the base center 2, and the desired arrival time of the pallet P.
  • the rough route in the processing of S401 is the base center 2 corresponding to the boundary of each region and the final collection / delivery center 3 based on the route from the base center 2 of the starting point of each pallet P to the final destination.
  • FIG. 8 is an explanatory diagram of a rough route in the process of S401.
  • FIG. 8 shows transit points for each of a plurality of regions straddling from the base center 2 at the departure point to the collection / delivery center 3 at the final destination.
  • the base center 2 is connected in a net shape.
  • One pallet P departs from the base center 2 in Nagano prefecture and ends at the collection and delivery center 3 in Shiga prefecture.
  • the processing unit 40 has a partial route that passes through the main line from the base center 2 in Nagano prefecture to the base center 2 in Gifu prefecture, and a partial route that passes through the main line from the base center 2 in Gifu prefecture to the base center 2 in Aichi prefecture. , A partial route through the main line from the base center 2 in Aichi prefecture to the base center 2 in Shiga prefecture, a partial route in the area from the base center 2 in Shiga prefecture to the final destination in Shiga prefecture, the collection and delivery center 3, and the thick line. Temporarily select and determine the rough route shown in.
  • the processing unit 40 executes S401 from the base center 2 in the selected area as the starting point for all the pallets P whose allocation to the transportation equipment is undecided. As a result, the entrance (departure point) and exit (destination) in the area (predetermined range) corresponding to each base center 2 for each pallet P are determined.
  • the predetermined range may be set on the condition that, for example, the distance corresponds to the limitation of the continuous operation time of the driver of the transportation device 1 when traveling on the main line connecting the base center 2.
  • the processing unit 40 is included in the roughly determined route for each pallet P, and sets a waypoint (entrance) within the area of the selected base center 2 and a destination (exit) within the area. (S402).
  • the estimated time of arrival at the destination in the area may be set as a condition.
  • the size of the area becomes enormous as the amount of calculation increases in terms of the size of the system, so it is preferable to design it appropriately.
  • the number of pallets P to be transported to each destination (micro destination) is determined. For example, if the selected base center 2 is the base center 2 in Shiga prefecture, 100 pallets P are gathered in H city, which is the entrance, and these 100 pallets P are distributed to a plurality of accumulation centers 3 in the area. , 50 pieces, 30 pieces, 10 pieces should be transported.
  • the processing unit 40 is the number of pallets P scheduled to depart from the selected base center 2 (departure point in the area), and the destination in the area of each pallet P (purpose in the area).
  • the transportation equipment 1 for transporting these is set to one or a plurality of agents, the number of vacant accommodations of the agents is set, and the route calculation based on the agent-based modeling is executed (S403).
  • the route calculation of S403 may be to derive a transportation route for each region in advance and select an optimum route that meets the conditions from the transportation routes stored in the storage unit 41.
  • the route calculation may be performed by using the transportation route derived for similar conditions as a partial route or from the beginning by a simulation step described later.
  • the processing unit 40 accommodates the required number of transport devices 1, the number of accommodating units required for each transport device (the number of pallets P to be accommodated), and the number of accommodating units.
  • the type of the power pallet P and the partial transportation route of each transportation device in the area centered on the selected base center 2 are output (S404), and the processing is returned to S105 in the flowchart of FIG.
  • the processing unit 40 that executes the route calculation of S403 shifts from a state in which one or a plurality of agents exist in a certain base center 2 or an accumulation center 3 to a state in which the next base center 2 or the accumulation center 3 is selected and moved. And execute a simulation that transitions step by step.
  • 9 and 10 are flowcharts showing an example of the route calculation processing procedure.
  • the processing unit 40 defines a transportation network in the area where the adjacent base center 2 or the accumulation center 3 in the area including the selected base center 2 is a node and the route between the nodes is an edge (S301). In the process of S301, the processing unit 40 may read out the network defined in advance. In the processing of S301, the processing unit 40 does not have to have a distance element at the edge between each node.
  • the processing unit 40 sets the number of transportation devices 1 to the initial value (S302).
  • the processing unit 40 treats the set number of transportation devices 1 as agents and executes the following processing.
  • the processing unit 40 sets the existing position of the agent, the arrangement of the palette P on the node, and the number of steps in the initial state (S303). In the process of S303, the processing unit 40 associates the agent with the node of the departure point. In the processing of S303, the processing unit 40 sets the number of pallets P existing at the departure point (base center 2) and the number of pallets P required for the node 1 corresponding to the collection / delivery center 3. In the processing of S303, the processing unit 40 may set a supply point (one of the collection and delivery points) of the pallet P.
  • the processing unit 40 repeatedly executes the following processing and the pallet P existing at the starting point becomes the minimum number of steps and the minimum number of steps until the distribution to the destination in the area is completed. Find the route.
  • the processing unit 40 acquires the number of pallets P (loaded pallets P) associated with the agent (S304). The processing unit 40 acquires the number of palettes P existing in the node where the agent is located (S305). The processing unit 40 determines and stores the number of pallets P to be stacked at the node where the agent is located (S306).
  • the processing unit 40 loads the pallet P existing in the departure place so as to fill the vacant storage part of the transportation device 1 which is the agent. To decide. If the node in which the agent exists is a waypoint or a destination, the processing unit 40 compares the number of pallets P accommodated in the accommodating unit with the number of pallets P required for the node, and is required for the node. The number of pallets P to be loaded and unloaded is determined so as to reduce the remaining number of pallets P.
  • the processing unit 40 probabilistically selects the edge to the adjacent node to proceed (S307).
  • the processing unit 40 basically stochastically selects by a random number (solution A). As will be described later, it may be selected with a probability based on the weight for the node to proceed to the next, or when the number of pallets (loading number) associated with the agent becomes zero, the starting point (or supply point). ) May be conditionally selected (Solution B).
  • the processing unit 40 may learn the weighting coefficient for selecting a node by reinforcement learning that gives a reward such as loading efficiency each time one step is advanced (solution C). In this case, the processing unit 40 is more likely to reach the optimum solution sooner.
  • the processing unit 40 may change the parameter (for example, probability) by one significantly like any other mutation (solution D). This reduces the likelihood of falling into a local solution.
  • the processing unit 40 calculates the number of palettes P existing in the destination node moved via the selected edge (S308). In the processing of S308, the processing unit 40 calculates the total of the number of pallets P existing in the node before the movement of the agent and the number associated with the agent.
  • the processing unit 40 adds and stores the number of steps in which the agent state changes (S309), stores the identification data of the node to which the agent moves, and stores the number of palettes P in each node (S310). In the processing of S310, the processing unit 40 may store the identification data and the number of pallets of each node in association with the number of steps.
  • the processing unit 40 determines whether or not the delivery within the transportation network is completed based on the number of pallets P in each node (S311).
  • the processing unit 40 If it is determined that the delivery has not been completed (S311: NO), the processing unit 40 returns the processing to S304.
  • the processing unit 40 stores the history (transport route) and the number of steps of the node identification data that the agent has passed through (S312).
  • the simulation process corresponds to the period from the initial state set in the process of S303 to the time when the process of S311 determines YES and the transportation is completed.
  • the processing unit 40 determines whether or not the processing of S304-S312 has been executed a predetermined number of times or more (S313).
  • the determination process of S313 corresponds to whether or not the simulation process is repeated within a predetermined range. In the determination process of S313, it may be determined whether or not the process of S304-S312 has reached the upper limit of the predetermined calculation time. When it is determined that the number of times is less than the predetermined number (S313: NO), the processing unit 40 returns the processing to S303.
  • the processing of S313 may be whether or not it is determined that the optimum solution has been obtained, not a predetermined number of times.
  • the processing unit 40 determines whether or not all the changes in the number of the transportation devices 1 have been completed for the transportation network defined in S301 (S314). ). When it is determined that the change in the number of the transport devices 1 is not completed (S314: NO), the processing unit 40 changes the number of agents (transport devices 1) (S315) and returns the process to S303. In S315, the processing unit 40 increases the number of agents by one. In S315, the processing unit 40 may increase or decrease the number of agents and change the initial position of the agents.
  • the processing unit 40 When it is determined that the change in the number of the transportation devices 1 has been completed for the transportation network defined in S301 (S314: YES), the processing unit 40 has the transportation route with the minimum number of steps in the predetermined number of times. Is extracted (S316). The processing unit 40 stores the extracted transportation route as an optimum solution (S317), and ends the route calculation process.
  • the processing of S316 and S317 corresponds to the step of determining the transportation route based on a predetermined evaluation amount (here, the required number of steps). In the processing of S316, the processing unit 40 may determine the number of agents (transport equipment 1) when the minimum number of steps of the transportation route is calculated as well as the minimum number of transportation routes as the optimum number. Good.
  • all patterns of the transportation route are stored in the defined network. It is also possible to calculate the average value of the number of steps of all transportation routes for the same network. In addition, by storing all transportation routes, it is not necessary to calculate from scratch for the same transportation network.
  • the processing unit 40 derives the optimum solution in the network defined for each region centering on the base center 2 by agent-based modeling.
  • the processing unit 40 does not execute the processing of S303-S313 after returning to the initial state in S303 each time, but the periphery of the transportation route having the minimum number of steps obtained in the past calculation. You may search with.
  • the processing unit 40 sets the position of the agent and the arrangement of the pallets in the middle of the transportation routes with the minimum number of steps, executes the processing of S304-S312, and attempts to calculate the transportation route with the minimum number of steps. (Learning).
  • the processing unit 40 executes the processing of S304-S312 from a state in the middle of another transportation route instead of the transportation route having the minimum number of steps like mutation, and confirms whether or not the local solution has been reached. Treatment should be added (mutation).
  • the processing unit 40 When the transportation network defined in the processing of S301 of the processing procedure shown in the flowcharts of FIGS. 9 and 10 is common to the transportation network of the transportation route derived by the past processing, the processing unit 40 has the derived transportation. A route may be used. In this case, instead of repeating all the processes of S302-S312, the process of S304-S312 may be executed by reading out the transportation route of the minimum step already derived and changing a part of the transport route. Further, the processing unit 40 may derive only the portion corresponding to the difference from the previously derived transportation route by applying it to S303-S312.
  • the processing unit 40 may execute the processing procedures shown in the flowcharts of FIGS. 9 and 10 in advance under various conditions, store them, and use them. Specifically, in S403 in the flowchart of FIG. 7, the processing unit 40 determines the number of pallets P scheduled to depart from the selected base center 2 (departure point in the area) determined by the processing of S401 and S402. It is preferable to select the optimum route already sought for the conditions that match the conditions of the destination (must arrive at the destination in the area) in the area of each pallet P. This greatly reduces the calculation time. Further, only the difference may be derived by executing the processing of the flowcharts of FIGS. 9 and 10 as described above. Whether or not the conditions match each other may be determined by treating each condition as a vector and extracting the shortest path of the condition closer to the statistical distance or the Euclidean distance.
  • FIG. 11 is a schematic diagram of the solution search process by agent-based modeling. Basically, when the processing unit 40 performs a random search in the selection process of S307 described above, the solution A is obtained with an equal probability in space. When the condition is set, it is obtained as the solution B in the reduced space. By learning, the optimal solution can converge to the global minimum value, solution C. By changing the parameters corresponding to the mutation, it is possible to correct from the local solution D to the space containing the global solution.
  • the processing unit 40 selected the transportation route having the minimum number of steps as the optimum transportation route under the condition (number of agents).
  • the optimum transportation route is not limited to the minimum number of steps, but is used to estimate the time required to complete transportation, the total travel distance (variation example described later), the total number of travels, the estimated amount of carbon dioxide emissions, or the cost of transportation. It may be selected based on. Alternatively, it may be evaluated whether or not it is optimal based on one or a plurality of calculated values derived based on those values.
  • the processing unit 40 of the transportation route determination device 4 specifies the transportation network to be calculated for the route (S501).
  • the transportation network is defined as a network in which a transportation base and a collection / delivery point (base center 2, accumulation center 3, etc.) are nodes, and a route between the nodes is an edge.
  • the processing unit 40 sets information on goods and transportation equipment (S502).
  • the processing unit 40 sets information on the article name, quantity, weight of the article to be transported, the occupied volume / volume in the packed state at the time of transportation, the divisible unit, the shipper, or the packing style as the information of the article.
  • the information of the goods is the information for identifying the pick-up point (name, identification information, etc.) at which the goods are shipped, the information for identifying the delivery point of the transportation destination, the departure time of the pick-up point, and the delivery point of the goods.
  • the processing unit 40 sets the type and number of equipment such as trucks and cargo ships, and the existing location in the initial state of the simulation to be executed below, as information on the transportation equipment for transporting the goods.
  • the processing unit 40 sets information such as the volume of the accommodating unit, the loadable weight, and the identification information of the accommodating position of each of the transportation devices. Even if the information on the transportation equipment is set under the conditions of the route that can be passed, the maximum speed when operating a specific route, the cruising distance that can be traveled without refueling, and the distance that corresponds to the limit of the driver's continuous operation time. Good.
  • the information of the goods to be set may be the information that can be obtained from the transportation plan of the goods to be actually transported.
  • the information on the transportation equipment set in the same manner may be information that can be obtained from the current information on the actual transportation equipment.
  • the processing unit 40 sets the initial conditions on the transportation network specified in the processing of S501, the delivery completion condition, and the termination condition of the calculation processing (S503).
  • the initial conditions include the positions of the article and the transportation equipment 1 in the initial state of the simulation process.
  • the delivery completion condition includes information that the goods should be present at which point (delivery point) by when.
  • the discontinuation condition of the calculation process is a judgment condition for interrupting the calculation because the optimum transportation route solution cannot be obtained even if the calculation is continued in the middle of the route calculation.
  • the processing unit 40 selects the next node to which the transportation device 1 moves, and calculates the state in the next step (S504).
  • S504 if there is an article to be transported at the node where a specific transportation device 1 is located and there is a vacancy in the storage portion of the transportation device 1, the article is loaded, and then on the transportation network. Includes the process of probabilistically selecting the edge to the node of the next movement point. Details of the selection process will be shown in Examples described later.
  • the distance added to the edge may be added each time the edge is advanced in one step.
  • the processing unit 40 calculates the state as if the parcel was unloaded when the transshipment is specified by the condition that the transshipment of the parcel is permitted.
  • the processing unit 40 determines whether or not the state after one step in the processing of S504 satisfies the delivery completion condition or the discontinuation condition (S505). When the processing unit 40 determines that either the delivery condition or the discontinuation condition is satisfied (S505: YES), the delivery is completed, or there is no possibility of finding the optimum route (discontinuation). The repetition of the calculation of S504 under the set initial conditions is completed.
  • the predetermined evaluation amount is calculated from the movement information of all the goods and the transportation equipment 1 (S507).
  • the evaluation amount in S507 includes the number of steps required to complete delivery (corresponding to time), the total distance traveled by the transportation equipment 1, the total number of movements, the estimated carbon dioxide emissions of the transportation equipment 1, and the cost (cost, etc.) required for transportation. May be used as an index. A value calculated from a plurality of combinations of these indexes may be used as the evaluation amount. A plurality of evaluation quantities may be calculated, and which evaluation quantity may be selected and used may be determined.
  • one transportation route and evaluation amount are calculated for the target transportation network.
  • the processing unit 40 determines whether or not the resources required for the route calculation up to that point are within a predetermined range (S508). When it is determined that the value is within the predetermined range (S508: YES), the processing unit 40 returns the processing to S503 and repeats the same route calculation (S503-S507) to further calculate a new transportation route.
  • the predetermined range for example, the number of obtained transportation routes (number of calculations) is within the upper limit of the planned number of transportation routes, or the calculation time of the simulation process and the evaluation amount calculation process is predetermined. It must be within the upper limit of the calculation time.
  • the processing unit 40 compares the evaluation amounts calculated for each of the obtained transportation routes, and compares the evaluation amount calculated for each of the obtained transportation routes, and the transportation route of the transportation device 1 having the optimum evaluation amount Is selected (S509).
  • the processing unit 40 determines the movement route of the article (pallet P) in the selected transportation route (which transportation equipment 1 was loaded on) and the transportation route of each transportation equipment 1 (S510).
  • the processing unit 40 determines whether or not the improvement in the evaluation amount (increase in the evaluation amount) is small (the amount of increase is within a predetermined value) even if the number of the transportation devices 1 is increased (S511).
  • the processing unit 40 adds 1 to the number of the transportation devices 1 (S512), returns the processing to S502, and executes the processing of S502-S511. Is preferable.
  • the processing unit 40 performs the optimum transportation on the changed transportation route when the optimum evaluation amount before and after the change is improved (the evaluation value is increased). Determine as a route. If the evaluation amount does not change or deteriorates (evaluation value decreases) even if the conditions of the transportation device 1 are changed, the change is terminated without changing the conditions of the transportation device 1 (S512) (S511: YES).
  • the number of transport devices 1 may be increased one by one, or the conditions of the transport devices 1 may be changed in other ways.
  • the processing unit 40 may change the position of the transportation device 1 in the initial state.
  • the processing unit 40 may select the transportation route having the largest evaluation amount in the calculation for the predetermined number of conditions and decide not to change the conditions any more. Further, the number of transportation devices 1 owned by the business operator who actually operates the transportation route determination device 4 may be the upper limit. The number of transportation devices 1 operated (registered) in the target area may be the upper limit. The upper limit of the conditions to be set may be determined from the upper limit of the number of personnel involved in the operation.
  • the processing unit 40 determines the final transportation route of the transportation equipment 1, the movement route of the article (pallet P), and the number of the transportation equipment 1. (S513), and the process is terminated.
  • FIG. 14 is an explanatory diagram of the process of deriving the optimum solution in the first embodiment.
  • FIG. 14 shows a transportation network in an area defined with the target base center 2 as the base center 2 in H city and the base centers 2 in neighboring Y city, O city, and K city as nodes.
  • the number of the plurality of pallets P shipped from the base center 2 in H city is, for example, 100, leaving 10 delivery destinations in H city, 50 in O city, and 50 in K city. It is assumed that there are 30 pieces and 10 pieces in Y city. If there is one transport device 1 with 20 empty pallet accommodating units that can be used to deliver these pallets P, agent-based modeling is perfect for transporting 90 pallets P to each destination. The solution is that when random movement is performed, it is necessary to move the edge back and forth at least 10 times. In addition, when selecting by random numbers, the average number of steps required to complete all deliveries was 21.7 steps.
  • Example 2 is an initial state of arranging the same pallet P as in Example 1.
  • the target pallet accommodating portion which is a maximum of 20
  • the condition is to return to H city without returning.
  • FIG. 15 is an explanatory diagram of a solution derivation process in the second embodiment. In the example shown in FIG. 15, when the agent 1 is first located in the starting point H city, which of O city, K city, and Y city to proceed is selected by a random number.
  • the processing unit 40 inevitably selects H city from O city, H city, and Y city at the time of the next selection.
  • Example 2 the average number of derived steps was 16.8 steps. Compared with the case of selecting by the perfect random number shown in FIG. 14, it can be seen that the number of steps can be calculated to be close to 10 steps of the optimum solution by setting the conditions, and the optimum solution can be reached sooner. ..
  • Example 3 In the third embodiment, the processing procedure shown in the flowcharts of FIGS. 9 and 10 is executed on the condition that 60 more pallets P carrying different types are present in different base centers 2. In the third embodiment, in the selection process of S307, the node to proceed to the next is selected by a random number.
  • FIG. 16 is an explanatory diagram of the solution derivation process in the third embodiment.
  • 100 pallets P are waiting to be shipped from the base center 2 of H city, and 10 pallets P are left in H city, and O city is left. 50 pieces will be shipped to K city, 30 pieces to K city, and 10 pieces to Y city.
  • 60 pallets P carrying different types of goods are waiting to be shipped to K city, leaving 20 in K city, 30 in O city, 5 in H city, and 5 in Y city. It is a prerequisite to do.
  • the precondition of the fourth embodiment is the initial state of the arrangement of the same pallet P as that of the third embodiment.
  • the fourth embodiment in the above-mentioned selection process of S307, as a condition for selecting the node to proceed to the next, when the target pallet accommodating portion, which is a maximum of 20, is emptied, nothing is loaded. Set to return to H city without.
  • FIG. 17 is an explanatory diagram of a solution derivation process in the fourth embodiment. In the example shown in FIG. 17, when the agent 1 is first located in the starting point H city, which of O city, K city, and Y city to proceed is selected by a random number.
  • the processing unit 40 inevitably selects H city from O city, H city, and Y city at the time of the next selection.
  • Example 4 the average number of derived steps was 28.8 steps. Compared with the case of selecting by the perfect random number shown in FIG. 16, it can be seen that the number of steps can be calculated to be close to 15 steps of the optimum solution by setting the conditions, and the optimum solution can be reached sooner. ..
  • the graph of FIG. 18A shows an example of the transition of the remaining amount according to the number of steps until the transportation of the pallet P for each destination is completed under the condition of the third embodiment shown in FIG.
  • the graph of FIG. 18B shows an example of the transition of the remaining amount according to the number of steps until the transportation of the pallet P for each destination is completed under the condition of the fourth embodiment shown in FIG.
  • the graph of FIG. 19A shows an example of the transition of the remaining amount according to the number of steps until the transportation of the pallet P is completed for each type under the condition of the third embodiment shown in FIG.
  • 19B shows an example of the transition of the remaining amount according to the number of steps until the transportation of the pallet P is completed for each type under the conditions shown in FIG.
  • a transportation route with a minimum of 15 steps may be derived, and a transportation route with a maximum of 52 steps may be derived.
  • FIGS. 18A, 18B, 19A and 19B there may be a case where the transport device 1 consumes the number of steps without reducing the remaining amount.
  • FIG. 20 is a bar graph showing the results of the simulation.
  • the graph of FIG. 20 shows the number of times the transport device 1 stops at each node (city) under the conditions of Example 3 or Example 4 shown in FIG. 16 or FIG. It can be seen that the transportation equipment 1 stops most frequently in the city H, which has a large number of pickups, regardless of whether the transportation is completed in the minimum step or the maximum step.
  • the precondition of the fifth embodiment is the same arrangement of the pallets P as that of the third embodiment. That is, in the initial state, 100 pallets P of type Z exist in the base center 2 of H city, and 60 pallets P of type W exist in the base center 2 of K city. However, in the fifth embodiment, weighting is given to the selection of the node to proceed to the next in the selection process of S307 described above.
  • FIG. 21 is an explanatory diagram of the solution derivation process in the fifth embodiment.
  • the arrangement state of the transportation network and the pallet P is the same as the state of the third embodiment shown in FIG.
  • K city, O city, and Y city are selected as destinations from H city
  • K city is selected as 0.2
  • O city is selected as 0.5
  • K city is selected as 0.3
  • Weighting is distributed.
  • H city and K city are selected from Y city
  • a weight of 0.5 is given to each of H city and K city. Weights of 0.5 are also given from K city to Y city and O city, and K city to H city and O city to K city are not selected.
  • Example 6 is a combination of the conditions of Example 4 and Example 5.
  • the precondition of the sixth embodiment is the same arrangement of the pallets P as that of the third embodiment. That is, in the initial state, 100 pallets P of type Z exist in the base center 2 of H city, and 60 pallets P of type W exist in the base center 2 of K city.
  • FIG. 22 is another explanatory diagram of the solution derivation process in the sixth embodiment.
  • the sixth embodiment when the selection of the node to be proceeded in the above-mentioned processing of S307 is weighted and the maximum number of target pallet accommodating portions is emptied, nothing is done. The condition is to return to H city without loading.
  • Example 6 the average number of steps required to transport the pallet P to each destination was 25.6 steps. As described above, Example 6 differs from Examples 3 to 5 in terms of selection in the process of S307. When a node is selected with a completely random probability (Example 3), the average number of steps is 31.8, and when it becomes empty (Example 4), the average number of steps is 28.8, and weighting is given. It was found that the average number of steps was reduced to 27.7 in (Example 5), and the average number of steps was reduced to 25.6 under the condition of weighting and emptying (Example 6).
  • Example 7 shows an example in which two agents (transportation equipment 1) are used.
  • FIG. 23 is another explanatory diagram of the solution derivation process in the seventh embodiment.
  • two transport devices 1 can be used under the same conditions as those of FIG. That is, in the seventh embodiment of FIG. 23, two agents (transportation equipment 1) are located in H city in the initial state, and 100 pallets P exist in H city, which is the starting point in the area.
  • 24A-24F are schematic views of the transport route obtained by agent-based modeling of Example 7.
  • 24A-24F show the progress of transportation.
  • Example 7 a simulation by agent-based modeling was performed with two agents, and a transportation route with an average of 13.6 steps was calculated. As an example of this, a transportation route for two transportation devices 1 as shown in FIGS. 24A to 24F was obtained.
  • the transportation device 1 is from the city H where 100 pallets P are waiting to be shipped in FIG. 24A, and one transportation device 1 (X in FIGS. 24A to 24F) is in the process of FIG. 24B. Twenty pallets P were transported to K city and returned to H city in the process of FIG. 24C. This transport device 1 transports 20 pallets P to the city O in the process of FIG. 24D, and returns to the city H again in the process of FIG. 24E. This transport device 1 transports 20 pallets P to the city O in the process of FIG. 24F.
  • the other transport device 1 (Y in FIGS. 24A-24F) accommodates 20 pallets P from H city on the loading platform, 10 to Y city in the process of FIG. 24B, and K in the process of FIG. 24C. We are transporting 10 pallets P to the city. This transport device 1 returns to H city in the process of FIG. 24E via Y city in the process of FIG. 22D, and transports 10 pallets P to O city in the process of FIG. 24F.
  • the transport route determination device 4 applies agent-based modeling to the transport network in the area including the base center 2, and performs calculations based on a step-by-step mathematical model including random numbers, weights, or conditional stochastic processes. Can be used to derive the minimum number of steps. Then, the transportation route determination device 4 can partially select the optimum transportation route in the transportation network in the area and determine the optimum route from the first destination to the final destination.
  • the distance between nodes is taken into consideration in the transportation network within the region. Further, in the modified example, the process of probabilistically moving the arrangement of the agent and the pallet P step by step from the initial state is repeated a predetermined number of times, and the route is better than the transportation route with the shortest number of steps so far. The search is terminated when the situation is such that it is unlikely that
  • FIGS. 25 and 26 are flowcharts showing an example of the processing procedure of the route calculation in the modified example.
  • the procedures common to the procedures shown in the flowcharts of FIGS. 9 and 10 are designated by the same reference numerals and detailed description thereof will be omitted.
  • the processing unit 40 uses the adjacent base center 2 or the accumulation center centered on the selected base center 2 as nodes, the route between the nodes as an edge, and the distance information is associated with the edge in the area.
  • a transportation network with distance S321.
  • FIG. 27 shows an example of the contents of a transportation network with a distance. Similar to FIG. 14, the network connects H city, O city, Y city and K city, but the distance between cities and the connection between cities are different from the network that does not consider the distance. Further, in the transportation network shown in FIG. 27, the pallets P are not first accumulated in H city, but are replenished from the production areas in the area. The production area is treated as the base center 2 where the pallets P are accumulated in the initial state in the transportation network in the area.
  • the processing unit 40 determines that the delivery within the transportation network is completed in the processing of S311 (S311: YES), the processing unit 40 determines the history (transportation route), the cumulative movement distance, and the number of steps of the node identification data that the agent has passed through.
  • the processing unit 40 determines the history (transportation route), the cumulative movement distance, and the number of steps of the node identification data that the agent has passed through.
  • the processing unit 40 calculates the delivery progress rate in the entire transportation network (S333). In S333, the processing unit 40 calculates the ratio of the number of pallets P that have reached the destination in the area to the total number of pallets P as the progress rate. In the processing of S333, the processing unit 40 may calculate the progress rate as the ratio of the number of undelivered pallets P to the whole as the progress rate.
  • the processing unit 40 may derive a standard for determining the timing for determining whether or not the route being calculated in the processing of S336 described later is likely to derive the shortest route. Therefore, it is not limited to the progress rate, and may be the number of calculation steps or the time.
  • the processing unit 40 determines whether or not the progress rate calculated in the processing of S333 satisfies the condition (S334). In the process of S334, the processing unit 40 determines, for example, whether or not the progress rate (%) is a multiple of 10. In addition, if the number of calculation steps is replaced by the progress rate, it may be determined whether or not it is a multiple of 5, and if it is time, it may be determined by whether or not the elapsed time is a multiple of 5. May be good.
  • the processing unit 40 When it is determined that the condition is not satisfied in the processing of S334 (S334: NO), the processing unit 40 returns the processing to S304 and proceeds to the next step.
  • the processing unit 40 stores the travel distance so far this time in association with the progress rate calculated in the processing of S333 (S335).
  • the processing unit 40 gives the memorized movement distance and the transportation route of the shortest movement distance among the movement distances for which the calculation of the transportation routes is executed a plurality of times with the distance and the width in the progress rate calculated by the processing of S333. Compare (S336).
  • the processing unit 40 calculates, for example, as in the following equation (1). Assuming that the travel distance up to that point is k and the travel route at the progress rate (prog) of the shortest distance transportation route among the transportation routes obtained so far is kmin prog, the equation (1) is kprog ⁇ kmin prog + kmin. prog ⁇ (1-Progress rate (prog))... (1) Is.
  • FIG. 28 is a schematic diagram of the presence / absence judgment of the prospect based on the progress rate. In FIG. 28, the horizontal axis shows the cumulative movement distance, and the vertical axis shows the progress rate of transportation. The circles in FIG. 28 indicate the moving distances at each progress rate when the shortest distances in the transportation routes obtained so far are calculated.
  • the X mark in FIG. 28 indicates a comparison value according to the progress rate for the movement distance at each progress rate of the shortest distance.
  • the travel distance k10 when the progress rate is 10% is compared with 1.9 times the travel distance kmin 10 when the progress rate of the shortest transportation route is 10%.
  • the travel distance k20 when the progress rate is 20% is compared with 1.8 times the travel distance kmin 20 when the progress rate of the shortest transportation route is 20%.
  • the travel distance k90 is compared with 1.1 times the travel distance kmin 90 at the progress rate of 90% of the shortest transportation route.
  • the processing unit 40 determines whether or not there is a possibility that the shortest distance transportation route can be derived by proceeding with the delivery simulation thereafter (S337). When it is determined that there is no possibility (S337: NO), the processing unit 40 ends the current calculation in the middle and proceeds to the processing to S313.
  • S337 If it is determined in S337 that there is a possibility (S337: YES), the processing unit 40 continues the calculation and returns the processing to S304.
  • the calculation can be interrupted and the calculation time can be shortened.
  • the transport network with a distance shown in FIG. 27 is set as the initial state, the agent (transport device 1) is set to two, and the node to be next is selected by a random number in the selection process of S307. Shown.
  • FIG. 29 is an explanatory diagram of the solution derivation process in the eighth embodiment. When selecting edges with random numbers, the average number of steps required to complete all deliveries was 107.5, and the average moving distance was 675.3.
  • Example 9 the transport network with a distance shown in FIG. 27 is set as the initial state, the agent (transport device 1) is set to two, and the node to be next is selected by a random number in the selection process of S307.
  • the maximum number of target pallet storage units is emptied, it is a condition that the vehicle returns to the base center 2 of the supply site without loading anything.
  • FIG. 30 is an explanatory diagram of a solution derivation process in the ninth embodiment. When it was set to return to the base center 2 when it became empty, the average number of steps required to complete all deliveries was 80.9, and the average travel distance was 445.9. It was found that the travel distance was shorter than the result of Example 8 and the possibility of deriving the shortest route was increased under the condition of returning to the base center 2 when it became empty.
  • FIG. 31 is a graph showing the effect of shortening the calculation time by judging the prospect.
  • the horizontal axis of the graph of FIG. 31 indicates the elapsed time from the start of the route calculation process, and the vertical axis indicates the shortest travel distance at each time point.
  • the solid line shows the progress when the calculation is interrupted to return to the initial state and the calculation process is started when there is no prospect, that is, when the process procedure shown in the flowcharts of FIGS. 25 and 26 is executed.
  • the broken line indicates the progress when the determination of the presence or absence of the prospect is not executed, that is, when the processing procedure shown in the flowcharts of FIGS. 9 and 10 is executed.
  • the processing unit 40 arrives at the optimum solution faster when the determination of whether or not there is a possibility is executed.
  • the same method can be applied to the optimization of the loading stage of goods on the pallet P.
  • it can be realized by replacing the above-mentioned pallet P with an article and the above-mentioned transportation device 1 with a pallet P.
  • the transportation route determination device 4 itself communicates with the on-board unit 10, the base controller 20 in the base center 2, and the collection / delivery site device 30 in the collection / delivery center 3 to collect information, and updates the distribution DB 410.
  • processing including information update processing of the DB 410, reception from the terminal device 5, and communication with each communicable device is realized separately by the information management device, and the transportation route determination device 4 only determines the transportation route. It may be realized as a dedicated device for executing.
  • Transport equipment P pallet 4 Transport route determination device 40 Processing unit 41 Storage unit 410 Logistics DB 40P computer program

