WO2023139878A1 - Foam member - Google Patents

Foam member Download PDF

Info

Publication number
WO2023139878A1
WO2023139878A1 PCT/JP2022/040445 JP2022040445W WO2023139878A1 WO 2023139878 A1 WO2023139878 A1 WO 2023139878A1 JP 2022040445 W JP2022040445 W JP 2022040445W WO 2023139878 A1 WO2023139878 A1 WO 2023139878A1
Authority
WO
WIPO (PCT)
Prior art keywords
resin foam
less
foam
weight
resin
Prior art date
Application number
PCT/JP2022/040445
Other languages
French (fr)
Japanese (ja)
Inventor
彰吾 佐々木
亮 伊関
清明 児玉
修平 山本
周 澤村
Original Assignee
日東電工株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from JP2022143246A external-priority patent/JP2023104865A/en
Application filed by 日東電工株式会社 filed Critical 日東電工株式会社
Publication of WO2023139878A1 publication Critical patent/WO2023139878A1/en

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09JADHESIVES; NON-MECHANICAL ASPECTS OF ADHESIVE PROCESSES IN GENERAL; ADHESIVE PROCESSES NOT PROVIDED FOR ELSEWHERE; USE OF MATERIALS AS ADHESIVES
    • C09J133/00Adhesives based on homopolymers or copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and at least one being terminated by only one carboxyl radical, or of salts, anhydrides, esters, amides, imides, or nitriles thereof; Adhesives based on derivatives of such polymers
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09JADHESIVES; NON-MECHANICAL ASPECTS OF ADHESIVE PROCESSES IN GENERAL; ADHESIVE PROCESSES NOT PROVIDED FOR ELSEWHERE; USE OF MATERIALS AS ADHESIVES
    • C09J133/00Adhesives based on homopolymers or copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and at least one being terminated by only one carboxyl radical, or of salts, anhydrides, esters, amides, imides, or nitriles thereof; Adhesives based on derivatives of such polymers
    • C09J133/04Homopolymers or copolymers of esters
    • C09J133/06Homopolymers or copolymers of esters of esters containing only carbon, hydrogen and oxygen, the oxygen atom being present only as part of the carboxyl radical
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09JADHESIVES; NON-MECHANICAL ASPECTS OF ADHESIVE PROCESSES IN GENERAL; ADHESIVE PROCESSES NOT PROVIDED FOR ELSEWHERE; USE OF MATERIALS AS ADHESIVES
    • C09J7/00Adhesives in the form of films or foils
    • C09J7/20Adhesives in the form of films or foils characterised by their carriers
    • C09J7/22Plastics; Metallised plastics
    • C09J7/26Porous or cellular plastics
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09JADHESIVES; NON-MECHANICAL ASPECTS OF ADHESIVE PROCESSES IN GENERAL; ADHESIVE PROCESSES NOT PROVIDED FOR ELSEWHERE; USE OF MATERIALS AS ADHESIVES
    • C09J7/00Adhesives in the form of films or foils
    • C09J7/30Adhesives in the form of films or foils characterised by the adhesive composition
    • C09J7/38Pressure-sensitive adhesives [PSA]

