WO2014168036A1 - Resin foam composite - Google Patents

Resin foam composite Download PDF

Info

Publication number
WO2014168036A1
WO2014168036A1 PCT/JP2014/059400 JP2014059400W WO2014168036A1 WO 2014168036 A1 WO2014168036 A1 WO 2014168036A1 JP 2014059400 W JP2014059400 W JP 2014059400W WO 2014168036 A1 WO2014168036 A1 WO 2014168036A1
Authority
WO
WIPO (PCT)
Prior art keywords
resin foam
pressure
resin
thickness
layer
Prior art date
Application number
PCT/JP2014/059400
Other languages
French (fr)
Japanese (ja)
Inventor
畑中逸大
齋藤誠
加藤和通
山成悠介
Original Assignee
日東電工株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 日東電工株式会社 filed Critical 日東電工株式会社
Priority to CN201480020767.9A priority Critical patent/CN105121529B/en
Priority to KR1020157031890A priority patent/KR102218808B1/en
Publication of WO2014168036A1 publication Critical patent/WO2014168036A1/en

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J9/00Working-up of macromolecular substances to porous or cellular articles or materials; After-treatment thereof
    • C08J9/04Working-up of macromolecular substances to porous or cellular articles or materials; After-treatment thereof using blowing gases generated by a previously added blowing agent
    • C08J9/12Working-up of macromolecular substances to porous or cellular articles or materials; After-treatment thereof using blowing gases generated by a previously added blowing agent by a physical blowing agent
    • C08J9/122Hydrogen, oxygen, CO2, nitrogen or noble gases
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B27/00Layered products comprising a layer of synthetic resin
    • B32B27/06Layered products comprising a layer of synthetic resin as the main or only constituent of a layer, which is next to another layer of the same or of a different material
    • B32B27/065Layered products comprising a layer of synthetic resin as the main or only constituent of a layer, which is next to another layer of the same or of a different material of foam
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B7/00Layered products characterised by the relation between layers; Layered products characterised by the relative orientation of features between layers, or by the relative values of a measurable parameter between layers, i.e. products comprising layers having different physical, chemical or physicochemical properties; Layered products characterised by the interconnection of layers
    • B32B7/04Interconnection of layers
    • B32B7/12Interconnection of layers using interposed adhesives or interposed materials with bonding properties
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09JADHESIVES; NON-MECHANICAL ASPECTS OF ADHESIVE PROCESSES IN GENERAL; ADHESIVE PROCESSES NOT PROVIDED FOR ELSEWHERE; USE OF MATERIALS AS ADHESIVES
    • C09J7/00Adhesives in the form of films or foils
    • C09J7/20Adhesives in the form of films or foils characterised by their carriers
    • C09J7/22Plastics; Metallised plastics
    • C09J7/26Porous or cellular plastics
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C44/00Shaping by internal pressure generated in the material, e.g. swelling or foaming ; Producing porous or cellular expanded plastics articles
    • B29C44/34Auxiliary operations
    • B29C44/3442Mixing, kneading or conveying the foamable material
    • B29C44/3446Feeding the blowing agent
    • B29C44/3453Feeding the blowing agent to solid plastic material
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2266/00Composition of foam
    • B32B2266/02Organic
    • B32B2266/0214Materials belonging to B32B27/00
    • B32B2266/025Polyolefin
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2457/00Electrical equipment
    • B32B2457/20Displays, e.g. liquid crystal displays, plasma displays
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J2203/00Foams characterized by the expanding agent
    • C08J2203/06CO2, N2 or noble gases
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J2203/00Foams characterized by the expanding agent
    • C08J2203/08Supercritical fluid
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J2323/00Characterised by the use of homopolymers or copolymers of unsaturated aliphatic hydrocarbons having only one carbon-to-carbon double bond; Derivatives of such polymers
    • C08J2323/02Characterised by the use of homopolymers or copolymers of unsaturated aliphatic hydrocarbons having only one carbon-to-carbon double bond; Derivatives of such polymers not modified by chemical after treatment
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09JADHESIVES; NON-MECHANICAL ASPECTS OF ADHESIVE PROCESSES IN GENERAL; ADHESIVE PROCESSES NOT PROVIDED FOR ELSEWHERE; USE OF MATERIALS AS ADHESIVES
    • C09J2203/00Applications of adhesives in processes or use of adhesives in the form of films or foils
    • C09J2203/318Applications of adhesives in processes or use of adhesives in the form of films or foils for the production of liquid crystal displays
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09JADHESIVES; NON-MECHANICAL ASPECTS OF ADHESIVE PROCESSES IN GENERAL; ADHESIVE PROCESSES NOT PROVIDED FOR ELSEWHERE; USE OF MATERIALS AS ADHESIVES
    • C09J2400/00Presence of inorganic and organic materials
    • C09J2400/20Presence of organic materials
    • C09J2400/24Presence of a foam
    • C09J2400/243Presence of a foam in the substrate
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09JADHESIVES; NON-MECHANICAL ASPECTS OF ADHESIVE PROCESSES IN GENERAL; ADHESIVE PROCESSES NOT PROVIDED FOR ELSEWHERE; USE OF MATERIALS AS ADHESIVES
    • C09J2423/00Presence of polyolefin
    • C09J2423/006Presence of polyolefin in the substrate

Definitions

  • the present invention relates to a resin foam composite in which a resin foam layer and an adhesive layer are laminated.