Landscapes

  • Business, Economics & Management (AREA)
  • Engineering & Computer Science (AREA)
  • Economics (AREA)
  • Human Resources & Organizations (AREA)
  • Strategic Management (AREA)
  • Physics & Mathematics (AREA)
  • Entrepreneurship & Innovation (AREA)
  • Marketing (AREA)
  • Operations Research (AREA)
  • Quality & Reliability (AREA)
  • Tourism & Hospitality (AREA)
  • Development Economics (AREA)
  • General Business, Economics & Management (AREA)
  • General Physics & Mathematics (AREA)
  • Theoretical Computer Science (AREA)
  • Game Theory and Decision Science (AREA)
  • Management, Administration, Business Operations System, And Electronic Commerce (AREA)

Abstract

Provided are a transportation route determination method, a computer program, and a transportation route determination device with which the transportation route for a logistics member is optimized. A transportation route determination method for sequentially selecting transportation bases through which transportation equipment for transporting an article passes, and determining a transportation route from a collection location to a delivery location for the article, wherein the transportation route determination method includes: a simulation step for repeating, until transportation of the article to the delivery location is complete, a selection process for sequentially making a probabilistic selection of a transportation base or a delivery location for the transportation equipment to next pass through from a transportation base or a collection location; a step for calculating a prescribed evaluation quantity for the transportation route obtained in the simulation step; and a step for determining a transportation route, on the basis of the prescribed evaluation quantity, from among a plurality of transportation routes obtained by repeating the simulation step and the step for calculating a prescribed evaluation quantity within a prescribed range.