Definitions

  • the present invention relates to foam members.
  • Foamed materials are often used as cushioning materials to protect electronic device screens, substrates, and electronic components. 2. Description of the Related Art In recent years, there has been a demand for narrowing the clearance of a portion where a cushioning material is arranged in accordance with the trend toward thinner electronic devices. Furthermore, with the miniaturization and multi-functionalization of electronic equipment, there is a tendency for electronic components used to be miniaturized, and thinner cushioning materials (foam members) are sometimes required. In addition, the cushioning material is sometimes required to be dust-proof in order to protect electronic parts and the like.
  • the raw material is punched.
  • punching a foam having a desired shape is obtained by applying high pressure to a foam member using a die.
  • the thickness that is reduced by stamping may not fully recover after the stamping process, resulting in permanent thickness variations. If the thickness is changed by such punching, that is, if the punching workability is poor, there arises a problem that impact absorption, dust resistance, etc. are deteriorated.
  • the foam member may be configured by integrating a foam and an adhesive layer, but in such a configuration, improvement of cleanness is an important issue.
  • An object of the present invention is to provide a foamed member comprising a resin foam and an adhesive layer and having excellent punching workability and cleanness.
  • the foamed member of the present invention includes a resin foam and an adhesive disposed on at least one side of the resin foam, the adhesive having an adhesive layer, the product of the total thickness ( ⁇ m) of the adhesive layer and the thickness (mm) of the resin foam being 45 or less, and the adhesive having a total emission amount of toluene outgas and ethyl acetate outgas of 8.0 ⁇ g/g or less.
  • the adhesive body further comprises a substrate, and the adhesive layer is arranged between the substrate and the resin foam.
  • the adhesive is an adhesive sheet.
  • the adhesive body includes the adhesive layers arranged on both sides of the substrate.
  • the substrate is composed of polyethylene terephthalate.
  • the foamed member has a thickness recovery rate of 55% or more after a load of 1000 g/cm 2 is maintained for 120 seconds.
  • the resin foam has an average cell diameter of 200 ⁇ m or less.
  • the resin foam has an apparent density of 0.4 g/cm 3 or less.
  • the coefficient of variation of cell diameter of the resin foam is 0.5 or less.
  • the resin foam has a bubble number density of 30/mm 2 or more.
  • the resin foam has a void content of 30% or more.
  • the resin foam contains a polyolefin resin.
  • the polyolefin-based resin is a mixture of a polyolefin other than a polyolefin-based elastomer and a polyolefin-based elastomer.
  • the foam member has a heat-melting layer on one side or both sides of the resin foam.
  • the pressure-sensitive adhesive layer contains a water-dispersed pressure-sensitive adhesive.
  • another pressure-sensitive adhesive layer is formed on the surface of the resin foam opposite to the pressure-sensitive adhesive layer.
  • a foamed member comprising a resin foam and an adhesive layer and having excellent punching workability and cleanliness.
  • FIG. 1 is a schematic cross-sectional view of a foam member according to one embodiment of the invention
  • FIG. 4 is a schematic cross-sectional view of a foam member according to another embodiment of the invention
  • It is a schematic block diagram of a dust-proof test apparatus.
  • FIG. 2 is an end view of a cut portion of the dust resistance test device taken along the line A-A';
  • FIG. 1 is a schematic cross-sectional view of a foam member according to one embodiment of the present invention.
  • the foam member 100 includes a resin foam 110 and an adhesive 120 arranged on at least one side of the resin foam 110 .
  • the adhesive body 120 has an adhesive layer 121 .
  • the adhesive body 120 may be composed of only the adhesive layer 121 as shown in FIG. 1, or may be composed of the substrate 122 and the adhesive layer 121 as shown in FIG.
  • the base material By arranging the base material, it is possible to obtain a foamed member having high rigidity and excellent adhesion. In addition, even if each layer is thinned, the sticking property is maintained, so the use of the base material makes it possible to further reduce the thickness of the layer.
  • the pressure-sensitive adhesive layer can be arranged between the substrate and the resin foam.
  • the adhesive layers 121 may be arranged on both sides of the base material 122 .
  • the adhesive body provided with a substrate may be an adhesive sheet.
  • the resin foam has a cellular structure (cell structure).
  • the cell structure include a closed cell structure, an open cell structure, a semi-open and semi-closed cell structure (a cell structure in which a closed cell structure and an open cell structure are mixed), and the like.
  • the cell structure of the resin foam is a semi-open and semi-closed cell structure.
  • the resin foam of the present invention is obtained by foaming a resin composition.
  • the resin composition is a composition containing at least a resin constituting a resin foam.
  • the product of the total thickness ( ⁇ m) of the adhesive layer and the thickness (mm) of the resin foam is 45 or less.
  • the foamed member prevents the pressure-sensitive adhesive constituting the pressure-sensitive adhesive layer from oozing out during punching, and the number of cells in the resin foam is appropriately adjusted, so that crushing due to punching is unlikely to occur and punching workability is excellent.
  • the product of the total thickness ( ⁇ m) of the adhesive layer and the thickness (mm) of the resin foam is preferably 40 or less, more preferably 35 or less, still more preferably 30 or less, and particularly preferably 25 or less. With such a range, the above effect becomes remarkable.
  • the product of the total thickness ( ⁇ m) of the adhesive layer and the thickness (mm) of the resin foam is preferably 3.5 or more, more preferably 5 or more. Within such a range, a foamed member having excellent impact resistance and adhesiveness can be obtained.
  • the total thickness of the pressure-sensitive adhesive layer is the total thickness of the pressure-sensitive adhesive layer contained in the adherence body. When the pressure-sensitive adhesive layer contained in the adherence body is a single layer, it means the thickness of the pressure-sensitive adhesive layer.
  • another adhesive layer may be formed on the surface of the resin foam opposite to the adhesive body.
  • the total amount of toluene outgas and ethyl acetate outgas is 8.0 ⁇ g/g or less.
  • the foamed member of the present invention is advantageous in that outgassing is small, that is, it is highly clean. As described above, it is one of the great achievements of the present invention that a foamed member which is thin, excellent in punching workability, and excellent in cleanliness can be obtained.
  • the total amount of toluene outgas and ethyl acetate outgas emitted is the amount of outgas generated when the adherent alone was left at 80° C. for 30 minutes. A specific measuring method will be described later.
  • the weight of the adhesive body which is the measurement standard for the total amount of toluene outgas and ethyl acetate outgas, is the total weight of the adhesive layer and the base material disposed as necessary.
  • a foamed member with little toluene outgas and ethyl acetate outgas can be obtained, for example, by using a water-dispersible pressure-sensitive adhesive (described later) as the pressure-sensitive adhesive constituting the pressure-sensitive adhesive layer.
  • the thickness recovery rate (hereinafter also referred to as instantaneous recovery rate) after a load of 1000 g/cm 2 is applied to the foamed member and maintained for 120 seconds is preferably 55% or more, more preferably 60% or more, still more preferably 70% or more, still more preferably 80% or more, still more preferably 85% or more, further preferably 90% or more, and particularly preferably 95% or more.
  • a foamed member having an instantaneous recovery rate in such a range has a small change in shape, such as a change in thickness, even when punched, and exhibits preferable behavior such as recovery in a short time even when the thickness is temporarily reduced by punching, and is excellent in punchability.
  • a method for measuring the instantaneous recovery rate will be described later.
  • the average cell diameter of the resin foam is preferably 900 ⁇ m or less, more preferably 200 ⁇ m or less, still more preferably 150 ⁇ m or less, still more preferably 100 ⁇ m or less, and particularly preferably 80 ⁇ m or less.
  • the average cell diameter (average cell diameter) of the resin foam is preferably 10 ⁇ m or more, more preferably 20 ⁇ m or more, and still more preferably 40 ⁇ m or more. If the average cell diameter (average cell diameter) is within the above range, the anchoring force of the adhesive (adhesive layer) to the resin foam is high, and the resin foam and the adhesive (adhesive layer) are excellent in integration. A foamed member can be obtained.
  • the resin foam has an average cell diameter of 200 ⁇ m or less (preferably 100 ⁇ m or less).
  • the thickness of the pressure-sensitive adhesive layer is thin, if the resin foam has an average cell diameter of 200 ⁇ m or less, it is possible to obtain a foamed member having remarkably excellent stamping workability.
  • the 50% compressive load of the resin foam is preferably 30 N/cm 2 or less, more preferably 10 N/cm 2 or less, still more preferably 8 N/cm 2 or less, particularly preferably 5 N/cm 2 or less, and most preferably 3 N/cm 2 or less. Within such a range, it is possible to obtain a foamed member that preferably has flexibility and is excellent in stamping workability.
  • the lower limit of the 50% compressive load of the resin foam is, for example, 0.5 N/cm 2 .
  • the 50% compressive load of the resin foam is the stress (N) when the resin foam is compressed to a compressibility of 50%, converted per unit area (1 cm 2 ).
  • the cell number density of the resin foam is preferably 30 cells/mm 2 or more, more preferably 50 cells/mm 2 or more, still more preferably 65 cells/mm 2 or more, still more preferably 80 cells/mm 2 or more, still more preferably 90 cells/mm 2 or more, still more preferably 100 cells/mm 2 or more, particularly preferably 110 cells/mm 2 or more, and most preferably 120 cells/mm 2 or more.
  • a foamed member that preferably has flexibility, is resistant to crushing, and is excellent in punching workability.
  • the higher the bubble number density the easier it is to store energy when compressed, and a resin foam having excellent compression recovery can be obtained.
  • a foamed member comprising such a resin foam has excellent stamping workability.
  • the upper limit of the cell number density of the resin foam is preferably 400 cells/mm 2 , more preferably 350 cells/mm 2 , still more preferably 300 cells/mm 2 , particularly preferably 250 cells/mm 2 , particularly preferably 200 cells/mm 2 .
  • the cell number density of the resin foam is the number density in the cross section of cells observed in a randomly selected cross section of the resin foam, and can be obtained by image analysis of the cross section of the resin foam.
  • the apparent density of the resin foam is preferably 0.4 g/cm 3 or less, more preferably 0.3 g/cm 3 or less. Moreover, the apparent density of the resin foam is preferably 0.01 g/cm 3 or more, more preferably 0.03 g/cm 3 or more. If the apparent density is within the above range, it is possible to obtain a foamed member having excellent integrity between the resin foam and the adhesive (adhesive layer). In addition, it is possible to obtain a resin foam that is excellent in punching workability, flexibility, and stress dispersion. The foamability can be judged by the apparent density.
  • the apparent density of the resin foam is preferably 0.1 g/cm 3 or less, more preferably 0.08 g/cm 3 or less, even more preferably 0.06 g/cm 3 or less. In another embodiment, the apparent density of the resin foam is preferably 0.08 g/cm 3 or higher, more preferably 0.1 g/cm 3 or higher, and even more preferably 0.15 g/cm 3 or higher. A method for measuring the apparent density will be described later.
  • the thickness of the resin foam is preferably 3000 ⁇ m or less, more preferably 2000 ⁇ m or less, still more preferably 1800 ⁇ m or less, still more preferably 1500 ⁇ m or less, and still more preferably 1000 ⁇ m or less.
  • the thickness of the resin foam is preferably 50 ⁇ m or more, more preferably 100 ⁇ m or more, still more preferably 150 ⁇ m or more, and even more preferably 300 ⁇ m or more. If the thickness is within the above range, it is possible to form a fine and uniform cell structure, which is advantageous in that excellent punching workability and impact absorption can be exhibited.
  • the thickness of the resin foam is less than 2000 ⁇ m. Within such a range, the number of cells in the resin foam is particularly preferably adjusted, and collapse due to punching is less likely to occur, so that a foamed member having particularly excellent punching workability can be obtained.
  • the variation coefficient of the cell diameter (cell diameter) of the resin foam is preferably 0.5 or less, more preferably 0.4 or less, still more preferably 0.35 or less, still more preferably 0.3 or less, particularly preferably 0.25 or less, and most preferably 0.2 or less.
  • a foamed member having excellent integrity between the resin foam and the adhesive (adhesive layer) can be obtained.
  • a compressive force is applied by punching or the like, variations in cell deformation are reduced.
  • a processed product (cut product) having excellent thickness accuracy can be obtained when punched.
  • the coefficient of variation of cell diameter is within the above range, deformation due to impact becomes uniform, local stress load is prevented, and a foamed member having excellent stress dispersibility and particularly excellent impact resistance can be obtained.
  • the coefficient of variation is preferably as small as possible, its lower limit is, for example, 0.15 (preferably 0.1, more preferably 0.01). A method for measuring the coefficient of variation of bubble diameter will be described later.
  • the foam rate (cell rate) of the resin foam is preferably 97% or less, more preferably 95% or less.
  • the resin foam has a void content (cell rate) of 90% or less (preferably 85% or less, more preferably 78% or less, still more preferably 75% or less). Within such a range, it is possible to obtain a resin foam having a small thickness change rate when the resin foam and the adherent are pressure-bonded.
  • the foam content (cell ratio) of the resin foam is preferably 30% or more, more preferably 50% or more, and still more preferably 60% or more. Within such a range, a resin foam having moderate flexibility can be obtained. Such a resin foam has excellent punching workability, and prevents the occurrence of uncut parts when punched.
  • the thickness of the cell wall (cell wall) of the resin foam is preferably 10 ⁇ m or less, more preferably 8 ⁇ m or less, still more preferably 5 ⁇ m or less, particularly preferably 4 ⁇ m or less, and most preferably 3 ⁇ m or less.
  • the thickness of the cell wall (cell wall) of the resin foam is preferably 0.1 ⁇ m or more, more preferably 0.3 ⁇ m or more, still more preferably 0.5 ⁇ m or more, particularly preferably 0.7 ⁇ m or more, and most preferably 1 ⁇ m or more. If the thickness of the cell wall (cell wall) is within the above range, a resin foam having appropriate strength can be obtained.
  • Such a resin foam has excellent punching workability, and is prevented from tearing, dusting, and uncut parts during punching. Moreover, when the cell wall thickness is within the above range, a resin foam having excellent flexibility and stress dispersion can be obtained.
  • the thickness of the cell wall can be measured by capturing an enlarged image of the cell portion of the resin foam and analyzing the image using the analysis software of the measuring instrument.
  • the proportion of the closed cell structure therein is preferably 40% or less, more preferably 30% or less.
  • the ratio of the closed-cell structure of the resin foam is obtained, for example, by immersing the object to be measured in water under an environment of a temperature of 23° C. and a humidity of 50%, then measuring the mass, then thoroughly drying it in an oven at 80° C., and then measuring the mass again.
  • open cells can hold moisture, the mass of open cells is measured as open cells.
  • the impact absorption of the resin foam is preferably 20% or more, more preferably 27% or more, still more preferably 30% or more, particularly preferably 35% or more, and most preferably 40% or more.
  • Impact absorption is measured as follows. - A resin foam, a double-sided tape (product number: No. 5603W, manufactured by Nitto Denko), and a PET film (product number: Diafoil MRF75, manufactured by Mitsubishi Plastics) are placed in this order on the impact force sensor to form a test sample. A 66-g iron ball is dropped onto the specimen from a height of 50 cm above the PET film, and the impact force F1 is measured. ⁇ Furthermore, the impact force F0 of the blank is measured by dropping the iron ball directly onto the impact force sensor as described above. ⁇ From F1 and F0, calculate the impact absorption (%) by the formula (F0-F1)/F0 ⁇ 100.
  • any appropriate shape can be adopted as the shape of the resin foam according to the purpose.
  • Such a shape is typically sheet-like.
  • the resin foam may have a heat-melting layer on one side or both sides.
  • a resin foam having a hot-melt layer can be obtained, for example, by rolling a resin foam (or a resin foam precursor (foam structure)) using a pair of heating rolls heated to a melting temperature of the resin composition constituting the resin foam or higher.
  • a resin foam having a hot-melt layer By forming a resin foam having a hot-melt layer, the adhesion area between the resin foam and the adhesive (adhesive layer) is increased, the adhesion between the resin foam and the adhesive (adhesive layer) is increased, and a foamed member having excellent integrity between these layers can be obtained.
  • the foam rate (cell rate) of the hot melt layer is preferably 30% or less, more preferably 20% or less, still more preferably 10% or less, particularly preferably 5% or less, and most preferably 0%.
  • the thickness of the hot melt layer is preferably 0.15 mm or less, more preferably 0.13 mm or less, and even more preferably 0.11 mm or less. Also, the thickness of the hot melt layer is preferably 0.05 mm or more, more preferably 0.07 mm or more, and still more preferably 0.09 mm or more.
  • the resin foam can be formed by any appropriate method as long as the effects of the present invention are not impaired.
  • Such a method typically includes a method of foaming a resin composition containing a resin material (polymer).
  • the resin composition includes any suitable resin material (polymer).
  • polymer examples include acrylic resins, silicone resins, urethane resins, polyolefin resins, ester resins, and rubber resins.
  • acrylic resins silicone resins
  • urethane resins examples include acrylic resins, silicone resins, urethane resins, polyolefin resins, ester resins, and rubber resins.
  • the above polymers may be used singly or in combination of two or more.
  • the polymer content is preferably 30 to 95 parts by weight, more preferably 35 to 90 parts by weight, still more preferably 40 to 80 parts by weight, and particularly preferably 40 to 60 parts by weight, relative to 100 parts by weight of the resin composition. Within such a range, it is possible to obtain a resin foam that is more excellent in flexibility and stress dispersibility.
  • a polyolefin resin is used as the polymer.
  • the content of the polyolefin resin is preferably 50 to 100 parts by weight, more preferably 70 to 100 parts by weight, still more preferably 90 to 100 parts by weight, particularly preferably 95 to 100 parts by weight, and most preferably 100 parts by weight, relative to 100 parts by weight of the polymer.
  • the polyolefin-based resin preferably includes at least one selected from the group consisting of polyolefin and polyolefin-based elastomer, and more preferably, polyolefin and polyolefin-based elastomer are used in combination.
  • Each of polyolefin and polyolefin elastomer may be used alone or in combination of two or more.
  • the term "polyolefin” does not include “polyolefin elastomer”.
  • the weight ratio of polyolefin and polyolefin elastomer is preferably 1/99 to 99/1, more preferably 10/90 to 90/10, still more preferably 20/80 to 80/20, and particularly preferably 30/70 to 70/30.
  • the weight ratio of polyolefin to polyolefin elastomer is preferably 25/75 to 75/25, more preferably 35/65 to 65/35.
  • any appropriate polyolefin can be adopted as the polyolefin as long as it does not impair the effects of the present invention.
  • examples of such polyolefins include linear polyolefins and branched (having branched chains) polyolefins.
  • a branched polyolefin is used as the polyolefin resin.
  • the polyolefin only branched polyolefin may be used, or branched polyolefin and linear polyolefin may be used in combination.
  • the content of the branched polyolefin is preferably 30 to 100 parts by weight, more preferably 50 to 80 parts by weight, per 100 parts by weight of the polyolefin.
  • polystyrene resins examples include polymers containing structural units derived from ⁇ -olefins.
  • the polyolefin may be composed only of structural units derived from ⁇ -olefins, or may be composed of structural units derived from ⁇ -olefins and structural units derived from monomers other than ⁇ -olefins.
  • any appropriate copolymerization form can be adopted as its copolymerization form. Examples include random copolymers and block copolymers.
  • ⁇ -olefins that can constitute polyolefins include ⁇ -olefins having 2 to 8 (preferably 2 to 6, more preferably 2 to 4) carbon atoms (eg, ethylene, propylene, 1-butene, 1-pentene, 1-hexene, 4-methyl-1-pentene, 1-heptene, 1-octene, etc.).
  • the ⁇ -olefin may be of only one type, or may be of two or more types.
  • Examples of monomers other than ⁇ -olefins that constitute polyolefins include ethylenically unsaturated monomers such as vinyl acetate, acrylic acid, acrylic acid esters, methacrylic acid, methacrylic acid esters, and vinyl alcohol.
  • Monomers other than the ⁇ -olefin may be of only one type, or may be of two or more types.
  • polyolefins include low-density polyethylene, medium-density polyethylene, high-density polyethylene, linear low-density polyethylene, polypropylene (propylene homopolymer), copolymers of ethylene and propylene, copolymers of ethylene and ⁇ -olefins other than ethylene, copolymers of propylene and ⁇ -olefins other than propylene, copolymers of ethylene and propylene and ⁇ -olefins other than ethylene and propylene, and copolymers of propylene and ethylenically unsaturated monomers.
  • a polypropylene-based polymer having structural units derived from propylene is used as the polyolefin.
  • polypropylene-based polymers include polypropylene (propylene homopolymer), copolymers of ethylene and propylene, and copolymers of propylene and ⁇ -olefins other than propylene, and preferably polypropylene (propylene homopolymer).
  • the polypropylene-based polymer may be used alone or in combination of two or more.
  • the melt flow rate (MFR) of the polyolefin at a temperature of 230°C is preferably 0.25 g/10 min to 10 g/10 min, more preferably 0.3 g/10 min to 6 g/10 min, even more preferably 0.35 g/10 min to 5 g/10 min, particularly preferably 0.35 g/10 min to 1 g/10 min, and most It is preferably 0.35 g/10 minutes to 0.6 g/10 minutes.
  • the melt flow rate (MFR) refers to MFR measured at a temperature of 230° C. and a load of 2.16 kgf (21.2 N) based on ISO1133 (JIS-K-7210).
  • the melt flow rate of the polyolefin that makes up the resin foam controls the die swell ratio and shear viscosity of the resin.
  • the weight average molecular weight of the polyolefin is preferably 50,000 to 120,000, more preferably 55,000 to 110,000, still more preferably 60,000 to 100,000. Within such a range, the die swell ratio and shear viscosity of the resin can be preferably adjusted. Also, the molecular weight distribution (weight average molecular weight/number average molecular weight) of the polyolefin is preferably 4-10, more preferably 7-10, and more preferably 6-9. Within such a range, the die swell ratio and shear viscosity of the resin can be preferably adjusted. As a result, it is possible to obtain a resin foam that is flexible (highly foamed), has a high bubble number density, and is excellent in punching workability.
  • the weight average molecular weight and number average molecular weight can be determined by gel permeation chromatography (solvent: tetrahydrofuran, polystyrene conversion).
  • polyolefins examples include “E110G” (manufactured by Prime Polymer Co., Ltd.), “EA9” (manufactured by Japan Polypropylene Corporation), “EA9FT” (manufactured by Japan Polypropylene Corporation), “E-185G” (manufactured by Prime Polymer Co., Ltd.), “WB140HMS” (manufactured by Borealis), and “WB135HMS” (manufactured by Borealis).
  • E110G manufactured by Prime Polymer Co., Ltd.
  • EA9 manufactured by Japan Polypropylene Corporation
  • EA9FT manufactured by Japan Polypropylene Corporation
  • E-185G manufactured by Prime Polymer Co., Ltd.
  • WB140HMS manufactured by Borealis
  • WB135HMS manufactured by Borealis
  • any appropriate polyolefin elastomer can be adopted as the polyolefin elastomer as long as it does not impair the effects of the present invention.
  • polyolefin elastomers include so-called non-crosslinked thermoplastic olefin elastomers (TPO), such as ethylene-propylene copolymer, ethylene-propylene-diene copolymer, ethylene-vinyl acetate copolymer, polybutene, polyisobutylene, chlorinated polyethylene, elastomer in which polyolefin component and rubber component are physically dispersed, and elastomer having structure in which polyolefin component and rubber component are microphase-separated; resin component A forming matrix (olefin resin component A) and rubber component B forming domain.
  • TPO thermoplastic olefin elastomers
  • thermoplastic olefin elastomer which is a multiphase polymer having a sea-island structure in which crosslinked rubber particles are finely dispersed as domains (island phases) in resin component A, which is a matrix (sea phase), obtained by dynamically heat-treating a mixture containing in the presence of a crosslinking agent.
  • the polyolefin elastomer preferably contains a rubber component.
  • rubber components include JP-A-08-302111, JP-A-2010-241934, JP-A-2008-024882, JP-A-2000-007858, JP-A-2006-052277, JP-A-2012-072306, JP-A-2012-057068, JP-A-2010-24189. 7, Japanese Patent Application Laid-Open No. 2009-067969, Re-Table 03/002654, and the like.
  • elastomers having a structure in which a polyolefin component and an olefin-based rubber component are microphase-separated include elastomers composed of polypropylene resin (PP) and ethylene-propylene rubber (EPM), and elastomers composed of polypropylene resin (PP) and ethylene-propylene-diene rubber (EPDM).
  • the weight ratio of the polyolefin component to the olefin rubber component is preferably 90/10 to 10/90, more preferably 80/20 to 20/80.
  • a dynamically crosslinked thermoplastic olefin elastomer generally has a higher elastic modulus and a smaller compression set than a non-crosslinked thermoplastic olefin elastomer (TPO). Thereby, the recoverability is good, and excellent recoverability can be exhibited when a resin foam is formed.
  • thermoplastic olefin elastomer is, as described above, a multiphase polymer having a sea-island structure in which crosslinked rubber particles are finely dispersed as domains (island phases) in the resin component A, which is a matrix (sea phase), obtained by dynamically heat-treating a mixture containing a matrix-forming resin component A (olefinic resin component A) and a domain-forming rubber component B in the presence of a crosslinking agent.
  • thermoplastic olefin elastomers examples include, for example, JP-A-2000-007858, JP-A-2006-052277, JP-A-2012-072306, JP-A-2012-057068, JP-A-2010-241897, JP-A-2009-067969, Retable 03/002654. and the like.
  • thermoplastic olefin elastomer TPV
  • commercially available products such as “Zeotherm” (manufactured by Zeon Corporation), “Thermoran” (manufactured by Mitsubishi Chemical Corporation), and “Sarlink 3245D” (manufactured by Toyobo Co., Ltd.).
  • the melt flow rate (MFR) of the polyolefin elastomer at a temperature of 230°C is preferably 1.5 g/10 minutes to 25 g/10 minutes, more preferably 2 g/10 minutes to 20 g/10 minutes, and still more preferably 2 g/10 minutes to 15 g/10 minutes.
  • two or more polyolefin-based elastomers having different melt flow rates (MFR) at a temperature of 230°C within the above range are used in combination.
  • melt tension of the polyolefin elastomer is preferably adjusted, and as a result, the effect of the present invention becomes remarkable.
  • the compounding ratio of the low MFR polyolefin elastomer to the high MFR polyolefin elastomer is preferably 1.5-5, more preferably 1.8-3.5, and particularly preferably 2-3. Within such a range, the melt tension of the polyolefin elastomer is preferably adjusted, and as a result, the effect of the present invention becomes remarkable.
  • the melt tension (190°C, at break) of the polyolefin elastomer is preferably less than 10 cN, more preferably 5 cN to 9.5 cN.
  • the die swell ratio and shear viscosity of the resin are controlled by the melt tension of the polyolefin elastomer forming the resin foam.
  • the JIS A hardness of the polyolefin elastomer is preferably 30° to 95°, more preferably 35° to 90°, still more preferably 40° to 88°, particularly preferably 45° to 85°, most preferably 50° to 83°.
  • JIS A hardness is measured based on ISO7619 (JIS K6253).
  • the resin foam (that is, the resin composition) may further contain a filler.
  • a filler By containing a filler, it is possible to form a resin foam that requires a large amount of energy to deform the cell walls, and the resin foam exhibits excellent impact absorption.
  • the inclusion of a filler is advantageous in that a fine and uniform cell structure can be formed and excellent impact absorption can be exhibited. Only one filler may be used alone, or two or more fillers may be used in combination.
  • the content of the filler is preferably 10 parts by weight to 150 parts by weight, more preferably 30 parts by weight to 130 parts by weight, and still more preferably 50 parts by weight to 100 parts by weight with respect to 100 parts by weight of the polymer constituting the resin foam. With such a range, the above effect becomes remarkable.
  • the filler is inorganic.
  • materials constituting inorganic fillers include aluminum hydroxide, magnesium hydroxide, calcium carbonate, magnesium carbonate, calcium silicate, magnesium silicate, calcium oxide, magnesium oxide, aluminum oxide, aluminum nitride, aluminum borate whiskers, silicon nitride, boron nitride, crystalline silica, amorphous silica, metals (e.g., gold, silver, copper, aluminum, nickel), carbon, and graphite.
  • the filler is organic.
  • materials constituting the organic filler include polymethyl methacrylate (PMMA), polyimide, polyamideimide, polyetheretherketone, polyetherimide, and polyesterimide.
  • a flame retardant may be used as the filler.
  • flame retardants include brominated flame retardants, chlorine flame retardants, phosphorus flame retardants, and antimony flame retardants. From the viewpoint of safety, non-halogen-nonantimony flame retardants are preferably used.
  • non-halogen-non-antimony flame retardants include compounds containing aluminum, magnesium, calcium, nickel, cobalt, tin, zinc, copper, iron, titanium, boron, and the like.
  • examples of such compounds (inorganic compounds) include hydrated metal compounds such as aluminum hydroxide, magnesium hydroxide, magnesium oxide/nickel oxide hydrate, and magnesium oxide/zinc oxide hydrate.
  • Any appropriate surface treatment may be applied to the filler.
  • Examples of surface treatment include silane coupling treatment and stearic acid treatment.
  • the bulk density of the filler is preferably 0.8 g/cm 3 or less, more preferably 0.6 g/cm 3 or less, still more preferably 0.4 g/cm 3 or less, and particularly preferably 0.3 g/cm 3 or less.
  • the filler can be contained with good dispersibility, and the effect of adding the filler can be sufficiently exhibited while reducing the content of the filler.
  • a resin foam with a low filler content is advantageous in that it is highly foamed, flexible, stress-dispersible, and has excellent appearance.
  • the lower limit of bulk density of the filler is, for example, 0.01 g/cm 3 , preferably 0.05 g/cm 3 , more preferably 0.1 g/cm 3 .
  • the number average particle size (primary particle size) of the filler is preferably 5 ⁇ m or less, more preferably 3 ⁇ m or less, and even more preferably 1 ⁇ m or less. Within such a range, the filler can be contained with good dispersibility and a uniform cell structure can be formed. As a result, a resin foam having excellent stress dispersibility and appearance can be obtained.
  • the lower limit of the number average particle size of the filler is, for example, 0.1 ⁇ m.
  • the number average particle size of the filler can be measured using a particle size distribution analyzer (Microtrac II, Microtrac Bell Co., Ltd.) using a suspension prepared by mixing 1 g of the filler with 100 g of water as a sample.
  • the specific surface area of the filler is preferably 2 m 2 /g or more, more preferably 4 m 2 /g or more, still more preferably 6 m 2 /g or more. Within such a range, the filler can be contained with good dispersibility and a uniform cell structure can be formed. As a result, a resin foam having excellent stress dispersibility and appearance can be obtained.
  • the upper limit of the specific surface area of the filler is, for example, 20 m 2 /g.
  • the specific surface area of the filler can be measured by the BET method, that is, molecules having a known adsorption area are adsorbed on the surface of the filler at a low temperature using liquid nitrogen, and the adsorption amount is measured.
  • the resin composition may contain any appropriate other component within a range that does not impair the effects of the present invention. Only one such component may be used, or two or more components may be used.
  • Such other components include, for example, rubber, resins other than polymers blended as resin materials, softeners, aliphatic compounds, antioxidants, antioxidants, light stabilizers, weathering agents, UV absorbers, dispersants, plasticizers, carbon, antistatic agents, surfactants, cross-linking agents, thickeners, rust inhibitors, silicone compounds, tension modifiers, shrinkage inhibitors, fluidity modifiers, gelling agents, curing agents, reinforcing agents, foaming agents, foam nucleating agents, colorants (pigments, dyes, etc.), Examples include pH adjusters, solvents (organic solvents), thermal polymerization initiators, photopolymerization initiators, lubricants, crystal nucleating agents, crystallization accelerators, vulcanizing agents, surface treatment agents, and dispersing aids.
  • resin foams are typically obtained by foaming a resin composition.
  • a method commonly used for foam molding such as a physical method or a chemical method
  • the resin foam may typically be a foam formed by a physical method (physical foam) or a foam formed by a chemical method (chemical foam).
  • Physical methods generally involve dispersing a gaseous component such as air or nitrogen in a polymer solution and mechanically mixing to form cells (mechanical foam).
  • the chemical method is generally a method in which cells are formed by gas generated by thermal decomposition of a foaming agent added to a polymer base to obtain a foam.
  • the resin composition to be subjected to foam molding may be prepared, for example, by mixing the constituent components using any suitable melt-kneading device, such as an open mixing roll, a non-open Banbury mixer, a single-screw extruder, a twin-screw extruder, a continuous kneader, and a pressure kneader.
  • any suitable melt-kneading device such as an open mixing roll, a non-open Banbury mixer, a single-screw extruder, a twin-screw extruder, a continuous kneader, and a pressure kneader.
  • One embodiment 1 for forming a resin foam includes, for example, a step of mechanically foaming an emulsion resin composition (emulsion containing a resin material (polymer)) to foam (step A) to form a resin foam.
  • the foaming device includes, for example, a high-speed shearing device, a vibrating device, and a pressurized gas discharging device.
  • a high-speed shearing apparatus is preferable from the viewpoint of miniaturization of the bubble diameter and production of a large volume.
  • This one embodiment of forming a resin foam is applicable to forming from any resin composition.
  • the solid content concentration of the emulsion is preferably higher from the viewpoint of film-forming properties.
  • the solid content concentration of the emulsion is preferably 30% by weight or more, more preferably 40% by weight or more, and still more preferably 50% by weight or more.
  • Bubbles generated by mechanical stirring are gas trapped in the emulsion.
  • any appropriate gas can be adopted as long as it is inert to the emulsion, as long as it does not impair the effects of the present invention.
  • gases include, for example, air, nitrogen, carbon dioxide, and the like.
  • the resin foam of the present invention can be obtained by applying the emulsion resin composition foamed by the above method (cell-containing emulsion resin composition) onto a substrate and drying it (step B).
  • the substrate include a release-treated plastic film (release-treated polyethylene terephthalate film, etc.), a plastic film (polyethylene terephthalate film, etc.), and the like.
  • Step B preferably includes a preliminary drying step B1 for drying the bubble-containing emulsion resin composition applied on the substrate at 50°C or higher and lower than 125°C, and a main drying step B2 for further drying at 125°C or higher and 200°C or lower.
  • the temperature in the preliminary drying step B1 is preferably 50°C to 100°C.
  • the duration of the preliminary drying step B1 is preferably 0.5 to 30 minutes, more preferably 1 to 15 minutes.
  • the temperature in the main drying step B2 is preferably 130°C to 180°C, more preferably 130°C to 160°C.
  • the time of the main drying step B2 is preferably 0.5 to 30 minutes, more preferably 1 to 15 minutes.
  • ⁇ Embodiment 2 in which a resin foam is formed As one embodiment 2 of forming a resin foam, there is a form in which a foam is formed by foaming a resin composition with a foaming agent.
  • a foaming agent those commonly used in foam molding can be used, and from the viewpoint of environmental protection and low contamination of the object to be foamed, it is preferable to use a high-pressure inert gas.
  • any appropriate inert gas can be adopted as the inert gas as long as it is inert to the resin composition and can be impregnated.
  • examples of such inert gas include carbon dioxide, nitrogen gas, and air. These gases may be mixed and used. Among these, carbon dioxide is preferable from the viewpoint of a large impregnation amount to the resin material (polymer) and a high impregnation speed.
  • the inert gas is preferably in a supercritical state. That is, it is particularly preferable to use carbon dioxide in a supercritical state. In the supercritical state, the solubility of the inert gas in the resin composition is further increased, making it possible to mix the inert gas at a high concentration. At the same time, the concentration of the inert gas becomes high at the time of a sudden pressure drop.
  • Carbon dioxide has a critical temperature of 31° C. and a critical pressure of 7.4 MPa.
  • Examples of methods for forming a foam by impregnating a resin composition with a high-pressure inert gas include a gas impregnation step in which a resin composition containing a resin material (polymer) is impregnated with an inert gas under high pressure, a decompression step in which the resin material (polymer) is foamed by reducing the pressure after the step, and a heating step in which bubbles are grown by heating as necessary.
  • a preformed unfoamed molded article may be impregnated with an inert gas, or the molten resin composition may be impregnated with an inert gas under pressure and then molded when the pressure is reduced.
  • steps may be carried out by either a batch system or a continuous system. That is, after molding the resin composition into an appropriate shape such as a sheet to form an unfoamed resin molded body in advance, the unfoamed resin molded body is impregnated with a high-pressure gas, and the pressure is released to foam it.
  • a resin sheet for foam molding is produced by extruding the resin composition using an extruder such as a single-screw extruder or a twin-screw extruder.
  • the resin composition is uniformly kneaded using a kneader equipped with blades such as a roller, a cam, a kneader, or a Banbury type, and pressed to a predetermined thickness using a hot plate press or the like to produce an unfoamed resin molded body.
  • the unfoamed resin molded article thus obtained is placed in a high-pressure vessel, and a high-pressure inert gas (such as carbon dioxide in a supercritical state) is injected to impregnate the unfoamed resin molded article with the inert gas.
  • a high-pressure inert gas such as carbon dioxide in a supercritical state