  • Resin foams are used as sealing materials and cushioning materials for electronic devices such as mobile phones, smartphones, and tablet PCs.
  • a resin foam composite provided with a pressure-sensitive adhesive layer is preferably used in order to simplify the alignment during the bonding operation.
  • the area of resin foam composites used as sealing materials and cushioning materials has become smaller along with the downsizing of electronic devices and the enlargement of screens. There is a demand for flexibility to exhibit buffering properties. Electronic devices are also being made thinner, and resin foam composites are also required to be thinner.
  • a foam sheet obtained by a method in which a compression treatment or a stretching treatment is performed during foaming or in a later step or a method in which a coating treatment is performed after foaming for example, Patent Document 1, Patent Document 2.
  • the foamed sheet has a problem that it is difficult to increase the expansion ratio, and when the compression is performed such that the repulsion force at 25% compression (repulsion stress at 25% compression) exceeds 3 N / cm 2. There was a problem that the repulsive force of.
  • the design gap (gap, gap) in which resin foam is used becomes very narrow (for example, a gap of 0.1 mm or less), and design tolerances are taken into account for resin foam composites.
  • display unevenness occurs in the liquid crystal of the display unit due to the high repulsive force, Display failure may occur.
  • an object of the present invention is to provide a flexible resin foam composite that can be used for a design gap that has become very narrow as the electronic equipment is made thinner. Moreover, it is providing the resin foam composite which can make the position alignment simple at the time of bonding operation
  • the present inventors have used a specific resin foam layer, and by making the thickness of the resin foam composite and the thickness of the adhesive layer predetermined, It was found that a resin foam composite capable of simplifying the alignment while suppressing the rise can be obtained.
  • the present invention has been completed based on these findings.
  • the present invention is a resin foam composite in which a resin foam layer and an adhesive layer are laminated, and the apparent density of the resin foam layer is 0.03 to 0.30 g / cm 3 , 50% compression.
  • the ratio of the thickness of the resin foam layer to the thickness of the pressure-sensitive adhesive layer is preferably 2.1 or more.
  • the pressure-sensitive adhesive layer is preferably an acrylic pressure-sensitive adhesive layer.
  • the resin constituting the resin foam layer is preferably a thermoplastic resin, and more preferably a polyolefin resin.
  • the resin foam composite preferably has a surface layer formed by heat melting treatment on at least one surface of the resin foam layer.
  • the resin foam layer is preferably formed through a process of depressurizing after impregnating the resin with a high-pressure gas.
  • the gas is preferably an inert gas, and more preferably carbon dioxide.
  • the high-pressure gas is more preferably in a supercritical state.
  • the resin foam layer preferably has a closed cell structure or a semi-continuous semi-closed cell structure.
  • the resin foam composite of the present invention Since the resin foam composite of the present invention has the above configuration, it is flexible and can suppress an increase in repulsive force when compressed. For this reason, even if the resin foam composite of this invention is used with respect to the very narrow gap of a liquid crystal display device, for example, it does not cause a display nonuniformity or a display defect. Moreover, the resin foam composite of this invention can simplify the positioning especially at the time of bonding operation.
  • FIG. 1 is a schematic diagram of a continuous slicing apparatus.
  • FIG. 2 is a schematic view of a continuous processing apparatus having a heating roll.
  • the resin foam composite of this invention has at least the structure which laminated
  • the resin foam layer in the resin foam composite of the present invention is a layer composed of a resin foam.
  • the resin foam is obtained by foaming a resin composition.
  • the resin foam layer has an apparent density of 0.03 g / cm 3 to 0.30 g / cm 3 .
  • the apparent density of the resin foam layer is preferably 0.04g / cm 3 ⁇ 0.25g / cm 3, more preferably 0.045g / cm 3 ⁇ 0.20g / cm 3.
  • the apparent density of the resin foam layer can be controlled by adjusting the expansion ratio by the amount and pressure of the foaming agent impregnated in the resin composition.
  • the compressive stress at the time of 50% compression is 5.0 N / cm ⁇ 2 > or less.
  • the compressive stress at the time of 50% compression is 5.0 N / cm ⁇ 2 > or less, favorable softness
  • flexibility is obtained and the repulsive force at the time of compression can be made small.