Description

輸送経路決定方法、コンピュータプログラム、及び、輸送経路決定装置Transport route determination method, computer program, and transport route determination device
 本発明は、物品の流通効率を向上させるために、パレット、小型コンテナ、又は段ボール箱等の物品が積み付けられる物流部材の輸送経路を最適化する輸送経路決定方法、コンピュータプログラム、及び、輸送経路決定装置に関する。 The present invention provides a transport route determination method, a computer program, and a transport route that optimizes the transport route of a physical distribution member on which articles such as pallets, small containers, or cardboard boxes are loaded in order to improve the distribution efficiency of the articles. Regarding the decision device.
 物流全体を効率化させるためには、物品のみならず、パレット、小型コンテナ(折り畳みコンテナ)、段ボール箱等の、物品が積み付けられる物流部材、更には物流部材を積載する輸送機器の経路の最適化が必要である。 In order to improve the efficiency of the entire physical distribution, not only the goods but also the pallets, small containers (folding containers), cardboard boxes, and other physical distribution members on which the goods are loaded, and the optimum route of the transportation equipment on which the physical distribution members are loaded are optimized. It is necessary to change.
 特許文献1,2では、物流の基幹(幹線)における物品の移動を、パレット単位で輸送機器の荷台をシェアして最適化することが提案されている。 Patent Documents 1 and 2 propose to optimize the movement of goods in the backbone (trunk line) of physical distribution by sharing the loading platform of transportation equipment in pallet units.
 幹線輸送した物品を、各地域で配送する必要がある。配送のためのルートを設定する方法は、従前から提案されている。特許文献3には、配送拠点から配送先へ、1台の輸送車両の1回の走行で、積載した荷物を輸送することを想定した配送計画問題を解く手法が開示されている。特許文献3は、複数の配送車両を用いて、物流拠点から複数の配送先へ、積み荷を配送し、元の拠点へ戻る経路への走行距離が最短になるように、異なるアルゴリズムで配送計画を作成することを繰り返し、総走行距離が最短となる計画を選択するようにしている。 It is necessary to deliver the goods transported by trunk line in each area. Methods for setting routes for delivery have been previously proposed. Patent Document 3 discloses a method for solving a delivery planning problem assuming that a loaded load is transported in one travel of one transport vehicle from a delivery base to a delivery destination. Patent Document 3 uses a plurality of delivery vehicles to deliver a cargo from a distribution base to a plurality of delivery destinations, and a delivery plan is made by a different algorithm so that the mileage to the route returning to the original base is the shortest. The creation is repeated, and the plan with the shortest total mileage is selected.
 特許文献4には、暫定的に決定した配送経路に、配送先を挿入して走行距離の最も短い経路を選択するステップを繰り返す挿入法を用いて手法が開示されている。特許文献4は、物流拠点から複数の配送先を巡って回る閉じた経路にて、走行時間の上限、車両の最大積載量を超過しないという制約条件下で、途中で顧客を挿入した暫定解を生成し、走行距離又は走行時間を少なくする。 Patent Document 4 discloses a method using an insertion method in which a delivery destination is inserted into a tentatively determined delivery route and the step of selecting the route having the shortest mileage is repeated. Patent Document 4 provides a provisional solution in which a customer is inserted in the middle under the constraint condition that the upper limit of the traveling time and the maximum load capacity of the vehicle are not exceeded on a closed route that goes around a plurality of delivery destinations from the distribution base. Generate and reduce mileage or mileage.
特許第6362229号Patent No. 6362229 特許第6362240号Patent No. 6362240 特開2001-188984号公報Japanese Unexamined Patent Publication No. 2001-188984 特開2015-038429号公報Japanese Unexamined Patent Publication No. 2015-038429
 発明者らは、特許文献1,2に開示している最適化について詳細に検討し、最適解を求める方法に想到した。 The inventors examined the optimization disclosed in Patent Documents 1 and 2 in detail and came up with a method for finding the optimum solution.
 特許文献3、4で開示されているような拠点から配送先への配送経路の設定方法はいずれも、各輸送車両は、荷物を配送先まで積載して配送する。輸送車両は、配送拠点で積み込んだ荷物を途中で他の車両へ積み換える、といったことを全く想定していない。車両が各荷物を配送先まで積載するから、途中で荷物が積み下ろされる都度に、車両の荷物の積載率は低下し、最適な配送計画を導出することは難しい。 In any of the methods for setting the delivery route from the base to the delivery destination as disclosed in Patent Documents 3 and 4, each transport vehicle loads and delivers the cargo to the delivery destination. The transportation vehicle does not assume that the parcel loaded at the delivery base will be transshipped to another vehicle on the way. Since the vehicle loads each package to the delivery destination, the load rate of the vehicle's package decreases each time the package is unloaded on the way, and it is difficult to derive the optimum delivery plan.
 本発明は、物流部材の輸送経路を最適化する輸送経路決定方法、コンピュータプログラム、及び、輸送経路決定装置を提供することを目的とする。 An object of the present invention is to provide a transportation route determination method, a computer program, and a transportation route determination device that optimize the transportation route of a physical distribution member.
 本開示の一実施形態の輸送経路決定方法は、物品を輸送する輸送機器が経由する輸送拠点を順に選択して前記物品の集荷地点から配荷地点に至る輸送経路を決定する輸送経路決定方法であって、前記輸送機器が輸送拠点又は集荷地点から次に経由する輸送拠点又は配荷地点を順次、確率的に選択する選択処理を、前記物品の配荷地点への輸送を完了するまで繰り返すシミュレーション工程、前記シミュレーション工程で得られる輸送経路に対する所定の評価量を算出する工程、並びに、前記シミュレーション工程及び前記所定の評価量の算出工程を所定の範囲内で繰り返して得られる複数の輸送経路の中から、前記所定の評価量に基づいて輸送経路を決定する工程を含む。 The transportation route determination method of the embodiment of the present disclosure is a transportation route determination method for determining a transportation route from a collection point to a distribution point of the article by sequentially selecting a transportation base through which the transportation equipment for transporting the article passes. Therefore, a simulation in which the transportation equipment repeats a selection process of sequentially and probabilistically selecting a transportation base or a distribution point to be passed through from a transportation base or a collection point until the transportation of the goods to the delivery point is completed. Among a plurality of transport routes obtained by repeating the process, the step of calculating a predetermined evaluation amount for the transport route obtained in the simulation step, and the simulation step and the calculation step of the predetermined evaluation amount within a predetermined range. Therefore, the step of determining the transportation route based on the predetermined evaluation amount is included.
 本開示の一実施形態の輸送経路決定方法は、物品を集配する複数の集配地点、及び、前記物品を輸送する輸送機器であって前記物品を収容する物流部材を各々収容する部材収容部を複数設けた荷台を持つ輸送機器が経由する複数の輸送拠点を含む地点間で輸送機器の経路を決定する輸送経路決定方法であって、前記物流部材に積み付けられる物品の種類と、物流部材の個数と、前記物品が集配される集配地点、及び、前記物品の最終的な目的地である集配地点又は輸送拠点の情報と、前記目的地への希望到着時間情報とを取得する処理、前記地点を含む地域毎に必要な輸送機器の台数、及び、地域内での輸送経路を、経由地点の複数の選択肢から1つを選択するときに乱数による確率的選択過程を含む数理モデルに基づくシミュレーション演算によって導出する処理、導出した地域毎の輸送機器の台数、及び地域内の輸送経路を記憶する処理、及び、取得した情報に基づいて、記憶部に記憶してある輸送経路、及び、新たに演算によって導出した輸送経路のいずれかの部分経路を選択して、前記輸送機器毎に、輸送経路を決定する処理を含む。 The transportation route determination method according to the embodiment of the present disclosure includes a plurality of collection and delivery points for collecting and delivering articles, and a plurality of member accommodating portions for transporting the articles and accommodating distribution members for accommodating the articles. It is a transportation route determination method for determining a route of a transportation device between points including a plurality of transportation bases through which a transportation device having a provided loading platform passes, and is a method of determining the type of goods to be loaded on the distribution member and the number of distribution members. And the process of acquiring the information on the collection and delivery point where the goods are collected and delivered, the collection and delivery point or the transportation base which is the final destination of the goods, and the desired arrival time information on the destination. The number of transportation equipment required for each region, and the transportation route within the region, are calculated by simulation based on a mathematical model that includes a probabilistic selection process using random numbers when selecting one from multiple options for transit points. The process of deriving, the process of memorizing the number of transportation devices for each derived area, and the process of memorizing the transportation route within the area, the transportation route stored in the storage unit based on the acquired information, and the new calculation. The process of selecting any partial route of the derived transportation route and determining the transportation route for each of the transportation devices is included.
 本開示の一実施形態のコンピュータプログラムは、コンピュータに、物品を輸送する輸送機器が経由する輸送拠点を順に選択して前記物品の集荷地点から配荷地点に至る輸送経路を決定する処理を実行させるコンピュータプログラムであって、前記コンピュータに、前記輸送機器が輸送拠点又は集荷地点から次に経由する輸送拠点又は配荷地点を順次、確率的に選択する選択処理を、前記物品の配荷地点への輸送を完了するまで繰り返すシミュレーション工程、前記シミュレーション工程で得られる輸送経路に対する所定の評価量を算出する工程、並びに、前記シミュレーション工程及び前記所定の評価量の算出工程を所定の範囲内で繰り返して得られる複数の輸送経路の中から、前記所定の評価量に基づいて輸送経路を決定する工程を実行させる。 The computer program of the embodiment of the present disclosure causes a computer to execute a process of sequentially selecting a transportation base through which a transportation device for transporting an article passes and determining a transportation route from a collection point to the distribution point of the article. In a computer program, the computer is subjected to a selection process of sequentially and probabilistically selecting a transportation base or a distribution point through which the transportation equipment passes from a transportation base or a collection point to the delivery point of the article. A simulation step that repeats until the transportation is completed, a step of calculating a predetermined evaluation amount for the transportation route obtained in the simulation step, and a step of calculating the simulation step and the predetermined evaluation amount are repeated within a predetermined range. The step of determining the transportation route based on the predetermined evaluation amount is executed from the plurality of transportation routes.
 本開示の一実施形態の輸送経路決定装置は、物品を輸送する輸送機器が経由する輸送拠点を順に選択して前記物品の集荷地点から配荷地点に至る輸送経路を決定する輸送経路決定装置であって、前記輸送機器が輸送拠点又は集荷地点から次に経由する輸送拠点又は配荷地点を順次、確率的に選択する選択処理を、前記物品の配荷地点への輸送を完了するまで繰り返すシミュレーション工程を実行する実行部と、前記シミュレーション工程で得られる輸送経路に対する所定の評価量を算出する算出部と、前記シミュレーション工程及び前記所定の評価量の算出工程を所定の範囲内で繰り返して得られる複数の輸送経路の中から、前記所定の評価量に基づいて輸送経路を決定する決定部とを備える。 The transport route determining device according to the embodiment of the present disclosure is a transport route determining device that determines a transport route from a collection point to a distribution point of the article by sequentially selecting a transport base through which the transport device for transporting the article passes. Therefore, a simulation in which the transportation equipment repeats a selection process of sequentially and probabilistically selecting a transportation base or a distribution point to be passed through from a transportation base or a collection point until the transportation of the goods to the delivery point is completed. It is obtained by repeating the execution unit that executes the process, the calculation unit that calculates a predetermined evaluation amount for the transportation route obtained in the simulation process, and the simulation process and the calculation process of the predetermined evaluation amount within a predetermined range. A determination unit for determining a transportation route based on the predetermined evaluation amount from a plurality of transportation routes is provided.
 本開示の輸送経路決定方法では、エージェントベースモデリングに基づき、輸送機器をエージェントとして設定し、エージェントに条件を持たせてシミュレーションすることにより、必要な輸送機器の台数を最適なエージェント数として求めることが可能である。この点で、エージェントベースモデリングは、物流問題を解決するのに有用である。 In the transportation route determination method of the present disclosure, the required number of transportation devices can be obtained as the optimum number of agents by setting the transportation equipment as an agent based on agent-based modeling and simulating the agents with conditions. It is possible. In this respect, agent-based modeling is useful in solving logistics problems.
 本開示の輸送経路決定方法では、地域毎に必要な輸送機器の台数、及び輸送経路が、数理モデルによって1ステップずつ、各ステップにおける状況に応じたエージェントベースモデルによるシミュレーションを実行して最適化される。1つの物流部材(例えばパレット)を、輸送機器をシェア、即ち乗り継いで運搬することを想定できれば、最適解が得られる。 In the transportation route determination method of the present disclosure, the number of transportation equipment required for each region and the transportation route are optimized by executing a simulation by an agent-based model according to the situation in each step step by step by a mathematical model. To. If it can be assumed that one distribution member (for example, a pallet) is transported by sharing the transportation equipment, that is, by connecting, an optimum solution can be obtained.
 最適解を部分経路として地域毎に組み合わせ、全体の経路を決定することも可能である。 It is also possible to combine the optimal solution as a partial route for each region and determine the entire route.
 本開示の輸送経路決定方法のエージェントベースモデリングでは、物品の集荷地点から輸送先への経由地点を順次、確率的に選択するステップを繰り返し、複数の物品がそれぞれ輸送先まで輸送し終えるまで実行される。算出された輸送経路は、所定の評価量で評価される。 In the agent-based modeling of the transportation route determination method of the present disclosure, the steps of sequentially and probabilistically selecting the waypoints from the collection point to the transportation destination of the goods are repeated until a plurality of goods have been transported to the transportation destination. To. The calculated transportation route is evaluated with a predetermined evaluation amount.
 前記所定の評価量とは、輸送完了までの所要時間、所要ステップ数、輸送機器の総移動距離、所要移動回数、輸送機器の移動による二酸化炭素の推定排出量、及び輸送に掛かるコストの内のいずれか1つ若しくは複数の組み合わせ、又は、複数の組み合わせから演算された値であってもよい。 The predetermined evaluation amount includes the time required to complete transportation, the number of steps required, the total distance traveled by the transportation equipment, the required number of movements, the estimated emission amount of carbon dioxide due to the movement of the transportation equipment, and the cost required for transportation. It may be a value calculated from any one or a plurality of combinations, or a plurality of combinations.
 前記所定の範囲内とは、得られた輸送経路の数が、所定の輸送経路数の上限値以内であることか、又は、シミュレーション工程及び評価量を算出する工程の計算時間が所定の計算時間上限値以内であることであってもよい。 Within the predetermined range, the number of obtained transportation routes is within the upper limit of the number of predetermined transportation routes, or the calculation time of the simulation process and the process of calculating the evaluation amount is the predetermined calculation time. It may be within the upper limit.
 前記輸送機器は、積載する物品を全て配荷した時点で所定の集荷地点へ移動することを条件として、前記シミュレーション工程が実行されてもよい。 The simulation step may be executed on the condition that the transportation equipment moves to a predetermined collection point when all the articles to be loaded are delivered.
 前記選択処理における輸送拠点又は配荷地点を選択する確率は、予め重み付けされた確率である設定で、前記シミュレーション工程が実行されてもよい。 The simulation step may be executed with the probability of selecting a transportation base or a distribution point in the selection process being a pre-weighted probability.
 前記物品は複数種類の物品であり、前記輸送機器は前記複数種類の物品の積載が許可され、前記複数種類の物品は、輸送拠点で、荷積み又は荷降ろしが許可される条件で、前記シミュレーション工程が実行されてもよい。 The simulation is performed under the conditions that the article is a plurality of types of articles, the transport device is permitted to load the plurality of types of articles, and the plurality of types of articles are permitted to be loaded or unloaded at a transportation base. The process may be performed.
 本開示の輸送経路決定方法のエージェントベースモデリングでは、前記シミュレーション工程で、前記選択処理を繰り返す過程で、前記評価量に係る数値を算出し、前記数値が、予め設定された算出処理の打ち切り条件を満たす場合に、前記シミュレーション工程が打ち切られてもよい。 In the agent-based modeling of the transportation route determination method of the present disclosure, in the process of repeating the selection process in the simulation step, a numerical value related to the evaluation amount is calculated, and the numerical value sets a preset termination condition of the calculation process. If so, the simulation process may be terminated.
 前記選択処理を繰り返す過程で、輸送完了までの進捗率を算出し、既に得られた輸送経路の内で前記所定の評価量に基づき最適と判断される輸送経路における前記進捗率と同一の状態と比較し、所定の指標が基準値を超えることが前記打ち切り条件であってよい。 In the process of repeating the selection process, the progress rate until the completion of transportation is calculated, and the state is the same as the progress rate in the transportation route determined to be optimal based on the predetermined evaluation amount among the already obtained transportation routes. The censoring condition may be that the predetermined index exceeds the reference value for comparison.
 前記所定の指標は、前記進捗率までの輸送所要時間、所要ステップ数、前記進捗率までの輸送機器の移動距離、前記進捗率までの輸送機器の移動回数、前記進捗率までの二酸化炭素の推定排出量、又は、輸送に掛かるコストであってよい。 The predetermined index includes the time required for transportation to the progress rate, the number of steps required, the distance traveled by the transportation equipment to the progress rate, the number of movements of the transportation equipment to the progress rate, and the estimation of carbon dioxide to the progress rate. It may be the amount of emissions or the cost of transportation.
 見込みがないと判断された場合に中断することで、より早い時間に最適な経路の算出にたどり着く可能性が高まる。 By interrupting when it is judged that there is no prospect, the possibility of reaching the optimum route calculation at an earlier time increases.
 本開示の輸送経路決定方法では、前記シミュレーション工程の前提条件として前記輸送機器の条件を設定し、前記輸送機器の条件を変更して前記シミュレーション工程を実行し、異なる前記輸送機器の条件に対して実行されるシミュレーション工程によって得られた輸送経路に対する前記所定の評価量に基づき、最適な輸送経路及び前記輸送機器の条件を決定してもよい。 In the transportation route determination method of the present disclosure, the conditions of the transportation equipment are set as the preconditions of the simulation process, the conditions of the transportation equipment are changed, the simulation process is executed, and the conditions of the transportation equipment are different. The optimum transportation route and the conditions of the transportation equipment may be determined based on the predetermined evaluation amount for the transportation route obtained by the execution simulation step.
 前記輸送機器の条件は、前記輸送機器の数であり、前記輸送機器の数を1ずつ増加させることで条件を変更し、輸送機器の数を増加させても前記所定の評価量が減少しない前記輸送機器の最小値を、輸送機器の数として決定されてもよい。 The condition of the transport equipment is the number of the transport equipment, and the predetermined evaluation amount does not decrease even if the condition is changed by increasing the number of the transport equipment by 1 and the number of the transport equipment is increased. The minimum value of transport equipment may be determined as the number of transport equipment.
 本開示の輸送経路決定方法では、前記経由地点の段階から、前記確率的に選択するステップにて、前記記憶してある輸送経路における次の選択地点とは異なる選択をして、前記複数の物品の前記輸送先への輸送が完了するまで繰り返して前記輸送機器の新たな輸送経路を算出してもよい。 In the transportation route determination method of the present disclosure, the plurality of articles are selected differently from the next selection point in the stored transportation route in the step of probabilistically selecting from the stage of the waypoint. A new transportation route of the transportation equipment may be calculated repeatedly until the transportation to the transportation destination is completed.
 既に記憶してある最小の移動回数又は最短の移動距離の経路から、より最小又は最短の経路を算出するべく学習を行なう場合、局所解に陥る可能性があるため、異なる選択によって突然変異を起こし、最適な解を導出できるようにしてもよい。 When learning to calculate the minimum or shortest route from the route with the minimum number of movements or the shortest movement distance already memorized, a local solution may occur, so mutation is caused by a different selection. , The optimum solution may be derived.
 本開示の一実施形態の輸送経路決定方法は、事前に前記演算によって導出された前記記憶部に記憶してある輸送機器の台数及び輸送経路の一部又は全部を用い、前記演算に用いてもよい。 The transport route determination method of the embodiment of the present disclosure uses the number of transport devices and a part or all of the transport routes stored in the storage unit previously derived by the calculation, and may be used for the calculation. Good.
 本開示の一実施形態の輸送経路決定方法は、事前に前記演算によって導出して前記記憶部に記憶してある輸送機器の台数及び輸送経路の一部又は全部を用いるに際し、前記記憶部に記憶してある輸送経路を導出するための条件である物品の種類、パレットの個数、集配地点、及び目的地との差分に相当する部分のみを新規導出対象とし、新規導出の結果と、前記記憶部に記憶してある導出結果とを統合してもよい。 The transportation route determination method according to the embodiment of the present disclosure is stored in the storage unit when the number of transportation devices and a part or all of the transportation routes are stored in the storage unit in advance by the calculation. Only the part corresponding to the type of goods, the number of pallets, the collection / delivery point, and the difference from the destination, which are the conditions for deriving the transportation route, is the new derivation target, and the result of the new derivation and the storage unit are described. It may be integrated with the derivation result stored in.
 本開示の輸送経路決定方法では、それまでの演算で記憶してある輸送経路の台数、輸送経路を用いて、輸送経路の決定を初期状態から実行せずに使用してもよい。過去に演算で求めた輸送経路の経由地点から演算を開始してもよい。より少ない移動回数、より短い移動距離の輸送経路を選ぶことによって学習効果が得られる。 In the transportation route determination method of the present disclosure, the transportation route determination may be used without executing the determination of the transportation route from the initial state by using the number of transportation routes and the transportation route stored in the calculation up to that point. The calculation may be started from the waypoint of the transportation route obtained by the calculation in the past. The learning effect can be obtained by selecting a transportation route with a smaller number of movements and a shorter movement distance.
 本開示によれば、各集配地から輸送される物流部材の数及び積み付けられている物品の種類、物品の到着地点となる目的の集配地、必着時間情報が特定された場合には、各物流部材の最適な輸送経路が導出される。 According to the present disclosure, when the number of distribution materials transported from each collection and delivery site, the type of goods loaded, the target collection and delivery place as the arrival point of the goods, and the required arrival time information are specified, each The optimum transportation route for distribution materials is derived.
本開示の物流システムの概要図である。It is a schematic diagram of the distribution system of this disclosure. 輸送機器の一例を示す模式図である。It is a schematic diagram which shows an example of the transportation equipment. 輸送機器の一例を示す模式図である。It is a schematic diagram which shows an example of the transportation equipment. 輸送経路決定装置の構成を示すブロック図である。It is a block diagram which shows the structure of the transportation route determination apparatus. 物流DBに記憶されている情報の内容例を示す図である。It is a figure which shows the content example of the information stored in the distribution DB. 輸送経路決定装置によって実行される輸送経路決定処理手順の一例を示すフローチャートである。It is a flowchart which shows an example of the transportation route determination processing procedure executed by the transportation route determination apparatus. 輸送経路決定装置によって実行される輸送経路決定処理手順の一例を示すフローチャートである。It is a flowchart which shows an example of the transportation route determination processing procedure executed by the transportation route determination apparatus. 輸送経路の演算処理の一例を示すフローチャートである。It is a flowchart which shows an example of the arithmetic processing of a transportation route. S401の処理における大まかな経路の説明図である。It is explanatory drawing of the rough route in the process of S401. 経路計算の処理手順の一例を示すフローチャートである。It is a flowchart which shows an example of the processing procedure of a route calculation. 経路計算の処理手順の一例を示すフローチャートである。It is a flowchart which shows an example of the processing procedure of a route calculation. エージェントベースモデリングによる解の探索過程の模式図である。It is a schematic diagram of the solution search process by agent-based modeling. 経路計算の処理手順の他の一例を示すフローチャートである。It is a flowchart which shows another example of the processing procedure of a route calculation. 経路計算の処理手順の他の一例を示すフローチャートである。It is a flowchart which shows another example of the processing procedure of a route calculation. 実施例1における最適解の導出過程の説明図である。It is explanatory drawing of the derivation process of the optimum solution in Example 1. FIG. 実施例2における解の導出過程の説明図である。It is explanatory drawing of the derivation process of the solution in Example 2. 実施例3における解の導出過程の説明図である。It is explanatory drawing of the derivation process of the solution in Example 3. FIG. 実施例4における解の導出過程の説明図である。It is explanatory drawing of the derivation process of the solution in Example 4. FIG. シミュレーションの結果を示すグラフである。It is a graph which shows the result of a simulation. シミュレーションの結果を示すグラフである。It is a graph which shows the result of a simulation. シミュレーションの結果を示すグラフである。It is a graph which shows the result of a simulation. シミュレーションの結果を示すグラフである。It is a graph which shows the result of a simulation. シミュレーションの結果を示す棒グラフである。It is a bar graph showing the result of the simulation. 実施例5における解の導出過程の説明図である。It is explanatory drawing of the derivation process of the solution in Example 5. 実施例6における解の導出過程の説明図である。It is explanatory drawing of the derivation process of the solution in Example 6. 実施例7における解の導出過程の説明図である。It is explanatory drawing of the derivation process of the solution in Example 7. エージェントベースモデリングによって得られた輸送経路の模式図である。It is a schematic diagram of the transportation route obtained by agent-based modeling. エージェントベースモデリングによって得られた輸送経路の模式図である。It is a schematic diagram of the transportation route obtained by agent-based modeling. エージェントベースモデリングによって得られた輸送経路の模式図である。It is a schematic diagram of the transportation route obtained by agent-based modeling. エージェントベースモデリングによって得られた輸送経路の模式図である。It is a schematic diagram of the transportation route obtained by agent-based modeling. エージェントベースモデリングによって得られた輸送経路の模式図である。It is a schematic diagram of the transportation route obtained by agent-based modeling. エージェントベースモデリングによって得られた輸送経路の模式図である。It is a schematic diagram of the transportation route obtained by agent-based modeling. 変形例における経路計算の処理手順の一例を示すフローチャートである。It is a flowchart which shows an example of the processing procedure of the route calculation in the modification. 変形例における経路計算の処理手順の一例を示すフローチャートである。It is a flowchart which shows an example of the processing procedure of the route calculation in the modification. 距離付きの輸送ネットワークの内容例を示す。An example of the contents of a transportation network with a distance is shown. 進捗率に基づく見込みの有り無し判断の概要図である。It is a schematic diagram of the presence / absence judgment of the prospect based on the progress rate. 実施例8における解の導出過程の説明図である。It is explanatory drawing of the derivation process of the solution in Example 8. 実施例9における解の導出過程の説明図である。It is explanatory drawing of the derivation process of the solution in Example 9. 見込みの判断による計算時間の短縮効果を示すグラフである。It is a graph which shows the effect of shortening the calculation time by the judgment of a prospect.
 本開示をその実施の形態を示す図面を参照して具体的に説明する。以下の実施の形態では、本開示の輸送経路決定方法を適用した物流システムについて説明する。 The present disclosure will be specifically described with reference to the drawings showing the embodiments thereof. In the following embodiment, a physical distribution system to which the transportation route determination method of the present disclosure is applied will be described.