  • the inert gas is sufficiently impregnated, the pressure is released (usually to atmospheric pressure) to generate bubble nuclei in the resin.
  • the bubble nuclei may be grown at room temperature as they are, or may be grown by heating in some cases.
  • a heating method a known or commonly used method such as a water bath, an oil bath, a hot roll, a hot air oven, far infrared rays, near infrared rays, or microwaves can be used.
  • the foam is rapidly cooled with cold water or the like to fix the shape, thereby obtaining a foam.
  • the unfoamed resin molding to be foamed is not limited to a sheet-like article, and various shapes can be used depending on the application.
  • the unfoamed resin molded article to be foamed can be produced by extrusion molding, press molding, or other molding methods such as injection molding.
  • a high-pressure gas especially an inert gas, and further carbon dioxide
  • a sufficiently high-pressure gas is injected (introduced) into the resin composition.
  • a kneading impregnation step in which the resin composition is impregnated, a pressure is released by extruding the resin composition through a die provided at the tip of the extruder (usually to atmospheric pressure), and foam molding is performed in a molding decompression step in which molding and foaming are performed simultaneously.
  • a heating step may be provided, if necessary, to grow air bubbles by heating. After the bubbles are grown in this way, if necessary, they may be rapidly cooled with cold water or the like to fix the shape. Also, the high-pressure gas may be introduced continuously or discontinuously.
  • an extruder or an injection molding machine can be used in the kneading impregnation step and the molding depressurization step. Any suitable heating method such as water bath, oil bath, hot roll, hot air oven, far infrared rays, near infrared rays, and microwaves can be used as a heating method for growing bubble nuclei.
  • Any appropriate shape can be adopted as the shape of the foam. Such shapes include, for example, a sheet shape, prismatic shape, cylindrical shape, irregular shape, and the like.
  • the amount of gas mixed when foam-molding the resin composition is, for example, preferably 2% to 10% by weight, more preferably 2.5% to 8% by weight, and even more preferably 3% to 6% by weight, based on the total amount of the resin composition, in order to obtain a highly foamed resin foam.
  • the pressure when the resin composition is impregnated with the inert gas can be appropriately selected in consideration of operability and the like.
  • Such pressure is, for example, preferably 6 MPa or higher (eg, 6 MPa to 100 MPa), more preferably 8 MPa or higher (eg, 8 MPa to 50 MPa).
  • the pressure is preferably 7.4 MPa or more from the viewpoint of maintaining the supercritical state of carbon dioxide. If the pressure is lower than 6 MPa, the cell growth during foaming will be significant, and the cell diameter will become too large, and a preferable average cell diameter (average cell diameter) may not be obtained.
  • the temperature in the gas impregnation process varies depending on the inert gas used and the type of components in the resin composition, and can be selected within a wide range. When operability and the like are considered, the temperature is preferably 10°C to 350°C.
  • the impregnation temperature for impregnating an unfoamed molded article with an inert gas is preferably 10° C. to 250° C., more preferably 40° C. to 230° C. in a batch system. Further, when foaming and molding are simultaneously performed by extruding a molten polymer impregnated with a gas, the impregnation temperature is preferably 60° C. to 350° C. in a continuous system.
  • carbon dioxide is used as the inert gas
  • the temperature during impregnation is preferably 32° C. or higher, more preferably 40° C. or higher, in order to maintain a supercritical state.
  • the decompression speed is preferably 5 MPa/sec to 300 MPa/sec in order to obtain uniform microbubbles.
  • the heating temperature in the heating step is preferably 40°C to 250°C, more preferably 60°C to 250°C.
  • the foamed structure is thinned and then roll-rolled to obtain a resin foam.
  • a resin foam having an appropriately adjusted aspect ratio can be obtained.
  • a resin foam having a small thickness for example, 0.2 mm or less
  • the hot melt layer may be formed by the roll rolling.
  • Thinning of the foam structure can be performed using any appropriate slicer.
  • the thickness of the foam structure after thinning is preferably 0.01 mm or more, more preferably 0.05 mm or more, still more preferably 0.1 mm or more, and particularly preferably 0.15 mm or more.
  • the upper limit of the thickness of the foamed structure after thinning is preferably 3 mm or less, more preferably 2 mm or less, still more preferably 1.5 mm or less, still more preferably 1 mm or less, still more preferably 0.8 mm or less, and particularly preferably 0.5 mm or less.
  • the number of cells in the resin foam is particularly preferably adjusted, and collapse due to punching is less likely to occur, so that a foamed member having particularly excellent punching workability can be obtained.
  • the rolls used for the roll rolling are heating rolls.
  • the temperature of the roll is preferably 150°C to 250°C, more preferably 160°C to 230°C.
  • the rolling rate of the foamed structure is preferably 80% or less, more preferably 10% to 80%, still more preferably 20% to 75%, and particularly preferably 30% to 75%. Within such a range, a resin foam with an appropriately adjusted aspect ratio can be obtained.
  • the total amount of toluene outgas and ethyl acetate outgas is 8.0 ⁇ g/g or less.
  • the total emission amount of toluene outgas and ethyl acetate outgas from the sticky substance is preferably 5.0 ⁇ g/g or less, more preferably 2.0 ⁇ g/g or less. With such a range, the above effect becomes remarkable.
  • the thickness of the adherent is preferably 5 ⁇ m or more, more preferably 10 ⁇ m or more, still more preferably 15 ⁇ m or more, and particularly preferably 20 ⁇ m or more.
  • the upper limit of the thickness of the adherent is preferably 500 ⁇ m or less, more preferably 300 ⁇ m or less, still more preferably 100 ⁇ m or less, and particularly preferably 50 ⁇ m or less.
  • the single-layer thickness of the adhesive layer is preferably 1 ⁇ m or more, more preferably 2 ⁇ m or more, still more preferably 3 ⁇ m or more, and particularly preferably 5 ⁇ m or more.
  • the upper limit of the single layer thickness of the adhesive layer is preferably 50 ⁇ m or less, more preferably 40 ⁇ m or less, even more preferably 30 ⁇ m or less, still more preferably 20 ⁇ m or less, and particularly preferably 18 ⁇ m or less.
  • a foamed member having an adhesive layer with such a thickness is suitable for use in areas with narrow clearances. In addition, it is excellent in cleanness and punchability.
  • the total thickness of the adhesive layer is preferably 100 ⁇ m or less, more preferably 80 ⁇ m or less, even more preferably 60 ⁇ m or less, even more preferably 40 ⁇ m or less, and particularly preferably 36 ⁇ m or less.
  • the lower limit of the total thickness of the adhesive layer is preferably 2 ⁇ m or more, more preferably 4 ⁇ m or more, still more preferably 6 ⁇ m or more, and particularly preferably 10 ⁇ m or more.
  • a foamed member having an adhesive layer with such a thickness is suitable for use in areas with narrow clearances. Also, it is possible to obtain a foamed member that is excellent in cleanliness and punchability.
  • the total thickness of the adhesive layer is less than 25 ⁇ m. Within such a range, extrusion of the adhesive during punching is remarkably prevented, and a foamed member having particularly excellent punching workability can be obtained.
  • the storage modulus of the adhesive layer at 25°C is preferably 3.0 ⁇ 10 4 Pa to 2.0 ⁇ 10 5 Pa, preferably 4.5 ⁇ 10 4 Pa to 1.2 ⁇ 10 5 Pa, more preferably 5.0 ⁇ 10 4 Pa to 8.0 ⁇ 10 4 Pa, and particularly preferably 5.0 ⁇ 10 4 Pa to 6.0 ⁇ 10 4 Pa.
  • the adhesive layer contains any appropriate adhesive.
  • the pressure-sensitive adhesive layer is preferably formed from a material that does not contain an organic solvent. Therefore, it is preferable that the adhesive does not contain an organic solvent.
  • the pressure-sensitive adhesive layer contains a water-dispersed pressure-sensitive adhesive.
  • the water-dispersible pressure-sensitive adhesive contains a water-dispersible polymer. By using a water-dispersible pressure-sensitive adhesive, it is possible to obtain a foamed member that generates less outgassing and is excellent in cleanness.
  • the water-dispersed pressure-sensitive adhesive further contains polyacrylic acid. By adding polyacrylic acid, a foamed member having excellent water resistance and impact resistance can be obtained.
  • the water-dispersible pressure-sensitive adhesive is advantageous in that it has excellent anchoring properties with a base material (described later) made of polyethylene terephthalate and has excellent coatability.
  • Water-dispersible polymer examples include a water-dispersible acrylic polymer, a water-dispersible urethane-based polymer, a water-dispersible polyaniline-based polymer, and a water-dispersible polyester-based polymer.
  • a water-dispersible acrylic polymer is used.
  • a water-dispersible pressure-sensitive adhesive containing a water-dispersible acrylic polymer is advantageous in that it has excellent anchoring properties with a substrate (described later) made of polyethylene terephthalate, and also has excellent coatability.
  • the water-dispersible acrylic polymer can be a polymer of a monomer composition containing a (meth)acrylic acid alkyl ester.
  • (Meth)acrylic acid is defined as acrylic acid and/or methacrylic acid.
  • (Meth)acrylic acid alkyl esters include, for example, (meth)acrylic acid alkyl esters having a linear or branched alkyl group having 1 to 20 (preferably 1 to 12) carbon atoms.
  • (Meth)acrylate alkyl esters include, for example, methyl (meth)acrylate, ethyl (meth)acrylate, propyl (meth)acrylate, n-butyl (meth)acrylate, isopropyl (meth)acrylate, isobutyl (meth)acrylate, s-butyl (meth)acrylate, t-butyl (meth)acrylate, pentyl (meth)acrylate, isopentyl (meth)acrylate, neopentyl (meth)acrylate, hexyl (meth)acrylate, heptyl (meth)acrylate, ) 2-ethylhexyl acrylate, octyl (meth)
  • methyl acrylate and an acrylate alkyl ester having an alkyl group of 2 to 8 carbon atoms are used in combination.
  • methyl acrylate and 2-ethylhexyl acrylate can be used in combination.
  • the ratio of structural units derived from (meth)acrylic acid alkyl ester is, for example, 70% by weight or more, preferably 80% by weight or more, more preferably 90% by weight or more, and still more preferably 95% by weight or more.
  • the (meth)acrylic acid alkyl ester-derived structural unit is, for example, 99.5% by weight or less, preferably 99% by weight or less.
  • the water-dispersible acrylic polymer may contain structural units derived from monomers copolymerizable with (meth)acrylic acid alkyl esters. Examples of such structural units include structural units derived from one or more functional group-containing vinyl monomers. Functional group-containing vinyl monomers are useful for modifying acrylic polymers, such as securing cohesive strength of acrylic polymers and introducing cross-linking points into acrylic polymers.
  • Examples of functional group-containing vinyl monomers include carboxy group-containing vinyl monomers (carboxy group-containing monomers), acid anhydride vinyl monomers, hydroxyl group-containing vinyl monomers, sulfo group-containing vinyl monomers, phosphoric acid group-containing vinyl monomers, cyano group-containing vinyl monomers, glycidyl group-containing vinyl monomers, and the like.
  • carboxy group-containing vinyl monomers examples include acrylic acid, methacrylic acid, 2-carboxyethyl (meth)acrylate, carboxypentyl (meth)acrylate, itaconic acid, maleic acid, fumaric acid, and crotonic acid. Among them, acrylic acid or methacrylic acid is preferable. By using such a monomer, it is possible to obtain a PSA with excellent adhesive properties and mechanical stability of the emulsion particles.
  • acid anhydride vinyl monomers examples include maleic anhydride and itaconic anhydride.
  • hydroxyl group-containing vinyl monomers examples include 2-hydroxyethyl (meth)acrylate, 2-hydroxypropyl (meth)acrylate, 2-hydroxybutyl (meth)acrylate, 3-hydroxypropyl (meth)acrylate, 4-hydroxybutyl (meth)acrylate, 6-hydroxyhexyl (meth)acrylate, 8-hydroxyoctyl (meth)acrylate, 10-hydroxydecyl (meth)acrylate, 12-hydroxylauryl (meth)acrylate, and (4-hydroxymethylcyclohexyl). ) methyl (meth)acrylate and the like.
  • sulfo group-containing vinyl monomers examples include styrenesulfonic acid, allylsulfonic acid, sodium vinylsulfonate, 2-(meth)acrylamido-2-methylpropanesulfonic acid, (meth)acrylamidopropanesulfonic acid, sulfopropyl (meth)acrylate, and (meth)acryloyloxynaphthalenesulfonic acid.
  • phosphate group-containing vinyl monomers examples include 2-hydroxyethyl acryloyl phosphate and the like.
  • cyano group-containing vinyl monomers examples include acrylonitrile and methacrylonitrile.
  • glycidyl group-containing vinyl monomers examples include glycidyl (meth)acrylate and 2-ethylglycidyl (meth)acrylate.
  • the functional group-containing vinyl monomer preferably includes a carboxy group-containing vinyl monomer.
  • the proportion of structural units derived from functional group-containing vinyl monomers is, for example, 0.5% by weight or more, preferably 1.0% by weight or more, and more preferably 1.5% by weight or more.
  • the ratio of structural units derived from functional group-containing vinyl monomers is, for example, 30% by weight or less, preferably 10% by weight or less, more preferably 5% by weight or less, and even more preferably 3% by weight or less.
  • the water-dispersible acrylic polymer can be obtained, for example, by emulsion polymerization of the above monomer composition.
  • emulsion polymerization for example, first, a mixture containing a monomer, an emulsifier, and water is stirred to prepare a monomer emulsion. Next, a polymerization initiator is added to the monomer emulsion to initiate the polymerization reaction. A chain transfer agent may be used in this polymerization reaction to adjust the molecular weight of the acrylic polymer. Additives such as coupling agents and preservatives may also be used.
  • the polymerization method may be dropping polymerization or batch polymerization.
  • the polymerization time is, for example, 0.5 hours or more and, for example, 10 hours or less.
  • the polymerization temperature is, for example, 50° C. or higher and, for example, 80° C. or lower.
  • a water-dispersible acrylic polymer is prepared as a water-dispersed liquid, specifically a water-dispersed liquid (emulsion) in which a water-dispersed acrylic polymer is dispersed in water. That is, the aqueous dispersion contains a water-dispersible polymer and water.
  • emulsifiers examples include anionic emulsifiers, nonionic emulsifiers, and radical polymerizable emulsifiers (reactive emulsifiers).
  • anionic emulsifiers include sodium polyoxyethylene lauryl sulfate, sodium lauryl sulfate, ammonium lauryl sulfate, sodium dodecylbenzenesulfonate, sodium polyoxyethylene alkyl ether sulfate, ammonium polyoxyethylene alkylphenyl ether sulfate, sodium polyoxyethylene alkylphenyl ether sulfate, and sodium polyoxyethylene alkyl sulfosuccinate.
  • nonionic emulsifiers include polyoxyethylene alkyl ethers, polyoxyethylene alkylphenyl ethers, polyoxyethylene fatty acid esters, polyoxyethylene polyoxypropylene block polymers, and the like.
  • radically polymerizable emulsifiers examples include emulsifiers obtained by introducing radically polymerizable functional groups such as vinyl groups, propenyl groups, isopropenyl groups, vinyl ether groups, and allyl ether groups into the above anionic emulsifiers and nonionic emulsifiers. Specific examples include ammonium- ⁇ -sulfonato- ⁇ -1-(allyloxymethyl)alkyloxypolyoxyethylene.
  • the acrylic polymer which is a water-dispersible polymer obtained by emulsion polymerization, contains monomer units derived from the reactive emulsifier.
  • the mixing ratio of the emulsifier is, for example, 0.2 to 10 parts by weight with respect to 100 parts by weight of the total amount of monomers.
  • polymerization initiators examples include azo polymerization initiators and peroxide polymerization initiators.
  • azo polymerization initiators examples include 2,2'-azobisisobutyronitrile, 2,2'-azobis(2-amidinopropane) dihydrochloride, 2,2'-azobis[2-(5-methyl-2-imidazolin-2-yl)propane]dihydrochloride, 2,2'-azobis ⁇ 2-[N-(2-carboxyethyl)amidino]propane ⁇ n hydrate, 2, 2'-azobis(N,N'-dimethyleneisobutylamidine) and the like.
  • peroxide-based polymerization initiators examples include benzoyl peroxide, t-butyl hydroperoxide, and hydrogen oxide.
  • the polymerization initiator preferably includes an azo polymerization initiator, more preferably 2,2'-azobis ⁇ 2-[N-(2-carboxyethyl)amidino]propane ⁇ n hydrate.
  • the mixing ratio of the polymerization initiator is, for example, 0.01 to 2 parts by weight with respect to 100 parts by weight of the total amount of monomers.
  • chain transfer agents examples include glycidyl mercaptan, mercaptoacetic acid, 2-mercaptoethanol, t-lauryl mercaptan, t-dodecanethiol, thioglycolic acid, 2-ethylhexyl thioglycolate, 2,3-dimercapto-1-propanol, and preferably t-dodecanethiol.
  • the blending ratio of the chain transfer agent is, for example, 0.001 to 0.5 parts by weight with respect to 100 parts by weight of the total amount of monomers.
  • the weight average molecular weight (Mw) of the water-dispersible acrylic polymer is, for example, 100,000 or more, preferably 300,000 or more, and, for example, 5,000,000 or less, preferably 3,000,000 or less.
  • the weight average molecular weight is calculated by polystyrene conversion after measurement by gel permeation chromatography (GPC).
  • the blending ratio of the polyacrylic acid is preferably 0.1 parts by weight to 7 parts by weight, more preferably 0.15 parts by weight to 5 parts by weight, more preferably 2.5 parts by weight to 5 parts by weight, and particularly preferably 3.5 parts by weight to 5 parts by weight, with respect to 100 parts by weight of the water-dispersible polymer.
  • the impact resistance of the pressure-sensitive adhesive layer can be improved.
  • the adhesive layer which is excellent in adhesiveness can be formed.
  • the weight average molecular weight of polyacrylic acid is, for example, 50,000 or more, preferably 100,000 or more, and more preferably 150,000 or more. Also, for example, it is 300,000 or less, preferably 250,000 or less.
  • the water-dispersible pressure-sensitive adhesive may further contain any appropriate additive.
  • additives include leveling agents, tackifiers, release aids, silane coupling agents, thickeners, cross-linking agents (eg, 3-methacryloxypropyltrimethoxysilane), fillers, antioxidants, surfactants, antistatic agents, and the like.
  • the water-dispersed pressure-sensitive adhesive further contains a leveling agent.
  • a leveling agent By adding a leveling agent, it is possible to obtain a water-dispersible pressure-sensitive adhesive that has excellent applicability and can be preferably applied to a substrate (described later) composed of polyethylene terephthalate. Moreover, by using such a water-dispersible pressure-sensitive adhesive, a pressure-sensitive adhesive layer having excellent impact resistance can be formed.
  • leveling agents examples include “Surfinol 420” (acetylene glycol ethylene oxide surfactant, manufactured by Nissin Chemical Industry Co., Ltd.), “Pelex OT-P” (sodium dialkyl sulfosuccinate, manufactured by Kao Corporation), “Neocol P” (sodium dialkyl sulfosuccinate, manufactured by Daiichi Kogyo Seiyaku Co., Ltd.), “Nopko Wet 50” (sulfonic acid-based anionic surfactant, manufactured by San Nopco Co., Ltd.), “SN Wet 126” (modified silicone/special polyether surfactant, San Nopco Co., Ltd.), “SN Wet FST2" (polyoxyalkyleneamine nonionic wetting agent, San Nopco Co., Ltd.), “SN Wet S” (polyoxyalkyleneamine ether nonionic wetting agent, San Nopco Co., Ltd.), and "SN Wet 125
  • sodium dialkylsulfosuccinate is used as the leveling agent.
  • the carbon number of sodium dialkylsulfosuccinate is, for example, 4 or more, preferably 6 or more, and more preferably 8 or more.
  • the upper limit of the number of carbon atoms is, for example, 20 or less, preferably 13 or less, and more preferably 10 or less.
  • the blending ratio of the leveling agent is, for example, 1 part by weight or more, preferably 1.5 parts by weight or more, and for example, 3.5 parts by weight or less, preferably 2.5 parts by weight or less with respect to 100 parts by weight of the water-dispersible polymer. Moreover, the mixing ratio of the leveling agent is, for example, 10 parts by weight or more and, for example, 500 parts by weight or less with respect to 100 parts by weight of polyacrylic acid.
  • tackifier examples include various tackifier resins such as rosin-based resins, rosin derivative resins, petroleum-based resins, terpene-based resins, phenol-based resins, and ketone-based resins, preferably rosin-based resins, terpene-based resins, and more preferably terpene-based resins.
  • tackifier resins such as rosin-based resins, rosin derivative resins, petroleum-based resins, terpene-based resins, phenol-based resins, and ketone-based resins, preferably rosin-based resins, terpene-based resins, and more preferably terpene-based resins.
  • the content of the tackifier is, for example, 5 parts by weight or more, preferably 15 parts by weight or more, more preferably 25 parts by weight or more, and still more preferably 33 parts by weight or more, and, for example, 50 parts by weight or less, preferably 45 parts by weight or less, and more preferably 38 parts by weight or less, relative to 100 parts by weight of the water-dispersible polymer.
  • Substrate A substrate formed from any appropriate resin can be used as the substrate.
  • the resin constituting the substrate include polyester-based resins, polyolefin-based resins, polyvinyl chloride, polyimide-based resins, and polyamide-based resins.
  • polyester-based resins are preferred, and polyethylene terephthalate is more preferred.
  • Using a substrate made of polyethylene terephthalate makes it possible to obtain significantly thinner foamed parts.
  • it has a high breaking strength and is not easily cut it is also advantageous in that it is easy to process.
  • the melting point is high, the rate of dimensional change at high temperatures is small, and it is also advantageous in that it can be used in various environments.
  • the water-dispersible pressure-sensitive adhesive it is possible to preferably use a base material made of polyethylene terephthalate, and as a result, it is possible to obtain a foamed member that is remarkably thin and excellent in cleanness (e.g., less outgassing).
  • the breaking strength of the base material at 23°C is preferably 200 MPa to 500 MPa, more preferably 260 MPa to 420 MPa, still more preferably 300 MPa to 380 MPa, and particularly preferably 320 MPa to 360 MPa. Within such a range, it is possible to obtain a substrate having suitable strength.
  • Such a base material has excellent punching workability, and prevents tearing, dust generation, uncut parts, etc. during punching.
  • the breaking strength is measured by preparing a test piece (base material) cut to a size of 10 mm in width and 150 mm in length, and using a tensile tester at a chuck distance of 120 mm and a tensile speed of 50 mm/min in an environment of 23°C and 50% RH.
  • the breaking strength of the base material may be the breaking strength in the processing flow direction when the base material is formed into a film.
  • the breaking strength of the adherence body at 23°C is preferably 200 MPa to 500 MPa, more preferably 260 MPa to 420 MPa, still more preferably 300 MPa to 380 MPa, and particularly preferably 320 MPa to 360 MPa.
  • the dimensional change rate when the base material is left at 150° C. for 30 minutes is preferably 1% to 5%, more preferably 1% to 3%, still more preferably 1.2% to 2.8%, and particularly preferably 1.5% to 2.5%. Within such a range, it is possible to obtain a foamed member with little dimensional change even in a high-temperature environment. Such a substrate can maintain its shape even in various environments, and variations in processed dimensions are suppressed.
  • the dimensional change rate is the dimensional change rate in each direction (for example, the width direction, the length direction, the thickness direction, etc.) in a test piece having a width of 100 mm, a length of 100 mm, and a thickness of 1 to 25 ⁇ m.
  • the dimensional change rate of 10% or less means that all of the dimensional change rate in the width direction, the dimensional change rate in the length direction, and the dimensional change rate in the thickness direction in the test piece is 10% or less.
  • the dimensional change rate when the adherent is left at 150°C for 30 minutes is preferably 1% to 5%, more preferably 1% to 3%, still more preferably 1.2% to 2.8%, and particularly preferably 1.5% to 2.5%.
  • the total light transmittance (JIS K 7375-2008) of the substrate is, for example, 80% or more, preferably 85% or more.
  • the thickness of the substrate is preferably 1 ⁇ m or more, more preferably 2 ⁇ m or more.
  • the upper limit of the thickness of the substrate is preferably 100 ⁇ m or less, more preferably 50 ⁇ m or less, still more preferably 10 ⁇ m or less, and particularly preferably 7 ⁇ m or less. Within such a range, it is possible to obtain a remarkably thin foamed member. It is also advantageous in that it is easy to punch because it has high breaking strength and is not easily cut.
  • the adherence article may further include an easy-adhesion layer between the substrate and the pressure-sensitive adhesive layer.
  • the easy-adhesion layer is formed from an easy-adhesion composition that is an adhesive composition.
  • the easy-adhesion composition contains an oxazoline group-containing polyester polymer.
  • the oxazoline group-containing polyester polymer comprises a polyester-derived structural unit and an oxazoline-derived structural unit.
  • the above polyester is a polymer in which an ester bond formed by dehydration condensation of a polycarboxylic acid and a polyol connects them.
  • the polyvalent carboxylic acid include phthalic acid (terephthalic acid, isophthalic acid), naphthalenedicarboxylic acid, and the like. Phthalic acid is preferred.
  • the polyols include aliphatic glycols having 2 to 8 carbon atoms.
  • the oxazoline group-containing polyester polymer can be obtained, for example, by reacting a water-soluble copolyester (polyester component) obtained according to the method described in JP-A-06-293838 with an oxazoline-based reactive polymer (oxazoline component).
  • the water contact angle of the easily adhesive layer is, for example, 60° or more, and for example, 75° or less, preferably 71° or less, more preferably 68° or less, and still more preferably 65° or less.
  • the thickness of the easy adhesion layer is, for example, 50 nm or less, more preferably 45 nm or less, and for example, 1 nm or more, preferably 10 nm or more.
  • the foam member can be manufactured by any appropriate method.
  • the foamed member may be manufactured by laminating a resin foam and an adhesive layer (or an adhesive (adhesive sheet)).
  • the resin foam obtained in Examples and Comparative Examples was cut into a size of 30 mm ⁇ 30 mm to form a test piece, and the stress (N) when compressed at a compression speed of 10 mm/min until the compression ratio reached 50% was converted to a unit area (1 cm 2 ) to obtain a 50% compression load (N/cm 2 ).
  • Average foam diameter (average cell diameter) and foam diameter (cell diameter) The foam emitted in the bubbles (cell diameter) is cut vertically (thickness direction) to the main aspect of the resin foam using a razor blade, and as a measuring instrument, a digital microscope (product name "VHX -500", for Keyence Co., Ltd.) is used.
  • the resin foams obtained in Examples and Comparative Examples were punched out with a 100 mm ⁇ 100 mm punching blade (two processing blades (trade name “NCA07”, thickness 0.7 mm, cutting edge angle 43°, manufactured by Nakayama Co., Ltd.)), and the dimensions of the punched samples were measured. Also, the thickness was measured with a 1/100 dial gauge having a measuring terminal diameter ( ⁇ ) of 20 mm. From these values, the volumes of the resin foams obtained in Examples and Comparative Examples were calculated. Next, the weights of the resin foams obtained in Examples and Comparative Examples were measured with a balance with a minimum scale of 0.01 g or more. From these values, the void ratio (cell ratio) of the resin foams obtained in Examples and Comparative Examples was calculated.
  • the thickness recovery rate (instantaneous recovery rate) was obtained from the following formula based on the "thickness 0.5 seconds after releasing the compressed state" and the thickness (initial thickness) of the foamed member before the load was applied.
  • Thickness recovery rate (%) ⁇ (thickness 0.5 seconds after releasing the compressed state) / (initial thickness) ⁇ x 100 (7)
  • Thickness recovery rate after processing 100 ⁇ (1 - (thickness before punching - thickness of edge) / thickness before punching) (8) Total emission amount of toluene outgas and ethyl acetate outgas
  • the adhesive adheresive sheet/tape was cut into a sample of 5 cm 2 and sealed in a 20 mL headspace vial.
  • FIG. 3 is a schematic configuration diagram of the dustproofness tester
  • FIG. 4 is an end view of the dustproofness tester taken along line AA'.
  • 1 is a dustproof test device
  • 11 is a ceiling plate
  • 1121 is a spacer
  • 1122 is a step forming spacer
  • 13 is a double-sided adhesive tape
  • 14 is a test piece (resin foam, the same applies hereinafter)
  • 15 is an evaluation box
  • 16a is a through hole
  • 16b is a through hole
  • 16c is a through hole
  • 17 is an opening
  • 18 is a space.
  • the ceiling plate 11 is in the shape of a substantially rectangular flat plate, and has a rectangular (trapezoidal) notch in plan view that serves as an opening.
  • the spacer 1121 is larger than the opening 17, has a rectangular flat plate shape, and is used to compress the test piece 14 to a desired thickness.
  • the double-sided adhesive tape 13 is a double-sided adhesive sheet forming a foam member, and is used for fixing the spacer 1121 and the test piece 14 together.
  • Through hole 16a is connected to a metering pump via a pipe joint.
  • Through hole 16b is connected to a differential pressure gauge via a pipe joint.
  • Through hole 16c is connected to a needle valve via a pipe joint.
  • the dust-proof test apparatus 1 by screwing together the ceiling plate 11 and the evaluation box 15, a substantially rectangular parallelepiped sealable space 18 is formed inside.
  • the opening 17 is the opening of the space 18 .
  • the ceiling plate 11 has a notch that is rectangular (trapezoidal) when viewed open. ⁇ Dust resistance evaluation
  • a test piece 14 was attached to a dust resistance testing device as follows.
  • a rectangular plate-like spacer 1121 larger than the opening 17 was attached to the lower surface of the ceiling plate 11 facing the opening 17 so as to face the entire surface of the opening 17 .
  • a test piece 14 having a window portion having approximately the same size as the opening portion 17 was attached via a double-sided adhesive tape 13 to a position facing the opening portion 17 on the lower surface of the spacer 1121 .
  • the ceiling plate 11 was screwed to the evaluation box 15 after the step forming spacers 1122 were sandwiched under each side of the test piece 14 .
  • the test piece 14 was attached to the dust resistance test device.
  • the test piece 14 is compressed in the thickness direction by the spacer 1121 and the peripheral edge of the opening 17 .
  • the compressibility of the test piece 14 was adjusted to 50% compression (state compressed by 50% of the initial thickness) by adjusting the thickness of the spacer 1121 .
  • the space 18 in the evaluation box is sealed with the test piece 14 , the spacer 1122 , the double-sided adhesive tape 13 and the spacer 1121 .
  • the dustproofness tester was placed in the dust box and sealed.
  • the dust box is connected to a dust supply device and a particle counter. Also, the through-hole 16b of the dust resistance testing device is connected to the particle counter via a pipe joint.
  • Dust resistance index (%) 100 - (P0 - Pf) / P0 x 100 P0: number of particles in the atmosphere Pf: number of particles passing through the foam (10) Storage modulus of adhesive layer (25°C) It was obtained by performing dynamic viscoelasticity measurement under the following conditions using a dynamic viscoelasticity measuring device "ARES" manufactured by Rheometric. As a measurement sample, a part of the pressure-sensitive adhesive layer was pressed to a thickness of 2 mm.
  • ARES Advanced Rheometric Expansion System manufactured by Rheometric Scientific ⁇ Frequency: 1Hz ⁇ Temperature: -60 to 150°C ⁇ Temperature increase rate: 5°C/min ⁇ Deformation mode: twist ⁇ Shape: parallel plate (7.9mm ⁇ ) (11)
  • Impact Absorption A foamed member was produced by punching in the same test method as in (7). After that, a foam member was arranged on the impact force sensor to form a test body. A 66-g iron ball was dropped onto the specimen from a height of 30 cm above the foamed member, and the impact force F1 was measured. In addition, the impact force F0 of the blank was measured by dropping the iron ball directly onto the impact force sensor as described above. From F1 and F0, the shock absorbency (%) was calculated by the formula (F0-F1)/F0 ⁇ 100.
  • 2 -ethylhexyl acrylate (2EHA), 85 parts, metal acrylic acid (MA) 13, 1.25 parts, 1.25 parts of acrylic acid (AA), 0.75 metalic acid (MAA), T -dodkanchial (chain mobilization agent) 0.025, 0.025, 0.025 parts.
  • the 02 weight portion and the emulsifier 1.93 heavy part of the weight of a 28 -weight part of the distilled water were polymerized while dropping at 60 ° C. for 4 hours. Then, it was cooled to room temperature, and the pH was adjusted to 6 using 10% aqueous ammonia as a pH adjuster. Thus, a water-dispersible acrylic polymer was synthesized.
  • a tackifier 30 parts by weight of a tackifier, 3 parts by weight of a thickening agent, and 2 parts by weight of a leveling agent were added to 100 parts by weight of a water-dispersed acrylic polymer solid content, diluted and neutralized with distilled water and 10% aqueous ammonia to prepare a water-dispersed pressure-sensitive adhesive composition A (solid concentration: 25% by mass).
  • the water-dispersible pressure-sensitive adhesive composition A was applied to the surface of the release film to a thickness of 12.5 ⁇ m and dried to form (arrange) a pressure-sensitive adhesive layer.
  • a substrate-less pressure-sensitive adhesive sheet A' was obtained.
  • monomer raw materials 90 parts by weight of n-butyl acrylate, 10 parts by weight of 2-ethylhexyl acrylate, 4 parts by weight of acrylic acid, 2 parts by weight of sodium polyoxyethylene lauryl sulfate (emulsifier), and 0.05 parts by weight of dodecanethiol (chain transfer agent) were added to 40 parts by weight of ion-exchanged water and emulsified to obtain a monomer raw material emulsion.
  • This monomer raw material emulsion was gradually added dropwise over 4 hours to the above reaction liquid kept at 60° C. to effect emulsion polymerization. After the dropping of the monomer raw material was completed, the mixture was further stirred at 60° C.
  • a release liner substrate was prepared by laminating a PE layer having a thickness of 25 ⁇ m on one side of fine paper.
  • a mixture of a non-migrating, heat-curable, solvent-free silicone release agent and a curing catalyst was applied onto the PE layer of this substrate. This was dried and cured by holding at 120° C. for 1 minute to obtain a release liner.
  • the water-dispersible pressure-sensitive adhesive composition was applied to form a pressure-sensitive adhesive layer with a thickness of 55 ⁇ m.
  • an acrylic pressure-sensitive adhesive composition c 30 parts by weight of a polymerized rosin ester (softening point: 128° C., acid value: 12 mgKOH/g) and 2 parts by weight of an isocyanate crosslinking agent were added to the prepared acrylic polymer solution to prepare an acrylic pressure-sensitive adhesive composition c.
  • the pressure-sensitive adhesive composition c was applied to the surface of the release film to a thickness of 12.5 ⁇ m and dried to form (arrange) a pressure-sensitive adhesive layer.
  • This pressure-sensitive adhesive layer was transferred to both sides of a polyester film (trade name “K880-4.5W” manufactured by Mitsubishi Chemical Polyester Co., Ltd.; thickness: 5 ⁇ m).
  • a double-sided pressure-sensitive adhesive sheet C was produced.
  • Example 1 Polypropylene resin A (MFR: 0.4 g/10 min, ethylene content: 0 wt%, propylene content: 100 wt%, weight average molecular weight: 108,000, molecular weight distribution: 4.93) 35 parts by weight, polyolefin elastomer A (melt flow rate (MFR): 15 g/10 min) 30 parts by weight, polyolefin elastomer B (melt flow rate (MFR): 2.2 g/10 min) 30 parts by weight, magnesium hydroxide A mixture was obtained by mixing 10 parts by weight, 10 parts by weight of carbon, and 1 part by weight of stearic acid monoglyceride. The mixture was kneaded at a temperature of 200° C.
  • Examples 2 to 22 A foamed member was obtained in the same manner as in Example 1, except that the composition of the mixture for forming pellets (the amount of each component blended) and the thickness of the resin foam were as shown in Tables 1 to 3. The obtained foamed member was subjected to the above evaluation. The results are shown in Tables 1-3. The contents of "polypropylene resin A2" and “polypropylene resin B” in Table 1 are as follows.
  • Polypropylene resin A2 MFR: 0.5 g/10 min, ethylene content: 0 wt%, propylene content: 100 wt%, weight average molecular weight: 64500, molecular weight distribution: 8.43
  • Polypropylene resin B MFR: 1.1 g/10 min, ethylene content: 0 wt%, propylene content: 100 wt%
  • Polypropylene resin A (MFR: 0.4 g/10 min, ethylene content: 0 wt%, propylene content: 100 wt%, weight average molecular weight: 108000, molecular weight distribution: 4.93) 45 parts by weight
  • Polypropylene resin B (MFR: 1.1 g/10 min, ethylene content: 0 wt%, propylene content: 100 wt%)
  • Polyolefin elastomer C (melt flow rate (MFR): 6.0 g/1 0 min) 25 parts by weight, 100 parts by weight of magnesium hydroxide, 10 parts by weight of carbon, and 1 part by weight of stearic acid monoglyceride were kneaded at a temperature of 200 ° C.
  • the obtained resin foam was sliced into a thickness of 0.5 mm and rolled to a thickness of 0.15 mm with a hot melt roll at 200° C. to obtain a resin foam in which a hot melt layer was formed.
  • a double-sided pressure-sensitive adhesive sheet A was attached to one side of the resin foam to obtain a foamed member.
  • the obtained foamed member was subjected to the above evaluation. Table 3 shows the results.
  • Example 24 A foamed member was obtained in the same manner as in Example 23, except that the amount of magnesium hydroxide compounded was 120 parts by weight. The obtained foamed member was subjected to the above evaluation. Table 3 shows the results.
  • Example 25 A foamed member was obtained in the same manner as in Example 23, except that the amount of magnesium hydroxide compounded was 140 parts by weight. The obtained foamed member was subjected to the above evaluation. Table 3 shows the results.
  • thermoplastic elastomer composition a a blend of polypropylene (PP) and ethylene/propylene/5-ethylidene-2-norbornene three-dimensional copolymer (EPT) (crosslinked olefinic thermoplastic elastomer, TPV), polypropylene and ethylene/propylene/5-ethylene 15.0% by weight of carbon black containing 15.0% by weight of tylidene-2-norbornene three-dimensional copolymer]: 60 parts by weight, 10 parts by weight of magnesium hydroxide, 10 parts by weight of carbon, and 1 part by weight of stearic acid monoglyceride were kneaded at a temperature of 200° C.
  • PP polypropylene
  • EPT ethylene/propylene/5-ethylidene-2-norbornene three-dimensional copolymer
  • TPV crosslinked olefinic thermoplastic elastomer
  • the skin layer of the obtained resin foam was removed by slicing, and the resin foam was obtained by slicing to a thickness of 0.5 mm.
  • a double-sided pressure-sensitive adhesive sheet B was attached to one side of the resin foam to obtain a foamed member.
  • the obtained foamed member was subjected to the above evaluation. Table 4 shows the results.
  • Comparative Example 2 A resin foam was obtained in the same manner as in Comparative Example 1, except that the thickness of the resin foam was 1 mm. A double-sided pressure-sensitive adhesive sheet C was attached to one side of the resin foam to obtain a foamed member. The obtained foamed member was subjected to the above evaluation. Table 4 shows the results.
  • Comparative Example 3 A resin foam was obtained in the same manner as in Comparative Example 1, except that the thickness of the resin foam was 2 mm. A double-sided pressure-sensitive adhesive sheet A was attached to one side of the resin foam to obtain a foamed member. The obtained foamed member was subjected to the above evaluation. Table 4 shows the results.
  • Comparative Example 4 A resin foam was obtained in the same manner as in Comparative Example 1, except that the thickness of the resin foam was 1 mm. A double-sided pressure-sensitive adhesive sheet D was attached to one side of the resin foam to obtain a foamed member. The obtained foamed member was subjected to the above evaluation. Table 4 shows the results.
  • the resin foam of the present invention can be suitably used, for example, as a cushioning material for electronic devices.