  • the compressive stress at the time of 50% compression of the resin foam layer is preferably 4.0 N / cm 2 or less, and more preferably 3.0 N / cm 2 or less. Also it is preferably 0.1 N / cm 2 or more, and more preferably 0.2 N / cm 2 or more.
  • the compressive stress at the time of 50% compression of the resin foam layer can be controlled by adjusting the foaming ratio and the degree of openness depending on the temperature at the time of foaming.
  • the degree of open cell refers to the degree to which the closed cell structure is continuous (open cell) when the resin composition is foamed.
  • the compressive stress at the time of 50% compression is the stress (N) measured when compressed by 50% of the initial thickness in the thickness direction of the resin foam layer based on JIS K 6767, and the stress is expressed in units. It is determined by converting per area (cm 2 ).
  • the resin foam layer in the resin foam composite of the present invention can be obtained by foaming the resin composition as described above.
  • the resin foam layer is not particularly limited, but is preferably formed by foaming a thermoplastic resin composition containing a thermoplastic resin. Especially, it is preferable to form by foaming the polyolefin resin composition containing polyolefin resin. That is, the resin foam layer in the resin foam composite of the present invention is preferably a polyolefin resin foam layer.
  • the above resin composition may contain other components and additives. Moreover, the said resin, said other component, said additive, etc. may be used individually or in combination of 2 or more types.
  • content of resin in the said resin composition is not specifically limited, 50 mass% or more is preferable with respect to the resin composition whole quantity (100 mass%), More preferably, it is 60 mass% or more.
  • the cell structure (cell structure) of the resin foam layer in the resin foam composite of the present invention is not particularly limited, but is closed cell structure, semi-continuous semi-closed cell structure (closed cell structure and open cell structure are mixed)
  • the ratio is not particularly limited), and a semi-continuous semi-closed cell structure is more preferable.
  • the ratio of the closed cell structure part of the resin foam layer is not particularly limited, but is preferably 40% or less with respect to the total volume (100%) of the resin foam layer from the viewpoint of flexibility. More preferably, it is 30% or less.
  • the cell structure can be controlled, for example, by adjusting the expansion ratio by the amount and pressure of the foaming agent impregnated in the resin composition during foam molding.
  • the average cell diameter (average cell diameter) in the cell structure of the resin foam layer in the resin foam composite of the present invention is not particularly limited, but is preferably 10 ⁇ m to 150 ⁇ m, more preferably 20 ⁇ m to 120 ⁇ m, and more preferably 30 ⁇ m to 80 ⁇ m. Is more preferable.
  • the average cell diameter of the resin foam layer is 10 ⁇ m or more, impact absorbability (cushioning property) is easily improved.
  • the average cell diameter of the resin foam layer is 150 ⁇ m or less, the foam has a finer cell structure, so that it can be used more easily for minute clearances, and the dust resistance is easily improved.
  • the resin that is the material of the resin foam layer in the resin foam composite of the present invention is not particularly limited, but is preferably a thermoplastic resin (thermoplastic polymer).
  • the resin foam layer in the resin foam composite of the present invention is preferably obtained by foaming a thermoplastic resin composition containing at least a thermoplastic resin.
  • the thermoplastic resin (thermoplastic polymer) that is the material of the resin foam layer is not particularly limited as long as it is a polymer exhibiting thermoplasticity and can be impregnated with a high-pressure gas.
  • thermoplastic resins examples include polyolefin resins (details will be described later); styrene resins such as polystyrene and acrylonitrile-butadiene-styrene copolymers (ABS resins); 6-nylon, 66-nylon, 12- Polyamide resins such as nylon; Polyamideimide; Polyurethane; Polyimide; Polyetherimide; Acrylic resins such as polymethyl methacrylate; Polyvinyl chloride; Polyvinyl fluoride; Alkenyl aromatic resins; Polyester resins such as polyethylene terephthalate and polybutylene terephthalate Resins; polycarbonates such as bisphenol A-based polycarbonates; polyacetals; polyphenylene sulfides.
  • a thermoplastic resin can be used individually or in combination of 2 or more types.
  • the copolymer of any form of a random copolymer and a block copolymer may be
  • the polyolefin-based resin is not particularly limited, but a polymer composed (formed) of ⁇ -olefin as an essential monomer component, that is, a structural unit derived from at least ⁇ -olefin in a molecule (in one molecule). It is preferable that it is a polymer which has.
  • the polyolefin resin may be, for example, a polymer composed only of ⁇ -olefin or a polymer composed of ⁇ -olefin and monomer components other than ⁇ -olefin.
  • the polyolefin resin may be a homopolymer (homopolymer) or a copolymer (copolymer) containing two or more monomers.
  • the polyolefin resin may be a random copolymer or a block copolymer.
  • One type of polymer may be sufficient as the said polyolefin resin, and what combined 2 or more types of polymers may be sufficient as it.
