WO2021106910A1 - Resin foam - Google Patents

Resin foam Download PDF

Info

Publication number
WO2021106910A1
WO2021106910A1 PCT/JP2020/043759 JP2020043759W WO2021106910A1 WO 2021106910 A1 WO2021106910 A1 WO 2021106910A1 JP 2020043759 W JP2020043759 W JP 2020043759W WO 2021106910 A1 WO2021106910 A1 WO 2021106910A1
Authority
WO
WIPO (PCT)
Prior art keywords
resin foam
resin
weight
polyolefin
foam
Prior art date
Application number
PCT/JP2020/043759
Other languages
French (fr)
Japanese (ja)
Inventor
清明 児玉
齋藤 誠
Original Assignee
日東電工株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 日東電工株式会社 filed Critical 日東電工株式会社
Priority to JP2021561441A priority Critical patent/JPWO2021106910A1/ja
Priority to KR1020227017000A priority patent/KR20220106752A/en
Priority to CN202080075113.1A priority patent/CN114616278A/en
Publication of WO2021106910A1 publication Critical patent/WO2021106910A1/en

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J9/00Working-up of macromolecular substances to porous or cellular articles or materials; After-treatment thereof
    • C08J9/04Working-up of macromolecular substances to porous or cellular articles or materials; After-treatment thereof using blowing gases generated by a previously added blowing agent
    • C08J9/12Working-up of macromolecular substances to porous or cellular articles or materials; After-treatment thereof using blowing gases generated by a previously added blowing agent by a physical blowing agent
    • C08J9/122Hydrogen, oxygen, CO2, nitrogen or noble gases
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B27/00Layered products comprising a layer of synthetic resin
    • B32B27/32Layered products comprising a layer of synthetic resin comprising polyolefins
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B5/00Layered products characterised by the non- homogeneity or physical structure, i.e. comprising a fibrous, filamentary, particulate or foam layer; Layered products characterised by having a layer differing constitutionally or physically in different parts
    • B32B5/18Layered products characterised by the non- homogeneity or physical structure, i.e. comprising a fibrous, filamentary, particulate or foam layer; Layered products characterised by having a layer differing constitutionally or physically in different parts characterised by features of a layer of foamed material
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J9/00Working-up of macromolecular substances to porous or cellular articles or materials; After-treatment thereof
    • C08J9/0014Use of organic additives
    • C08J9/0023Use of organic additives containing oxygen
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J9/00Working-up of macromolecular substances to porous or cellular articles or materials; After-treatment thereof
    • C08J9/0061Working-up of macromolecular substances to porous or cellular articles or materials; After-treatment thereof characterized by the use of several polymeric components
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J9/00Working-up of macromolecular substances to porous or cellular articles or materials; After-treatment thereof
    • C08J9/0066Use of inorganic compounding ingredients
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J9/00Working-up of macromolecular substances to porous or cellular articles or materials; After-treatment thereof
    • C08J9/0095Mixtures of at least two compounding ingredients belonging to different one-dot groups
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J9/00Working-up of macromolecular substances to porous or cellular articles or materials; After-treatment thereof
    • C08J9/04Working-up of macromolecular substances to porous or cellular articles or materials; After-treatment thereof using blowing gases generated by a previously added blowing agent
    • C08J9/12Working-up of macromolecular substances to porous or cellular articles or materials; After-treatment thereof using blowing gases generated by a previously added blowing agent by a physical blowing agent
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09JADHESIVES; NON-MECHANICAL ASPECTS OF ADHESIVE PROCESSES IN GENERAL; ADHESIVE PROCESSES NOT PROVIDED FOR ELSEWHERE; USE OF MATERIALS AS ADHESIVES
    • C09J7/00Adhesives in the form of films or foils
    • C09J7/20Adhesives in the form of films or foils characterised by their carriers
    • C09J7/22Plastics; Metallised plastics
    • C09J7/26Porous or cellular plastics
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J2323/00Characterised by the use of homopolymers or copolymers of unsaturated aliphatic hydrocarbons having only one carbon-to-carbon double bond; Derivatives of such polymers
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J2323/00Characterised by the use of homopolymers or copolymers of unsaturated aliphatic hydrocarbons having only one carbon-to-carbon double bond; Derivatives of such polymers
    • C08J2323/02Characterised by the use of homopolymers or copolymers of unsaturated aliphatic hydrocarbons having only one carbon-to-carbon double bond; Derivatives of such polymers not modified by chemical after treatment
    • C08J2323/10Homopolymers or copolymers of propene
    • C08J2323/12Polypropene
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J2423/00Characterised by the use of homopolymers or copolymers of unsaturated aliphatic hydrocarbons having only one carbon-to-carbon double bond; Derivatives of such polymers
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J2423/00Characterised by the use of homopolymers or copolymers of unsaturated aliphatic hydrocarbons having only one carbon-to-carbon double bond; Derivatives of such polymers
    • C08J2423/02Characterised by the use of homopolymers or copolymers of unsaturated aliphatic hydrocarbons having only one carbon-to-carbon double bond; Derivatives of such polymers not modified by chemical after treatment
    • C08J2423/10Homopolymers or copolymers of propene
    • C08J2423/12Polypropene