Abstract

Provided is a foam member comprising a resin foam body and an adhesive layer, said foam member exhibiting superior punch machining properties and cleanliness. A foam member according to the present invention comprises a resin foam body and an adhesive body positioned on at least one side of the resin foam body, wherein the adhesive body comprises an adhesive layer, the product of the total thickness (µm) of the adhesive layer and the thickness (mm) of the resin foam body is 45 or less, and the total amount of toluene and ethyl acetate outgassed from the adhesive body is 8.0 µg/g or less.

Description

発泡部材foam material
 本発明は、発泡部材に関する。 The present invention relates to foam members.
 電子機器の画面保護、基板の保護、電子部品の保護等のため、クッション材として発泡部材が多用されている。近年、電子機器の薄型化の傾向に応じて、クッション材が配置される部分のクリアランスを狭くすることが求められている。さらに、電子機器の小型化、多機能化等に伴い、使用される電子部品も小型化する傾向にあり、より薄いクッション材(発泡部材)が求められることがある。また、上記クッション材には、電子部品等の保護のため、防塵性が求められることもある。 Foamed materials are often used as cushioning materials to protect electronic device screens, substrates, and electronic components. 2. Description of the Related Art In recent years, there has been a demand for narrowing the clearance of a portion where a cushioning material is arranged in accordance with the trend toward thinner electronic devices. Furthermore, with the miniaturization and multi-functionalization of electronic equipment, there is a tendency for electronic components used to be miniaturized, and thinner cushioning materials (foam members) are sometimes required. In addition, the cushioning material is sometimes required to be dust-proof in order to protect electronic parts and the like.
 通常、所望の形状の発泡部材を得る際には、原反を打ち抜き加工することが行われる。打ち抜き加工では、金型を用いて発泡部材に高い圧力を加えることで、所望の形状を有する発泡体を得る。従来の発泡部材では、打ち抜き加工を行うことで減じた厚みが、当該加工後に十分復元せずに、その結果、永続的な厚み変化が生じることがある。このような打ち抜きにより厚みが変化する場合、すなわち、打ち抜き加工性が悪い場合、衝撃吸収性、防塵性等が低下するという問題が生じる。 Usually, when obtaining a foamed member with a desired shape, the raw material is punched. In punching, a foam having a desired shape is obtained by applying high pressure to a foam member using a die. In conventional foam parts, the thickness that is reduced by stamping may not fully recover after the stamping process, resulting in permanent thickness variations. If the thickness is changed by such punching, that is, if the punching workability is poor, there arises a problem that impact absorption, dust resistance, etc. are deteriorated.
 一方、近年、環境負荷が抑えられたクリーン性に優れる発泡部材の要望も高く、したがって、発泡部材の優れた打ち抜き加工性は、クリーン性を阻害することなく、実現されることが好ましい。発泡部材は、利便性等の観点から、発泡体と粘着剤層とが一体となって構成されることがあるが、このような構成である場合、クリーン性向上は、重要な課題となる。 On the other hand, in recent years, there has been a high demand for foamed members that are environmentally friendly and have excellent cleanness. From the viewpoint of convenience, etc., the foam member may be configured by integrating a foam and an adhesive layer, but in such a configuration, improvement of cleanness is an important issue.
特開2017-186504公報Japanese Patent Laid-Open No. 2017-186504 特開2015-034299公報Japanese Patent Application Laid-Open No. 2015-034299
 本発明の課題は、樹脂発泡体と粘着剤層とを備える発泡部材であって、打ち抜き加工性、および、クリーン性に優れる発泡部材を提供することにある。 An object of the present invention is to provide a foamed member comprising a resin foam and an adhesive layer and having excellent punching workability and cleanness.
 本発明の発泡部材は、樹脂発泡体と、該樹脂発泡体の少なくとも一方の側に配置された粘着体とを備え、該粘着体が、粘着剤層を備え、該粘着剤層の総厚(μm)と該樹脂発泡体の厚み(mm)との積が、45以下であり、該粘着体において、トルエンアウトガスおよび酢酸エチルアウトガスの合計放散量が、8.0μg/g以下である。
 1つの実施形態においては、上記粘着体が、基材をさらに備え、上記粘着剤層が、該基材と上記樹脂発泡体との間に配置される。
 1つの実施形態においては、上記粘着体が、粘着シートである。
 1つの実施形態においては、上記粘着体が、上記基材の両側に配置された上記粘着剤層を備える。
 1つの実施形態においては、上記基材が、ポリエチレンテレフタレートから構成される。
 1つの実施形態においては、上記発泡部材は、1000g/cmの荷重を加えた状態で120秒間維持した後の厚み回復率が、55%以上である。
 1つの実施形態においては、上記樹脂発泡体の平均気泡径が、200μm以下である。
 1つの実施形態においては、上記樹脂発泡体の見かけ密度が、0.4g/cm以下である。
 1つの実施形態においては、上記樹脂発泡体の気泡径の変動係数が、0.5以下である。
 1つの実施形態においては、上記樹脂発泡体の気泡数密度が、30個/mm以上である。
 1つの実施形態においては、上記樹脂発泡体の気泡率が、30%以上である。
 1つの実施形態においては、上記樹脂発泡体が、ポリオレフィン系樹脂を含む。 
 1つの実施形態においては、上記ポリオレフィン系樹脂が、ポリオレフィン系エラストマー以外のポリオレフィンとポリオレフィン系エラストマーの混合物である。
 1つの実施形態においては、上記発泡部材は、上記樹脂発泡体の片面または両面に、熱溶融層を有する。
 1つの実施形態においては、上記粘着剤層が、水分散型粘着剤を含む。
 1つの実施形態においては、上記樹脂発泡体の粘着剤層とは反対側の面には、別の粘着剤層が形成されている。
The foamed member of the present invention includes a resin foam and an adhesive disposed on at least one side of the resin foam, the adhesive having an adhesive layer, the product of the total thickness (μm) of the adhesive layer and the thickness (mm) of the resin foam being 45 or less, and the adhesive having a total emission amount of toluene outgas and ethyl acetate outgas of 8.0 μg/g or less.
In one embodiment, the adhesive body further comprises a substrate, and the adhesive layer is arranged between the substrate and the resin foam.
In one embodiment, the adhesive is an adhesive sheet.
In one embodiment, the adhesive body includes the adhesive layers arranged on both sides of the substrate.
In one embodiment, the substrate is composed of polyethylene terephthalate.
In one embodiment, the foamed member has a thickness recovery rate of 55% or more after a load of 1000 g/cm 2 is maintained for 120 seconds.
In one embodiment, the resin foam has an average cell diameter of 200 μm or less.
In one embodiment, the resin foam has an apparent density of 0.4 g/cm 3 or less.
In one embodiment, the coefficient of variation of cell diameter of the resin foam is 0.5 or less.
In one embodiment, the resin foam has a bubble number density of 30/mm 2 or more.
In one embodiment, the resin foam has a void content of 30% or more.
In one embodiment, the resin foam contains a polyolefin resin.
In one embodiment, the polyolefin-based resin is a mixture of a polyolefin other than a polyolefin-based elastomer and a polyolefin-based elastomer.
In one embodiment, the foam member has a heat-melting layer on one side or both sides of the resin foam.
In one embodiment, the pressure-sensitive adhesive layer contains a water-dispersed pressure-sensitive adhesive.
In one embodiment, another pressure-sensitive adhesive layer is formed on the surface of the resin foam opposite to the pressure-sensitive adhesive layer.
 本発明によれば、樹脂発泡体と粘着剤層とを備える発泡部材であって、打ち抜き加工性、および、クリーン性に優れる発泡部材を提供することができる。 According to the present invention, it is possible to provide a foamed member comprising a resin foam and an adhesive layer and having excellent punching workability and cleanliness.
本発明の1つの実施形態による発泡部材の概略断面図である。1 is a schematic cross-sectional view of a foam member according to one embodiment of the invention; FIG. 本発明の別の実施形態による発泡部材の概略断面図である。FIG. 4 is a schematic cross-sectional view of a foam member according to another embodiment of the invention; 防塵性試験装置の概略構成図である。It is a schematic block diagram of a dust-proof test apparatus. 防塵性試験装置のA-A’線の切断部端面図である。FIG. 2 is an end view of a cut portion of the dust resistance test device taken along the line A-A';
A.発泡部材
 図1は、本発明の1つの実施形態による発泡部材の概略断面図である。発泡部材100は、樹脂発泡体110と、樹脂発泡体110の少なくとも一方の側に配置された粘着体120とを備える。
A. Foam Member FIG. 1 is a schematic cross-sectional view of a foam member according to one embodiment of the present invention. The foam member 100 includes a resin foam 110 and an adhesive 120 arranged on at least one side of the resin foam 110 .
 上記粘着体120は、粘着剤層121を備える。上記粘着体120は、図1に示すように、粘着剤層121のみから構成されていてもよく、図2に示すように、基材122と粘着剤層121とから構成されていてもよい。基材を配置することにより、剛性が高く、貼り付け性に優れる発泡部材を得ることができる。また、各層を薄くしても、貼り付け性が維持されることから、基材を用いることによりさらなる薄層化が可能となる。粘着剤層は基材と樹脂発泡体との間に配置され得る。なお、図2に示すように、粘着体120が基材122を備える場合、基材122の両側に上記粘着剤層121が配置されていてもよい。基材を備える粘着体は、粘着シートであり得る。 The adhesive body 120 has an adhesive layer 121 . The adhesive body 120 may be composed of only the adhesive layer 121 as shown in FIG. 1, or may be composed of the substrate 122 and the adhesive layer 121 as shown in FIG. By arranging the base material, it is possible to obtain a foamed member having high rigidity and excellent adhesion. In addition, even if each layer is thinned, the sticking property is maintained, so the use of the base material makes it possible to further reduce the thickness of the layer. The pressure-sensitive adhesive layer can be arranged between the substrate and the resin foam. In addition, as shown in FIG. 2 , when the adhesive body 120 includes a base material 122 , the adhesive layers 121 may be arranged on both sides of the base material 122 . The adhesive body provided with a substrate may be an adhesive sheet.
 上記樹脂発泡体は、気泡構造(セル構造)を有する。気泡構造(セル構造)としては、独立気泡構造、連続気泡構造、半連続半独立気泡構造(独立気泡構造と連続気泡構造が混在している気泡構造)などが挙げられる。好ましくは、樹脂発泡体の気泡構造は、半連続半独立気泡構造である。代表的には、本発明の樹脂発泡体は、樹脂組成物を発泡させることにより得られる。上記樹脂組成物は、樹脂発泡体を構成する樹脂を少なくとも含有する組成物である。 The resin foam has a cellular structure (cell structure). Examples of the cell structure include a closed cell structure, an open cell structure, a semi-open and semi-closed cell structure (a cell structure in which a closed cell structure and an open cell structure are mixed), and the like. Preferably, the cell structure of the resin foam is a semi-open and semi-closed cell structure. Typically, the resin foam of the present invention is obtained by foaming a resin composition. The resin composition is a composition containing at least a resin constituting a resin foam.
 上記発泡部材において、粘着剤層の総厚(μm)と樹脂発泡体の厚み(mm)との積が、45以下である。本発明においては、粘着剤層の厚みおよび樹脂発泡体の厚みを調整し、粘着剤層の総厚(μm)と樹脂発泡体の厚み(mm)との積を上記範囲に収めることにより、打ち抜き加工性に優れた発泡部材を得ることができる。より詳細には、上記発泡部材は、打ち抜きの際に粘着剤層を構成する粘着剤のはみ出しが防止され、かつ、樹脂発泡体中の気泡数が適切に調整され、打ち抜きによる潰れが生じ難く打ち抜き加工性に優れる。粘着剤層の総厚(μm)と樹脂発泡体の厚み(mm)との積は、好ましくは40以下であり、より好ましくは35以下であり、さらに好ましくは30以下であり、特に好ましくは25以下である。このような範囲であれば、上記効果が顕著となる。また、粘着剤層の総厚(μm)と樹脂発泡体の厚み(mm)との積は、好ましくは3.5以上であり、より好ましくは5以上である。このような範囲であれば、耐衝撃性および粘着性に優れる発泡部材を得ることができる。なお、本明細書において、粘着剤層の総厚とは、粘着体に含まれる粘着剤層の総厚であり、粘着体に含まれる粘着剤層が単層である場合は、当該粘着剤層の厚みを意味し、粘着体に含まれる粘着剤層が複層である場合(例えば、基材の両側に粘着剤層が配置される場合)は、粘着剤層の単層厚みの合計を意味する。 In the foamed member, the product of the total thickness (μm) of the adhesive layer and the thickness (mm) of the resin foam is 45 or less. In the present invention, by adjusting the thickness of the pressure-sensitive adhesive layer and the thickness of the resin foam so that the product of the total thickness (μm) of the pressure-sensitive adhesive layer and the thickness (mm) of the resin foam is within the above range, it is possible to obtain a foamed member having excellent punching workability. More specifically, the foamed member prevents the pressure-sensitive adhesive constituting the pressure-sensitive adhesive layer from oozing out during punching, and the number of cells in the resin foam is appropriately adjusted, so that crushing due to punching is unlikely to occur and punching workability is excellent. The product of the total thickness (μm) of the adhesive layer and the thickness (mm) of the resin foam is preferably 40 or less, more preferably 35 or less, still more preferably 30 or less, and particularly preferably 25 or less. With such a range, the above effect becomes remarkable. The product of the total thickness (μm) of the adhesive layer and the thickness (mm) of the resin foam is preferably 3.5 or more, more preferably 5 or more. Within such a range, a foamed member having excellent impact resistance and adhesiveness can be obtained. In this specification, the total thickness of the pressure-sensitive adhesive layer is the total thickness of the pressure-sensitive adhesive layer contained in the adherence body. When the pressure-sensitive adhesive layer contained in the adherence body is a single layer, it means the thickness of the pressure-sensitive adhesive layer.
 図示していないが、樹脂発泡体の粘着体とは反対側の面には、別の粘着剤層が形成されていてもよい。 Although not shown, another adhesive layer may be formed on the surface of the resin foam opposite to the adhesive body.
 上記粘着体において、トルエンアウトガスおよび酢酸エチルアウトガスの合計放散量は、8.0μg/g以下である。本発明の発泡部材は、アウトガスが少ない、すなわち、クリーン性が高い点で有利である。上記のように、薄型であり、かつ、打ち抜き加工性に優れ、さらには、クリーン性に優れる発泡部材を得られたことは、本発明の大きな成果のひとつである。トルエンアウトガスおよび酢酸エチルアウトガスの合計放散量は、粘着体のみを80℃下に30分間放置した際に生じたアウトガスの量である。具体的な測定方法は、後述する。なお、トルエンアウトガスおよび酢酸エチルアウトガスの合計放散量の測定基準となる粘着体の重量は、粘着剤層の重量と、必要に応じて配置される基材の重量との合計重量である。トルエンアウトガスおよび酢酸エチルアウトガスが少ない発泡部材は、例えば、粘着剤層を構成する粘着剤として、水分散型粘着剤(後述)を用いることにより得ることができる。 In the sticky substance, the total amount of toluene outgas and ethyl acetate outgas is 8.0 μg/g or less. The foamed member of the present invention is advantageous in that outgassing is small, that is, it is highly clean. As described above, it is one of the great achievements of the present invention that a foamed member which is thin, excellent in punching workability, and excellent in cleanliness can be obtained. The total amount of toluene outgas and ethyl acetate outgas emitted is the amount of outgas generated when the adherent alone was left at 80° C. for 30 minutes. A specific measuring method will be described later. In addition, the weight of the adhesive body, which is the measurement standard for the total amount of toluene outgas and ethyl acetate outgas, is the total weight of the adhesive layer and the base material disposed as necessary. A foamed member with little toluene outgas and ethyl acetate outgas can be obtained, for example, by using a water-dispersible pressure-sensitive adhesive (described later) as the pressure-sensitive adhesive constituting the pressure-sensitive adhesive layer.
 上記発泡部材に1000g/cmの荷重を加えた状態で120秒間維持した後の厚み回復率(以下、瞬間回復率ともいう)は、好ましくは55%以上であり、より好ましくは60%以上であり、さらに好ましくは70%以上であり、さらに好ましくは80%以上であり、さらに好ましくは85%以上であり、さらに好ましくは90%以上であり、特に好ましくは95%以上である。瞬間回復率がこのような範囲の発泡部材は、打ち抜き加工された際にも厚み変化等の形状変化が小さく、打ち抜きにより一時的に厚みが減じた場合にも短時間で回復するという好ましい挙動を示し、打ち抜き性に優れる。当該瞬間回復率は高いほど好ましいが、その上限は、例えば、99%(好ましくは100%)である。瞬間回復率の測定方法は、後述する。 The thickness recovery rate (hereinafter also referred to as instantaneous recovery rate) after a load of 1000 g/cm 2 is applied to the foamed member and maintained for 120 seconds is preferably 55% or more, more preferably 60% or more, still more preferably 70% or more, still more preferably 80% or more, still more preferably 85% or more, further preferably 90% or more, and particularly preferably 95% or more. A foamed member having an instantaneous recovery rate in such a range has a small change in shape, such as a change in thickness, even when punched, and exhibits preferable behavior such as recovery in a short time even when the thickness is temporarily reduced by punching, and is excellent in punchability. The higher the instantaneous recovery rate, the better, but the upper limit is, for example, 99% (preferably 100%). A method for measuring the instantaneous recovery rate will be described later.
B.樹脂発泡体
 上記樹脂発泡体の平均気泡径(平均セル径)は、好ましくは900μm以下であり、より好ましくは200μm以下であり、さらに好ましくは150μm以下であり、さらに好ましくは100μm以下であり、特に好ましくは80μm以下である。また、上記樹脂発泡体の平均気泡径(平均セル径)は、好ましくは10μm以上であり、さらに好ましくは20μm以上であり、さらに好ましくは40μm以上である。平均気泡径(平均セル径)が上記範囲であれば、粘着体(粘着剤層)の樹脂発泡体に対する投錨力が高く、樹脂発泡体と粘着体(粘着剤層)との一体性に優れる発泡部材を得ることができる。また、柔軟性および応力分散性により優れる樹脂発泡体を得ることができる。また、圧縮回復性にも優れ、打ち抜き加工性および繰り返し衝撃に対する耐性に優れる樹脂発泡体を得ることができる。1つの実施形態においては、樹脂発泡体の平均気泡径は、200μm以下(好ましくは100μm以下)である。粘着剤層の厚みが薄い場合、樹脂発泡体の平均気泡径が200μm以下であれば、打ち抜き加工性に顕著に優れる発泡部材を得ることができる。
B. Resin foam The average cell diameter of the resin foam is preferably 900 µm or less, more preferably 200 µm or less, still more preferably 150 µm or less, still more preferably 100 µm or less, and particularly preferably 80 µm or less. The average cell diameter (average cell diameter) of the resin foam is preferably 10 µm or more, more preferably 20 µm or more, and still more preferably 40 µm or more. If the average cell diameter (average cell diameter) is within the above range, the anchoring force of the adhesive (adhesive layer) to the resin foam is high, and the resin foam and the adhesive (adhesive layer) are excellent in integration. A foamed member can be obtained. In addition, a resin foam having excellent flexibility and stress dispersibility can be obtained. In addition, it is possible to obtain a resin foam that is excellent in compression recovery, stamping workability, and resistance to repeated impact. In one embodiment, the resin foam has an average cell diameter of 200 μm or less (preferably 100 μm or less). When the thickness of the pressure-sensitive adhesive layer is thin, if the resin foam has an average cell diameter of 200 μm or less, it is possible to obtain a foamed member having remarkably excellent stamping workability.
 上記樹脂発泡体の50%圧縮荷重は、好ましくは30N/cm以下であり、より好ましくは10N/cm以下であり、さらに好ましくは8N/cm以下であり、特に好ましくは5N/cm以下であり、最も好ましくは3N/cm以下である。このような範囲であれば、好ましく柔軟性を有し、かつ、打ち抜き加工性に優れる発泡部材を得ることができる。樹脂発泡体の50%圧縮荷重の下限は、例えば、0.5N/cmである。樹脂発泡体の50%圧縮荷重とは、圧縮率が50%となるまで圧縮したときの応力(N)を単位面積(1cm)当たりに換算したものである。 The 50% compressive load of the resin foam is preferably 30 N/cm 2 or less, more preferably 10 N/cm 2 or less, still more preferably 8 N/cm 2 or less, particularly preferably 5 N/cm 2 or less, and most preferably 3 N/cm 2 or less. Within such a range, it is possible to obtain a foamed member that preferably has flexibility and is excellent in stamping workability. The lower limit of the 50% compressive load of the resin foam is, for example, 0.5 N/cm 2 . The 50% compressive load of the resin foam is the stress (N) when the resin foam is compressed to a compressibility of 50%, converted per unit area (1 cm 2 ).
 上記樹脂発泡体の気泡数密度は、好ましくは30個/mm以上であり、より好ましくは50個/mm以上であり、さらに好ましくは65個/mm以上であり、さらに好ましくは80個/mm以上であり、さらに好ましくは90個/mm以上であり、さらに好ましくは100個/mm以上であり、特に好ましくは110個/mm以上であり、最も好ましくは120個/mm以上である。このような範囲であれば、好ましく柔軟性を有し、かつ、潰れがたく打ち抜き加工性に優れる発泡部材を得ることができる。また、気泡数密度が高いほど、圧縮した際にエネルギーを蓄えやすくなり、圧縮回復力に優れる樹脂発泡体を得ることができる。このような樹脂発泡体を備える発泡部材は、打ち抜き加工性に優れる。樹脂発泡体の気泡数密度の上限は、好ましくは400個/mmであり、より好ましくは350個/mmであり、さらに好ましくは、300個/mmであり、特に好ましくは250個/mmであり、特に好ましくは200個/mmである。樹脂発泡体の気泡数密度とは、樹脂発泡体の不作為に選択された断面で観察される気泡断面における数密度であり、樹脂発泡体断面の画像解析により求めることができる。 The cell number density of the resin foam is preferably 30 cells/mm 2 or more, more preferably 50 cells/mm 2 or more, still more preferably 65 cells/mm 2 or more, still more preferably 80 cells/mm 2 or more, still more preferably 90 cells/mm 2 or more, still more preferably 100 cells/mm 2 or more, particularly preferably 110 cells/mm 2 or more, and most preferably 120 cells/mm 2 or more. . Within such a range, it is possible to obtain a foamed member that preferably has flexibility, is resistant to crushing, and is excellent in punching workability. In addition, the higher the bubble number density, the easier it is to store energy when compressed, and a resin foam having excellent compression recovery can be obtained. A foamed member comprising such a resin foam has excellent stamping workability. The upper limit of the cell number density of the resin foam is preferably 400 cells/mm 2 , more preferably 350 cells/mm 2 , still more preferably 300 cells/mm 2 , particularly preferably 250 cells/mm 2 , particularly preferably 200 cells/mm 2 . The cell number density of the resin foam is the number density in the cross section of cells observed in a randomly selected cross section of the resin foam, and can be obtained by image analysis of the cross section of the resin foam.
 樹脂発泡体の見かけ密度は、好ましくは0.4g/cm以下であり、より好ましくは0.3g/cm以下である。また、樹脂発泡体の見かけ密度は、好ましくは0.01g/cm以上であり、より好ましくは0.03g/cm以上である。見かけ密度が上記範囲であれば、樹脂発泡体と粘着体(粘着剤層)との一体性に優れる発泡部材を得ることができる。また、打ち抜き加工性に優れ、かつ、柔軟性および応力分散性に優れる樹脂発泡体を得ることができる。なお、見かけ密度にて発泡性を判断できる。1つの実施形態においては、樹脂発泡体の見かけ密度は、好ましくは0.1g/cm以下であり、より好ましくは0.08g/cm以下であり、さらに好ましくは0.06g/cm以下である。別の実施形態においては、樹脂発泡体の見かけ密度は、好ましくは0.08g/cm以上であり、より好ましくは0.1g/cm以上であり、さらに好ましくは0.15g/cm以上である。見かけ密度の測定方法は、後述する。 The apparent density of the resin foam is preferably 0.4 g/cm 3 or less, more preferably 0.3 g/cm 3 or less. Moreover, the apparent density of the resin foam is preferably 0.01 g/cm 3 or more, more preferably 0.03 g/cm 3 or more. If the apparent density is within the above range, it is possible to obtain a foamed member having excellent integrity between the resin foam and the adhesive (adhesive layer). In addition, it is possible to obtain a resin foam that is excellent in punching workability, flexibility, and stress dispersion. The foamability can be judged by the apparent density. In one embodiment, the apparent density of the resin foam is preferably 0.1 g/cm 3 or less, more preferably 0.08 g/cm 3 or less, even more preferably 0.06 g/cm 3 or less. In another embodiment, the apparent density of the resin foam is preferably 0.08 g/cm 3 or higher, more preferably 0.1 g/cm 3 or higher, and even more preferably 0.15 g/cm 3 or higher. A method for measuring the apparent density will be described later.
 上記樹脂発泡体の厚みは、好ましくは3000μm以下であり、より好ましくは2000μm以下であり、さらに好ましくは1800μm以下であり、さらに好ましくは1500μm以下であり、さらに好ましくは1000μm以下である。また、樹脂発泡体の厚みは、好ましくは50μm以上であり、より好ましくは100μm以上であり、さらに好ましくは150μm以上であり、さらに好ましくは300μm以上である。厚みが上記範囲であれば、微細かつ均一な気泡構造を形成することができ、優れた打ち抜き加工性および衝撃吸収性を発現し得る点で有利である。1つの実施形態においては、樹脂発泡体の厚みは、2000μm未満である。このような範囲であれば、樹脂発泡体中の気泡数が特に好ましく調整されて打ち抜きによる潰れが生じ難く、そのため、打ち抜き加工性に特に優れる発泡部材を得ることができる。 The thickness of the resin foam is preferably 3000 µm or less, more preferably 2000 µm or less, still more preferably 1800 µm or less, still more preferably 1500 µm or less, and still more preferably 1000 µm or less. The thickness of the resin foam is preferably 50 µm or more, more preferably 100 µm or more, still more preferably 150 µm or more, and even more preferably 300 µm or more. If the thickness is within the above range, it is possible to form a fine and uniform cell structure, which is advantageous in that excellent punching workability and impact absorption can be exhibited. In one embodiment, the thickness of the resin foam is less than 2000 μm. Within such a range, the number of cells in the resin foam is particularly preferably adjusted, and collapse due to punching is less likely to occur, so that a foamed member having particularly excellent punching workability can be obtained.
 上記樹脂発泡体の気泡径(セル径)の変動係数は、好ましくは0.5以下であり、より好ましくは0.4以下であり、さらに好ましくは0.35以下であり、さらに好ましくは0.3以下であり、特に好ましくは0.25以下であり、最も好ましくは0.2以下である。このような範囲であれば、樹脂発泡体と粘着体(粘着剤層)との一体性に優れる発泡部材を得ることができる。また、打ち抜き加工等により圧縮力が付加された場合に、気泡変形のバラツキが小さくなる。このような樹脂発泡体であれば、例えば、打ち抜き加工された際に、厚み精度に優れる加工品(被切断品)を得ることができる。また、気泡径の変動係数が上記範囲であれば、衝撃による変形が均一になり、局所的な応力負荷が防止され、応力分散性に優れ、かつ、耐衝撃性に特に優れる発泡部材を得ることができる。当該変動係数は、小さいほど好ましいがその下限は、例えば、0.15(好ましくは0.1、より好ましくは0.01)である。気泡径の変動係数の測定方法は、後述する。 The variation coefficient of the cell diameter (cell diameter) of the resin foam is preferably 0.5 or less, more preferably 0.4 or less, still more preferably 0.35 or less, still more preferably 0.3 or less, particularly preferably 0.25 or less, and most preferably 0.2 or less. Within such a range, a foamed member having excellent integrity between the resin foam and the adhesive (adhesive layer) can be obtained. Also, when a compressive force is applied by punching or the like, variations in cell deformation are reduced. With such a resin foam, for example, a processed product (cut product) having excellent thickness accuracy can be obtained when punched. Further, when the coefficient of variation of cell diameter is within the above range, deformation due to impact becomes uniform, local stress load is prevented, and a foamed member having excellent stress dispersibility and particularly excellent impact resistance can be obtained. Although the coefficient of variation is preferably as small as possible, its lower limit is, for example, 0.15 (preferably 0.1, more preferably 0.01). A method for measuring the coefficient of variation of bubble diameter will be described later.
 上記樹脂発泡体の気泡率(セル率)は、好ましくは97%以下であり、より好ましくは95%以下である。1つの実施形態においては、樹脂発泡体の気泡率(セル率)は、90%以下(好ましくは85%以下、より好ましくは78%以下、さらに好ましくは75%以下)である。このような範囲であれば、樹脂発泡体と粘着体とを圧着する際の厚み変化率が少ない樹脂発泡体とすることができる。上記樹脂発泡体の気泡率(セル率)は、好ましくは30%以上であり、より好ましくは50%以上であり、さらに好ましくは60%以上である。このような範囲であれば、適度な柔軟性を有する樹脂発泡体を得ることができる。このような樹脂発泡体は、打ち抜き加工性に優れ、打ち抜いた際の切れ残りの発生が防止される。 The foam rate (cell rate) of the resin foam is preferably 97% or less, more preferably 95% or less. In one embodiment, the resin foam has a void content (cell rate) of 90% or less (preferably 85% or less, more preferably 78% or less, still more preferably 75% or less). Within such a range, it is possible to obtain a resin foam having a small thickness change rate when the resin foam and the adherent are pressure-bonded. The foam content (cell ratio) of the resin foam is preferably 30% or more, more preferably 50% or more, and still more preferably 60% or more. Within such a range, a resin foam having moderate flexibility can be obtained. Such a resin foam has excellent punching workability, and prevents the occurrence of uncut parts when punched.
 上記樹脂発泡体の気泡壁(セル壁)の厚みは、好ましくは10μm以下であり、より好ましくは8μm以下であり、さらに好ましくは5μm以下であり、特に好ましくは4μm以下であり、最も好ましくは3μm以下である。また、樹脂発泡体の気泡壁(セル壁)の厚みは、好ましくは0.1μm以上であり、より好ましくは0.3μm以上であり、さらに好ましくは0.5μm以上であり、特に好ましくは0.7μm以上であり、最も好ましくは1μm以上である。気泡壁(セル壁)の厚みが上記範囲であれば、適切な強度を有する樹脂発泡体を得ることができる。このような樹脂発泡体は、打ち抜き加工性に優れ、打ち抜き時の千切れ、発塵、切れ残り等が防止される。また、気泡壁の厚みが上記範囲であれば、柔軟性および応力分散性により優れる樹脂発泡体を得ることができる。気泡壁の厚みは、樹脂発泡体の気泡部の拡大画像を取り込み、同計測器の解析ソフトを用いて、画像解析することにより、測定することができる。 The thickness of the cell wall (cell wall) of the resin foam is preferably 10 µm or less, more preferably 8 µm or less, still more preferably 5 µm or less, particularly preferably 4 µm or less, and most preferably 3 µm or less. The thickness of the cell wall (cell wall) of the resin foam is preferably 0.1 µm or more, more preferably 0.3 µm or more, still more preferably 0.5 µm or more, particularly preferably 0.7 µm or more, and most preferably 1 µm or more. If the thickness of the cell wall (cell wall) is within the above range, a resin foam having appropriate strength can be obtained. Such a resin foam has excellent punching workability, and is prevented from tearing, dusting, and uncut parts during punching. Moreover, when the cell wall thickness is within the above range, a resin foam having excellent flexibility and stress dispersion can be obtained. The thickness of the cell wall can be measured by capturing an enlarged image of the cell portion of the resin foam and analyzing the image using the analysis software of the measuring instrument.
 上記樹脂発泡体の気泡構造が半連続半独立気泡構造である場合、その中の独立気泡構造の割合は、好ましくは40%以下であり、より好ましくは30%以下である。本明細書において、樹脂発泡体の独立気泡構造の割合は、例えば、温度23℃、湿度50%の環境下で、測定対象を水分中に沈め、その後の質量を測定し、その後、80℃のオーブンで十分に乾燥させた後、再度質量を測定して求められる。また、連続気泡であれば水分を保持できるため、その質量分を連続気泡として測定して求められる。 When the cell structure of the resin foam is a semi-open and semi-closed cell structure, the proportion of the closed cell structure therein is preferably 40% or less, more preferably 30% or less. In the present specification, the ratio of the closed-cell structure of the resin foam is obtained, for example, by immersing the object to be measured in water under an environment of a temperature of 23° C. and a humidity of 50%, then measuring the mass, then thoroughly drying it in an oven at 80° C., and then measuring the mass again. In addition, since open cells can hold moisture, the mass of open cells is measured as open cells.
 上記樹脂発泡体の衝撃吸収性は、好ましくは20%以上であり、より好ましくは27%以上であり、さらに好ましくは30%以上であり、特に好ましくは35%以上であり、最も好ましくは40%以上である。衝撃吸収性は、以下のようにして測定される。
・衝撃力センサー上に、樹脂発泡体、両面テープ(品番:No.5603W、日東電工製)、PETフィルム(品番:ダイヤホイルMRF75、三菱樹脂製)をこの順に配置して試験体を形成する。PETフィルム上方50cmの高さから、66gの鉄球を試験体に落下させて、衝撃力F1を測定する。
・また、衝撃力センサーに直接、上記のように鉄球を落下させて、ブランクの衝撃力F0を測定する。
・F1、F0から、(F0-F1)/F0×100の式により、衝撃吸収性(%)を算出する。
The impact absorption of the resin foam is preferably 20% or more, more preferably 27% or more, still more preferably 30% or more, particularly preferably 35% or more, and most preferably 40% or more. Impact absorption is measured as follows.
- A resin foam, a double-sided tape (product number: No. 5603W, manufactured by Nitto Denko), and a PET film (product number: Diafoil MRF75, manufactured by Mitsubishi Plastics) are placed in this order on the impact force sensor to form a test sample. A 66-g iron ball is dropped onto the specimen from a height of 50 cm above the PET film, and the impact force F1 is measured.
・Furthermore, the impact force F0 of the blank is measured by dropping the iron ball directly onto the impact force sensor as described above.
・From F1 and F0, calculate the impact absorption (%) by the formula (F0-F1)/F0×100.
 上記樹脂発泡体の形状としては、目的に応じて、任意の適切な形状を採用し得る。このような形状としては、代表的には、シート状である。 Any appropriate shape can be adopted as the shape of the resin foam according to the purpose. Such a shape is typically sheet-like.
 上記樹脂発泡体は、その片面または両面に熱溶融層を有していてもよい。熱溶融層を有する樹脂発泡体は、例えば、樹脂発泡体を構成する樹脂組成物の溶融温度以上に加温された一対の加熱ロールを用いて、樹脂発泡体(または樹脂発泡体の前駆体(発泡構造体))を圧延することにより、得られ得る。熱溶融層を有する樹脂発泡体を形成すれば、樹脂発泡体と粘着体(粘着剤層)の接着面積が増加し、樹脂発泡体と粘着体(粘着剤層)との密着性が高まり、これら層の一体性に優れる発泡部材を得ることができる。 The resin foam may have a heat-melting layer on one side or both sides. A resin foam having a hot-melt layer can be obtained, for example, by rolling a resin foam (or a resin foam precursor (foam structure)) using a pair of heating rolls heated to a melting temperature of the resin composition constituting the resin foam or higher. By forming a resin foam having a hot-melt layer, the adhesion area between the resin foam and the adhesive (adhesive layer) is increased, the adhesion between the resin foam and the adhesive (adhesive layer) is increased, and a foamed member having excellent integrity between these layers can be obtained.
 熱溶融層の気泡率(セル率)は、好ましくは30%以下であり、より好ましくは20%以下であり、さらに好ましくは10%以下であり、特に好ましくは5%以下であり、最も好ましくは0%である。熱溶融層の厚みは、好ましくは0.15mm以下であり、より好ましくは0.13mm以下であり、さらに好ましくは0.11mm以下である。また、熱溶融層の厚みは、好ましくは0.05mm以上であり、より好ましくは0.07mm以上であり、さらに好ましくは0.09mm以上である。 The foam rate (cell rate) of the hot melt layer is preferably 30% or less, more preferably 20% or less, still more preferably 10% or less, particularly preferably 5% or less, and most preferably 0%. The thickness of the hot melt layer is preferably 0.15 mm or less, more preferably 0.13 mm or less, and even more preferably 0.11 mm or less. Also, the thickness of the hot melt layer is preferably 0.05 mm or more, more preferably 0.07 mm or more, and still more preferably 0.09 mm or more.
(樹脂発泡体の形成方法)
 上記樹脂発泡体は、本発明の効果を損なわない範囲で、任意の適切な方法によって形成することができる。このような方法としては、代表的には、樹脂材料(ポリマー)を含む樹脂組成物を発泡させる方法が挙げられる。樹脂組成物は、任意の適切な樹脂材料(ポリマー)を含む。
(Method for forming resin foam)
The resin foam can be formed by any appropriate method as long as the effects of the present invention are not impaired. Such a method typically includes a method of foaming a resin composition containing a resin material (polymer). The resin composition includes any suitable resin material (polymer).
 上記ポリマーとしては、例えば、アクリル系樹脂、シリコーン系樹脂、ウレタン系樹脂、ポリオレフィン系樹脂、エステル系樹脂、ゴム系樹脂などが挙げられる。上記ポリマーは、1種のみを単独で用いてもよく、2種以上を組み合わせて用いてもよい。 Examples of the polymer include acrylic resins, silicone resins, urethane resins, polyolefin resins, ester resins, and rubber resins. The above polymers may be used singly or in combination of two or more.
 ポリマーの含有割合は、樹脂組成物100重量部に対して、好ましくは30重量部~95重量部であり、より好ましくは35重量部~90重量部であり、さらに好ましくは40重量部~80重量部であり、特に好ましくは40重量部~60重量部である。このような範囲であれば、柔軟性および応力分散性により優れる樹脂発泡体を得ることができる。 The polymer content is preferably 30 to 95 parts by weight, more preferably 35 to 90 parts by weight, still more preferably 40 to 80 parts by weight, and particularly preferably 40 to 60 parts by weight, relative to 100 parts by weight of the resin composition. Within such a range, it is possible to obtain a resin foam that is more excellent in flexibility and stress dispersibility.
 1つの実施形態においては、上記ポリマーとして、ポリオレフィン系樹脂が用いられる。 In one embodiment, a polyolefin resin is used as the polymer.
 ポリオレフィン系樹脂の含有割合は、上記ポリマー100重量部に対して、好ましくは50重量部~100重量部であり、より好ましくは70重量部~100重量部であり、さらに好ましくは90重量部~100重量部であり、特に好ましくは95重量部~100重量部であり、最も好ましくは100重量部である。 The content of the polyolefin resin is preferably 50 to 100 parts by weight, more preferably 70 to 100 parts by weight, still more preferably 90 to 100 parts by weight, particularly preferably 95 to 100 parts by weight, and most preferably 100 parts by weight, relative to 100 parts by weight of the polymer.
 ポリオレフィン系樹脂としては、好ましくは、ポリオレフィンおよびポリオレフィン系エラストマーからなる群から選ばれる少なくとも1種が挙げられ、より好ましくは、ポリオレフィンとポリオレフィン系エラストマーとが併用される。ポリイレフンおよびポリオレフィン系エラストマーはそれぞれ、1種のみを単独で用いてもよく、2種以上を組み合わせて用いてもよい。なお、本明細書において、「ポリオレフィン」と称する場合には、「ポリオレフィン系エラストマー」は含まれないものとする。 The polyolefin-based resin preferably includes at least one selected from the group consisting of polyolefin and polyolefin-based elastomer, and more preferably, polyolefin and polyolefin-based elastomer are used in combination. Each of polyolefin and polyolefin elastomer may be used alone or in combination of two or more. In this specification, the term "polyolefin" does not include "polyolefin elastomer".
 ポリオレフィン系樹脂としてポリオレフィンとポリオレフィン系エラストマーを併用する場合、ポリオレフィンとポリオレフィン系エラストマーの重量比率(ポリオレフィン/ポリオレフィン系エラストマー)は、好ましくは1/99~99/1であり、より好ましくは10/90~90/10であり、さらに好ましくは20/80~80/20であり、特に好ましくは30/70~70/30である。1つの実施形態においては、ポリオレフィンとポリオレフィン系エラストマーの重量比率(ポリオレフィン/ポリオレフィン系エラストマー)は、好ましくは25/75~75/25であり、より好ましくは35/65~65/35である。このような範囲であれば、圧縮回復性に優れて、打ち抜き加工時に加工前後での形状変化(特に、厚み変化)が抑制され、かつ、適切な強度を有し、打ち抜き加工性に優れた樹脂発泡体を得ることができる。 When polyolefin and polyolefin elastomer are used together as polyolefin resin, the weight ratio of polyolefin and polyolefin elastomer (polyolefin/polyolefin elastomer) is preferably 1/99 to 99/1, more preferably 10/90 to 90/10, still more preferably 20/80 to 80/20, and particularly preferably 30/70 to 70/30. In one embodiment, the weight ratio of polyolefin to polyolefin elastomer (polyolefin/polyolefin elastomer) is preferably 25/75 to 75/25, more preferably 35/65 to 65/35. Within such a range, it is possible to obtain a resin foam that has excellent compression recovery, suppresses shape change (in particular, thickness change) before and after punching, has appropriate strength, and has excellent punching workability.
 ポリオレフィンとしては、本発明の効果を損なわない範囲で、任意の適切なポリオレフィンを採用し得る。このようなポリオレフィンとしては、例えば、直鎖状のポリオレフィン、分岐鎖状の(分岐鎖を有する)ポリオレフィンなどが挙げられる。1つの実施形態においては、ポリオレフィン系樹脂として、分岐鎖状のポリオレフィンが用いられる。この実施形態においては、ポリオレフィンとして、分岐状のポリオレフィンのみを用いてもよく、分岐状のポリオレフィンと直鎖状のポリオレフィンとを併用して用いてもよい。分岐状のポリオレフィンを用いることにより、平均気泡径が小さく、耐衝撃性に優れる樹脂発泡体を得ることができる。分岐状のポリオレフィンの含有割合は、ポリオレフィン100重量部に対して、好ましくは30重量部~100重量部であり、より好ましくは50重量部~80重量部である。 Any appropriate polyolefin can be adopted as the polyolefin as long as it does not impair the effects of the present invention. Examples of such polyolefins include linear polyolefins and branched (having branched chains) polyolefins. In one embodiment, a branched polyolefin is used as the polyolefin resin. In this embodiment, as the polyolefin, only branched polyolefin may be used, or branched polyolefin and linear polyolefin may be used in combination. By using a branched polyolefin, a resin foam having a small average cell diameter and excellent impact resistance can be obtained. The content of the branched polyolefin is preferably 30 to 100 parts by weight, more preferably 50 to 80 parts by weight, per 100 parts by weight of the polyolefin.
 上記ポリオレフィンとしては、例えば、α-オレフィン由来の構成単位を含むポリマーが挙げられる。ポリオレフィンは、α-オレフィン由来の構成単位のみから構成されていてもよく、α-オレフィン由来の構成単位と、α-オレフィン以外のモノマー由来の構成単位とから構成されていてもよい。ポリオレフィンが共重合体である場合、その共重合形態としては、任意の適切な共重合形態を採用し得る。例えば、ランダムコポリマー、ブロックコポリマーなどが挙げられる。 Examples of the above polyolefins include polymers containing structural units derived from α-olefins. The polyolefin may be composed only of structural units derived from α-olefins, or may be composed of structural units derived from α-olefins and structural units derived from monomers other than α-olefins. When the polyolefin is a copolymer, any appropriate copolymerization form can be adopted as its copolymerization form. Examples include random copolymers and block copolymers.
 ポリオレフィンを構成し得るα-オレフィンとしては、例えば、炭素数2~8(好ましくは2~6、より好ましくは2~4)のα-オレフィン(例えば、エチレン、プロピレン、1-ブテン、1-ペンテン、1-ヘキセン、4-メチル-1-ペンテン、1-へプテン、1-オクテンなど)が好ましい。α-オレフィンは、1種のみであってもよいし、2種以上であってもよい。 Examples of α-olefins that can constitute polyolefins include α-olefins having 2 to 8 (preferably 2 to 6, more preferably 2 to 4) carbon atoms (eg, ethylene, propylene, 1-butene, 1-pentene, 1-hexene, 4-methyl-1-pentene, 1-heptene, 1-octene, etc.). The α-olefin may be of only one type, or may be of two or more types.
 ポリオレフィンを構成するα-オレフィン以外のモノマーとしては、例えば、酢酸ビニル、アクリル酸、アクリル酸エステル、メタクリル酸、メタクリル酸エステル、ビニルアルコールなどのエチレン性不飽和単量体が挙げられる。α-オレフィン以外のモノマーは、1種のみであってもよいし、2種以上であってもよい。 Examples of monomers other than α-olefins that constitute polyolefins include ethylenically unsaturated monomers such as vinyl acetate, acrylic acid, acrylic acid esters, methacrylic acid, methacrylic acid esters, and vinyl alcohol. Monomers other than the α-olefin may be of only one type, or may be of two or more types.