  • the polyolefin resin is not particularly limited, but is preferably a linear polyolefin from the viewpoint of obtaining a polyolefin resin foam having a high expansion ratio.
  • ⁇ -olefins examples include ⁇ -olefins having 2 to 8 carbon atoms (for example, ethylene, propylene, butene-1, pentene-1, hexene-1, 4-methyl-pentene-1, heptene-1, Octene-1).
  • the ⁇ -olefin may be used alone or in combination of two or more.
  • monomer components other than the ⁇ -olefin examples include ethylenically unsaturated monomers such as vinyl acetate, acrylic acid, acrylic acid ester, methacrylic acid, methacrylic acid ester, and vinyl alcohol.
  • Monomer components other than ⁇ -olefin may be used alone or in combination of two or more.
  • polystyrene resin examples include low density polyethylene, medium density polyethylene, high density polyethylene, linear low density polyethylene, polypropylene (propylene homopolymer), a copolymer of ethylene and propylene, and ⁇ - other than ethylene and ethylene.
  • Copolymers of olefins, copolymers of propylene and ⁇ -olefins other than propylene, copolymers of ethylene and propylene and ethylene and ⁇ -olefins other than propylene, propylene and ethylenically unsaturated monomers A copolymer etc. are mentioned.
  • the polyolefin resin is preferably a polymer composed of propylene as an essential monomer component (polypropylene polymer), that is, a polymer having at least a structural unit derived from propylene.
  • examples of the polyolefin resin include polypropylene polymers such as polypropylene (propylene homopolymer), a copolymer of ethylene and propylene, and a copolymer of propylene and an ⁇ -olefin other than propylene.
  • the ⁇ -olefins other than propylene may be used alone or in combination of two or more.
  • the content of the ⁇ -olefin is not particularly limited.
  • the content is preferably 0.1% by mass to 10% by mass, more preferably based on the total amount of monomer components (100% by mass) constituting the polyolefin resin. 1% by mass to 5% by mass.
  • thermoplastic resin composition may contain “rubber and / or thermoplastic elastomer” as other components.
  • the rubber is not particularly limited, and examples thereof include natural or synthetic rubber such as natural rubber, polyisobutylene, isoprene rubber, chloroprene rubber, butyl rubber, and nitrile butyl rubber.
  • gum may be used individually or in combination of 2 or more types.
  • thermoplastic elastomer is not particularly limited.
  • thermoplastics such as ethylene-propylene copolymer, ethylene-propylene-diene copolymer, ethylene-vinyl acetate copolymer, polybutene, polyisobutylene, chlorinated polyethylene, etc.
  • thermoplastic styrene-based elastomers such as styrene-butadiene-styrene copolymers, styrene-isoprene-styrene copolymers, styrene-isoprene-butadiene-styrene copolymers, and their hydrogenated polymers; thermoplastic polyesters Elastomers; thermoplastic polyurethane elastomers; thermoplastic acrylic elastomers and the like.
  • the said thermoplastic elastomer may be used individually or in combination of 2 or more types.
  • the content of the “rubber and / or thermoplastic elastomer” in the thermoplastic resin composition is not particularly limited, but is 0% by mass to 70% with respect to the total amount of the thermoplastic resin composition (100% by mass). % By mass is preferable, more preferably 20% by mass to 60% by mass, and still more preferably 20% by mass to 50% by mass.
  • thermoplastic resin composition may contain “a mixture (composition) containing a rubber and / or a thermoplastic elastomer and a softening agent” as other components.
  • a mixture (composition) containing a rubber and / or a thermoplastic elastomer and a softening agent may contain additives as necessary.
  • Examples of the “mixture (composition) containing rubber and / or thermoplastic elastomer and softening agent” include, for example, a mixture containing at least rubber, a thermoplastic elastomer and a softening agent, a mixture containing at least rubber and a softening agent, Examples thereof include a mixture containing at least a thermoplastic elastomer and a softening agent.
  • a mixture composed of only rubber and / or thermoplastic elastomer and softener” is preferable.
  • the rubber in the “mixture containing a rubber and / or thermoplastic elastomer and a softening agent” is not particularly limited, but the rubber exemplified as the rubber of the “rubber and / or thermoplastic elastomer” is preferably exemplified. In addition, this rubber
  • gum may be used individually or in combination of 2 or more types.
  • the rubber and / or thermoplastic elastomer in the above-mentioned “rubber and / or thermoplastic elastomer and mixture containing softener” is not particularly limited as long as it can be foamed. And / or thermoplastic elastomer ”.
  • the thermoplastic elastomer exemplified as the thermoplastic elastomer of the “rubber and / or thermoplastic elastomer” is preferable.
  • this thermoplastic elastomer may be used individually or in combination of 2 or more types.
  • the “rubber and / or thermoplastic elastomer” in the “mixture containing a rubber and / or a thermoplastic elastomer and a softener” is an olefin.