Definitions

  • the present invention relates to a resin foam.
  • Cushion material is often used to protect the screen of electronic devices and the substrate. In recent years, it has been required to narrow the clearance of the portion where the cushion material is arranged in accordance with the tendency of thinning of electronic devices. Furthermore, studies on flexible electronic devices using organic EL panels are also in progress. In such an electronic device, a load of action different from that of the conventional rigid LCD panel is applied.
  • Examples of the cushioning material include members having a foamed structure, and as a method for obtaining a foam having a fine bubble structure, an inert gas is dissolved in a polymer under high pressure, and then the pressure is rapidly reduced to form a foamed structure.
  • a method of forming has been proposed (Cited Document 1). Attempts have also been made to improve the shock absorption of the foamed member (Cited Documents 2 and 3).
  • the equipment used in conventional rigid displays but also the equipment used in flexible displays and the equipment used by bending the flexible display have a high level of impact resistance.
  • a foamed member that has been realized and is thinly constructed has not been obtained.
  • An object of the present invention is to provide a resin foam having excellent shock absorption even if it is thin.
  • the resin foam of the present invention has an apparent density of 0.02 g / cm 3 to 0.30 g / cm 3 , a 25% compression load of 90 kPa or less, and an elastic strain energy during compression of 10 kPa or more. It has a bubble structure.
  • the resin foam has an average cell diameter of 10 ⁇ m to 200 ⁇ m.
  • the resin foam has a bubble ratio of 30% or more.
  • the resin foam has a coefficient of variation of bubble diameter of 0.5 or less.
  • the resin foam has a non-foam bending stress of 5 MPa or more.
  • the resin foam further comprises a filler.
  • the filler is an inorganic material.
  • the filler is organic.
  • the resin foam comprises a polyolefin-based resin.
  • the polyolefin-based resin is a mixture of a polyolefin other than the polyolefin-based elastomer and a polyolefin-based elastomer.
  • the resin foam has a hot melt layer on one or both sides.
  • a foamed member is provided. This foamed member has a resin foamed layer and an adhesive layer arranged on at least one side of the resin foamed layer, and the resin foamed layer is the resin foam.
  • the present invention it is possible to provide a resin foam having excellent shock absorption even if it is thin.
  • the resin foam of the present invention exhibits excellent shock absorption even when combined with a flexible sheet.
  • the resin foam of the present invention has an apparent density of 0.02 g / cm 3 to 0.30 g / cm 3 , a 25% compression load of 90 kPa or less, and an elastic strain energy during compression of 10 kPa or more.
  • the resin foam of the present invention has a bubble structure (cell structure). Examples of the cell structure (cell structure) include a closed cell structure, an open cell structure, and a semi-continuous semi-closed cell structure (a bubble structure in which a closed cell structure and an open cell structure are mixed).
  • the cell structure of the resin foam is preferably a continuous cell structure or a semi-continuous semi-closed cell structure, and more preferably a semi-continuous semi-closed cell structure.
  • the resin foam of the present invention is obtained by foaming the resin composition.
  • the resin composition is a composition containing at least the resin constituting the resin foam.
  • the apparent density of the resin foam of the present invention is 0.02 g / cm 3 to 0.30 g / cm 3 . Within such a range, a resin foam having excellent flexibility and stress dispersibility can be obtained.
  • the apparent density of the resin foam of the present invention is preferably 0.03g / cm 3 ⁇ 0.28g / cm 3, more preferably from 0.04g / cm 3 ⁇ 0.25g / cm 3, particularly preferably Is 0.05 g / cm 3 to 0.20 g / cm 3 , and most preferably 0.07 g / cm 3 to 0.15 g / cm 3 . Within such a range, the above effect becomes remarkable. The method for measuring the apparent density will be described later.
  • the 25% compressive load of the resin foam of the present invention is 90 kPa or less. If the resin foam has a 25% compressive load in such a range, the load on the applied member can be reduced. More specifically, when the resin foam is applied to a portion having a narrow clearance by compressing it to some extent, the resin foam of the present invention can reduce the stress applied to other members. For example, when the resin foam is applied to the display member, the stress applied to the display member can be relaxed and dispersed, which is useful from the viewpoint of reducing color unevenness and protecting the member.
  • the 25% compressive load of the resin foam of the present invention is preferably 80 kPa or less, more preferably 75 kPa or less, and further preferably 55 kPa or less.
  • the 25% compressive load of the resin foam of the present invention is preferably as small as possible, but the lower limit thereof is, for example, 10 kPa, preferably 5 kPa, more preferably 1 kPa, and particularly preferably 0.1 kPa. is there.
  • the method for measuring the 25% compressive load will be described later.
  • the elastic strain energy of the resin foam of the present invention during compression is 10 kPa or more.
  • “Elastic strain energy during compression” means the total amount of compression repulsive force when the resin foam is compressed by 10%.
  • the "elastic strain energy during compression” was determined by a compression test (test temperature: 23 ° C., sample size: 10 mm x 10 mm, compression rate: 10 mm / min) according to JIS K 6767. When the compression rate (%) and the compression repulsive force (kPa) are measured, it is obtained from the compression ss curve with the x-axis as the compression rate (%) and the y-axis as the compression repulsive force (kPa), and the compression rate is 0%.
  • the elastic strain energy of the resin foam of the present invention during compression is preferably 20 kPa or more, more preferably 28 kPa or more, still more preferably 35 kPa or more, still more preferably 50 kPa or more, still more preferably 80 kPa or more.
  • the above is particularly preferable, 100 kPa or more, and most preferably 150 kPa or more. Within such a range, the above effect becomes remarkable.
  • the upper limit of the elastic strain energy during compression of the resin foam of the present invention is, for example, 500 kPa (preferably 800 kPa).
  • a resin foam having excellent flexibility, stress dispersibility and impact resistance can be obtained by setting the apparent density, 25% compressive load and elastic strain energy during compression within the above ranges. Further, a resin foam that satisfies all of the above characteristics is a combination with a member (for example, an organic EL panel, a resin base material) that exhibits excellent impact resistance while being a thin layer and has flexibility. Demonstrates excellent impact resistance.
  • a member for example, an organic EL panel, a resin base material
  • the thickness of the resin foam of the present invention is preferably 30 ⁇ m to 5000 ⁇ m, more preferably 35 ⁇ m to 4000 ⁇ m, further preferably 40 ⁇ m to 3000 ⁇ m, still more preferably 45 ⁇ m to 2000 ⁇ m, still more preferably 50 ⁇ m to 50 ⁇ m. It is 1000 ⁇ m, and particularly preferably 55 ⁇ m to 500 ⁇ m.
  • the resin foam of the present invention exhibits excellent impact resistance even though it is a thin layer. Further, when the thickness of the resin foam is within the above range, a fine and uniform bubble structure can be formed, which is advantageous in that excellent shock absorption can be exhibited.
  • the elongation at break of the resin foam of the present invention at 25 ° C. is preferably 120% or less, more preferably 110% or less, further preferably 100% or less, and particularly preferably 90% or less. Within such a range, a resin foam having excellent flexibility and stress dispersibility can be obtained. If the elongation at break is small, the deformation of the cell wall of the resin foam becomes small when a load is applied to the resin foam. For example, when a filler is added, the resin foam constitutes the resin foam. Slip is likely to occur at the interface between the resin and the filler, and the load can be further relaxed. On the other hand, if the breaking elongation is too large, the deformation of the cell wall of the resin foam becomes large, and it may be difficult to relax the load. The elongation at break can be measured according to JIS K 6767.
  • the average cell diameter (average cell diameter) of the resin foam is preferably 10 ⁇ m to 200 ⁇ m, more preferably 15 ⁇ m to 180 ⁇ m, further preferably 20 ⁇ m to 150 ⁇ m, and particularly preferably 23 ⁇ m to 120 ⁇ m. It is particularly preferably 25 ⁇ m to 100 ⁇ m, and most preferably 30 ⁇ m to 80 ⁇ m. Within such a range, a resin foam having more excellent flexibility and stress dispersibility can be obtained. In addition, it is possible to obtain a resin foam having excellent compression recovery and resistance to repeated impacts. The method for measuring the average cell diameter will be described later.
  • the aspect ratio of bubbles contained in the resin foam is preferably 1.5 or more. Within such a range, a resin foam having excellent thickness recovery can be obtained.
  • the aspect ratio of the bubbles constituting the resin foam is preferably 2.0 or more, and more preferably 2.5 or more. Within such a range, the above effect becomes remarkable.
  • the upper limit of the aspect ratio of the bubbles constituting the resin foam is preferably 8, more preferably 6, and even more preferably 5. Within such a range, a resin foam having excellent shock absorption can be obtained.
  • the "aspect ratio of bubbles contained in the resin foam” is the aspect ratio of individual bubbles existing in a predetermined area (3 mm 2) in the cross section of the resin foam at randomly selected locations. Means the average value.
  • the specific method for obtaining the "aspect ratio of bubbles contained in the resin foam” is as follows. -The resin foam is cut using a razor blade in the TD (direction orthogonal to the flow direction) and in the direction perpendicular to the main surface of the resin foam (thickness direction), and within a predetermined area (3 mm 2 ). Is observed at a magnification of 100 times. The length of one bubble in the thickness direction and the length of TD are measured.
  • the coefficient of variation of the bubble diameter (cell diameter) of the resin foam of the present invention is preferably 0.5 or less, more preferably 0.48 or less, still more preferably 0.45 or less, and particularly preferably 0.45 or less. It is 0.43 or less, most preferably less than 0.4. Within such a range, it is possible to obtain a resin foam in which deformation due to impact becomes uniform, local stress load is prevented, stress dispersibility is excellent, and impact resistance is particularly excellent.
  • the bubble ratio (cell ratio) of the resin foam of the present invention is preferably 30% or more, more preferably 50% or more, and further preferably 80% or more. Within such a range, a resin foam having a small repulsive stress during compression can be obtained. Such a resin foam can reduce the stress applied to other members when the resin foam is applied by compressing it to a place having a narrow clearance. For example, when the resin foam is applied to the display member, the stress applied to the display member can be relaxed and dispersed, which is useful from the viewpoint of reducing color unevenness and protecting the member.
  • the upper limit of the bubble ratio is, for example, 99% or less. The method for measuring the bubble ratio will be described later.
  • the thickness of the bubble wall (cell wall) of the resin foam of the present invention is preferably 0.1 ⁇ m to 10 ⁇ m, more preferably 0.3 ⁇ m to 8 ⁇ m, still more preferably 0.5 ⁇ m to 5 ⁇ m, and particularly. It is preferably 0.7 ⁇ m to 4 ⁇ m, and most preferably 1 ⁇ m to 2.8 ⁇ m. Within such a range, a resin foam having more excellent flexibility and stress dispersibility can be obtained. If the thickness of the bubble wall is too thin, the resin foam is easily deformed by a load, and a sufficient stress dispersion effect may not be obtained. If the thickness of the bubble wall is too thick, the resin foam is less likely to be deformed by a load, and when used in a gap between devices, the step followability may be deteriorated. The method for measuring the thickness of the bubble wall will be described later.
  • the ratio of the closed cell structure in the cell structure is preferably 40% or less, more preferably 30% or less.
  • the self-foaming ratio of the resin foam is, for example, in an environment of a temperature of 23 ° C. and a humidity of 50%, the object to be measured is submerged in water, the mass thereof is measured thereafter, and then in an oven at 80 ° C. After sufficiently drying, the mass is measured again to obtain the determination. Further, since open cells can retain water, the mass thereof can be measured and obtained as open cells.
  • the non-foaming bending stress of the resin foam of the present invention is preferably 5 MPa or more, more preferably larger than 5 MPa, more preferably 7 MPa or more, still more preferably 10 MPa or more. Within such a range, a large amount of energy is required to deform the bubble wall (cell wall) of the resin foam, and a resin foam having excellent shock absorption can be obtained.
  • the resin foam of the present invention can improve impact resistance (impact absorption) by appropriately reducing the flexibility, which has been regarded as important in cushioning materials, and balancing it with other characteristics. ..
  • the resin foam of the present invention that exhibits shock absorption due to an action different from the conventional one is particularly useful in a configuration in which the impact propagates in a narrow range (a configuration in which the impact does not easily spread in the plane direction), for example. , Especially useful when applied to flexible members (eg, members made of resin).
  • the upper limit of the non-foam bending stress is preferably 20 MPa, more preferably 15 MPa. Within such a range, a resin foam having more excellent flexibility and stress dispersibility can be obtained.
  • the “non-foaming bending stress” means the bending stress of the resin molded product a that has been returned to the non-foaming state (bulk) without bubbles by heat-pressing the resin foam.
  • the density of the resin molded body a can be made equal to the density of the resin molded body b before foaming formed by the resin composition described later.
  • the bending stress of the resin molded body a (non-foamed bending stress of the resin foam) can be the same as that of the resin molded body b. The method for measuring the bending stress will be described later.
  • the thickness recovery rate of the resin foam is preferably 65% or more, more preferably 70% or more, and further preferably 75% or more.
  • the thickness recovery rate of the foamed layer is defined by the following formula.
  • the thickness recovery rate of this foam layer is a recovery rate measured by applying a load to a foam sheet with a certain area and compressing it, and is a so-called dent recovery rate measured by locally applying a load and denting only a part of the foam sheet. Is different.
  • Thickness recovery rate (%) ⁇ (thickness 0.5 seconds after decompression) / (initial thickness) ⁇ x 100
  • Initial thickness The thickness of the resin foam before applying a load.
  • Thickness 0.5 seconds after decompression Maintained for 120 seconds with a load of 1000 g / cm 2 applied to the resin foam, decompressed, 0.5 seconds after decompression Thickness of resin foam.
  • any appropriate shape can be adopted depending on the purpose.
  • Such a shape is typically a sheet shape.
  • the resin foam of the present invention may have a hot melt layer on one side or both sides thereof.
  • the resin foam having the hot melt layer is, for example, a resin foam (or a precursor of the resin foam) using a pair of heating rolls heated to a temperature equal to or higher than the melting temperature of the resin composition constituting the resin foam. Can be obtained by rolling.
  • the resin foam of the present invention can be formed by any suitable method as long as the effects of the present invention are not impaired.
  • a typical example of such a method is a method of foaming a resin composition containing a resin material (polymer).
  • the resin foam of the present invention can be typically obtained by foaming a resin composition.
  • the resin composition comprises any suitable resin material (polymer).
  • polymer examples include acrylic resin, silicone resin, urethane resin, polyolefin resin, ester resin, rubber resin and the like.
  • the polymer may be used alone or in combination of two or more.
  • the content ratio of the polymer is preferably 30 parts by weight to 95 parts by weight, more preferably 35 parts by weight to 90 parts by weight, and further preferably 40 parts by weight to 80 parts by weight with respect to 100 parts by weight of the resin composition. It is a part, particularly preferably 40 parts by weight to 60 parts by weight. Within such a range, a resin foam having more excellent flexibility and stress dispersibility can be obtained.
  • a polyolefin resin is used as the polymer.
  • the content ratio of the polyolefin resin is preferably 50 parts by weight to 100 parts by weight, more preferably 70 parts by weight to 100 parts by weight, and further preferably 90 parts by weight to 100 parts by weight with respect to 100 parts by weight of the polymer. It is a part by weight, particularly preferably 95 parts by weight to 100 parts by weight, and most preferably 100 parts by weight.
  • the polyolefin-based resin preferably includes at least one selected from the group consisting of polyolefins and polyolefin-based elastomers, and more preferably, polyolefins and polyolefin-based elastomers are used in combination.
  • polyolefins and polyolefin-based elastomers are used in combination.
  • the polyylene and the polyolefin-based elastomer only one type may be used alone, or two or more types may be used in combination.
  • the term "polyolefin” does not include "polyolefin-based elastomer”.
  • the weight ratio of the polyolefin and the polyolefin-based elastomer is preferably 1/99 to 99/1, more preferably 10/90 to It is 90/10, more preferably 20/80 to 80/20, and particularly preferably 30/70 to 70/30. Within such a range, the effect of the present invention becomes remarkable.
  • any suitable polyolefin can be adopted as long as the effect of the present invention is not impaired.
  • examples of such polyolefins include linear polyolefins and branched-chain (branched-chain) polyolefins.
  • a branched-chain polyolefin is used as the polyolefin-based resin.
  • the polyolefin only the branched polyolefin may be used, or the branched polyolefin and the linear polyolefin may be used in combination.
  • the content ratio of the branched polyolefin is preferably 30 parts by weight to 100 parts by weight, and more preferably 80 parts by weight to 120 parts by weight with respect to 100 parts by weight of the polyolefin.
  • polystyrene resin examples include polymers containing a structural unit derived from ⁇ -olefin.
  • the polyolefin may be composed of only a structural unit derived from an ⁇ -olefin, or may be composed of a structural unit derived from an ⁇ -olefin and a structural unit derived from a monomer other than the ⁇ -olefin.
  • any suitable copolymerization form can be adopted as the copolymerization form thereof. For example, random copolymers, block copolymers and the like can be mentioned.
  • ⁇ -olefins examples include ⁇ -olefins having 2 to 8 carbon atoms (preferably 2 to 6, more preferably 2 to 4) (for example, ethylene, propylene, 1-butene, 1-pentene). , 1-Hexene, 4-methyl-1-pentene, 1-heptene, 1-octene, etc.) are preferred.
  • the ⁇ -olefin may be only one kind or two or more kinds.
  • Examples of the monomer other than the ⁇ -olefin constituting the polyolefin include ethylenically unsaturated monomers such as vinyl acetate, acrylic acid, acrylic acid ester, methacrylic acid, methacrylic acid ester, and vinyl alcohol.
  • the monomer other than the ⁇ -olefin may be only one kind or two or more kinds.
  • polystyrene resin examples include low-density polyethylene, medium-density polyethylene, high-density polyethylene, linear low-density polyethylene, polypropylene (propylene homopolymer), a copolymer of ethylene and propylene, and ethylene and other than ethylene.
  • Examples include a copolymer with a body.
  • a polypropylene-based polymer having a propylene-derived structural unit is used as the polyolefin.
  • the polypropylene-based polymer include polypropylene (propylene homopolymer), a copolymer of ethylene and propylene, a copolymer of propylene and an ⁇ -olefin other than propylene, and preferably polypropylene (propylene homopolymer). ).
  • the polypropylene-based polymer only one type may be used alone, or two or more types may be used in combination.
  • the melt flow rate (MFR) of the polyolefin at a temperature of 230 ° C. is preferably 0.2 g / 10 min to 10 g / 10 min, and more preferably 0.25 g / 10 in that the effects of the present invention can be more exhibited. Minutes to 5 g / 10 minutes, more preferably 0.3 g / 10 minutes to 3 g / 10 minutes, and particularly preferably 0.35 g / 10 minutes to 1.5 g / 10 minutes.
  • the melt flow rate (MFR) refers to an MFR measured at a temperature of 230 ° C. and a load of 2.16 kgf based on ISO1133 (JIS-K-7210).
  • melt flow rate (MFR) at a temperature of 230 ° C. is preferably 0.2 g / 10 minutes or more and less than 0.7 g / 10 minutes (more preferably 0.2 g / 10 minutes to 0.65 g / 10 minutes).
  • the polyolefin and melt flow rate (MFR) at a temperature of 230 ° C. are preferably 0.7 g / 10 min to 10 g / 10 min (more preferably 0.7 g / 10 min to 5 g / 10 min, and even more preferably 0.
  • the melt flow rate (MFR) at a temperature of 230 ° C. is preferably 0.
  • the polyolefin of 2 g / 10 minutes or more and less than 0.7 g / 10 minutes (more preferably 0.2 g / 10 minutes to 0.65 g / 10 minutes) and the melt flow rate (MFR) at a temperature of 230 ° C. are preferably 0.7 g.
  • the weight ratio of 10 minutes to 1.5 g / 10 minutes, most preferably 0.7 g / 10 minutes to 1.3 g / 10 minutes) with the polyolefin is preferably 1/99 to 99/1. , More preferably 10/90 to 90/10, further preferably 20/80 to 80/20, particularly preferably 30/70 to 70/30, and most preferably 40/60 to 60/40. Is.
  • polystyrene resin As the polyolefin, a commercially available product may be used, for example, “E110G” (manufactured by Prime Polymer Co., Ltd.), “EA9” (manufactured by Japan Polypropylene Corporation), “EA9FT” (manufactured by Japan Polypropylene Corporation), “E-”. Examples thereof include “185G” (manufactured by Prime Polymer Co., Ltd.), "WB140HMS” (manufactured by Borealis), and "WB135HMS” (manufactured by Borealis).
  • any suitable polyolefin-based elastomer can be adopted as long as the effects of the present invention are not impaired.
  • examples of such polyolefin-based elastomers include ethylene-propylene copolymers, ethylene-propylene-diene copolymers, ethylene-vinyl acetate copolymers, polybutene, polyisobutylene, chlorinated polyethylene, and polyolefin components and rubber components.
  • thermoplastic olefin-based elastomer such as an elastomer in which is physically dispersed, or an elastomer having a structure in which a polyolefin component and a rubber component are microphase-separated; a resin component A (olefin) forming a matrix.
  • a mixture containing a system resin component A) and a rubber component B forming a domain is dynamically heat-treated in the presence of a cross-linking agent, and cross-linked rubber particles are contained in the resin component A which is a matrix (sea phase).
  • TPV dynamically crosslinked thermoplastic olefin-based elastomer
  • TPV dynamically crosslinked thermoplastic olefin-based elastomer
  • the polyolefin-based elastomer preferably contains a rubber component.
  • rubber components include JP-A-08-302111, JP-A-2010-241934, JP-A-2008-024882, JP-A-2000-007858, JP-A-2006-052277, and JP-A.
  • Examples thereof include those described in Japanese Patent Application Laid-Open No. 2012-072306, Japanese Patent Application Laid-Open No. 2012-057068, Japanese Patent Application Laid-Open No. 2010-2418997, Japanese Patent Application Laid-Open No. 2009-067969, and Japanese Patent Application Laid-Open No. 03/002654.
  • the elastomer having a structure in which the polyolefin component and the olefin rubber component are microphase-separated include polypropylene resin (PP) and an elastomer composed of polypropylene resin (PP) and ethylene-propylene rubber (EPM). Examples thereof include an elastomer composed of ethylene-propylene-diene rubber (EPDM).
  • the weight ratio of the polyolefin component and the olefin rubber component is preferably 90/10 to 10/90, and more preferably 80/20 to 20/80.
  • the dynamically crosslinked thermoplastic olefin elastomer generally has a higher elastic modulus and a smaller compression set than the non-crosslinked thermoplastic olefin elastomer (TPO). As a result, the recoverability is good, and when a foam is used, excellent recoverability can be exhibited.
  • the dynamically crosslinked thermoplastic olefin elastomer is a cross-linking agent containing a mixture containing a resin component A (olefin resin component A) forming a matrix and a rubber component B forming a domain. It is a multiphase polymer having a sea-island structure in which crosslinked rubber particles are finely dispersed as domains (island phases) in the resin component A which is a matrix (sea phase) obtained by dynamically heat-treating in the presence. ..
  • thermoplastic olefin elastomer examples include JP-A-2000-007858, JP-A-2006-052277, JP-A-2012-072306, JP-A-2012-057068, and Japanese Patent Application Laid-Open No. 2012-057068. Examples thereof include those described in Japanese Patent Application Laid-Open No. 2010-2418997, Japanese Patent Application Laid-Open No. 2009-067969, and Re-Table 03/002654.
  • thermoplastic olefin elastomer a commercially available product may be used, for example, “Zeotherm” (manufactured by Zeon Corporation), “Thermoran” (manufactured by Mitsubishi Chemical Corporation), “Sarlink 3245D”. (Manufactured by Toyobo Corporation) and the like.
  • the melt flow rate (MFR) of the polyolefin-based elastomer at a temperature of 230 ° C. is preferably 2 g / 10 min to 15 g / 10 min, more preferably 3 g / 10 min to 10 g / 10 min, and even more preferably 3. It is 5 g / 10 minutes to 9 g / 10 minutes, particularly preferably 4 g / 10 minutes to 8 g / 10 minutes, and most preferably 4.5 g / 10 minutes to 7.5 g / 10 minutes.
  • the melt tension (190 ° C., at break) of the polyolefin-based elastomer is preferably less than 10 cN, and more preferably 5 cN to 9.5 cN.
  • the JIS A hardness of the polyolefin-based elastomer is preferably 30 ° to 95 °, more preferably 35 ° to 90 °, further preferably 40 ° to 88 °, and particularly preferably 45 ° to 85 °. Yes, most preferably 50 ° to 83 °.
  • the JIS A hardness is measured based on ISO7619 (JIS K6253).
  • the resin foam (ie, the resin composition) may further comprise a filler.
  • a filler By containing the filler, it is possible to form a resin foam that requires a large amount of energy to deform the bubble wall (cell wall), and the resin foam exhibits excellent shock absorption. Further, by containing the filler, a fine and uniform bubble structure can be formed, which is also advantageous in that excellent shock absorption can be exhibited.
  • the filler only one kind may be used alone, or two or more kinds may be used in combination.
  • the content ratio of the filler is preferably 10 parts by weight to 150 parts by weight, more preferably 30 parts by weight to 130 parts by weight, still more preferably, with respect to 100 parts by weight of the polymer constituting the resin foam. It is 50 parts by weight to 100 parts by weight. Within such a range, the above effect becomes remarkable.
  • the filler is an inorganic substance.
  • the material constituting the filler which is an inorganic substance include aluminum hydroxide, magnesium hydroxide, calcium carbonate, magnesium carbonate, calcium silicate, magnesium silicate, calcium oxide, magnesium oxide, aluminum oxide, aluminum nitride, and boric acid.
  • examples thereof include aluminum whisker, silicon nitride, boron nitride, crystalline silica, amorphous silica, metals (for example, gold, silver, copper, aluminum, nickel), carbon, graphite and the like.
  • the filler is organic.
  • the material constituting the filler which is an organic substance include polymethyl methacrylate (PMMA), polyimide, polyamideimide, polyetheretherketone, polyetherimide, polyesterimide and the like.
  • a flame retardant may be used as the filler.
  • the flame retardant include a bromine-based flame retardant, a chlorine-based flame retardant, a phosphorus-based flame retardant, an antimony-based flame retardant, and the like.
  • a non-halogen-non-antimony flame retardant is used.
  • non-halogen-non-antimony flame retardant examples include compounds containing aluminum, magnesium, calcium, nickel, cobalt, tin, zinc, copper, iron, titanium, boron and the like.
  • examples of such a compound (inorganic compound) include hydrated metal compounds such as aluminum hydroxide, magnesium hydroxide, magnesium oxide / nickel oxide hydrate, and magnesium oxide / zinc oxide hydrate. ..
  • the above-mentioned filler may be subjected to any appropriate surface treatment.
  • the surface treatment include a silane coupling treatment and a stearic acid treatment.
  • the bulk density of the filler is preferably 0.8 g / cm 3 or less, more preferably 0.6 g / cm 3 or less, still more preferably 0.4 g / cm 3 or less, and in particular. It is preferably 0.3 g / cm 3 or less. Within such a range, the filler can be contained with good dispersibility, and the effect of adding the filler can be sufficiently exhibited while reducing the content of the filler.
  • a resin foam having a low filler content is advantageous in that it is highly foamed, flexible, and has excellent stress dispersibility and appearance.
  • the lower limit of the bulk density of the filler is, for example, 0.01 g / cm 3, preferably 0.05 g / cm 3, more preferably 0.1 g / cm 3.
  • the number average particle size (primary particle size) of the filler is preferably 5 ⁇ m or less, more preferably 3 ⁇ m or less, and further preferably 1 ⁇ m or less. Within such a range, the filler can be contained with good dispersibility and a uniform bubble structure can be formed. As a result, a resin foam having excellent stress dispersibility and appearance can be obtained.
  • the lower limit of the number average particle size of the filler is, for example, 0.1 ⁇ m.
  • the number average particle size of the filler can be measured using a particle size distribution meter (MicrotracII, Microtrac Bell Co., Ltd.) using a suspension prepared by mixing 1 g of a filler with 100 g of water as a sample. it can.
  • the specific surface area of the filler is preferably 2 m 2 / g or more, more preferably 4 m 2 / g or more, and further preferably 6 m 2 / g or more. Within such a range, the filler can be contained with good dispersibility and a uniform bubble structure can be formed. As a result, a resin foam having excellent stress dispersibility and appearance can be obtained.
  • the upper limit of the specific surface area of the filler is, for example, 20 m 2 / g.
  • the specific surface area of the filler can be measured by the BET method, that is, by adsorbing a molecule having a known adsorption area to the surface of the filler at a low temperature of liquid nitrogen and measuring the adsorption amount.
  • the resin composition may contain any suitable other components as long as the effects of the present invention are not impaired.
  • Such other components may be only one kind or two or more kinds.
  • Such other components include, for example, rubber, resins other than polymers blended as resin materials, softeners, aliphatic compounds, antioxidants, antioxidants, light stabilizers, weather resistant agents, and ultraviolet absorption.
  • Agents dispersants, plastics, carbons, antistatic agents, surfactants, cross-linking agents, thickeners, rust preventives, silicone compounds, tension modifiers, shrinkage inhibitors, fluidity modifiers, gelling Agents, hardeners, reinforcing agents, foaming agents, foaming nucleating agents, coloring agents (pigments, dyes, etc.), pH adjusting agents, solvents (organic solvents), thermal polymerization initiators, photopolymerization initiators, lubricants, crystal nucleating agents, Examples thereof include crystallization accelerators, solubilizers, surface treatment agents, and dispersion aids.
  • the resin foam of the present invention is typically obtained by foaming a resin composition.
  • foaming method bubble forming method
  • a method usually used for foam molding such as a physical method or a chemical method
  • the resin foam of the present invention may be typically a foam (physical foam) formed by foaming by a physical method, or may be foamed by a chemical method. It may be a body (chemical foam).
  • the physical method is generally one in which a gas component such as air or nitrogen is dispersed in a polymer solution to form bubbles by mechanical mixing (mechanical foam).
  • the chemical method is generally a method of forming a cell by a gas generated by thermal decomposition of a foaming agent added to a polymer base to obtain a foam.
  • the resin composition to be subjected to foam molding can be, for example, a component of any suitable melt-kneading device, for example, an open mixing roll, a non-open Banbury mixer, a single-screw extruder, a twin-screw extruder, or a continuous type. It may be prepared by mixing using any suitable means such as a kneader and a pressure kneader.
  • ⁇ Embodiment 1 for forming the resin foam of the present invention for example, a step of mechanically foaming an emulsion resin composition (an emulsion containing a resin material (polymer) or the like) to foam (step A).
  • a step in which a resin foam is formed through the above can be mentioned.
  • the foaming device include a high-speed shearing device, a vibration device, a pressurized gas discharge device, and the like.
  • a high-speed shearing device is preferable from the viewpoint of reducing the bubble diameter and producing a large capacity.
  • This one embodiment 1 for forming the resin foam of the present invention can be applied to the formation from any resin composition.
  • the solid content concentration of the emulsion is preferably high from the viewpoint of film forming property.
  • the solid content concentration of the emulsion is preferably 30% by weight or more, more preferably 40% by weight or more, still more preferably 50% by weight or more.
  • the bubbles when foamed by mechanical stirring are those in which a gas is incorporated into the emulsion.
  • a gas any suitable gas can be adopted as long as it is inert to the emulsion, as long as the effects of the present invention are not impaired. Examples of such a gas include air, nitrogen, carbon dioxide and the like.
  • the resin foam of the present invention can be obtained by subjecting the emulsion resin composition foamed by the above method (bubble-containing emulsion resin composition) to a substrate and drying it (step B). it can.
  • the base material include a peel-treated plastic film (peeling-treated polyethylene terephthalate film and the like), a plastic film (polyethylene terephthalate film and the like), and the like.
  • Step B any appropriate method can be adopted as the coating method and the drying method as long as the effects of the present invention are not impaired.
  • Step B includes a preliminary drying step B1 in which the bubble-containing emulsion resin composition coated on the substrate is dried at 50 ° C. or higher and lower than 125 ° C., and then a main drying step B2 in which the bubble-containing emulsion resin composition is further dried at 125 ° C. or higher and 200 ° C. or lower. It is preferable to have.
  • the pre-drying step B1 and the main drying step B2 it is possible to prevent the coalescence of bubbles and the bursting of bubbles due to a rapid temperature rise.
  • bubbles are united and burst due to a rapid rise in temperature, so it is of great significance to provide the pre-drying step B1.
  • the temperature in the pre-drying step B1 is preferably 50 ° C. to 100 ° C.
  • the time of the pre-drying step B1 is preferably 0.5 minutes to 30 minutes, more preferably 1 minute to 15 minutes.
  • the temperature in the main drying step B2 is preferably 130 ° C. to 180 ° C. or lower, and more preferably 130 ° C. to 160 ° C.
  • the time of the main drying step B2 is preferably 0.5 minutes to 30 minutes, more preferably 1 minute to 15 minutes.
  • ⁇ Embodiment 2 for forming the resin foam of the present invention there is a mode in which the resin composition is foamed with a foaming agent to form a foam.
  • a foaming agent those usually used for foam molding can be used, and from the viewpoint of environmental protection and low pollution to the foam to be foamed, it is preferable to use a high-pressure inert gas.
  • any suitable inert gas can be adopted as long as it is inert to the resin composition and can be impregnated.
  • examples of such an inert gas include carbon dioxide, nitrogen gas, and air. These gases may be mixed and used. Of these, carbon dioxide is preferable from the viewpoint of a large amount of impregnation into the resin material (polymer) and a high impregnation rate.
  • the inert gas is preferably in a supercritical state. That is, it is particularly preferable to use carbon dioxide in a supercritical state. In the supercritical state, the solubility of the inert gas in the resin composition is further increased, a high concentration of the inert gas can be mixed, and the inert gas becomes high concentration at the time of a sudden pressure drop. Since the number of nuclei generated increases and the density of bubbles formed by the growth of the bubble nuclei becomes higher than in other states even if the porosity is the same, fine bubbles can be obtained.
  • the critical temperature of carbon dioxide is 31 ° C.
  • the critical pressure is 7.4 MPa.
  • a gas impregnation step of impregnating a resin composition containing a resin material (polymer) with an inert gas under high pressure for example, a gas impregnation step of impregnating a resin composition containing a resin material (polymer) with an inert gas under high pressure, the same.
  • a decompression step of lowering the pressure after the step to foam the resin material (polymer) for example, a method of forming the resin material (polymer) through a heating step of growing bubbles by heating if necessary.
  • a preformed unfoamed molded product may be impregnated with an inert gas, or the molten resin composition is impregnated with an inert gas under a pressurized state and then subjected to molding when the pressure is reduced.
  • You may.
  • These steps may be performed by either a batch method or a continuous method. That is, after the resin composition is previously molded into an appropriate shape such as a sheet to form an unfoamed resin molded product, the unfoamed resin molded product is impregnated with a high-pressure gas to release the pressure for foaming. It may be a batch method in which the resin composition is kneaded together with a high-pressure gas under pressure, and the pressure is released at the same time as molding, and molding and foaming may be performed at the same time.
  • a resin sheet for foam molding is produced by extruding the resin composition using an extruder such as a single-screw extruder or a twin-screw extruder.
  • the resin composition is uniformly kneaded using a kneader equipped with blades such as a roller, a cam, a kneader, and a bambari type, and pressed to a predetermined thickness using a hot plate press or the like.
  • a hot plate press or the like.
  • the unfoamed resin molded body thus obtained is placed in a high-pressure container, and a high-pressure inert gas (carbon dioxide or the like in a supercritical state) is injected to impregnate the unfoamed resin molded body with the inert gas.
  • a high-pressure inert gas carbon dioxide or the like in a supercritical state
  • the pressure is released (usually up to atmospheric pressure) to generate bubble nuclei in the resin.
  • the bubble nuclei may be grown as they are at room temperature, but in some cases, they may be grown by heating.
  • known or conventional methods such as a water bath, an oil bath, a hot roll, a hot air oven, far infrared rays, near infrared rays, and microwaves can be adopted.
  • the non-foamed resin molded product to be foamed is not limited to a sheet-like product, and various shapes can be used depending on the intended use. Further, the non-foamed resin molded product to be used for foaming can be produced by extrusion molding, press molding, or other molding method such as injection molding.
  • a heating step of growing bubbles by heating may be provided, if necessary. After the bubbles are grown in this way, the shape may be fixed by rapidly cooling with cold water or the like, if necessary. Further, the high-pressure gas may be introduced continuously or discontinuously. Further, in the kneading impregnation step and the molding depressurization step, for example, an extruder or an injection molding machine can be used.
  • the heating method for growing the bubble nuclei include any suitable method such as a water bath, an oil bath, a hot roll, a hot air oven, far infrared rays, near infrared rays, and microwaves. Any suitable shape may be adopted as the shape of the foam. Examples of such a shape include a sheet shape, a prismatic shape, a cylindrical shape, and a modified shape.
  • the amount of the gas mixed when the resin composition is foam-molded is, for example, preferably 2% by weight to 10% by weight, based on the total amount of the resin composition, in that a highly foamed foam can be obtained. It is preferably 2.5% by weight to 8% by weight, more preferably 3% by weight to 6% by weight.
  • the pressure when the resin composition is impregnated with the inert gas can be appropriately selected in consideration of operability and the like.
  • a pressure is, for example, preferably 6 MPa or more (for example, 6 MPa to 100 MPa), more preferably 8 MPa or more (for example, 8 MPa to 50 MPa).
  • the pressure when carbon dioxide in the supercritical state is used is preferably 7.4 MPa or more from the viewpoint of maintaining the supercritical state of carbon dioxide.
  • the pressure is lower than 6 MPa, the bubble growth during foaming is remarkable, the bubble diameter becomes too large, and a preferable average cell diameter (average cell diameter) may not be obtained.
  • the temperature in the gas impregnation step varies depending on the inert gas used, the type of component in the resin composition, etc., and can be selected in a wide range. Considering operability and the like, the temperature is preferably 10 ° C to 350 ° C.
  • the impregnation temperature is preferably 10 ° C. to 250 ° C., more preferably 40 ° C. to 230 ° C. in the batch type.
  • the impregnation temperature is preferably 60 ° C. to 350 ° C. in the continuous type.
  • the temperature at the time of impregnation is preferably 32 ° C. or higher, more preferably 40 ° C. or higher, in order to maintain the supercritical state.
  • the decompression rate is preferably 5 MPa / sec to 300 MPa / sec in order to obtain uniform fine bubbles.
  • the heating temperature in the heating step is preferably 40 ° C. to 250 ° C., more preferably 60 ° C. to 250 ° C.
  • FIG. 1 is a schematic cross-sectional view of a foaming member according to one embodiment of the present invention.
  • the foaming member 100 has a resin foaming layer 10 and an adhesive layer 20 arranged on at least one side of the resin foaming layer 10.
  • the resin foam layer 10 is composed of the resin foam.
  • the thickness of the pressure-sensitive adhesive layer is preferably 5 ⁇ m to 300 ⁇ m, more preferably 6 ⁇ m to 200 ⁇ m, further preferably 7 ⁇ m to 100 ⁇ m, and particularly preferably 8 ⁇ m to 50 ⁇ m.
  • the foamed member of the present invention can exhibit excellent shock absorption.
  • the pressure-sensitive adhesive layer a layer made of any suitable pressure-sensitive adhesive can be adopted.
  • the pressure-sensitive adhesive constituting the pressure-sensitive adhesive layer include rubber-based pressure-sensitive adhesives (synthetic rubber-based pressure-sensitive adhesives, natural rubber-based pressure-sensitive adhesives, etc.), urethane-based pressure-sensitive adhesives, acrylic urethane-based pressure-sensitive adhesives, acrylic-based pressure-sensitive adhesives, and silicone-based pressure-sensitive adhesives.
  • examples thereof include pressure-sensitive adhesives, polyester-based pressure-sensitive adhesives, polyamide-based pressure-sensitive adhesives, epoxy-based pressure-sensitive adhesives, vinyl alkyl ether-based pressure-sensitive adhesives, fluorine-based pressure-sensitive adhesives, and rubber-based pressure-sensitive adhesives.
  • the pressure-sensitive adhesive constituting the pressure-sensitive adhesive layer is preferably at least one selected from an acrylic pressure-sensitive adhesive, a silicone-based pressure-sensitive adhesive, and a rubber-based pressure-sensitive adhesive. Such an adhesive may be only one kind or two or more kinds.
  • the pressure-sensitive adhesive layer may be one layer or two or more layers.
  • the adhesives are, for example, emulsion type adhesives, solvent type adhesives, ultraviolet crosslinked (UV crosslinked) adhesives, electron beam crosslinked (EB crosslinked) adhesives, and heat melt type adhesives. Agents (hot melt type adhesives) and the like can be mentioned.
  • Such an adhesive may be only one kind or two or more kinds.
  • Steam moisture permeability of the adhesive layer is preferably not more than 50 (g / (m 2 ⁇ 24 hr)), more preferably 30 (g / (m 2 ⁇ 24 hr)) or less, more preferably 20 (g / (m 2 ⁇ 24 hr)) or less, particularly preferably 10 (g / (m 2 ⁇ 24 hr)) or less.
  • the foamed sheet of the present invention can stabilize the shock absorption without being affected by moisture.
  • the water vapor permeability can be measured, for example, by a method according to JIS Z 0208 under test conditions of 40 ° C. and a relative humidity of 92%.
  • the pressure-sensitive adhesive constituting the pressure-sensitive adhesive layer may contain any suitable other component as long as the effect of the present invention is not impaired.
  • Other components include, for example, other polymer components, softeners, antioxidants, hardeners, plasticizers, fillers, antioxidants, thermal polymerization initiators, photopolymerization initiators, UV absorbers, light stabilizers.
  • Colorants pigments, dyes, etc.
  • solvents organic solvents
  • surfactants eg, ionic surfactants, silicone-based surfactants, fluorine-based surfactants, etc.
  • cross-linking agents eg, polyisocyanate-based
  • Cross-linking agents silicone-based cross-linking agents, epoxy-based cross-linking agents, alkyl etherified melamine-based cross-linking agents, etc.
  • the thermal polymerization initiator and the photopolymerization initiator may be included in the material for forming the polymer component.
  • the foamed member of the present invention can be produced by any suitable method.
  • the foamed member of the present invention is produced, for example, by laminating a resin foam layer and a pressure-sensitive adhesive layer, or by laminating a material for forming a pressure-sensitive adhesive layer and a resin foam layer and then forming a pressure-sensitive adhesive layer by a curing reaction or the like. And the method of manufacturing.
  • the resin foam is TD (direction orthogonal to the flow direction) and perpendicular to the main surface of the resin foam (thickness direction).
  • TD direction orthogonal to the flow direction
  • Thickness direction direction orthogonal to the main surface of the resin foam
  • Non-foam bending stress Non-foaming by pressing the resin foam with a vacuum press molding machine (IVM-70: Iwaki Kogyo Co., Ltd.) at a temperature of (melting point + 70 ° C.) and a pressure of 15 MPa for 5 minutes.
  • a foamed resin molded product a was obtained.
  • the resin molded body a was cut into a width of 20 mm and a length of 150 mm to prepare a sample, and this sample was placed on a three-point bending tool having a distance between fulcrums of 100 mm, and the pushing speed was 5 mm / in an environment of 23 ° C. ⁇ 50% RH.
  • a indentation test (manufactured by Shimadzu Corporation, trade name "AG-Xplus”) was performed in min, and the load (g) when the sample was indented by 5 mm was defined as a non-foam bending stress.
  • VHX-2000 Keyence's "VHX-2000” was used to observe a predetermined area (3 mm 2 ) range at a magnification of 100 times, and the length of one bubble in the thickness direction and the length of TD were measured. -Similar measurements were made for all bubbles present within a predetermined area. The aspect ratio of the bubbles was calculated by dividing the length of the TD by the length in the thickness direction, and the same calculation was performed for all the bubbles, and the average value was taken as the "aspect ratio of the bubbles of the resin foam".
  • Example 1 Polypropylene (melt flow rate (MFR) (230 ° C): 0.40 g / 10 min) 65 parts by weight, polyolefin-based elastomer (melt flow rate (MFR): 6 g / 10 min, JIS A hardness: 79 °) 35 parts by weight, water 80 parts by weight of magnesium oxide (trade name "KISUMA 5P” manufactured by Kyowa Chemical Industry Co., Ltd.), 10 parts by weight of carbon (trade name "Asahi # 35" manufactured by Asahi Carbon Co., Ltd.), and 1 part by weight of stearate monoglyceride It was kneaded at a temperature of 200 ° C.
  • the resin foam a is passed between the rolls (the gap between the rolls) in the pair of rolls in which one roll is heated to 200 ° C. to form the resin foam A having a thickness of 0.1 mm. Obtained.
  • the gap between the rolls was set so that the resin foam A having a thickness of 0.1 mm could be obtained.
  • the obtained resin foam A was subjected to the above evaluations (1) to (10). The results are shown in Table 1.
  • Example 2 Polypropylene (melt flow rate (MFR) (230 ° C): 0.40 g / 10 min) 65 parts by weight, polyolefin-based elastomer (melt flow rate (MFR): 6 g / 10 min, JIS A hardness: 79 °) 35 parts by weight, water 80 parts by weight of magnesium oxide (trade name "KISUMA 5P” manufactured by Kyowa Chemical Industry Co., Ltd.), 10 parts by weight of carbon (trade name "Asahi # 35" manufactured by Asahi Carbon Co., Ltd.), and 1 part by weight of stearate monoglyceride It was kneaded at a temperature of 200 ° C.
  • the resin foam b is passed between the rolls (the gap between the rolls) in the pair of rolls in which one roll is heated to 200 ° C. to obtain the resin foam C having a thickness of 0.1 mm. Obtained.
  • the gap between the rolls was set so that the resin foam B having a thickness of 0.1 mm could be obtained.
  • the obtained resin foam B was subjected to the above evaluations (1) to (10). The results are shown in Table 1.
  • Example 3 Polypropylene (melt flow rate (MFR) (230 ° C): 0.40 g / 10 min) 65 parts by weight, polyolefin-based elastomer (melt flow rate (MFR): 6 g / 10 min, JIS A hardness: 79 °) 35 parts by weight, water 120 parts by weight of magnesium oxide (trade name "KISUMA 5P” manufactured by Kyowa Chemical Industry Co., Ltd.), 10 parts by weight of carbon (trade name "Asahi # 35" manufactured by Asahi Carbon Co., Ltd.), and 1 part by weight of stearate monoglyceride It was kneaded at a temperature of 200 ° C.
  • MFR melt flow rate
  • MFR polyolefin-based elastomer
  • the resin foam c is passed between the rolls (the gap between the rolls) in the pair of rolls in which one roll is heated to 200 ° C. to obtain the resin foam C having a thickness of 0.1 mm. Obtained.
  • the gap between the rolls was set so that the resin foam C having a thickness of 0.1 mm could be obtained.
  • the obtained resin foam C was subjected to the above evaluations (1) to (10). The results are shown in Table 1.
  • Example 4 A resin foam D containing polyethylene as a main component was prepared, having an apparent density of 0.3 g / cm 3 , a 25% compression load of 50 N / cm 2, and an elastic strain energy of 26 kPa. This resin foam D was subjected to the above evaluations (1) to (10). The results are shown in Table 1.
  • Example 5 Polypropylene (melt flow rate (MFR) (230 ° C): 0.40 g / 10 min) 60 parts by weight, polyolefin-based elastomer (melt flow rate (MFR): 6 g / 10 min, JIS A hardness: 79 °) 40 parts by weight, water 120 parts by weight of magnesium oxide (trade name "KISUMA 5P” manufactured by Kyowa Chemical Industry Co., Ltd.), 10 parts by weight of carbon (trade name "Asahi # 35" manufactured by Asahi Carbon Co., Ltd.), and 1 part by weight of stearate monoglyceride It was kneaded at a temperature of 200 ° C.
  • MFR melt flow rate
  • MFR polyolefin-based elastomer
  • the resin foam e is passed between the rolls (gap between the rolls) in the pair of rolls in which one roll is heated to 200 ° C. to form a resin foam E having a thickness of 0.1 mm. Obtained.
  • the gap between the rolls was set so that the resin foam E having a thickness of 0.1 mm could be obtained.
  • the obtained resin foam E was subjected to the above evaluations (1) to (10). The results are shown in Table 1.
  • Example 6 Polypropylene (melt flow rate (MFR) (230 ° C): 0.40 g / 10 min) 60 parts by weight, polyolefin-based elastomer (melt flow rate (MFR): 6 g / 10 min, JIS A hardness: 79 °) 40 parts by weight, water 120 parts by weight of magnesium oxide (trade name "KISUMA 5P” manufactured by Kyowa Chemical Industry Co., Ltd.), 10 parts by weight of carbon (trade name "Asahi # 35" manufactured by Asahi Carbon Co., Ltd.), and 1 part by weight of stearate monoglyceride It was kneaded at a temperature of 200 ° C.
  • MFR melt flow rate
  • MFR polyolefin-based elastomer
  • the resin foam j is passed between the rolls (gap between the rolls) in the pair of rolls in which one roll is heated to 200 ° C. to form a resin foam J having a thickness of 0.1 mm. Obtained.
  • the gap between the rolls was set so that the resin foam J having a thickness of 0.1 mm could be obtained.
  • the obtained resin foam J was subjected to the above evaluations (1) to (10). The results are shown in Table 1.
  • the resin foam g is passed between the rolls (the gap between the rolls) in the pair of rolls in which one roll is heated to 200 ° C. to obtain the resin foam G having a thickness of 0.1 mm. Obtained.
  • the gap between the rolls was set so that the resin foam G having a thickness of 0.1 mm could be obtained.
  • the obtained resin foam G was subjected to the above evaluations (1) to (10). The results are shown in Table 1.
  • This foam composition was applied onto a peel-treated PET (polyethylene terephthalate) film (thickness: 38 ⁇ m, trade name “MRF # 38” manufactured by Mitsubishi Plastics Co., Ltd.) at 70 ° C. for 4.5 minutes at 140 ° C. The mixture was dried for 4.5 minutes to obtain a resin foam I (thickness: 0.1 mm). The obtained resin foam I was subjected to the above evaluations (1) to (10). The results are shown in Table 1.
  • the resin foam of the present invention can be suitably used, for example, as a cushioning material for electronic devices.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Health & Medical Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Medicinal Chemistry (AREA)
  • Polymers & Plastics (AREA)
  • Inorganic Chemistry (AREA)
  • Emergency Medicine (AREA)
  • Manufacture Of Porous Articles, And Recovery And Treatment Of Waste Products (AREA)