 ポリオレフィンとしては、具体的には、例えば、低密度ポリエチレン、中密度ポリエチレン、高密度ポリエチレン、直鎖状低密度ポリエチレン、ポリプロピレン(プロピレンホモポリマー)、エチレンとプロピレンとの共重合体、エチレンとエチレン以外のα-オレフィンとの共重合体、プロピレンとプロピレン以外のα-オレフィンとの共重合体、エチレンとプロピレンとエチレンおよびプロピレン以外のα-オレフィンとの共重合体、プロピレンとエチレン性不飽和単量体との共重合体などが挙げられる。 Specific examples of polyolefins include low-density polyethylene, medium-density polyethylene, high-density polyethylene, linear low-density polyethylene, polypropylene (propylene homopolymer), copolymers of ethylene and propylene, copolymers of ethylene and α-olefins other than ethylene, copolymers of propylene and α-olefins other than propylene, copolymers of ethylene and propylene and α-olefins other than ethylene and propylene, and copolymers of propylene and ethylenically unsaturated monomers.
 1つの実施形態においては、ポリオレフィンとして、プロピレン由来の構成単位を有するポリプロピレン系重合体が用いられる。ポリプロピレン系重合体としては、例えば、ポリプロピレン(プロピレンホモポリマー)、エチレンとプロピレンとの共重合体、プロピレンとプロピレン以外のα-オレフィンとの共重合体などが挙げられ、好ましくはポリプロピレン(プロピレンホモポリマー)である。ポリプロピレン系重合体は、1種のみを単独で用いてもよく、2種以上を組み合わせて用いてもよい。 In one embodiment, a polypropylene-based polymer having structural units derived from propylene is used as the polyolefin. Examples of polypropylene-based polymers include polypropylene (propylene homopolymer), copolymers of ethylene and propylene, and copolymers of propylene and α-olefins other than propylene, and preferably polypropylene (propylene homopolymer). The polypropylene-based polymer may be used alone or in combination of two or more.
 ポリオレフィンの温度230℃におけるメルトフローレート(MFR)は、本発明の効果をより発現させ得る点で、好ましくは0.25g/10分~10g/10分であり、より好ましくは0.3g/10分~6g/10分であり、さらに好ましくは0.35g/10分~5g/10分であり、特に好ましくは0.35g/10分~1g/10分であり、最も好ましくは0.35g/10分~0.6g/10分である。なお、本明細書において、上記メルトフローレート(MFR)は、ISO1133(JIS-K-7210)に基づき、温度230℃、荷重2.16kgf(21.2N)で測定されたMFRをいうものとする。1つの実施形態においては、樹脂発泡体を構成するポリオレフィンのメルトフローレートによって、当該樹脂のダイスウェル比およびせん断粘度が制御される。 The melt flow rate (MFR) of the polyolefin at a temperature of 230°C is preferably 0.25 g/10 min to 10 g/10 min, more preferably 0.3 g/10 min to 6 g/10 min, even more preferably 0.35 g/10 min to 5 g/10 min, particularly preferably 0.35 g/10 min to 1 g/10 min, and most It is preferably 0.35 g/10 minutes to 0.6 g/10 minutes. In this specification, the melt flow rate (MFR) refers to MFR measured at a temperature of 230° C. and a load of 2.16 kgf (21.2 N) based on ISO1133 (JIS-K-7210). In one embodiment, the melt flow rate of the polyolefin that makes up the resin foam controls the die swell ratio and shear viscosity of the resin.
 ポリオレフィンの重量平均分子量は、好ましくは50000~120000であり、より好ましくは55000~110000であり、さらに好ましくは60000~100000である。このような範囲であれば、当該樹脂のダイスウェル比およびせん断粘度を好ましく調整することができる。また、ポリオレフィンの分子量分布(重量平均分子量/数平均分子量)は、好ましくは4~10であり、より好ましくは7~10であり、より好ましくは6~9である。このような範囲であれば、当該樹脂のダイスウェル比およびせん断粘度を好ましく調整することができる。その結果、柔軟(高発泡)でありながら気泡数密度が高く、打ち抜き加工性に優れる樹脂発泡体を得ることができる。重量平均分子量および数平均分子量は、ゲルパーミエーションクロマトグラフィ測定(溶媒:テトラヒドロフラン、ポリスチレン換算)により求めることができる。 The weight average molecular weight of the polyolefin is preferably 50,000 to 120,000, more preferably 55,000 to 110,000, still more preferably 60,000 to 100,000. Within such a range, the die swell ratio and shear viscosity of the resin can be preferably adjusted. Also, the molecular weight distribution (weight average molecular weight/number average molecular weight) of the polyolefin is preferably 4-10, more preferably 7-10, and more preferably 6-9. Within such a range, the die swell ratio and shear viscosity of the resin can be preferably adjusted. As a result, it is possible to obtain a resin foam that is flexible (highly foamed), has a high bubble number density, and is excellent in punching workability. The weight average molecular weight and number average molecular weight can be determined by gel permeation chromatography (solvent: tetrahydrofuran, polystyrene conversion).
 ポリオレフィンとしては、市販品を用いてもよく、例えば、「E110G」(株式会社プライムポリマー製)、「EA9」(日本ポリプロ株式会社製)、「EA9FT」(日本ポリプロ株式会社製)、「E-185G」(株式会社プライムポリマー製)、「WB140HMS」(ボレアリス社製)、「WB135HMS」(ボレアリス社製)などが挙げられる。 Commercially available polyolefins may be used, and examples include "E110G" (manufactured by Prime Polymer Co., Ltd.), "EA9" (manufactured by Japan Polypropylene Corporation), "EA9FT" (manufactured by Japan Polypropylene Corporation), "E-185G" (manufactured by Prime Polymer Co., Ltd.), "WB140HMS" (manufactured by Borealis), and "WB135HMS" (manufactured by Borealis).
 ポリオレフィン系エラストマーとしては、本発明の効果を損なわない範囲で、任意の適切なポリオレフィン系エラストマーを採用し得る。このようなポリオレフィン系エラストマーとしては、例えば、エチレン-プロピレン共重合体、エチレン-プロピレン-ジエン共重合体、エチレン-酢酸ビニル共重合体、ポリブテン、ポリイソブチレン、塩素化ポリエチレン、ポリオレフィン成分とゴム成分とが物理的に分散したエラストマー、ポリオレフィン成分とゴム成分とがミクロ相分離した構造を有したエラストマーなどの、いわゆる非架橋型の熱可塑性オレフィン系エラストマー(TPO);マトリックスを形成する樹脂成分A(オレフィン系樹脂成分A)およびドメインを形成するゴム成分Bを含む混合物を、架橋剤の存在下、動的に熱処理することにより得られ、マトリックス(海相)である樹脂成分A中に、架橋ゴム粒子がドメイン(島相)として細かく分散した海島構造を有する多相系のポリマーである動的架橋型熱可塑性オレフィン系エラストマー(TPV);などが挙げられる。 Any appropriate polyolefin elastomer can be adopted as the polyolefin elastomer as long as it does not impair the effects of the present invention. Examples of such polyolefin elastomers include so-called non-crosslinked thermoplastic olefin elastomers (TPO), such as ethylene-propylene copolymer, ethylene-propylene-diene copolymer, ethylene-vinyl acetate copolymer, polybutene, polyisobutylene, chlorinated polyethylene, elastomer in which polyolefin component and rubber component are physically dispersed, and elastomer having structure in which polyolefin component and rubber component are microphase-separated; resin component A forming matrix (olefin resin component A) and rubber component B forming domain. A dynamically crosslinked thermoplastic olefin elastomer (TPV), which is a multiphase polymer having a sea-island structure in which crosslinked rubber particles are finely dispersed as domains (island phases) in resin component A, which is a matrix (sea phase), obtained by dynamically heat-treating a mixture containing in the presence of a crosslinking agent.
 ポリオレフィン系エラストマーは、好ましくは、ゴム成分を含む。このようなゴム成分としては、特開平08-302111号公報、特開2010-241934号公報、特開2008-024882号公報、特開2000-007858号公報、特開2006-052277号公報、特開2012-072306号公報、特開2012-057068号公報、特開2010-241897号公報、特開2009-067969号公報、再表03/002654号公報などに記載のものが挙げられる。 The polyolefin elastomer preferably contains a rubber component. Examples of such rubber components include JP-A-08-302111, JP-A-2010-241934, JP-A-2008-024882, JP-A-2000-007858, JP-A-2006-052277, JP-A-2012-072306, JP-A-2012-057068, JP-A-2010-24189. 7, Japanese Patent Application Laid-Open No. 2009-067969, Re-Table 03/002654, and the like.
 ポリオレフィン成分とオレフィン系ゴム成分とがミクロ相分離した構造を有したエラストマーとしては、具体的には、ポリプロピレン樹脂(PP)とエチレン-プロピレンゴム(EPM)とからなるエラストマー、ポリプロピレン樹脂(PP)とエチレン-プロピレン-ジエンゴム(EPDM)とからなるエラストマーなどが挙げられる。ポリオレフィン成分とオレフィン系ゴム成分の重量比(ポリオレフィン成分/オレフィン系ゴム)は、好ましくは90/10~10/90であり、より好ましくは80/20~20/80である。 Specific examples of elastomers having a structure in which a polyolefin component and an olefin-based rubber component are microphase-separated include elastomers composed of polypropylene resin (PP) and ethylene-propylene rubber (EPM), and elastomers composed of polypropylene resin (PP) and ethylene-propylene-diene rubber (EPDM). The weight ratio of the polyolefin component to the olefin rubber component (polyolefin component/olefin rubber) is preferably 90/10 to 10/90, more preferably 80/20 to 20/80.
 動的架橋型熱可塑性オレフィン系エラストマー(TPV)は、一般的に、非架橋型の熱可塑性オレフィン系エラストマー(TPO)より、弾性率が高く、かつ圧縮永久歪みも小さい。これにより、回復性が良好であり、樹脂発泡体とした場合に優れた回復性を示し得る。 A dynamically crosslinked thermoplastic olefin elastomer (TPV) generally has a higher elastic modulus and a smaller compression set than a non-crosslinked thermoplastic olefin elastomer (TPO). Thereby, the recoverability is good, and excellent recoverability can be exhibited when a resin foam is formed.
 動的架橋型熱可塑性オレフィン系エラストマー(TPV)とは、上述したように、マトリックスを形成する樹脂成分A(オレフィン系樹脂成分A)およびドメインを形成するゴム成分Bを含む混合物を、架橋剤の存在下、動的に熱処理することにより得られ、マトリックス(海相)である樹脂成分A中に、架橋ゴム粒子がドメイン(島相)として細かく分散した海島構造を有する多相系のポリマーである。 A dynamically crosslinked thermoplastic olefin elastomer (TPV) is, as described above, a multiphase polymer having a sea-island structure in which crosslinked rubber particles are finely dispersed as domains (island phases) in the resin component A, which is a matrix (sea phase), obtained by dynamically heat-treating a mixture containing a matrix-forming resin component A (olefinic resin component A) and a domain-forming rubber component B in the presence of a crosslinking agent.
 動的架橋型熱可塑性オレフィン系エラストマー(TPV)としては、例えば、特開2000-007858号公報、特開2006-052277号公報、特開2012-072306号公報、特開2012-057068号公報、特開2010-241897号公報、特開2009-067969号公報、再表03/002654号等に記載のものなどが挙げられる。 Examples of dynamic cross-linking type thermoplastic olefin elastomers (TPV) include, for example, JP-A-2000-007858, JP-A-2006-052277, JP-A-2012-072306, JP-A-2012-057068, JP-A-2010-241897, JP-A-2009-067969, Retable 03/002654. and the like.
 動的架橋型熱可塑性オレフィン系エラストマー(TPV)としては、市販品を用いてもよく、例えば、「ゼオサーム」(日本ゼオン社製)、「サーモラン」(三菱化学社製)、「サーリンク3245D」(東洋紡績株式会社製)などが挙げられる。 As the dynamically crosslinked thermoplastic olefin elastomer (TPV), commercially available products may be used, such as "Zeotherm" (manufactured by Zeon Corporation), "Thermoran" (manufactured by Mitsubishi Chemical Corporation), and "Sarlink 3245D" (manufactured by Toyobo Co., Ltd.).
 ポリオレフィン系エラストマーの温度230℃におけるメルトフローレート(MFR)は、好ましくは1.5g/10分~25g/10分であり、より好ましくは2g/10分~20g/10分であり、さらに好ましくは2g/10分~15g/10分である。 The melt flow rate (MFR) of the polyolefin elastomer at a temperature of 230°C is preferably 1.5 g/10 minutes to 25 g/10 minutes, more preferably 2 g/10 minutes to 20 g/10 minutes, and still more preferably 2 g/10 minutes to 15 g/10 minutes.
 1つの実施形態においては、温度230℃におけるメルトフローレート(MFR)が上記の範囲内で異なる2種以上のポリオレフィン系エラストマーが併用される。この場合、温度230℃におけるメルトフローレート(MFR)が、好ましくは1.5g/10分以上8g/10分未満(より好ましくは2g/10分~5g/10分)のポリオレフィン系エラストマー(低MFRポリオレフィン系エラストマー)と、温度230℃におけるメルトフローレート(MFR)が好ましくは8g/10分~25g/10分(より好ましくは9g/10分~20g/10分であり、さらに好ましくは10g/10分~20g/10分である)のポリオレフィン系エラストマー(高MFRポリオレフィン系エラストマー)とが併用され得る。このようにすれば、ポリオレフィン系エラストマーの溶融張力が好ましく調整され、その結果、本発明の効果が顕著となる。 In one embodiment, two or more polyolefin-based elastomers having different melt flow rates (MFR) at a temperature of 230°C within the above range are used in combination. In this case, a polyolefin elastomer (low MFR polyolefin elastomer) having a melt flow rate (MFR) at a temperature of 230° C. of preferably 1.5 g/10 minutes or more and less than 8 g/10 minutes (more preferably 2 g/10 minutes to 5 g/10 minutes), and a melt flow rate (MFR) at a temperature of 230° C. of preferably 8 g/10 minutes to 25 g/10 minutes (more preferably 9 g/10 minutes to 20 g/10 minutes, more preferably 10 g/10 minutes to 20 g/10 minutes) can be used in combination with a polyolefin elastomer (high MFR polyolefin elastomer). By doing so, the melt tension of the polyolefin elastomer is preferably adjusted, and as a result, the effect of the present invention becomes remarkable.
 上記低MFRポリオレフィン系エラストマーの高MFRポリオレフィン系エラストマーに対する配合比(低MFRポリオレフィン系エラストマー/高MFRポリオレフィン系エラストマー;重量比)は、好ましくは1.5~5であり、より好ましくは1.8~3.5であり、特に好ましくは2~3である。このような範囲であれば、ポリオレフィン系エラストマーの溶融張力が好ましく調整され、その結果、本発明の効果が顕著となる。 The compounding ratio of the low MFR polyolefin elastomer to the high MFR polyolefin elastomer (low MFR polyolefin elastomer/high MFR polyolefin elastomer; weight ratio) is preferably 1.5-5, more preferably 1.8-3.5, and particularly preferably 2-3. Within such a range, the melt tension of the polyolefin elastomer is preferably adjusted, and as a result, the effect of the present invention becomes remarkable.
 ポリオレフィン系エラストマーの溶融張力(190℃、破断時)は、好ましくは10cN未満であり、より好ましくは5cN~9.5cNである。1つの実施形態においては、樹脂発泡体を構成するポリオレフィン系エラストマーの溶融張力によって、当該樹脂のダイスウェル比およびせん断粘度が制御される。 The melt tension (190°C, at break) of the polyolefin elastomer is preferably less than 10 cN, more preferably 5 cN to 9.5 cN. In one embodiment, the die swell ratio and shear viscosity of the resin are controlled by the melt tension of the polyolefin elastomer forming the resin foam.
 ポリオレフィン系エラストマーのJIS A硬度は、好ましくは30°~95°であり、より好ましくは35°~90°であり、さらに好ましくは40°~88°であり、特に好ましくは45°~85°であり、最も好ましくは50°~83°である。なお、JIS A硬度とは、ISO7619(JIS K6253)に基づいて測定される。 The JIS A hardness of the polyolefin elastomer is preferably 30° to 95°, more preferably 35° to 90°, still more preferably 40° to 88°, particularly preferably 45° to 85°, most preferably 50° to 83°. JIS A hardness is measured based on ISO7619 (JIS K6253).
 1つの実施形態においては、上記樹脂発泡体(すなわち、樹脂組成物)は、充填材をさらに含み得る。充填材を含有させることにより、気泡壁(セル壁)を変形させるのに大きなエネルギーを必要とする樹脂発泡体を形成することができ、当該樹脂発泡体は、優れた衝撃吸収性を発揮する。また、充填材を含有させることにより、微細かつ均一な気泡構造を形成することができ、優れた衝撃吸収性を発現し得る点でも有利である。充填材は、1種のみを単独で用いてもよく、2種以上を組み合わせて用いてもよい。 In one embodiment, the resin foam (that is, the resin composition) may further contain a filler. By containing a filler, it is possible to form a resin foam that requires a large amount of energy to deform the cell walls, and the resin foam exhibits excellent impact absorption. In addition, the inclusion of a filler is advantageous in that a fine and uniform cell structure can be formed and excellent impact absorption can be exhibited. Only one filler may be used alone, or two or more fillers may be used in combination.
 上記充填材の含有割合は、樹脂発泡体を構成するポリマー100重量部に対して、好ましくは10重量部~150重量部であり、より好ましくは30重量部~130重量部であり、さらに好ましくは50重量部~100重量部である。このような範囲であれば、上記効果が顕著となる。 The content of the filler is preferably 10 parts by weight to 150 parts by weight, more preferably 30 parts by weight to 130 parts by weight, and still more preferably 50 parts by weight to 100 parts by weight with respect to 100 parts by weight of the polymer constituting the resin foam. With such a range, the above effect becomes remarkable.
 1つの実施形態においては、上記充填材は無機物である。無機物である充填材を構成する材料としては、例えば、水酸化アルミニウム、水酸化マグネシウム、炭酸カルシウム、炭酸マグネシウム、ケイ酸カルシウム、ケイ酸マグネシウム、酸化カルシウム、酸化マグネシウム、酸化アルミニウム、窒化アルミニウム、ホウ酸アルミニウムウィスカ、窒化ケイ素、窒化ホウ素、結晶質シリカ、非晶質シリカ、金属(例えば、金、銀、銅、アルミニウム、ニッケル)、カーボン、グラファイト等が挙げられる。 In one embodiment, the filler is inorganic. Examples of materials constituting inorganic fillers include aluminum hydroxide, magnesium hydroxide, calcium carbonate, magnesium carbonate, calcium silicate, magnesium silicate, calcium oxide, magnesium oxide, aluminum oxide, aluminum nitride, aluminum borate whiskers, silicon nitride, boron nitride, crystalline silica, amorphous silica, metals (e.g., gold, silver, copper, aluminum, nickel), carbon, and graphite.
 1つの実施形態においては、上記充填材は有機物である。有機物である充填材を構成する材料としては、例えば、ポリメタクリル酸メチル(PMMA)、ポリイミド、ポリアミドイミド、ポリエーテルエーテルケトン、ポリエーテルイミド、ポリエステルイミド等が挙げられる。 In one embodiment, the filler is organic. Examples of materials constituting the organic filler include polymethyl methacrylate (PMMA), polyimide, polyamideimide, polyetheretherketone, polyetherimide, and polyesterimide.
 上記充填材として、難燃剤を用いてもよい。難燃剤としては、例えば、臭素系難燃剤、塩素系難燃剤、リン系難燃剤、アンチモン系難燃剤などが挙げられる。好ましくは、安全性の観点から、ノンハロゲン-ノンアンチモン系難燃剤が用いられる。 A flame retardant may be used as the filler. Examples of flame retardants include brominated flame retardants, chlorine flame retardants, phosphorus flame retardants, and antimony flame retardants. From the viewpoint of safety, non-halogen-nonantimony flame retardants are preferably used.
 ノンハロゲン-ノンアンチモン系難燃剤としては、例えば、アルミニウム、マグネシウム、カルシウム、ニッケル、コバルト、スズ、亜鉛、銅、鉄、チタン、ホウ素等を含む化合物が挙げられる。このような化合物(無機化合物)としては、例えば、水酸化アルミニウム、水酸化マグネシウム、酸化マグネシウム・酸化ニッケルの水和物、酸化マグネシウム・酸化亜鉛の水和物等の水和金属化合物などが挙げられる。 Examples of non-halogen-non-antimony flame retardants include compounds containing aluminum, magnesium, calcium, nickel, cobalt, tin, zinc, copper, iron, titanium, boron, and the like. Examples of such compounds (inorganic compounds) include hydrated metal compounds such as aluminum hydroxide, magnesium hydroxide, magnesium oxide/nickel oxide hydrate, and magnesium oxide/zinc oxide hydrate.
 上記充填材は、任意の適切な表面処理が施されていてもよい。表面処理としては、例えば、シランカップリング処理、ステアリン酸処理などが挙げられる。 Any appropriate surface treatment may be applied to the filler. Examples of surface treatment include silane coupling treatment and stearic acid treatment.
 上記充填材のかさ密度は、好ましくは、好ましくは0.8g/cm以下であり、より好ましくは0.6g/cm以下であり、さらに好ましくは0.4g/cm以下であり、特に好ましくは0.3g/cm以下である。このような範囲であれば、分散性よく充填材を含有させることができ、充填材の含有量を少なくしながらも、充填材添加効果が十分に発揮され得る。充填材の含有量が少ない樹脂発泡体は、高発泡、柔軟、かつ応力分散性および外観に優れる点で有利である。充填材のかさ密度の下限値は、例えば、0.01g/cmであり、好ましくは0.05g/cmであり、より好ましくは0.1g/cmである。 The bulk density of the filler is preferably 0.8 g/cm 3 or less, more preferably 0.6 g/cm 3 or less, still more preferably 0.4 g/cm 3 or less, and particularly preferably 0.3 g/cm 3 or less. Within such a range, the filler can be contained with good dispersibility, and the effect of adding the filler can be sufficiently exhibited while reducing the content of the filler. A resin foam with a low filler content is advantageous in that it is highly foamed, flexible, stress-dispersible, and has excellent appearance. The lower limit of bulk density of the filler is, for example, 0.01 g/cm 3 , preferably 0.05 g/cm 3 , more preferably 0.1 g/cm 3 .
 上記充填材の数平均粒子径(1次粒子径)は、好ましくは5μm以下であり、より好ましくは3μm以下であり、さらに好ましくは1μm以下である。このような範囲であれば、分散性よく充填材を含有させることができ、かつ、均一な気泡構造を形成することができる。その結果、応力分散性および外観に優れる樹脂発泡体を得ることができる。充填材の数平均粒子径の下限値は、例えば、0.1μmである。充填材の数平均粒子径は、水100gに充填剤を1gを混合して調製した懸濁液をサンプルとして、粒度分布計(MicrotracII、マイクロトラック・ベル株式会社)を用いて、測定することができる。 The number average particle size (primary particle size) of the filler is preferably 5 µm or less, more preferably 3 µm or less, and even more preferably 1 µm or less. Within such a range, the filler can be contained with good dispersibility and a uniform cell structure can be formed. As a result, a resin foam having excellent stress dispersibility and appearance can be obtained. The lower limit of the number average particle size of the filler is, for example, 0.1 μm. The number average particle size of the filler can be measured using a particle size distribution analyzer (Microtrac II, Microtrac Bell Co., Ltd.) using a suspension prepared by mixing 1 g of the filler with 100 g of water as a sample.
 上記充填材の比表面積は、好ましくは2m/g以上であり、より好ましくは4m/g以上であり、さらに好ましくは6m/g以上である。このような範囲であれば、分散性よく充填材を含有させることができ、かつ、均一な気泡構造を形成することができる。その結果、応力分散性および外観に優れる樹脂発泡体を得ることができる。充填材の比表面積の上限値は、例えば、20m/gである。充填材の比表面積は、BET法で、すなわち、吸着占有面積が既知である分子を、液体窒素による低温下で、充填材表面に吸着させ、その吸着量から測定することができる。 The specific surface area of the filler is preferably 2 m 2 /g or more, more preferably 4 m 2 /g or more, still more preferably 6 m 2 /g or more. Within such a range, the filler can be contained with good dispersibility and a uniform cell structure can be formed. As a result, a resin foam having excellent stress dispersibility and appearance can be obtained. The upper limit of the specific surface area of the filler is, for example, 20 m 2 /g. The specific surface area of the filler can be measured by the BET method, that is, molecules having a known adsorption area are adsorbed on the surface of the filler at a low temperature using liquid nitrogen, and the adsorption amount is measured.
 樹脂組成物には、本発明の効果を損なわない範囲で、任意の適切な他の成分が含まれていてもよい。このような他の成分は、1種のみであってもよいし、2種以上であってもよい。このような他の成分としては、例えば、ゴム、樹脂材料として配合されているポリマー以外の樹脂、軟化剤、脂肪族系化合物、老化防止剤、酸化防止剤、光安定剤、耐候剤、紫外線吸収剤、分散剤、可塑剤、カーボン、帯電防止剤、界面活性剤、架橋剤、増粘剤、防錆剤、シリコーン系化合物、張力改質剤、収縮防止剤、流動性改質剤、ゲル化剤、硬化剤、補強剤、発泡剤、発泡核剤、着色剤(顔料や染料等)、pH調整剤、溶剤(有機溶剤)、熱重合開始剤、光重合開始剤、滑剤、結晶核剤、結晶化促進剤、加硫剤、表面処理剤、分散助剤などが挙げられる。 The resin composition may contain any appropriate other component within a range that does not impair the effects of the present invention. Only one such component may be used, or two or more components may be used. Such other components include, for example, rubber, resins other than polymers blended as resin materials, softeners, aliphatic compounds, antioxidants, antioxidants, light stabilizers, weathering agents, UV absorbers, dispersants, plasticizers, carbon, antistatic agents, surfactants, cross-linking agents, thickeners, rust inhibitors, silicone compounds, tension modifiers, shrinkage inhibitors, fluidity modifiers, gelling agents, curing agents, reinforcing agents, foaming agents, foam nucleating agents, colorants (pigments, dyes, etc.), Examples include pH adjusters, solvents (organic solvents), thermal polymerization initiators, photopolymerization initiators, lubricants, crystal nucleating agents, crystallization accelerators, vulcanizing agents, surface treatment agents, and dispersing aids.
 上記のとおり、樹脂発泡体は、代表的には、樹脂組成物を発泡させて得られる。発泡の方法(気泡の形成方法)としては、物理的方法や化学的方法など、発泡成形に通常用いられる方法が採用できる。すなわち、樹脂発泡体は、代表的には、物理的方法により発泡して形成された発泡体(物理発泡体)であってもよいし、化学的方法により発泡して形成された発泡体(化学発泡体)であってもよい。物理的方法は、一般的に、空気や窒素等のガス成分をポリマー溶液に分散させて、機械的混合により気泡を形成させるもの(機械発泡体)である。化学的方法は、一般的に、ポリマーベースに添加された発泡剤の熱分解により生じたガスによりセルを形成し、発泡体を得る方法である。 As described above, resin foams are typically obtained by foaming a resin composition. As the method of foaming (method of forming cells), a method commonly used for foam molding, such as a physical method or a chemical method, can be employed. That is, the resin foam may typically be a foam formed by a physical method (physical foam) or a foam formed by a chemical method (chemical foam). Physical methods generally involve dispersing a gaseous component such as air or nitrogen in a polymer solution and mechanically mixing to form cells (mechanical foam). The chemical method is generally a method in which cells are formed by gas generated by thermal decomposition of a foaming agent added to a polymer base to obtain a foam.
 発泡成形に付す樹脂組成物は、例えば、構成成分を、任意の適切な溶融混練装置、例えば、開放型のミキシングロール、非開放型のバンバリーミキサー、1軸押出機、2軸押出機、連続式混練機、加圧ニーダーなど、任意の適切な手段を用いて混合することにより調製すればよい。 The resin composition to be subjected to foam molding may be prepared, for example, by mixing the constituent components using any suitable melt-kneading device, such as an open mixing roll, a non-open Banbury mixer, a single-screw extruder, a twin-screw extruder, a continuous kneader, and a pressure kneader.
・樹脂発泡体を形成させる実施形態1
 樹脂発泡体を形成させる一つの実施形態1としては、例えば、エマルション樹脂組成物(樹脂材料(ポリマー)などを含むエマルション)を機械的に発泡させて起泡化させる工程(工程A)を経て樹脂発泡体を形成する形態が挙げられる。起泡装置としては、例えば、高速せん断方式の装置、振動方式の装置、加圧ガスの吐出方式の装置などが挙げられる。これらの起泡装置の中でも、気泡径の微細化、大容量作製の観点から、高速せん断方式の装置が好ましい。樹脂発泡体を形成させるこの一つの実施形態1は、どのような樹脂組成物からの形成にも適用可能である。
・Embodiment 1 in which a resin foam is formed
One embodiment 1 for forming a resin foam includes, for example, a step of mechanically foaming an emulsion resin composition (emulsion containing a resin material (polymer)) to foam (step A) to form a resin foam. The foaming device includes, for example, a high-speed shearing device, a vibrating device, and a pressurized gas discharging device. Among these foaming apparatuses, a high-speed shearing apparatus is preferable from the viewpoint of miniaturization of the bubble diameter and production of a large volume. This one embodiment of forming a resin foam is applicable to forming from any resin composition.
 エマルションの固形分濃度は、成膜性の観点から高い方が好ましい。エマルションの固形分濃度は、好ましくは30重量%以上、より好ましくは40重量%以上、さらに好ましくは50重量%以上である。 The solid content concentration of the emulsion is preferably higher from the viewpoint of film-forming properties. The solid content concentration of the emulsion is preferably 30% by weight or more, more preferably 40% by weight or more, and still more preferably 50% by weight or more.
 機械的撹拌により起泡した際の気泡は、気体(ガス)がエマルション中に取り込まれたものである。ガスとしては、エマルションに対して不活性であれば、本発明の効果を損なわない範囲で任意の適切なガスを採用し得る。このようなガスとしては、例えば、空気、窒素、二酸化炭素などが挙げられる。  Bubbles generated by mechanical stirring are gas trapped in the emulsion. As the gas, any appropriate gas can be adopted as long as it is inert to the emulsion, as long as it does not impair the effects of the present invention. Such gases include, for example, air, nitrogen, carbon dioxide, and the like.
 上記方法により起泡化したエマルション樹脂組成物(気泡含有エマルション樹脂組成物)を基材上に塗工して乾燥する工程(工程B)を経ることによって、本発明の樹脂発泡体を得ることができる。基材としては、例えば、剥離処理したプラスチックフィルム(剥離処理したポリエチレンテレフタレートフィルム等)、プラスチックフィルム(ポリエチレンテレフタレートフィルム等)等が挙げられる。 The resin foam of the present invention can be obtained by applying the emulsion resin composition foamed by the above method (cell-containing emulsion resin composition) onto a substrate and drying it (step B). Examples of the substrate include a release-treated plastic film (release-treated polyethylene terephthalate film, etc.), a plastic film (polyethylene terephthalate film, etc.), and the like.
 工程Bにおいて、塗工方法、乾燥方法としては、本発明の効果を損なわない範囲で任意の適切な方法を採用できる。工程Bは、基材上に塗布した気泡含有エマルション樹脂組成物を50℃以上125℃未満で乾燥する予備乾燥工程B1と、その後さらに125℃以上200℃以下で乾燥する本乾燥工程B2を含んでいることが好ましい。 In the process B, any appropriate method can be adopted as the coating method and the drying method as long as the effects of the present invention are not impaired. Step B preferably includes a preliminary drying step B1 for drying the bubble-containing emulsion resin composition applied on the substrate at 50°C or higher and lower than 125°C, and a main drying step B2 for further drying at 125°C or higher and 200°C or lower.
 予備乾燥工程B1と本乾燥工程B2を設けることにより、急激な温度上昇による気泡の合一化、気泡の破裂を防止できる。特に、厚みの小さい発泡シートでは温度の急激な上昇により気泡が合一化、破裂するので、予備乾燥工程B1を設ける意義は大きい。予備乾燥工程B1における温度は、好ましくは50℃~100℃である。予備乾燥工程B1の時間は、好ましくは0.5分~30分であり、より好ましくは1分~15分である。本乾燥工程B2における温度は、好ましくは130℃~180℃であり、より好ましくは130℃~160℃である。本乾燥工程B2の時間は、好ましくは0.5分~30分であり、より好ましくは1分~15分である。 By providing the preliminary drying step B1 and the main drying step B2, it is possible to prevent coalescence of air bubbles and bursting of air bubbles due to a rapid temperature rise. In particular, with a foamed sheet having a small thickness, the air bubbles coalesce and burst due to a rapid rise in temperature, so the provision of the pre-drying step B1 is of great significance. The temperature in the preliminary drying step B1 is preferably 50°C to 100°C. The duration of the preliminary drying step B1 is preferably 0.5 to 30 minutes, more preferably 1 to 15 minutes. The temperature in the main drying step B2 is preferably 130°C to 180°C, more preferably 130°C to 160°C. The time of the main drying step B2 is preferably 0.5 to 30 minutes, more preferably 1 to 15 minutes.
・樹脂発泡体を形成させる実施形態2
 樹脂発泡体を形成させる一つの実施形態2としては、樹脂組成物を発泡剤により発泡させて発泡体を形成する形態が挙げられる。発泡剤としては、発泡成形に通常用いられるものを使用でき、環境保護及び被発泡体に対する低汚染性の観点から、高圧の不活性ガスを用いることが好ましい。
・Embodiment 2 in which a resin foam is formed
As one embodiment 2 of forming a resin foam, there is a form in which a foam is formed by foaming a resin composition with a foaming agent. As the foaming agent, those commonly used in foam molding can be used, and from the viewpoint of environmental protection and low contamination of the object to be foamed, it is preferable to use a high-pressure inert gas.
 不活性ガスとしては、樹脂組成物に対して不活性で且つ含浸可能なものであれば、任意の適切な不活性ガスを採用し得る。このような不活性ガスとしては、例えば、二酸化炭素、窒素ガス、空気などが挙げられる。これらのガスは混合して用いてもよい。これらのうち、樹脂材料(ポリマー)への含浸量が多く、含浸速度の速いという観点から、二酸化炭素が好ましい。 Any appropriate inert gas can be adopted as the inert gas as long as it is inert to the resin composition and can be impregnated. Examples of such inert gas include carbon dioxide, nitrogen gas, and air. These gases may be mixed and used. Among these, carbon dioxide is preferable from the viewpoint of a large impregnation amount to the resin material (polymer) and a high impregnation speed.
 不活性ガスは超臨界状態であることが好ましい。すなわち、超臨界状態の二酸化炭素を用いることが特に好ましい。超臨界状態では、樹脂組成物への不活性ガスの溶解度がより増大し、不活性ガスの高濃度の混入が可能であるとともに、急激な圧力降下時に不活性ガスが高濃度となるため、気泡核の発生が多くなり、その気泡核が成長してできる気泡の密度が、気孔率が同じであっても他の状態の場合より大きくなるため、微細な気泡を得ることができる。なお、二酸化炭素の臨界温度は31℃、臨界圧力は7.4MPaである。 The inert gas is preferably in a supercritical state. That is, it is particularly preferable to use carbon dioxide in a supercritical state. In the supercritical state, the solubility of the inert gas in the resin composition is further increased, making it possible to mix the inert gas at a high concentration. At the same time, the concentration of the inert gas becomes high at the time of a sudden pressure drop. Carbon dioxide has a critical temperature of 31° C. and a critical pressure of 7.4 MPa.
 樹脂組成物に高圧の不活性ガスを含浸させることにより発泡体を形成する方法としては、例えば、樹脂材料(ポリマー)を含む樹脂組成物に不活性ガスを高圧下で含浸させるガス含浸工程、該工程後に圧力を低下させて樹脂材料(ポリマー)を発泡させる減圧工程、および、必要に応じて加熱により気泡を成長させる加熱工程を経て形成する方法などが挙げられる。この場合、予め成形した未発泡成形体を不活性ガスに含浸させてもよく、また、溶融した樹脂組成物に不活性ガスを加圧状態下で含浸させた後に減圧の際に成形に付してもよい。これらの工程は、バッチ方式、連続方式のいずれの方式で行ってもよい。すなわち、予め樹脂組成物を、シート状などの適宜な形状に成形して未発泡樹脂成形体とした後、この未発泡樹脂成形体に、高圧のガスを含浸させ、圧力を解放することにより発泡させるバッチ方式であってもよく、樹脂組成物を加圧下、高圧のガスと共に混練し、成形すると同時に圧力を解放し、成形と発泡を同時に行う連続方式であってもよい。 Examples of methods for forming a foam by impregnating a resin composition with a high-pressure inert gas include a gas impregnation step in which a resin composition containing a resin material (polymer) is impregnated with an inert gas under high pressure, a decompression step in which the resin material (polymer) is foamed by reducing the pressure after the step, and a heating step in which bubbles are grown by heating as necessary. In this case, a preformed unfoamed molded article may be impregnated with an inert gas, or the molten resin composition may be impregnated with an inert gas under pressure and then molded when the pressure is reduced. These steps may be carried out by either a batch system or a continuous system. That is, after molding the resin composition into an appropriate shape such as a sheet to form an unfoamed resin molded body in advance, the unfoamed resin molded body is impregnated with a high-pressure gas, and the pressure is released to foam it.
 バッチ方式で発泡体を製造する例を以下に示す。例えば、樹脂組成物を単軸押出機、2軸押出機等の押出機を使用して押し出すことにより、発泡体成形用樹脂シートを作製する。あるいは、樹脂組成物を、ローラ、カム、ニーダー、バンバリ型等の羽根を設けた混練機を使用して均一に混練しておき、熱板のプレスなどを用いて所定の厚みにプレス加工することにより、未発泡樹脂成形体を作製する。こうして得られた未発泡樹脂成形体を高圧容器中に入れて、高圧不活性ガス(超臨界状態の二酸化炭素など)を注入し、未発泡樹脂成形体中に不活性ガスを含浸させる。十分に不活性ガスを含浸させた時点で圧力を解放し(通常、大気圧まで)、樹脂中に気泡核を発生させる。気泡核はそのまま室温で成長させてもよいが、場合によっては加熱することによって成長させてもよい。加熱の方法としては、ウォーターバス、オイルバス、熱ロール、熱風オーブン、遠赤外線、近赤外線、マイクロ波などの公知や慣用の方法を採用できる。このようにして気泡を成長させた後、冷水などにより急激に冷却し、形状を固定化することにより発泡体を得ることができる。なお、発泡に供する未発泡樹脂成形体はシート状物に限らず、用途に応じて種々の形状のものを使用できる。また、発泡に供する未発泡樹脂成形体は押出成形、プレス成形のほか、射出成形等の他の成形法により作製することもできる。 Below is an example of producing foam in a batch method. For example, a resin sheet for foam molding is produced by extruding the resin composition using an extruder such as a single-screw extruder or a twin-screw extruder. Alternatively, the resin composition is uniformly kneaded using a kneader equipped with blades such as a roller, a cam, a kneader, or a Banbury type, and pressed to a predetermined thickness using a hot plate press or the like to produce an unfoamed resin molded body. The unfoamed resin molded article thus obtained is placed in a high-pressure vessel, and a high-pressure inert gas (such as carbon dioxide in a supercritical state) is injected to impregnate the unfoamed resin molded article with the inert gas. When the inert gas is sufficiently impregnated, the pressure is released (usually to atmospheric pressure) to generate bubble nuclei in the resin. The bubble nuclei may be grown at room temperature as they are, or may be grown by heating in some cases. As a heating method, a known or commonly used method such as a water bath, an oil bath, a hot roll, a hot air oven, far infrared rays, near infrared rays, or microwaves can be used. After the cells are grown in this manner, the foam is rapidly cooled with cold water or the like to fix the shape, thereby obtaining a foam. Incidentally, the unfoamed resin molding to be foamed is not limited to a sheet-like article, and various shapes can be used depending on the application. In addition, the unfoamed resin molded article to be foamed can be produced by extrusion molding, press molding, or other molding methods such as injection molding.
 連続方式で発泡体を製造する例を以下に示す。例えば、樹脂組成物を、単軸押出機、二軸押出機等の押出機を使用して混練しながら、高圧のガス(特に不活性ガス、さらには二酸化炭素)を注入(導入)し、十分に高圧のガスを樹脂組成物に含浸させる混練含浸工程、押出機の先端に設けられたダイスなどを通して樹脂組成物を押し出すことにより圧力を解放し(通常、大気圧まで)、成形と発泡を同時に行う成形減圧工程により発泡成形する。また、連続方式での発泡成形の際には、必要に応じて、加熱することによって気泡を成長させる加熱工程を設けてもよい。このようにして気泡を成長させた後、必要により冷水などにより急激に冷却し、形状を固定化してもよい。また、高圧のガスの導入は連続的に行ってもよく不連続的に行ってもよい。さらに、混練含浸工程および成形減圧工程では、例えば、押出機や射出成形機を用い得る。なお、気泡核を成長させる際の加熱の方法としては、ウォーターバス、オイルバス、熱ロール、熱風オーブン、遠赤外線、近赤外線、マイクロ波などの任意の適切な方法が挙げられる。発泡体の形状としては、任意の適切な形状を採用し得る。このような形状としては、例えば、シート状、角柱状、円筒状、異型状などが挙げられる。 An example of continuous production of foam is shown below. For example, while kneading the resin composition using an extruder such as a single-screw extruder or a twin-screw extruder, a high-pressure gas (especially an inert gas, and further carbon dioxide) is injected (introduced), and a sufficiently high-pressure gas is injected (introduced) into the resin composition. A kneading impregnation step in which the resin composition is impregnated, a pressure is released by extruding the resin composition through a die provided at the tip of the extruder (usually to atmospheric pressure), and foam molding is performed in a molding decompression step in which molding and foaming are performed simultaneously. In addition, in the case of continuous foam molding, a heating step may be provided, if necessary, to grow air bubbles by heating. After the bubbles are grown in this way, if necessary, they may be rapidly cooled with cold water or the like to fix the shape. Also, the high-pressure gas may be introduced continuously or discontinuously. Furthermore, for example, an extruder or an injection molding machine can be used in the kneading impregnation step and the molding depressurization step. Any suitable heating method such as water bath, oil bath, hot roll, hot air oven, far infrared rays, near infrared rays, and microwaves can be used as a heating method for growing bubble nuclei. Any appropriate shape can be adopted as the shape of the foam. Such shapes include, for example, a sheet shape, prismatic shape, cylindrical shape, irregular shape, and the like.
 樹脂組成物を発泡成形する際のガスの混合量は、高発泡な樹脂発泡体を得られ得る点で、例えば、樹脂組成物全量に対して、好ましくは2重量%~10重量%であり、より好ましくは2.5重量%~8重量%であり、さらに好ましくは3重量%~6重量%である。 The amount of gas mixed when foam-molding the resin composition is, for example, preferably 2% to 10% by weight, more preferably 2.5% to 8% by weight, and even more preferably 3% to 6% by weight, based on the total amount of the resin composition, in order to obtain a highly foamed resin foam.
 不活性ガスを樹脂組成物に含浸させるときの圧力は、操作性等を考慮して適宜選択できる。このような圧力は、例えば、好ましくは6MPa以上(例えば、6MPa~100MPa)であり、より好ましくは8MPa以上(例えば、8MPa~50MPa)である。なお、超臨界状態の二酸化炭素を用いる場合の圧力は、二酸化炭素の超臨界状態を保持する観点から、好ましくは7.4MPa以上である。圧力が6MPaより低い場合には、発泡時の気泡成長が著しく、気泡径が大きくなりすぎて、好ましい平均セル径(平均気泡径)を得ることができない場合がある。これは、圧力が低いとガスの含浸量が高圧時に比べて相対的に少なく、気泡核形成速度が低下して形成される気泡核数が少なくなるため、1気泡あたりのガス量が逆に増えて気泡径が極端に大きくなるからである。また、6MPaより低い圧力領域では、含浸圧力を少し変化させるだけで気泡径、気泡密度が大きく変わるため、気泡径及び気泡密度の制御が困難になりやすい。 The pressure when the resin composition is impregnated with the inert gas can be appropriately selected in consideration of operability and the like. Such pressure is, for example, preferably 6 MPa or higher (eg, 6 MPa to 100 MPa), more preferably 8 MPa or higher (eg, 8 MPa to 50 MPa). When using supercritical carbon dioxide, the pressure is preferably 7.4 MPa or more from the viewpoint of maintaining the supercritical state of carbon dioxide. If the pressure is lower than 6 MPa, the cell growth during foaming will be significant, and the cell diameter will become too large, and a preferable average cell diameter (average cell diameter) may not be obtained. This is because when the pressure is low, the amount of gas impregnated is relatively small compared to when the pressure is high, and the bubble nucleus formation speed decreases, resulting in a smaller number of bubble nuclei formed. In addition, in a pressure range lower than 6 MPa, even a slight change in the impregnation pressure significantly changes the bubble diameter and bubble density, making it difficult to control the bubble diameter and bubble density.
 ガス含浸工程における温度は、用いる不活性ガスや樹脂組成物中の成分の種類等によって異なり、広い範囲で選択できる。操作性等を考慮した場合、好ましくは10℃~350℃である。未発泡成形体に不活性ガスを含浸させる場合の含浸温度は、バッチ式では、好ましくは10℃~250℃であり、より好ましくは40℃~230℃である。また、ガスを含浸させた溶融ポリマーを押し出して発泡と成形とを同時に行う場合の含浸温度は、連続式では、好ましくは60℃~350℃である。なお、不活性ガスとして二酸化炭素を用いる場合には、超臨界状態を保持するため、含浸時の温度は、好ましくは32℃以上であり、より好ましくは40℃以上である。 The temperature in the gas impregnation process varies depending on the inert gas used and the type of components in the resin composition, and can be selected within a wide range. When operability and the like are considered, the temperature is preferably 10°C to 350°C. The impregnation temperature for impregnating an unfoamed molded article with an inert gas is preferably 10° C. to 250° C., more preferably 40° C. to 230° C. in a batch system. Further, when foaming and molding are simultaneously performed by extruding a molten polymer impregnated with a gas, the impregnation temperature is preferably 60° C. to 350° C. in a continuous system. When carbon dioxide is used as the inert gas, the temperature during impregnation is preferably 32° C. or higher, more preferably 40° C. or higher, in order to maintain a supercritical state.
 減圧工程において、減圧速度としては、均一な微細気泡を得るため、好ましくは5MPa/秒~300MPa/秒である。 In the decompression step, the decompression speed is preferably 5 MPa/sec to 300 MPa/sec in order to obtain uniform microbubbles.
 加熱工程における加熱温度は、好ましくは40℃~250℃であり、より好ましくは60℃~250℃である。 The heating temperature in the heating step is preferably 40°C to 250°C, more preferably 60°C to 250°C.