  • An olefin elastomer having a structure in which a polyolefin component and an olefin rubber component are microphase-separated is particularly preferable.
  • Examples of the olefin elastomer having a structure in which the polyolefin component and the olefin rubber component are microphase-separated include an elastomer comprising polypropylene resin (PP) and ethylene-propylene rubber (EPM) or ethylene-propylene-diene rubber (EPDM). Is preferably exemplified.
  • the above-mentioned softener is not particularly limited, but a softener generally used for rubber products is preferable. By containing the softening agent, processability and flexibility can be improved.
  • the softener include petroleum oils such as process oil, lubricating oil, paraffin, liquid paraffin, petroleum asphalt and petroleum jelly; coal tars such as coal tar and coal tar pitch; castor oil, linseed oil and rapeseed oil Fatty oils such as soybean oil and coconut oil; waxes such as tall oil, beeswax, carnauba wax and lanolin; synthetic polymer substances such as petroleum resin, coumarone indene resin and atactic polypropylene; dioctyl phthalate, dioctyl adipate, dioctyl Examples include ester compounds such as sebacate; microcrystalline wax, sub (factis), liquid polybutadiene, modified liquid polybutadiene, liquid thiocol, liquid polyisoprene, liquid polybutene, and liquid ethylene / ⁇ -olefin copolymers.
  • petroleum oils such as process oil, lubricating oil, paraffin, liquid paraffin, petroleum asphalt and petroleum jelly
  • paraffinic, naphthenic and aromatic mineral oils, liquid polyisoprene, liquid polybutene, and liquid ethylene / ⁇ -olefin copolymers are preferable, and liquid polyisoprene, liquid polybutene, and liquid ethylene / ⁇ - ⁇ are more preferable. It is an olefin copolymer.
  • the said softener may be used individually or in combination of 2 or more types.
  • the content of the softening agent in the “mixture containing rubber and / or thermoplastic elastomer and softening agent” is not particularly limited, but is 1 part by mass with respect to 100 parts by mass of the rubber and / or thermoplastic elastomer component. Is preferably 200 parts by mass, more preferably 5 parts by mass to 100 parts by mass, and still more preferably 10 parts by mass to 50 parts by mass.
  • distribution defect may arise at the time of kneading
  • an additive may be added.
  • additives include, but are not limited to, anti-aging agents, weathering agents, ultraviolet absorbers, dispersants, plasticizers, carbon black, antistatic agents, surfactants, tension modifiers, fluidity. Examples thereof include modifiers.
  • such an additive may be used individually or in combination of 2 or more types.
  • the content of the additive in the “mixture containing rubber and / or thermoplastic elastomer and softener” is not particularly limited.
  • the amount is preferably 0.01 to 100 parts by mass, more preferably 0.05 to 50 parts by mass, and still more preferably 0.1 to 30 parts by mass.
  • melt flow rate (MFR) (230 ° C.) of the above-mentioned “mixture containing rubber and / or thermoplastic elastomer and softener” is not particularly limited, but is 3 g / 10 min to 10 g from the viewpoint of obtaining good moldability. / 10 minutes are preferred, and more preferably 4 g / 10 minutes to 9 g / 10 minutes.
  • the “JIS A hardness” in the “mixture containing rubber and / or thermoplastic elastomer and softener” is not particularly limited, but is preferably 30 ° to 90 °, more preferably 40 ° to 85 °.
  • the “JIS A hardness” is 30 ° or more, a resin foam having a high expansion ratio is easily obtained, which is preferable.
  • the “JIS A hardness” is 90 ° or less because a flexible resin foam is easily obtained.
  • the “JIS A hardness” in this specification refers to the hardness measured based on ISO7619 (JIS K6253).
  • the resin composition such as the thermoplastic resin composition may contain an additive as long as the effects of the present invention are not impaired.
  • the additives include cell nucleating agents, crystal nucleating agents, plasticizers, lubricants, colorants (pigments, dyes, etc.), ultraviolet absorbers, antioxidants, anti-aging agents, fillers, reinforcing agents, and antistatic agents.
  • the said additive may be used individually or in combination of 2 or more types.
  • the resin composition preferably contains a cell nucleating agent.
  • a cell nucleating agent is contained in a thermoplastic resin composition, a resin foam having a uniform and fine cell structure can be easily obtained. It is preferable that an agent is included.
  • Examples of the bubble nucleating agent include particles.
  • Examples of the particles include talc, silica, alumina, zeolite, calcium carbonate, magnesium carbonate, barium sulfate, zinc oxide, titanium oxide, aluminum hydroxide, magnesium hydroxide, mica, montmorillonite and other clays, carbon particles, and glass fibers. And carbon tubes.
  • grains may be used individually or in combination of 2 or more types.
  • the content of the cell nucleating agent is not particularly limited.