Abstract

Provided is a resin foam which is thin and has excellent impact resistance. A resin foam according to the present invention has an apparent density of 0.02 g/cm3-0.30 g/cm3, a 25% compression load of 90 kPa or less, an elastic strain energy of 10 kPa or more upon compression, and a bubble structure. In one embodiment, the resin foam has an average bubble diameter of 10-200 μm. In one embodiment, the resin foam has a bubble fraction of 30% or more. In one embodiment, the resin foam has a coefficient of variation of bubble diameter of 0.5 or less.

Description

樹脂発泡体Resin foam
 本発明は、樹脂発泡体に関する。 The present invention relates to a resin foam.
 電子機器の画面保護や基板の保護等のため、クッション材が多用されている。近年、電子機器の薄型化の傾向に応じて、クッション材が配置される部分のクリアランスを狭くすることが求められている。さらに、有機ELパネルを使用して、可撓性を有する電子機器の検討も進んでいる。このような電子機器においては、従来の剛直なLCDパネルとは異なる作用の負荷がかかることとなる。 Cushion material is often used to protect the screen of electronic devices and the substrate. In recent years, it has been required to narrow the clearance of the portion where the cushion material is arranged in accordance with the tendency of thinning of electronic devices. Furthermore, studies on flexible electronic devices using organic EL panels are also in progress. In such an electronic device, a load of action different from that of the conventional rigid LCD panel is applied.
 クッション材としては、発泡構造を有する部材が挙げられ、微細気泡構造を有する発泡体を得る方法として、不活性ガスを高圧下でポリマーに溶解させた後、急激に圧力を低下させて発泡構造を形成する方法が提案されている(引用文献1)。また、発泡部材の衝撃吸収性を向上させる試みも行われている(引用文献2、引用文献3)。しかしながら、従来の剛直なディスプレイで使用される機器だけでなく、可撓性を有するディスプレイで使用される機器、その可撓性ディスプレイを曲げて使用される機器に求められる耐衝撃性を高いレベルで実現し、かつ、薄く構成された発泡部材は、得られていない。 Examples of the cushioning material include members having a foamed structure, and as a method for obtaining a foam having a fine bubble structure, an inert gas is dissolved in a polymer under high pressure, and then the pressure is rapidly reduced to form a foamed structure. A method of forming has been proposed (Cited Document 1). Attempts have also been made to improve the shock absorption of the foamed member (Cited Documents 2 and 3). However, not only the equipment used in conventional rigid displays, but also the equipment used in flexible displays and the equipment used by bending the flexible display have a high level of impact resistance. A foamed member that has been realized and is thinly constructed has not been obtained.
特開平6-322168号公報Japanese Unexamined Patent Publication No. 6-322168 特開2017-186504号公報Japanese Unexamined Patent Publication No. 2017-186504 特開2015-034299号公報Japanese Unexamined Patent Publication No. 2015-034299
 本発明の課題は、薄くとも、衝撃吸収性に優れる樹脂発泡体を提供することにある。 An object of the present invention is to provide a resin foam having excellent shock absorption even if it is thin.
 本発明の樹脂発泡体は、見かけ密度が、0.02g/cm~0.30g/cmであり、25%圧縮荷重が90kPa以下であり、圧縮時の弾性歪エネルギーが10kPa以上であり、気泡構造を有する。
 1つの実施形態においては、上記樹脂発泡体は、平均気泡径が10μm~200μmである。
 1つの実施形態においては、上記樹脂発泡体は、気泡率が、30%以上である。
 1つの実施形態においては、上記樹脂発泡体は、気泡径の変動係数が、0.5以下である。
 1つの実施形態においては、上記樹脂発泡体は、非発泡曲げ応力が、5MPa以上である。
 1つの実施形態においては、上記樹脂発泡体は、充填材をさらに含む。
 1つの実施形態においては、上記充填材が、無機物である。
 1つの実施形態においては、上記充填材が、有機物である。
 1つの実施形態においては、上記樹脂発泡体は、ポリオレフィン系樹脂を含む。 
 1つの実施形態においては、上記ポリオレフィン系樹脂が、ポリオレフィン系エラストマー以外のポリオレフィンとポリオレフィン系エラストマーの混合物である。
 1つの実施形態においては、上記樹脂発泡体は、片面または両面に、熱溶融層を有する。
 本発明の別の局面によれば、発泡部材が提供される。この発泡部材は、樹脂発泡層と、該樹脂発泡層の少なくとも一方の側に配置された粘着剤層を有し、該樹脂発泡層が、上記樹脂発泡体である。
The resin foam of the present invention has an apparent density of 0.02 g / cm 3 to 0.30 g / cm 3 , a 25% compression load of 90 kPa or less, and an elastic strain energy during compression of 10 kPa or more. It has a bubble structure.
In one embodiment, the resin foam has an average cell diameter of 10 μm to 200 μm.
In one embodiment, the resin foam has a bubble ratio of 30% or more.
In one embodiment, the resin foam has a coefficient of variation of bubble diameter of 0.5 or less.
In one embodiment, the resin foam has a non-foam bending stress of 5 MPa or more.
In one embodiment, the resin foam further comprises a filler.
In one embodiment, the filler is an inorganic material.
In one embodiment, the filler is organic.
In one embodiment, the resin foam comprises a polyolefin-based resin.
In one embodiment, the polyolefin-based resin is a mixture of a polyolefin other than the polyolefin-based elastomer and a polyolefin-based elastomer.
In one embodiment, the resin foam has a hot melt layer on one or both sides.
According to another aspect of the present invention, a foamed member is provided. This foamed member has a resin foamed layer and an adhesive layer arranged on at least one side of the resin foamed layer, and the resin foamed layer is the resin foam.
 本発明によれば、薄くとも、衝撃吸収性に優れる樹脂発泡体を提供することができる。本発明の樹脂発泡体は、柔軟なシートと組み合わせた際においても、優れた衝撃吸収性を発揮する。 According to the present invention, it is possible to provide a resin foam having excellent shock absorption even if it is thin. The resin foam of the present invention exhibits excellent shock absorption even when combined with a flexible sheet.
本発明の1つの実施形態による発泡部材の概略断面図である。It is the schematic sectional drawing of the foaming member according to one Embodiment of this invention.
A.樹脂発泡体
 本発明の樹脂発泡体は、見かけ密度が、0.02g/cm~0.30g/cmであり、25%圧縮荷重が90kPa以下であり、圧縮時の弾性歪エネルギーが10kPa 以上である。本発明の樹脂発泡体は、気泡構造(セル構造)を有する。気泡構造(セル構造)としては、独立気泡構造、連続気泡構造、半連続半独立気泡構造(独立気泡構造と連続気泡構造が混在している気泡構造)などが挙げられる。樹脂発泡体の気泡構造は、連続気泡構造、または半連続半独立気泡構造が好ましく、半連続半独立気泡構造がより好ましい。本発明の樹脂発泡体は、樹脂組成物を発泡させることにより得られる。上記樹脂組成物は、樹脂発泡体を構成する樹脂を少なくとも含有する組成物である。
A. Resin foam The resin foam of the present invention has an apparent density of 0.02 g / cm 3 to 0.30 g / cm 3 , a 25% compression load of 90 kPa or less, and an elastic strain energy during compression of 10 kPa or more. Is. The resin foam of the present invention has a bubble structure (cell structure). Examples of the cell structure (cell structure) include a closed cell structure, an open cell structure, and a semi-continuous semi-closed cell structure (a bubble structure in which a closed cell structure and an open cell structure are mixed). The cell structure of the resin foam is preferably a continuous cell structure or a semi-continuous semi-closed cell structure, and more preferably a semi-continuous semi-closed cell structure. The resin foam of the present invention is obtained by foaming the resin composition. The resin composition is a composition containing at least the resin constituting the resin foam.
 上記のとおり、本発明の樹脂発泡体の見かけ密度は、0.02g/cm~0.30g/cmである。このような範囲であれば、柔軟性および応力分散性に優れる樹脂発泡体を得ることができる。本発明の樹脂発泡体の見かけ密度は、好ましくは0.03g/cm~0.28g/cmであり、より好ましくは0.04g/cm~0.25g/cmであり、特に好ましくは0.05g/cm~0.20g/cmであり、最も好ましくは0.07g/cm~0.15g/cmである。このような範囲であれば、上記効果が顕著となる。見かけ密度の測定方法は、後述する。 As described above, the apparent density of the resin foam of the present invention is 0.02 g / cm 3 to 0.30 g / cm 3 . Within such a range, a resin foam having excellent flexibility and stress dispersibility can be obtained. The apparent density of the resin foam of the present invention is preferably 0.03g / cm 3 ~ 0.28g / cm 3, more preferably from 0.04g / cm 3 ~ 0.25g / cm 3, particularly preferably Is 0.05 g / cm 3 to 0.20 g / cm 3 , and most preferably 0.07 g / cm 3 to 0.15 g / cm 3 . Within such a range, the above effect becomes remarkable. The method for measuring the apparent density will be described later.
 上記のとおり、本発明の樹脂発泡体の25%圧縮荷重は、90kPa以下である。25%圧縮荷重がこのような範囲の樹脂発泡体であれば、適用される部材への負荷を小さくすることができる。より詳細には、クリアランスの狭い箇所に多少圧縮して樹脂発泡体を適用する場合において、本発明の樹脂発泡体によれば、他の部材へかかる応力を低減することができる。例えば、樹脂発泡体を表示部材に適用する場合は、当該表示部材にかかる応力を緩和・分散することができるため、色ムラ低減、部材保護の観点から有用である。本発明の樹脂発泡体の25%圧縮荷重は、好ましくは80kPa以下であり、より好ましくは75kPa以下であり、さらに好ましくは55kPa以下である。このような範囲であれば、上記効果が顕著となる。また、本発明の樹脂発泡体の25%圧縮荷重は、小さいほど好ましいが、その下限は、例えば、10kPaであり、好ましくは5kPaであり、より好ましくは1kPaであり、特に好ましくは0.1kPaである。25%圧縮荷重の測定方法は、後述する。 As described above, the 25% compressive load of the resin foam of the present invention is 90 kPa or less. If the resin foam has a 25% compressive load in such a range, the load on the applied member can be reduced. More specifically, when the resin foam is applied to a portion having a narrow clearance by compressing it to some extent, the resin foam of the present invention can reduce the stress applied to other members. For example, when the resin foam is applied to the display member, the stress applied to the display member can be relaxed and dispersed, which is useful from the viewpoint of reducing color unevenness and protecting the member. The 25% compressive load of the resin foam of the present invention is preferably 80 kPa or less, more preferably 75 kPa or less, and further preferably 55 kPa or less. Within such a range, the above effect becomes remarkable. The 25% compressive load of the resin foam of the present invention is preferably as small as possible, but the lower limit thereof is, for example, 10 kPa, preferably 5 kPa, more preferably 1 kPa, and particularly preferably 0.1 kPa. is there. The method for measuring the 25% compressive load will be described later.
 上記のとおり、本発明の樹脂発泡体の圧縮時の弾性歪エネルギーは、10kPa以上である。「圧縮時の弾性歪エネルギー」は、樹脂発泡体を10%圧縮させる際の圧縮反発力の総量を意味する。具体的には、「圧縮時の弾性歪エネルギー」は、JIS K 6767に準じた圧縮試験(試験温度:23℃、サンプルサイズ:10mm×10mm、圧縮速度:10mm/min)により、樹脂発泡体の圧縮率(%)および圧縮反発力(kPa)を測定した際の、x軸を圧縮率(%)としy軸を圧縮反発力(kPa)とする圧縮ss曲線から求められ、圧縮率が0%~10%である範囲における、当該ss曲線と当該x軸とから規定される領域の面積である。樹脂発泡体の圧縮時の弾性歪エネルギーが、上記範囲であれば、衝撃吸収性に優れる樹脂発泡体を得ることができる。より詳細には、上記範囲の弾性歪エネルギーを有する樹脂発泡体は、衝撃が加わった際に、当該樹脂発泡体の変形に多くのエネルギーが消費されるため、強い衝撃に対しても、これを良好に吸収することができる。本発明の樹脂発泡体の圧縮時の弾性歪エネルギーは、好ましくは20kPa以上であり、より好ましくは28kPa以上であり、さらに好ましくは35kPa以上であり、さらに好ましくは50kPa以上であり、さらに好ましくは80kPa以上であり、特に好ましくは100kPa以上であり、最も好ましくは150kPa以上である。このような範囲であれば、上記効果が顕著となる。本発明の樹脂発泡体の圧縮時の弾性歪エネルギーの上限は、例えば、500kPa(好ましくは800kPa)である。 As described above, the elastic strain energy of the resin foam of the present invention during compression is 10 kPa or more. "Elastic strain energy during compression" means the total amount of compression repulsive force when the resin foam is compressed by 10%. Specifically, the "elastic strain energy during compression" was determined by a compression test (test temperature: 23 ° C., sample size: 10 mm x 10 mm, compression rate: 10 mm / min) according to JIS K 6767. When the compression rate (%) and the compression repulsive force (kPa) are measured, it is obtained from the compression ss curve with the x-axis as the compression rate (%) and the y-axis as the compression repulsive force (kPa), and the compression rate is 0%. It is the area of the region defined by the ss curve and the x-axis in the range of about 10%. If the elastic strain energy during compression of the resin foam is within the above range, a resin foam having excellent shock absorption can be obtained. More specifically, a resin foam having an elastic strain energy in the above range consumes a large amount of energy for deformation of the resin foam when an impact is applied, so that this can be applied even to a strong impact. Can be absorbed well. The elastic strain energy of the resin foam of the present invention during compression is preferably 20 kPa or more, more preferably 28 kPa or more, still more preferably 35 kPa or more, still more preferably 50 kPa or more, still more preferably 80 kPa or more. The above is particularly preferable, 100 kPa or more, and most preferably 150 kPa or more. Within such a range, the above effect becomes remarkable. The upper limit of the elastic strain energy during compression of the resin foam of the present invention is, for example, 500 kPa (preferably 800 kPa).
 本発明においては、見かけ密度、25%圧縮荷重および圧縮時の弾性歪エネルギーを上記の範囲とすることにより、柔軟性、応力分散性および耐衝撃性に優れる樹脂発泡体を得ることができる。さらに、上記特性をすべて満足する樹脂発泡体は、薄層でありながらも優れた耐衝撃性を発揮し、かつ、可撓性を有する部材(例えば、有機ELパネル、樹脂基材)との組み合わせにおいても優れた耐衝撃性を発揮する。 In the present invention, a resin foam having excellent flexibility, stress dispersibility and impact resistance can be obtained by setting the apparent density, 25% compressive load and elastic strain energy during compression within the above ranges. Further, a resin foam that satisfies all of the above characteristics is a combination with a member (for example, an organic EL panel, a resin base material) that exhibits excellent impact resistance while being a thin layer and has flexibility. Demonstrates excellent impact resistance.
 本発明の樹脂発泡体の厚みは、好ましくは30μm~5000μmであり、より好ましくは35μm~4000μmであり、さらに好ましくは40μm~3000μmであり、さらに好ましくは45μm~2000μmであり、さらに好ましくは50μm~1000μmであり、特に好ましくは55μm~500μmである。上記のとおり、本発明の樹脂発泡体は薄層でありながらも優れた耐衝撃性を発揮する。また、樹脂発泡体の厚みが上記範囲内であれば、微細かつ均一な気泡構造を形成することができ、優れた衝撃吸収性を発現し得る点で有利である。 The thickness of the resin foam of the present invention is preferably 30 μm to 5000 μm, more preferably 35 μm to 4000 μm, further preferably 40 μm to 3000 μm, still more preferably 45 μm to 2000 μm, still more preferably 50 μm to 50 μm. It is 1000 μm, and particularly preferably 55 μm to 500 μm. As described above, the resin foam of the present invention exhibits excellent impact resistance even though it is a thin layer. Further, when the thickness of the resin foam is within the above range, a fine and uniform bubble structure can be formed, which is advantageous in that excellent shock absorption can be exhibited.
 本発明の樹脂発泡体の25℃における破断伸びは、好ましくは120%以下であり、より好ましくは110%以下であり、さらに好ましくは100%以下であり、特に好ましくは90%以下である。このような範囲であれば、柔軟性および応力分散性に優れる樹脂発泡体を得ることができる。なお、破断伸びが小さいと、樹脂発泡体に荷重が加わったときに、当該樹脂発泡体のセル壁の変形が小さくなり、例えば、充填材が添加されている場合、当該樹脂発泡体を構成する樹脂と当該充填材との界面で滑りが発生しやすくなり、荷重をより緩和し得る。一方、破断伸びが大き過ぎると、樹脂発泡体のセル壁の変形が大きくなり、荷重を緩和しにくくなるおそれがある。破断伸びは、JIS K 6767に準じて測定することができる。 The elongation at break of the resin foam of the present invention at 25 ° C. is preferably 120% or less, more preferably 110% or less, further preferably 100% or less, and particularly preferably 90% or less. Within such a range, a resin foam having excellent flexibility and stress dispersibility can be obtained. If the elongation at break is small, the deformation of the cell wall of the resin foam becomes small when a load is applied to the resin foam. For example, when a filler is added, the resin foam constitutes the resin foam. Slip is likely to occur at the interface between the resin and the filler, and the load can be further relaxed. On the other hand, if the breaking elongation is too large, the deformation of the cell wall of the resin foam becomes large, and it may be difficult to relax the load. The elongation at break can be measured according to JIS K 6767.
 上記樹脂発泡体の平均気泡径(平均セル径)は、好ましくは10μm~200μmであり、より好ましくは15μm~180μmであり、さらに好ましくは20μm~150μmであり、特に好ましくは23μm~120μmであり、特に好ましくは25μm~100μmであり、最も好ましくは30μm~80μmである。このような範囲であれば、柔軟性および応力分散性により優れる樹脂発泡体を得ることができる。また、圧縮回復性にも優れ、繰り返し衝撃に対する耐性に優れる樹脂発泡体を得ることができる。平均気泡径の測定方法は、後述する。 The average cell diameter (average cell diameter) of the resin foam is preferably 10 μm to 200 μm, more preferably 15 μm to 180 μm, further preferably 20 μm to 150 μm, and particularly preferably 23 μm to 120 μm. It is particularly preferably 25 μm to 100 μm, and most preferably 30 μm to 80 μm. Within such a range, a resin foam having more excellent flexibility and stress dispersibility can be obtained. In addition, it is possible to obtain a resin foam having excellent compression recovery and resistance to repeated impacts. The method for measuring the average cell diameter will be described later.
 上記樹脂発泡体が有する気泡のアスペクト比は、好ましくは1.5以上である。このような範囲であれば、厚み回復性に優れる樹脂発泡体を得ることができる。上記樹脂発泡体を構成する気泡のアスペクト比は、好ましくは2.0以上であり、より好ましくは2.5以上である。このような範囲であれば、上記効果は顕著となる。また、上記樹脂発泡体を構成する気泡のアスペクト比の上限は、好ましくは8であり、より好ましくは6であり、さらに好ましくは5である。このような範囲であれば、衝撃吸収性に優れる樹脂発泡体を得ることができる。 The aspect ratio of bubbles contained in the resin foam is preferably 1.5 or more. Within such a range, a resin foam having excellent thickness recovery can be obtained. The aspect ratio of the bubbles constituting the resin foam is preferably 2.0 or more, and more preferably 2.5 or more. Within such a range, the above effect becomes remarkable. The upper limit of the aspect ratio of the bubbles constituting the resin foam is preferably 8, more preferably 6, and even more preferably 5. Within such a range, a resin foam having excellent shock absorption can be obtained.
 なお、本明細書において、「樹脂発泡体が有する気泡のアスペクト比」は、無作為に選択した箇所における樹脂発泡体断面中の所定面積(3mm)範囲に存在する個々の気泡のアスペクト比の平均値を意味する。「樹脂発泡体が有する気泡のアスペクト比」の具体的な求め方は、以下のとおりである。
・樹脂発泡体を、カミソリ刃を用いて、TD(流れ方向に直交する方向)、かつ、樹脂発泡体の主面に対して垂直方向(厚み方向)に切断し、所定面積(3mm)範囲を倍率100倍で観察する。気泡一個の厚み方向の長さとTDの長さを測定する。
・同様の測定を所定面積内に存在する全ての気泡に対して行う。
・気泡のアスペクト比は、TDの長さ÷厚み方向の長さで計算され、全ての気泡で同様の計算を行い、平均した値を「樹脂発泡体が有する気泡のアスペクト比」とする。
In the present specification, the "aspect ratio of bubbles contained in the resin foam" is the aspect ratio of individual bubbles existing in a predetermined area (3 mm 2) in the cross section of the resin foam at randomly selected locations. Means the average value. The specific method for obtaining the "aspect ratio of bubbles contained in the resin foam" is as follows.
-The resin foam is cut using a razor blade in the TD (direction orthogonal to the flow direction) and in the direction perpendicular to the main surface of the resin foam (thickness direction), and within a predetermined area (3 mm 2 ). Is observed at a magnification of 100 times. The length of one bubble in the thickness direction and the length of TD are measured.
-Similar measurement is performed for all bubbles existing in a predetermined area.
-The aspect ratio of bubbles is calculated by dividing the length of TD by the length in the thickness direction, and the same calculation is performed for all bubbles, and the average value is defined as "the aspect ratio of bubbles possessed by the resin foam".
 本発明の樹脂発泡体の気泡径(セル径)の変動係数は、好ましくは0.5以下であり、より好ましくは0.48以下であり、さらに好ましくは0.45以下であり、特に好ましくは0.43以下であり、最も好ましくは0.4未満である。このような範囲であれば、衝撃による変形が均一になり、局所的な応力負荷が防止され、応力分散性に優れ、かつ、耐衝撃性に特に優れる樹脂発泡体を得ることができる。当該変動係数は、小さいほど好ましいがその下限は、例えば、0.2(好ましくは0.15、より好ましくは0.1、さらに好ましくは0.01)である。気泡径の変動係数の測定方法は、後述する。 The coefficient of variation of the bubble diameter (cell diameter) of the resin foam of the present invention is preferably 0.5 or less, more preferably 0.48 or less, still more preferably 0.45 or less, and particularly preferably 0.45 or less. It is 0.43 or less, most preferably less than 0.4. Within such a range, it is possible to obtain a resin foam in which deformation due to impact becomes uniform, local stress load is prevented, stress dispersibility is excellent, and impact resistance is particularly excellent. The smaller the coefficient of variation is, the more preferable it is, but the lower limit thereof is, for example, 0.2 (preferably 0.15, more preferably 0.1, still more preferably 0.01). The method for measuring the coefficient of variation of the bubble diameter will be described later.
 本発明の樹脂発泡体の気泡率(セル率)は、好ましくは30%以上であり、より好ましくは50%以上であり、さらに好ましくは80%以上である。このような範囲であれば、圧縮時の反発応力が小さい樹脂発泡体を得ることができる。このような樹脂発泡体は、クリアランスの狭い箇所に多少圧縮して上記樹脂発泡体を適用する場合において、他の部材へかかる応力を低減することができる。例えば、樹脂発泡体を表示部材に適用する場合は、当該表示部材にかかる応力を緩和・分散することができるため、色ムラ低減、部材保護の観点から有用である。当該気泡率の上限は、例えば、99%以下である。気泡率の測定方法は、後述する。 The bubble ratio (cell ratio) of the resin foam of the present invention is preferably 30% or more, more preferably 50% or more, and further preferably 80% or more. Within such a range, a resin foam having a small repulsive stress during compression can be obtained. Such a resin foam can reduce the stress applied to other members when the resin foam is applied by compressing it to a place having a narrow clearance. For example, when the resin foam is applied to the display member, the stress applied to the display member can be relaxed and dispersed, which is useful from the viewpoint of reducing color unevenness and protecting the member. The upper limit of the bubble ratio is, for example, 99% or less. The method for measuring the bubble ratio will be described later.
 本発明の樹脂発泡体の気泡壁(セル壁)の厚みは、好ましくは0.1μm~10μmであり、より好ましくは0.3μm~8μmであり、さらに好ましくは0.5μm~5μmであり、特に好ましくは0.7μm~4μmであり、最も好ましくは1μm~2.8μmである。このような範囲であれば、柔軟性および応力分散性により優れる樹脂発泡体を得ることができる。気泡壁の厚みが薄すぎると、荷重に対して樹脂発泡体が容易に変形してしまい、十分な応力分散効果が得られないおそれがある。気泡壁の厚みが厚過ぎると、荷重に対して樹脂発泡体が変形し難くなり、機器の隙間で使用する際に、段差追従性が悪くなるおそれがある。気泡壁の厚みの測定方法は、後述する。 The thickness of the bubble wall (cell wall) of the resin foam of the present invention is preferably 0.1 μm to 10 μm, more preferably 0.3 μm to 8 μm, still more preferably 0.5 μm to 5 μm, and particularly. It is preferably 0.7 μm to 4 μm, and most preferably 1 μm to 2.8 μm. Within such a range, a resin foam having more excellent flexibility and stress dispersibility can be obtained. If the thickness of the bubble wall is too thin, the resin foam is easily deformed by a load, and a sufficient stress dispersion effect may not be obtained. If the thickness of the bubble wall is too thick, the resin foam is less likely to be deformed by a load, and when used in a gap between devices, the step followability may be deteriorated. The method for measuring the thickness of the bubble wall will be described later.
 本発明の樹脂発泡体の気泡構造が半連続半独立気泡構造である場合、その中の独立気泡構造の割合は、好ましくは40%以下であり、より好ましくは30%以下である。本明細書において、樹脂発泡体の独泡率は、例えば、温度23℃、湿度50%の環境下で、測定対象を水分中に沈め、その後の質量を測定し、その後、80℃のオーブンで十分に乾燥させた後、再度質量を測定して求められる。また、連続気泡であれば水分を保持できるため、その質量分を連続気泡として測定して求められる。 When the cell structure of the resin foam of the present invention is a semi-continuous semi-closed cell structure, the ratio of the closed cell structure in the cell structure is preferably 40% or less, more preferably 30% or less. In the present specification, the self-foaming ratio of the resin foam is, for example, in an environment of a temperature of 23 ° C. and a humidity of 50%, the object to be measured is submerged in water, the mass thereof is measured thereafter, and then in an oven at 80 ° C. After sufficiently drying, the mass is measured again to obtain the determination. Further, since open cells can retain water, the mass thereof can be measured and obtained as open cells.
 本発明の樹脂発泡体の非発泡曲げ応力は、好ましくは5MPa以上であり、より好ましくは5MPaより大きく、より好ましくは7MPa以上であり、さらに好ましくは10MPa以上である。このような範囲であれば、樹脂発泡体の気泡壁(セル壁)を変形させるのに大きなエネルギーが必要とされ、優れた衝撃吸収性を有する樹脂発泡体を得ることができる。本発明の樹脂発泡体は、従来、クッション材で重要視されていた柔軟性を適度に減じ、他の特性とのバランスをとることにより、耐衝撃性(衝撃吸収性)の向上を可能としている。このように従来と異なる作用により、衝撃吸収性を発現する本発明の樹脂発泡体は、狭い範囲で衝撃が伝搬するような構成(衝撃が面方向に拡がり難い構成)において特に有用であり、例えば、可撓性を有する部材(例えば、樹脂から構成される部材)に適用した際に、特に有用である。当該非発泡曲げ応力の上限は、好ましくは20MPaであり、より好ましくは15MPaである。このような範囲であれば、柔軟性および応力分散性により優れる樹脂発泡体を得ることができる。「非発泡曲げ応力」とは、樹脂発泡体を加熱プレスすることで、気泡のない非発泡状態(バルク)に戻した樹脂成形体aの曲げ応力を意味する。樹脂成形体aの密度は、後述の樹脂組成物により形成された発泡させる前の樹脂成形体bの密度と同等にされ得る。なお、樹脂成形体aの曲げ応力(樹脂発泡体の非発泡曲げ応力)は、樹脂成形体bと同等となり得る。曲げ応力の測定方法は、後述する。 The non-foaming bending stress of the resin foam of the present invention is preferably 5 MPa or more, more preferably larger than 5 MPa, more preferably 7 MPa or more, still more preferably 10 MPa or more. Within such a range, a large amount of energy is required to deform the bubble wall (cell wall) of the resin foam, and a resin foam having excellent shock absorption can be obtained. The resin foam of the present invention can improve impact resistance (impact absorption) by appropriately reducing the flexibility, which has been regarded as important in cushioning materials, and balancing it with other characteristics. .. As described above, the resin foam of the present invention that exhibits shock absorption due to an action different from the conventional one is particularly useful in a configuration in which the impact propagates in a narrow range (a configuration in which the impact does not easily spread in the plane direction), for example. , Especially useful when applied to flexible members (eg, members made of resin). The upper limit of the non-foam bending stress is preferably 20 MPa, more preferably 15 MPa. Within such a range, a resin foam having more excellent flexibility and stress dispersibility can be obtained. The “non-foaming bending stress” means the bending stress of the resin molded product a that has been returned to the non-foaming state (bulk) without bubbles by heat-pressing the resin foam. The density of the resin molded body a can be made equal to the density of the resin molded body b before foaming formed by the resin composition described later. The bending stress of the resin molded body a (non-foamed bending stress of the resin foam) can be the same as that of the resin molded body b. The method for measuring the bending stress will be described later.
 上記樹脂発泡体の厚み回復率は、好ましくは65%以上であり、より好ましくは70%以上であり、さらに好ましくは75%以上である。なお、発泡層の厚み回復率は、下記式で定義される。この発泡層の厚み回復率は、ある程度の面積をもって発泡シートに荷重をかけて圧縮して測定される回復率であり、局所的に荷重をかけて一部分のみを凹ませて測定するいわゆる凹み回復率とは異なる。
  厚み回復率(%)={(圧縮状態を解除してから0.5秒後の厚み)/(初期厚み)}×100
初期厚み:荷重を加える前の樹脂発泡体の厚み。
圧縮状態を解除してから0.5秒後の厚み:樹脂発泡体に1000g/cmの荷重を加えた状態で120秒間維持し、圧縮を解除し、解除してから0.5秒後の樹脂発泡体の厚み。
The thickness recovery rate of the resin foam is preferably 65% or more, more preferably 70% or more, and further preferably 75% or more. The thickness recovery rate of the foamed layer is defined by the following formula. The thickness recovery rate of this foam layer is a recovery rate measured by applying a load to a foam sheet with a certain area and compressing it, and is a so-called dent recovery rate measured by locally applying a load and denting only a part of the foam sheet. Is different.
Thickness recovery rate (%) = {(thickness 0.5 seconds after decompression) / (initial thickness)} x 100
Initial thickness: The thickness of the resin foam before applying a load.
Thickness 0.5 seconds after decompression: Maintained for 120 seconds with a load of 1000 g / cm 2 applied to the resin foam, decompressed, 0.5 seconds after decompression Thickness of resin foam.
 本発明の樹脂発泡体の形状としては、目的に応じて、任意の適切な形状を採用し得る。このような形状としては、代表的には、シート状である。 As the shape of the resin foam of the present invention, any appropriate shape can be adopted depending on the purpose. Such a shape is typically a sheet shape.
 本発明の樹脂発泡体は、その片面または両面に熱溶融層を有していてもよい。熱溶融層を有する樹脂発泡体は、例えば、樹脂発泡体を構成する樹脂組成物の溶融温度以上に加温された一対の加熱ロールを用いて、樹脂発泡体(または樹脂発泡体の前駆体)を圧延することにより、得られ得る。 The resin foam of the present invention may have a hot melt layer on one side or both sides thereof. The resin foam having the hot melt layer is, for example, a resin foam (or a precursor of the resin foam) using a pair of heating rolls heated to a temperature equal to or higher than the melting temperature of the resin composition constituting the resin foam. Can be obtained by rolling.
 本発明の樹脂発泡体は、本発明の効果を損なわない範囲で、任意の適切な方法によって形成することができる。このような方法としては、代表的には、樹脂材料(ポリマー)を含む樹脂組成物を発泡させる方法が挙げられる。 The resin foam of the present invention can be formed by any suitable method as long as the effects of the present invention are not impaired. A typical example of such a method is a method of foaming a resin composition containing a resin material (polymer).
A-1.樹脂組成物
 本発明の樹脂発泡体は、代表的には、樹脂組成物を発泡させて得られ得る。樹脂組成物は、任意の適切な樹脂材料(ポリマー)を含む。