 図1は、本開示の物流システム100の概要図である。物流システム100は、物品、例えば農作物を輸送する輸送機器1と、輸送機器1が立ち寄るトランスファーセンターである拠点センター(ベース)2と、物品を集配するディストリビューションセンタである集配センター3、コントロールセンター400とを含む。物流システム100は、輸送経路決定装置4が決定する経路情報に基づいて運用される。輸送経路決定装置4は、輸送機器1、拠点センター2内の装置、集配センター3内の装置と通信接続が可能である。また輸送経路決定装置4は、生産者又は製造者、拠点センター2、集配センター3のオペレータが使用する端末装置5と通信接続が可能である。 FIG. 1 is a schematic diagram of the distribution system 100 of the present disclosure. The distribution system 100 includes a transportation device 1 for transporting goods, for example, agricultural products, a base center (base) 2 which is a transfer center where the transportation device 1 stops, a collection / delivery center 3 which is a distribution center for collecting and delivering goods, and a control center 400. And include. The distribution system 100 is operated based on the route information determined by the transportation route determination device 4. The transportation route determination device 4 can be connected to the transportation device 1, the device in the base center 2, and the device in the collection / delivery center 3 by communication. Further, the transportation route determination device 4 can be connected to the terminal device 5 used by the operator of the producer or the manufacturer, the base center 2 and the collection / delivery center 3.
 輸送機器1は、搬送トラック、列車、輸送機、船舶等の乗り物(vehicle)である。輸送機器1は、自動運転によって走行する搬送ロボットであってもよい。 Transport equipment 1 is a vehicle such as a transport truck, a train, a transport aircraft, or a ship. The transport device 1 may be a transport robot that travels by automatic operation.
 拠点センター2は、物流における所謂幹線に設けられた通過型センターであり、港、空港、貨物駅、道路網におけるインターチェンジ(IC)等、輸送機器1の拠点となる場所に設置される。拠点センター2は例えば所定の距離毎に設けられる。拠点センター2には、拠点センター2にて輸送機器1の入庫を受け付け、輸送機器1からパレットPを搬出・搬入する装置群と、装置群を制御する拠点コントローラ20が設けられている。拠点コントローラ20は、輸送経路決定装置4と通信接続が可能であり、輸送経路決定装置4からの指示に基づいて装置群を制御する。 The base center 2 is a transit center provided on a so-called trunk line in logistics, and is installed at a place that serves as a base for transportation equipment 1, such as an interchange (IC) in a port, an airport, a freight station, or a road network. The base center 2 is provided, for example, at predetermined distances. The base center 2 is provided with a group of devices that accept the receipt of the transportation device 1 at the base center 2 and carry out / carry in the pallet P from the transportation device 1, and a base controller 20 that controls the device group. The base controller 20 can be connected to the transportation route determination device 4 by communication, and controls the device group based on the instruction from the transportation route determination device 4.
 拠点センター2を中心とする物流システムでは、輸送対象物は物流部材に積み付けられて搬送される。物流部材は、具体的にはパレットP及び小型コンテナCである。以下の説明ではパレットPに絞って説明するが小型コンテナCも同様に扱われるとよい。物流部材は更に、フレキシブルコンテナ、所謂フレコンであってもよいし、鉄コンテナであってもよいし、段ボール箱であってもよい。その他、物流で物品を載置させたり、収容させたりするために使用される袋、板材、箱材は物流部材に含まれる。 In the distribution system centered on the base center 2, the transportation target is loaded on the distribution material and transported. Specifically, the physical distribution members are the pallet P and the small container C. In the following description, the description will be focused on the pallet P, but the small container C may be treated in the same manner. Further, the distribution member may be a flexible container, a so-called flexible container, an iron container, or a cardboard box. In addition, bags, plates, and box materials used for placing and accommodating goods in physical distribution are included in physical distribution members.
 拠点センター2には、パレットセンター22が並設されるとよい。パレットセンター22には、パレットPが集配されている。パレットセンター22には、パレットPを搬出・搬入する装置を制御するパレットコントローラ23が設置されている。パレットコントローラ23は、輸送経路決定装置4と通信接続が可能であり、輸送経路決定装置4からの指示に基づいて装置群を制御する。 The pallet center 22 should be installed side by side in the base center 2. Pallets P are collected and delivered at the pallet center 22. The pallet center 22 is provided with a pallet controller 23 that controls a device for loading and unloading the pallet P. The pallet controller 23 can be connected to the transportation route determination device 4 by communication, and controls the device group based on the instruction from the transportation route determination device 4.
 集配センター3は、生産者若しくは製造者の拠点から輸送対象の物品を収集して、拠点センター2へ向けて輸送するか、又は、逆に、拠点センター2から荷を受けて保管し、エンドユーザへ向けて物品を輸送する拠点である。集配センター3は、卸、若しくは配送センターに相当する。集配センター3は、拠点センター2に対して複数設けられるとよい。集配センター3は、小売業者である荷受人によって管理されていてもよい。集配センター3が拠点センター2へ向けて輸送する物品を収集する場合、集配センター3にて物品がパレットPに積み付けられてもよい。集配センター3には、輸送経路決定装置4からの指示を受ける集配地装置30が設置されている。集配地装置30は、集配センター3におけるオペレータからの発送物品及びパレットPの入力を受け付けたり、到着した物品の入力を受け付けたりする。集配地装置30は、発送される物品が積み付けられたパレットPのパレット識別情報と物品の識別情報との対応、及び、到着した物品と物品が積み付けられたパレットPのパレット識別情報との対応を記憶して輸送経路決定装置4へ送信する。 The collection and delivery center 3 collects the goods to be transported from the producer or manufacturer's base and transports them to the base center 2, or conversely, receives and stores the cargo from the base center 2 and stores the end user. It is a base for transporting goods to. The collection and delivery center 3 corresponds to a wholesale or distribution center. A plurality of collection and delivery centers 3 may be provided for the base center 2. The collection and delivery center 3 may be managed by a consignee who is a retailer. When the collection / delivery center 3 collects the goods to be transported to the base center 2, the goods may be loaded on the pallet P at the collection / delivery center 3. The collection and delivery center 3 is equipped with a collection and delivery site device 30 that receives instructions from the transportation route determination device 4. The collection / delivery site device 30 accepts the input of the shipping goods and the pallet P from the operator at the collection / delivery center 3, and receives the input of the arriving goods. The collection / delivery device 30 corresponds to the correspondence between the pallet identification information of the pallet P on which the goods to be shipped are loaded and the identification information of the goods, and the pallet identification information of the arrived goods and the pallets P on which the goods are loaded. The correspondence is memorized and transmitted to the transportation route determination device 4.
 後述するように本開示の物流システム100では、同一の輸送機器1が物品を集荷した出発地点から、その物品の配荷先である到着地点まで輸送を完了させるのではなく、物品は、複数の輸送機器1を乗り継ぐように輸送されてよい。つまり、輸送機器1は経由地点で物品を積み降ろすことが許可される。このような条件下で、本開示の物流システム100では、輸送機器1と、物品を積み付けられたパレットPとが、どのように移動することが最適であるかをシミュレーションして求める。輸送経路は、複数の拠点センター2間を結ぶ高速道路、空路、鉄道等の幹線における輸送と、集荷地点又は配荷地点を含む地域の拠点センター2へパレットPが到着するまで、又は到着した後の地域における輸送とを階層的に分別して決定する。幹線における輸送は、特許文献1,2に開示されたように幹線に存在する拠点センター2で積み降ろしすることを許可して最適化する。地域における輸送では、幹線を経由せず地域内に集荷地点及び配荷地点があるパレットPも共に輸送し、パレットPの経由地点での積み下ろしを許可する条件で、地域内に存在する拠点センター2及び集配センター3を集荷地点又は配荷地点(集配地点)として輸送機器1及びパレットPそれぞれの経路を決定する。 As will be described later, in the distribution system 100 of the present disclosure, transportation is not completed from the departure point where the same transportation device 1 collects the goods to the arrival point where the goods are delivered, but the goods are a plurality of goods. It may be transported so as to transfer to the transportation device 1. That is, the transportation device 1 is allowed to load and unload goods at the transit point. Under such conditions, in the distribution system 100 of the present disclosure, it is determined by simulating how the transportation device 1 and the pallet P on which the articles are loaded are optimally moved. The transportation route is transportation on a trunk line such as an expressway, an air route, or a railroad connecting a plurality of base centers 2, and until or after the arrival of the pallet P at the base center 2 in the area including the collection point or the distribution point. The transportation in the area is determined by classifying it hierarchically. Transportation on the trunk line is optimized by allowing loading and unloading at the base center 2 existing on the trunk line as disclosed in Patent Documents 1 and 2. For transportation in the area, the base center 2 existing in the area under the condition that the pallet P, which has a collection point and a distribution point in the area, is also transported without going through the main line, and loading and unloading is permitted at the waypoint of the pallet P. And the collection / delivery center 3 is used as a collection point or a distribution point (collection / delivery point), and the routes of the transportation equipment 1 and the pallet P are determined respectively.
 地域には、1又は複数の拠点センター2が存在し、複数の集配センター3が存在する(図8参照)。地域は行政区分に限られず、任意の単位で区分されるように定義され、緯度経度情報及び拠点センター2及び集配センター3の識別データ、所属地域の識別データで記憶される。地域同士は重複してもよい。集配センター3は異なる地域に所属していてもよい。拠点センター2及び集配センター3は、地域内の輸送において集荷地点でもあり配荷地点でもある(「集配地点」に対応する)。対象地域に含まれる、ある集配センター3を配荷地点とするパレットPが、他の地域から幹線を経由して輸送され拠点センター2で降ろされる場合、拠点センター2が、その対象地域内の輸送機器1にとっては集荷地点である。対象地域内の、ある集配センター3で集荷され、幹線を経由して他の地域へ輸送されるパレットPは、その対象地域内では拠点センター2が配荷地点として扱われる。地域内の複数の集配センター3は、夫々集荷地点でもあり且つ配荷地点でもある。いずれかの集配センター3は、集荷地点としてのみ機能してもよいし、同様にして他のいずれかの集配センター3は、配荷地点としてのみ機能してもよい。 There is one or more base centers 2 in the area, and there are a plurality of collection and delivery centers 3 (see FIG. 8). The area is not limited to the administrative division, but is defined to be divided into arbitrary units, and is stored in the latitude / longitude information, the identification data of the base center 2 and the collection / delivery center 3, and the identification data of the area to which the area belongs. Regions may overlap. The collection and delivery center 3 may belong to different areas. The base center 2 and the collection / delivery center 3 are both collection points and distribution points for transportation within the area (corresponding to "collection / delivery points"). When the pallet P included in the target area and whose delivery point is a certain collection / delivery center 3 is transported from another area via the trunk line and unloaded at the base center 2, the base center 2 transports the pallet P within the target area. It is a collection point for the device 1. For the pallet P that is collected at a certain collection / delivery center 3 in the target area and transported to another area via the main line, the base center 2 is treated as a distribution point in the target area. Each of the plurality of collection and delivery centers 3 in the area is both a collection point and a distribution point. Any collection and delivery center 3 may function only as a collection point, and similarly any other collection and delivery center 3 may function only as a collection point.
 輸送経路決定装置4は、輸送機器1の位置を逐次取得し、輸送機器1に収容されているパレットPの情報、集配センター3にて発送待ち状態であるパレットPの情報を、逐次収集する。輸送経路決定装置4は、輸送機器1から逐次取得した位置、及び、各パレットPの存在位置を含む位置情報と、各パレットPが届けられるべき集配センター3の目的地情報と、届けられるべき時間情報とから、パレットPの移動経路及び輸送機器1の輸送経路を逐次決定する。 The transportation route determination device 4 sequentially acquires the position of the transportation device 1, and sequentially collects the information of the pallet P housed in the transportation device 1 and the information of the pallet P waiting to be shipped at the collection / delivery center 3. The transportation route determination device 4 includes the position sequentially acquired from the transportation device 1, the position information including the existence position of each pallet P, the destination information of the collection / delivery center 3 to which each pallet P should be delivered, and the time to be delivered. From the information, the movement route of the pallet P and the transportation route of the transportation device 1 are sequentially determined.
 輸送経路決定装置4は、決定した輸送機器1夫々の輸送経路及びパレットPの移動経路に基づいて、輸送機器1へ、立ち寄るべき拠点センター2を指示する。輸送経路決定装置4は、拠点センター2へ、到着した輸送機器1から搬出すべきパレットP、輸送機器1へ搬入すべきパレットPを指示する。輸送経路決定装置4は、決定した輸送経路及び移動経路に基づいて、集配センター3、パレットセンター22から発送すべきパレットPを夫々のセンターへ指示し、輸送機器1へ、搬出すべきパレットPを指示する。 The transportation route determination device 4 instructs the transportation equipment 1 to stop at the base center 2 based on the determined transportation routes of the transportation equipment 1 and the movement route of the pallet P. The transportation route determination device 4 instructs the base center 2 the pallet P to be carried out from the arriving transportation equipment 1 and the pallet P to be carried into the transportation equipment 1. Based on the determined transportation route and movement route, the transportation route determining device 4 instructs each center of the pallet P to be shipped from the collection / delivery center 3 and the pallet center 22, and sends the pallet P to be carried out to the transportation equipment 1. Instruct.
 本開示では、輸送経路決定装置4が、輸送すべき物品の情報、輸送機器1の位置情報等から、パレットPの移動経路、及び輸送機器1の輸送経路を逐次最適化していく処理について説明する。 In the present disclosure, a process in which the transport route determining device 4 sequentially optimizes the movement route of the pallet P and the transport route of the transport device 1 from the information of the goods to be transported, the position information of the transport device 1, and the like will be described. ..
 パレットPについて説明する。パレットPは物流の現場で広く用いられているパレットと同様に90cm四方の大きさを有した物流部材であり、より好ましくは樹脂製である。パレットPはその他、木製、ステンレス製、段ボール製等多様な材料製でよく、フォークリフトでの運搬に適合したリフト孔が設けられているとよい。パレットPは、輸出入の規制に適合した材料製のパレットを用いるとよい。パレットPには、パレット識別情報を記憶してあるタグが取り付けられている。タグは、RFID等を用いた無線タグであることが好ましい。 Palette P will be explained. The pallet P is a physical distribution member having a size of 90 cm square like a pallet widely used in a physical distribution field, and is more preferably made of resin. The pallet P may be made of various other materials such as wood, stainless steel, and corrugated cardboard, and may be provided with a lift hole suitable for transportation by a forklift. As the pallet P, it is preferable to use a pallet made of a material that conforms to import / export regulations. A tag storing pallet identification information is attached to the pallet P. The tag is preferably a wireless tag using RFID or the like.
 タグには、予め付与されているパレットPのパレット識別情報が無線リーダにより読み出し可能に記憶されている。なおタグにおけるパレットPのパレット識別情報は書き換え不可であるが、タグには、ライタによってパレットPに積み付けられる一つ又は複数の物品の情報を書き込み可能である。物品の情報とは、物品の種別及び品目、重量、集荷の日付、物品の配送番号、直近に経由した拠点センター2の拠点識別情報、目的地の拠点センター2、荷受人情報、送り元情報等である。タグに代替して予め付与されているパレットPのパレット識別情報に対応する一次元コード、二次元コードが印刷された所定の媒体であってもよい。タグの上に一次元コード、二次元コードが印刷されていてもよい。物品の情報は輸送経路決定装置4側にパレット識別情報に対応付けて記憶されている。 In the tag, the palette identification information of the palette P given in advance is readable and stored by the wireless reader. Although the pallet identification information of the pallet P in the tag is not rewritable, the tag can be written with information of one or more articles loaded on the pallet P by the writer. The goods information includes the type and item of the goods, the weight, the date of collection, the delivery number of the goods, the base identification information of the base center 2 that has recently passed through, the base center 2 of the destination, the consignee information, the sender information, etc. Is. It may be a predetermined medium on which a one-dimensional code or a two-dimensional code corresponding to the palette identification information of the palette P given in advance instead of the tag is printed. A one-dimensional code or a two-dimensional code may be printed on the tag. The information of the article is stored in association with the pallet identification information on the transportation route determining device 4 side.
 輸送機器1は、本実施の形態では搬送トラックである。図2A及び図2Bは、輸送機器1の一例を示す模式図である。図2Aは、横開きの扉を有している荷台の例、図2Bは、後方の扉を有している荷台の例を示している。図2A及び図2Bに示す例のどちらの場合も輸送機器1は、パレットP単位で物品を搬送するためにパレットフレーム11を荷台内部に設けている。パレットフレーム11は具体的には、荷台を床面から天井に至る高さを半分に上下二段に分ける台である。荷台は車幅方向にパレットPが2つ並置できる内寸を有している。パレットフレーム11にて区分けされた上下と、左右とでパレットPの収容位置を特定することができる。 The transportation device 1 is a transport truck in the present embodiment. 2A and 2B are schematic views showing an example of the transportation device 1. FIG. 2A shows an example of a loading platform having a side-opening door, and FIG. 2B shows an example of a loading platform having a rear door. In both cases of the examples shown in FIGS. 2A and 2B, the transportation device 1 is provided with a pallet frame 11 inside the loading platform in order to transport articles in units of pallets P. Specifically, the pallet frame 11 is a stand that divides the loading platform from the floor surface to the ceiling in half in two upper and lower stages. The loading platform has an internal dimension that allows two pallets P to be juxtaposed in the vehicle width direction. The accommodation position of the pallet P can be specified by the top and bottom and the left and right divided by the pallet frame 11.
 パレットフレーム11は、図2Bに示すように、荷台の後部扉から全体引き出すことが可能な構成であってもよい。この場合、パレットフレーム11を巨大なパレットと考えれば、パレットフレーム11も物流部材としてパレット上にパレットPが複数積載され、パレットP夫々の上に複数の小型コンテナCが積載された入れ子状態で管理することも可能である。なおパレットフレーム11は、図2A及び図2Bに示しているように二段に分ける台ではなく、荷台の床面に敷かれた板材状であってもよい。 As shown in FIG. 2B, the pallet frame 11 may have a configuration in which the entire pallet frame 11 can be pulled out from the rear door of the loading platform. In this case, if the pallet frame 11 is considered as a huge pallet, the pallet frame 11 is also managed in a nested state in which a plurality of pallets P are loaded on the pallets as distribution members and a plurality of small containers C are loaded on each of the pallets P. It is also possible to do. The pallet frame 11 may be in the shape of a plate laid on the floor surface of the loading platform, instead of being divided into two stages as shown in FIGS. 2A and 2B.
 輸送機器1が列車、輸送機、船舶等の乗り物である場合、図2A又は図2Bの荷台部分と同様の構造の大型コンテナが用いられ、大型コンテナがパレットフレーム11を備える構成とすればよい。 When the transportation device 1 is a vehicle such as a train, a transport aircraft, or a ship, a large container having the same structure as the loading platform portion of FIG. 2A or FIG. 2B may be used, and the large container may be configured to include the pallet frame 11.
 輸送機器1は、車載機10及びパレットPのタグからパレット識別情報を読み取るリーダを備える。車載機10は、GPS受信機を有し、輸送機器1の位置情報を逐次取得し、輸送経路決定装置4へ送信する。車載機10は、輸送機器1の荷台にパレットPが搬入されると、パレットPのタグからパレット識別情報をリーダで読み取る。収容中のパレットPのパレット識別情報と、パレットフレーム11における収容位置を識別する収容部識別情報とを、予め記憶している輸送機器1の識別情報と対応付けて輸送経路決定装置4へ送信する。車載機10は、輸送機器1の荷台から搬出されるパレットPのタグからパレット識別情報をリーダで読み取り、搬出されたパレットPのパレット識別情報を、予め記憶している輸送機器1の識別情報と対応付けて輸送経路決定装置4へ送信する。車載機10は、搬出されるパレットPについて、そのパレットPが収容されていた収容部の収容部識別情報を対応付けて、搬出されることを輸送経路決定装置4へ通知してもよい。 The transportation device 1 includes a reader that reads pallet identification information from the tags of the on-board unit 10 and the pallet P. The on-board unit 10 has a GPS receiver, sequentially acquires the position information of the transportation device 1, and transmits the position information to the transportation route determination device 4. When the pallet P is carried into the loading platform of the transportation device 1, the on-board unit 10 reads the pallet identification information from the tag of the pallet P with a reader. The pallet identification information of the pallet P being accommodated and the accommodation unit identification information for identifying the accommodation position in the pallet frame 11 are transmitted to the transportation route determination device 4 in association with the identification information of the transportation device 1 stored in advance. .. The on-board unit 10 reads the pallet identification information from the tag of the pallet P carried out from the loading platform of the transportation device 1 with a reader, and the pallet identification information of the pallet P carried out is stored in advance as the identification information of the transportation device 1. It is associated and transmitted to the transportation route determination device 4. The on-board unit 10 may notify the transport route determination device 4 that the pallet P to be carried out is to be carried out by associating it with the accommodating portion identification information of the accommodating portion in which the pallet P is accommodated.
 図3は、輸送経路決定装置4の構成を示すブロック図である。輸送経路決定装置4は、サーバコンピュータであり、処理部40、記憶部41、通信部42を備える。輸送経路決定装置4は、1つのサーバコンピュータ(ハードウェア)を用いる構成のみならず、複数のサーバコンピュータで処理を分散する構成としてもよいし、大型コンピュータに仮想的に生成される複数のサーバコンピュータ(インスタンス)の内の1つであってもよい。輸送経路決定装置4は、記憶部41の物流DB410の情報の更新処理を除き、量子コンピュータによって演算を実行してもよい。 FIG. 3 is a block diagram showing the configuration of the transportation route determination device 4. The transportation route determination device 4 is a server computer, and includes a processing unit 40, a storage unit 41, and a communication unit 42. The transport route determination device 4 may be configured not only by using one server computer (hardware) but also by distributing processing among a plurality of server computers, or a plurality of server computers virtually generated by a large computer. It may be one of (instances). The transportation route determination device 4 may execute the calculation by the quantum computer except for the processing of updating the information of the distribution DB 410 of the storage unit 41.
 処理部40はCPU(Central Processing Unit)またはGPU(Graphics Processing Unit)を用いたプロセッサである。処理部40は、内蔵するROM(Read Only Memory)およびRAM(Random Access Memory)等のメモリを用いて処理を実行する。処理部40は、内蔵するタイマーによって逐次、時間情報を取得することができる。 The processing unit 40 is a processor using a CPU (Central Processing Unit) or a GPU (Graphics Processing Unit). The processing unit 40 executes processing using the built-in memory such as ROM (Read Only Memory) and RAM (Random Access Memory). The processing unit 40 can sequentially acquire time information by the built-in timer.
 記憶部41は、ハードディスク又はSSD(Solid State Drive)等の不揮発性の記憶媒体を含む。記憶部41は、コンピュータプログラム40Pを記憶する。記憶部41は、モデル4Mを記憶する。処理部40は、記憶部41に記憶されているコンピュータプログラム40Pに基づき、モデル4Mを用いた後述する演算によって最適経路を導出する処理を実行する。 The storage unit 41 includes a hard disk or a non-volatile storage medium such as an SSD (Solid State Drive). The storage unit 41 stores the computer program 40P. The storage unit 41 stores the model 4M. The processing unit 40 executes a process of deriving the optimum path by an operation described later using the model 4M based on the computer program 40P stored in the storage unit 41.
 記憶部41にはWebサーバプログラムが記憶されており、処理部40はWebサーバ機能を発揮し、このWebサーバ機能によって端末装置5から、輸送機器1の荷台のシェアの依頼等を受け付けてもよい。 A Web server program is stored in the storage unit 41, and the processing unit 40 exerts a Web server function, and the terminal device 5 may accept a request for sharing the loading platform of the transportation device 1 or the like by the Web server function. ..
 記憶部41又は外部記憶装置に、物流DB(Data Base)410が構築される。処理部40は、データベース操作モジュールにより、物流DB410に対する読み書きが可能である。物流DB410には例えば、後述するようにユーザ情報411、第1パレット情報412、第2パレット情報413、及び輸送機器情報414が記憶されている。 A distribution DB (DataBase) 410 is constructed in the storage unit 41 or an external storage device. The processing unit 40 can read and write to the physical distribution DB 410 by the database operation module. For example, user information 411, first pallet information 412, second pallet information 413, and transportation equipment information 414 are stored in the distribution DB 410, as will be described later.
 通信部42は、公衆通信網N1又はキャリアネットワークN2における通信を実現する。処理部40は、通信部42により、公衆通信網N1又はキャリアネットワークN2を介して端末装置5との間で情報の送受信が可能である。また処理部40は、通信部42により、キャリアネットワークN2を介して輸送機器1に搭載されている車載機との間で情報の送受信が可能である。処理部40は、通信部42により、公衆通信網N1、キャリアネットワークN2、又は専用線を介し、拠点センター2の拠点コントローラ20、集配センター3の集配地装置30と通信接続が可能である。 The communication unit 42 realizes communication on the public communication network N1 or the carrier network N2. The processing unit 40 can transmit and receive information to and from the terminal device 5 via the public communication network N1 or the carrier network N2 by the communication unit 42. Further, the processing unit 40 can transmit / receive information to / from the in-vehicle device mounted on the transportation device 1 via the carrier network N2 by the communication unit 42. The processing unit 40 can be communicated with the base controller 20 of the base center 2 and the collection / delivery site device 30 of the collection / delivery center 3 via the public communication network N1, the carrier network N2, or a dedicated line by the communication unit 42.
 図4は、物流DB410に記憶されている情報の内容例を示す図である。図4に示すように、物流DB410には、第1パレット情報412として、各拠点センター2、パレットセンター22、集配センター3、生産拠点に対して付与されている識別情報に対応付けて、各所に存在するはずのパレットPのパレット識別情報が逐次記憶されている。 FIG. 4 is a diagram showing an example of the contents of the information stored in the distribution DB 410. As shown in FIG. 4, in the distribution DB 410, as the first pallet information 412, the identification information given to each base center 2, the pallet center 22, the collection / delivery center 3, and the production base is associated with each place. The pallet identification information of the pallet P that should exist is sequentially stored.
 物流DB410には、第2パレット情報413として、パレット識別情報に対応付けて、パレットPが積載されている輸送機器1を識別する機器識別情報、パレットPに積み付けられている物品の情報が記憶されている。物品の情報は、パレットPに積み付けられている小型コンテナC又は他の物流部材のコンテナ識別情報であってもよい。物品の情報は、輸送番号、出荷者、荷受人を識別する情報、パレットPの物品込みの重さの情報を含むとよい。 In the physical distribution DB 410, as the second pallet information 413, device identification information for identifying the transportation device 1 on which the pallet P is loaded and information on the articles loaded on the pallet P are stored in association with the pallet identification information. Has been done. The information on the goods may be the container identification information of the small container C or other distribution member loaded on the pallet P. The information on the goods may include information on the transportation number, information for identifying the shipper and the consignee, and information on the weight of the pallet P including the goods.
 物流DB410には、輸送機器情報414として、輸送機器1を識別する機器識別情報に対応付けて、輸送機器1の位置情報(緯度経度)、出発地、目的地、及び経由地点を時間と共に含む運行情報、並びに積載中のパレットPのパレット識別情報が記憶されている。 The distribution DB 410 includes the transportation device information 414, which is associated with the device identification information that identifies the transportation device 1, and includes the position information (latitude and longitude) of the transportation device 1, the departure point, the destination, and the waypoint with time. Information and pallet identification information of the loaded pallet P are stored.