  • the thermoplastic resin composition is a resin composition containing the thermoplastic resin and “a mixture containing rubber and / or thermoplastic elastomer and softener”, in such a resin composition,
  • the content of the cell nucleating agent is not particularly limited, but is the total amount of the thermoplastic resin and the “mixture (composition) containing rubber and / or thermoplastic elastomer and softener” (hereinafter referred to as “total amount of resin component”). 0.5 parts by mass to 125 parts by mass, and more preferably 1 part by mass to 120 parts by mass with respect to 100 parts by mass.
  • the average particle size (particle size) of the particles is not particularly limited, but is preferably 0.1 ⁇ m to 20 ⁇ m. If the average particle size is less than 0.1 ⁇ m, it may not function as a foam nucleating agent. On the other hand, if the particle size exceeds 20 ⁇ m, it may cause outgassing during foam molding.
  • the resin foam layer becomes flame retardant and can be used for applications requiring flame resistance such as electrical or electronic equipment.
  • the flame retardant may be contained in resin compositions, such as the said thermoplastic resin composition.
  • the flame retardant may be in the form of powder or may be in a form other than powder.
  • an inorganic flame retardant is preferable.
  • the inorganic flame retardant include bromine-based flame retardant, chlorine-based flame retardant, phosphorus-based flame retardant, antimony-based flame retardant, and non-halogen-non-antimony-based inorganic flame retardant.
  • chlorinated flame retardants and brominated flame retardants generate gas components that are harmful to the human body and corrosive to equipment during combustion
  • phosphorous flame retardants and antimony flame retardants are There are problems such as toxicity and explosiveness.
  • a non-halogen-nonantimony inorganic flame retardant is preferable.
  • the non-halogen-nonantimony inorganic flame retardant include hydrated metal compounds such as aluminum hydroxide, magnesium hydroxide, magnesium oxide / nickel oxide hydrate, magnesium oxide / zinc oxide hydrate, and the like. .
  • the hydrated metal oxide may be surface treated.
  • a flame retardant may be used individually or in combination of 2 or more types.
  • the flame retardant preferably has a function as a cell nucleating agent from the viewpoint of obtaining a resin foam layer having flame retardancy and a high expansion ratio.
  • Examples of the flame retardant having a function as a cell nucleating agent include magnesium hydroxide and aluminum hydroxide.
  • the content of the flame retardant is not particularly limited.
  • the content of the flame retardant in the thermoplastic resin composition is not particularly limited, but is preferably 30 to 150 parts by mass, more preferably 60 parts with respect to 100 parts by mass of the total resin component. Parts by mass to 120 parts by mass. If the amount of the flame retardant used is too small, the flame retardant effect is reduced. Conversely, if the amount is too large, it is difficult to obtain a highly foamed foam.
  • the resin composition when the above-mentioned lubricant is contained in the resin composition, the fluidity of the resin composition can be improved and thermal degradation can be suppressed. For this reason, the resin composition such as the thermoplastic resin composition may contain a lubricant.
  • the lubricant is not particularly limited.
  • hydrocarbon lubricants such as liquid paraffin, paraffin wax, microwax and polyethylene wax
  • fatty acid lubricants such as stearic acid, behenic acid and 12-hydroxystearic acid
  • butyl stearate Ester-based lubricants such as stearic acid monoglyceride, pentaerythritol tetrastearate, hydrogenated castor oil, stearyl stearate, and the like.
  • a lubricant may be used alone or in combination of two or more.
  • the content of the lubricant is not particularly limited.
  • the thermoplastic resin composition is a resin composition containing the thermoplastic resin and “a mixture containing rubber and / or thermoplastic elastomer and softener”, in such a resin composition,
  • the content of the lubricant is not particularly limited, but is preferably 0.1 to 10 parts by mass, more preferably 0.5 to 5 parts by mass with respect to 100 parts by mass of the total resin component. .
  • the addition amount exceeds 10 parts by mass, the fluidity may become too high, and the expansion ratio may decrease.
  • it is less than 0.1 parts by mass the fluidity cannot be improved, the stretchability at the time of foaming is lowered, and the foaming ratio may be lowered.
  • the shrinkage-preventing agent has a function of effectively suppressing permeation of the foaming agent gas by forming a molecular film on the surface of the foam film.
  • the said resin composition such as the said thermoplastic resin composition, may contain the shrinkage-preventing agent from the point which obtains the cell structure of the high expansion ratio in the said resin foam layer.
  • the shrinkage-preventing agent is not particularly limited as long as it has an effect of suppressing the permeation of blowing agent gas.
  • fatty acid metal salts for example, fatty acid such as stearic acid, behenic acid, 12-hydroxystearic acid
  • fatty acid amide [fatty acid amide (monoamide or bisamide) of about 12 to 38 carbon atoms (preferably about 12 to 22 carbon atoms) Bisamide is preferably used to obtain a fine cell structure.)