A-1. Resin Composition The resin foam of the present invention can be typically obtained by foaming a resin composition. The resin composition comprises any suitable resin material (polymer).
 上記ポリマーとしては、例えば、アクリル系樹脂、シリコーン系樹脂、ウレタン系樹脂、ポリオレフィン系樹脂、エステル系樹脂、ゴム系樹脂などが挙げられる。上記ポリマーは、1種のみを単独で用いてもよく、2種以上を組み合わせて用いてもよい。 Examples of the polymer include acrylic resin, silicone resin, urethane resin, polyolefin resin, ester resin, rubber resin and the like. The polymer may be used alone or in combination of two or more.
 ポリマーの含有割合は、樹脂組成物100重量部に対して、好ましくは30重量部~95重量部であり、より好ましくは35重量部~90重量部であり、さらに好ましくは40重量部~80重量部であり、特に好ましくは40重量部~60重量部である。このような範囲であれば、柔軟性および応力分散性により優れる樹脂発泡体を得ることができる。 The content ratio of the polymer is preferably 30 parts by weight to 95 parts by weight, more preferably 35 parts by weight to 90 parts by weight, and further preferably 40 parts by weight to 80 parts by weight with respect to 100 parts by weight of the resin composition. It is a part, particularly preferably 40 parts by weight to 60 parts by weight. Within such a range, a resin foam having more excellent flexibility and stress dispersibility can be obtained.
 1つの実施形態においては、上記ポリマーとして、ポリオレフィン系樹脂が用いられる。 In one embodiment, a polyolefin resin is used as the polymer.
 ポリオレフィン系樹脂の含有割合は、上記ポリマー100重量部に対して、好ましくは50重量部~100重量部であり、より好ましくは70重量部~100重量部であり、さらに好ましくは90重量部~100重量部であり、特に好ましくは95重量部~100重量部であり、最も好ましくは100重量部である。 The content ratio of the polyolefin resin is preferably 50 parts by weight to 100 parts by weight, more preferably 70 parts by weight to 100 parts by weight, and further preferably 90 parts by weight to 100 parts by weight with respect to 100 parts by weight of the polymer. It is a part by weight, particularly preferably 95 parts by weight to 100 parts by weight, and most preferably 100 parts by weight.
 ポリオレフィン系樹脂としては、好ましくは、ポリオレフィンおよびポリオレフィン系エラストマーからなる群から選ばれる少なくとも1種が挙げられ、より好ましくは、ポリオレフィンとポリオレフィン系エラストマーとが併用される。ポリイレフンおよびポリオレフィン系エラストマーはそれぞれ、1種のみを単独で用いてもよく、2種以上を組み合わせて用いてもよい。なお、本明細書において、「ポリオレフィン」と称する場合には、「ポリオレフィン系エラストマー」は含まれないものとする。 The polyolefin-based resin preferably includes at least one selected from the group consisting of polyolefins and polyolefin-based elastomers, and more preferably, polyolefins and polyolefin-based elastomers are used in combination. As for the polyylene and the polyolefin-based elastomer, only one type may be used alone, or two or more types may be used in combination. In this specification, the term "polyolefin" does not include "polyolefin-based elastomer".
 ポリオレフィン系樹脂としてポリオレフィンとポリオレフィン系エラストマーを併用する場合、ポリオレフィンとポリオレフィン系エラストマーの重量比率(ポリオレフィン/ポリオレフィン系エラストマー)は、好ましくは1/99~99/1であり、より好ましくは10/90~90/10であり、さらに好ましくは20/80~80/20であり、特に好ましくは30/70~70/30である。このような範囲であれば、本発明の効果は顕著となる。 When a polyolefin and a polyolefin-based elastomer are used in combination as the polyolefin-based resin, the weight ratio of the polyolefin and the polyolefin-based elastomer (polyolefin / polyolefin-based elastomer) is preferably 1/99 to 99/1, more preferably 10/90 to It is 90/10, more preferably 20/80 to 80/20, and particularly preferably 30/70 to 70/30. Within such a range, the effect of the present invention becomes remarkable.
 ポリオレフィンとしては、本発明の効果を損なわない範囲で、任意の適切なポリオレフィンを採用し得る。このようなポリオレフィンとしては、例えば、直鎖状のポリオレフィン、分岐鎖状の(分岐鎖を有する)ポリオレフィンなどが挙げられる。1つの実施形態においては、ポリオレフィン系樹脂として、分岐鎖状のポリオレフィンが用いられる。この実施形態においては、ポリオレフィンとして、分岐状のポリオレフィンのみを用いてもよく、分岐状のポリオレフィンと直鎖状のポリオレフィンとを併用して用いてもよい。分岐状のポリオレフィンを用いることにより、平均気泡径が小さく、耐衝撃性に優れる樹脂発泡体を得ることができる。分岐状のポリオレフィンの含有割合は、ポリオレフィン100重量部に対して、好ましくは30重量部~100重量部であり、より好ましくは80重量部~120重量部である。 As the polyolefin, any suitable polyolefin can be adopted as long as the effect of the present invention is not impaired. Examples of such polyolefins include linear polyolefins and branched-chain (branched-chain) polyolefins. In one embodiment, a branched-chain polyolefin is used as the polyolefin-based resin. In this embodiment, as the polyolefin, only the branched polyolefin may be used, or the branched polyolefin and the linear polyolefin may be used in combination. By using the branched polyolefin, it is possible to obtain a resin foam having a small average cell diameter and excellent impact resistance. The content ratio of the branched polyolefin is preferably 30 parts by weight to 100 parts by weight, and more preferably 80 parts by weight to 120 parts by weight with respect to 100 parts by weight of the polyolefin.
 上記ポリオレフィンとしては、例えば、α-オレフィン由来の構成単位を含むポリマーが挙げられる。ポリオレフィンは、α-オレフィン由来の構成単位のみから構成されていてもよく、α-オレフィン由来の構成単位と、α-オレフィン以外のモノマー由来の構成単位とから構成されていてもよい。ポリオレフィンが共重合体である場合、その共重合形態としては、任意の適切な共重合形態を採用し得る。例えば、ランダムコポリマー、ブロックコポリマーなどが挙げられる。 Examples of the polyolefin include polymers containing a structural unit derived from α-olefin. The polyolefin may be composed of only a structural unit derived from an α-olefin, or may be composed of a structural unit derived from an α-olefin and a structural unit derived from a monomer other than the α-olefin. When the polyolefin is a copolymer, any suitable copolymerization form can be adopted as the copolymerization form thereof. For example, random copolymers, block copolymers and the like can be mentioned.
 ポリオレフィンを構成し得るα-オレフィンとしては、例えば、炭素数2~8(好ましくは2~6、より好ましくは2~4)のα-オレフィン(例えば、エチレン、プロピレン、1-ブテン、1-ペンテン、1-ヘキセン、4-メチル-1-ペンテン、1-へプテン、1-オクテンなど)が好ましい。α-オレフィンは、1種のみであってもよいし、2種以上であってもよい。 Examples of the α-olefin that can constitute the polyolefin include α-olefins having 2 to 8 carbon atoms (preferably 2 to 6, more preferably 2 to 4) (for example, ethylene, propylene, 1-butene, 1-pentene). , 1-Hexene, 4-methyl-1-pentene, 1-heptene, 1-octene, etc.) are preferred. The α-olefin may be only one kind or two or more kinds.
 ポリオレフィンを構成するα-オレフィン以外のモノマーとしては、例えば、酢酸ビニル、アクリル酸、アクリル酸エステル、メタクリル酸、メタクリル酸エステル、ビニルアルコールなどのエチレン性不飽和単量体が挙げられる。α-オレフィン以外のモノマーは、1種のみであってもよいし、2種以上であってもよい。 Examples of the monomer other than the α-olefin constituting the polyolefin include ethylenically unsaturated monomers such as vinyl acetate, acrylic acid, acrylic acid ester, methacrylic acid, methacrylic acid ester, and vinyl alcohol. The monomer other than the α-olefin may be only one kind or two or more kinds.
 ポリオレフィンとしては、具体的には、例えば、低密度ポリエチレン、中密度ポリエチレン、高密度ポリエチレン、直鎖状低密度ポリエチレン、ポリプロピレン(プロピレンホモポリマー)、エチレンとプロピレンとの共重合体、エチレンとエチレン以外のα-オレフィンとの共重合体、プロピレンとプロピレン以外のα-オレフィンとの共重合体、エチレンとプロピレンとエチレンおよびプロピレン以外のα-オレフィンとの共重合体、プロピレンとエチレン性不飽和単量体との共重合体などが挙げられる。 Specific examples of the polyolefin include low-density polyethylene, medium-density polyethylene, high-density polyethylene, linear low-density polyethylene, polypropylene (propylene homopolymer), a copolymer of ethylene and propylene, and ethylene and other than ethylene. Copolymer with α-olefin, copolymer of propylene and α-olefin other than propylene, copolymer of ethylene and propylene and ethylene and α-olefin other than propylene, propylene and ethylenically unsaturated single amount Examples include a copolymer with a body.
 1つの実施形態においては、ポリオレフィンとして、プロピレン由来の構成単位を有するポリプロピレン系重合体が用いられる。ポリプロピレン系重合体としては、例えば、ポリプロピレン(プロピレンホモポリマー)、エチレンとプロピレンとの共重合体、プロピレンとプロピレン以外のα-オレフィンとの共重合体などが挙げられ、好ましくはポリプロピレン(プロピレンホモポリマー)である。ポリプロピレン系重合体は、1種のみを単独で用いてもよく、2種以上を組み合わせて用いてもよい。 In one embodiment, a polypropylene-based polymer having a propylene-derived structural unit is used as the polyolefin. Examples of the polypropylene-based polymer include polypropylene (propylene homopolymer), a copolymer of ethylene and propylene, a copolymer of propylene and an α-olefin other than propylene, and preferably polypropylene (propylene homopolymer). ). As the polypropylene-based polymer, only one type may be used alone, or two or more types may be used in combination.
 ポリオレフィンの温度230℃におけるメルトフローレート(MFR)は、本発明の効果をより発現させ得る点で、好ましくは0.2g/10分~10g/10分であり、より好ましくは0.25g/10分~5g/10分であり、さらに好ましくは0.3g/10分~3g/10分であり、特に好ましくは0.35g/10分~1.5g/10分である。なお、本明細書において、上記メルトフローレート(MFR)は、ISO1133(JIS-K-7210)に基づき、温度230℃、荷重2.16kgfで測定されたMFRをいうものとする。 The melt flow rate (MFR) of the polyolefin at a temperature of 230 ° C. is preferably 0.2 g / 10 min to 10 g / 10 min, and more preferably 0.25 g / 10 in that the effects of the present invention can be more exhibited. Minutes to 5 g / 10 minutes, more preferably 0.3 g / 10 minutes to 3 g / 10 minutes, and particularly preferably 0.35 g / 10 minutes to 1.5 g / 10 minutes. In the present specification, the melt flow rate (MFR) refers to an MFR measured at a temperature of 230 ° C. and a load of 2.16 kgf based on ISO1133 (JIS-K-7210).
 1つの実施形態においては、温度230℃におけるメルトフローレート(MFR)が上記の範囲内で異なる2種以上のポリオレフィンが併用される。この場合、温度230℃におけるメルトフローレート(MFR)が、好ましくは0.2g/10分以上0.7g/10分未満(より好ましくは0.2g/10分~0.65g/10分)のポリオレフィンと、温度230℃におけるメルトフローレート(MFR)が好ましくは0.7g/10分~10g/10分(より好ましくは0.7g/10分~5g/10分であり、さらに好ましくは0.7g/10分~3g/10分であり、特に好ましくは0.7g/10分~1.5g/10分であり、最も好ましくは0.7g/10分~1.3g/10分である)のポリオレフィンとが併用され得る。このようにすれば、平均気泡径が小さく、耐衝撃性に優れる樹脂発泡体を得ることができる。 In one embodiment, two or more types of polyolefins having different melt flow rates (MFR) at a temperature of 230 ° C. within the above range are used in combination. In this case, the melt flow rate (MFR) at a temperature of 230 ° C. is preferably 0.2 g / 10 minutes or more and less than 0.7 g / 10 minutes (more preferably 0.2 g / 10 minutes to 0.65 g / 10 minutes). The polyolefin and melt flow rate (MFR) at a temperature of 230 ° C. are preferably 0.7 g / 10 min to 10 g / 10 min (more preferably 0.7 g / 10 min to 5 g / 10 min, and even more preferably 0. 7 g / 10 minutes to 3 g / 10 minutes, particularly preferably 0.7 g / 10 minutes to 1.5 g / 10 minutes, and most preferably 0.7 g / 10 minutes to 1.3 g / 10 minutes). Can be used in combination with the polyolefin of. By doing so, it is possible to obtain a resin foam having a small average cell diameter and excellent impact resistance.
 ポリオレフィンとして、温度230℃におけるメルトフローレート(MFR)が上記の範囲内で異なる2種以上のポリオレフィンを併用する場合、例えば、上記の温度230℃におけるメルトフローレート(MFR)が、好ましくは0.2g/10分以上0.7g/10分未満(より好ましくは0.2g/10分~0.65g/10分)のポリオレフィンと、温度230℃におけるメルトフローレート(MFR)が好ましくは0.7g/10分~10g/10分(より好ましくは0.7g/10分~5g/10分であり、さらに好ましくは0.7g/10分~3g/10分であり、特に好ましくは0.7g/10分~1.5g/10分であり、最も好ましくは0.7g/10分~1.3g/10分である)のポリオレフィンとの重量比率は、好ましくは1/99~99/1であり、より好ましくは10/90~90/10であり、さらに好ましくは20/80~80/20であり、特に好ましくは30/70~70/30であり、最も好ましくは40/60~60/40である。 When two or more kinds of polyolefins having different melt flow rates (MFR) at a temperature of 230 ° C. are used in combination as the polyolefin, for example, the melt flow rate (MFR) at a temperature of 230 ° C. is preferably 0. The polyolefin of 2 g / 10 minutes or more and less than 0.7 g / 10 minutes (more preferably 0.2 g / 10 minutes to 0.65 g / 10 minutes) and the melt flow rate (MFR) at a temperature of 230 ° C. are preferably 0.7 g. / 10 min to 10 g / 10 min (more preferably 0.7 g / 10 min to 5 g / 10 min, still more preferably 0.7 g / 10 min to 3 g / 10 min, and particularly preferably 0.7 g / min. The weight ratio of 10 minutes to 1.5 g / 10 minutes, most preferably 0.7 g / 10 minutes to 1.3 g / 10 minutes) with the polyolefin is preferably 1/99 to 99/1. , More preferably 10/90 to 90/10, further preferably 20/80 to 80/20, particularly preferably 30/70 to 70/30, and most preferably 40/60 to 60/40. Is.
 ポリオレフィンとしては、市販品を用いてもよく、例えば、「E110G」(株式会社プライムポリマー製)、「EA9」(日本ポリプロ株式会社製)、「EA9FT」(日本ポリプロ株式会社製)、「E-185G」(株式会社プライムポリマー製)、「WB140HMS」(ボレアリス社製)、「WB135HMS」(ボレアリス社製)などが挙げられる。 As the polyolefin, a commercially available product may be used, for example, "E110G" (manufactured by Prime Polymer Co., Ltd.), "EA9" (manufactured by Japan Polypropylene Corporation), "EA9FT" (manufactured by Japan Polypropylene Corporation), "E-". Examples thereof include "185G" (manufactured by Prime Polymer Co., Ltd.), "WB140HMS" (manufactured by Borealis), and "WB135HMS" (manufactured by Borealis).
 ポリオレフィン系エラストマーとしては、本発明の効果を損なわない範囲で、任意の適切なポリオレフィン系エラストマーを採用し得る。このようなポリオレフィン系エラストマーとしては、例えば、エチレン-プロピレン共重合体、エチレン-プロピレン-ジエン共重合体、エチレン-酢酸ビニル共重合体、ポリブテン、ポリイソブチレン、塩素化ポリエチレン、ポリオレフィン成分とゴム成分とが物理的に分散したエラストマー、ポリオレフィン成分とゴム成分とがミクロ相分離した構造を有したエラストマーなどの、いわゆる非架橋型の熱可塑性オレフィン系エラストマー(TPO);マトリックスを形成する樹脂成分A(オレフィン系樹脂成分A)およびドメインを形成するゴム成分Bを含む混合物を、架橋剤の存在下、動的に熱処理することにより得られ、マトリックス(海相)である樹脂成分A中に、架橋ゴム粒子がドメイン(島相)として細かく分散した海島構造を有する多相系のポリマーである動的架橋型熱可塑性オレフィン系エラストマー(TPV);などが挙げられる。 As the polyolefin-based elastomer, any suitable polyolefin-based elastomer can be adopted as long as the effects of the present invention are not impaired. Examples of such polyolefin-based elastomers include ethylene-propylene copolymers, ethylene-propylene-diene copolymers, ethylene-vinyl acetate copolymers, polybutene, polyisobutylene, chlorinated polyethylene, and polyolefin components and rubber components. So-called non-crosslinked thermoplastic olefin-based elastomer (TPO), such as an elastomer in which is physically dispersed, or an elastomer having a structure in which a polyolefin component and a rubber component are microphase-separated; a resin component A (olefin) forming a matrix. A mixture containing a system resin component A) and a rubber component B forming a domain is dynamically heat-treated in the presence of a cross-linking agent, and cross-linked rubber particles are contained in the resin component A which is a matrix (sea phase). Examples thereof include a dynamically crosslinked thermoplastic olefin-based elastomer (TPV), which is a polyphasic polymer having a sea-island structure finely dispersed as a domain (island phase).
 ポリオレフィン系エラストマーは、好ましくは、ゴム成分を含む。このようなゴム成分としては、特開平08-302111号公報、特開2010-241934号公報、特開2008-024882号公報、特開2000-007858号公報、特開2006-052277号公報、特開2012-072306号公報、特開2012-057068号公報、特開2010-241897号公報、特開2009-067969号公報、再表03/002654号公報などに記載のものが挙げられる。 The polyolefin-based elastomer preferably contains a rubber component. Examples of such rubber components include JP-A-08-302111, JP-A-2010-241934, JP-A-2008-024882, JP-A-2000-007858, JP-A-2006-052277, and JP-A. Examples thereof include those described in Japanese Patent Application Laid-Open No. 2012-072306, Japanese Patent Application Laid-Open No. 2012-057068, Japanese Patent Application Laid-Open No. 2010-2418997, Japanese Patent Application Laid-Open No. 2009-067969, and Japanese Patent Application Laid-Open No. 03/002654.
 ポリオレフィン成分とオレフィン系ゴム成分とがミクロ相分離した構造を有したエラストマーとしては、具体的には、ポリプロピレン樹脂(PP)とエチレン-プロピレンゴム(EPM)とからなるエラストマー、ポリプロピレン樹脂(PP)とエチレン-プロピレン-ジエンゴム(EPDM)とからなるエラストマーなどが挙げられる。ポリオレフィン成分とオレフィン系ゴム成分の重量比(ポリオレフィン成分/オレフィン系ゴム)は、好ましくは90/10~10/90であり、より好ましくは80/20~20/80である。 Specific examples of the elastomer having a structure in which the polyolefin component and the olefin rubber component are microphase-separated include polypropylene resin (PP) and an elastomer composed of polypropylene resin (PP) and ethylene-propylene rubber (EPM). Examples thereof include an elastomer composed of ethylene-propylene-diene rubber (EPDM). The weight ratio of the polyolefin component and the olefin rubber component (polyolefin component / olefin rubber) is preferably 90/10 to 10/90, and more preferably 80/20 to 20/80.
 動的架橋型熱可塑性オレフィン系エラストマー(TPV)は、一般的に、非架橋型の熱可塑性オレフィン系エラストマー(TPO)より、弾性率が高く、かつ圧縮永久歪みも小さい。これにより、回復性が良好であり、発泡体とした場合に優れた回復性を示し得る。 The dynamically crosslinked thermoplastic olefin elastomer (TPV) generally has a higher elastic modulus and a smaller compression set than the non-crosslinked thermoplastic olefin elastomer (TPO). As a result, the recoverability is good, and when a foam is used, excellent recoverability can be exhibited.
 動的架橋型熱可塑性オレフィン系エラストマー(TPV)とは、上述したように、マトリックスを形成する樹脂成分A(オレフィン系樹脂成分A)およびドメインを形成するゴム成分Bを含む混合物を、架橋剤の存在下、動的に熱処理することにより得られ、マトリックス(海相)である樹脂成分A中に、架橋ゴム粒子がドメイン(島相)として細かく分散した海島構造を有する多相系のポリマーである。 As described above, the dynamically crosslinked thermoplastic olefin elastomer (TPV) is a cross-linking agent containing a mixture containing a resin component A (olefin resin component A) forming a matrix and a rubber component B forming a domain. It is a multiphase polymer having a sea-island structure in which crosslinked rubber particles are finely dispersed as domains (island phases) in the resin component A which is a matrix (sea phase) obtained by dynamically heat-treating in the presence. ..
 動的架橋型熱可塑性オレフィン系エラストマー(TPV)としては、例えば、特開2000-007858号公報、特開2006-052277号公報、特開2012-072306号公報、特開2012-057068号公報、特開2010-241897号公報、特開2009-067969号公報、再表03/002654号等に記載のものなどが挙げられる。 Examples of the dynamically crosslinked thermoplastic olefin elastomer (TPV) include JP-A-2000-007858, JP-A-2006-052277, JP-A-2012-072306, JP-A-2012-057068, and Japanese Patent Application Laid-Open No. 2012-057068. Examples thereof include those described in Japanese Patent Application Laid-Open No. 2010-2418997, Japanese Patent Application Laid-Open No. 2009-067969, and Re-Table 03/002654.
 動的架橋型熱可塑性オレフィン系エラストマー(TPV)としては、市販品を用いてもよく、例えば、「ゼオサーム」(日本ゼオン社製)、「サーモラン」(三菱化学社製)、「サーリンク3245D」(東洋紡績株式会社製)などが挙げられる。 As the dynamically crosslinked thermoplastic olefin elastomer (TPV), a commercially available product may be used, for example, "Zeotherm" (manufactured by Zeon Corporation), "Thermoran" (manufactured by Mitsubishi Chemical Corporation), "Sarlink 3245D". (Manufactured by Toyobo Corporation) and the like.
 ポリオレフィン系エラストマーの温度230℃におけるメルトフローレート(MFR)は、好ましくは2g/10分~15g/10分であり、より好ましくは3g/10分~10g/10分であり、さらに好ましくは3.5g/10分~9g/10分であり、特に好ましくは4g/10分~8g/10分であり、最も好ましくは4.5g/10分~7.5g/10分である。 The melt flow rate (MFR) of the polyolefin-based elastomer at a temperature of 230 ° C. is preferably 2 g / 10 min to 15 g / 10 min, more preferably 3 g / 10 min to 10 g / 10 min, and even more preferably 3. It is 5 g / 10 minutes to 9 g / 10 minutes, particularly preferably 4 g / 10 minutes to 8 g / 10 minutes, and most preferably 4.5 g / 10 minutes to 7.5 g / 10 minutes.
 ポリオレフィン系エラストマーの溶融張力(190℃、破断時)は、好ましくは10cN未満であり、より好ましくは5cN~9.5cNである。 The melt tension (190 ° C., at break) of the polyolefin-based elastomer is preferably less than 10 cN, and more preferably 5 cN to 9.5 cN.
 ポリオレフィン系エラストマーのJIS A硬度は、好ましくは30°~95°であり、より好ましくは35°~90°であり、さらに好ましくは40°~88°であり、特に好ましくは45°~85°であり、最も好ましくは50°~83°である。なお、JIS A硬度とは、ISO7619(JIS K6253)に基づいて測定される。 The JIS A hardness of the polyolefin-based elastomer is preferably 30 ° to 95 °, more preferably 35 ° to 90 °, further preferably 40 ° to 88 °, and particularly preferably 45 ° to 85 °. Yes, most preferably 50 ° to 83 °. The JIS A hardness is measured based on ISO7619 (JIS K6253).
 1つの実施形態においては、上記樹脂発泡体(すなわち、樹脂組成物)は、充填材をさらに含み得る。充填材を含有させることにより、気泡壁(セル壁)を変形させるのに大きなエネルギーを必要とする樹脂発泡体を形成することができ、当該樹脂発泡体は、優れた衝撃吸収性を発揮する。また、充填材を含有させることにより、微細かつ均一な気泡構造を形成することができ、優れた衝撃吸収性を発現し得る点でも有利である。充填材は、1種のみを単独で用いてもよく、2種以上を組み合わせて用いてもよい。 In one embodiment, the resin foam (ie, the resin composition) may further comprise a filler. By containing the filler, it is possible to form a resin foam that requires a large amount of energy to deform the bubble wall (cell wall), and the resin foam exhibits excellent shock absorption. Further, by containing the filler, a fine and uniform bubble structure can be formed, which is also advantageous in that excellent shock absorption can be exhibited. As the filler, only one kind may be used alone, or two or more kinds may be used in combination.
 上記充填材の含有割合は、樹脂発泡体を構成するポリマー100重量部に対して、好ましくは10重量部~150重量部であり、より好ましくは30重量部~130重量部であり、さらに好ましくは50重量部~100重量部である。このような範囲であれば、上記効果が顕著となる。 The content ratio of the filler is preferably 10 parts by weight to 150 parts by weight, more preferably 30 parts by weight to 130 parts by weight, still more preferably, with respect to 100 parts by weight of the polymer constituting the resin foam. It is 50 parts by weight to 100 parts by weight. Within such a range, the above effect becomes remarkable.
 1つの実施形態においては、上記充填材は無機物である。無機物である充填材を構成する材料としては、例えば、水酸化アルミニウム、水酸化マグネシウム、炭酸カルシウム、炭酸マグネシウム、ケイ酸カルシウム、ケイ酸マグネシウム、酸化カルシウム、酸化マグネシウム、酸化アルミニウム、窒化アルミニウム、ホウ酸アルミニウムウィスカ、窒化ケイ素、窒化ホウ素、結晶質シリカ、非晶質シリカ、金属(例えば、金、銀、銅、アルミニウム、ニッケル)、カーボン、グラファイト等が挙げられる。 In one embodiment, the filler is an inorganic substance. Examples of the material constituting the filler which is an inorganic substance include aluminum hydroxide, magnesium hydroxide, calcium carbonate, magnesium carbonate, calcium silicate, magnesium silicate, calcium oxide, magnesium oxide, aluminum oxide, aluminum nitride, and boric acid. Examples thereof include aluminum whisker, silicon nitride, boron nitride, crystalline silica, amorphous silica, metals (for example, gold, silver, copper, aluminum, nickel), carbon, graphite and the like.
 1つの実施形態においては、上記充填材は有機物である。有機物である充填材を構成する材料としては、例えば、ポリメタクリル酸メチル(PMMA)、ポリイミド、ポリアミドイミド、ポリエーテルエーテルケトン、ポリエーテルイミド、ポリエステルイミド等が挙げられる。 In one embodiment, the filler is organic. Examples of the material constituting the filler which is an organic substance include polymethyl methacrylate (PMMA), polyimide, polyamideimide, polyetheretherketone, polyetherimide, polyesterimide and the like.
 上記充填材として、難燃剤を用いてもよい。難燃剤としては、例えば、臭素系難燃剤、塩素系難燃剤、リン系難燃剤、アンチモン系難燃剤などが挙げられる。好ましくは、安全性の観点から、ノンハロゲン-ノンアンチモン系難燃剤が用いられる。 A flame retardant may be used as the filler. Examples of the flame retardant include a bromine-based flame retardant, a chlorine-based flame retardant, a phosphorus-based flame retardant, an antimony-based flame retardant, and the like. Preferably, from the viewpoint of safety, a non-halogen-non-antimony flame retardant is used.
 ノンハロゲン-ノンアンチモン系難燃剤としては、例えば、アルミニウム、マグネシウム、カルシウム、ニッケル、コバルト、スズ、亜鉛、銅、鉄、チタン、ホウ素等を含む化合物が挙げられる。このような化合物(無機化合物)としては、例えば、水酸化アルミニウム、水酸化マグネシウム、酸化マグネシウム・酸化ニッケルの水和物、酸化マグネシウム・酸化亜鉛の水和物等の水和金属化合物などが挙げられる。 Examples of the non-halogen-non-antimony flame retardant include compounds containing aluminum, magnesium, calcium, nickel, cobalt, tin, zinc, copper, iron, titanium, boron and the like. Examples of such a compound (inorganic compound) include hydrated metal compounds such as aluminum hydroxide, magnesium hydroxide, magnesium oxide / nickel oxide hydrate, and magnesium oxide / zinc oxide hydrate. ..
 上記充填材は、任意の適切な表面処理が施されていてもよい。表面処理としては、例えば、シランカップリング処理、ステアリン酸処理などが挙げられる。 The above-mentioned filler may be subjected to any appropriate surface treatment. Examples of the surface treatment include a silane coupling treatment and a stearic acid treatment.
 上記充填材のかさ密度は、好ましくは、好ましくは0.8g/cm以下であり、より好ましくは0.6g/cm以下であり、さらに好ましくは0.4g/cm以下であり、特に好ましくは0.3g/cm以下である。このような範囲であれば、分散性よく充填材を含有させることができ、充填材の含有量を少なくしながらも、充填材添加効果が十分に発揮され得る。充填材の含有量が少ない樹脂発泡体は、高発泡、柔軟、かつ応力分散性および外観に優れる点で有利である。充填材のかさ密度の下限値は、例えば、0.01g/cmであり、好ましくは0.05g/cmであり、より好ましくは0.1g/cmである。 The bulk density of the filler is preferably 0.8 g / cm 3 or less, more preferably 0.6 g / cm 3 or less, still more preferably 0.4 g / cm 3 or less, and in particular. It is preferably 0.3 g / cm 3 or less. Within such a range, the filler can be contained with good dispersibility, and the effect of adding the filler can be sufficiently exhibited while reducing the content of the filler. A resin foam having a low filler content is advantageous in that it is highly foamed, flexible, and has excellent stress dispersibility and appearance. The lower limit of the bulk density of the filler is, for example, 0.01 g / cm 3, preferably 0.05 g / cm 3, more preferably 0.1 g / cm 3.
 上記充填材の数平均粒子径(1次粒子径)は、好ましくは5μm以下であり、より好ましくは3μm以下であり、さらに好ましくは1μm以下である。このような範囲であれば、分散性よく充填材を含有させることができ、かつ、均一な気泡構造を形成することができる。その結果、応力分散性および外観に優れる樹脂発泡体を得ることができる。充填材の数平均粒子径の下限値は、例えば、0.1μmである。充填材の数平均粒子径は、水100gに充填剤を1gを混合して調製した懸濁液をサンプルとして、粒度分布計(MicrtracII、マイクロトラック・ベル株式会社)を用いて、測定することができる。 The number average particle size (primary particle size) of the filler is preferably 5 μm or less, more preferably 3 μm or less, and further preferably 1 μm or less. Within such a range, the filler can be contained with good dispersibility and a uniform bubble structure can be formed. As a result, a resin foam having excellent stress dispersibility and appearance can be obtained. The lower limit of the number average particle size of the filler is, for example, 0.1 μm. The number average particle size of the filler can be measured using a particle size distribution meter (MicrotracII, Microtrac Bell Co., Ltd.) using a suspension prepared by mixing 1 g of a filler with 100 g of water as a sample. it can.
 上記充填材の比表面積は、好ましくは2m/g以上であり、より好ましくは4m/g以上であり、さらに好ましくは6m/g以上である。このような範囲であれば、分散性よく充填材を含有させることができ、かつ、均一な気泡構造を形成することができる。その結果、応力分散性および外観に優れる樹脂発泡体を得ることができる。充填材の比表面積の上限値は、例えば、20m/gである。充填材の比表面積は、BET法で、すなわち、吸着占有面積が既知である分子を、液体窒素による低温下で、充填材表面に吸着させ、その吸着量から測定することができる。 The specific surface area of the filler is preferably 2 m 2 / g or more, more preferably 4 m 2 / g or more, and further preferably 6 m 2 / g or more. Within such a range, the filler can be contained with good dispersibility and a uniform bubble structure can be formed. As a result, a resin foam having excellent stress dispersibility and appearance can be obtained. The upper limit of the specific surface area of the filler is, for example, 20 m 2 / g. The specific surface area of the filler can be measured by the BET method, that is, by adsorbing a molecule having a known adsorption area to the surface of the filler at a low temperature of liquid nitrogen and measuring the adsorption amount.
 樹脂組成物には、本発明の効果を損なわない範囲で、任意の適切な他の成分が含まれていてもよい。このような他の成分は、1種のみであってもよいし、2種以上であってもよい。このような他の成分としては、例えば、ゴム、樹脂材料として配合されているポリマー以外の樹脂、軟化剤、脂肪族系化合物、老化防止剤、酸化防止剤、光安定剤、耐候剤、紫外線吸収剤、分散剤、可塑剤、カーボン、帯電防止剤、界面活性剤、架橋剤、増粘剤、防錆剤、シリコーン系化合物、張力改質剤、収縮防止剤、流動性改質剤、ゲル化剤、硬化剤、補強剤、発泡剤、発泡核剤、着色剤(顔料や染料等)、pH調整剤、溶剤(有機溶剤)、熱重合開始剤、光重合開始剤、滑剤、結晶核剤、結晶化促進剤、加硫剤、表面処理剤、分散助剤などが挙げられる。 The resin composition may contain any suitable other components as long as the effects of the present invention are not impaired. Such other components may be only one kind or two or more kinds. Such other components include, for example, rubber, resins other than polymers blended as resin materials, softeners, aliphatic compounds, antioxidants, antioxidants, light stabilizers, weather resistant agents, and ultraviolet absorption. Agents, dispersants, plastics, carbons, antistatic agents, surfactants, cross-linking agents, thickeners, rust preventives, silicone compounds, tension modifiers, shrinkage inhibitors, fluidity modifiers, gelling Agents, hardeners, reinforcing agents, foaming agents, foaming nucleating agents, coloring agents (pigments, dyes, etc.), pH adjusting agents, solvents (organic solvents), thermal polymerization initiators, photopolymerization initiators, lubricants, crystal nucleating agents, Examples thereof include crystallization accelerators, solubilizers, surface treatment agents, and dispersion aids.
A-2.樹脂発泡体の形成
 本発明の樹脂発泡体は、代表的には、樹脂組成物を発泡させて得られる。発泡の方法(気泡の形成方法)としては、物理的方法や化学的方法など、発泡成形に通常用いられる方法が採用できる。すなわち、本発明の樹脂発泡体は、代表的には、物理的方法により発泡して形成された発泡体(物理発泡体)であってもよいし、化学的方法により発泡して形成された発泡体(化学発泡体)であってもよい。物理的方法は、一般的に、空気や窒素等のガス成分をポリマー溶液に分散させて、機械的混合により気泡を形成させるもの(機械発泡体)である。化学的方法は、一般的に、ポリマーベースに添加された発泡剤の熱分解により生じたガスによりセルを形成し、発泡体を得る方法である。