 このように構成される輸送経路決定装置4は、輸送機器1の移動、物品の発送によって車載機10から得られる情報、拠点センター2、集配センター3から得られる物品の在所情報に基づき物流DB410を逐次、更新する。輸送経路決定装置4は、物流DB410の更新と共に、輸送機器1の輸送機器1及びパレットPの移動経路を決定し、これに基づいて輸送機器1、拠点センター2、集配センター3における輸送、搬入及び搬出をコントロールする。 The transportation route determination device 4 configured in this way is the distribution DB 410 based on the information obtained from the in-vehicle device 10 by moving the transportation device 1, the shipping of the goods, and the location information of the goods obtained from the base center 2 and the collection / delivery center 3. Is updated sequentially. The transportation route determination device 4 determines the movement routes of the transportation equipment 1 and the pallet P of the transportation equipment 1 together with the update of the distribution DB 410, and based on this, transports, carries in, and transports the transportation equipment 1, the base center 2, and the collection and delivery center 3. Control carry-out.
 以下の説明においてパレットPは、集配センター3にて、最終的な目的地を共通とし、且つ、同時間帯に到着すべきである1又はできるだけ同一の種類でまとめた複数の物品を積載しているものとする。以下の説明では、パレットは物品を収容する他の物流部材又は物品そのものや複数の物品をまとめた物品群であってもよい。 In the following description, the pallet P is loaded with one or a plurality of articles of the same type that should arrive at the same time zone at the collection and delivery center 3 with the same final destination. It is assumed that there is. In the following description, the pallet may be another physical distribution member for accommodating the article, the article itself, or a group of articles in which a plurality of articles are put together.
 図5及び図6は、輸送経路決定装置4によって実行される輸送経路決定処理手順の一例を示すフローチャートである。 5 and 6 are flowcharts showing an example of a transportation route determination processing procedure executed by the transportation route determination device 4.
 輸送経路決定装置4は、発送予定のパレットPの目的地、希望到着時刻等を含むパレット情報を、そのパレットPが集配される集配センター3が所属している地域毎に分別する(S101)。 The transportation route determination device 4 sorts pallet information including the destination of the pallet P to be shipped, the desired arrival time, etc. for each area to which the collection / delivery center 3 to which the pallet P is collected / delivered belongs (S101).
 処理部40は、1つの地域を選択する(S102)。S102の処理では、拠点センター2を選択してもよい。 The processing unit 40 selects one area (S102). In the process of S102, the base center 2 may be selected.
 処理部40は、S101の処理で分別したパレットP毎のパレット情報に基づき、S102の処理で選択した拠点センター2から発送される複数のパレットPの個数、各パレットPの目的地である集配センター3、又は、拠点センター2、各パレットの到着希望時刻を、各パレットPのパレット識別情報に対応付けて取得する(S103)。S103の処理は「取得部」に対応する。 The processing unit 40 is based on the pallet information for each pallet P sorted in the processing of S101, the number of a plurality of pallets P shipped from the base center 2 selected in the processing of S102, and the collection / delivery center which is the destination of each pallet P. 3 or the base center 2, the desired arrival time of each pallet is acquired in association with the pallet identification information of each pallet P (S103). The processing of S103 corresponds to the "acquisition unit".
 処理部40は、S103の処理で取得したパレットPの情報を用いて輸送機器1の輸送経路を導出するための演算を実行する(S104)。S104の処理における輸送機器1の輸送経路の導出については詳細を後述する。S104の処理は、「導出部」に対応する。 The processing unit 40 executes an operation for deriving the transportation route of the transportation device 1 using the information of the pallet P acquired in the processing of S103 (S104). Details of the derivation of the transport route of the transport device 1 in the processing of S104 will be described later. The process of S104 corresponds to the "deriving unit".
 処理部40は、選択している拠点センター2に対し、S104の演算結果である必要な輸送機器1の台数、および収容部の数に基づいて、必要とされた台数の輸送機器それぞれが輸送すべきパレットPの種類、個数、パレット収容部の数を取得し、記憶する(S105)。S105の処理は「記憶部」に対応する。 The processing unit 40 transports the required number of transport devices to the selected base center 2 based on the required number of transport devices 1 and the number of accommodating sections, which are the calculation results of S104. The type, number, and number of pallet accommodating portions of the power pallets P are acquired and stored (S105). The process of S105 corresponds to the "storage unit".
 処理部40は、取得したパレットPの種類、個数、必要なパレット収容部の数から、選択した拠点センター2に存在する、又は、到着予定の輸送機器1を特定する(S106)。 The processing unit 40 identifies the transportation equipment 1 existing in or scheduled to arrive at the selected base center 2 from the acquired type and number of pallets P and the required number of pallet accommodating units (S106).
 処理部40は、S106の処理で特定した輸送機器1の荷台のパレット収容部に、パレット識別情報を仮に割り当て、割り当てを記憶する(S107)。 The processing unit 40 tentatively assigns the pallet identification information to the pallet accommodating unit of the loading platform of the transportation device 1 specified in the processing of S106, and stores the allocation (S107).
 処理部40は、全ての地域についてS103-S107の処理を実行したか否かを判断する(S108)。 The processing unit 40 determines whether or not the processing of S103-S107 has been executed for all areas (S108).
 S108の処理ですべての地域について処理を実行していないと判断された場合(S108:NO)、処理部40は処理をS102へ戻す。 When it is determined in the processing of S108 that the processing is not executed for all areas (S108: NO), the processing unit 40 returns the processing to S102.
 S108の処理ですべての地域について処理を実行したと判断した場合(S108:YES)、処理部40は、輸送機器1毎に、地域毎の最適な輸送経路を選択して全体の輸送経路を決定する(S109)。処理部40は、決定した輸送経路を記憶部41に記憶しておく(S110)。S109の処理において処理部40は、以前に導出してある経路については記憶部41から読み出すとよい。S109の処理は、「決定部」に対応する。 When it is determined that the processing has been executed for all areas in the processing of S108 (S108: YES), the processing unit 40 selects the optimum transportation route for each area for each transportation device 1 and determines the entire transportation route. (S109). The processing unit 40 stores the determined transportation route in the storage unit 41 (S110). In the process of S109, the processing unit 40 may read the previously derived route from the storage unit 41. The process of S109 corresponds to the "decision unit".
 処理部40は、パレットP毎のパレットPの移動経路、即ち、目的地までに乗り継ぐべき輸送機器1のパレット収容部を決定する(S111)。 The processing unit 40 determines the movement route of the pallet P for each pallet P, that is, the pallet accommodating unit of the transportation device 1 to be transferred to the destination (S111).
 処理部40は、各パレットPの移動経路に基づき、輸送機器1毎に、経由地点である拠点センター2で搬出すべきパレットPのパレット識別情報と、そのパレットPが収容されている収容部の収容部識別情報とをリスト化する(S112)。 The processing unit 40 is based on the movement route of each pallet P, for each transportation device 1, the pallet identification information of the pallet P to be carried out at the base center 2 which is a transit point, and the storage unit in which the pallet P is housed. The storage unit identification information is listed (S112).
 処理部40は、各パレットPの移動経路に基づき、輸送機器1毎に、経由地点である拠点センター2で搬入すべきパレットPのパレット識別情報と、そのパレットPが収容されるべきパレット収容部の収容部識別情報をリスト化する(S113)。 Based on the movement route of each pallet P, the processing unit 40 has pallet identification information of the pallet P to be carried in at the base center 2 which is a transit point for each transportation device 1, and a pallet accommodating unit in which the pallet P is to be accommodated. The accommodation unit identification information of the above is listed (S113).
 処理部40は、決定した輸送機器1の輸送経路、パレットPの移動経路、各拠点センター2で搬出・搬入すべきパレットPのリストを出力する(S114)。処理部40は、出力内容に基づいて、車載機10、拠点コントローラ20、集配地装置30、及びパレットコントローラ23へ指示を送信し(S115)、処理を終了する。 The processing unit 40 outputs a list of the determined transportation route of the transportation equipment 1, the movement route of the pallet P, and the pallet P to be carried in / out at each base center 2 (S114). The processing unit 40 transmits an instruction to the on-board unit 10, the base controller 20, the collection / delivery site device 30, and the pallet controller 23 based on the output content (S115), and ends the processing.
 図7は、輸送経路の演算処理の一例を示すフローチャートである。図7のフローチャートに示す処理手順は、図5及び図6のフローチャートに示した処理手順のうち、S104の処理の詳細に対応する。 FIG. 7 is a flowchart showing an example of the calculation process of the transportation route. The processing procedure shown in the flowchart of FIG. 7 corresponds to the details of the processing of S104 among the processing procedures shown in the flowcharts of FIGS. 5 and 6.
 処理部40は、選択中の拠点センター2から発送予定のパレットPについて、最終的な目的地までの大まかな経路を、パレットPの移動経路として仮決定する(S401)。S401の処理において処理部40は、最終的な目的地である集配センター3又は拠点センター2と、パレットPの到着希望時刻に基づいて決定するとよい。 The processing unit 40 tentatively determines a rough route from the selected base center 2 to the final destination of the pallet P to be shipped as the movement route of the pallet P (S401). In the processing of S401, the processing unit 40 may determine based on the final destination, the collection / delivery center 3 or the base center 2, and the desired arrival time of the pallet P.
 S401の処理におけるおおまかな経路とは、各パレットPの出発地点の拠点センター2から最終的な目的地までの経路に基づく、各地域の境界に対応する拠点センター2及び最終的な集配センター3を含む。図8は、S401の処理における大まかな経路の説明図である。図8は、出発地の拠点センター2から、最終的な目的地の集配センター3までの間に跨る複数の地域毎の経由点を示す。図8の例では、拠点センター2はネット状に接続されている。1つのパレットPは、長野県の拠点センター2を出発し、滋賀県内の集配センター3を目的地とする。この場合、処理部40は、長野県の拠点センター2から、岐阜県の拠点センター2までの幹線を通る部分経路、岐阜県の拠点センター2から愛知県の拠点センター2までの幹線を通る部分経路、愛知県の拠点センター2から滋賀県の拠点センター2までの幹線を通る部分経路、滋賀県の拠点センター2から滋賀県内の最終目的地である集配センター3までの地域内の部分経路、と太線で示す大まかな経路を仮に選択して決定する。 The rough route in the processing of S401 is the base center 2 corresponding to the boundary of each region and the final collection / delivery center 3 based on the route from the base center 2 of the starting point of each pallet P to the final destination. Including. FIG. 8 is an explanatory diagram of a rough route in the process of S401. FIG. 8 shows transit points for each of a plurality of regions straddling from the base center 2 at the departure point to the collection / delivery center 3 at the final destination. In the example of FIG. 8, the base center 2 is connected in a net shape. One pallet P departs from the base center 2 in Nagano prefecture and ends at the collection and delivery center 3 in Shiga prefecture. In this case, the processing unit 40 has a partial route that passes through the main line from the base center 2 in Nagano prefecture to the base center 2 in Gifu prefecture, and a partial route that passes through the main line from the base center 2 in Gifu prefecture to the base center 2 in Aichi prefecture. , A partial route through the main line from the base center 2 in Aichi prefecture to the base center 2 in Shiga prefecture, a partial route in the area from the base center 2 in Shiga prefecture to the final destination in Shiga prefecture, the collection and delivery center 3, and the thick line. Temporarily select and determine the rough route shown in.
 処理部40は、S401を、選択中の地域の拠点センター2を出発地とし、輸送機器への割り当てが未決定のパレットP全てについて実行する。これにより、各パレットPについての各拠点センター2に対応する地域(所定範囲)での入口(出発地)及び出口(目的地)が定まる。所定範囲は、例えば、拠点センター2を結ぶ幹線を走行する場合の、輸送機器1の運転者の連続運転時間の制限に対応する距離という条件で設定されてもよい。 The processing unit 40 executes S401 from the base center 2 in the selected area as the starting point for all the pallets P whose allocation to the transportation equipment is undecided. As a result, the entrance (departure point) and exit (destination) in the area (predetermined range) corresponding to each base center 2 for each pallet P are determined. The predetermined range may be set on the condition that, for example, the distance corresponds to the limitation of the continuous operation time of the driver of the transportation device 1 when traveling on the main line connecting the base center 2.
 処理部40は、各パレットPに対して仮決定した大まかな経路に含まれ、選択中の拠点センター2の地域内での経由地点(入口)、及び地域内での目的地(出口)を設定する(S402)。S402の処理においては、地域内での目的地への到着予定時刻を条件として設定してもよい。なお、S402の処理において地域の大きさは、系の大きさで計算量が大きいほど膨大になるので、適宜設計されるとよい。 The processing unit 40 is included in the roughly determined route for each pallet P, and sets a waypoint (entrance) within the area of the selected base center 2 and a destination (exit) within the area. (S402). In the processing of S402, the estimated time of arrival at the destination in the area may be set as a condition. In the processing of S402, the size of the area becomes enormous as the amount of calculation increases in terms of the size of the system, so it is preferable to design it appropriately.
 S401及びS402の処理により、選択中の拠点センター2を含む各拠点センター2に対応する地域内で、入口(地域内の出発地)に同一の時間帯に存在するパレットPの数、地域内での目的地(ミクロな目的地)夫々へ輸送されるべきパレットPの数が決定される。例えば、選択中の拠点センター2が滋賀県の拠点センター2である場合、入口となるH市にパレットPが100個集まり、この100個のパレットPを、地域内の複数の集積センター3にそれぞれ、50個、30個、10個輸送すべきであるという条件が決定される。 By the processing of S401 and S402, the number of pallets P existing at the entrance (departure point in the area) in the same time zone in the area corresponding to each base center 2 including the selected base center 2, within the area. The number of pallets P to be transported to each destination (micro destination) is determined. For example, if the selected base center 2 is the base center 2 in Shiga prefecture, 100 pallets P are gathered in H city, which is the entrance, and these 100 pallets P are distributed to a plurality of accumulation centers 3 in the area. , 50 pieces, 30 pieces, 10 pieces should be transported.
 処理部40は、処理部40は、選択中の拠点センター2(地域内での出発地)から出発予定のパレットPの個数、各パレットPの地域内での目的地(その地域内での目的地への必着時刻)を条件にして、これらを輸送する輸送機器1を1又は複数のエージェントに設定し、エージェントの空き収容部数を設定してエージェントベースモデリングに基づいた経路計算を実行する(S403)。なおS403の経路計算は予め地域毎に輸送経路を導出して記憶部41に記憶してある輸送経路から条件に見合う最適な経路を選択することであってもよい。経路計算は、類似する条件に対して導出してある輸送経路を部分経路として、又は一から、後述のシミュレーション工程によって実行されてもよい。 The processing unit 40 is the number of pallets P scheduled to depart from the selected base center 2 (departure point in the area), and the destination in the area of each pallet P (purpose in the area). On the condition of the arrival time to the ground), the transportation equipment 1 for transporting these is set to one or a plurality of agents, the number of vacant accommodations of the agents is set, and the route calculation based on the agent-based modeling is executed (S403). ). The route calculation of S403 may be to derive a transportation route for each region in advance and select an optimum route that meets the conditions from the transportation routes stored in the storage unit 41. The route calculation may be performed by using the transportation route derived for similar conditions as a partial route or from the beginning by a simulation step described later.
 処理部40は、S403の処理にて導出された最適解をもとに、必要な輸送機器1の台数、各輸送機器で必要な収容部の数(収容すべきパレットPの数)、収容すべきパレットPの種類、各輸送機器の、選択中の拠点センター2を中心とする地域における部分的な輸送経路を出力し(S404)、処理を図5のフローチャートのS105へ戻す。 Based on the optimum solution derived in the processing of S403, the processing unit 40 accommodates the required number of transport devices 1, the number of accommodating units required for each transport device (the number of pallets P to be accommodated), and the number of accommodating units. The type of the power pallet P and the partial transportation route of each transportation device in the area centered on the selected base center 2 are output (S404), and the processing is returned to S105 in the flowchart of FIG.
 S403の経路計算を実行する処理部40は、1又は複数のエージェントが、ある拠点センター2又は集積センター3に存在する状態から、次の拠点センター2又は集積センター3を選択して移動した状態へと1ステップずつ遷移するシミュレーションを実行する。図9及び図10は、経路計算の処理手順の一例を示すフローチャートである。 The processing unit 40 that executes the route calculation of S403 shifts from a state in which one or a plurality of agents exist in a certain base center 2 or an accumulation center 3 to a state in which the next base center 2 or the accumulation center 3 is selected and moved. And execute a simulation that transitions step by step. 9 and 10 are flowcharts showing an example of the route calculation processing procedure.
 処理部40は、選択中の拠点センター2を含む地域内での隣接する拠点センター2又は集積センター3をノード、ノード間の経路をエッジとする地域内の輸送ネットワークを定義する(S301)。S301の処理において処理部40は、予め定義してあるネットワークを読み出してもよい。S301の処理において処理部40は、各ノード間のエッジは、距離の要素を持たなくてよい。 The processing unit 40 defines a transportation network in the area where the adjacent base center 2 or the accumulation center 3 in the area including the selected base center 2 is a node and the route between the nodes is an edge (S301). In the process of S301, the processing unit 40 may read out the network defined in advance. In the processing of S301, the processing unit 40 does not have to have a distance element at the edge between each node.
 処理部40は、輸送機器1の数を初期値に設定する(S302)。処理部40は、設定された数の輸送機器1をエージェントとして扱い、以下の処理を実行する。 The processing unit 40 sets the number of transportation devices 1 to the initial value (S302). The processing unit 40 treats the set number of transportation devices 1 as agents and executes the following processing.
 処理部40は、エージェントの存在位置、パレットPのノードへの配置、ステップ数を初期状態に設定する(S303)。S303の処理において処理部40は、エージェントを出発地のノードに対応付ける。S303の処理において処理部40は、出発地(拠点センター2)に存在するパレットPの数と、集配センター3に対応するノード1に必要なパレットPの数を設定する。S303の処理において処理部40は、パレットPの補給地(集配地点の1つ)を設定してもよい。 The processing unit 40 sets the existing position of the agent, the arrangement of the palette P on the node, and the number of steps in the initial state (S303). In the process of S303, the processing unit 40 associates the agent with the node of the departure point. In the processing of S303, the processing unit 40 sets the number of pallets P existing at the departure point (base center 2) and the number of pallets P required for the node 1 corresponding to the collection / delivery center 3. In the processing of S303, the processing unit 40 may set a supply point (one of the collection and delivery points) of the pallet P.
 処理部40は、以下のような処理を繰り返し実行し、出発地に存在するパレットPが、地域内での目的地までに分配が完了するまでの最小ステップ数、最小ステップ数となったケースにおける経路を求める。 In the case where the processing unit 40 repeatedly executes the following processing and the pallet P existing at the starting point becomes the minimum number of steps and the minimum number of steps until the distribution to the destination in the area is completed. Find the route.
 処理部40は、エージェントに対応付けられたパレットP(積載されたパレットP)の数を取得する(S304)。処理部40は、エージェントが位置するノードに存在するパレットPの数を取得する(S305)。処理部40は、エージェントが位置するノードで積み上げるパレットPの数を決定し、記憶する(S306)。 The processing unit 40 acquires the number of pallets P (loaded pallets P) associated with the agent (S304). The processing unit 40 acquires the number of palettes P existing in the node where the agent is located (S305). The processing unit 40 determines and stores the number of pallets P to be stacked at the node where the agent is located (S306).
 S306の処理において処理部40は、エージェントが存在するノードが出発地であれば、エージェントである輸送機器1の空いている収容部を埋めるように、出発地に存在するパレットPを荷積みするように決定する。エージェントが存在するノードが経由地又は目的地であれば、処理部40は、収容部に収容しているパレットPの数と、ノードに必要なパレットPの数とを比較し、ノードに必要なパレットPの残数を減らすように、積み降ろすパレットPの数を決定する。 In the processing of S306, if the node in which the agent exists is the departure point, the processing unit 40 loads the pallet P existing in the departure place so as to fill the vacant storage part of the transportation device 1 which is the agent. To decide. If the node in which the agent exists is a waypoint or a destination, the processing unit 40 compares the number of pallets P accommodated in the accommodating unit with the number of pallets P required for the node, and is required for the node. The number of pallets P to be loaded and unloaded is determined so as to reduce the remaining number of pallets P.
 処理部40は、次に進むべき隣接ノードへのエッジを確率的に選択する(S307)。 The processing unit 40 probabilistically selects the edge to the adjacent node to proceed (S307).
 S307の処理において処理部40は、基本的に乱数によって確率的に選択する(解A)。後述するように、次に進むべきノードに対する重みに基づく確率で選択してもよいし、エージェントに対応づけられているパレット数(積載数)がゼロになった場合には出発地(又は補給地)へ戻る、という条件付きで選択するようにしてもよい(解B)。処理部40は、1つステップが進む都度に、積載効率等の報酬を与える強化学習により、ノードを選択する重み係数を学習してもよい(解C)。この場合処理部40は、より早く最適解にたどり着く可能性が高まる。処理部40は、その他、何突然変異のように、パラメータ(例えば確率)を1つ大きく変えてもよい(解D)。これにより、局所解に陥る可能性が低下する。 In the processing of S307, the processing unit 40 basically stochastically selects by a random number (solution A). As will be described later, it may be selected with a probability based on the weight for the node to proceed to the next, or when the number of pallets (loading number) associated with the agent becomes zero, the starting point (or supply point). ) May be conditionally selected (Solution B). The processing unit 40 may learn the weighting coefficient for selecting a node by reinforcement learning that gives a reward such as loading efficiency each time one step is advanced (solution C). In this case, the processing unit 40 is more likely to reach the optimum solution sooner. The processing unit 40 may change the parameter (for example, probability) by one significantly like any other mutation (solution D). This reduces the likelihood of falling into a local solution.
 処理部40は、選択したエッジを経由して移動した先のノードに存在するパレットPの数を算出する(S308)。S308の処理において処理部40は、エージェントの移動前にそのノードに存在していたパレットPの数と、エージェントに対応付けられていた数との合計を算出する。 The processing unit 40 calculates the number of palettes P existing in the destination node moved via the selected edge (S308). In the processing of S308, the processing unit 40 calculates the total of the number of pallets P existing in the node before the movement of the agent and the number associated with the agent.
 処理部40は、エージェントの状態が遷移するステップ数を加算して記憶し(S309)、エージェントの移動先のノードの識別データ、各ノードにおけるパレットPの数を記憶する(S310)。S310の処理において処理部40は、識別データ及び各ノードのパレット数をステップ数に対応付けて記憶してもよい。 The processing unit 40 adds and stores the number of steps in which the agent state changes (S309), stores the identification data of the node to which the agent moves, and stores the number of palettes P in each node (S310). In the processing of S310, the processing unit 40 may store the identification data and the number of pallets of each node in association with the number of steps.
 処理部40は、各ノードにおけるパレットPの数に基づき、輸送ネットワーク内での配送が完了したか否かを判断する(S311)。 The processing unit 40 determines whether or not the delivery within the transportation network is completed based on the number of pallets P in each node (S311).
 配送が完了していないと判断された場合(S311:NO)、処理部40は、処理をS304へ戻す。 If it is determined that the delivery has not been completed (S311: NO), the processing unit 40 returns the processing to S304.
 配送が完了したと判断された場合(S311:YES)、処理部40は、エージェントが経由したノードの識別データの履歴(輸送経路)及びステップ数を記憶する(S312)。 When it is determined that the delivery is completed (S311: YES), the processing unit 40 stores the history (transport route) and the number of steps of the node identification data that the agent has passed through (S312).
 S303の処理で設定した初期状態から、S311の処理でYESと判断されて輸送が完了するまでがシミュレーション工程に対応する。 The simulation process corresponds to the period from the initial state set in the process of S303 to the time when the process of S311 determines YES and the transportation is completed.
 処理部40は、S304-S312の処理を所定回数以上実行したか否か判断する(S313)。S313の判断処理は、シミュレーション工程が所定の範囲内で繰り返されるか否かに対応する。S313の判断処理では、S304-S312の処理を所定の計算時間の上限に達したか否かで判断してもよい。処理部40は、所定回数未満であると判断された場合(S313:NO)、S303へ処理を戻す。S313の処理は、所定回数ではなく、最適解が得られたと判断されたか否かであってもよい。 The processing unit 40 determines whether or not the processing of S304-S312 has been executed a predetermined number of times or more (S313). The determination process of S313 corresponds to whether or not the simulation process is repeated within a predetermined range. In the determination process of S313, it may be determined whether or not the process of S304-S312 has reached the upper limit of the predetermined calculation time. When it is determined that the number of times is less than the predetermined number (S313: NO), the processing unit 40 returns the processing to S303. The processing of S313 may be whether or not it is determined that the optimum solution has been obtained, not a predetermined number of times.
 所定回数以上実行したと判断された場合(S313:YES)、処理部40は、S301で定義した輸送ネットワークに対して、輸送機器1の数の変更は全て完了したか否かを判断する(S314)。輸送機器1の数の変更は完了していないと判断された場合(S314:NO)、処理部40は、エージェント(輸送機器1)の数を変更し(S315)、処理をS303へ戻す。S315にて処理部40は、エージェントの数を1つずつ増加させる。S315にて処理部40は、エージェントの数を増減させると共に、エージェントの初期位置を変更してもよい。 When it is determined that the execution has been performed a predetermined number of times or more (S313: YES), the processing unit 40 determines whether or not all the changes in the number of the transportation devices 1 have been completed for the transportation network defined in S301 (S314). ). When it is determined that the change in the number of the transport devices 1 is not completed (S314: NO), the processing unit 40 changes the number of agents (transport devices 1) (S315) and returns the process to S303. In S315, the processing unit 40 increases the number of agents by one. In S315, the processing unit 40 may increase or decrease the number of agents and change the initial position of the agents.
 S301で定義した輸送のネットワークに対し、輸送機器1の数の変更についても完了したと判断された場合(S314:YES)、処理部40は、所定回数の中での最小のステップ数の輸送経路を抽出する(S316)。処理部40は、抽出した輸送経路を最適解として記憶し(S317)、経路計算処理を終了する。S316及びS317の処理は、所定の評価量(ここでは所要ステップ数)に基づいて輸送経路を決定する工程に対応する。S316の処理において処理部40は、最小のステップ数の輸送経路と共に、最小のステップ数の輸送経路が算出された際のエージェント数(輸送機器1)の数を、最適な数として決定してもよい。 When it is determined that the change in the number of the transportation devices 1 has been completed for the transportation network defined in S301 (S314: YES), the processing unit 40 has the transportation route with the minimum number of steps in the predetermined number of times. Is extracted (S316). The processing unit 40 stores the extracted transportation route as an optimum solution (S317), and ends the route calculation process. The processing of S316 and S317 corresponds to the step of determining the transportation route based on a predetermined evaluation amount (here, the required number of steps). In the processing of S316, the processing unit 40 may determine the number of agents (transport equipment 1) when the minimum number of steps of the transportation route is calculated as well as the minimum number of transportation routes as the optimum number. Good.
 図9及び図10のフローチャートに示した処理により、定義されたネットワークにおいて輸送経路の全パターンが記憶される。同一のネットワークに対して全輸送経路のステップ数の平均値を算出することも可能になる。また、全輸送経路を記憶しておくことにより、同一の輸送ネットワークについては再度一から算出する必要はない。 By the processing shown in the flowcharts of FIGS. 9 and 10, all patterns of the transportation route are stored in the defined network. It is also possible to calculate the average value of the number of steps of all transportation routes for the same network. In addition, by storing all transportation routes, it is not necessary to calculate from scratch for the same transportation network.
 このように処理部40は、エージェントベースモデリングによって、拠点センター2を中心とした地域毎に定義されたネットワークでの最適解を導出する。処理部40は、図9及び図10のフローチャートにおいて、毎回S303-S313の処理を、S303で初期状態に戻してから実行するのではなく、過去の計算で得られた最小ステップ数の輸送経路周辺で探索してもよい。この場合処理部40は、最小ステップ数の輸送経路の内、途中のエージェントの位置及びパレットの配置の状態にし、S304-S312の処理を実行し、より最小のステップ数の輸送経路の計算を試みる(学習)。このとき処理部40は、突然変異のように、最小ステップ数の輸送経路ではなく、他の輸送経路の途中の状態からS304-S312の処理を実行し、局所解に陥っていないかを確認する処理を加えるとよい(突然変異)。 In this way, the processing unit 40 derives the optimum solution in the network defined for each region centering on the base center 2 by agent-based modeling. In the flowcharts of FIGS. 9 and 10, the processing unit 40 does not execute the processing of S303-S313 after returning to the initial state in S303 each time, but the periphery of the transportation route having the minimum number of steps obtained in the past calculation. You may search with. In this case, the processing unit 40 sets the position of the agent and the arrangement of the pallets in the middle of the transportation routes with the minimum number of steps, executes the processing of S304-S312, and attempts to calculate the transportation route with the minimum number of steps. (Learning). At this time, the processing unit 40 executes the processing of S304-S312 from a state in the middle of another transportation route instead of the transportation route having the minimum number of steps like mutation, and confirms whether or not the local solution has been reached. Treatment should be added (mutation).