  • stearic acid amide, oleic acid amide, erucic acid amide, methylene bis stearic acid amide, ethylene bis stearic acid amide, lauric acid bisamide, etc. ] Etc. are mentioned.
  • Such anti-shrinkage agents can be used alone or in combination of two or more.
  • the addition amount (content) of the shrinkage inhibitor is not particularly limited.
  • the thermoplastic resin composition is a resin composition containing the thermoplastic resin and “a mixture containing rubber and / or thermoplastic elastomer and softener”, in such a resin composition,
  • the addition amount of the shrinkage inhibitor is not particularly limited, but is preferably 0.5 to 10 parts by mass, more preferably 0.7 to 10 parts by mass with respect to 100 parts by mass of the total amount of resin components.
  • the amount is 8 parts by mass, more preferably 1 part by mass to 6 parts by mass.
  • the addition amount exceeds 10 parts by mass, gas efficiency is lowered in the cell growth process, so that a cell with a small cell diameter can be obtained, but the number of unfoamed portions increases, and the expansion ratio may decrease.
  • the amount is less than 0.5 parts by mass, the coating film is not sufficiently formed, gas escape occurs at the time of foaming, shrinkage occurs, and foaming ratio may decrease.
  • the additive is not particularly limited, and for example, the above-mentioned lubricant and the above-mentioned shrinkage preventing agent may be used in combination.
  • a lubricant such as stearic acid monoglyceride and a shrinkage preventing agent such as erucic acid amide or lauric acid bisamide may be used in combination.
  • the method for producing the resin composition is not particularly limited.
  • the thermoplastic resin composition is not particularly limited, but may be prepared by kneading the thermoplastic resin, other components as necessary, and additives added as necessary. Alternatively, it may be obtained by kneading and extruding with a known melt-kneading extruder such as a uniaxial (single-axis) kneading extruder or a biaxial kneading extruder.
  • the form of the resin composition such as the thermoplastic resin composition is not particularly limited.
  • the resin foam layer in the resin foam composite of the present invention is not particularly limited, but is preferably formed by foaming the resin composition, in particular, after foaming the resin composition, It is preferable to heat-melt the surface to form a surface layer.
  • it is preferably formed by foaming the thermoplastic resin composition (for example, the polyolefin resin composition).
  • the method of foaming a resin composition such as the thermoplastic resin composition is not particularly limited, and examples thereof include a physical foaming method and a chemical foaming method.
  • the physical foaming method is a method of forming cells (bubbles) by impregnating (dispersing) a low boiling point liquid (foaming agent) in a resin composition and then volatilizing the foaming agent.
  • the said chemical foaming method is a method of forming a cell with the gas produced by the thermal decomposition of the compound added to the resin composition.
  • the physical foaming method is preferable from the viewpoint of avoiding contamination of the resin foam layer and the ease of obtaining a fine and uniform cell structure, and the physical foaming method using a high-pressure gas as a foaming agent is more preferable. Therefore, the resin foam layer in the resin foam composite of the present invention is particularly suitable for a resin composition such as the thermoplastic resin composition (for example, the polyolefin resin composition) or the like with a high-pressure gas (for example, described later). It is preferably formed by foaming after impregnating with an inert gas.
  • the thermoplastic resin composition for example, the polyolefin resin composition
  • a high-pressure gas for example, described later
  • the inert gas is not particularly limited, and examples thereof include carbon dioxide, nitrogen gas, air, helium, and argon.
  • the inert gas is preferably carbon dioxide from the viewpoint that the amount of impregnation into the resin composition such as the thermoplastic resin composition is large and the impregnation rate is high.
  • the said inert gas may be used individually or in combination of 2 or more types.
  • the mixing amount (content, impregnation amount) of the foaming agent is not particularly limited, but is 2% by mass to 10% by mass with respect to the total weight (100% by mass) of the resin composition such as the thermoplastic resin composition. Is preferred. By setting it within the above range, the apparent density of the resin foam layer in the resin foam composite of the present invention can be easily set within a predetermined range.
  • the above-mentioned inert gas is preferably in a supercritical state at the time of impregnation from the viewpoint of increasing the impregnation rate into a resin composition such as a thermoplastic resin composition.
  • the resin foam layer in the resin foam composite of the present invention may be formed by foaming the thermoplastic resin composition (for example, the polyolefin resin composition) using a supercritical fluid.
  • the inert gas is a supercritical fluid (supercritical state)
  • the solubility in a resin composition such as a thermoplastic resin composition increases, and high concentration impregnation (mixing) is possible.
  • a resin composition such as a thermoplastic resin composition is impregnated with a high-pressure gas (for example, an inert gas) and then reduced in pressure (for example, to atmospheric pressure).
  • a high-pressure gas for example, an inert gas
  • a method of forming by foaming through is preferable.
  • an unfoamed molded product is obtained by molding a resin composition such as a thermoplastic resin composition, and the unfoamed molded product is impregnated with a high-pressure gas, and then reduced in pressure (for example, up to atmospheric pressure).