A-2. Formation of Resin Foam The resin foam of the present invention is typically obtained by foaming a resin composition. As the foaming method (bubble forming method), a method usually used for foam molding, such as a physical method or a chemical method, can be adopted. That is, the resin foam of the present invention may be typically a foam (physical foam) formed by foaming by a physical method, or may be foamed by a chemical method. It may be a body (chemical foam). The physical method is generally one in which a gas component such as air or nitrogen is dispersed in a polymer solution to form bubbles by mechanical mixing (mechanical foam). The chemical method is generally a method of forming a cell by a gas generated by thermal decomposition of a foaming agent added to a polymer base to obtain a foam.
 発泡成形に付す樹脂組成物は、例えば、構成成分を、任意の適切な溶融混練装置、例えば、開放型のミキシングロール、非開放型のバンバリーミキサー、1軸押出機、2軸押出機、連続式混練機、加圧ニーダーなど、任意の適切な手段を用いて混合することにより調製すればよい。 The resin composition to be subjected to foam molding can be, for example, a component of any suitable melt-kneading device, for example, an open mixing roll, a non-open Banbury mixer, a single-screw extruder, a twin-screw extruder, or a continuous type. It may be prepared by mixing using any suitable means such as a kneader and a pressure kneader.
<本発明の樹脂発泡体を形成させる実施形態1>
 本発明の樹脂発泡体を形成させる一つの実施形態1としては、例えば、エマルション樹脂組成物(樹脂材料(ポリマー)などを含むエマルション)を機械的に発泡させて起泡化させる工程(工程A)を経て樹脂発泡体を形成する形態が挙げられる。起泡装置としては、例えば、高速せん断方式の装置、振動方式の装置、加圧ガスの吐出方式の装置などが挙げられる。これらの起泡装置の中でも、気泡径の微細化、大容量作製の観点から、高速せん断方式の装置が好ましい。本発明の樹脂発泡体を形成させるこの一つの実施形態1は、どのような樹脂組成物からの形成にも適用可能である。
<Embodiment 1 for forming the resin foam of the present invention>
As one embodiment 1 for forming the resin foam of the present invention, for example, a step of mechanically foaming an emulsion resin composition (an emulsion containing a resin material (polymer) or the like) to foam (step A). A form in which a resin foam is formed through the above can be mentioned. Examples of the foaming device include a high-speed shearing device, a vibration device, a pressurized gas discharge device, and the like. Among these foaming devices, a high-speed shearing device is preferable from the viewpoint of reducing the bubble diameter and producing a large capacity. This one embodiment 1 for forming the resin foam of the present invention can be applied to the formation from any resin composition.
 エマルションの固形分濃度は、成膜性の観点から高い方が好ましい。エマルションの固形分濃度は、好ましくは30重量%以上、より好ましくは40重量%以上、さらに好ましくは50重量%以上である。 The solid content concentration of the emulsion is preferably high from the viewpoint of film forming property. The solid content concentration of the emulsion is preferably 30% by weight or more, more preferably 40% by weight or more, still more preferably 50% by weight or more.
 機械的撹拌により起泡した際の気泡は、気体(ガス)がエマルション中に取り込まれたものである。ガスとしては、エマルションに対して不活性であれば、本発明の効果を損なわない範囲で任意の適切なガスを採用し得る。このようなガスとしては、例えば、空気、窒素、二酸化炭素などが挙げられる。 The bubbles when foamed by mechanical stirring are those in which a gas is incorporated into the emulsion. As the gas, any suitable gas can be adopted as long as it is inert to the emulsion, as long as the effects of the present invention are not impaired. Examples of such a gas include air, nitrogen, carbon dioxide and the like.
 上記方法により起泡化したエマルション樹脂組成物(気泡含有エマルション樹脂組成物)を基材上に塗工して乾燥する工程(工程B)を経ることによって、本発明の樹脂発泡体を得ることができる。基材としては、例えば、剥離処理したプラスチックフィルム(剥離処理したポリエチレンテレフタレートフィルム等)、プラスチックフィルム(ポリエチレンテレフタレートフィルム等)等が挙げられる。 The resin foam of the present invention can be obtained by subjecting the emulsion resin composition foamed by the above method (bubble-containing emulsion resin composition) to a substrate and drying it (step B). it can. Examples of the base material include a peel-treated plastic film (peeling-treated polyethylene terephthalate film and the like), a plastic film (polyethylene terephthalate film and the like), and the like.
 工程Bにおいて、塗工方法、乾燥方法としては、本発明の効果を損なわない範囲で任意の適切な方法を採用できる。工程Bは、基材上に塗布した気泡含有エマルション樹脂組成物を50℃以上125℃未満で乾燥する予備乾燥工程B1と、その後さらに125℃以上200℃以下で乾燥する本乾燥工程B2を含んでいることが好ましい。 In step B, any appropriate method can be adopted as the coating method and the drying method as long as the effects of the present invention are not impaired. Step B includes a preliminary drying step B1 in which the bubble-containing emulsion resin composition coated on the substrate is dried at 50 ° C. or higher and lower than 125 ° C., and then a main drying step B2 in which the bubble-containing emulsion resin composition is further dried at 125 ° C. or higher and 200 ° C. or lower. It is preferable to have.
 予備乾燥工程B1と本乾燥工程B2を設けることにより、急激な温度上昇による気泡の合一化、気泡の破裂を防止できる。特に、厚みの小さい発泡シートでは温度の急激な上昇により気泡が合一化、破裂するので、予備乾燥工程B1を設ける意義は大きい。予備乾燥工程B1における温度は、好ましくは50℃~100℃である。予備乾燥工程B1の時間は、好ましくは0.5分~30分であり、より好ましくは1分~15分である。本乾燥工程B2における温度は、好ましくは130℃~180℃以下であり、より好ましくは130℃~160℃である。本乾燥工程B2の時間は、好ましくは0.5分~30分であり、より好ましくは1分~15分である。 By providing the pre-drying step B1 and the main drying step B2, it is possible to prevent the coalescence of bubbles and the bursting of bubbles due to a rapid temperature rise. In particular, in a foam sheet having a small thickness, bubbles are united and burst due to a rapid rise in temperature, so it is of great significance to provide the pre-drying step B1. The temperature in the pre-drying step B1 is preferably 50 ° C. to 100 ° C. The time of the pre-drying step B1 is preferably 0.5 minutes to 30 minutes, more preferably 1 minute to 15 minutes. The temperature in the main drying step B2 is preferably 130 ° C. to 180 ° C. or lower, and more preferably 130 ° C. to 160 ° C. The time of the main drying step B2 is preferably 0.5 minutes to 30 minutes, more preferably 1 minute to 15 minutes.
<本発明の樹脂発泡体を形成させる実施形態2>
 本発明の樹脂発泡体を形成させる一つの実施形態2としては、樹脂組成物を発泡剤により発泡させて発泡体を形成する形態が挙げられる。発泡剤としては、発泡成形に通常用いられるものを使用でき、環境保護及び被発泡体に対する低汚染性の観点から、高圧の不活性ガスを用いることが好ましい。
<Embodiment 2 for forming the resin foam of the present invention>
As one embodiment 2 for forming the resin foam of the present invention, there is a mode in which the resin composition is foamed with a foaming agent to form a foam. As the foaming agent, those usually used for foam molding can be used, and from the viewpoint of environmental protection and low pollution to the foam to be foamed, it is preferable to use a high-pressure inert gas.
 不活性ガスとしては、樹脂組成物に対して不活性で且つ含浸可能なものであれば、任意の適切な不活性ガスを採用し得る。このような不活性ガスとしては、例えば、二酸化炭素、窒素ガス、空気などが挙げられる。これらのガスは混合して用いてもよい。これらのうち、樹脂材料(ポリマー)への含浸量が多く、含浸速度の速いという観点から、二酸化炭素が好ましい。 As the inert gas, any suitable inert gas can be adopted as long as it is inert to the resin composition and can be impregnated. Examples of such an inert gas include carbon dioxide, nitrogen gas, and air. These gases may be mixed and used. Of these, carbon dioxide is preferable from the viewpoint of a large amount of impregnation into the resin material (polymer) and a high impregnation rate.
 不活性ガスは超臨界状態であることが好ましい。すなわち、超臨界状態の二酸化炭素を用いることが特に好ましい。超臨界状態では、樹脂組成物への不活性ガスの溶解度がより増大し、不活性ガスの高濃度の混入が可能であるとともに、急激な圧力降下時に不活性ガスが高濃度となるため、気泡核の発生が多くなり、その気泡核が成長してできる気泡の密度が、気孔率が同じであっても他の状態の場合より大きくなるため、微細な気泡を得ることができる。なお、二酸化炭素の臨界温度は31℃、臨界圧力は7.4MPaである。 The inert gas is preferably in a supercritical state. That is, it is particularly preferable to use carbon dioxide in a supercritical state. In the supercritical state, the solubility of the inert gas in the resin composition is further increased, a high concentration of the inert gas can be mixed, and the inert gas becomes high concentration at the time of a sudden pressure drop. Since the number of nuclei generated increases and the density of bubbles formed by the growth of the bubble nuclei becomes higher than in other states even if the porosity is the same, fine bubbles can be obtained. The critical temperature of carbon dioxide is 31 ° C., and the critical pressure is 7.4 MPa.
 樹脂組成物に高圧の不活性ガスを含浸させることにより発泡体を形成する方法としては、例えば、樹脂材料(ポリマー)を含む樹脂組成物に不活性ガスを高圧下で含浸させるガス含浸工程、該工程後に圧力を低下させて樹脂材料(ポリマー)を発泡させる減圧工程、および、必要に応じて加熱により気泡を成長させる加熱工程を経て形成する方法などが挙げられる。この場合、予め成形した未発泡成形体を不活性ガスに含浸させてもよく、また、溶融した樹脂組成物に不活性ガスを加圧状態下で含浸させた後に減圧の際に成形に付してもよい。これらの工程は、バッチ方式、連続方式のいずれの方式で行ってもよい。すなわち、予め樹脂組成物を、シート状などの適宜な形状に成形して未発泡樹脂成形体とした後、この未発泡樹脂成形体に、高圧のガスを含浸させ、圧力を解放することにより発泡させるバッチ方式であってもよく、樹脂組成物を加圧下、高圧のガスと共に混練し、成形すると同時に圧力を解放し、成形と発泡を同時に行う連続方式であってもよい。 As a method of forming a foam by impregnating a resin composition with a high-pressure inert gas, for example, a gas impregnation step of impregnating a resin composition containing a resin material (polymer) with an inert gas under high pressure, the same. Examples thereof include a decompression step of lowering the pressure after the step to foam the resin material (polymer), and a method of forming the resin material (polymer) through a heating step of growing bubbles by heating if necessary. In this case, a preformed unfoamed molded product may be impregnated with an inert gas, or the molten resin composition is impregnated with an inert gas under a pressurized state and then subjected to molding when the pressure is reduced. You may. These steps may be performed by either a batch method or a continuous method. That is, after the resin composition is previously molded into an appropriate shape such as a sheet to form an unfoamed resin molded product, the unfoamed resin molded product is impregnated with a high-pressure gas to release the pressure for foaming. It may be a batch method in which the resin composition is kneaded together with a high-pressure gas under pressure, and the pressure is released at the same time as molding, and molding and foaming may be performed at the same time.
 バッチ方式で発泡体を製造する例を以下に示す。例えば、樹脂組成物を単軸押出機、2軸押出機等の押出機を使用して押し出すことにより、発泡体成形用樹脂シートを作製する。あるいは、樹脂組成物を、ローラ、カム、ニーダー、バンバリ型等の羽根を設けた混練機を使用して均一に混練しておき、熱板のプレスなどを用いて所定の厚みにプレス加工することにより、未発泡樹脂成形体を作製する。こうして得られた未発泡樹脂成形体を高圧容器中に入れて、高圧不活性ガス(超臨界状態の二酸化炭素など)を注入し、未発泡樹脂成形体中に不活性ガスを含浸させる。十分に不活性ガスを含浸させた時点で圧力を解放し(通常、大気圧まで)、樹脂中に気泡核を発生させる。気泡核はそのまま室温で成長させてもよいが、場合によっては加熱することによって成長させてもよい。加熱の方法としては、ウォーターバス、オイルバス、熱ロール、熱風オーブン、遠赤外線、近赤外線、マイクロ波などの公知や慣用の方法を採用できる。このようにして気泡を成長させた後、冷水などにより急激に冷却し、形状を固定化することにより発泡体を得ることができる。なお、発泡に供する未発泡樹脂成形体はシート状物に限らず、用途に応じて種々の形状のものを使用できる。また、発泡に供する未発泡樹脂成形体は押出成形、プレス成形のほか、射出成形等の他の成形法により作製することもできる。 An example of producing a foam by a batch method is shown below. For example, a resin sheet for foam molding is produced by extruding the resin composition using an extruder such as a single-screw extruder or a twin-screw extruder. Alternatively, the resin composition is uniformly kneaded using a kneader equipped with blades such as a roller, a cam, a kneader, and a bambari type, and pressed to a predetermined thickness using a hot plate press or the like. To prepare an unfoamed resin molded product. The unfoamed resin molded body thus obtained is placed in a high-pressure container, and a high-pressure inert gas (carbon dioxide or the like in a supercritical state) is injected to impregnate the unfoamed resin molded body with the inert gas. When fully impregnated with the inert gas, the pressure is released (usually up to atmospheric pressure) to generate bubble nuclei in the resin. The bubble nuclei may be grown as they are at room temperature, but in some cases, they may be grown by heating. As the heating method, known or conventional methods such as a water bath, an oil bath, a hot roll, a hot air oven, far infrared rays, near infrared rays, and microwaves can be adopted. After growing the bubbles in this way, the foam can be obtained by rapidly cooling with cold water or the like to fix the shape. The non-foamed resin molded product to be foamed is not limited to a sheet-like product, and various shapes can be used depending on the intended use. Further, the non-foamed resin molded product to be used for foaming can be produced by extrusion molding, press molding, or other molding method such as injection molding.
 連続方式で発泡体を製造する例を以下に示す。例えば、樹脂組成物を、単軸押出機、二軸押出機等の押出機を使用して混練しながら、高圧のガス(特に不活性ガス、さらには二酸化炭素)を注入(導入)し、十分に高圧のガスを樹脂組成物に含浸させる混練含浸工程、押出機の先端に設けられたダイスなどを通して樹脂組成物を押し出すことにより圧力を解放し(通常、大気圧まで)、成形と発泡を同時に行う成形減圧工程により発泡成形する。また、連続方式での発泡成形の際には、必要に応じて、加熱することによって気泡を成長させる加熱工程を設けてもよい。このようにして気泡を成長させた後、必要により冷水などにより急激に冷却し、形状を固定化してもよい。また、高圧のガスの導入は連続的に行ってもよく不連続的に行ってもよい。さらに、混練含浸工程および成形減圧工程では、例えば、押出機や射出成形機を用い得る。なお、気泡核を成長させる際の加熱の方法としては、ウォーターバス、オイルバス、熱ロール、熱風オーブン、遠赤外線、近赤外線、マイクロ波などの任意の適切な方法が挙げられる。発泡体の形状としては、任意の適切な形状を採用し得る。このような形状としては、例えば、シート状、角柱状、円筒状、異型状などが挙げられる。 An example of producing a foam by a continuous method is shown below. For example, while kneading the resin composition using an extruder such as a single-screw extruder or a twin-screw extruder, high-pressure gas (particularly inert gas and further carbon dioxide) is injected (introduced) sufficiently. The pressure is released by extruding the resin composition through a kneading impregnation step of impregnating the resin composition with a high-pressure gas, a die provided at the tip of the extruder, etc. (usually up to atmospheric pressure), and molding and foaming are performed at the same time. Foam molding is performed by a reduced pressure step. Further, in the case of foam molding in a continuous method, a heating step of growing bubbles by heating may be provided, if necessary. After the bubbles are grown in this way, the shape may be fixed by rapidly cooling with cold water or the like, if necessary. Further, the high-pressure gas may be introduced continuously or discontinuously. Further, in the kneading impregnation step and the molding depressurization step, for example, an extruder or an injection molding machine can be used. Examples of the heating method for growing the bubble nuclei include any suitable method such as a water bath, an oil bath, a hot roll, a hot air oven, far infrared rays, near infrared rays, and microwaves. Any suitable shape may be adopted as the shape of the foam. Examples of such a shape include a sheet shape, a prismatic shape, a cylindrical shape, and a modified shape.
 樹脂組成物を発泡成形する際のガスの混合量は、高発泡な発泡体を得られ得る点で、例えば、樹脂組成物全量に対して、好ましくは2重量%~10重量%であり、より好ましくは2.5重量%~8重量%であり、さらに好ましくは3重量%~6重量%である。 The amount of the gas mixed when the resin composition is foam-molded is, for example, preferably 2% by weight to 10% by weight, based on the total amount of the resin composition, in that a highly foamed foam can be obtained. It is preferably 2.5% by weight to 8% by weight, more preferably 3% by weight to 6% by weight.
 不活性ガスを樹脂組成物に含浸させるときの圧力は、操作性等を考慮して適宜選択できる。このような圧力は、例えば、好ましくは6MPa以上(例えば、6MPa~100MPa)であり、より好ましくは8MPa以上(例えば、8MPa~50MPa)である。なお、超臨界状態の二酸化炭素を用いる場合の圧力は、二酸化炭素の超臨界状態を保持する観点から、好ましくは7.4MPa以上である。圧力が6MPaより低い場合には、発泡時の気泡成長が著しく、気泡径が大きくなりすぎて、好ましい平均セル径(平均気泡径)を得ることができない場合がある。これは、圧力が低いとガスの含浸量が高圧時に比べて相対的に少なく、気泡核形成速度が低下して形成される気泡核数が少なくなるため、1気泡あたりのガス量が逆に増えて気泡径が極端に大きくなるからである。また、6MPaより低い圧力領域では、含浸圧力を少し変化させるだけで気泡径、気泡密度が大きく変わるため、気泡径及び気泡密度の制御が困難になりやすい。 The pressure when the resin composition is impregnated with the inert gas can be appropriately selected in consideration of operability and the like. Such a pressure is, for example, preferably 6 MPa or more (for example, 6 MPa to 100 MPa), more preferably 8 MPa or more (for example, 8 MPa to 50 MPa). The pressure when carbon dioxide in the supercritical state is used is preferably 7.4 MPa or more from the viewpoint of maintaining the supercritical state of carbon dioxide. When the pressure is lower than 6 MPa, the bubble growth during foaming is remarkable, the bubble diameter becomes too large, and a preferable average cell diameter (average cell diameter) may not be obtained. This is because when the pressure is low, the amount of gas impregnated is relatively small compared to when the pressure is high, the bubble nucleation rate decreases, and the number of bubble nuclei formed decreases, so that the amount of gas per bubble increases conversely. This is because the bubble diameter becomes extremely large. Further, in the pressure region lower than 6 MPa, the bubble diameter and the bubble density change greatly even if the impregnation pressure is slightly changed, so that it tends to be difficult to control the bubble diameter and the bubble density.
 ガス含浸工程における温度は、用いる不活性ガスや樹脂組成物中の成分の種類等によって異なり、広い範囲で選択できる。操作性等を考慮した場合、好ましくは10℃~350℃である。未発泡成形体に不活性ガスを含浸させる場合の含浸温度は、バッチ式では、好ましくは10℃~250℃であり、より好ましくは40℃~230℃である。また、ガスを含浸させた溶融ポリマーを押し出して発泡と成形とを同時に行う場合の含浸温度は、連続式では、好ましくは60℃~350℃である。なお、不活性ガスとして二酸化炭素を用いる場合には、超臨界状態を保持するため、含浸時の温度は、好ましくは32℃以上であり、より好ましくは40℃以上である。 The temperature in the gas impregnation step varies depending on the inert gas used, the type of component in the resin composition, etc., and can be selected in a wide range. Considering operability and the like, the temperature is preferably 10 ° C to 350 ° C. When the non-foamed molded product is impregnated with the inert gas, the impregnation temperature is preferably 10 ° C. to 250 ° C., more preferably 40 ° C. to 230 ° C. in the batch type. Further, when the molten polymer impregnated with gas is extruded to perform foaming and molding at the same time, the impregnation temperature is preferably 60 ° C. to 350 ° C. in the continuous type. When carbon dioxide is used as the inert gas, the temperature at the time of impregnation is preferably 32 ° C. or higher, more preferably 40 ° C. or higher, in order to maintain the supercritical state.
 減圧工程において、減圧速度としては、均一な微細気泡を得るため、好ましくは5MPa/秒~300MPa/秒である。 In the depressurization step, the decompression rate is preferably 5 MPa / sec to 300 MPa / sec in order to obtain uniform fine bubbles.
 加熱工程における加熱温度は、好ましくは40℃~250℃であり、より好ましくは60℃~250℃である。 The heating temperature in the heating step is preferably 40 ° C. to 250 ° C., more preferably 60 ° C. to 250 ° C.
B.発泡部材
 図1は、本発明の1つの実施形態による発泡部材の概略断面図である。発泡部材100は、樹脂発泡層10と、樹脂発泡層10の少なくとも一方の側に配置された粘着剤層20とを有する。樹脂発泡層10は、上記樹脂発泡体により構成される。
B. Foaming Member FIG. 1 is a schematic cross-sectional view of a foaming member according to one embodiment of the present invention. The foaming member 100 has a resin foaming layer 10 and an adhesive layer 20 arranged on at least one side of the resin foaming layer 10. The resin foam layer 10 is composed of the resin foam.
 粘着剤層の厚さは、好ましくは5μm~300μmであり、より6μm~200μmであり、さらに好ましくは7μm~100μmであり、特に好ましくは8μm~50μmである。粘着剤層の厚さが上記範囲内にあることによって、本発明の発泡部材は、優れた衝撃吸収性を発揮できる。 The thickness of the pressure-sensitive adhesive layer is preferably 5 μm to 300 μm, more preferably 6 μm to 200 μm, further preferably 7 μm to 100 μm, and particularly preferably 8 μm to 50 μm. When the thickness of the pressure-sensitive adhesive layer is within the above range, the foamed member of the present invention can exhibit excellent shock absorption.
 粘着剤層としては、任意の適切な粘着剤からなる層を採用し得る。粘着剤層を構成する粘着剤としては、例えば、ゴム系粘着剤(合成ゴム系粘着剤、天然ゴム系粘着剤など)、ウレタン系粘着剤、アクリルウレタン系粘着剤、アクリル系粘着剤、シリコーン系粘着剤、ポリエステル系粘着剤、ポリアミド系粘着剤、エポキシ系粘着剤、ビニルアルキルエーテル系粘着剤、フッ素系粘着剤、ゴム系粘着剤などが挙げられる。粘着剤層を構成する粘着剤としては、好ましくは、アクリル系粘着剤、シリコーン系粘着剤、ゴム系粘着剤から選ばれる少なくとも1種である。このような粘着剤は、1種のみであってもよいし、2種以上であってもよい。粘着剤層は、1層であってもよいし、2層以上であってもよい。 As the pressure-sensitive adhesive layer, a layer made of any suitable pressure-sensitive adhesive can be adopted. Examples of the pressure-sensitive adhesive constituting the pressure-sensitive adhesive layer include rubber-based pressure-sensitive adhesives (synthetic rubber-based pressure-sensitive adhesives, natural rubber-based pressure-sensitive adhesives, etc.), urethane-based pressure-sensitive adhesives, acrylic urethane-based pressure-sensitive adhesives, acrylic-based pressure-sensitive adhesives, and silicone-based pressure-sensitive adhesives. Examples thereof include pressure-sensitive adhesives, polyester-based pressure-sensitive adhesives, polyamide-based pressure-sensitive adhesives, epoxy-based pressure-sensitive adhesives, vinyl alkyl ether-based pressure-sensitive adhesives, fluorine-based pressure-sensitive adhesives, and rubber-based pressure-sensitive adhesives. The pressure-sensitive adhesive constituting the pressure-sensitive adhesive layer is preferably at least one selected from an acrylic pressure-sensitive adhesive, a silicone-based pressure-sensitive adhesive, and a rubber-based pressure-sensitive adhesive. Such an adhesive may be only one kind or two or more kinds. The pressure-sensitive adhesive layer may be one layer or two or more layers.
 粘着剤としては、粘着形態で分類すると、例えば、エマルジョン型粘着剤、溶剤型粘着剤、紫外線架橋型(UV架橋型)粘着剤、電子線架橋型(EB架橋型)粘着剤、熱溶融型粘着剤(ホットメルト型粘着剤)などが挙げられる。このような粘着剤は、1種のみであってもよいし、2種以上であってもよい。 When classified by adhesive form, the adhesives are, for example, emulsion type adhesives, solvent type adhesives, ultraviolet crosslinked (UV crosslinked) adhesives, electron beam crosslinked (EB crosslinked) adhesives, and heat melt type adhesives. Agents (hot melt type adhesives) and the like can be mentioned. Such an adhesive may be only one kind or two or more kinds.
 粘着剤層の水蒸気透湿度は、好ましくは50(g/(m・24時間))以下であり、より好ましくは30(g/(m・24時間))以下であり、さらに好ましくは20(g/(m・24時間))以下であり、特に好ましくは10(g/(m・24時間))以下である。粘着剤層の水蒸気透湿度が上記範囲内にあれば、本発明の発泡シートは、水分による影響を受けずに衝撃吸収性を安定化させることができる。なお、水蒸気透湿度は、例えば、JIS Z 0208に準じた方法により、40℃、相対湿度92%の試験条件で測定することができる。 Steam moisture permeability of the adhesive layer is preferably not more than 50 (g / (m 2 · 24 hr)), more preferably 30 (g / (m 2 · 24 hr)) or less, more preferably 20 (g / (m 2 · 24 hr)) or less, particularly preferably 10 (g / (m 2 · 24 hr)) or less. When the water vapor permeability of the pressure-sensitive adhesive layer is within the above range, the foamed sheet of the present invention can stabilize the shock absorption without being affected by moisture. The water vapor permeability can be measured, for example, by a method according to JIS Z 0208 under test conditions of 40 ° C. and a relative humidity of 92%.
 粘着剤層を構成する粘着剤には、本発明の効果を損なわない範囲で、任意の適切な他の成分を含んでいてもよい。他の成分としては、例えば、他のポリマー成分、軟化剤、老化防止剤、硬化剤、可塑剤、充填材、酸化防止剤、熱重合開始剤、光重合開始剤、紫外線吸収剤、光安定剤、着色剤(顔料や染料など)、溶剤(有機溶剤)、界面活性剤(例えば、イオン性界面活性剤、シリコーン系界面活性剤、フッ素系界面活性剤など)、架橋剤(例えば、ポリイソシアネート系架橋剤、シリコーン系架橋剤、エポキシ系架橋剤、アルキルエーテル化メラミン系架橋剤など)などが挙げられる。なお、熱重合開始剤や光重合開始剤は、ポリマー成分を形成するための材料に含まれ得る。 The pressure-sensitive adhesive constituting the pressure-sensitive adhesive layer may contain any suitable other component as long as the effect of the present invention is not impaired. Other components include, for example, other polymer components, softeners, antioxidants, hardeners, plasticizers, fillers, antioxidants, thermal polymerization initiators, photopolymerization initiators, UV absorbers, light stabilizers. , Colorants (pigments, dyes, etc.), solvents (organic solvents), surfactants (eg, ionic surfactants, silicone-based surfactants, fluorine-based surfactants, etc.), cross-linking agents (eg, polyisocyanate-based) Cross-linking agents, silicone-based cross-linking agents, epoxy-based cross-linking agents, alkyl etherified melamine-based cross-linking agents, etc.) and the like. The thermal polymerization initiator and the photopolymerization initiator may be included in the material for forming the polymer component.
 本発明の発泡部材は、任意の適切な方法によって製造し得る。本発明の発泡部材は、例えば、樹脂発泡層と粘着剤層とを積層して製造する方法や、粘着剤層の形成材料と樹脂発泡層を積層した後に硬化反応等によって粘着剤層を形成させて製造する方法などが挙げられる。 The foamed member of the present invention can be produced by any suitable method. The foamed member of the present invention is produced, for example, by laminating a resin foam layer and a pressure-sensitive adhesive layer, or by laminating a material for forming a pressure-sensitive adhesive layer and a resin foam layer and then forming a pressure-sensitive adhesive layer by a curing reaction or the like. And the method of manufacturing.
 以下、実施例により本発明を具体的に説明するが、本発明はこれら実施例になんら限定されるものではない。なお、実施例等における、試験および評価方法は以下のとおりである。なお、「部」と記載されている場合は、特記事項がない限り「重量部」を意味し、「%」と記載されている場合は、特記事項がない限り「重量%」を意味する。 Hereinafter, the present invention will be specifically described with reference to Examples, but the present invention is not limited to these Examples. The tests and evaluation methods in the examples and the like are as follows. In addition, when it is described as "part", it means "part by weight" unless there is a special note, and when it is described as "%", it means "% by weight" unless there is a special note.
<評価方法>
(1)見かけ密度
 樹脂発泡体の密度(見かけ密度)は、以下のように算出した。実施例・比較例で得られた樹脂発泡体を20mm×20mmサイズに打ち抜いて試験片とし、試験片の寸法をノギスで測定した。次に、試験片の重量を電子天秤にて測定した。そして、次式により算出した。
 見かけ密度(g/cm)=試験片の重量/試験片の体積
<Evaluation method>
(1) Apparent density The density (apparent density) of the resin foam was calculated as follows. The resin foam obtained in Examples and Comparative Examples was punched into a size of 20 mm × 20 mm to obtain a test piece, and the dimensions of the test piece were measured with a caliper. Next, the weight of the test piece was measured with an electronic balance. Then, it was calculated by the following formula.
Apparent density (g / cm 3 ) = weight of test piece / volume of test piece
(2)25%圧縮荷重
 JIS K 6767に記載されている発泡体の圧縮硬さ測定方法に準じて測定した。具体的には、実施例・比較例で得られた樹脂発泡体を30mm×30mmサイズに切り出して試験片とし、圧縮速度10mm/minで圧縮率が25%となるまで圧縮したときの応力(N)を単位面積(1cm)当たりに換算して、25%圧縮荷重(N/cm)とした。
(2) 25% compressive load The measurement was performed according to the method for measuring the compressive hardness of the foam described in JIS K 6767. Specifically, the resin foam obtained in Examples and Comparative Examples was cut into a size of 30 mm × 30 mm to form a test piece, and the stress (N) when compressed to a compression rate of 25% at a compression rate of 10 mm / min. ) Was converted per unit area (1 cm 2 ) to obtain a 25% compressive load (N / cm 2 ).
(3)平均気泡径(平均セル径)、気泡径(セル径)の変動係数
 樹脂発泡体を、カミソリ刃を用いて、TD(流れ方向に直交する方向)、かつ、樹脂発泡体の主面に対して垂直方向(厚み方向)に切断し、計測器としてデジタルマイクロスコープ(商品名「VHX-500」、キーエンス株式会社製)を用い、樹脂発泡体の気泡部の拡大画像を取り込み、同計測器の解析ソフトを用いて、画像解析することにより、数平均気泡径(平均セル径)(μm)を求めた。なお、取り込んだ拡大画像の気泡数は400個程度であった。また、セル径の全データから標準偏差を計算し、以下の式を用いて変動係数を算出した。
変動係数=標準偏差/平均気泡径(平均セル径)
(3) Fluctuation coefficient of average cell diameter (average cell diameter) and bubble diameter (cell diameter) Using a razor blade, the resin foam is TD (direction orthogonal to the flow direction) and the main surface of the resin foam. Cut in the vertical direction (thickness direction), and use a digital microscope (trade name "VHX-500", manufactured by Keyence Co., Ltd.) as a measuring instrument to capture an enlarged image of the bubble part of the resin foam and measure it. The number average bubble diameter (average cell diameter) (μm) was obtained by image analysis using the analysis software of the instrument. The number of bubbles in the captured enlarged image was about 400. In addition, the standard deviation was calculated from all the cell diameter data, and the coefficient of variation was calculated using the following formula.
Coefficient of variation = standard deviation / average cell diameter (average cell diameter)
(4)気泡率(セル率)