 1つの実施形態においては、所定の工程を経て発泡構造体を得た後(例えば、<実施形態1>または<実施形態2>の方法により樹脂発泡体を得た後)、発泡構造体を薄膜化し、次いで、ロール圧延して、樹脂発泡体が得られる。このような工程を経ることにより、アスペクト比が適切に調整された樹脂発泡体を得ることができる。また、厚みの薄い(例えば、0.2mm以下)の樹脂発泡体を得ることができる。上記ロール圧延により、上記熱溶融層が形成されることもある。 In one embodiment, after obtaining a foamed structure through a predetermined process (for example, after obtaining a resin foam by the method of <Embodiment 1> or <Embodiment 2>), the foamed structure is thinned and then roll-rolled to obtain a resin foam. Through such steps, a resin foam having an appropriately adjusted aspect ratio can be obtained. Moreover, a resin foam having a small thickness (for example, 0.2 mm or less) can be obtained. The hot melt layer may be formed by the roll rolling.
 発泡構造体の薄膜化は、任意の適切なスライサーを用いて行うことができる。薄膜化後の発泡構造体の厚みは、好ましくは0.01mm以上であり、より好ましくは0.05mm以上であり、さらに好ましくは0.1mm以上であり、特に好ましくは0.15mm以上である。また、薄膜化後の発泡構造体の厚みの上限は、好ましくは3mm以下であり、より好ましくは2mm以下であり、さらに好ましくは1.5mm以下であり、さらに好ましくは1mm以下であり、さらに好ましくは0.8mm以下であり、特に好ましくは0.5mm以下である。このような範囲であれば、樹脂発泡体中の気泡数が特に好ましく調整されて打ち抜きによる潰れが生じ難く、そのため、打ち抜き加工性に特に優れる発泡部材を得ることができる。 Thinning of the foam structure can be performed using any appropriate slicer. The thickness of the foam structure after thinning is preferably 0.01 mm or more, more preferably 0.05 mm or more, still more preferably 0.1 mm or more, and particularly preferably 0.15 mm or more. Further, the upper limit of the thickness of the foamed structure after thinning is preferably 3 mm or less, more preferably 2 mm or less, still more preferably 1.5 mm or less, still more preferably 1 mm or less, still more preferably 0.8 mm or less, and particularly preferably 0.5 mm or less. Within such a range, the number of cells in the resin foam is particularly preferably adjusted, and collapse due to punching is less likely to occur, so that a foamed member having particularly excellent punching workability can be obtained.
 好ましくは、上記ロール圧延に用いられるロールは加熱ロールである。当該ロールの温度は、好ましくは150℃~250℃であり、より好ましくは160℃~230℃である。 Preferably, the rolls used for the roll rolling are heating rolls. The temperature of the roll is preferably 150°C to 250°C, more preferably 160°C to 230°C.
 発泡構造体の圧延率(圧延後の厚み/圧延前の厚み×100)は、好ましくは80%以下であり、より好ましくは10%~80%であり、さらに好ましくは20%~75%であり、特に好ましくは30%~75%である。このような範囲であれば、アスペクト比が適切に調整された樹脂発泡体を得ることができる。 The rolling rate of the foamed structure (thickness after rolling/thickness before rolling x 100) is preferably 80% or less, more preferably 10% to 80%, still more preferably 20% to 75%, and particularly preferably 30% to 75%. Within such a range, a resin foam with an appropriately adjusted aspect ratio can be obtained.
C.粘着体
 上記のとおり、粘着体において、トルエンアウトガスおよび酢酸エチルアウトガスの合計放散量は、8.0μg/g以下である。上記粘着体トルエンアウトガスおよび酢酸エチルアウトガスの合計放散量は、好ましくは5.0μg/g以下であり、より好ましくは2.0μg/g以下である。このような範囲であれば、上記効果が顕著となる。
C. Adhesive Body As described above, in the adherent body, the total amount of toluene outgas and ethyl acetate outgas is 8.0 μg/g or less. The total emission amount of toluene outgas and ethyl acetate outgas from the sticky substance is preferably 5.0 μg/g or less, more preferably 2.0 μg/g or less. With such a range, the above effect becomes remarkable.
 上記粘着体の厚みは、好ましくは5μm以上であり、より好ましくは10μm以上であり、さらに好ましくは15μm以上であり、特に好ましくは20μm以上である。上記粘着体の厚みの上限は、好ましくは500μm以下であり、より好ましくは300μm以下であり、さらに好ましくは100μm以下であり、特に好ましくは50μm以下である。 The thickness of the adherent is preferably 5 µm or more, more preferably 10 µm or more, still more preferably 15 µm or more, and particularly preferably 20 µm or more. The upper limit of the thickness of the adherent is preferably 500 µm or less, more preferably 300 µm or less, still more preferably 100 µm or less, and particularly preferably 50 µm or less.
C-1.粘着剤層
 上記粘着剤層の単層厚みは、好ましくは1μm以上であり、より好ましくは2μm以上であり、さらに好ましくは3μm以上であり、特に好ましくは5μm以上である。上記粘着剤層の単層厚みの上限は、好ましくは50μm以下であり、より好ましくは40μm以下であり、さらに好ましくは30μm以下であり、さらに好ましくは20μm以下であり、特に好ましくは18μm以下である。このような厚みの粘着剤層を備える発泡部材は、クリアランスの狭い箇所への使用に好適である。また、クリーン性および打ち抜き性に優れる。
C-1. Adhesive Layer The single-layer thickness of the adhesive layer is preferably 1 µm or more, more preferably 2 µm or more, still more preferably 3 µm or more, and particularly preferably 5 µm or more. The upper limit of the single layer thickness of the adhesive layer is preferably 50 μm or less, more preferably 40 μm or less, even more preferably 30 μm or less, still more preferably 20 μm or less, and particularly preferably 18 μm or less. A foamed member having an adhesive layer with such a thickness is suitable for use in areas with narrow clearances. In addition, it is excellent in cleanness and punchability.
 上記粘着剤層の総厚は、好ましくは100μm以下であり、より好ましくは80μm以下であり、さらに好ましくは60μm以下であり、さらに好ましくは40μm以下であり、特に好ましくは36μm以下である。上記粘着剤層の総厚の下限は、好ましくは2μm以上であり、より好ましくは4μm以上であり、さらに好ましくは6μm以上であり、特に好ましくは10μm以上である。このような厚みの粘着剤層を備える発泡部材は、クリアランスの狭い箇所への使用に好適である。また、クリーン性および打ち抜き性に優れる発泡部材を得ることができる。1つの実施形態においては、粘着剤層の総厚は、25μm未満である。このような範囲であれば、打ち抜きの際に粘着剤のはみ出しが顕著に防止され、打ち抜き加工性が特に優れる発泡部材を得ることができる。 The total thickness of the adhesive layer is preferably 100 µm or less, more preferably 80 µm or less, even more preferably 60 µm or less, even more preferably 40 µm or less, and particularly preferably 36 µm or less. The lower limit of the total thickness of the adhesive layer is preferably 2 μm or more, more preferably 4 μm or more, still more preferably 6 μm or more, and particularly preferably 10 μm or more. A foamed member having an adhesive layer with such a thickness is suitable for use in areas with narrow clearances. Also, it is possible to obtain a foamed member that is excellent in cleanliness and punchability. In one embodiment, the total thickness of the adhesive layer is less than 25 μm. Within such a range, extrusion of the adhesive during punching is remarkably prevented, and a foamed member having particularly excellent punching workability can be obtained.
 上記粘着剤層の25℃における貯蔵弾性率は、好ましくは3.0×10Pa~2.0×10Paであり、好ましくは4.5×10Pa~1.2×10Paであり、より好ましくは5.0×10Pa~8.0×10Paであり、特に好ましくは5.0×10Pa~6.0×10Paである。 The storage modulus of the adhesive layer at 25°C is preferably 3.0 × 10 4 Pa to 2.0 × 10 5 Pa, preferably 4.5 × 10 4 Pa to 1.2 × 10 5 Pa, more preferably 5.0 × 10 4 Pa to 8.0 × 10 4 Pa, and particularly preferably 5.0 × 10 4 Pa to 6.0 × 10 4 Pa.
 本発明の効果が得られる限り、上記粘着剤層は、任意の適切な粘着剤を含む。また、粘着剤層は、有機溶剤を含まない材料から形成されることが好ましい。したがって、上記粘着剤は、有機溶剤を含まないことが好ましい。 As long as the effect of the present invention can be obtained, the adhesive layer contains any appropriate adhesive. Also, the pressure-sensitive adhesive layer is preferably formed from a material that does not contain an organic solvent. Therefore, it is preferable that the adhesive does not contain an organic solvent.
 1つの実施形態においては、上記粘着剤層は、水分散型粘着剤を含む。1つの実施形態において、上記水分散型粘着剤は、水分散型ポリマーを含む。水分散型粘着剤を用いれば、アウトガスの発生が少なく、クリーン性に優れる発泡部材を得ることができる。1つの実施形態においては、水分散型粘着剤は、ポリアクリル酸をさらに含む。ポリアクリル酸を添加すれば、耐水性および耐衝撃性に優れる発泡部材を得ることができる。上記水分散型粘着剤は、ポリエチレンテレフタレートから構成された基材(後述)との投錨性に優れ、かつ、塗布性に優れる点で有利である。 In one embodiment, the pressure-sensitive adhesive layer contains a water-dispersed pressure-sensitive adhesive. In one embodiment, the water-dispersible pressure-sensitive adhesive contains a water-dispersible polymer. By using a water-dispersible pressure-sensitive adhesive, it is possible to obtain a foamed member that generates less outgassing and is excellent in cleanness. In one embodiment, the water-dispersed pressure-sensitive adhesive further contains polyacrylic acid. By adding polyacrylic acid, a foamed member having excellent water resistance and impact resistance can be obtained. The water-dispersible pressure-sensitive adhesive is advantageous in that it has excellent anchoring properties with a base material (described later) made of polyethylene terephthalate and has excellent coatability.
(水分散型ポリマー)
 上記水分散型ポリマーとしては、例えば、水分散型のアクリルポリマー、水分散型のウレタン系ポリマー、水分散型のポリアニリン系ポリマー、および、水分散型のポリエステル系ポリマー等が挙げられる。好ましくは、水分散型のアクリルポリマーが用いられる。水分散型のアクリルポリマーを含む水分散型粘着剤は、ポリエチレンテレフタレートから構成された基材(後述)との投錨性に優れ、かつ、塗布性に優れる点で有利である。
(Water-dispersible polymer)
Examples of the water-dispersible polymer include a water-dispersible acrylic polymer, a water-dispersible urethane-based polymer, a water-dispersible polyaniline-based polymer, and a water-dispersible polyester-based polymer. Preferably, a water-dispersible acrylic polymer is used. A water-dispersible pressure-sensitive adhesive containing a water-dispersible acrylic polymer is advantageous in that it has excellent anchoring properties with a substrate (described later) made of polyethylene terephthalate, and also has excellent coatability.
 水分散型のアクリルポリマーは、(メタ)アクリル酸アルキルエステルを含むモノマー組成物の重合体であり得る。なお、(メタ)アクリル酸とは、アクリル酸および/またはメタクリル酸と定義される。 The water-dispersible acrylic polymer can be a polymer of a monomer composition containing a (meth)acrylic acid alkyl ester. (Meth)acrylic acid is defined as acrylic acid and/or methacrylic acid.
 (メタ)アクリル酸アルキルエステルとしては、例えば、直鎖状または分岐状の炭素数1~20(好ましくは1~12)のアルキル基を有する(メタ)アクリル酸アルキルエステルが挙げられる。(メタ)アクリル酸アルキルエステルとしては、例えば、(メタ)アクリル酸メチル、(メタ)アクリル酸エチル、(メタ)アクリル酸プロピル、(メタ)アクリル酸n-ブチル、(メタ)アクリル酸イソプロピル、(メタ)アクリル酸イソブチル、(メタ)アクリル酸s-ブチル、(メタ)アクリル酸t-ブチル、(メタ)アクリル酸ペンチル、(メタ)アクリル酸イソペンチル、(メタ)アクリル酸ネオペンチル、(メタ)アクリル酸ヘキシル、(メタ)アクリル酸ヘプチル、(メタ)アクリル酸2-エチルヘキシル、(メタ)アクリル酸オクチル、(メタ)アクリル酸イソオクチル、(メタ)アクリル酸ノニル、(メタ)アクリル酸イソノニル、(メタ)アクリル酸デシル、(メタ)アクリル酸イソデシル、(メタ)アクリル酸ウンデシル、(メタ)アクリル酸ドデシル、(メタ)アクリル酸イソトリドデシル、(メタ)アクリル酸テトラデシル、(メタ)アクリル酸イソテトラデシル、(メタ)アクリル酸ペンタデシル、(メタ)アクリル酸ヘキサデシル、(メタ)アクリル酸ヘプタデシル、(メタ)アクリル酸オクタデシル、(メタ)アクリル酸イソオクタデシル、(メタ)アクリル酸ノナデシル、および(メタ)アクリル酸エイコシル等が挙げられる。なかでも好ましくは、アクリル酸メチル、アクリル酸2-エチルヘキシルである。(メタ)アクリル酸アルキルエステルは、1種を単独で用いてもよく、2種以上を組み合わせて用いてもよい。 (Meth)acrylic acid alkyl esters include, for example, (meth)acrylic acid alkyl esters having a linear or branched alkyl group having 1 to 20 (preferably 1 to 12) carbon atoms. (Meth)acrylate alkyl esters include, for example, methyl (meth)acrylate, ethyl (meth)acrylate, propyl (meth)acrylate, n-butyl (meth)acrylate, isopropyl (meth)acrylate, isobutyl (meth)acrylate, s-butyl (meth)acrylate, t-butyl (meth)acrylate, pentyl (meth)acrylate, isopentyl (meth)acrylate, neopentyl (meth)acrylate, hexyl (meth)acrylate, heptyl (meth)acrylate, ) 2-ethylhexyl acrylate, octyl (meth)acrylate, isooctyl (meth)acrylate, nonyl (meth)acrylate, isononyl (meth)acrylate, decyl (meth)acrylate, isodecyl (meth)acrylate, undecyl (meth)acrylate, dodecyl (meth)acrylate, isotridodecyl (meth)acrylate, tetradecyl (meth)acrylate, isotetradecyl (meth)acrylate, pentadecyl (meth)acrylate, (meth)acrylate hexadecyl acrylate, heptadecyl (meth)acrylate, octadecyl (meth)acrylate, isooctacyl (meth)acrylate, nonadecyl (meth)acrylate, and eicosyl (meth)acrylate. Among them, methyl acrylate and 2-ethylhexyl acrylate are preferred. (Meth)acrylic acid alkyl esters may be used alone or in combination of two or more.
 1つの実施形態においては、アクリル酸メチルと炭素数2~8のアルキル基を有するアクリル酸アルキルエステルとが併用される。好ましくは、アクリル酸メチルとアクリル酸2-エチルヘキシルとが併用され得る。 In one embodiment, methyl acrylate and an acrylate alkyl ester having an alkyl group of 2 to 8 carbon atoms are used in combination. Preferably, methyl acrylate and 2-ethylhexyl acrylate can be used in combination.
 水分散型のアクリルポリマー中、(メタ)アクリル酸アルキルエステル由来の構成単位の割合は、例えば、70重量%以上であり、好ましくは80重量%以上であり、より好ましくは90重量%以上であり、さらに好ましくは95重量%以上である。(メタ)アクリル酸アルキルエステル由来の構成単位は、例えば、99.5重量%以下であり、好ましくは99重量%以下である。 In the water-dispersible acrylic polymer, the ratio of structural units derived from (meth)acrylic acid alkyl ester is, for example, 70% by weight or more, preferably 80% by weight or more, more preferably 90% by weight or more, and still more preferably 95% by weight or more. The (meth)acrylic acid alkyl ester-derived structural unit is, for example, 99.5% by weight or less, preferably 99% by weight or less.
 水分散型のアクリルポリマーは、(メタ)アクリル酸アルキルエステルと共重合可能なモノマー由来の構成単位を含んでいてもよい。当該構成単位としては、例えば、1種または2種以上の官能基含有ビニルモノマー由来の構成単位が挙げられる官能基含有ビニルモノマーは、アクリルポリマーの凝集力の確保、アクリルポリマーへの架橋点の導入など、アクリルポリマーの改質に役立つ。 The water-dispersible acrylic polymer may contain structural units derived from monomers copolymerizable with (meth)acrylic acid alkyl esters. Examples of such structural units include structural units derived from one or more functional group-containing vinyl monomers. Functional group-containing vinyl monomers are useful for modifying acrylic polymers, such as securing cohesive strength of acrylic polymers and introducing cross-linking points into acrylic polymers.
 官能基含有ビニルモノマーとしては、例えば、カルボキシ基含有ビニルモノマー(カルボキシ基含有モノマー)、酸無水物ビニルモノマー、水酸基含有ビニルモノマー、スルホ基含有ビニルモノマー、リン酸基含有ビニルモノマー、シアノ基含有ビニルモノマー、グリシジル基含有ビニルモノマー等が挙げられる。 Examples of functional group-containing vinyl monomers include carboxy group-containing vinyl monomers (carboxy group-containing monomers), acid anhydride vinyl monomers, hydroxyl group-containing vinyl monomers, sulfo group-containing vinyl monomers, phosphoric acid group-containing vinyl monomers, cyano group-containing vinyl monomers, glycidyl group-containing vinyl monomers, and the like.
 カルボキシ基含有ビニルモノマーとしては、例えば、アクリル酸、メタクリル酸、(メタ)アクリル酸2-カルボキシエチル、(メタ)アクリル酸カルボキシペンチル、イタコン酸、マレイン酸、フマル酸、クロトン酸等が挙げられる。なかでも好ましくは、アクリル酸またはメタクリル酸である。このようなモノマーを用いれば、粘着特性およびエマルション粒子の機械的安定性に優れる粘着剤が得られ得る。 Examples of carboxy group-containing vinyl monomers include acrylic acid, methacrylic acid, 2-carboxyethyl (meth)acrylate, carboxypentyl (meth)acrylate, itaconic acid, maleic acid, fumaric acid, and crotonic acid. Among them, acrylic acid or methacrylic acid is preferable. By using such a monomer, it is possible to obtain a PSA with excellent adhesive properties and mechanical stability of the emulsion particles.
 酸無水物ビニルモノマーとしては、例えば、無水マレイン酸、無水イタコン酸等が挙げられる。 Examples of acid anhydride vinyl monomers include maleic anhydride and itaconic anhydride.
 水酸基含有ビニルモノマーとしては、例えば、(メタ)アクリル酸2-ヒドロキシエチル、(メタ)アクリル酸2-ヒドロキシプロピル、(メタ)アクリル酸2-ヒドロキシブチル、(メタ)アクリル酸3-ヒドロキシプロピル、(メタ)アクリル酸4-ヒドロキシブチル、(メタ)アクリル酸6-ヒドロキシヘキシル、(メタ)アクリル酸8-ヒドロキシオクチル、(メタ)アクリル酸10-ヒドロキシデシル、(メタ)アクリル酸12-ヒドロキシラウリル、および、(4-ヒドロキシメチルシクロへキシル)メチル(メタ)アクリレート等が挙げられる。 Examples of hydroxyl group-containing vinyl monomers include 2-hydroxyethyl (meth)acrylate, 2-hydroxypropyl (meth)acrylate, 2-hydroxybutyl (meth)acrylate, 3-hydroxypropyl (meth)acrylate, 4-hydroxybutyl (meth)acrylate, 6-hydroxyhexyl (meth)acrylate, 8-hydroxyoctyl (meth)acrylate, 10-hydroxydecyl (meth)acrylate, 12-hydroxylauryl (meth)acrylate, and (4-hydroxymethylcyclohexyl). ) methyl (meth)acrylate and the like.
 スルホ基含有ビニルモノマーとしては、例えば、スチレンスルホン酸、アリルスルホン酸、ビニルスルホン酸ナトリウム、2-(メタ)アクリルアミド-2-メチルプロパンスルホン酸、(メタ)アクリルアミドプロパンスルホン酸、スルホプロピル(メタ)アクリレート、および、(メタ)アクリロイルオキシナフタレンスルホン酸等が挙げられる。 Examples of sulfo group-containing vinyl monomers include styrenesulfonic acid, allylsulfonic acid, sodium vinylsulfonate, 2-(meth)acrylamido-2-methylpropanesulfonic acid, (meth)acrylamidopropanesulfonic acid, sulfopropyl (meth)acrylate, and (meth)acryloyloxynaphthalenesulfonic acid.
 リン酸基含有ビニルモノマーとしては、例えば、2-ヒドロキシエチルアクリロイルホスフェート等が挙げられる。 Examples of phosphate group-containing vinyl monomers include 2-hydroxyethyl acryloyl phosphate and the like.
 シアノ基含有ビニルモノマーとしては、例えば、アクリロニトリルおよびメタクリロニトリル等が挙げられる。 Examples of cyano group-containing vinyl monomers include acrylonitrile and methacrylonitrile.
 グリシジル基含有ビニルモノマーとしては、例えば、(メタ)アクリル酸グリシジルおよび(メタ)アクリル酸-2-エチルグリシジルエーテル等が挙げられる。 Examples of glycidyl group-containing vinyl monomers include glycidyl (meth)acrylate and 2-ethylglycidyl (meth)acrylate.
 官能基含有ビニルモノマーとしては、好ましくは、カルボキシ基含有ビニルモノマーが挙げられる。 The functional group-containing vinyl monomer preferably includes a carboxy group-containing vinyl monomer.
 水分散型のアクリルポリマー中、官能基含有ビニルモノマー由来の構成単位の割合は、例えば、0.5重量%以上であり、好ましくは1.0重量%以上であり、より好ましくは1.5重量%以上である。官能基含有ビニルモノマー由来の構成単位の割合は、例えば、30重量%以下であり、好ましくは10重量%以下であり、より好ましくは5重量%以下であり、さらに好ましくは3重量%以下である。 In the water-dispersed acrylic polymer, the proportion of structural units derived from functional group-containing vinyl monomers is, for example, 0.5% by weight or more, preferably 1.0% by weight or more, and more preferably 1.5% by weight or more. The ratio of structural units derived from functional group-containing vinyl monomers is, for example, 30% by weight or less, preferably 10% by weight or less, more preferably 5% by weight or less, and even more preferably 3% by weight or less.
 水分散型アクリルポリマーは、例えば、上記のモノマー組成物を乳化重合させることによって得られる。乳化重合においては、例えば、まず、モノマーと、乳化剤と、水とを含む混合物を撹拌してモノマーエマルションを調製する。次に、モノマーエマルションに重合開始剤を添加して重合反応を開始する。この重合反応には、アクリルポリマーの分子量を調整するために連鎖移動剤を用いてもよい。また、カップリング剤、防腐剤などの添加剤を用いることもできる。重合方式としては、滴下重合であってもよいし、一括重合であってもよい。重合時間は、例えば、0.5時間以上、また、例えば、10時間以下である。重合温度は、例えば、50℃以上、また、例えば、80℃以下である。乳化重合によって、水分散型アクリルポリマーは、水分散液、具体的には、水分散型アクリルポリマーが水に分散されている水分散液(エマルション)として調製される。つまり、水分散液は、水分散型ポリマーおよび水を含有する。 The water-dispersible acrylic polymer can be obtained, for example, by emulsion polymerization of the above monomer composition. In emulsion polymerization, for example, first, a mixture containing a monomer, an emulsifier, and water is stirred to prepare a monomer emulsion. Next, a polymerization initiator is added to the monomer emulsion to initiate the polymerization reaction. A chain transfer agent may be used in this polymerization reaction to adjust the molecular weight of the acrylic polymer. Additives such as coupling agents and preservatives may also be used. The polymerization method may be dropping polymerization or batch polymerization. The polymerization time is, for example, 0.5 hours or more and, for example, 10 hours or less. The polymerization temperature is, for example, 50° C. or higher and, for example, 80° C. or lower. By emulsion polymerization, a water-dispersible acrylic polymer is prepared as a water-dispersed liquid, specifically a water-dispersed liquid (emulsion) in which a water-dispersed acrylic polymer is dispersed in water. That is, the aqueous dispersion contains a water-dispersible polymer and water.
 乳化剤としては、例えば、アニオン系乳化剤、ノニオン系乳化剤、ラジカル重合性乳化剤(反応性乳化剤)等が挙げられる。 Examples of emulsifiers include anionic emulsifiers, nonionic emulsifiers, and radical polymerizable emulsifiers (reactive emulsifiers).
 アニオン系乳化剤としては、例えば、ポリオキシエチレンラウリル硫酸ナトリウム、ラウリル硫酸ナトリウム、ラウリル硫酸アンモニウム、ドデシルベンゼンスルホン酸ナトリウム、ポリオキシエチレンアルキルエーテル硫酸ナトリウム、ポリオキシエチレンアルキルフェニルエーテル硫酸アンモニウム、ポリオキシエチレンアルキルフェニルエーテル硫酸ナトリウム、ポリオキシエチレンアルキルスルホコハク酸ナトリウム等が挙げられる。 Examples of anionic emulsifiers include sodium polyoxyethylene lauryl sulfate, sodium lauryl sulfate, ammonium lauryl sulfate, sodium dodecylbenzenesulfonate, sodium polyoxyethylene alkyl ether sulfate, ammonium polyoxyethylene alkylphenyl ether sulfate, sodium polyoxyethylene alkylphenyl ether sulfate, and sodium polyoxyethylene alkyl sulfosuccinate.
 ノニオン系乳化剤としては、例えば、ポリオキシエチレンアルキルエーテル、ポリオキシエチレンアルキルフェニルエーテル、ポリオキシエチレン脂肪酸エステル、ポリオキシエチレンポリオキシプロピレンブロック重合体等が挙げられる。 Examples of nonionic emulsifiers include polyoxyethylene alkyl ethers, polyoxyethylene alkylphenyl ethers, polyoxyethylene fatty acid esters, polyoxyethylene polyoxypropylene block polymers, and the like.
 ラジカル重合性乳化剤(反応性乳化剤)としては、例えば、上記アニオン系乳化剤および上記ノニオン系乳化剤に、ビニル基、プロペニル基、イソプロペニル基、ビニルエーテル基、アリルエーテル基などのラジカル重合性官能基が導入された乳化剤が挙げられる。具体的には、アンモニウム-α-スルホナト-ω-1-(アリルオキシメチル)アルキルオキシポリオキシエチレンが挙げられる。反応性乳化剤が用いられる場合、乳化重合によって得られる水分散型ポリマーであるアクリルポリマーは、反応性乳化剤に由来するモノマーユニットを含む。 Examples of radically polymerizable emulsifiers (reactive emulsifiers) include emulsifiers obtained by introducing radically polymerizable functional groups such as vinyl groups, propenyl groups, isopropenyl groups, vinyl ether groups, and allyl ether groups into the above anionic emulsifiers and nonionic emulsifiers. Specific examples include ammonium-α-sulfonato-ω-1-(allyloxymethyl)alkyloxypolyoxyethylene. When a reactive emulsifier is used, the acrylic polymer, which is a water-dispersible polymer obtained by emulsion polymerization, contains monomer units derived from the reactive emulsifier.
 乳化剤の配合割合は、例えば、モノマー総量100重量部に対して、例えば、0.2重量部~10重量部である。 The mixing ratio of the emulsifier is, for example, 0.2 to 10 parts by weight with respect to 100 parts by weight of the total amount of monomers.
 重合開始剤としては、例えば、アゾ系重合開始剤、過酸化物系重合開始剤等が挙げられる。 Examples of polymerization initiators include azo polymerization initiators and peroxide polymerization initiators.
 アゾ系重合開始剤としては、例えば、2,2’-アゾビスイソブチロニトリル、2,2’-アゾビス(2-アミジノプロパン)ジヒドロクロライド、2,2’-アゾビス[2-(5-メチル-2-イミダゾリン-2-イル)プロパン]ジヒドロクロライド、2,2’-アゾビス{2-[N-(2-カルボキシエチル)アミジノ]プロパン}n水和物、2,2’-アゾビス(N,N’-ジメチレンイソブチルアミジン)等が挙げられる。 Examples of azo polymerization initiators include 2,2'-azobisisobutyronitrile, 2,2'-azobis(2-amidinopropane) dihydrochloride, 2,2'-azobis[2-(5-methyl-2-imidazolin-2-yl)propane]dihydrochloride, 2,2'-azobis{2-[N-(2-carboxyethyl)amidino]propane}n hydrate, 2, 2'-azobis(N,N'-dimethyleneisobutylamidine) and the like.
 過酸化物系重合開始剤としては、例えば、ベンゾイルパーオキサイド、t-ブチルハイドロパーオキサイド、酸化水素等が挙げられる。 Examples of peroxide-based polymerization initiators include benzoyl peroxide, t-butyl hydroperoxide, and hydrogen oxide.
 重合開始剤としては、好ましくは、アゾ系重合開始剤、より好ましくは、2,2’-アゾビス{2-[N-(2-カルボキシエチル)アミジノ]プロパン}n水和物が挙げられる。 The polymerization initiator preferably includes an azo polymerization initiator, more preferably 2,2'-azobis{2-[N-(2-carboxyethyl)amidino]propane}n hydrate.
 重合開始剤の配合割合は、モノマー総量100重量部に対して、例えば、0.01重量部~2重量部である。 The mixing ratio of the polymerization initiator is, for example, 0.01 to 2 parts by weight with respect to 100 parts by weight of the total amount of monomers.
 連鎖移動剤としては、例えば、グリシジルメルカプタン、メルカプト酢酸、2-メルカプトエタノール、t-ラウリルメルカプタン、t-ドデカンチオール、チオグリコール酸、チオグリコール酸2-エチルヘキシル、2,3-ジメルカプト-1-プロパノール等が挙げられ、好ましくは、t-ドデカンチオールが挙げられる。 Examples of chain transfer agents include glycidyl mercaptan, mercaptoacetic acid, 2-mercaptoethanol, t-lauryl mercaptan, t-dodecanethiol, thioglycolic acid, 2-ethylhexyl thioglycolate, 2,3-dimercapto-1-propanol, and preferably t-dodecanethiol.
 連鎖移動剤の配合割合は、モノマー総量100重量部に対して、例えば、0.001重量部~0.5重量部である。 The blending ratio of the chain transfer agent is, for example, 0.001 to 0.5 parts by weight with respect to 100 parts by weight of the total amount of monomers.
 水分散型アクリルポリマーの重量平均分子量(Mw)は、例えば、100000以上、好ましくは、300000以上、また、例えば、5000000以下、好ましくは、3000000以下である。本明細書において、重量平均分子量は、ゲル・パーミエーション・クロマトグラフ(GPC)によって測定してポリスチレン換算により算出される。 The weight average molecular weight (Mw) of the water-dispersible acrylic polymer is, for example, 100,000 or more, preferably 300,000 or more, and, for example, 5,000,000 or less, preferably 3,000,000 or less. As used herein, the weight average molecular weight is calculated by polystyrene conversion after measurement by gel permeation chromatography (GPC).
(ポリアクリル酸)
 上記ポリアクリル酸の配合割合は、水分散型ポリマー100重量部に対して、好ましくは0.1重量部~7重量部であり、さらに好ましくは0.15重量部~5重量部であり、より好ましくは2.5重量部~5重量部であり、特に好ましくは3.5重量部~5重量部である。このような範囲であれば、粘着剤層の耐衝撃性を向上させることができる。また、粘着性に優れる粘着剤層を形成することができる。
(polyacrylic acid)
The blending ratio of the polyacrylic acid is preferably 0.1 parts by weight to 7 parts by weight, more preferably 0.15 parts by weight to 5 parts by weight, more preferably 2.5 parts by weight to 5 parts by weight, and particularly preferably 3.5 parts by weight to 5 parts by weight, with respect to 100 parts by weight of the water-dispersible polymer. Within such a range, the impact resistance of the pressure-sensitive adhesive layer can be improved. Moreover, the adhesive layer which is excellent in adhesiveness can be formed.
 ポリアクリル酸の重量平均分子量は、例えば、50000以上であり、好ましくは100000以上であり、より好ましくは150000以上である。また、例えば、300000以下であり、好ましくは250000以下である。 The weight average molecular weight of polyacrylic acid is, for example, 50,000 or more, preferably 100,000 or more, and more preferably 150,000 or more. Also, for example, it is 300,000 or less, preferably 250,000 or less.
(添加剤)
 上記水分散型粘着剤は、任意の適切な添加剤をさらに含み得る。添加剤としては、例えば、レベリング剤、粘着付与剤、剥離助剤、シランカップリング剤、増粘剤、架橋剤(例えば、3-メタクリロキシプロピルトリメトキシシラン)、充填剤、酸化防止剤、界面活性剤、帯電防止剤等が挙げられる。
(Additive)
The water-dispersible pressure-sensitive adhesive may further contain any appropriate additive. Examples of additives include leveling agents, tackifiers, release aids, silane coupling agents, thickeners, cross-linking agents (eg, 3-methacryloxypropyltrimethoxysilane), fillers, antioxidants, surfactants, antistatic agents, and the like.
 1つの実施形態においては、水分散型粘着剤は、レベリング剤をさらに含む。レベリング剤を添加すれば、塗布性に優れ、ポリエチレンテレフタレートから構成された基材(後述)にも好ましく適用可能な水分散型粘着剤を得ることができる。また、このような水分散型粘着剤を用いれば、耐衝撃性に優れる粘着剤層を形成することができる。レベリング剤としては、例えば、「サーフィノール420」(アセチレングリコールエチレンオキシド系界面活性剤、日信化学工業株式会社製)、「ペレックスOT-P」(ジアルキルスルホコハク酸ナトリウム、花王株式会社製)、「ネオコールP」(ジアルキルスルホコハク酸ナトリウム、第一工業製薬株式会社製)、「ノプコウエット50」(スルホン酸系アニオン性界面活性剤、サンノプコ株式会社製)、「SNウエット126」(変性シリコーン/特殊ポリエーテル系の界面活性剤、サンノプコ株式会社製)、「SNウエットFST2」(ポリオキシアルキレンアミンの非イオン系湿潤剤、サンノプコ株式会社製)、「SNウエットS」(ポリオキシアルキレンアミンエーテルの非イオン系湿潤剤、サンノプコ株式会社製)、および、「SNウエット125」(変性シリコーン系界面活性剤、サンノプコ株式会社製)が挙げられる。レベリング剤は、単独使用または2種以上併用できる。 In one embodiment, the water-dispersed pressure-sensitive adhesive further contains a leveling agent. By adding a leveling agent, it is possible to obtain a water-dispersible pressure-sensitive adhesive that has excellent applicability and can be preferably applied to a substrate (described later) composed of polyethylene terephthalate. Moreover, by using such a water-dispersible pressure-sensitive adhesive, a pressure-sensitive adhesive layer having excellent impact resistance can be formed. Examples of leveling agents include "Surfinol 420" (acetylene glycol ethylene oxide surfactant, manufactured by Nissin Chemical Industry Co., Ltd.), "Pelex OT-P" (sodium dialkyl sulfosuccinate, manufactured by Kao Corporation), "Neocol P" (sodium dialkyl sulfosuccinate, manufactured by Daiichi Kogyo Seiyaku Co., Ltd.), "Nopko Wet 50" (sulfonic acid-based anionic surfactant, manufactured by San Nopco Co., Ltd.), "SN Wet 126" (modified silicone/special polyether surfactant, San Nopco Co., Ltd.), "SN Wet FST2" (polyoxyalkyleneamine nonionic wetting agent, San Nopco Co., Ltd.), "SN Wet S" (polyoxyalkyleneamine ether nonionic wetting agent, San Nopco Co., Ltd.), and "SN Wet 125" (modified silicone surfactant, San Nopco Co., Ltd.). A leveling agent can be used individually or in combination of 2 or more types.
 1つの実施形態においては、レベリング剤としては、ジアルキルスルホコハク酸ナトリウムが用いられる。ジアルキルスルホコハク酸ナトリウムの炭素数は、例えば、4以上であり、好ましくは6以上であり、より好ましくは8以上である。当該炭素数の上限は、例えば、20以下であり、好ましくは13以下であり、より好ましくは10以下である。 In one embodiment, sodium dialkylsulfosuccinate is used as the leveling agent. The carbon number of sodium dialkylsulfosuccinate is, for example, 4 or more, preferably 6 or more, and more preferably 8 or more. The upper limit of the number of carbon atoms is, for example, 20 or less, preferably 13 or less, and more preferably 10 or less.
 レベリング剤の配合割合は、水分散型ポリマー100重量部に対して、例えば、1重量部以上であり、好ましくは1.5重量部以上であり、また、例えば、3.5重量部以下であり、好ましくは2.5重量部以下である。また、レベリング剤の配合割合は、ポリアクリル酸100重量部に対して、例えば、10重量部以上、また、例えば、500重量部以下である。 The blending ratio of the leveling agent is, for example, 1 part by weight or more, preferably 1.5 parts by weight or more, and for example, 3.5 parts by weight or less, preferably 2.5 parts by weight or less with respect to 100 parts by weight of the water-dispersible polymer. Moreover, the mixing ratio of the leveling agent is, for example, 10 parts by weight or more and, for example, 500 parts by weight or less with respect to 100 parts by weight of polyacrylic acid.
 上記粘着付与剤としては、例えば、ロジン系樹脂、ロジン誘導体樹脂、石油系樹脂、テルペン系樹脂、フェノール系樹脂、ケトン系樹脂などの各種粘着付与剤樹脂が挙げられ、好ましくは、ロジン系樹脂、テルペン系樹脂、より好ましくは、テルペン系樹脂が挙げられる。粘着付与剤の含有量は、水分散型ポリマー100重量部に対し、例えば、5重量部以上であり、好ましくは15重量部以上であり、より好ましくは25重量部以上であり、さらに好ましくは33重量部以上であり、また、例えば50重量部以下であり、好ましくは45重量部以下であり、より好ましくは38重量部以下である。 Examples of the tackifier include various tackifier resins such as rosin-based resins, rosin derivative resins, petroleum-based resins, terpene-based resins, phenol-based resins, and ketone-based resins, preferably rosin-based resins, terpene-based resins, and more preferably terpene-based resins. The content of the tackifier is, for example, 5 parts by weight or more, preferably 15 parts by weight or more, more preferably 25 parts by weight or more, and still more preferably 33 parts by weight or more, and, for example, 50 parts by weight or less, preferably 45 parts by weight or less, and more preferably 38 parts by weight or less, relative to 100 parts by weight of the water-dispersible polymer.
C-2.基材
 基材としては、任意の適切な樹脂から形成された基材が用いられ得る。基材を構成する樹脂としては、例えば、ポリエステル系樹脂、ポリオレフィン系樹脂、ポリ塩化ビニル、ポリイミド系樹脂、ポリアミド系樹脂等が挙げられる。なかでも好ましくは、ポリエステル系樹脂であり、より好ましくはポリエチレンテレフタレートである。ポリエチレンテレフタレートから形成された基材を用いれば、顕著に薄い発泡部材を得ることが可能となる。また、破断強度が高く、容易に切れにくいため、加工が行いやすい点でも有利である。また、融点が高いため、高温時の寸法変化率が小さく、様々な環境でも使用可能となる点でも有利である。上記の水分散型粘着剤を用いれば、ポリエチレンテレフタレートから構成された基材を好ましく用いることが可能となり、その結果、顕著に薄く、かつ、クリーン性に優れる(例えば、アウトガスが少ない)発泡部材を得ることができる。
C-2. Substrate A substrate formed from any appropriate resin can be used as the substrate. Examples of the resin constituting the substrate include polyester-based resins, polyolefin-based resins, polyvinyl chloride, polyimide-based resins, and polyamide-based resins. Among them, polyester-based resins are preferred, and polyethylene terephthalate is more preferred. Using a substrate made of polyethylene terephthalate makes it possible to obtain significantly thinner foamed parts. Moreover, since it has a high breaking strength and is not easily cut, it is also advantageous in that it is easy to process. Moreover, since the melting point is high, the rate of dimensional change at high temperatures is small, and it is also advantageous in that it can be used in various environments. By using the water-dispersible pressure-sensitive adhesive, it is possible to preferably use a base material made of polyethylene terephthalate, and as a result, it is possible to obtain a foamed member that is remarkably thin and excellent in cleanness (e.g., less outgassing).
 上記基材の23℃における破断強度は、好ましくは200MPa~500MPaであり、より好ましくは260MPa~420MPaであり、さらに好ましくは300MPa~380MPaであり、特に好ましくは320MPa~360MPaである。このような範囲であれば、適切な強度を有する基材を得ることができる。このような基材は、打ち抜き加工性に優れ、打ち抜き時の千切れ、発塵、切れ残り等が防止される。破断強度は、幅10mm、長さ150mmのサイズにカットした試験片(基材)を用意し、23℃、50%RHの環境下において、引張試験機を用いてチャック間距離120mm、引張速度50mm/分の条件で測定される。上記基材の破断強度は、基材をフィルム状に形成する際の加工流れ方向における破断強度であり得る。 The breaking strength of the base material at 23°C is preferably 200 MPa to 500 MPa, more preferably 260 MPa to 420 MPa, still more preferably 300 MPa to 380 MPa, and particularly preferably 320 MPa to 360 MPa. Within such a range, it is possible to obtain a substrate having suitable strength. Such a base material has excellent punching workability, and prevents tearing, dust generation, uncut parts, etc. during punching. The breaking strength is measured by preparing a test piece (base material) cut to a size of 10 mm in width and 150 mm in length, and using a tensile tester at a chuck distance of 120 mm and a tensile speed of 50 mm/min in an environment of 23°C and 50% RH. The breaking strength of the base material may be the breaking strength in the processing flow direction when the base material is formed into a film.
 上記粘着体が基材を備える場合、当該粘着体の23℃における破断強度は、好ましくは200MPa~500MPaであり、より好ましくは260MPa~420MPaであり、さらに好ましくは300MPa~380MPaであり、特に好ましくは320MPa~360MPaである。 When the adherence body includes a base material, the breaking strength of the adherence body at 23°C is preferably 200 MPa to 500 MPa, more preferably 260 MPa to 420 MPa, still more preferably 300 MPa to 380 MPa, and particularly preferably 320 MPa to 360 MPa.
 上記基材を150℃で30分間放置した際の寸法変化率は、好ましくは1%~5%であり、より好ましくは1%~3%であり、さらに好ましくは1.2%~2.8%であり、特に好ましくは1.5%~2.5%である。このような範囲であれば、高温環境でも寸法変化の小さい発泡部材を得ることができる。このような基材は、様々な環境でも形状を維持する事ができ、加工寸法のばらつきが抑制される。上記寸法変化率は、幅100mm、長さ100mm、厚み1~25μmの試験片における、各方向(たとえば、幅方向、長さ方向、厚み方向等)における寸法変化率のうち、最も変化率の値が大きい方向の寸法変化率である。例えば、上記寸法変化率が10%以下ということは、上記試験片における幅方向の寸法変化率、長さ方向の寸法変化率及び厚み方向の寸法変化率の全ての寸法変化率が10%以下であることを意味する。なお、寸法変化率(%)は、下記より求められる。
寸法変化率(%)=(L0-L1)/L0×100
 L0:初期の試験片の寸法(ブランク数値)
 L1:150℃で30min放置した後の試験片の寸法
The dimensional change rate when the base material is left at 150° C. for 30 minutes is preferably 1% to 5%, more preferably 1% to 3%, still more preferably 1.2% to 2.8%, and particularly preferably 1.5% to 2.5%. Within such a range, it is possible to obtain a foamed member with little dimensional change even in a high-temperature environment. Such a substrate can maintain its shape even in various environments, and variations in processed dimensions are suppressed. The dimensional change rate is the dimensional change rate in each direction (for example, the width direction, the length direction, the thickness direction, etc.) in a test piece having a width of 100 mm, a length of 100 mm, and a thickness of 1 to 25 μm. For example, the dimensional change rate of 10% or less means that all of the dimensional change rate in the width direction, the dimensional change rate in the length direction, and the dimensional change rate in the thickness direction in the test piece is 10% or less. The dimensional change rate (%) is obtained from the following.
Dimensional change rate (%) = (L0 - L1) / L0 x 100
L0: Initial test piece dimension (blank value)
L1: Dimension of test piece after left at 150°C for 30min
 上記粘着体が基材を備える場合、当該粘着体を150℃で30分間放置した際の寸法変化率は、好ましくは1%~5%であり、より好ましくは1%~3%であり、さらに好ましくは1.2%~2.8%であり、特に好ましくは1.5%~2.5%である。 When the adherent has a base material, the dimensional change rate when the adherent is left at 150°C for 30 minutes is preferably 1% to 5%, more preferably 1% to 3%, still more preferably 1.2% to 2.8%, and particularly preferably 1.5% to 2.5%.
 基材の全光線透過率(JIS K 7375-2008)は、例えば、80%以上、好ましくは、85%以上である。 The total light transmittance (JIS K 7375-2008) of the substrate is, for example, 80% or more, preferably 85% or more.
 基材の厚みは、好ましくは1μm以上であり、より好ましくは2μm以上である。基材の厚みの上限は、好ましくは100μm以下であり、より好ましくは50μm以下であり、さらに好ましくは10μm以下であり、特に好ましくは7μm以下である。このような範囲であれば、顕著に薄い発泡部材を得ることが可能となる。また、破断強度が高く、容易に切れにくいため、打ち抜き加工が行いやすい点でも有利である。 The thickness of the substrate is preferably 1 μm or more, more preferably 2 μm or more. The upper limit of the thickness of the substrate is preferably 100 µm or less, more preferably 50 µm or less, still more preferably 10 µm or less, and particularly preferably 7 µm or less. Within such a range, it is possible to obtain a remarkably thin foamed member. It is also advantageous in that it is easy to punch because it has high breaking strength and is not easily cut.
C-3.易接着層
 1つの実施形態において、上記粘着体は、基材と粘着剤層との間に、易接着層をさらに備え得る。易接着層は、接着性組成物である易接着組成物から形成される。
C-3. Easy-Adhesion Layer In one embodiment, the adherence article may further include an easy-adhesion layer between the substrate and the pressure-sensitive adhesive layer. The easy-adhesion layer is formed from an easy-adhesion composition that is an adhesive composition.
 1つの実施形態において、易接着組成物は、オキサゾリン基含有ポリエステルポリマーを含む。1つの実施形態においては、オキサゾリン基含有ポリエステルポリマーは、ポリエステル由来の構成単位およびオキサゾリン由来の構成単位を含む。 In one embodiment, the easy-adhesion composition contains an oxazoline group-containing polyester polymer. In one embodiment, the oxazoline group-containing polyester polymer comprises a polyester-derived structural unit and an oxazoline-derived structural unit.
 上記ポリエステルは、多価カルボン酸とポリオールとの脱水縮合によって生成するエステル結合が、それらを連結する重合体である。上記多価カルボン酸としては、例えば、フタル酸(テレフタル酸、イソフタル酸)、ナフタレンジカルボン酸等が挙げられる。好ましくは、フタル酸である。上記ポリオールとしては、例えば、炭素数2~8の脂肪族グリコールが挙げられる。 The above polyester is a polymer in which an ester bond formed by dehydration condensation of a polycarboxylic acid and a polyol connects them. Examples of the polyvalent carboxylic acid include phthalic acid (terephthalic acid, isophthalic acid), naphthalenedicarboxylic acid, and the like. Phthalic acid is preferred. Examples of the polyols include aliphatic glycols having 2 to 8 carbon atoms.
 オキサゾリン基含有ポリエステルポリマーは、例えば、特開平06-293838号公報に記載の方法に準拠して得られる水溶性共重合ポリエステル(ポリエステル成分)と、オキサゾリン系反応性ポリマー(オキサゾリン成分)との反応により得られる。 The oxazoline group-containing polyester polymer can be obtained, for example, by reacting a water-soluble copolyester (polyester component) obtained according to the method described in JP-A-06-293838 with an oxazoline-based reactive polymer (oxazoline component).
 易接着層の水接触角は、例えば、60°以上、また、例えば、75°以下、好ましくは、71°以下、より好ましくは、68°以下、さらに好ましくは、65°以下である。 The water contact angle of the easily adhesive layer is, for example, 60° or more, and for example, 75° or less, preferably 71° or less, more preferably 68° or less, and still more preferably 65° or less.
 易接着層の厚みは、例えば、50nm以下、より好ましくは、45nm以下、また、例えば、1nm以上、好ましくは、10nm以上である。 The thickness of the easy adhesion layer is, for example, 50 nm or less, more preferably 45 nm or less, and for example, 1 nm or more, preferably 10 nm or more.
 上記発泡部材は、任意の適切な方法によって製造し得る。発泡部材は、例えば、樹脂発泡体と粘着剤層(あるいは粘着体(粘着シート))とを積層して製造する方法などが挙げられる。 The foam member can be manufactured by any appropriate method. For example, the foamed member may be manufactured by laminating a resin foam and an adhesive layer (or an adhesive (adhesive sheet)).
 以下、実施例により本発明を具体的に説明するが、本発明はこれら実施例になんら限定されるものではない。なお、実施例等における、試験および評価方法は以下のとおりである。なお、「部」と記載されている場合は、特記事項がない限り「重量部」を意味し、「%」と記載されている場合は、特記事項がない限り「重量%」を意味する。 The present invention will be specifically described below with reference to examples, but the present invention is not limited to these examples. The tests and evaluation methods used in Examples and the like are as follows. "Parts" means "parts by weight" unless otherwise specified, and "%" means "% by weight" unless otherwise specified.
<評価方法>
(1)見かけ密度
 樹脂発泡体の密度(見かけ密度)は、以下のように算出した。実施例・比較例で得られた樹脂発泡体を20mm×20mmサイズに打ち抜いて試験片とし、試験片の寸法をノギスで測定した。次に、試験片の重量を電子天秤にて測定した。そして、次式により算出した。
  見かけ密度(g/cm)=試験片の重量/試験片の体積
 