 処理部40は、図9及び図10のフローチャートに示した処理手順のS301の処理で定義した輸送ネットワークが、過去の処理によって導出済みの輸送経路の輸送ネットワークと共通する場合、その導出済みの輸送経路を用いてもよい。この場合、S302-S312の処理をすべて繰り返すのではなく、すでに導出された最小ステップの輸送経路を読み出して一部を変更してS304-S312の処理を実行してもよい。また処理部40は、過去の導出済みの輸送経路との差分に相当する部分のみを、S303-S312に当てはめて導出してもよい。 When the transportation network defined in the processing of S301 of the processing procedure shown in the flowcharts of FIGS. 9 and 10 is common to the transportation network of the transportation route derived by the past processing, the processing unit 40 has the derived transportation. A route may be used. In this case, instead of repeating all the processes of S302-S312, the process of S304-S312 may be executed by reading out the transportation route of the minimum step already derived and changing a part of the transport route. Further, the processing unit 40 may derive only the portion corresponding to the difference from the previously derived transportation route by applying it to S303-S312.
 また処理部40は、図9及び図10のフローチャートに示した処理手順を、事前に多様な条件で実行しておいて記憶しておいて利用してもよい。具体的には、図7のフローチャートにおけるS403において、処理部40は、S401及びS402の処理によって求められた選択中の拠点センター2(地域内での出発地)から出発予定のパレットPの個数、各パレットPの地域内での目的地(その地域内での目的地への必着時刻)の条件と合致する条件に対して既に求められている最適な経路を選択するとよい。これにより、計算時間が大幅に短縮される。また差分のみについて上述したように図9及び図10のフローチャートの処理を実行して導出してもよい。条件同士が合致するか否かは、各条件をベクトルとして扱い、統計的距離又はユークリッド距離によって近い条件の最短経路を抽出してもよい。 Further, the processing unit 40 may execute the processing procedures shown in the flowcharts of FIGS. 9 and 10 in advance under various conditions, store them, and use them. Specifically, in S403 in the flowchart of FIG. 7, the processing unit 40 determines the number of pallets P scheduled to depart from the selected base center 2 (departure point in the area) determined by the processing of S401 and S402. It is preferable to select the optimum route already sought for the conditions that match the conditions of the destination (must arrive at the destination in the area) in the area of each pallet P. This greatly reduces the calculation time. Further, only the difference may be derived by executing the processing of the flowcharts of FIGS. 9 and 10 as described above. Whether or not the conditions match each other may be determined by treating each condition as a vector and extracting the shortest path of the condition closer to the statistical distance or the Euclidean distance.
 図11は、エージェントベースモデリングによる解の探索過程の模式図である。処理部40は基本的に、上述のS307の選択処理でランダムな探索を行なう場合、解Aは、空間内で均等な確率の中で得られる。条件を設定した場合、縮小された空間の中で解Bとして得られる。学習によって、最適解はグローバルな最小値である解Cに収束し得る。突然変異に対応するパラメータの変更によって、局地的な解Dから、グローバルな解を含む空間への補正が可能になる。 FIG. 11 is a schematic diagram of the solution search process by agent-based modeling. Basically, when the processing unit 40 performs a random search in the selection process of S307 described above, the solution A is obtained with an equal probability in space. When the condition is set, it is obtained as the solution B in the reduced space. By learning, the optimal solution can converge to the global minimum value, solution C. By changing the parameters corresponding to the mutation, it is possible to correct from the local solution D to the space containing the global solution.
 図9及び図10のフローチャートに示した処理手順では、S316にて処理部40は、最小ステップ数の輸送経路を、その条件(エージェント数)下で最適な輸送経路として選択した。しかしながら最適な輸送経路は、最小ステップ数に限らず、輸送完了までの所要時間、総移動距離(後述の変形例)、延べ移動回数、二酸化炭素の排出推定量、又は輸送に掛かるコストの試算に基づいて選択されてもよい。あるいはそれらの値に基づいて導出される1又は複数の演算値に基づいて最適か否かが評価されてもよい。 In the processing procedure shown in the flowcharts of FIGS. 9 and 10, in S316, the processing unit 40 selected the transportation route having the minimum number of steps as the optimum transportation route under the condition (number of agents). However, the optimum transportation route is not limited to the minimum number of steps, but is used to estimate the time required to complete transportation, the total travel distance (variation example described later), the total number of travels, the estimated amount of carbon dioxide emissions, or the cost of transportation. It may be selected based on. Alternatively, it may be evaluated whether or not it is optimal based on one or a plurality of calculated values derived based on those values.
 図12及び図13は、経路計算の処理手順の他の一例を示すフローチャートである。輸送経路決定装置4の処理部40は、経路計算の対象の輸送ネットワークを特定する(S501)。S501において輸送ネットワークは、輸送拠点及び集配地点(拠点センター2、集積センター3等)をノード、ノード間の経路をエッジとするネットワークとして定義される。 12 and 13 are flowcharts showing another example of the route calculation processing procedure. The processing unit 40 of the transportation route determination device 4 specifies the transportation network to be calculated for the route (S501). In S501, the transportation network is defined as a network in which a transportation base and a collection / delivery point (base center 2, accumulation center 3, etc.) are nodes, and a route between the nodes is an edge.
 処理部40は、物品及び輸送機器の情報を設定する(S502)。S502にて処理部40は、物品の情報として輸送すべき物品の物品名、数量、重量、輸送する際の梱包状態における占有体積・容積、分割可能な単位、荷主、又は荷姿の情報を設定する。物品の情報は、物品毎に、その物品が発送される集荷地点を識別する情報(名称、識別情報等)、輸送先の配荷地点を識別する情報、集荷地点の出発時刻、配荷地点の到着指定時刻(あるいは許容される到着時間帯)を設定する。 The processing unit 40 sets information on goods and transportation equipment (S502). In S502, the processing unit 40 sets information on the article name, quantity, weight of the article to be transported, the occupied volume / volume in the packed state at the time of transportation, the divisible unit, the shipper, or the packing style as the information of the article. To do. The information of the goods is the information for identifying the pick-up point (name, identification information, etc.) at which the goods are shipped, the information for identifying the delivery point of the transportation destination, the departure time of the pick-up point, and the delivery point of the goods. Set the designated arrival time (or the allowable arrival time zone).
 S502にて処理部40は、物品を輸送する輸送機器の情報として、トラック、貨物船等の機器の種類、台数、以下に実行するシミュレーションの初期状態における存在地点を設定する。処理部40は、輸送機器それぞれの収容部の容積、可載重量、収容位置の識別情報、の情報を設定する。輸送機器の情報には、通行できる経路、特定の経路を運行する場合の上限速度、燃料補給無しで走行できる航続距離、運転者の連続運転時間の制限に対応する距離という条件で設定されてもよい。 In S502, the processing unit 40 sets the type and number of equipment such as trucks and cargo ships, and the existing location in the initial state of the simulation to be executed below, as information on the transportation equipment for transporting the goods. The processing unit 40 sets information such as the volume of the accommodating unit, the loadable weight, and the identification information of the accommodating position of each of the transportation devices. Even if the information on the transportation equipment is set under the conditions of the route that can be passed, the maximum speed when operating a specific route, the cruising distance that can be traveled without refueling, and the distance that corresponds to the limit of the driver's continuous operation time. Good.
 設定される物品の情報は、実際に輸送する物品の輸送計画から取得できる情報であってもよい。同様に設定される輸送機器の情報は、実際の輸送機器の現状の情報から取得できる情報であってもよい。 The information of the goods to be set may be the information that can be obtained from the transportation plan of the goods to be actually transported. The information on the transportation equipment set in the same manner may be information that can be obtained from the current information on the actual transportation equipment.
 処理部40は、S501の処理で特定した輸送ネットワーク上の初期条件、配送完了条件、及び、算出処理の打ち切り条件を設定する(S503)。初期条件は、シミュレーション工程の初期状態における物品及び輸送機器1の位置を含む。配送完了条件は、物品がいつまでにどの地点(配荷地点)に存在すべきという情報を含む。算出処理の打ち切り条件は、経路計算の途上で、それ以上計算を続けたとしても最適な輸送経路の解が得られないとして計算を中断するための判断条件である。 The processing unit 40 sets the initial conditions on the transportation network specified in the processing of S501, the delivery completion condition, and the termination condition of the calculation processing (S503). The initial conditions include the positions of the article and the transportation equipment 1 in the initial state of the simulation process. The delivery completion condition includes information that the goods should be present at which point (delivery point) by when. The discontinuation condition of the calculation process is a judgment condition for interrupting the calculation because the optimum transportation route solution cannot be obtained even if the calculation is continued in the middle of the route calculation.
 処理部40は、輸送機器1が移動する次のノードを選択し、次のステップでの状態を算出する(S504)。S504の処理は、ある特定の輸送機器1が位置するノードに、輸送すべき物品が存在し、輸送機器1の収容部に空きがある場合には物品を荷積みし、続いて輸送ネットワーク上の次の移動地点のノードへのエッジを確率的に選択する処理を含む。選択処理の詳細は、後述の実施例で示す。エッジに距離情報が付加されている場合、1ステップでエッジを進む都度に、そのエッジに付加されている距離を加算すればよい。S504で処理部40は、輸送機器1が次のノードへ移動した際に、物品情報からそのノードが物品の配荷地点であり、その配荷地点に配送未完了の物品が存在する場合には荷降ろしをしたものとして次のステップでの状態を算出する。処理部40は、次のノードが配荷地点ではなくとも、荷物の積み換えが許可される条件によって積み換えが指定されている場合には荷降ろしをしたものとして状態を算出する。 The processing unit 40 selects the next node to which the transportation device 1 moves, and calculates the state in the next step (S504). In the processing of S504, if there is an article to be transported at the node where a specific transportation device 1 is located and there is a vacancy in the storage portion of the transportation device 1, the article is loaded, and then on the transportation network. Includes the process of probabilistically selecting the edge to the node of the next movement point. Details of the selection process will be shown in Examples described later. When the distance information is added to the edge, the distance added to the edge may be added each time the edge is advanced in one step. In S504, when the transportation device 1 moves to the next node, the node is the delivery point of the article from the article information, and if there is an undelivered article at the delivery point, the processing unit 40 The state in the next step is calculated assuming that the load has been unloaded. Even if the next node is not the distribution point, the processing unit 40 calculates the state as if the parcel was unloaded when the transshipment is specified by the condition that the transshipment of the parcel is permitted.
 処理部40は、S504の処理で1ステップ後の状態が、配送完了条件、又は打ち切り条件を満たすか否かを判断する(S505)。処理部40は、配送条件又は打ち切り条件のいずれかの条件を満たすと判断した場合(S505:YES)、配送を完了させたとして、又は、最適な経路を見出す可能性がないとして(打ち切り)、設定した初期条件でのS504の算出の繰り返しを終了させる。 The processing unit 40 determines whether or not the state after one step in the processing of S504 satisfies the delivery completion condition or the discontinuation condition (S505). When the processing unit 40 determines that either the delivery condition or the discontinuation condition is satisfied (S505: YES), the delivery is completed, or there is no possibility of finding the optimum route (discontinuation). The repetition of the calculation of S504 under the set initial conditions is completed.
 S505にて配送条件又は打ち切り条件のいずれも満たさないと判断された場合(S505:NO)、配送が完了するか、最適な経路を見出す可能性が無いと判断されるまで、S504の算出処理を繰り返す。 If it is determined in S505 that neither the delivery condition nor the censoring condition is satisfied (S505: NO), the calculation process of S504 is performed until it is determined that the delivery is completed or there is no possibility of finding the optimum route. repeat.
 S504の算出の繰り返しを終了した後、配送完了と判断されている場合(S506:YES)、全ての物品及び輸送機器1の移動の情報から所定の評価量を算出する(S507)。S507における評価量として、配送完了までの所要ステップ数(時間に相当)、輸送機器1の総移動距離、総移動回数、輸送機器1の二酸化炭素の推定排出量、輸送に掛かるコスト(原価等)を指標として使用してもよい。これらの指標を複数組み合わせから演算された値を評価量としてもよい。複数の評価量を算出し、いずれの評価量を選択して使用するかを決定してもよい。 After the repetition of the calculation of S504 is completed, if it is determined that the delivery is completed (S506: YES), the predetermined evaluation amount is calculated from the movement information of all the goods and the transportation equipment 1 (S507). The evaluation amount in S507 includes the number of steps required to complete delivery (corresponding to time), the total distance traveled by the transportation equipment 1, the total number of movements, the estimated carbon dioxide emissions of the transportation equipment 1, and the cost (cost, etc.) required for transportation. May be used as an index. A value calculated from a plurality of combinations of these indexes may be used as the evaluation amount. A plurality of evaluation quantities may be calculated, and which evaluation quantity may be selected and used may be determined.
 S504の算出処理の繰り返しを終了した後、配送完了と判断されておらず(S506:NO)、即ち、打ち切り条件を満たすと判断されている場合、処理部40は、処理をS507の処理を省略して処理を次のS508へ進める。 After the repetition of the calculation process of S504 is completed, if it is not determined that the delivery is completed (S506: NO), that is, if it is determined that the censoring condition is satisfied, the processing unit 40 omits the processing of S507. Then, the process proceeds to the next S508.
 以上のS502からS507までの処理により、対象の輸送ネットワークに対して一つの輸送経路及び評価量が算出される。処理部40は、それまでに経路計算に要したリソースが所定の範囲内であるか否かを判断する(S508)。所定の範囲内であると判断された場合(S508:YES)、処理部40は、処理をS503へ戻して同様の経路計算(S503-S507)を繰り返し、更に新たな輸送経路を算出する。所定の範囲内とは、例えば得られた輸送経路の数(計算回数)が予定の輸送経路数の上限値以内であることか、又は、シミュレーション工程及び評価量の算出工程の計算時間が所定の計算時間上限値以内であることである。 By the above processing from S502 to S507, one transportation route and evaluation amount are calculated for the target transportation network. The processing unit 40 determines whether or not the resources required for the route calculation up to that point are within a predetermined range (S508). When it is determined that the value is within the predetermined range (S508: YES), the processing unit 40 returns the processing to S503 and repeats the same route calculation (S503-S507) to further calculate a new transportation route. Within the predetermined range, for example, the number of obtained transportation routes (number of calculations) is within the upper limit of the planned number of transportation routes, or the calculation time of the simulation process and the evaluation amount calculation process is predetermined. It must be within the upper limit of the calculation time.
 所定の範囲内でないと判断された場合(S508:NO)、処理部40は、得られた輸送経路それぞれに対して算出された評価量を比較して最適な評価量の輸送機器1の輸送経路を選定する(S509)。 When it is determined that the value is not within the predetermined range (S508: NO), the processing unit 40 compares the evaluation amounts calculated for each of the obtained transportation routes, and compares the evaluation amount calculated for each of the obtained transportation routes, and the transportation route of the transportation device 1 having the optimum evaluation amount Is selected (S509).
 処理部40は、選定した輸送経路における物品(パレットP)の移動経路(どの輸送機器1に積載されたか)、輸送機器1それぞれの輸送経路を決定する(S510)。 The processing unit 40 determines the movement route of the article (pallet P) in the selected transportation route (which transportation equipment 1 was loaded on) and the transportation route of each transportation equipment 1 (S510).
 以上の処理により、ある特定の輸送機器1の条件での最適輸送経路が確定する。しかしながら輸送機器1の条件、特に輸送機器1の数が少ない場合、全ての物品の配送が設定された配送時間帯内までに完了しない場合が生じる。あるいは、配送が完了したとしても、評価量が望む範囲に入っていないという事態が生じる可能性がある。したがって、輸送機器1の条件を変更して上述のフローを繰り返すことが望ましい。そこで処理部40は、輸送機器1の数を増加させても評価量の改善(評価量の上昇)は少なかったか(上昇幅が所定値以内)否かを判断する(S511)。 By the above processing, the optimum transportation route under the conditions of a specific transportation device 1 is determined. However, if the conditions of the transportation equipment 1 are small, particularly if the number of the transportation equipment 1 is small, the delivery of all the goods may not be completed within the set delivery time zone. Alternatively, even if the delivery is completed, there is a possibility that the evaluation amount is not within the desired range. Therefore, it is desirable to change the conditions of the transportation device 1 and repeat the above flow. Therefore, the processing unit 40 determines whether or not the improvement in the evaluation amount (increase in the evaluation amount) is small (the amount of increase is within a predetermined value) even if the number of the transportation devices 1 is increased (S511).
 評価量の改善が少なくないと判断された場合(S511:NO)、処理部40は、輸送機器1の数を1加算し(S512)、処理をS502へ戻してS502-S511の処理を実行することが好ましい。 When it is determined that the improvement in the evaluation amount is not small (S511: NO), the processing unit 40 adds 1 to the number of the transportation devices 1 (S512), returns the processing to S502, and executes the processing of S502-S511. Is preferable.
 輸送機器1の条件を変更した上記フローを繰り返した場合、処理部40は、変更前と変更後の最適評価量が改善(評価値が上昇)される場合、変更後の輸送経路を最適な輸送経路として決定する。輸送機器1の条件を変更しても評価量が変化しない、あるいは悪化(評価値が下降)する場合、輸送機器1の条件の変更(S512)を行なわずに変更を打ち切る(S511:YES)。輸送機器1の数は1台ずつ増加されてもよいし、輸送機器1の条件が他の方法で変更されてもよい。例えば処理部40は、初期状態の輸送機器1の位置を変更してもよい。この場合処理部40は、所定の条件数について計算をした中で最も評価量が大きい輸送経路を選出し、それ以上の条件の変更を行なわないと決定してもよい。また、実際に輸送経路決定装置4を運営する事業者が保有する輸送機器1の台数が上限とされてもよい。対象の地域で運用(登録)されている輸送機器1の台数が上限とされてもよい。運行に関わる人員の上限値から設定する条件の上限が決定されてもよい。 When the above flow in which the conditions of the transportation device 1 are changed is repeated, the processing unit 40 performs the optimum transportation on the changed transportation route when the optimum evaluation amount before and after the change is improved (the evaluation value is increased). Determine as a route. If the evaluation amount does not change or deteriorates (evaluation value decreases) even if the conditions of the transportation device 1 are changed, the change is terminated without changing the conditions of the transportation device 1 (S512) (S511: YES). The number of transport devices 1 may be increased one by one, or the conditions of the transport devices 1 may be changed in other ways. For example, the processing unit 40 may change the position of the transportation device 1 in the initial state. In this case, the processing unit 40 may select the transportation route having the largest evaluation amount in the calculation for the predetermined number of conditions and decide not to change the conditions any more. Further, the number of transportation devices 1 owned by the business operator who actually operates the transportation route determination device 4 may be the upper limit. The number of transportation devices 1 operated (registered) in the target area may be the upper limit. The upper limit of the conditions to be set may be determined from the upper limit of the number of personnel involved in the operation.
 評価量の改善が少ないと判断された場合(S511:YES)、処理部40は、最終的な輸送機器1の輸送経路、物品(パレットP)の移動経路、及び、輸送機器1の台数を決定し(S513)、処理を終了する。 When it is determined that the improvement in the evaluation amount is small (S511: YES), the processing unit 40 determines the final transportation route of the transportation equipment 1, the movement route of the article (pallet P), and the number of the transportation equipment 1. (S513), and the process is terminated.
 図9及び図10(若しくは図12及び図13)のフローチャートに示した経路計算の処理手順について、具体例を挙げて実施例としてそれぞれ説明する。 The processing procedure of the route calculation shown in the flowcharts of FIGS. 9 and 10 (or FIGS. 12 and 13) will be described as examples with specific examples.
 [実施例1]
 実施例1では、上述のS307の選択処理において、次に進むべきノードを乱数で選択する。図14は、実施例1における最適解の導出過程の説明図である。図14は、対象の拠点センター2をH市の拠点センター2とし、近隣のY市、O市、K市の拠点センター2をノードとして定義された地域内の輸送ネットワークを示している。
[Example 1]
In the first embodiment, in the above-mentioned selection process of S307, the node to proceed to the next is selected by a random number. FIG. 14 is an explanatory diagram of the process of deriving the optimum solution in the first embodiment. FIG. 14 shows a transportation network in an area defined with the target base center 2 as the base center 2 in H city and the base centers 2 in neighboring Y city, O city, and K city as nodes.
 H市の拠点センター2から発送される複数のパレットPの個数は、図14に示すように例えば100個であるとし、配送先はH市に10個残し、O市に50個、K市に30個、Y市に10個であるとする。これらのパレットPの配送に使える空きパレット収容部が20個である輸送機器1が1台存在する場合、エージェントベースモデリングにより、各目的地に90個のパレットPを輸送するためには、完全にランダム移動を行なった場合には、エッジを最小で10回行き来することが必要であるとの解が得られる。また、乱数で選択する場合に、全ての配送を終えるまでに要するステップ数の平均は21.7ステップであった。 As shown in FIG. 14, the number of the plurality of pallets P shipped from the base center 2 in H city is, for example, 100, leaving 10 delivery destinations in H city, 50 in O city, and 50 in K city. It is assumed that there are 30 pieces and 10 pieces in Y city. If there is one transport device 1 with 20 empty pallet accommodating units that can be used to deliver these pallets P, agent-based modeling is perfect for transporting 90 pallets P to each destination. The solution is that when random movement is performed, it is necessary to move the edge back and forth at least 10 times. In addition, when selecting by random numbers, the average number of steps required to complete all deliveries was 21.7 steps.
 [実施例2]
 実施例2は、実施例1と同一のパレットPの配置の初期状態である。ただし実施例2では、上述のS307の選択処理において、次に進むべきノードを選択する際の条件として、最大20個である対象のパレット収容部が空になった場合には、何も積載せずにH市に戻ることを条件とする。図15は、実施例2における解の導出過程の説明図である。図15に示す例では、最初にエージェント1が出発地のH市に位置している場合に、O市、K市、Y市のいずれへ進むかは乱数で選択される。1ステップ完了後に輸送機器1がK市に位置している場合、20個輸送してきたパレットPはK市に全て積み降ろすから、空になる。条件があるので、次の選択の際に処理部40は、O市、H市、Y市の内、H市を必然的に選択する。
[Example 2]
Example 2 is an initial state of arranging the same pallet P as in Example 1. However, in the second embodiment, in the above-mentioned selection process of S307, as a condition for selecting the node to proceed to the next, when the target pallet accommodating portion, which is a maximum of 20, is emptied, nothing is loaded. The condition is to return to H city without returning. FIG. 15 is an explanatory diagram of a solution derivation process in the second embodiment. In the example shown in FIG. 15, when the agent 1 is first located in the starting point H city, which of O city, K city, and Y city to proceed is selected by a random number. If the transportation device 1 is located in K city after the completion of one step, all the pallets P that have transported 20 pallets are loaded and unloaded in K city, so that they are emptied. Since there are conditions, the processing unit 40 inevitably selects H city from O city, H city, and Y city at the time of the next selection.
 実施例2では、導出されたステップ数の平均は16.8ステップであった。図14に示した完全な乱数によって選択する場合と比較すると、条件の設定により、ステップ数は最適解の10ステップに近いものを算出することができており、より早く最適解へ到達できることが分かる。 In Example 2, the average number of derived steps was 16.8 steps. Compared with the case of selecting by the perfect random number shown in FIG. 14, it can be seen that the number of steps can be calculated to be close to 10 steps of the optimum solution by setting the conditions, and the optimum solution can be reached sooner. ..
 [実施例1]及び[実施例2]に示したように、地域内でエージェントベースモデリングによる最適解の導出は成功することが分かった。 As shown in [Example 1] and [Example 2], it was found that the derivation of the optimum solution by agent-based modeling was successful in the region.
 [実施例3]
 実施例3では、図9及び図10のフローチャートに示した処理手順が、パレットPが、異なる種類を乗せたものが更に60個、異なる拠点センター2に存在するという条件で実行される。実施例3では、S307の選択処理において、次に進むべきノードを乱数で選択する。
[Example 3]
In the third embodiment, the processing procedure shown in the flowcharts of FIGS. 9 and 10 is executed on the condition that 60 more pallets P carrying different types are present in different base centers 2. In the third embodiment, in the selection process of S307, the node to proceed to the next is selected by a random number.
 図16は、実施例3における解の導出過程の説明図である。図16の例では、図14に示した例と同一の輸送ネットワークに対し、H市の拠点センター2から、100個のパレットPが発送待ち状態であって、H市に10個残し、O市に50個、K市に30個、Y市に10個輸送することとする。更に、異なる種類の物品を乗せたパレットPが、K市に60個発送待ち状態であって、K市に20個残し、O市に30個、H市に5個、Y市に5個輸送するという前提条件である。 FIG. 16 is an explanatory diagram of the solution derivation process in the third embodiment. In the example of FIG. 16, for the same transportation network as the example shown in FIG. 14, 100 pallets P are waiting to be shipped from the base center 2 of H city, and 10 pallets P are left in H city, and O city is left. 50 pieces will be shipped to K city, 30 pieces to K city, and 10 pieces to Y city. Furthermore, 60 pallets P carrying different types of goods are waiting to be shipped to K city, leaving 20 in K city, 30 in O city, 5 in H city, and 5 in Y city. It is a prerequisite to do.
 図16に示す前提条件では、これらのパレットPの配送に使える空きパレット収容部が20個である輸送機器1が1台存在する場合、エージェントベースモデリングにより、各目的地に異なる種類の130個のパレットPを輸送するためには、完全にランダム移動を行なった場合、エッジを最小で15回行き来することが必要であるとの解が得られる。また、乱数で選択する場合に、全ての配送を終えるまでに要するステップ数の平均は31.8ステップであった。 Under the precondition shown in FIG. 16, when there is one transportation device 1 having 20 empty pallet accommodating units that can be used for delivery of these pallets P, agent-based modeling is performed to obtain 130 different types of 130 at each destination. It is understood that in order to transport the pallet P, it is necessary to go back and forth between the edges at least 15 times when the movement is completely random. In addition, when selecting by random numbers, the average number of steps required to complete all deliveries was 31.8 steps.
 [実施例4]
 実施例4の前提条件は、実施例3と同一のパレットPの配置の初期状態である。ただし実施例4では、上述のS307の選択処理において、次に進むべきノードを選択する際の条件として、最大20個である対象のパレット収容部が空になった場合には、何も積載せずにH市に戻ることを設定する。図17は、実施例4における解の導出過程の説明図である。図17に示す例では、最初にエージェント1が出発地のH市に位置している場合に、O市、K市、Y市のいずれへ進むかは乱数で選択される。1ステップ完了後に輸送機器1がK市に位置している場合、20個輸送してきたパレットPはK市に全て積み降ろすから、空になる。条件があるので、次の選択の際に処理部40は、O市、H市、Y市の内、H市を必然的に選択する。
[Example 4]
The precondition of the fourth embodiment is the initial state of the arrangement of the same pallet P as that of the third embodiment. However, in the fourth embodiment, in the above-mentioned selection process of S307, as a condition for selecting the node to proceed to the next, when the target pallet accommodating portion, which is a maximum of 20, is emptied, nothing is loaded. Set to return to H city without. FIG. 17 is an explanatory diagram of a solution derivation process in the fourth embodiment. In the example shown in FIG. 17, when the agent 1 is first located in the starting point H city, which of O city, K city, and Y city to proceed is selected by a random number. If the transportation device 1 is located in K city after the completion of one step, all the pallets P that have transported 20 pallets are loaded and unloaded in K city, so that they are emptied. Since there are conditions, the processing unit 40 inevitably selects H city from O city, H city, and Y city at the time of the next selection.
 実施例4では、導出されたステップ数の平均は28.8ステップであった。図16に示した完全な乱数によって選択する場合と比較すると、条件の設定により、ステップ数は最適解の15ステップに近いものを算出することができており、より早く最適解へ到達できることが分かる。 In Example 4, the average number of derived steps was 28.8 steps. Compared with the case of selecting by the perfect random number shown in FIG. 16, it can be seen that the number of steps can be calculated to be close to 15 steps of the optimum solution by setting the conditions, and the optimum solution can be reached sooner. ..