 温度23℃、湿度50%の環境下で測定を行った。100mm×100mmの打抜き刃型(2枚の加工刃(商品名「NCA07」、厚さ0.5mm、刃先角度45°、ナカヤマ社製))にて実施例・比較例で得られた樹脂発泡体を打抜き、打抜いた試料の寸法を測定した。また、測定端子の直径(φ)20mmである1/100ダイヤルゲージにて厚みを測定した。これらの値から実施例・比較例で得られた樹脂発泡体の体積を算出した。次に、実施例・比較例で得られた樹脂発泡体の重量を最小目盛り0.01g以上の上皿天秤にて測定した。これらの値より、実施例・比較例で得られた樹脂発泡体の気泡率(セル率)を算出した。
(4) Bubble ratio (cell ratio)
The measurement was carried out in an environment of a temperature of 23 ° C. and a humidity of 50%. Resin foam obtained in Examples and Comparative Examples with a 100 mm x 100 mm punching blade type (two processing blades (trade name "NCA07", thickness 0.5 mm, cutting edge angle 45 °, manufactured by Nakayama Co., Ltd.)) Was punched out, and the dimensions of the punched sample were measured. Further, the thickness was measured with a 1/100 dial gauge having a diameter (φ) of 20 mm of the measurement terminal. From these values, the volumes of the resin foams obtained in Examples and Comparative Examples were calculated. Next, the weight of the resin foams obtained in Examples and Comparative Examples was measured with a precision balance having a minimum scale of 0.01 g or more. From these values, the bubble ratio (cell ratio) of the resin foams obtained in Examples and Comparative Examples was calculated.
(5)気泡壁(セル壁)の厚み
 樹脂発泡体を、カミソリ刃を用いて、TD(流れ方向に直交する方向)、かつ、樹脂発泡体の主面に対して垂直方向(厚み方向)に切断し、計測器としてデジタルマイクロスコープ(商品名「VHX-500」、キーエンス株式会社製)を用いて、樹脂発泡体の気泡部の拡大画像を取り込み、同計測器の解析ソフトを用いて、画像解析することにより、気泡壁(セル壁)の厚み(μm)を求めた。なお、取り込んだ拡大画像の気泡数は400個程度であった。
(5) Thickness of bubble wall (cell wall) Using a razor blade, the resin foam is TD (direction orthogonal to the flow direction) and perpendicular to the main surface of the resin foam (thickness direction). After cutting, use a digital microscope (trade name "VHX-500", manufactured by Keyence Co., Ltd.) as a measuring instrument to capture an enlarged image of the bubble part of the resin foam, and use the analysis software of the measuring instrument to capture the image. By analysis, the thickness (μm) of the bubble wall (cell wall) was determined. The number of bubbles in the captured enlarged image was about 400.
(6)非発泡曲げ応力
 樹脂発泡体を、真空プレス成型機(IVM-70:岩城工業社)を用いて、(融点+70℃)の温度、15MPaの圧力で5分間、プレスすることにより、非発泡状態の樹脂成形体aを得た。
 樹脂成形体aを、幅20mm、長さ150mmに切り出してサンプルとし、このサンプルを支点間距離100mmの3点曲げ冶具の上に置き、23℃×50%RHの環境下で、押し込み速度5mm/minで押し込み試験(島津製作所社製、商品名「AG-Xplus」)を行い、当該サンプルを5mm押し込んだときの荷重(g)を非発泡曲げ応力とした。
(6) Non-foam bending stress Non-foaming by pressing the resin foam with a vacuum press molding machine (IVM-70: Iwaki Kogyo Co., Ltd.) at a temperature of (melting point + 70 ° C.) and a pressure of 15 MPa for 5 minutes. A foamed resin molded product a was obtained.
The resin molded body a was cut into a width of 20 mm and a length of 150 mm to prepare a sample, and this sample was placed on a three-point bending tool having a distance between fulcrums of 100 mm, and the pushing speed was 5 mm / in an environment of 23 ° C. × 50% RH. A indentation test (manufactured by Shimadzu Corporation, trade name "AG-Xplus") was performed in min, and the load (g) when the sample was indented by 5 mm was defined as a non-foam bending stress.
(7)弾性歪エネルギー
 JIS K 6767の圧縮試験の項に基づいて、樹脂発泡体の圧縮率(%)、圧縮反発力(kPa)を測定し、x軸に圧縮率、y軸に圧縮反発力からなる圧縮SS曲線とx軸とで囲まれた面積のうち、圧縮率が0%~10%の領域の面積を弾性歪エネルギーとして算出した。
(7) Elastic strain energy Based on the section of the compression test of JIS K 6767, the compressibility (%) and compressive repulsive force (kPa) of the resin foam are measured, and the x-axis is the compressibility and the y-axis is the compressive repulsive force. Of the area surrounded by the compression SS curve consisting of the x-axis and the x-axis, the area in the region where the compression ratio was 0% to 10% was calculated as the elastic strain energy.
(8)衝撃吸収性の測定方法
 衝撃力センサー上に、樹脂発泡体、両面テープ(品番:No.5603W、日東電工製)、PETフィルム(品番:ダイヤホイルMRF75、三菱樹脂製)をこの順に配置して試験体を形成した。PETフィルム上方50cmの高さから、66gの鉄球を試験体に落下させて、衝撃力F1を測定した。
 また、衝撃力センサーに直接、上記のように鉄球を落下させて、ブランクの衝撃力F0を測定した。
 F1、F0から、(F0-F1)/F0×100の式により、衝撃吸収性(%)を算出した。
(8) Shock absorption measurement method Resin foam, double-sided tape (product number: No. 5603W, manufactured by Nitto Denko), and PET film (product number: diamond foil MRF75, manufactured by Mitsubishi resin) are placed in this order on the impact force sensor. To form a test piece. From a height of 50 cm above the PET film, a 66 g iron ball was dropped onto the test piece, and the impact force F1 was measured.
Further, the impact force F0 of the blank was measured by dropping the iron ball directly onto the impact force sensor as described above.
From F1 and F0, the shock absorption (%) was calculated by the formula (F0-F1) / F0 × 100.
(9)厚み回復率
 樹脂発泡体に、樹脂発泡体に1000g/cmの荷重を加えた状態で120秒間維持し、圧縮を解除し、解除してから0.5秒後の樹脂発泡体の厚み(圧縮状態を解除してから0.5秒後の厚み)を測定した。「圧縮状態を解除してから0.5秒後の厚み」と、荷重を加える前の樹脂発泡体の厚み(初期厚み)とから、下記の式により、厚み回復率を求めた。
 厚み回復率(%)={(圧縮状態を解除してから0.5秒後の厚み)/(初期厚み)}×100
(9) Thickness recovery rate The resin foam is maintained for 120 seconds with a load of 1000 g / cm 2 applied to the resin foam, decompressed, and 0.5 seconds after the decompression of the resin foam. The thickness (thickness 0.5 seconds after the compressed state was released) was measured. The thickness recovery rate was calculated from the "thickness 0.5 seconds after the decompressed state" and the thickness (initial thickness) of the resin foam before the load was applied by the following formula.
Thickness recovery rate (%) = {(thickness 0.5 seconds after decompression) / (initial thickness)} x 100
(10)気泡のアスペクト比
 計測器としてデジタルマイクロスコープ(商品名「VHX-2000、キーエンス株式会社製)を用い、下記の方法で、実施例・比較例で得られた樹脂発泡体が有する気泡のスペクト比を測定した。
・樹脂発泡体を、カミソリ刃を用いて、TD(流れ方向に直交する方向)、かつ、樹脂発泡体の主面に対して垂直方向(厚み方向)に切断し、切断面をマイクロスコープ(例えば、キーエンス製「VHX-2000」)を用いて、所定面積(3mm)範囲を倍率100倍で観察し、気泡一個の厚み方向の長さとTDの長さを測定した。
・同様の測定を所定面積内に存在する全ての気泡に対して行った。
・気泡のアスペクト比は、TDの長さ÷厚み方向の長さで計算され、全ての気泡で同様の計算を行い、平均した値を「樹脂発泡体が有する気泡のアスペクト比」とした。
(10) Aspect ratio of bubbles Using a digital microscope (trade name "VHX-2000, manufactured by Keyence Co., Ltd.)" as a measuring instrument, the bubbles contained in the resin foams obtained in Examples and Comparative Examples by the following methods. The aspect ratio was measured.
-The resin foam is cut using a razor blade in the TD (direction orthogonal to the flow direction) and in the direction perpendicular to the main surface of the resin foam (thickness direction), and the cut surface is cut with a microscope (for example, in the thickness direction). , Keyence's "VHX-2000") was used to observe a predetermined area (3 mm 2 ) range at a magnification of 100 times, and the length of one bubble in the thickness direction and the length of TD were measured.
-Similar measurements were made for all bubbles present within a predetermined area.
The aspect ratio of the bubbles was calculated by dividing the length of the TD by the length in the thickness direction, and the same calculation was performed for all the bubbles, and the average value was taken as the "aspect ratio of the bubbles of the resin foam".
〔実施例1〕
 ポリプロピレン(メルトフローレート(MFR)(230℃):0.40g/10min)65重量部、ポリオレフィン系エラストマー(メルトフローレート(MFR):6g/10min、JIS A硬度:79°)35重量部、水酸化マグネシウム(商品名「KISUMA 5P」協和化学工業製)80重量部、カーボン(商品名「旭♯35」旭カーボン株式会社製)10重量部、およびステアリン酸モノグリセリド1重量部を、日本製鋼所(JSW)社製の二軸混練機にて、200℃の温度で混練した後、ストランド状に押出し、水冷後ペレット状に成形した。このペレットを、日本製鋼所社製の単軸押出機に投入し、220℃の雰囲気下、13MPa(注入後12MPa)の圧力で、二酸化炭素ガスを注入した。二酸化炭素ガスは、樹脂100重量部に対して4.5重量部の割合で注入した。二酸化炭素ガスを十分飽和させた後、発泡に適した温度まで冷却後、ダイから押出して、厚みが1.8mmのシート状の樹脂発泡体aを得た。
 さらに、一方のロールが200℃に加熱された一対のロールにおけるロール間(ロールとロールの間の隙間)に、上記樹脂発泡体aを通過させて、厚みが0.1mmの樹脂発泡体Aを得た。なお、ロール間のギャップ(隙間)は、厚みが0.1mmの樹脂発泡体Aが得られるように設定した。
 得られた樹脂発泡体Aを、上記評価(1)~(10)に供した。結果を表1に示す。
[Example 1]
Polypropylene (melt flow rate (MFR) (230 ° C): 0.40 g / 10 min) 65 parts by weight, polyolefin-based elastomer (melt flow rate (MFR): 6 g / 10 min, JIS A hardness: 79 °) 35 parts by weight, water 80 parts by weight of magnesium oxide (trade name "KISUMA 5P" manufactured by Kyowa Chemical Industry Co., Ltd.), 10 parts by weight of carbon (trade name "Asahi # 35" manufactured by Asahi Carbon Co., Ltd.), and 1 part by weight of stearate monoglyceride It was kneaded at a temperature of 200 ° C. with a twin-screw kneader manufactured by JSW), extruded into strands, cooled with water, and molded into pellets. These pellets were put into a single-screw extruder manufactured by Japan Steel Works, Ltd., and carbon dioxide gas was injected at a pressure of 13 MPa (12 MPa after injection) in an atmosphere of 220 ° C. Carbon dioxide gas was injected at a ratio of 4.5 parts by weight to 100 parts by weight of the resin. The carbon dioxide gas was sufficiently saturated, cooled to a temperature suitable for foaming, and then extruded from a die to obtain a sheet-shaped resin foam a having a thickness of 1.8 mm.
Further, the resin foam a is passed between the rolls (the gap between the rolls) in the pair of rolls in which one roll is heated to 200 ° C. to form the resin foam A having a thickness of 0.1 mm. Obtained. The gap between the rolls was set so that the resin foam A having a thickness of 0.1 mm could be obtained.
The obtained resin foam A was subjected to the above evaluations (1) to (10). The results are shown in Table 1.
〔実施例2〕
 ポリプロピレン(メルトフローレート(MFR)(230℃):0.40g/10min)65重量部、ポリオレフィン系エラストマー(メルトフローレート(MFR):6g/10min、JIS A硬度:79°)35重量部、水酸化マグネシウム(商品名「KISUMA 5P」協和化学工業製)80重量部、カーボン(商品名「旭♯35」旭カーボン株式会社製)10重量部、およびステアリン酸モノグリセリド1重量部を、日本製鋼所(JSW)社製の二軸混練機にて、200℃の温度で混練した後、ストランド状に押出し、水冷後ペレット状に成形した。このペレットを、日本製鋼所社製の単軸押出機に投入し、220℃の雰囲気下、13MPa(注入後12MPa)の圧力で、二酸化炭素ガスを注入した。二酸化炭素ガスは、樹脂100重量部に対して3.5重量部の割合で注入した。二酸化炭素ガスを十分飽和させた後、発泡に適した温度まで冷却後、ダイから押出して、厚みが1.8mmのシート状の樹脂発泡体b得た。
 さらに、一方のロールが200℃に加熱された一対のロールにおけるロール間(ロールとロールの間の隙間)に、上記樹脂発泡体bを通過させて、厚みが0.1mmの樹脂発泡体Cを得た。なお、ロール間のギャップ(隙間)は、厚みが0.1mmの樹脂発泡体Bが得られるように設定した。
 得られた樹脂発泡体Bを、上記評価(1)~(10)に供した。結果を表1に示す。
[Example 2]
Polypropylene (melt flow rate (MFR) (230 ° C): 0.40 g / 10 min) 65 parts by weight, polyolefin-based elastomer (melt flow rate (MFR): 6 g / 10 min, JIS A hardness: 79 °) 35 parts by weight, water 80 parts by weight of magnesium oxide (trade name "KISUMA 5P" manufactured by Kyowa Chemical Industry Co., Ltd.), 10 parts by weight of carbon (trade name "Asahi # 35" manufactured by Asahi Carbon Co., Ltd.), and 1 part by weight of stearate monoglyceride It was kneaded at a temperature of 200 ° C. with a twin-screw kneader manufactured by JSW), extruded into strands, cooled with water, and molded into pellets. These pellets were put into a single-screw extruder manufactured by Japan Steel Works, Ltd., and carbon dioxide gas was injected at a pressure of 13 MPa (12 MPa after injection) in an atmosphere of 220 ° C. Carbon dioxide gas was injected at a ratio of 3.5 parts by weight to 100 parts by weight of the resin. The carbon dioxide gas was sufficiently saturated, cooled to a temperature suitable for foaming, and then extruded from a die to obtain a sheet-shaped resin foam b having a thickness of 1.8 mm.
Further, the resin foam b is passed between the rolls (the gap between the rolls) in the pair of rolls in which one roll is heated to 200 ° C. to obtain the resin foam C having a thickness of 0.1 mm. Obtained. The gap between the rolls was set so that the resin foam B having a thickness of 0.1 mm could be obtained.
The obtained resin foam B was subjected to the above evaluations (1) to (10). The results are shown in Table 1.
〔実施例3〕
 ポリプロピレン(メルトフローレート(MFR)(230℃):0.40g/10min)65重量部、ポリオレフィン系エラストマー(メルトフローレート(MFR):6g/10min、JIS A硬度:79°)35重量部、水酸化マグネシウム(商品名「KISUMA 5P」協和化学工業製)120重量部、カーボン(商品名「旭♯35」旭カーボン株式会社製)10重量部、およびステアリン酸モノグリセリド1重量部を、日本製鋼所(JSW)社製の二軸混練機にて、200℃の温度で混練した後、ストランド状に押出し、水冷後ペレット状に成形した。このペレットを、日本製鋼所社製の単軸押出機に投入し、220℃の雰囲気下、13MPa(注入後12MPa)の圧力で、二酸化炭素ガスを注入した。二酸化炭素ガスは、樹脂100重量部に対して3.0重量部の割合で注入した。二酸化炭素ガスを十分飽和させた後、発泡に適した温度まで冷却後、ダイから押出して、厚みが1.8mmのシート状の樹脂発泡体cを得た。
 さらに、一方のロールが200℃に加熱された一対のロールにおけるロール間(ロールとロールの間の隙間)に、上記樹脂発泡体cを通過させて、厚みが0.1mmの樹脂発泡体Cを得た。なお、ロール間のギャップ(隙間)は、厚みが0.1mmの樹脂発泡体Cが得られるように設定した。
 得られた樹脂発泡体Cを、上記評価(1)~(10)に供した。結果を表1に示す。
[Example 3]
Polypropylene (melt flow rate (MFR) (230 ° C): 0.40 g / 10 min) 65 parts by weight, polyolefin-based elastomer (melt flow rate (MFR): 6 g / 10 min, JIS A hardness: 79 °) 35 parts by weight, water 120 parts by weight of magnesium oxide (trade name "KISUMA 5P" manufactured by Kyowa Chemical Industry Co., Ltd.), 10 parts by weight of carbon (trade name "Asahi # 35" manufactured by Asahi Carbon Co., Ltd.), and 1 part by weight of stearate monoglyceride It was kneaded at a temperature of 200 ° C. with a twin-screw kneader manufactured by JSW), extruded into strands, cooled with water, and molded into pellets. These pellets were put into a single-screw extruder manufactured by Japan Steel Works, Ltd., and carbon dioxide gas was injected at a pressure of 13 MPa (12 MPa after injection) in an atmosphere of 220 ° C. Carbon dioxide gas was injected at a ratio of 3.0 parts by weight with respect to 100 parts by weight of the resin. After the carbon dioxide gas was sufficiently saturated, it was cooled to a temperature suitable for foaming, and then extruded from a die to obtain a sheet-shaped resin foam c having a thickness of 1.8 mm.
Further, the resin foam c is passed between the rolls (the gap between the rolls) in the pair of rolls in which one roll is heated to 200 ° C. to obtain the resin foam C having a thickness of 0.1 mm. Obtained. The gap between the rolls was set so that the resin foam C having a thickness of 0.1 mm could be obtained.
The obtained resin foam C was subjected to the above evaluations (1) to (10). The results are shown in Table 1.
〔実施例4〕
 見かけ密度が0.3g/cmであり、25%圧縮荷重が50N/cmであり、弾性歪エネルギーが26kPaであり、ポリエチレンを主成分とする樹脂発泡体Dを準備した。
 この樹脂発泡体Dを、上記評価(1)~(10)に供した。結果を表1に示す。
[Example 4]
A resin foam D containing polyethylene as a main component was prepared, having an apparent density of 0.3 g / cm 3 , a 25% compression load of 50 N / cm 2, and an elastic strain energy of 26 kPa.
This resin foam D was subjected to the above evaluations (1) to (10). The results are shown in Table 1.
〔実施例5〕
 ポリプロピレン(メルトフローレート(MFR)(230℃):0.40g/10min)60重量部、ポリオレフィン系エラストマー(メルトフローレート(MFR):6g/10min、JIS A硬度:79°)40重量部、水酸化マグネシウム(商品名「KISUMA 5P」協和化学工業製)120重量部、カーボン(商品名「旭♯35」旭カーボン株式会社製)10重量部、およびステアリン酸モノグリセリド1重量部を、日本製鋼所(JSW)社製の二軸混練機にて、200℃の温度で混練した後、ストランド状に押出し、水冷後ペレット状に成形した。このペレットを、日本製鋼所社製の単軸押出機に投入し、220℃の雰囲気下、13MPa(注入後12MPa)の圧力で、二酸化炭素ガスを注入した。二酸化炭素ガスは、樹脂100重量部に対して3.5重量部の割合で注入した。二酸化炭素ガスを十分飽和させた後、発泡に適した温度まで冷却後、ダイから押出して、厚みが0.6mmのシート状の樹脂発泡体eを得た。
 さらに、一方のロールが200℃に加熱された一対のロールにおけるロール間(ロールとロールの間の隙間)に、上記樹脂発泡体eを通過させて、厚みが0.1mmの樹脂発泡体Eを得た。なお、ロール間のギャップ(隙間)は、厚みが0.1mmの樹脂発泡体Eが得られるように設定した。
 得られた樹脂発泡体Eを、上記評価(1)~(10)に供した。結果を表1に示す。
[Example 5]
Polypropylene (melt flow rate (MFR) (230 ° C): 0.40 g / 10 min) 60 parts by weight, polyolefin-based elastomer (melt flow rate (MFR): 6 g / 10 min, JIS A hardness: 79 °) 40 parts by weight, water 120 parts by weight of magnesium oxide (trade name "KISUMA 5P" manufactured by Kyowa Chemical Industry Co., Ltd.), 10 parts by weight of carbon (trade name "Asahi # 35" manufactured by Asahi Carbon Co., Ltd.), and 1 part by weight of stearate monoglyceride It was kneaded at a temperature of 200 ° C. with a twin-screw kneader manufactured by JSW), extruded into strands, cooled with water, and molded into pellets. These pellets were put into a single-screw extruder manufactured by Japan Steel Works, Ltd., and carbon dioxide gas was injected at a pressure of 13 MPa (12 MPa after injection) in an atmosphere of 220 ° C. Carbon dioxide gas was injected at a ratio of 3.5 parts by weight to 100 parts by weight of the resin. The carbon dioxide gas was sufficiently saturated, cooled to a temperature suitable for foaming, and then extruded from a die to obtain a sheet-shaped resin foam e having a thickness of 0.6 mm.
Further, the resin foam e is passed between the rolls (gap between the rolls) in the pair of rolls in which one roll is heated to 200 ° C. to form a resin foam E having a thickness of 0.1 mm. Obtained. The gap between the rolls was set so that the resin foam E having a thickness of 0.1 mm could be obtained.
The obtained resin foam E was subjected to the above evaluations (1) to (10). The results are shown in Table 1.
〔実施例6〕
 ポリプロピレン(メルトフローレート(MFR)(230℃):0.40g/10min)60重量部、ポリオレフィン系エラストマー(メルトフローレート(MFR):6g/10min、JIS A硬度:79°)40重量部、水酸化マグネシウム(商品名「KISUMA 5P」協和化学工業製)120重量部、カーボン(商品名「旭♯35」旭カーボン株式会社製)10重量部、およびステアリン酸モノグリセリド1重量部を、日本製鋼所(JSW)社製の二軸混練機にて、200℃の温度で混練した後、ストランド状に押出し、水冷後ペレット状に成形した。このペレットを、日本製鋼所社製の単軸押出機に投入し、220℃の雰囲気下、13MPa(注入後12MPa)の圧力で、二酸化炭素ガスを注入した。二酸化炭素ガスは、樹脂100重量部に対して4.0重量部の割合で注入した。二酸化炭素ガスを十分飽和させた後、発泡に適した温度まで冷却後、ダイから押出して、厚みが0.5mmのシート状の樹脂発泡体jを得た。
 さらに、一方のロールが200℃に加熱された一対のロールにおけるロール間(ロールとロールの間の隙間)に、上記樹脂発泡体jを通過させて、厚みが0.1mmの樹脂発泡体Jを得た。なお、ロール間のギャップ(隙間)は、厚みが0.1mmの樹脂発泡体Jが得られるように設定した。
 得られた樹脂発泡体Jを、上記評価(1)~(10)に供した。結果を表1に示す。
[Example 6]
Polypropylene (melt flow rate (MFR) (230 ° C): 0.40 g / 10 min) 60 parts by weight, polyolefin-based elastomer (melt flow rate (MFR): 6 g / 10 min, JIS A hardness: 79 °) 40 parts by weight, water 120 parts by weight of magnesium oxide (trade name "KISUMA 5P" manufactured by Kyowa Chemical Industry Co., Ltd.), 10 parts by weight of carbon (trade name "Asahi # 35" manufactured by Asahi Carbon Co., Ltd.), and 1 part by weight of stearate monoglyceride It was kneaded at a temperature of 200 ° C. with a twin-screw kneader manufactured by JSW), extruded into strands, cooled with water, and molded into pellets. These pellets were put into a single-screw extruder manufactured by Japan Steel Works, Ltd., and carbon dioxide gas was injected at a pressure of 13 MPa (12 MPa after injection) in an atmosphere of 220 ° C. Carbon dioxide gas was injected at a ratio of 4.0 parts by weight with respect to 100 parts by weight of the resin. The carbon dioxide gas was sufficiently saturated, cooled to a temperature suitable for foaming, and then extruded from a die to obtain a sheet-shaped resin foam j having a thickness of 0.5 mm.
Further, the resin foam j is passed between the rolls (gap between the rolls) in the pair of rolls in which one roll is heated to 200 ° C. to form a resin foam J having a thickness of 0.1 mm. Obtained. The gap between the rolls was set so that the resin foam J having a thickness of 0.1 mm could be obtained.
The obtained resin foam J was subjected to the above evaluations (1) to (10). The results are shown in Table 1.
〔比較例1〕
 ポリプロピレン(メルトフローレート(MFR)(230℃):0.40g/10min)16.5重量部、ポリプロピレン(メルトフローレート(MFR)(230℃):1.1g/10min)16.5重量部、ポリオレフィン系エラストマー(メルトフローレート(MFR):6g/10min、JIS A硬度:79°)67重量部、水酸化マグネシウム(商品名「KISUMA 5P」協和化学工業製)40重量部、カーボン(商品名「旭♯35」旭カーボン株式会社製)10重量部、およびステアリン酸モノグリセリド1重量部を、日本製鋼所(JSW)社製の二軸混練機にて、200℃の温度で混練した後、ストランド状に押出し、水冷後ペレット状に成形した。このペレットを、日本製鋼所社製の単軸押出機に投入し、220℃の雰囲気下、13MPa(注入後12MPa)の圧力で、二酸化炭素ガスを注入した。二酸化炭素ガスは、樹脂100重量部に対して3重量部の割合で注入した。二酸化炭素ガスを十分飽和させた後、発泡に適した温度まで冷却後、ダイから押出して、厚みが1.8mmのシート状の樹脂発泡体fを得た。
 さらに、一方のロールが200℃に加熱された一対のロールにおけるロール間(ロールとロールの間の隙間)に、上記樹脂発泡体fを通過させて、厚みが0.1mmの樹脂発泡体Fを得た。なお、ロール間のギャップ(隙間)は、厚みが0.1mmの樹脂発泡体Fが得られるように設定した。
 得られた樹脂発泡体Fを、上記評価(1)~(10)に供した。結果を表1に示す。
[Comparative Example 1]
Polypropylene (melt flow rate (MFR) (230 ° C): 0.40 g / 10 min) 16.5 parts by weight, polypropylene (melt flow rate (MFR) (230 ° C): 1.1 g / 10 min) 16.5 parts by weight, Polypropylene elastomer (melt flow rate (MFR): 6 g / 10 min, JIS A hardness: 79 °) 67 parts by weight, magnesium hydroxide (trade name "KISUMA 5P" manufactured by Kyowa Chemical Industry Co., Ltd.) 40 parts by weight, carbon (trade name "" Asahi # 35 "Asahi Carbon Co., Ltd.) 10 parts by weight and 1 part by weight of stearate monoglyceride are kneaded with a twin-screw kneader manufactured by Japan Steel Works (JSW) at a temperature of 200 ° C. It was extruded into pellets after cooling with water. These pellets were put into a single-screw extruder manufactured by Japan Steel Works, Ltd., and carbon dioxide gas was injected at a pressure of 13 MPa (12 MPa after injection) in an atmosphere of 220 ° C. Carbon dioxide gas was injected at a ratio of 3 parts by weight to 100 parts by weight of the resin. After the carbon dioxide gas was sufficiently saturated, it was cooled to a temperature suitable for foaming, and then extruded from a die to obtain a sheet-shaped resin foam f having a thickness of 1.8 mm.
Further, the resin foam f is passed between the rolls (gap between the rolls) in the pair of rolls in which one roll is heated to 200 ° C. to form a resin foam F having a thickness of 0.1 mm. Obtained. The gap between the rolls was set so that the resin foam F having a thickness of 0.1 mm could be obtained.
The obtained resin foam F was subjected to the above evaluations (1) to (10). The results are shown in Table 1.
〔比較例2〕
 ポリプロピレン(メルトフローレート(MFR)(230℃):0.40g/10min)45重量部、ポリオレフィン系エラストマー(メルトフローレート(MFR):6g/10min、JIS A硬度:79°)55重量部、水酸化マグネシウム(商品名「KISUMA 5P」協和化学工業製)10重量部、カーボン(商品名「旭♯35」旭カーボン株式会社製)10重量部、およびステアリン酸モノグリセリド1重量部を、日本製鋼所(JSW)社製の二軸混練機にて、200℃の温度で混練した後、ストランド状に押出し、水冷後ペレット状に成形した。このペレットを、日本製鋼所社製の単軸押出機に投入し、220℃の雰囲気下、13MPa(注入後12MPa)の圧力で、二酸化炭素ガスを注入した。二酸化炭素ガスは、樹脂100重量部に対して5.5重量部の割合で注入した。二酸化炭素ガスを十分飽和させた後、発泡に適した温度まで冷却後、ダイから押出して、厚みが2.2mmのシート状の樹脂発泡体gを得た。
 さらに、一方のロールが200℃に加熱された一対のロールにおけるロール間(ロールとロールの間の隙間)に、上記樹脂発泡体gを通過させて、厚みが0.1mmの樹脂発泡体Gを得た。なお、ロール間のギャップ(隙間)は、厚みが0.1mmの樹脂発泡体Gが得られるように設定した。
 得られた樹脂発泡体Gを、上記評価(1)~(10)に供した。結果を表1に示す。
[Comparative Example 2]
Polypropylene (melt flow rate (MFR) (230 ° C): 0.40 g / 10 min) 45 parts by weight, polyolefin-based elastomer (melt flow rate (MFR): 6 g / 10 min, JIS A hardness: 79 °) 55 parts by weight, water 10 parts by weight of magnesium oxide (trade name "KISUMA 5P" manufactured by Kyowa Chemical Industry Co., Ltd.), 10 parts by weight of carbon (trade name "Asahi # 35" manufactured by Asahi Carbon Co., Ltd.), and 1 part by weight of stearate monoglyceride It was kneaded at a temperature of 200 ° C. with a twin-screw kneader manufactured by JSW), extruded into strands, cooled with water, and molded into pellets. These pellets were put into a single-screw extruder manufactured by Japan Steel Works, Ltd., and carbon dioxide gas was injected at a pressure of 13 MPa (12 MPa after injection) in an atmosphere of 220 ° C. Carbon dioxide gas was injected at a ratio of 5.5 parts by weight to 100 parts by weight of the resin. After the carbon dioxide gas was sufficiently saturated, it was cooled to a temperature suitable for foaming, and then extruded from a die to obtain a sheet-shaped resin foam g having a thickness of 2.2 mm.
Further, the resin foam g is passed between the rolls (the gap between the rolls) in the pair of rolls in which one roll is heated to 200 ° C. to obtain the resin foam G having a thickness of 0.1 mm. Obtained. The gap between the rolls was set so that the resin foam G having a thickness of 0.1 mm could be obtained.
The obtained resin foam G was subjected to the above evaluations (1) to (10). The results are shown in Table 1.
〔比較例3〕
 ポリプロピレン(メルトフローレート(MFR)(230℃):0.40g/10min)65重量部、ポリオレフィン系エラストマー(メルトフローレート(MFR):6g/10min、JIS A硬度:79°)35重量部、水酸化マグネシウム(商品名「KISUMA 5P」協和化学工業製)80重量部、カーボン(商品名「旭♯35」旭カーボン株式会社製)10重量部、およびステアリン酸モノグリセリド1重量部を、日本製鋼所(JSW)社製の二軸混練機にて、200℃の温度で混練した後、ストランド状に押出し、水冷後ペレット状に成形した。このペレットを、日本製鋼所社製の単軸押出機に投入し、220℃の雰囲気下、13MPa(注入後12MPa)の圧力で、二酸化炭素ガスを注入した。二酸化炭素ガスは、樹脂100重量部に対して4.5重量部の割合で注入した。二酸化炭素ガスを十分飽和させた後、発泡に適した温度まで冷却後、ダイから押出して、厚みが1.8mmのシート状の樹脂発泡体hを得た。前記樹脂発泡体hを、スライサーを用いて、厚み0.1mmまで薄膜化して樹脂発泡体Hを得た。得られた樹脂発泡体Hを、上記評価(1)~(10)に供した。結果を表1に示す。
[Comparative Example 3]
Polypropylene (melt flow rate (MFR) (230 ° C): 0.40 g / 10 min) 65 parts by weight, polyolefin-based elastomer (melt flow rate (MFR): 6 g / 10 min, JIS A hardness: 79 °) 35 parts by weight, water 80 parts by weight of magnesium oxide (trade name "KISUMA 5P" manufactured by Kyowa Chemical Industry Co., Ltd.), 10 parts by weight of carbon (trade name "Asahi # 35" manufactured by Asahi Carbon Co., Ltd.), and 1 part by weight of stearate monoglyceride It was kneaded at a temperature of 200 ° C. with a twin-screw kneader manufactured by JSW), extruded into strands, cooled with water, and molded into pellets. These pellets were put into a single-screw extruder manufactured by Japan Steel Works, Ltd., and carbon dioxide gas was injected at a pressure of 13 MPa (12 MPa after injection) in an atmosphere of 220 ° C. Carbon dioxide gas was injected at a ratio of 4.5 parts by weight to 100 parts by weight of the resin. The carbon dioxide gas was sufficiently saturated, cooled to a temperature suitable for foaming, and then extruded from a die to obtain a sheet-shaped resin foam h having a thickness of 1.8 mm. The resin foam h was thinned to a thickness of 0.1 mm using a slicer to obtain a resin foam H. The obtained resin foam H was subjected to the above evaluations (1) to (10). The results are shown in Table 1.
〔比較例4〕
 アクリルエマルション溶液(固形分量55%、アクリル酸エチル-アクリル酸ブチル-アクリロニトリル共重合体(重量比45:48:7))100重量部、脂肪酸アンモニウム系界面活性剤(ステアリン酸アンモニウムの水分散液、固形分量33%)2重量部、カルボキシベタイン型両性界面活性剤(「アモーゲンCB-H」、第一工業製薬社製)2重量部、オキサゾリン系架橋剤(「エポクロスWS-500」日本触媒社製、固形分量39%)4重量部、カーボンブラック(「NAF-5091」大日精化工業社製)1重量部、をディスパー(「ロボミックス」プライミクス社製)で撹拌混合して起泡化した。この発泡組成物を、剥離処理をしたPET(ポリエチレンテレフタレート)フィルム(厚さ:38μm、商品名「MRF♯38」三菱樹脂社製)上に塗布し、70℃で4.5分、140℃で4.5分乾燥させ、樹脂発泡体I(厚み:0.1mm)を得た。得られた樹脂発泡体Iを、上記評価(1)~(10)に供した。結果を表1に示す。
[Comparative Example 4]
Acrylic emulsion solution (solid content 55%, ethyl acrylate-butyl acrylate-acrylonitrile copolymer (weight ratio 45:48: 7)) 100 parts by weight, fatty acid ammonium surfactant (aqueous dispersion of ammonium stearate, Solid content 33%) 2 parts by weight, carboxybetaine type amphoteric surfactant ("Amogen CB-H", manufactured by Daiichi Kogyo Seiyaku Co., Ltd.), 2 parts by weight, oxazoline-based cross-linking agent ("Epocross WS-500" manufactured by Nippon Catalyst Co., Ltd.) , Solid content 39%) and 1 part by weight of carbon black (manufactured by "NAF-5091" Dainichi Seika Kogyo Co., Ltd.) were stirred and mixed with a disper (manufactured by "Robomix" Primex Co., Ltd.) to foam. This foam composition was applied onto a peel-treated PET (polyethylene terephthalate) film (thickness: 38 μm, trade name “MRF # 38” manufactured by Mitsubishi Plastics Co., Ltd.) at 70 ° C. for 4.5 minutes at 140 ° C. The mixture was dried for 4.5 minutes to obtain a resin foam I (thickness: 0.1 mm). The obtained resin foam I was subjected to the above evaluations (1) to (10). The results are shown in Table 1.
Figure JPOXMLDOC01-appb-T000001
Figure JPOXMLDOC01-appb-T000001
 本発明の樹脂発泡体は、例えば、電子機器用のクッション材として好適に利用できる。 The resin foam of the present invention can be suitably used, for example, as a cushioning material for electronic devices.
100 発泡部材
10  樹脂発泡層
20  粘着剤層
100 Foam member 10 Resin foam layer 20 Adhesive layer