(2)50%圧縮荷重
 JIS K 6767に記載されている樹脂発泡体の圧縮硬さ測定方法に準じて測定し
た。具体的には、実施例・比較例で得られた樹脂発泡体を30mm×30mmサイズに切り出して試験片とし、圧縮速度10mm/minで圧縮率が50%となるまで圧縮したときの応力(N)を単位面積(1cm)当たりに換算して、50%圧縮荷重(N/cm)とした。
 
(3)平均気泡径(平均セル径)、気泡径(セル径)の変動係数
 樹脂発泡体を、カミソリ刃を用いて、樹脂発泡体の主面に対して垂直方向(厚み方向)に切断し、計測器としてデジタルマイクロスコープ(商品名「VHX-500」、キーエンス株式会社製)を用い、樹脂発泡体の切断面画像を取り込み、同計測器の解析ソフトを用いて、画像解析することにより、数平均気泡径(平均セル径)(μm)を求めた。なお、取り込んだ拡大画像の気泡数は400個程度であった。また、セル径の全データから標準偏差を計算し、以下の式を用いて変動係数を算出した。
  変動係数=標準偏差/平均気泡径(平均セル径)
 
(4)気泡率(セル率)
 温度23℃、湿度50%の環境下で測定を行った。100mm×100mmの打抜き刃型(2枚の加工刃(商品名「NCA07」、厚さ0.7mm、刃先角度43°、ナカヤマ社製))にて実施例・比較例で得られた樹脂発泡体を打ち抜き、打ち抜いた試料の寸法を測定した。また、測定端子の直径(φ)20mmである1/100ダイヤルゲージにて厚みを測定した。これらの値から実施例・比較例で得られた樹脂発泡体の体積を算出した。次に、実施例・比較例で得られた樹脂発泡体の重量を最小目盛り0.01g以上の上皿天秤にて測定した。これらの値より、実施例・比較例で得られた樹脂発泡体の気泡率(セル率)を算出した。
 
(5)気泡数密度
 樹脂発泡体を、カミソリ刃を用いて、樹脂発泡体の主面に対して垂直方向(厚み方向)に切断した。計測器としてデジタルマイクロスコープ(商品名「VHX-500」、キーエンス株式会社製)を用い、樹脂発泡体の切断面画像を取り込み、同計測器の解析ソフトを用いて、画像解析することにより、単位面積[mm]当たりの気泡数を測定した。
 
(6)厚み回復率(瞬間回復率)
 発泡部材に、1000g/cmの荷重を加えた状態で120秒間維持し、圧縮を解除し、解除してから0.5秒後の発泡部材の厚み(圧縮状態を解除してから0.5秒後の厚み)を測定した。「圧縮状態を解除してから0.5秒後の厚み」と、荷重を加える前の発泡部材の厚み(初期厚み)とから、下記の式により、厚み回復率(瞬間回復率)を求めた。
厚み回復率(%)={(圧縮状態を解除してから0.5秒後の厚み)/(初期厚み)}×100
 
(7)打ち抜き加工性(10mm×10mm)
 発泡部材を金型(2枚の加工刃(商品名「NCA07」、厚さ0.7mm、刃先角度43°、2枚の加工刃の間隔10mm、ナカヤマ社製))を用いて、10mm×10mmサイズになるようにMD方向(流れ方向)、TD方向(流れ方向に直交する方向)にそれぞれ打ち抜き加工を行い、MD方向とTD方向の断面において厚み変化が大きい方の断面をマイクロスコープ(商品名「VHX-2000」キーエンス株式会社製)で観察した。画像から測定した端部の厚みと、打ち抜き加工前の厚みを用いて、下記式で加工後の厚み回復率を測定した。当該厚み回復率が大きいほど、打ち抜きにより形状変化が小さく、打ち抜き加工性に優れるということになる。
加工後の厚み回復率(%)=100×(1-(打ち抜き加工前の厚み-端部の厚み)/打ち抜き加工前の厚み)
 
 
(8)トルエンアウトガスおよび酢酸エチルアウトガスの合計放散量
 粘着体(粘着シート・テープ)を試料5cmに切り取り、20mLヘッドスペースバイアルに封入し、試料を入れたバイアルをヘッドスペースサンプラー(島津製作所製HS-20)にて80℃で30 分間加熱し、加熱後の気相部分1mLをGC(島津製作所製QP2010 Ultra)を用いることにより定量分し、トルエンアウトガスおよび酢酸エチルアウトガスの合計放散量を測定した。
 
(9)防塵性
・防塵性試験装置
 防塵性評価に用いた防塵性試験装置を図3及び図4に示す。図3は防塵性試験装置の概略構成図であり、図4は防塵性試験装置のA-A’線の切断部端面図である。
 図3及び図4において、1は防塵性試験装置、11は天井板、1121はスペーサー、1122は段差形成用スペーサー、13は両面粘着テープ、14は試験片(樹脂発泡体、以下同様)、15は評価用箱体、16aは貫通孔、16bは貫通孔、16cは貫通孔、17は開口部、18は空間部である。天井板11は、略四角形の平板状であり、開口部となる平面視四角形(台形)の切り込みを有する。スペーサー1121は、開口部17より大きく、四角形平板状であり、試験片14を所望の厚さに圧縮するために用いられる。両面粘着テープ13は、発泡部材を構成する両面粘着シートであり、スペーサー1121と試験片14との固定に用いられる。貫通孔16aは管継ぎ手を介して定量ポンプに接続される。貫通孔16bは管継ぎ手を介して差圧計に接続される。貫通孔16cは管継ぎ手を介してニードルバルブに接続される。防塵性試験装置1では、天井板11と評価用箱体15とをねじ止めすることにより、略直方体状の密閉可能な空間部18が、内部に形成される。開口部17は、空間部18の開口部である。また、天井板11は、開面視四角形(台形)の切り込みを有する。
・防塵性評価
 防塵性試験装置に、以下のようにして、試験片14を取り付けた。天井板11の開口部17に対向する下面に、開口部17より大きい四角形平板状のスペーサー1121を、開口部17の全面に対向するように取り付けた。そして、スペーサー1121下面の開口部17に対向する位置に、開口部17とほぼ同じ大きさの窓部を有する試験片14を、両面粘着テープ13を介して取り付けた。次に、試験片14の各辺下部に段差形成用スペーサー1122を挟んでから、天井板11を評価用箱体15にねじ止めした。このようにして、防塵性試験装置に、試験片14を取り付けた。試験片14は、スペーサー1121と開口部17の周縁部とによって、厚さ方向に圧縮される。試験片14の圧縮率は、スペーサー1121の厚さを調整することによって50%圧縮(初めの厚さの50%だけ圧縮した状態)に調整された。なお、天井板11と評価用箱体15とをねじ止めすることによって、評価用箱体内の空間部18は、試験片14、スペーサー1122、両面粘着テープ13及びスペーサー1121によって密閉される。
 上記のようにして、試験片を防塵性試験装置に取り付けてから、防塵性試験装置を粉塵箱体内に配置し、密閉した。なお、上記粉塵箱体は、粉塵供給装置及びパーティクルカウンターに接続している。また、防塵性試験装置の貫通孔16bは管継ぎ手を介してパーティクルカウンターに接続している。次に、粉塵箱体に接続した粉塵供給装置及びパーティクルカウンターを用いて、パーティクルカウント値(数)が100000付近でほぼ一定になるように、所定の直径を有する粒子を粉塵箱体に供給した。次に、防塵性試験装置の貫通孔16cに接続しているニードルバルブを閉じた状態で、貫通孔16aに接続している定量ポンプを用いて、吸引速度0.5L/min、30分間の吸引を行った。吸引後、防塵性試験装置の空間部18内の粒子の数をパーティクルカウンターで測定し、このときのパーティクルカウント値を発泡体通過粒子個数Pfとした。そして、下記式より、防塵性指標(粉塵侵入率)を求めた。
 防塵性指標(%)= 100-(P0-Pf)/P0×100
 P0:雰囲気粒子個数
 Pf:発泡体通過粒子個数
 
(10)粘着剤層の貯蔵弾性率(25℃)
 レオメトリック社製の動的粘弾性測定装置「ARES」を用いて、下記の条件で動的粘弾性測定を行うことにより求めた。なお、測定試料としては、粘着剤層の一部を、2mm厚さにプレスしたものを使用した。
・装置:Rheometric Scientific社製ARES(Advanced Rheometric Expansion System)
・周波数:1Hz
・温度:-60~150℃
・昇温速度:5℃/分
・変形モード:ねじり
・形状:パラレルプレート(7.9mmφ)
 
(11)衝撃吸収性
 (7)と同様の試験方法にて打ち抜き加工した発泡部材を作製した。その後、衝撃力センサー上に、発泡部材を配置して試験体を形成した。発泡部材上方30cmの高さから、66gの鉄球を試験体に落下させて、衝撃力F1を測定した。また、衝撃力センサーに直接、上記のように鉄球を落下させて、ブランクの衝撃力F0を測定した。F1、F0から、(F0-F1) /F0 ×100の式により、衝撃吸収性(%)を算出した。
 
<Evaluation method>
(1) Apparent Density The density (apparent density) of the resin foam was calculated as follows. The resin foams obtained in Examples and Comparative Examples were punched out into 20 mm×20 mm size test pieces, and the dimensions of the test pieces were measured with vernier calipers. Next, the weight of the test piece was measured with an electronic balance. Then, it was calculated by the following formula.
Apparent density (g/cm 3 ) = weight of test piece/volume of test piece
(2) 50% Compressive Load Measured according to the method for measuring compression hardness of resin foam described in JIS K 6767. Specifically, the resin foam obtained in Examples and Comparative Examples was cut into a size of 30 mm × 30 mm to form a test piece, and the stress (N) when compressed at a compression speed of 10 mm/min until the compression ratio reached 50% was converted to a unit area (1 cm 2 ) to obtain a 50% compression load (N/cm 2 ).

(3) Average foam diameter (average cell diameter) and foam diameter (cell diameter) The foam emitted in the bubbles (cell diameter) is cut vertically (thickness direction) to the main aspect of the resin foam using a razor blade, and as a measuring instrument, a digital microscope (product name "VHX -500", for Keyence Co., Ltd.) is used. Incorporating the cutting surface image of the resin foam, using the analysis software of the same meter, an average foam diameter (average cell diameter) (μm) was calculated by analyzing the image. The number of bubbles in the captured enlarged image was about 400. In addition, the standard deviation was calculated from all the cell diameter data, and the coefficient of variation was calculated using the following formula.
Variation coefficient = standard deviation / average bubble diameter (average cell diameter)

(4) Bubble rate (cell rate)
The measurement was performed in an environment with a temperature of 23°C and a humidity of 50%. The resin foams obtained in Examples and Comparative Examples were punched out with a 100 mm × 100 mm punching blade (two processing blades (trade name “NCA07”, thickness 0.7 mm, cutting edge angle 43°, manufactured by Nakayama Co., Ltd.)), and the dimensions of the punched samples were measured. Also, the thickness was measured with a 1/100 dial gauge having a measuring terminal diameter (φ) of 20 mm. From these values, the volumes of the resin foams obtained in Examples and Comparative Examples were calculated. Next, the weights of the resin foams obtained in Examples and Comparative Examples were measured with a balance with a minimum scale of 0.01 g or more. From these values, the void ratio (cell ratio) of the resin foams obtained in Examples and Comparative Examples was calculated.

(5) Cell Number Density The resin foam was cut with a razor blade in the direction (thickness direction) perpendicular to the main surface of the resin foam. Using a digital microscope (trade name "VHX-500", manufactured by Keyence Corporation) as a measuring instrument, a cut surface image of the resin foam is captured, and image analysis is performed using the analysis software of the same measuring instrument. The number of bubbles per unit area [mm ] was measured.

(6) Thickness recovery rate (instantaneous recovery rate)
A load of 1000 g/cm 2 was applied to the foamed member and maintained for 120 seconds, the compression was released, and the thickness of the foamed member 0.5 seconds after the release (thickness 0.5 seconds after the compression was released) was measured. The thickness recovery rate (instantaneous recovery rate) was obtained from the following formula based on the "thickness 0.5 seconds after releasing the compressed state" and the thickness (initial thickness) of the foamed member before the load was applied.
Thickness recovery rate (%) = {(thickness 0.5 seconds after releasing the compressed state) / (initial thickness)} x 100

(7) Punching workability (10 mm × 10 mm)
Using a mold (two processing blades (product name “NCA07”, thickness 0.7 mm, blade angle 43°, spacing between two processing blades 10 mm, manufactured by Nakayama)), the foam member is punched in the MD direction (flow direction) and TD direction (perpendicular to the flow direction) to a size of 10 mm × 10 mm. X-2000" manufactured by Keyence Corporation). Using the edge thickness measured from the image and the thickness before punching, the thickness recovery rate after processing was measured by the following formula. The larger the thickness recovery rate, the smaller the change in shape due to punching, and the better the punching workability.
Thickness recovery rate after processing (%) = 100 × (1 - (thickness before punching - thickness of edge) / thickness before punching)


(8) Total emission amount of toluene outgas and ethyl acetate outgas The adhesive (adhesive sheet/tape) was cut into a sample of 5 cm 2 and sealed in a 20 mL headspace vial. The vial containing the sample was heated at 80°C for 30 minutes with a headspace sampler (HS-20 manufactured by Shimadzu Corporation). The total amount of ethyl acetate outgassed was measured.