 図18A、図18B、図19A及び図19Bは、シミュレーションの結果を示すグラフである。図18Aのグラフは、図16に示した実施例3の条件において、目的地別のパレットPの輸送完了までのステップ数に応じた残量の推移の例を示す。図18Bのグラフは、図17に示した実施例4の条件において、目的地別のパレットPの輸送完了までのステップ数に応じた、残量の推移の例を示す。図19Aのグラフは、図16に示した実施例3の条件において、種類別に、パレットPの輸送完了までのステップ数に応じた残量の推移の例を示す。図19Bのグラフは、図17に示した条件において、種類別に、パレットPの輸送完了までのステップ数に応じた残量の推移の例を示す。図18A、図18B、図19A及び図19Bに示すように、最小15ステップによる輸送経路が導出される場合と、最大52ステップによる輸送経路が導出される場合がある。図18A、図18B、図19A及び図19Bに示すように、残量が減らずに輸送機器1がステップ数を消化するケースがあり得る。 18A, 18B, 19A and 19B are graphs showing the results of the simulation. The graph of FIG. 18A shows an example of the transition of the remaining amount according to the number of steps until the transportation of the pallet P for each destination is completed under the condition of the third embodiment shown in FIG. The graph of FIG. 18B shows an example of the transition of the remaining amount according to the number of steps until the transportation of the pallet P for each destination is completed under the condition of the fourth embodiment shown in FIG. The graph of FIG. 19A shows an example of the transition of the remaining amount according to the number of steps until the transportation of the pallet P is completed for each type under the condition of the third embodiment shown in FIG. The graph of FIG. 19B shows an example of the transition of the remaining amount according to the number of steps until the transportation of the pallet P is completed for each type under the conditions shown in FIG. As shown in FIGS. 18A, 18B, 19A and 19B, a transportation route with a minimum of 15 steps may be derived, and a transportation route with a maximum of 52 steps may be derived. As shown in FIGS. 18A, 18B, 19A and 19B, there may be a case where the transport device 1 consumes the number of steps without reducing the remaining amount.
 図20は、シミュレーションの結果を示す棒グラフである。図20のグラフは、図16又は図17に示した実施例3又は実施例4の条件において各ノード(市)に輸送機器1が立ち寄る回数を示している。最小ステップで輸送が完了した場合であっても、最大ステップで輸送が完了した場合であっても、集荷数が多いH市に輸送機器1が立ち寄る回数が最も多いことが分かる。 FIG. 20 is a bar graph showing the results of the simulation. The graph of FIG. 20 shows the number of times the transport device 1 stops at each node (city) under the conditions of Example 3 or Example 4 shown in FIG. 16 or FIG. It can be seen that the transportation equipment 1 stops most frequently in the city H, which has a large number of pickups, regardless of whether the transportation is completed in the minimum step or the maximum step.
 [実施例5]
 実施例5の前提条件は、実施例3と同一のパレットPの配置である。つまり、初期状態では、H市の拠点センター2に種類ZのパレットPが100個、K市の拠点センター2に種類WのパレットPが60個存在している。ただし、実施例5では、上述のS307の選択処理における次に進むべきノードの選択に、重み付けが付与されている。
[Example 5]
The precondition of the fifth embodiment is the same arrangement of the pallets P as that of the third embodiment. That is, in the initial state, 100 pallets P of type Z exist in the base center 2 of H city, and 60 pallets P of type W exist in the base center 2 of K city. However, in the fifth embodiment, weighting is given to the selection of the node to proceed to the next in the selection process of S307 described above.
 図21は、実施例5における解の導出過程の説明図である。図21の例は、輸送ネットワーク及びパレットPの配置状態は図16に示す実施例3の状態と同一である。 FIG. 21 is an explanatory diagram of the solution derivation process in the fifth embodiment. In the example of FIG. 21, the arrangement state of the transportation network and the pallet P is the same as the state of the third embodiment shown in FIG.
 図21の例では、H市からK市、O市、Y市を行き先として選択する場合、K市は0.2、O市は0.5、K市は0.3に選択され易さの重み付けが分配されている。同様にしてY市からH市及びK市を選択する場合には、H市とK市とでは0.5ずつの重み付けが付与されている。K市からY市、O市へも0.5ずつの重み付けが付与されており、K市からH市、及びO市からK市は選択されない。 In the example of FIG. 21, when K city, O city, and Y city are selected as destinations from H city, K city is selected as 0.2, O city is selected as 0.5, and K city is selected as 0.3. Weighting is distributed. Similarly, when H city and K city are selected from Y city, a weight of 0.5 is given to each of H city and K city. Weights of 0.5 are also given from K city to Y city and O city, and K city to H city and O city to K city are not selected.
 図21に示す前提条件及びS307の選択の方法では、空きパレット収容部が20個である輸送機器1を1台使用すると、エージェントベースモデリングにより、各目的地にパレットPを輸送するために必要なステップ数は、平均27.7回となった。なお、重み付けがされない、実施例3では、平均31.8ステップであった。 In the preconditions shown in FIG. 21 and the selection method of S307, when one transport device 1 having 20 empty pallet accommodating portions is used, it is necessary to transport the pallet P to each destination by agent-based modeling. The average number of steps was 27.7. In Example 3, which was not weighted, the average number of steps was 31.8.
 [実施例6]
 実施例6は、実施例4及び実施例5の条件を組み合わせたものである。実施例6の前提条件は、実施例3と同一のパレットPの配置である。つまり、初期状態では、H市の拠点センター2に種類ZのパレットPが100個、K市の拠点センター2に種類WのパレットPが60個存在している。
[Example 6]
Example 6 is a combination of the conditions of Example 4 and Example 5. The precondition of the sixth embodiment is the same arrangement of the pallets P as that of the third embodiment. That is, in the initial state, 100 pallets P of type Z exist in the base center 2 of H city, and 60 pallets P of type W exist in the base center 2 of K city.
 図22は、実施例6における解の導出過程の他の説明図である。実施例6では、上述のS307の処理における次に進むべきノードの選択に、重み付けが付与されており、且つ、最大20個である対象のパレット収容部が空になった場合には、何も積載せずにH市に戻ることを条件とする。 FIG. 22 is another explanatory diagram of the solution derivation process in the sixth embodiment. In the sixth embodiment, when the selection of the node to be proceeded in the above-mentioned processing of S307 is weighted and the maximum number of target pallet accommodating portions is emptied, nothing is done. The condition is to return to H city without loading.
 実施例6において、各目的地にパレットPを輸送するために必要なステップ数は、平均25.6ステップとなった。実施例6は、上述したように実施例3~実施例5と、S307の処理における選択時の条件が異なる。完全ランダムな確率でノードを選択する場合(実施例3)の平均ステップ数は31.8、空になった時の条件付きで(実施例4)で平均ステップ数は28.8、重み付けの付与(実施例5)で平均ステップ数は27.7、重み付け且つ空になった時の条件付き(実施例6)で平均ステップ数は25.6に減少することが分かった。 In Example 6, the average number of steps required to transport the pallet P to each destination was 25.6 steps. As described above, Example 6 differs from Examples 3 to 5 in terms of selection in the process of S307. When a node is selected with a completely random probability (Example 3), the average number of steps is 31.8, and when it becomes empty (Example 4), the average number of steps is 28.8, and weighting is given. It was found that the average number of steps was reduced to 27.7 in (Example 5), and the average number of steps was reduced to 25.6 under the condition of weighting and emptying (Example 6).
 [実施例7]
 実施例7は、エージェント(輸送機器1)を2台にした場合の例を示す。図23は、実施例7における解の導出過程の他の説明図である。図23の例では、図14と同一条件である上で、使用できる輸送機器1が2台である。つまり図23の実施例7では、初期状態でエージェント(輸送機器1)はH市に2台位置しており、地域内の出発地であるH市にパレットPが100個存在している。
[Example 7]
Example 7 shows an example in which two agents (transportation equipment 1) are used. FIG. 23 is another explanatory diagram of the solution derivation process in the seventh embodiment. In the example of FIG. 23, two transport devices 1 can be used under the same conditions as those of FIG. That is, in the seventh embodiment of FIG. 23, two agents (transportation equipment 1) are located in H city in the initial state, and 100 pallets P exist in H city, which is the starting point in the area.
 図23に示す条件において、これらのパレットPの配送に使える空きパレット収容部が20個である輸送機器1を2台使用すると、エージェントベースモデリングにより、各目的地にパレットPを輸送するためには、エッジを行き来するステップ数の平均は、13.6である解が得られる。図14のエージェント(輸送機器1)が1台である場合では、ステップ数の平均が21.7であったからステップ数の平均は低下しているが、半分以下とはなっていない。したがって、適切な条件が必要になる。 Under the conditions shown in FIG. 23, when two transport devices 1 having 20 empty pallet accommodating units that can be used for delivering these pallets P are used, in order to transport the pallets P to each destination by agent-based modeling. , The average number of steps back and forth between edges is 13.6. In the case where the number of agents (transportation device 1) in FIG. 14 is one, the average number of steps is 21.7, so the average number of steps is reduced, but it is not less than half. Therefore, appropriate conditions are required.
 図24A-図24Fは、実施例7のエージェントベースモデリングによって得られた輸送経路の模式図である。図24A-図24Fは、輸送の進行過程を示している。実施例7では、2エージェントでエージェントベースモデリングによるシミュレーションを行ない、平均で13.6回のステップ数の輸送経路が計算された。その内の1例として、図24A-図24Fに示すような2台の輸送機器1の輸送経路が得られた。 24A-24F are schematic views of the transport route obtained by agent-based modeling of Example 7. 24A-24F show the progress of transportation. In Example 7, a simulation by agent-based modeling was performed with two agents, and a transportation route with an average of 13.6 steps was calculated. As an example of this, a transportation route for two transportation devices 1 as shown in FIGS. 24A to 24F was obtained.
 具体的には、輸送機器1は、図24Aにおいて100個のパレットPが発送待ち状態であるH市から、1台の輸送機器1(図24A-図24F中のX)は図24Bの過程においてK市へ20個のパレットPを輸送し、図24Cの過程においてH市へ戻っている。この輸送機器1は、図24Dの過程においてO市へ20個のパレットPを輸送し、図24Eの過程で再度、H市へ戻っている。この輸送機器1は、図24Fの過程でO市へ20個のパレットPを輸送している。 Specifically, the transportation device 1 is from the city H where 100 pallets P are waiting to be shipped in FIG. 24A, and one transportation device 1 (X in FIGS. 24A to 24F) is in the process of FIG. 24B. Twenty pallets P were transported to K city and returned to H city in the process of FIG. 24C. This transport device 1 transports 20 pallets P to the city O in the process of FIG. 24D, and returns to the city H again in the process of FIG. 24E. This transport device 1 transports 20 pallets P to the city O in the process of FIG. 24F.
 もう1台の輸送機器1(図24A-図24F中のY)は、H市から20個のパレットPを荷台に収容して図24Bの過程においてY市へ10個、図24Cの過程においてK市へ10個、パレットPを輸送している。この輸送機器1は、図22Dの過程においてY市を経由して図24Eの過程でH市へ戻り、図24Fの過程でO市へ10個のパレットPを輸送している。 The other transport device 1 (Y in FIGS. 24A-24F) accommodates 20 pallets P from H city on the loading platform, 10 to Y city in the process of FIG. 24B, and K in the process of FIG. 24C. We are transporting 10 pallets P to the city. This transport device 1 returns to H city in the process of FIG. 24E via Y city in the process of FIG. 22D, and transports 10 pallets P to O city in the process of FIG. 24F.
 このようにして輸送経路決定装置4は、拠点センター2を含む地域内の輸送ネットワークにエージェントベースモデリングを適用し、乱数、重み、又は条件付きの確率的過程を含むステップごとの数理モデルに基づく演算によって、最小ステップ数の輸送経路を導出できる。そして輸送経路決定装置4は、地域内の輸送ネットワークにおける最適な輸送経路を部分選択し、最初の目的地から最終的な目的地までの最適経路を決定することができる。 In this way, the transport route determination device 4 applies agent-based modeling to the transport network in the area including the base center 2, and performs calculations based on a step-by-step mathematical model including random numbers, weights, or conditional stochastic processes. Can be used to derive the minimum number of steps. Then, the transportation route determination device 4 can partially select the optimum transportation route in the transportation network in the area and determine the optimum route from the first destination to the final destination.
 なお、図24A-図24Fに示す条件下において、2台の輸送機器1間でパレットPを経由地で受け渡すなどの連携についての演算が必要となる。 Under the conditions shown in FIGS. 24A to 24F, it is necessary to perform a calculation for cooperation such as passing the pallet P between the two transport devices 1 at a waypoint.
 (変形例)
 変形例においては、地域内の輸送ネットワークにおいて、ノード間の距離を考慮する。また、変形例では、エージェント及びパレットPの配置を初期状態から1ステップずつ確率的に移動させる処理を所定回数繰り返していく内に、これまでの最短のステップ数での輸送経路よりもよりよい経路を導出できそうにない状況になったタイミングで探索を終了させる。
(Modification example)
In the modified example, the distance between nodes is taken into consideration in the transportation network within the region. Further, in the modified example, the process of probabilistically moving the arrangement of the agent and the pallet P step by step from the initial state is repeated a predetermined number of times, and the route is better than the transportation route with the shortest number of steps so far. The search is terminated when the situation is such that it is unlikely that
 図25及び図26は、変形例における経路計算の処理手順の一例を示すフローチャートである。図25及び図26のフローチャートに示す処理手順の内、図9及び図10のフローチャートに示した手順と共通する手順については同一の符号を付して詳細な説明を省略する。 25 and 26 are flowcharts showing an example of the processing procedure of the route calculation in the modified example. Of the processing procedures shown in the flowcharts of FIGS. 25 and 26, the procedures common to the procedures shown in the flowcharts of FIGS. 9 and 10 are designated by the same reference numerals and detailed description thereof will be omitted.
 変形例では、処理部40は、選択中の拠点センター2を中心とした隣接する拠点センター2又は集積センターをノード、ノード間の経路をエッジとし、且つエッジに距離の情報を対応付けた地域内の距離付き輸送ネットワークを定義する(S321)。図27は、距離付きの輸送ネットワークの内容例を示す。図14同様に、H市、O市、Y市及びK市間を結ぶネットワークであるが、市間の距離、及び市間のつながり方が距離を考慮していないネットワークと異なる。また図27に示す輸送ネットワークでは、パレットPはH市に最初に集積されているのではなく、地域内の生産地から補給されることとしている。生産地は、地域内の輸送ネットワークにおいては、パレットPが初期状態で集積されている拠点センター2として扱う。 In the modified example, the processing unit 40 uses the adjacent base center 2 or the accumulation center centered on the selected base center 2 as nodes, the route between the nodes as an edge, and the distance information is associated with the edge in the area. Define a transportation network with distance (S321). FIG. 27 shows an example of the contents of a transportation network with a distance. Similar to FIG. 14, the network connects H city, O city, Y city and K city, but the distance between cities and the connection between cities are different from the network that does not consider the distance. Further, in the transportation network shown in FIG. 27, the pallets P are not first accumulated in H city, but are replenished from the production areas in the area. The production area is treated as the base center 2 where the pallets P are accumulated in the initial state in the transportation network in the area.
 図25及び図26のフローチャートに戻り説明を続ける。処理部40は、エージェントの移動先のノードで、ノードに存在するパレットPの数を算出すると(S308)、ステップ数の加算のみならず、移動したエッジに対応付けられている距離を、累積移動距離として加算して記憶する(S329)。 Returning to the flowcharts of FIGS. 25 and 26, the explanation will be continued. When the processing unit 40 calculates the number of palettes P existing in the node at the node to which the agent is moved (S308), not only the number of steps is added but also the distance associated with the moved edge is cumulatively moved. It is added and stored as a distance (S329).
 処理部40は、S311の処理にて輸送ネットワーク内の配送が完了したと判断した場合(S311:YES)、エージェントが経由したノードの識別データの履歴(輸送経路)、累積移動距離及びステップ数を記憶する(S332)。これにより、各回での配送完了までに要したステップ数、移動距離、及び輸送経路が記憶される。 When the processing unit 40 determines that the delivery within the transportation network is completed in the processing of S311 (S311: YES), the processing unit 40 determines the history (transportation route), the cumulative movement distance, and the number of steps of the node identification data that the agent has passed through. Remember (S332). As a result, the number of steps required to complete the delivery at each time, the moving distance, and the transportation route are stored.
 S311の処理にて輸送ネットワーク内の配送が完了していないと判断した場合(S311:NO)、処理部40は、輸送ネットワーク全体における配送の進捗率を算出する(S333)。S333にて処理部40は、パレットPの数全体に対し、地域内の目的地に到達したパレットPの数の割合を、進捗率として算出する。S333の処理において処理部40は進捗率として、未配送のパレットPの数の全体に対する割合等を進捗率として算出してもよい。 When it is determined in the processing of S311 that the delivery within the transportation network is not completed (S311: NO), the processing unit 40 calculates the delivery progress rate in the entire transportation network (S333). In S333, the processing unit 40 calculates the ratio of the number of pallets P that have reached the destination in the area to the total number of pallets P as the progress rate. In the processing of S333, the processing unit 40 may calculate the progress rate as the ratio of the number of undelivered pallets P to the whole as the progress rate.
 処理部40はS333の処理において、後述のS336の処理における計算中の経路が最短経路を導出する見込みがあるか否かを判断するタイミングを決定する基準を導出すればよい。したがって、進捗率に限られず、計算ステップ数であってもよいし、時間であってもよい。 In the processing of S333, the processing unit 40 may derive a standard for determining the timing for determining whether or not the route being calculated in the processing of S336 described later is likely to derive the shortest route. Therefore, it is not limited to the progress rate, and may be the number of calculation steps or the time.
 処理部40は、S333の処理で算出した進捗率が、条件を満たすか否かを判断する(S334)。S334の処理で処理部40は例えば、進捗率(%)が10の倍数であるか否かで判断する。その他、進捗率に代替されて計算ステップ数であれば、5の倍数であるか否か等で判断してもよいし、時間であれば経過時間が5の倍数であるか等で判断してもよい。 The processing unit 40 determines whether or not the progress rate calculated in the processing of S333 satisfies the condition (S334). In the process of S334, the processing unit 40 determines, for example, whether or not the progress rate (%) is a multiple of 10. In addition, if the number of calculation steps is replaced by the progress rate, it may be determined whether or not it is a multiple of 5, and if it is time, it may be determined by whether or not the elapsed time is a multiple of 5. May be good.
 S334の処理で条件を満たさないと判断された場合(S334:NO)、処理部40は、処理をS304に戻し、ステップを次に進める。 When it is determined that the condition is not satisfied in the processing of S334 (S334: NO), the processing unit 40 returns the processing to S304 and proceeds to the next step.
 S334で条件を満たすと判断された場合(S334:YES)、処理部40は、今回のこれまでの移動距離を、S333の処理で算出した進捗率と対応付けて記憶する(S335)。処理部40は記憶した移動距離と、複数回輸送経路の計算を実行した移動距離の内、最短の移動距離の輸送経路を、S333の処理で算出した進捗率における距離と、幅を持たせて比較する(S336)。 When it is determined in S334 that the condition is satisfied (S334: YES), the processing unit 40 stores the travel distance so far this time in association with the progress rate calculated in the processing of S333 (S335). The processing unit 40 gives the memorized movement distance and the transportation route of the shortest movement distance among the movement distances for which the calculation of the transportation routes is executed a plurality of times with the distance and the width in the progress rate calculated by the processing of S333. Compare (S336).
 S336の処理において処理部40は、例えば以下の式(1)のように計算する。それまでの移動距離をk、それまでに得られている輸送経路の内の最短距離の輸送経路のその進捗率(prog)における移動経路をkmin progとすると、式(1)は
  kprog<kmin prog+kmin prog×(1-進捗率(prog))…(1)
 である。図28は、進捗率に基づく見込みの有り無し判断の概要図である。図28は、横軸に移動距離の累計を示し、縦軸に輸送の進捗率を示す。図28中の丸印は、それまでの得られている輸送経路の内の最短距離を算出した際の各進捗率における移動距離を示す。図28中のX印は、最短距離の各進捗率における移動距離に、進捗率に応じた比較値を示す。進捗率が10%のときの移動距離k10は、最短距離の輸送経路の進捗率10%における移動距離kmin 10の1.9倍と比較される。進捗率が20%のときの移動距離k20は、最短距離の輸送経路の進捗率20%における移動距離kmin 20の1.8倍と比較される。進捗率が90%のとき、移動距離k90は、最短距離の輸送経路の進捗率90%における移動距離kmin 90の1.1倍と比較される。それまでに得られた移動距離kが、比較値以上である場合、より最短距離の輸送経路を導出できる見込みはないと判断できる。
In the processing of S336, the processing unit 40 calculates, for example, as in the following equation (1). Assuming that the travel distance up to that point is k and the travel route at the progress rate (prog) of the shortest distance transportation route among the transportation routes obtained so far is kmin prog, the equation (1) is kprog <kmin prog + kmin. prog × (1-Progress rate (prog))… (1)
Is. FIG. 28 is a schematic diagram of the presence / absence judgment of the prospect based on the progress rate. In FIG. 28, the horizontal axis shows the cumulative movement distance, and the vertical axis shows the progress rate of transportation. The circles in FIG. 28 indicate the moving distances at each progress rate when the shortest distances in the transportation routes obtained so far are calculated. The X mark in FIG. 28 indicates a comparison value according to the progress rate for the movement distance at each progress rate of the shortest distance. The travel distance k10 when the progress rate is 10% is compared with 1.9 times the travel distance kmin 10 when the progress rate of the shortest transportation route is 10%. The travel distance k20 when the progress rate is 20% is compared with 1.8 times the travel distance kmin 20 when the progress rate of the shortest transportation route is 20%. When the progress rate is 90%, the travel distance k90 is compared with 1.1 times the travel distance kmin 90 at the progress rate of 90% of the shortest transportation route. When the travel distance k obtained so far is equal to or greater than the comparison value, it can be determined that there is no possibility that the transportation route having the shortest distance can be derived.
 処理部40は、S335の処理による比較の結果、以後配送のシミュレーションを進めて最短距離の輸送経路を導出できる見込みがあるのか否かを判断する(S337)。見込みなしと判断された場合(S337:NO)、処理部40は、今回の計算を途中で終了して処理をS313へ進める。 As a result of the comparison by the processing of S335, the processing unit 40 determines whether or not there is a possibility that the shortest distance transportation route can be derived by proceeding with the delivery simulation thereafter (S337). When it is determined that there is no possibility (S337: NO), the processing unit 40 ends the current calculation in the middle and proceeds to the processing to S313.
 S337で見込みありと判断された場合(S337:YES)、処理部40は計算を続行して処理をS304へ戻す。 If it is determined in S337 that there is a possibility (S337: YES), the processing unit 40 continues the calculation and returns the processing to S304.
 これにより、それ以上計算を進めても最短経路を導出する見込みのない場合には計算を中断して、計算時間を短縮させることができる。 As a result, if it is unlikely that the shortest path will be derived even if the calculation is further advanced, the calculation can be interrupted and the calculation time can be shortened.
 図25及び図26のフローチャートに示した経路計算の処理手順について、具体例を挙げて実施例として説明する。 The processing procedure of the route calculation shown in the flowcharts of FIGS. 25 and 26 will be described as an embodiment with specific examples.
 [実施例8]
 実施例8では、図27に示した距離付きの輸送ネットワークを初期状態として、エージェント(輸送機器1)を2台とし、S307の選択処理にて、次に進むべきノードを乱数で選択する場合を示す。図29は、実施例8における解の導出過程の説明図である。乱数でエッジを選択する場合、全ての配送を終えるまでに要する平均ステップ数は107.5、平均移動距離は675.3であった。
[Example 8]
In the eighth embodiment, the transport network with a distance shown in FIG. 27 is set as the initial state, the agent (transport device 1) is set to two, and the node to be next is selected by a random number in the selection process of S307. Shown. FIG. 29 is an explanatory diagram of the solution derivation process in the eighth embodiment. When selecting edges with random numbers, the average number of steps required to complete all deliveries was 107.5, and the average moving distance was 675.3.
 [実施例9]
 実施例9では、図27に示した距離付きの輸送ネットワークを初期状態として、エージェント(輸送機器1)を2台とし、S307の選択処理にて、次に進むべきノードを乱数で選択し、且つ、最大20個である対象のパレット収容部が空になった場合には、何も積載せずに補給地の拠点センター2へ戻ることを条件とする。図30は、実施例9における解の導出過程の説明図である。空になった場合には拠点センター2へ戻すと設定した場合、全ての配送を終えるまでに要する平均ステップ数は80.9、平均移動距離は445.9であった。空になった場合には拠点センター2へ戻すという条件により、実施例8の結果よりも移動距離は短く、より最短経路を導出できる可能性が高まることがわかった。
[Example 9]
In the ninth embodiment, the transport network with a distance shown in FIG. 27 is set as the initial state, the agent (transport device 1) is set to two, and the node to be next is selected by a random number in the selection process of S307. When the maximum number of target pallet storage units is emptied, it is a condition that the vehicle returns to the base center 2 of the supply site without loading anything. FIG. 30 is an explanatory diagram of a solution derivation process in the ninth embodiment. When it was set to return to the base center 2 when it became empty, the average number of steps required to complete all deliveries was 80.9, and the average travel distance was 445.9. It was found that the travel distance was shorter than the result of Example 8 and the possibility of deriving the shortest route was increased under the condition of returning to the base center 2 when it became empty.
 図31は、見込みの判断による計算時間の短縮効果を示すグラフである。図31のグラフの横軸は、経路計算処理を開始してからの経過時間を示し、縦軸は、各時点における最短の移動距離を示す。実線は、見込みがない場合に計算を中断して初期状態に戻して計算処理を開始する場合、即ち図25及び図26のフローチャートに示した処理手順を実行する場合の経過を示す。破線は、見込みの有無の判断を実行しない場合、即ち図9及び図10のフローチャートに示した処理手順を実行する場合の経過を示す。 FIG. 31 is a graph showing the effect of shortening the calculation time by judging the prospect. The horizontal axis of the graph of FIG. 31 indicates the elapsed time from the start of the route calculation process, and the vertical axis indicates the shortest travel distance at each time point. The solid line shows the progress when the calculation is interrupted to return to the initial state and the calculation process is started when there is no prospect, that is, when the process procedure shown in the flowcharts of FIGS. 25 and 26 is executed. The broken line indicates the progress when the determination of the presence or absence of the prospect is not executed, that is, when the processing procedure shown in the flowcharts of FIGS. 9 and 10 is executed.
 図31に示すように、見込みの有無の判断を実行する変形例の方が、最短の移動距離を算出できるまでの経過時間が短い。つまり見込みの有無の判断を実行する方が、処理部40は、より早く、最適解にたどり着くことが分かる。 As shown in FIG. 31, the elapsed time until the shortest travel distance can be calculated is shorter in the modified example in which the determination of the presence or absence of a prospect is executed. That is, it can be seen that the processing unit 40 arrives at the optimum solution faster when the determination of whether or not there is a possibility is executed.
 このようにして、距離付きの輸送ネットワークにおける最適な経路をより早く計算することが可能になる。 In this way, it becomes possible to calculate the optimum route in a transportation network with a distance faster.
 物品のパレットPへの積み付け段階の最適化も同様の手法を適用できる。この場合、上述のパレットPを物品に、上述の輸送機器1をパレットPに置き換えることで実現が可能である。 The same method can be applied to the optimization of the loading stage of goods on the pallet P. In this case, it can be realized by replacing the above-mentioned pallet P with an article and the above-mentioned transportation device 1 with a pallet P.
 本実施の形態では、輸送経路決定装置4自身が、車載機10、拠点センター2における拠点コントローラ20、集配センター3の集配地装置30と通信して情報を収集し、物流DB410を更新した。しかしながら、DB410の情報更新の処理、端末装置5からの受け付け等、各通信可能な装置とのやり取りを含む処理は、別途情報管理装置によって実現され、輸送経路決定装置4は輸送経路の決定処理のみを実行する専用装置として実現されてよい。 In the present embodiment, the transportation route determination device 4 itself communicates with the on-board unit 10, the base controller 20 in the base center 2, and the collection / delivery site device 30 in the collection / delivery center 3 to collect information, and updates the distribution DB 410. However, processing including information update processing of the DB 410, reception from the terminal device 5, and communication with each communicable device is realized separately by the information management device, and the transportation route determination device 4 only determines the transportation route. It may be realized as a dedicated device for executing.
 上述のように開示された実施の形態は全ての点で例示であって、制限的なものではない。本発明の範囲は、請求の範囲によって示され、請求の範囲と均等の意味及び範囲内での全ての変更が含まれる。 The embodiments disclosed as described above are exemplary in all respects and are not restrictive. The scope of the present invention is indicated by the claims and includes all modifications within the meaning and scope equivalent to the claims.
 1 輸送機器
 P パレット
 4 輸送経路決定装置
 40 処理部
 41 記憶部
 410 物流DB
 40P コンピュータプログラム
 