Claims (12)

  1.  見かけ密度が、0.02g/cm~0.30g/cmであり、
     25%圧縮荷重が90kPa以下であり、
     圧縮時の弾性歪エネルギーが10kPa以上であり、
     気泡構造を有する、
     樹脂発泡体。
    The apparent density is 0.02 g / cm 3 to 0.30 g / cm 3 .
    The 25% compression load is 90 kPa or less,
    The elastic strain energy during compression is 10 kPa or more,
    Has a bubble structure,
    Resin foam.
  2.  平均気泡径が10μm~200μmである、請求項1に記載の樹脂発泡体。 The resin foam according to claim 1, wherein the average cell diameter is 10 μm to 200 μm.
  3.  気泡率が、30%以上である、請求項1または2に記載の樹脂発泡体。 The resin foam according to claim 1 or 2, wherein the bubble ratio is 30% or more.
  4.  気泡径の変動係数が、0.5以下である、請求項1から3のいずれかに記載の樹脂発泡体。 The resin foam according to any one of claims 1 to 3, wherein the coefficient of variation of the bubble diameter is 0.5 or less.
  5.  非発泡曲げ応力が、5MPa以上である、請求項1から4のいずれかに記載の樹脂発泡体。 The resin foam according to any one of claims 1 to 4, wherein the non-foam bending stress is 5 MPa or more.
  6.  充填材をさらに含む、請求項1から4のいずれかに記載の樹脂発泡体。 The resin foam according to any one of claims 1 to 4, further comprising a filler.
  7.  前記充填材が、無機物である、請求項6に記載の樹脂発泡体。 The resin foam according to claim 6, wherein the filler is an inorganic substance.
  8.  前記充填材が、有機物である、請求項6または7に記載の樹脂発泡体。 The resin foam according to claim 6 or 7, wherein the filler is an organic substance.
  9.  ポリオレフィン系樹脂を含む、請求項1から8のいずれかに記載の樹脂発泡体。  The resin foam according to any one of claims 1 to 8, which contains a polyolefin-based resin.
  10.  前記ポリオレフィン系樹脂が、ポリオレフィン系エラストマー以外のポリオレフィンとポリオレフィン系エラストマーの混合物である、請求項9に記載の樹脂発泡体。 The resin foam according to claim 9, wherein the polyolefin-based resin is a mixture of a polyolefin other than the polyolefin-based elastomer and a polyolefin-based elastomer.
  11.  片面または両面に、熱溶融層を有する、請求項1から10のいずれかに記載の樹脂発泡体。 The resin foam according to any one of claims 1 to 10, which has a hot melt layer on one side or both sides.
  12.  樹脂発泡層と、該樹脂発泡層の少なくとも一方の側に配置された粘着剤層を有し、
     該樹脂発泡層が、請求項1から11のいずれかに記載の樹脂発泡体である、
     発泡部材。