(9) Dust Resistance/Dust Resistance Test Apparatus Figs. 3 and 4 show the dust resistance test apparatus used for dust resistance evaluation. FIG. 3 is a schematic configuration diagram of the dustproofness tester, and FIG. 4 is an end view of the dustproofness tester taken along line AA'.
3 and 4, 1 is a dustproof test device, 11 is a ceiling plate, 1121 is a spacer, 1122 is a step forming spacer, 13 is a double-sided adhesive tape, 14 is a test piece (resin foam, the same applies hereinafter), 15 is an evaluation box, 16a is a through hole, 16b is a through hole, 16c is a through hole, 17 is an opening, and 18 is a space. The ceiling plate 11 is in the shape of a substantially rectangular flat plate, and has a rectangular (trapezoidal) notch in plan view that serves as an opening. The spacer 1121 is larger than the opening 17, has a rectangular flat plate shape, and is used to compress the test piece 14 to a desired thickness. The double-sided adhesive tape 13 is a double-sided adhesive sheet forming a foam member, and is used for fixing the spacer 1121 and the test piece 14 together. Through hole 16a is connected to a metering pump via a pipe joint. Through hole 16b is connected to a differential pressure gauge via a pipe joint. Through hole 16c is connected to a needle valve via a pipe joint. In the dust-proof test apparatus 1, by screwing together the ceiling plate 11 and the evaluation box 15, a substantially rectangular parallelepiped sealable space 18 is formed inside. The opening 17 is the opening of the space 18 . In addition, the ceiling plate 11 has a notch that is rectangular (trapezoidal) when viewed open.
·Dust resistance evaluation A test piece 14 was attached to a dust resistance testing device as follows. A rectangular plate-like spacer 1121 larger than the opening 17 was attached to the lower surface of the ceiling plate 11 facing the opening 17 so as to face the entire surface of the opening 17 . Then, a test piece 14 having a window portion having approximately the same size as the opening portion 17 was attached via a double-sided adhesive tape 13 to a position facing the opening portion 17 on the lower surface of the spacer 1121 . Next, the ceiling plate 11 was screwed to the evaluation box 15 after the step forming spacers 1122 were sandwiched under each side of the test piece 14 . In this manner, the test piece 14 was attached to the dust resistance test device. The test piece 14 is compressed in the thickness direction by the spacer 1121 and the peripheral edge of the opening 17 . The compressibility of the test piece 14 was adjusted to 50% compression (state compressed by 50% of the initial thickness) by adjusting the thickness of the spacer 1121 . By screwing the ceiling plate 11 and the evaluation box 15 together, the space 18 in the evaluation box is sealed with the test piece 14 , the spacer 1122 , the double-sided adhesive tape 13 and the spacer 1121 .
After the test piece was attached to the dustproofness tester as described above, the dustproofness tester was placed in the dust box and sealed. The dust box is connected to a dust supply device and a particle counter. Also, the through-hole 16b of the dust resistance testing device is connected to the particle counter via a pipe joint. Next, using a dust supply device and a particle counter connected to the dust box, particles having a predetermined diameter were supplied to the dust box so that the particle count value (number) was approximately constant at around 100,000. Next, with the needle valve connected to the through-hole 16c of the dust resistance test apparatus closed, suction was performed for 30 minutes at a suction rate of 0.5 L/min using a metering pump connected to the through-hole 16a. After the suction, the number of particles in the space 18 of the dust resistance tester was measured with a particle counter, and the particle count value at this time was defined as the foam passing particle number Pf. Then, the dust resistance index (dust penetration rate) was obtained from the following formula.
Dust resistance index (%) = 100 - (P0 - Pf) / P0 x 100
P0: number of particles in the atmosphere Pf: number of particles passing through the foam
(10) Storage modulus of adhesive layer (25°C)
It was obtained by performing dynamic viscoelasticity measurement under the following conditions using a dynamic viscoelasticity measuring device "ARES" manufactured by Rheometric. As a measurement sample, a part of the pressure-sensitive adhesive layer was pressed to a thickness of 2 mm.
- Apparatus: ARES (Advanced Rheometric Expansion System) manufactured by Rheometric Scientific
・Frequency: 1Hz
・Temperature: -60 to 150°C
・Temperature increase rate: 5°C/min ・Deformation mode: twist ・Shape: parallel plate (7.9mmφ)

(11) Impact Absorption A foamed member was produced by punching in the same test method as in (7). After that, a foam member was arranged on the impact force sensor to form a test body. A 66-g iron ball was dropped onto the specimen from a height of 30 cm above the foamed member, and the impact force F1 was measured. In addition, the impact force F0 of the blank was measured by dropping the iron ball directly onto the impact force sensor as described above. From F1 and F0, the shock absorbency (%) was calculated by the formula (F0-F1)/F0×100.
[製造例1]
<粘着シート(両面粘着シートA)の作製>
 温度計、攪拌機、窒素導入管および還流冷却管を備えた反応容器に、乳化剤0.07重量部および蒸留水61.1重量部を加え、撹拌しながら室温(25℃)で1時間窒素置換した。その後、さらに、重合開始剤0.1重量部を加え、60℃にした。さらに、2-エチルヘキシルアクリレート(2EHA)85重量部、アクリル酸メチル(MA)13重量部、アクリル酸(AA)1.25重量部、メタクリル酸(MAA)0.75重量部、t-ドデカンチオール(連鎖移動剤)0.025重量部、架橋剤0.02重量部および乳化剤1.93重量部を蒸留水28重量部で乳化させたものを、60℃で4時間かけて滴下しながら重合した。その後、室温まで冷却し、pH調整剤としての10%アンモニア水を用いてpHを6に調整した。これにより、水分散型のアクリルポリマーを合成した。水分散型のアクリルポリマー固形分100重量部に対して、粘着付与剤30重量部、増粘剤3重量部、レベリング剤2重量部を加え、蒸留水と10%アンモニア水により希釈および中和し、水分散型粘着剤組成物A(固形分濃度25質量%)を調製した。はく離フィルムの表面に、水分散型粘着剤組成物Aを厚さが12.5μmになるように塗布し、乾燥させ、粘着剤層を形成(配置)した。これにより基材レスの粘着シートA’を得た。
 次に、ポリエステルフィルム(商品名「K880-4.5W」三菱化学ポリエステル社製;厚さ:5μm)の両面にオキサゾリン基含有ポリエステルポリマー含有(TOFSIMSにより測定されるポリエステル成分に由来するピーク強度に対するオキサゾリン成分に由来するピーク強度の強度比11)の易接着層を設けた。
 さらに、上記粘着シートA’を、上記で得られた易接着層付ポリエステルフィルムの両面それぞれに転写した。これにより、両面粘着シートAを製造した。
[Production Example 1]
<Preparation of adhesive sheet (double-sided adhesive sheet A)>
0.07 parts by weight of an emulsifier and 61.1 parts by weight of distilled water were added to a reaction vessel equipped with a thermometer, a stirrer, a nitrogen inlet tube and a reflux condenser, and the mixture was replaced with nitrogen at room temperature (25° C.) for 1 hour while stirring. After that, 0.1 part by weight of a polymerization initiator was further added, and the temperature was raised to 60°C. Furthermore, 2 -ethylhexyl acrylate (2EHA), 85 parts, metal acrylic acid (MA) 13, 1.25 parts, 1.25 parts of acrylic acid (AA), 0.75 metalic acid (MAA), T -dodkanchial (chain mobilization agent) 0.025, 0.025, 0.025 parts. The 02 weight portion and the emulsifier 1.93 heavy part of the weight of a 28 -weight part of the distilled water were polymerized while dropping at 60 ° C. for 4 hours. Then, it was cooled to room temperature, and the pH was adjusted to 6 using 10% aqueous ammonia as a pH adjuster. Thus, a water-dispersible acrylic polymer was synthesized. 30 parts by weight of a tackifier, 3 parts by weight of a thickening agent, and 2 parts by weight of a leveling agent were added to 100 parts by weight of a water-dispersed acrylic polymer solid content, diluted and neutralized with distilled water and 10% aqueous ammonia to prepare a water-dispersed pressure-sensitive adhesive composition A (solid concentration: 25% by mass). The water-dispersible pressure-sensitive adhesive composition A was applied to the surface of the release film to a thickness of 12.5 μm and dried to form (arrange) a pressure-sensitive adhesive layer. Thus, a substrate-less pressure-sensitive adhesive sheet A' was obtained.
Next, on both sides of a polyester film (trade name “K880-4.5W” manufactured by Mitsubishi Chemical Polyester Co., Ltd.; thickness: 5 μm), easy-adhesion layers containing an oxazoline group-containing polyester polymer (intensity ratio of peak intensity derived from oxazoline component to peak intensity derived from polyester component measured by TOFSIMS: 11) were provided.
Furthermore, the pressure-sensitive adhesive sheet A' was transferred to both sides of the easy-adhesion layer-attached polyester film obtained above. Thus, a double-sided pressure-sensitive adhesive sheet A was produced.
[製造例2]
<粘着シート(両面粘着シートB)の作成>
 攪拌機、温度計、還流冷却器、滴下装置、および窒素導入管を備えた反応容器に、イオン交換水35重量部を投入し、窒素ガスを導入しながら60℃で1時間以上攪拌した。これに、重合開始剤として2,2’-アゾビス[N-(2-カルボキシエチル)-2-メチルプロピオンアミジン]ハイドレート0.1重量部を加え、反応液とした。
 モノマー原料として、n-ブチルアクリレート90重量部、2-エチルヘキシルアクリレート10重量部、アクリル酸4重量部、ポリオキシエチレンラウリル硫酸ナトリウム(乳化剤)2重量部、ドデカンチオール(連鎖移動剤)0.05重量部を、イオン交換水40重量部に加えて乳化して、モノマー原料乳化液を得た。
 60℃に保った上記反応液に、このモノマー原料乳化液を4時間かけて徐々に滴下して乳化重合させた。モノマー原料の滴下終了後、さらに60℃で2時間攪拌し、加熱を停止した。次いで、モノマー100重量部に対して、アスコルビン酸0.1重量部および35%過酸化水素水0.1重量部(追加の重合開始剤)を加えてレドックス処理を行った。これを室温まで冷却した後、10%アンモニア水を添加してpH7に調整し、アクリル系重合体エマルション(水分散型アクリル系重合体)を得た。アクリル系重合体エマルションに対し、該エマルションに含まれるアクリル系重合体100重量部当たり、固形分換算で30重量部の粘着付与樹脂のエマルションを加え、水分散型粘着剤組成物を得た。次に上質紙の片面に厚さ25μmのPE層がラミネートされたはく離ライナー基材を用意した。この基材のPE層上に、非移行性の熱硬化性無溶剤型シリコーン系剥離剤および硬化触媒を混合したものを塗布した。これを、120℃で1分間保持して、乾燥および硬化させ、はく離ライナーを得た。得られたはく離ライナーの剥離層上に、上記水分散型粘着剤組成物を、厚さが55μmとなるように塗布して粘着剤層を形成した。これを二枚用意して、不織布基材(大福製紙株式会社製、商品名「SP原紙-14」厚さ50μmのパルプ系不織布)の各面にそれぞれ転写して、両面粘着シートBを得た。
[Production Example 2]
<Preparation of adhesive sheet (double-sided adhesive sheet B)>
35 parts by weight of ion-exchanged water was charged into a reaction vessel equipped with a stirrer, thermometer, reflux condenser, dropping device, and nitrogen inlet tube, and stirred at 60° C. for 1 hour or more while introducing nitrogen gas. To this was added 0.1 part by weight of 2,2'-azobis[N-(2-carboxyethyl)-2-methylpropionamidine]hydrate as a polymerization initiator to prepare a reaction solution.
As monomer raw materials, 90 parts by weight of n-butyl acrylate, 10 parts by weight of 2-ethylhexyl acrylate, 4 parts by weight of acrylic acid, 2 parts by weight of sodium polyoxyethylene lauryl sulfate (emulsifier), and 0.05 parts by weight of dodecanethiol (chain transfer agent) were added to 40 parts by weight of ion-exchanged water and emulsified to obtain a monomer raw material emulsion.
This monomer raw material emulsion was gradually added dropwise over 4 hours to the above reaction liquid kept at 60° C. to effect emulsion polymerization. After the dropping of the monomer raw material was completed, the mixture was further stirred at 60° C. for 2 hours, and the heating was stopped. Then, 0.1 part by weight of ascorbic acid and 0.1 part by weight of 35% hydrogen peroxide solution (additional polymerization initiator) were added to 100 parts by weight of the monomer to carry out redox treatment. After cooling to room temperature, 10% aqueous ammonia was added to adjust the pH to 7 to obtain an acrylic polymer emulsion (water-dispersed acrylic polymer). To the acrylic polymer emulsion, 30 parts by weight of the tackifier resin emulsion was added in terms of solid content per 100 parts by weight of the acrylic polymer contained in the emulsion to obtain a water-dispersed pressure-sensitive adhesive composition. Next, a release liner substrate was prepared by laminating a PE layer having a thickness of 25 μm on one side of fine paper. A mixture of a non-migrating, heat-curable, solvent-free silicone release agent and a curing catalyst was applied onto the PE layer of this substrate. This was dried and cured by holding at 120° C. for 1 minute to obtain a release liner. On the release layer of the release liner thus obtained, the water-dispersible pressure-sensitive adhesive composition was applied to form a pressure-sensitive adhesive layer with a thickness of 55 μm. Two sheets of this were prepared and transferred to each surface of a nonwoven fabric base material (manufactured by Daifuku Paper Co., Ltd., product name "SP base paper-14", pulp nonwoven fabric having a thickness of 50 μm) to obtain a double-sided pressure-sensitive adhesive sheet B.
[製造例3]
<両面粘着シートCの作成>
 n-ブチルアクリレート65重量部、2-エチルヘキシルアクリレート35重量部、アクリル酸3重量部、4-ヒドロキシブチルアクリレート0.05重量部、及び重合開始剤としてAIBN(アゾビスイソブチロニトリル)0.08部をトルエン溶媒中に添加した。その後、63℃で8時間溶液重合してアクリル系ポリマー溶液を得た。また、アクリル酸は全モノマー成分に対して2.9重量%である。調製したアクリル系ポリマー溶液に重合ロジンエステル(軟化点:128℃、酸価:12mgKOH/g)30重量部、及びイソシアネート系架橋剤2重量部を加えてアクリル系粘着剤組成物cを調製した。はく離フィルムの表面に、粘着剤組成物cを厚さが12.5μmになるように塗布し、乾燥させ、粘着剤層を形成(配置)した。この粘着剤層を、ポリエステルフィルム(商品名「K880-4.5W」三菱化学ポリエステル社製;厚さ:5μm)の両面それぞれに転写した。これにより、両面粘着シートCを製造した。
[Production Example 3]
<Preparation of double-sided adhesive sheet C>
65 parts by weight of n-butyl acrylate, 35 parts by weight of 2-ethylhexyl acrylate, 3 parts by weight of acrylic acid, 0.05 parts by weight of 4-hydroxybutyl acrylate, and 0.08 parts by weight of AIBN (azobisisobutyronitrile) as a polymerization initiator were added to a toluene solvent. After that, solution polymerization was carried out at 63° C. for 8 hours to obtain an acrylic polymer solution. Also, acrylic acid is 2.9% by weight based on the total monomer components. 30 parts by weight of a polymerized rosin ester (softening point: 128° C., acid value: 12 mgKOH/g) and 2 parts by weight of an isocyanate crosslinking agent were added to the prepared acrylic polymer solution to prepare an acrylic pressure-sensitive adhesive composition c. The pressure-sensitive adhesive composition c was applied to the surface of the release film to a thickness of 12.5 μm and dried to form (arrange) a pressure-sensitive adhesive layer. This pressure-sensitive adhesive layer was transferred to both sides of a polyester film (trade name “K880-4.5W” manufactured by Mitsubishi Chemical Polyester Co., Ltd.; thickness: 5 μm). Thus, a double-sided pressure-sensitive adhesive sheet C was produced.
[製造例4]
<粘着シート(両面粘着シートD)の作製>
 製造例1と同様にして、水分散型粘着剤組成物Aを調製した。
 はく離フィルムの表面に、水分散型粘着剤組成物Aを厚さが25μmになるように塗布し、乾燥させ、粘着剤層を形成(配置)した。これにより基材レスの粘着シートD’を得た。
 次に、ポリエステルフィルム(商品名「K880-4.5W」三菱化学ポリエステル社製;厚さ:5μm)の両面にオキサゾリン基含有ポリエステルポリマー含有(TOFSIMSにより測定されるポリエステル成分に由来するピーク強度に対するオキサゾリン成分に由来するピーク強度の強度比11)の易接着層を設けた。
 さらに、上記粘着シートD’を、上記で得られた易接着層付ポリエステルフィルムの両面それぞれに転写した。これにより、両面粘着シートDを製造した。
[Production Example 4]
<Preparation of adhesive sheet (double-sided adhesive sheet D)>
A water-dispersed pressure-sensitive adhesive composition A was prepared in the same manner as in Production Example 1.
The surface of the release film was coated with the water-dispersed pressure-sensitive adhesive composition A to a thickness of 25 μm and dried to form (arrange) a pressure-sensitive adhesive layer. As a result, a substrate-less pressure-sensitive adhesive sheet D' was obtained.
Next, on both sides of a polyester film (trade name “K880-4.5W” manufactured by Mitsubishi Chemical Polyester Co., Ltd.; thickness: 5 μm), easy-adhesion layers containing an oxazoline group-containing polyester polymer (intensity ratio of peak intensity derived from oxazoline component to peak intensity derived from polyester component measured by TOFSIMS: 11) were provided.
Furthermore, the pressure-sensitive adhesive sheet D' was transferred to both sides of the easy-adhesion layer-attached polyester film obtained above. Thus, a double-sided pressure-sensitive adhesive sheet D was produced.
〔実施例1〕
 ポリプロピレン系樹脂A(MFR:0.4g/10分、エチレン含量:0重量%、プロピレン含量:100重量%、重量平均分子量:108000、分子量分布:4.93)35重量部、ポリオレフィン系エラストマーA(メルトフローレート(MFR):15g/10分)30重量部、ポリオレフィン系エラストマーB(メルトフローレート(MFR):2.2g/10分)30重量部、水酸化マグネシウム10重量部、カーボン10重量部、およびステアリン酸モノグリセリド1重量部を混合して混合物を得た。当該混合物を、日本製鋼所(JSW)社製の二軸混練機にて、200℃の温度で混練した後、ストランド状に押出し、水冷後ペレット状に成形した。
 このペレットを、日本製鋼所社製の単軸押出機に投入し、220℃の雰囲気下、13MPa(注入後12MPa)の圧力で、二酸化炭素ガスを注入した。二酸化炭素ガスは、樹脂100重量部に対して4.5重量部の割合で注入した。二酸化炭素ガスを十分飽和させた後、発泡に適した温度まで冷却後、ダイから押出し、厚み0.6mmでスライスして、シート状の樹脂発泡体aを得た。樹脂発泡体aの片面に、両面粘着シートAを貼り合わせて、発泡部材を得た。
 得られた発泡部材を上記評価に供した。結果を表1に示す。
[Example 1]
Polypropylene resin A (MFR: 0.4 g/10 min, ethylene content: 0 wt%, propylene content: 100 wt%, weight average molecular weight: 108,000, molecular weight distribution: 4.93) 35 parts by weight, polyolefin elastomer A (melt flow rate (MFR): 15 g/10 min) 30 parts by weight, polyolefin elastomer B (melt flow rate (MFR): 2.2 g/10 min) 30 parts by weight, magnesium hydroxide A mixture was obtained by mixing 10 parts by weight, 10 parts by weight of carbon, and 1 part by weight of stearic acid monoglyceride. The mixture was kneaded at a temperature of 200° C. using a twin-screw kneader manufactured by Japan Steel Works (JSW), extruded into strands, cooled with water, and formed into pellets.
The pellets were put into a single-screw extruder manufactured by Japan Steel Works, Ltd., and carbon dioxide gas was injected under an atmosphere of 220° C. and a pressure of 13 MPa (12 MPa after injection). Carbon dioxide gas was injected at a rate of 4.5 parts by weight with respect to 100 parts by weight of the resin. After sufficiently saturating the carbon dioxide gas, it was cooled to a temperature suitable for foaming, extruded from a die and sliced at a thickness of 0.6 mm to obtain a sheet-like resin foam a. A double-sided pressure-sensitive adhesive sheet A was attached to one side of the resin foam a to obtain a foamed member.
The obtained foamed member was subjected to the above evaluation. Table 1 shows the results.
〔実施例2~22〕
 ペレット形成用の混合物の組成(各成分の配合量)、樹脂発泡体の厚みを表1~3に示すとおりとしたこと以外は、実施例1と同様にして、発泡部材を得た。得られた発泡部材を上記評価に供した。結果を表1~3に示す。
 なお、表1中の「ポリプロピレン系樹脂A2」および「ポリプロピレン系樹脂B」の内容は、以下のとおりである。
 ポリプロピレン系樹脂A2:MFR:0.5g/10分、エチレン含量:0重量%、プロピレン含量:100重量%、重量平均分子量:64500、分子量分布:8.43
 ポリプロピレン系樹脂B; MFR:1.1g/10分、エチレン含量:0重量%、プロピレン含量:100重量%
[Examples 2 to 22]
A foamed member was obtained in the same manner as in Example 1, except that the composition of the mixture for forming pellets (the amount of each component blended) and the thickness of the resin foam were as shown in Tables 1 to 3. The obtained foamed member was subjected to the above evaluation. The results are shown in Tables 1-3.
The contents of "polypropylene resin A2" and "polypropylene resin B" in Table 1 are as follows.
Polypropylene resin A2: MFR: 0.5 g/10 min, ethylene content: 0 wt%, propylene content: 100 wt%, weight average molecular weight: 64500, molecular weight distribution: 8.43
Polypropylene resin B; MFR: 1.1 g/10 min, ethylene content: 0 wt%, propylene content: 100 wt%
〔実施例23〕
 ポリプロピレン系樹脂A(MFR:0.4g/10分、エチレン含量:0重量%、プロピレン含量:100重量%、重量平均分子量:108000、分子量分布:4.93)45重量部、ポリプロピレン系樹脂B(MFR:1.1g/10分、エチレン含量:0重量%、プロピレン含量:100重量%)30重量部、ポリオレフィン系エラストマーC(メルトフローレート(MFR):6.0g/10min)25重量部、水酸化マグネシウム100重量部、カーボン10重量部、およびステアリン酸モノグリセリド1重量部を、日本製鋼所(JSW)社製の二軸混練機にて、200℃の温度で混練した後、ストランド状に押出し、水冷後ペレット状に成形した。このペレットを、日本製鋼所社製の単軸押出機に投入し、220℃の雰囲気下、13MPa(注入後12MPa)の圧力で、二酸化炭素ガスを注入した。二酸化炭素ガスは、樹脂100重量部に対して4.5重量部の割合で注入した。二酸化炭素ガスを十分飽和させた後、発泡に適した温度まで冷却後、ダイから押出して、シート状の樹脂発泡体を得た。得られた樹脂発泡体を厚み0.5mmでスライスし、200℃の熱溶融ロールで0.15mmに圧延し熱溶融層を形成させた樹脂発泡体を得た。樹脂発泡体の片面に、両面粘着シートAを貼り合わせて、発泡部材を得た。
 得られた発泡部材を上記評価に供した。結果を表3に示す。
[Example 23]
Polypropylene resin A (MFR: 0.4 g/10 min, ethylene content: 0 wt%, propylene content: 100 wt%, weight average molecular weight: 108000, molecular weight distribution: 4.93) 45 parts by weight Polypropylene resin B (MFR: 1.1 g/10 min, ethylene content: 0 wt%, propylene content: 100 wt%) 30 parts by weight Polyolefin elastomer C (melt flow rate (MFR): 6.0 g/1 0 min) 25 parts by weight, 100 parts by weight of magnesium hydroxide, 10 parts by weight of carbon, and 1 part by weight of stearic acid monoglyceride were kneaded at a temperature of 200 ° C. in a twin-screw kneader manufactured by Japan Steel Works (JSW), extruded into strands, and water-cooled to form pellets. The pellets were put into a single-screw extruder manufactured by Japan Steel Works, Ltd., and carbon dioxide gas was injected under an atmosphere of 220° C. and a pressure of 13 MPa (12 MPa after injection). Carbon dioxide gas was injected at a rate of 4.5 parts by weight with respect to 100 parts by weight of the resin. After sufficiently saturating the carbon dioxide gas, it was cooled to a temperature suitable for foaming, and then extruded through a die to obtain a sheet-like resin foam. The obtained resin foam was sliced into a thickness of 0.5 mm and rolled to a thickness of 0.15 mm with a hot melt roll at 200° C. to obtain a resin foam in which a hot melt layer was formed. A double-sided pressure-sensitive adhesive sheet A was attached to one side of the resin foam to obtain a foamed member.
The obtained foamed member was subjected to the above evaluation. Table 3 shows the results.
〔実施例24〕
 水酸化マグネシウムの配合量を120重量部としたこと以外は、実施例23と同様にして、発泡部材を得た。得られた発泡部材を上記評価に供した。結果を表3に示す。
[Example 24]
A foamed member was obtained in the same manner as in Example 23, except that the amount of magnesium hydroxide compounded was 120 parts by weight. The obtained foamed member was subjected to the above evaluation. Table 3 shows the results.
〔実施例25〕
 水酸化マグネシウムの配合量を140重量部としたこと以外は、実施例23と同様にして、発泡部材を得た。得られた発泡部材を上記評価に供した。結果を表3に示す。
[Example 25]
A foamed member was obtained in the same manner as in Example 23, except that the amount of magnesium hydroxide compounded was 140 parts by weight. The obtained foamed member was subjected to the above evaluation. Table 3 shows the results.
〔比較例1〕
 ポリプロピレン(MFR:0.4g/10分エチレン含量:0重量%、プロピレン含量:100重量%、重量平均分子量:108000、分子量分布:4.93)35重量部、熱可塑性エラストマー組成物a[ポリプロピレン(PP)とエチレン/プロピレン/5-エチリデンー2-ノルボルネン三次元共重合体(EPT)とのブレンド物(架橋型オレフィン系熱可塑性エラストマー、TPV)、ポリプロピレンとエチレン/プロピレン/5-エチリデンー2-ノルボルネン三次元共重合体との割合は重量基準で25/75である、カーボンブラックを15.0重量%含む]:60重量部、水酸化マグネシウム10重量部、カーボン10重量部、およびステアリン酸モノグリセリド1重量部を、日本製鋼所(JSW)社製の二軸混練機にて、200℃の温度で混練した後、ストランド状に押出し、水冷後ペレット状に成形した。このペレットを、日本製鋼所社製の単軸押出機に投入し、220℃の雰囲気下、13MPa(注入後12MPa)の圧力で、二酸化炭素ガスを注入した。二酸化炭素ガスは、樹脂100重量部に対して4.5重量部の割合で注入した。二酸化炭素ガスを十分飽和させた後、発泡に適した温度まで冷却後、ダイから押出して、シート状の樹脂発泡体を得た。得られた樹脂発泡体のスキン層をスライスによって除去し、厚み0.5mmにスライスして、樹脂発泡体を得た。樹脂発泡体の片面に、両面粘着シートBを貼り合わせて、発泡部材を得た。
 得られた発泡部材を上記評価に供した。結果を表4に示す。
[Comparative Example 1]
Polypropylene (MFR: 0.4 g/10 min. Ethylene content: 0% by weight, propylene content: 100% by weight, weight average molecular weight: 108000, molecular weight distribution: 4.93) 35 parts by weight, thermoplastic elastomer composition a [a blend of polypropylene (PP) and ethylene/propylene/5-ethylidene-2-norbornene three-dimensional copolymer (EPT) (crosslinked olefinic thermoplastic elastomer, TPV), polypropylene and ethylene/propylene/5-ethylene 15.0% by weight of carbon black containing 15.0% by weight of tylidene-2-norbornene three-dimensional copolymer]: 60 parts by weight, 10 parts by weight of magnesium hydroxide, 10 parts by weight of carbon, and 1 part by weight of stearic acid monoglyceride were kneaded at a temperature of 200° C. in a twin-screw kneader manufactured by Japan Steel Works (JSW), extruded into strands, cooled with water, and formed into pellets. The pellets were put into a single-screw extruder manufactured by Japan Steel Works, Ltd., and carbon dioxide gas was injected under an atmosphere of 220° C. and a pressure of 13 MPa (12 MPa after injection). Carbon dioxide gas was injected at a rate of 4.5 parts by weight with respect to 100 parts by weight of the resin. After sufficiently saturating the carbon dioxide gas, it was cooled to a temperature suitable for foaming, and then extruded through a die to obtain a sheet-like resin foam. The skin layer of the obtained resin foam was removed by slicing, and the resin foam was obtained by slicing to a thickness of 0.5 mm. A double-sided pressure-sensitive adhesive sheet B was attached to one side of the resin foam to obtain a foamed member.
The obtained foamed member was subjected to the above evaluation. Table 4 shows the results.
〔比較例2〕
 樹脂発泡体厚みを1mmとしたこと以外は、比較例1と同様にして、樹脂発泡体を得た。樹脂発泡体の片面に、両面粘着シートCを貼り合わせて、発泡部材を得た。得られた発泡部材を上記評価に供した。結果を表4に示す。
[Comparative Example 2]
A resin foam was obtained in the same manner as in Comparative Example 1, except that the thickness of the resin foam was 1 mm. A double-sided pressure-sensitive adhesive sheet C was attached to one side of the resin foam to obtain a foamed member. The obtained foamed member was subjected to the above evaluation. Table 4 shows the results.
〔比較例3〕
 樹脂発泡体厚みを2mmとしたこと以外は、比較例1と同様にして、樹脂発泡体を得た。樹脂発泡体の片面に、両面粘着シートAを貼り合わせて、発泡部材を得た。得られた発泡部材を上記評価に供した。結果を表4に示す。
[Comparative Example 3]
A resin foam was obtained in the same manner as in Comparative Example 1, except that the thickness of the resin foam was 2 mm. A double-sided pressure-sensitive adhesive sheet A was attached to one side of the resin foam to obtain a foamed member. The obtained foamed member was subjected to the above evaluation. Table 4 shows the results.
〔比較例4〕
 樹脂発泡体厚みを1mmとしたこと以外は、比較例1と同様にして、樹脂発泡体を得た。樹脂発泡体の片面に、両面粘着シートDを貼り合わせて、発泡部材を得た。得られた発泡部材を上記評価に供した。結果を表4に示す。
[Comparative Example 4]
A resin foam was obtained in the same manner as in Comparative Example 1, except that the thickness of the resin foam was 1 mm. A double-sided pressure-sensitive adhesive sheet D was attached to one side of the resin foam to obtain a foamed member. The obtained foamed member was subjected to the above evaluation. Table 4 shows the results.
Figure JPOXMLDOC01-appb-T000001

 
Figure JPOXMLDOC01-appb-T000001

 
Figure JPOXMLDOC01-appb-T000002

 
Figure JPOXMLDOC01-appb-T000002

 
Figure JPOXMLDOC01-appb-T000003

 
Figure JPOXMLDOC01-appb-T000003

 
Figure JPOXMLDOC01-appb-T000004
Figure JPOXMLDOC01-appb-T000004
 本発明の樹脂発泡体は、例えば、電子機器用のクッション材として好適に利用できる。 The resin foam of the present invention can be suitably used, for example, as a cushioning material for electronic devices.
100 発泡部材
110 樹脂発泡体
120 粘着体
121 粘着剤層
100 Foam member 110 Resin foam 120 Adhesive body 121 Adhesive layer

Claims (16)

  1.  樹脂発泡体と、該樹脂発泡体の少なくとも一方の側に配置された粘着体とを備え、
     該粘着体が、粘着剤層を備え、
     該粘着剤層の総厚(μm)と該樹脂発泡体の厚み(mm)との積が、45以下であり、
     該粘着体において、トルエンアウトガスおよび酢酸エチルアウトガスの合計放散量が、8.0μg/g以下である、
     発泡部材。
    A resin foam and an adhesive disposed on at least one side of the resin foam,
    The adherent comprises an adhesive layer,
    The product of the total thickness (μm) of the adhesive layer and the thickness (mm) of the resin foam is 45 or less,
    In the adherent, the total emission amount of toluene outgas and ethyl acetate outgas is 8.0 μg/g or less.
    foam material.
  2.  前記粘着体が、基材をさらに備え、
     前記粘着剤層が、該基材と前記樹脂発泡体との間に配置される、
     請求項1に記載の発泡部材。
    The adherent further comprises a substrate,
    wherein the pressure-sensitive adhesive layer is arranged between the substrate and the resin foam;
    The foam member according to claim 1.
  3.  前記粘着体が、粘着シートである、請求項2に記載の発泡部材。 The foam member according to claim 2, wherein the adhesive is an adhesive sheet.
  4.  前記粘着体が、前記基材の両側に配置された前記粘着剤層を備える、請求項2に記載の発泡部材。 The foaming member according to claim 2, wherein the adhesive body comprises the adhesive layers arranged on both sides of the base material.
  5.  前記基材が、ポリエチレンテレフタレートから構成される、請求項2に記載の発泡部材。 The foam member according to claim 2, wherein the base material is made of polyethylene terephthalate.
  6.  1000g/cmの荷重を加えた状態で120秒間維持した後の厚み回復率が、55%以上である、請求項1に記載の発泡部材。 The foamed member according to claim 1, wherein the thickness recovery rate after maintaining for 120 seconds under a load of 1000 g/cm 2 is 55% or more.
  7.  前記樹脂発泡体の平均気泡径が、200μm以下である、請求項1に記載の発泡部材。 The foamed member according to claim 1, wherein the resin foam has an average cell diameter of 200 µm or less.
  8.  前記樹脂発泡体の見かけ密度が、0.4g/cm以下である、請求項1に記載の発泡部材。 The foamed member according to claim 1, wherein the resin foam has an apparent density of 0.4 g/ cm3 or less.
  9.  前記樹脂発泡体の気泡径の変動係数が、0.5以下である、請求項1に記載の発泡部材。 The foamed member according to claim 1, wherein the coefficient of variation of cell diameter of the resin foam is 0.5 or less.
  10.  前記樹脂発泡体の気泡数密度が、30個/mm以上である、請求項1に記載の発泡部材。 The foamed member according to claim 1, wherein the resin foam has a cell number density of 30 cells/mm2 or more.
  11.  前記樹脂発泡体の気泡率が、30%以上である、請求項1に記載の発泡部材。 The foamed member according to claim 1, wherein the resin foam has a void content of 30% or more.
  12.  前記樹脂発泡体が、ポリオレフィン系樹脂を含む、請求項1に記載の発泡部材。  The foamed member according to claim 1, wherein the resin foam contains a polyolefin resin. 
  13.  前記ポリオレフィン系樹脂が、ポリオレフィン系エラストマー以外のポリオレフィンとポリオレフィン系エラストマーの混合物である、請求項12に記載の発泡部材。 The foamed member according to claim 12, wherein the polyolefin-based resin is a mixture of a polyolefin other than a polyolefin-based elastomer and a polyolefin-based elastomer.
  14.  前記樹脂発泡体の片面または両面に、熱溶融層を有する、請求項1に記載の発泡部材。 The foamed member according to claim 1, which has a heat-melting layer on one side or both sides of the resin foam.
  15.  前記粘着剤層が、水分散型粘着剤を含む、請求項1に記載の発泡部材。 The foamed member according to claim 1, wherein the adhesive layer contains a water-dispersible adhesive.
  16.  前記樹脂発泡体の粘着剤層とは反対側の面には、別の粘着剤層が形成されている、請求項1に記載の発泡部材。

     
    The foamed member according to claim 1, wherein another pressure-sensitive adhesive layer is formed on the surface of the resin foam opposite to the pressure-sensitive adhesive layer.

PCT/JP2022/040445 2022-01-18 2022-10-28 Foam member WO2023139878A1 (en)

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
JP2022-005887 2022-01-18
JP2022005887 2022-01-18
JP2022143246A JP2023104865A (en) 2022-01-18 2022-09-08 Foam member
JP2022-143246 2022-09-08

Publications (1)

Publication Number Publication Date
WO2023139878A1 true WO2023139878A1 (en) 2023-07-27

Family

ID=87348031

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2022/040445 WO2023139878A1 (en) 2022-01-18 2022-10-28 Foam member

Country Status (1)

Country Link
WO (1) WO2023139878A1 (en)

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009091479A (en) * 2007-10-10 2009-04-30 Nitto Denko Corp Double-sided pressure-sensitive adhesive tape or sheet for use in wiring circuit board and wiring circuit board
WO2021106912A1 (en) * 2019-11-25 2021-06-03 日東電工株式会社 Foamed resin object

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009091479A (en) * 2007-10-10 2009-04-30 Nitto Denko Corp Double-sided pressure-sensitive adhesive tape or sheet for use in wiring circuit board and wiring circuit board
WO2021106912A1 (en) * 2019-11-25 2021-06-03 日東電工株式会社 Foamed resin object

Similar Documents

Publication Publication Date Title
US8067475B2 (en) Adhesive sheet comprising hollow parts and method for preparing the same
CN113646368B (en) Flame-retardant foam and foam member
WO2021106914A1 (en) Resin foam
KR102518946B1 (en) Resin sheet with a resin sheet and an adhesive layer
KR20180101316A (en) Double-sided adhesive tape
CN113166629B (en) Foam adhesive tape for flexible display and flexible display laminate
WO2023139878A1 (en) Foam member
WO2023139826A1 (en) Foam member
WO2023140251A1 (en) Foam member
WO2023139879A1 (en) Foam member
US11827822B2 (en) Adhesive tape and electronic device
TW201631083A (en) Adhesive sheet and electronic device
JP2019178293A (en) Adhesive tape
JP7128008B2 (en) Sealing material for electronic equipment
JP4509748B2 (en) Foam member carrier tape and foam member carrier
JP7288994B2 (en) resin foam
WO2022210957A1 (en) Resin foam and foam member
WO2022209767A1 (en) Resin foam body
JP2020145187A (en) Electrical insulation material and electrical insulation articles
WO2022074899A1 (en) Resin foam
KR102257234B1 (en) Process for producing an adhesive tape with foamed psa layer and structuring on the surface
JP7193229B2 (en) double sided adhesive tape
CN116997600A (en) Resin foam

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 22922030

Country of ref document: EP

Kind code of ref document: A1