1 Transport equipment P pallet 4 Transport route determination device 40 Processing unit 41 Storage unit 410 Logistics DB
40P computer program

Claims (19)

  1.  物品を輸送する輸送機器が経由する輸送拠点を順に選択して前記物品の集荷地点から配荷地点に至る輸送経路を決定する輸送経路決定方法であって、
     前記輸送機器が輸送拠点又は集荷地点から次に経由する輸送拠点又は配荷地点を順次、確率的に選択する選択処理を、前記物品の配荷地点への輸送を完了するまで繰り返すシミュレーション工程、
     前記シミュレーション工程で得られる輸送経路に対する所定の評価量を算出する工程、並びに、
     前記シミュレーション工程及び前記所定の評価量の算出工程を所定の範囲内で繰り返して得られる複数の輸送経路の中から、前記所定の評価量に基づいて輸送経路を決定する工程
     を含む輸送経路決定方法。
    It is a transportation route determination method for determining a transportation route from a collection point to a distribution point of the goods by sequentially selecting a transportation base through which the transportation equipment for transporting the goods passes.
    A simulation step in which the selection process of sequentially and probabilistically selecting a transportation base or a distribution point to which the transportation equipment passes from the transportation base or the collection point is repeated until the transportation of the goods to the distribution point is completed.
    A step of calculating a predetermined evaluation amount for the transportation route obtained in the simulation step, and
    A transportation route determination method including a step of determining a transportation route based on the predetermined evaluation amount from a plurality of transportation routes obtained by repeating the simulation step and the calculation process of the predetermined evaluation amount within a predetermined range. ..
  2.  前記所定の評価量とは、輸送完了までの所要時間、所要ステップ数、輸送機器の総移動距離、所要移動回数、輸送機器の移動による二酸化炭素の推定排出量、及び輸送に掛かるコストの内のいずれか1つ若しくは複数の組み合わせ、又は、複数の組み合わせから演算された値である
     請求項1に記載の輸送経路決定方法。
    The predetermined evaluation amount includes the time required to complete transportation, the number of steps required, the total distance traveled by the transportation equipment, the required number of movements, the estimated emission amount of carbon dioxide due to the movement of the transportation equipment, and the cost required for transportation. The transportation route determination method according to claim 1, which is a value calculated from any one or a plurality of combinations, or a plurality of combinations.
  3.  前記所定の範囲内とは、得られた輸送経路の数が、所定の輸送経路数の上限値以内であることか、又は、シミュレーション工程及び評価量を算出する工程の計算時間が所定の計算時間上限値以内であることである
     請求項1又は2に記載の輸送経路決定方法。
    Within the predetermined range, the number of obtained transportation routes is within the upper limit of the number of predetermined transportation routes, or the calculation time of the simulation process and the process of calculating the evaluation amount is the predetermined calculation time. The transportation route determination method according to claim 1 or 2, which is within the upper limit.
  4.  前記輸送機器は、積載する物品を全て配荷した時点で所定の集荷地点へ移動することを条件として、前記シミュレーション工程が実行される
     請求項1から請求項3のいずれか1項に記載の輸送経路決定方法。
    The transportation according to any one of claims 1 to 3, wherein the simulation process is executed on condition that the transportation equipment moves to a predetermined collection point when all the articles to be loaded are delivered. Route determination method.
  5.  前記選択処理における輸送拠点又は配荷地点を選択する確率は、予め重み付けされた確率である設定で、前記シミュレーション工程が実行される
     請求項1から請求項4のいずれか1項に記載の輸送経路決定方法。
    The transportation route according to any one of claims 1 to 4, wherein the probability of selecting a transportation base or a distribution point in the selection process is a pre-weighted probability, and the simulation process is executed. How to decide.
  6.  前記物品は複数種類の物品であり、前記輸送機器は前記複数種類の物品の積載が許可され、前記複数種類の物品は、輸送拠点で、荷積み又は荷降ろしが許可される条件で、前記シミュレーション工程が実行される
     請求項1から請求項5のいずれか1項に記載の輸送経路決定方法。
    The simulation is performed under the conditions that the article is a plurality of types of articles, the transport device is permitted to load the plurality of types of articles, and the plurality of types of articles are permitted to be loaded or unloaded at a transportation base. The transportation route determination method according to any one of claims 1 to 5, wherein the process is executed.
  7.  前記シミュレーション工程で、前記選択処理を繰り返す過程で、前記評価量に係る数値を算出し、
     前記数値が、予め設定された算出処理の打ち切り条件を満たす場合に、前記シミュレーション工程が打ち切られる
     請求項1から請求項6のいずれか1項に記載の輸送経路決定方法。
    In the process of repeating the selection process in the simulation step, a numerical value related to the evaluation amount is calculated.
    The transportation route determination method according to any one of claims 1 to 6, wherein the simulation process is terminated when the numerical value satisfies a preset termination condition of the calculation process.
  8.  前記選択処理を繰り返す過程で、輸送完了までの進捗率を算出し、既に得られた輸送経路の内で前記所定の評価量に基づき最適と判断される輸送経路における前記進捗率と同一の状態と比較し、所定の指標が基準値を超えることが前記打ち切り条件である
     請求項7に記載の輸送経路決定方法。
    In the process of repeating the selection process, the progress rate until the completion of transportation is calculated, and the state is the same as the progress rate in the transportation route determined to be optimal based on the predetermined evaluation amount among the already obtained transportation routes. The transportation route determination method according to claim 7, wherein the discontinuation condition is that the predetermined index exceeds the reference value for comparison.
  9.  前記所定の指標は、前記進捗率までの輸送所要時間、所要ステップ数、前記進捗率までの輸送機器の移動距離、前記進捗率までの輸送機器の移動回数、前記進捗率までの二酸化炭素の推定排出量、又は、輸送に掛かるコストである
     請求項8に記載の輸送経路決定方法。
    The predetermined index includes the time required for transportation to the progress rate, the number of steps required, the distance traveled by the transportation equipment to the progress rate, the number of movements of the transportation equipment to the progress rate, and the estimation of carbon dioxide to the progress rate. The transportation route determination method according to claim 8, which is the amount of emissions or the cost required for transportation.
  10.  前記シミュレーション工程の前提条件として前記輸送機器の条件を設定し、
     前記輸送機器の条件を変更して前記シミュレーション工程を実行し、
     異なる前記輸送機器の条件に対して実行されるシミュレーション工程によって得られた輸送経路に対する前記所定の評価量に基づき、最適な輸送経路及び前記輸送機器の条件を決定する
     請求項1から9のいずれか1項に記載の輸送経路決定方法。
    The conditions of the transportation equipment are set as the preconditions of the simulation process, and the conditions are set.
    By changing the conditions of the transportation equipment and executing the simulation process,
    Any one of claims 1 to 9 that determines the optimum transport route and the conditions of the transport equipment based on the predetermined evaluation amount for the transport route obtained by the simulation process performed for different conditions of the transport equipment. The transportation route determination method according to item 1.
  11.  前記輸送機器の条件は、前記輸送機器の数であり、
     前記輸送機器の数を1ずつ増加させることで条件を変更し、
     輸送機器の数を増加させても前記所定の評価量が減少しない前記輸送機器の最小値を、輸送機器の数として決定する
     請求項10に記載の輸送経路決定方法。
    The condition of the transportation equipment is the number of the transportation equipment.
    By increasing the number of transportation equipment by one, the conditions are changed.
    The transportation route determination method according to claim 10, wherein the minimum value of the transportation equipment whose predetermined evaluation amount does not decrease even if the number of transportation equipment is increased is determined as the number of transportation equipment.
  12.  物品を集配する複数の集配地点、及び、前記物品を輸送する輸送機器であって前記物品を収容する物流部材を各々収容する部材収容部を複数設けた荷台を持つ輸送機器が経由する複数の輸送拠点を含む地点間で輸送機器の経路を決定する輸送経路決定方法であって、
     前記物流部材に積み付けられる物品の種類と、物流部材の個数と、前記物品が集配される集配地点、及び、前記物品の最終的な目的地である集配地点又は輸送拠点の情報と、前記目的地への希望到着時間情報とを取得する処理、
     前記地点を含む地域毎に必要な輸送機器の台数、及び、地域内での輸送経路を、経由地点の複数の選択肢から1つを選択するときに乱数による確率的選択過程を含む数理モデルに基づくシミュレーション演算によって導出する処理、
     導出した地域毎の輸送機器の台数、及び地域内の輸送経路を記憶する処理、及び、
     取得した情報に基づいて、記憶部に記憶してある輸送経路、及び、新たに演算によって導出した輸送経路のいずれかの部分経路を選択して、前記輸送機器毎に、輸送経路を決定する処理
     を含む輸送経路決定方法。
    Multiple transportation via a plurality of collection and delivery points for collecting and delivering goods, and a transportation device having a loading platform provided with a plurality of member accommodating portions for accommodating the logistics members which are the transportation devices for transporting the articles. It is a transportation route determination method that determines the route of transportation equipment between points including bases.
    Information on the types of goods to be loaded on the goods, the number of goods, the collection and delivery points where the goods are collected and delivered, and the collection and delivery points or transportation bases which are the final destinations of the goods, and the purpose. Processing to obtain desired arrival time information and information on the ground,
    The number of transportation equipment required for each area including the above point and the transportation route within the area are based on a mathematical model that includes a probabilistic selection process using random numbers when selecting one from multiple options for transit points. Processing derived by simulation calculation,
    Processing to memorize the number of derived transportation equipment for each region and the transportation route within the region, and
    Based on the acquired information, a process of selecting a partial route of either the transportation route stored in the storage unit or the transportation route newly derived by calculation, and determining the transportation route for each of the transportation devices. Transportation route determination method including.
  13.  前記シミュレーション演算により導出され、記憶部に記憶してある輸送経路は、
     請求項1から請求項11のいずれか1項のシミュレーション工程及び評価量を算出する工程に基づき決定された輸送経路である
     請求項12に記載の輸送経路決定方法。
    The transport route derived by the simulation calculation and stored in the storage unit is
    The transportation route determination method according to claim 12, which is a transportation route determined based on the simulation step of any one of claims 1 to 11 and the step of calculating the evaluation amount.
  14.  物品を集配する複数の集配地点、及び、前記物品を輸送する輸送機器であって前記物品を収容するパレットを各々収容するパレット収容部を複数設けた荷台を持つ輸送機器が経由する複数の輸送拠点を含む地点間で輸送機器の経路を決定する輸送経路決定方法であって、
     前記パレットに積み付けられる物品の種類と、パレットの個数と、前記物品が集配される集配地点、及び、前記物品の最終的な目的地である集配地点又は輸送拠点の情報と、前記目的地への希望到着時間情報とを取得する処理、
     取得した情報に基づいて、前記地点を含む地域毎に必要な輸送機器の台数、及び、地域内での輸送経路を、経由地点の複数の選択肢から1つを選択するときに乱数による確率的選択過程を含む数理モデルを適用した演算によって導出する処理、
     導出した地域毎の輸送機器の台数、及び地域内の輸送経路を記憶する処理、及び、
     記憶部に記憶してある輸送経路、及び、新たに演算によって導出した輸送経路のいずれかの部分経路を選択して、前記輸送機器毎に、輸送経路を決定する処理
     を含む輸送経路決定方法。
    A plurality of collection and delivery points for collecting and delivering goods, and a plurality of transportation bases via which the transportation equipment having a loading platform provided with a plurality of pallet storage units for accommodating the pallets for transporting the goods. It is a transportation route determination method that determines the route of transportation equipment between points including
    The type of goods to be loaded on the pallet, the number of pallets, the collection / delivery point where the goods are collected and delivered, the information on the collection / delivery point or the transportation base which is the final destination of the goods, and the destination. Processing to get the desired arrival time information and
    Based on the acquired information, the number of transportation equipment required for each area including the above point and the transportation route within the area are stochastically selected by random numbers when one is selected from multiple options of transit points. Processing derived by operations applying a mathematical model including processes,
    Processing to memorize the number of derived transportation equipment for each region and the transportation route within the region, and
    A transportation route determination method including a process of selecting a partial route of either a transportation route stored in a storage unit or a transportation route newly derived by calculation and determining a transportation route for each of the transportation devices.
  15.  事前に前記演算によって導出された前記記憶部に記憶してある輸送機器の台数及び輸送経路の一部又は全部を用い、前記演算に用いる
     請求項14に記載の輸送経路決定方法。
    The transportation route determination method according to claim 14, wherein the number of transportation devices and a part or all of the transportation routes stored in the storage unit previously derived by the calculation are used, and the transportation route is determined.
  16.  コンピュータに、物品を輸送する輸送機器が経由する輸送拠点を順に選択して前記物品の集荷地点から配荷地点に至る輸送経路を決定する処理を実行させるコンピュータプログラムであって、
     前記コンピュータに、
     前記輸送機器が輸送拠点又は集荷地点から次に経由する輸送拠点又は配荷地点を順次、確率的に選択する選択処理を、前記物品の配荷地点への輸送を完了するまで繰り返すシミュレーション工程、
     前記シミュレーション工程で得られる輸送経路に対する所定の評価量を算出する工程、並びに、
     前記シミュレーション工程及び前記所定の評価量の算出工程を所定の範囲内で繰り返して得られる複数の輸送経路の中から、前記所定の評価量に基づいて輸送経路を決定する工程
     を実行させるコンピュータプログラム。
    A computer program that causes a computer to execute a process of sequentially selecting a transportation base through which a transportation device for transporting goods passes and determining a transportation route from a collection point to a distribution point of the goods.
    On the computer
    A simulation step in which the selection process of sequentially and probabilistically selecting a transportation base or a distribution point to which the transportation equipment passes from the transportation base or the collection point is repeated until the transportation of the goods to the distribution point is completed.
    A step of calculating a predetermined evaluation amount for the transportation route obtained in the simulation step, and
    A computer program that executes a step of determining a transportation route based on the predetermined evaluation amount from a plurality of transportation routes obtained by repeating the simulation step and the calculation process of the predetermined evaluation amount within a predetermined range.
  17.  コンピュータに、物品を集配する複数の集配地点、及び、前記物品を輸送する輸送機器であって前記物品を収容するパレットを各々収容するパレット収容部を複数設けた荷台を持つ輸送機器が経由する複数の輸送拠点を含む地点間で輸送機器の経路を決定する処理を実行させるコンピュータプログラムであって、
     前記コンピュータに、
     前記パレットに積み付けられる物品の種類と、パレットの個数と、前記物品が集配される集配地点、及び、前記物品の最終的な目的地である集配地点又は輸送拠点の情報と、前記目的地への希望到着時間情報とを取得し、
     前記地点を含む地域毎に必要な輸送機器の台数、及び、地域内での輸送経路を、経由地点の複数の選択肢から1つを選択するときに乱数による確率的選択過程を含む数理モデルに基づくシミュレーション演算によって導出し、
     導出した地域毎の輸送機器の台数、及び地域内の輸送経路を記憶し、
     取得した情報に基づいて、記憶部に記憶してある輸送経路、及び、新たに演算によって導出した輸送経路のいずれかの部分経路を選択して、前記輸送機器毎に、輸送経路を決定する
     処理を実行させるコンピュータプログラム。
    A plurality of collection and delivery points for collecting and delivering articles, and a plurality of transportation devices for transporting the articles and having a loading platform provided with a plurality of pallet accommodating units for accommodating the pallets. A computer program that executes the process of determining the route of transportation equipment between points including the transportation base of
    On the computer
    The type of goods to be loaded on the pallet, the number of pallets, the collection / delivery point where the goods are collected and delivered, the information on the collection / delivery point or the transportation base which is the final destination of the goods, and the destination. Get the desired arrival time information and
    The number of transportation equipment required for each area including the above point and the transportation route within the area are based on a mathematical model that includes a probabilistic selection process using random numbers when selecting one from multiple options for transit points. Derived by simulation calculation,
    Memorize the number of transportation equipment for each region and the transportation route within the region,
    Based on the acquired information, a process of selecting a partial route of either the transportation route stored in the storage unit or the transportation route newly derived by calculation, and determining the transportation route for each of the transportation devices. A computer program that runs.
  18.  物品を輸送する輸送機器が経由する輸送拠点を順に選択して前記物品の集荷地点から配荷地点に至る輸送経路を決定する輸送経路決定装置であって、
     前記輸送機器が輸送拠点又は集荷地点から次に経由する輸送拠点又は配荷地点を順次、確率的に選択する選択処理を、前記物品の配荷地点への輸送を完了するまで繰り返すシミュレーション工程を実行する実行部と、
     前記シミュレーション工程で得られる輸送経路に対する所定の評価量を算出する算出部と、
     前記シミュレーション工程及び前記所定の評価量の算出工程を所定の範囲内で繰り返して得られる複数の輸送経路の中から、前記所定の評価量に基づいて輸送経路を決定する決定部と
     を備える輸送経路決定装置。
    It is a transportation route determination device that determines a transportation route from a collection point to a distribution point of the goods by sequentially selecting a transportation base through which the transportation equipment for transporting the goods passes.
    A simulation process is executed in which the selection process of sequentially and probabilistically selecting the transportation base or the distribution point to which the transportation equipment passes from the transportation base or the collection point is repeated until the transportation of the goods to the distribution point is completed. Execution part and
    A calculation unit that calculates a predetermined evaluation amount for the transportation route obtained in the simulation step, and
    A transportation route including a determination unit that determines a transportation route based on the predetermined evaluation amount from a plurality of transportation routes obtained by repeating the simulation step and the calculation process of the predetermined evaluation amount within a predetermined range. Decision device.
  19.  複数の物品を輸送する輸送機器が経由する経由地点を繋いだ前記輸送機器の輸送経路を決定する輸送経路決定装置であって、
     所定の範囲における前記複数の物品の集荷地点から各物品の輸送先の情報を取得する取得部、
     取得した物品の前記所定の範囲内での配置、及び前記輸送機器の位置に基づき、前記輸送機器が次に経由する経由地点、集荷地点、又は輸送先の地点までの経路を、各地点で確率的に選択する選択部、
     前記確率的に選択する処理を、前記複数の物品の前記輸送先への輸送が完了するまで繰り返して前記輸送機器の輸送経路を算出する算出部、
     算出された輸送経路について評価量を算出する評価部、及び、
     前記輸送経路の算出を複数回実行し、各回について算出された評価量に基づいて輸送経路を選択して決定する決定部
     を備える輸送経路決定装置。
     
    It is a transportation route determination device that determines the transportation route of the transportation equipment connecting the waypoints through which the transportation equipment for transporting a plurality of goods passes.
    An acquisition unit that acquires information on the transportation destination of each article from the collection points of the plurality of articles in a predetermined range.
    Based on the arrangement of the acquired goods within the predetermined range and the position of the transportation equipment, the probability of the route to the transit point, the collection point, or the transportation destination point through which the transportation equipment passes next is stochastic at each point. Selection part to select
    A calculation unit that repeats the process of selecting stochastically until the transportation of the plurality of articles to the transportation destination is completed to calculate the transportation route of the transportation equipment.
    Evaluation unit that calculates the evaluation amount for the calculated transportation route, and
    A transportation route determination device including a determination unit that executes the calculation of the transportation route a plurality of times and selects and determines the transportation route based on the evaluation amount calculated for each time.
PCT/JP2020/043936 2019-11-28 2020-11-26 Transportation route determination method, computer program, and transportation route determination device WO2021106977A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2021561472A JPWO2021106977A1 (en) 2019-11-28 2020-11-26

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2019-215683 2019-11-28
JP2019215683 2019-11-28

Publications (1)

Publication Number Publication Date
WO2021106977A1 true WO2021106977A1 (en) 2021-06-03

Family

ID=76130552

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2020/043936 WO2021106977A1 (en) 2019-11-28 2020-11-26 Transportation route determination method, computer program, and transportation route determination device

Country Status (2)

Country Link
JP (1) JPWO2021106977A1 (en)
WO (1) WO2021106977A1 (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114037114A (en) * 2021-09-27 2022-02-11 中冶南方工程技术有限公司 Method and device for optimizing based on material conveying path and electronic equipment
CN115582834A (en) * 2022-10-11 2023-01-10 重庆大学 Robot energy consumption model construction method and parallel bidirectional dynamic energy consumption optimization method
JP7402282B2 (en) 2021-07-28 2023-12-20 Arithmer株式会社 Information processing equipment, support methods, programs, and shipping company selection support methods
WO2023243047A1 (en) * 2022-06-16 2023-12-21 日本電信電話株式会社 Task allocation device, method, and program

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH06214977A (en) * 1993-01-19 1994-08-05 Mitsubishi Heavy Ind Ltd Path generator
JPH09160981A (en) * 1995-12-12 1997-06-20 Hitachi Eng Co Ltd Planning device and planning method
JP2000331293A (en) * 1999-05-20 2000-11-30 Nissan Motor Co Ltd Delivery order deciding device and distance database generating method
JP2005096979A (en) * 2003-09-26 2005-04-14 Okayama Univ Data processing device
JP2010111452A (en) * 2008-11-04 2010-05-20 Internatl Business Mach Corp <Ibm> Method, device, and program for obtaining delivery route of a plurality of vehicles
JP2012086948A (en) * 2010-10-20 2012-05-10 Jfe Steel Corp Transportation plan preparation method and transportation plan preparation device
WO2018047289A1 (en) * 2016-09-09 2018-03-15 株式会社日立物流 Evaluation device, evaluation method, and evaluation program

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH06214977A (en) * 1993-01-19 1994-08-05 Mitsubishi Heavy Ind Ltd Path generator
JPH09160981A (en) * 1995-12-12 1997-06-20 Hitachi Eng Co Ltd Planning device and planning method
JP2000331293A (en) * 1999-05-20 2000-11-30 Nissan Motor Co Ltd Delivery order deciding device and distance database generating method
JP2005096979A (en) * 2003-09-26 2005-04-14 Okayama Univ Data processing device
JP2010111452A (en) * 2008-11-04 2010-05-20 Internatl Business Mach Corp <Ibm> Method, device, and program for obtaining delivery route of a plurality of vehicles
JP2012086948A (en) * 2010-10-20 2012-05-10 Jfe Steel Corp Transportation plan preparation method and transportation plan preparation device
WO2018047289A1 (en) * 2016-09-09 2018-03-15 株式会社日立物流 Evaluation device, evaluation method, and evaluation program

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP7402282B2 (en) 2021-07-28 2023-12-20 Arithmer株式会社 Information processing equipment, support methods, programs, and shipping company selection support methods
CN114037114A (en) * 2021-09-27 2022-02-11 中冶南方工程技术有限公司 Method and device for optimizing based on material conveying path and electronic equipment
WO2023243047A1 (en) * 2022-06-16 2023-12-21 日本電信電話株式会社 Task allocation device, method, and program
CN115582834A (en) * 2022-10-11 2023-01-10 重庆大学 Robot energy consumption model construction method and parallel bidirectional dynamic energy consumption optimization method
CN115582834B (en) * 2022-10-11 2024-06-04 重庆大学 Robot energy consumption model construction method and parallel bidirectional dynamic energy consumption optimization method

Also Published As

Publication number Publication date
JPWO2021106977A1 (en) 2021-06-03

Similar Documents

Publication Publication Date Title
WO2021106977A1 (en) Transportation route determination method, computer program, and transportation route determination device
US20190347614A1 (en) Autonomous supply and distribution chain
Ostermeier et al. Cost‐optimal truck‐and‐robot routing for last‐mile delivery
Wu et al. An integrated programming model for storage management and vehicle scheduling at container terminals
US20210097636A1 (en) Logistics System and Logistics Method
CN112990528A (en) Logistics transportation stowage management method and device
Petersen et al. The pickup and delivery problem with cross-docking opportunity
Stolk et al. Combining vehicle routing and packing for optimal delivery schedules of water tanks
JP2004083233A (en) Round cargo collection and delivery planning method
JP7118348B2 (en) LOGISTICS DATA DETERMINATION METHOD, LOGISTICS SYSTEM, LOGISTICS DATA DETERMINATION DEVICE, AND COMPUTER PROGRAM
Le-Anh Intelligent control of vehicle-based internal transport systems
SteadieSeifi et al. A metaheuristic for the multimodal network flow problem with product quality preservation and empty repositioning
Zajac Evaluation method of energy consumption in logistic warehouse systems
Pham et al. Modeling and solving a multi-trip multi-distribution center vehicle routing problem with lower-bound capacity constraints
CN115115300A (en) Circular goods taking path planning method considering three-dimensional packing
CN113610453B (en) Container transportation path selection method combining multiple transportation modes
JP6362240B1 (en) Distribution system and distribution method
Yetis et al. Collaborative truck-drone routing optimization using quantum-inspired genetic algorithms
JP5382844B2 (en) Transportation schedule creation system
Al Theeb et al. Optimization of the heterogeneous vehicle routing problem with cross docking logistic system
WO2022113222A1 (en) Transportation route determination method, transportation route determination device, and computer program
Romero-Silva et al. Modelling Landside Logistic Operations of a Mega-hub Airport with Discrete-event Simulation.
JP2003285930A (en) Transportation schedule making method and its system
Jagannathan Vehicle routing with cross docks, split deliveries, and multiple use of vehicles
Boschma Exploring the world of Container Stacking using Approximate Dynamic Programming

Legal Events

Date Code Title Description
ENP Entry into the national phase

Ref document number: 2021561472

Country of ref document: JP

Kind code of ref document: A

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 20894572

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 20894572

Country of ref document: EP

Kind code of ref document: A1