     
    It has a resin foam layer and an adhesive layer arranged on at least one side of the resin foam layer.
    The resin foam layer is the resin foam according to any one of claims 1 to 11.
    Foam member.

PCT/JP2020/043759 2019-11-25 2020-11-25 Resin foam WO2021106910A1 (en)

Priority Applications (3)

Application Number Priority Date Filing Date Title
JP2021561441A JPWO2021106910A1 (en) 2019-11-25 2020-11-25
KR1020227017000A KR20220106752A (en) 2019-11-25 2020-11-25 resin foam
CN202080075113.1A CN114616278A (en) 2019-11-25 2020-11-25 Resin foam

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2019212436 2019-11-25
JP2019-212436 2019-11-25

Publications (1)

Publication Number Publication Date
WO2021106910A1 true WO2021106910A1 (en) 2021-06-03

Family

ID=76129410

Family Applications (5)

Application Number Title Priority Date Filing Date
PCT/JP2020/043762 WO2021106913A1 (en) 2019-11-25 2020-11-25 Resin foam
PCT/JP2020/043759 WO2021106910A1 (en) 2019-11-25 2020-11-25 Resin foam
PCT/JP2020/043763 WO2021106914A1 (en) 2019-11-25 2020-11-25 Resin foam
PCT/JP2020/043760 WO2021106911A1 (en) 2019-11-25 2020-11-25 Resin foaming body
PCT/JP2020/043761 WO2021106912A1 (en) 2019-11-25 2020-11-25 Foamed resin object

Family Applications Before (1)

Application Number Title Priority Date Filing Date
PCT/JP2020/043762 WO2021106913A1 (en) 2019-11-25 2020-11-25 Resin foam

Family Applications After (3)

Application Number Title Priority Date Filing Date
PCT/JP2020/043763 WO2021106914A1 (en) 2019-11-25 2020-11-25 Resin foam
PCT/JP2020/043760 WO2021106911A1 (en) 2019-11-25 2020-11-25 Resin foaming body
PCT/JP2020/043761 WO2021106912A1 (en) 2019-11-25 2020-11-25 Foamed resin object

Country Status (4)

Country Link
JP (5) JPWO2021106913A1 (en)
KR (1) KR20220106752A (en)
CN (5) CN114761473A (en)
WO (5) WO2021106913A1 (en)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2023139878A1 (en) * 2022-01-18 2023-07-27 日東電工株式会社 Foam member
WO2023139879A1 (en) * 2022-01-18 2023-07-27 日東電工株式会社 Foam member
JPWO2023176984A1 (en) * 2022-03-18 2023-09-21

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010229398A (en) * 2009-03-04 2010-10-14 Nitto Denko Corp Foamed resin having electrical conductivity
JP2013049830A (en) * 2011-07-29 2013-03-14 Nitto Denko Corp Resin composition for polyolefinic resin foam, polyolefinic resin foam, and foaming seal material
WO2014168036A1 (en) * 2013-04-10 2014-10-16 日東電工株式会社 Resin foam composite
JP2016088977A (en) * 2014-10-31 2016-05-23 日東電工株式会社 Resin foam and foam member
WO2016143684A1 (en) * 2015-03-06 2016-09-15 積水化成品工業株式会社 Foamed polypropylene-based-resin sheet, process for producing foamed polypropylene-based-resin sheet, and pressure-sensitive adhesive sheet
WO2018163612A1 (en) * 2017-03-08 2018-09-13 東レ株式会社 Foam and method for producing same
JP2019038997A (en) * 2017-08-28 2019-03-14 日東電工株式会社 Resin sheet and resin sheet with adhesive layer
WO2020208946A1 (en) * 2019-04-10 2020-10-15 日東電工株式会社 Flame-retardant foamed object and foam member

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5670102A (en) 1993-02-11 1997-09-23 Minnesota Mining And Manufacturing Company Method of making thermoplastic foamed articles using supercritical fluid
JP4036601B2 (en) * 2000-06-05 2008-01-23 日東電工株式会社 Polyolefin resin foam and method for producing the same
JP2010242061A (en) * 2009-03-19 2010-10-28 Nitto Denko Corp Flame-retardant resin foam and flame-retardant foamed member
JP2013253241A (en) * 2012-05-11 2013-12-19 Nitto Denko Corp Resin foam and foam sealing material
JP6689026B2 (en) * 2014-03-26 2020-04-28 日東電工株式会社 Equipment with resin foam, foam material, and touch panel
JP5833213B2 (en) 2014-10-31 2015-12-16 日東電工株式会社 Shock absorber
JP6534645B2 (en) 2016-03-30 2019-06-26 積水化成品工業株式会社 Shock absorbing foam and shock absorbing material

Patent Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010229398A (en) * 2009-03-04 2010-10-14 Nitto Denko Corp Foamed resin having electrical conductivity
JP2013049830A (en) * 2011-07-29 2013-03-14 Nitto Denko Corp Resin composition for polyolefinic resin foam, polyolefinic resin foam, and foaming seal material
WO2014168036A1 (en) * 2013-04-10 2014-10-16 日東電工株式会社 Resin foam composite
JP2016088977A (en) * 2014-10-31 2016-05-23 日東電工株式会社 Resin foam and foam member
WO2016143684A1 (en) * 2015-03-06 2016-09-15 積水化成品工業株式会社 Foamed polypropylene-based-resin sheet, process for producing foamed polypropylene-based-resin sheet, and pressure-sensitive adhesive sheet
WO2018163612A1 (en) * 2017-03-08 2018-09-13 東レ株式会社 Foam and method for producing same
JP2019038997A (en) * 2017-08-28 2019-03-14 日東電工株式会社 Resin sheet and resin sheet with adhesive layer
WO2020208946A1 (en) * 2019-04-10 2020-10-15 日東電工株式会社 Flame-retardant foamed object and foam member
WO2020209353A1 (en) * 2019-04-10 2020-10-15 日東電工株式会社 Resin foam body and foam member

Also Published As

Publication number Publication date
WO2021106911A1 (en) 2021-06-03
WO2021106912A1 (en) 2021-06-03
WO2021106914A1 (en) 2021-06-03
WO2021106913A1 (en) 2021-06-03
JPWO2021106912A1 (en) 2021-06-03
JPWO2021106913A1 (en) 2021-06-03
CN114761473A (en) 2022-07-15
CN114616278A (en) 2022-06-10
CN114761474A (en) 2022-07-15
CN114585670A (en) 2022-06-03
KR20220106752A (en) 2022-07-29
JPWO2021106914A1 (en) 2021-06-03
JPWO2021106910A1 (en) 2021-06-03
CN114641521A (en) 2022-06-17
JPWO2021106911A1 (en) 2021-06-03

Similar Documents

Publication Publication Date Title
WO2021106910A1 (en) Resin foam
WO2020209353A1 (en) Resin foam body and foam member
KR102097950B1 (en) Resin foam sheet and resin foam member
US20110262744A1 (en) Resin foam and foamed member
WO2018131619A1 (en) Shock-absorbing sheet
EP2141518A1 (en) Light-reflecting member containing polyolefin resin foam, and method for producing the same
WO2013180028A1 (en) Thermoplastic resin foam and foam sealant
WO2022074899A1 (en) Resin foam
JP7288994B2 (en) resin foam
WO2022210956A1 (en) Resin foamed body and foamed member
WO2022209767A1 (en) Resin foam body
JP7474704B2 (en) Polyolefin resin foam sheet and adhesive tape using same
WO2020195675A1 (en) Polyolefin resin foam sheet and method for producing same
CN116997600A (en) Resin foam
WO2023140251A1 (en) Foam member
WO2023139878A1 (en) Foam member
WO2023139826A1 (en) Foam member
WO2023139879A1 (en) Foam member
JP2022097046A (en) Polyolefin resin foam, adhesive tape and device

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 20893273

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2021561441

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 20893273

Country of ref document: EP

Kind code of ref document: A1