  • a gas for example, an inert gas
  • a resin composition such as the thermoplastic resin composition (for example, the polyolefin resin composition) is appropriately used in a sheet form or the like. After forming into a non-foamed resin molded body (unfoamed molded product), the unfoamed resin molded body is impregnated with a high-pressure gas and foamed by releasing the pressure.
  • a resin composition such as the above-mentioned thermoplastic resin composition may be kneaded with a high-pressure gas under high-pressure conditions, and may be molded in a continuous manner in which the pressure is released and molding and foaming are performed simultaneously.
  • the method for forming the unfoamed resin molded body is not particularly limited.
  • a resin composition such as a thermoplastic resin composition is used using an extruder such as a single screw extruder or a twin screw extruder.
  • the resin composition such as a thermoplastic resin composition is uniformly kneaded using a kneader equipped with blades such as a roller, a cam, a kneader, and a banbari type, and a hot plate press or the like is used.
  • a method of press molding to a predetermined thickness using a resin composition such as a thermoplastic resin composition using an injection molding machine is used.
  • the shape of the unfoamed resin molded body is not particularly limited, and examples thereof include a sheet shape, a roll shape, and a plate shape.
  • an unfoamed resin molded body is molded from a resin composition such as a thermoplastic resin composition by an appropriate method for obtaining an unfoamed resin molded body having a desired shape and thickness.
  • a non-foamed resin molded product is placed in a pressure-resistant container, a high-pressure gas is injected (introduced and mixed), and the non-foamed resin molded product is impregnated with gas.
  • the pressure is released, the pressure is released (usually up to atmospheric pressure), and a bubble structure is formed through a decompression step for generating bubble nuclei in the unfoamed resin molded body.
  • thermoplastic resin composition such as a thermoplastic resin composition using an extruder (for example, a single screw extruder, a twin screw extruder, etc.) or an injection molding machine
  • a kneading impregnation step in which a resin composition such as a thermoplastic resin composition is impregnated with a high-pressure gas by introducing (introducing or mixing) the high-pressure gas, and (ii) through a die provided at the tip of the extruder
  • the pressure is released by extruding a resin composition such as a thermoplastic resin composition impregnated with a gas (usually up to atmospheric pressure), and a thermoplastic resin composition or the like is formed by a molding decompression step in which molding and foaming are performed simultaneously.
  • the resin composition is foam-molded.
  • a heating step for growing bubble nuclei by heating may be provided as necessary.
  • bubble nuclei may be grown at room temperature without providing a heating step.
  • the shape may be fixed rapidly by cooling with cold water or the like.
  • the high-pressure gas may be introduced continuously or discontinuously.
  • the heating method for growing the cell nuclei is not particularly limited, and examples thereof include known or conventional methods such as a water bath, an oil bath, a hot roll, a hot air oven, far infrared rays, near infrared rays, and microwaves.
  • the pressure when impregnating the gas is appropriately selected in consideration of the type of gas, operability, etc., for example, 5 MPa or more (for example, 5 MPa to 100 MPa), more preferably 7 MPa or more (for example, 7 MPa to 100 MPa). That is, the resin composition such as the thermoplastic resin composition is preferably impregnated with a gas having a pressure of 5 MPa or more (for example, a pressure of 5 MPa to 100 MPa), and an inert gas having a pressure of 7 MPa or more (for example, a pressure of 7 MPa to 100 MPa). It is more preferable to impregnate.
  • the gas pressure is lower than 5 MPa
  • the bubble growth at the time of foaming is remarkable, the cell becomes too large, and disadvantages such as a decrease in the dustproof effect are likely to occur, which is not preferable.
  • the pressure is low, the amount of impregnation of the gas is relatively small compared to when the pressure is high, and the number of bubble nuclei formed by decreasing the bubble nucleus formation rate is reduced. This is because the bubble diameter is extremely increased.
  • the cell diameter and the bubble density are greatly changed only by slightly changing the impregnation pressure, so that it is difficult to control the cell diameter and the bubble density.
  • the temperature at which the gas is impregnated varies depending on the type of gas and resin used and can be selected in a wide range. In consideration of the above, it is preferably 10 ° C. to 350 ° C. More specifically, the impregnation temperature in the batch method is preferably 10 ° C to 250 ° C, more preferably 40 ° C to 240 ° C, and further preferably 60 ° C to 230 ° C. In the continuous method, the impregnation temperature is preferably 60 ° C. to 350 ° C., more preferably 100 ° C.
  • the temperature during impregnation is preferably 32 ° C. or higher (particularly 40 ° C. or higher) in order to maintain a supercritical state.
  • the resin composition such as the thermoplastic resin composition impregnated with the gas is cooled to a temperature suitable for foam molding (for example, 150 ° C. to 190 ° C.). Also good.
  • the pressure reduction rate in the pressure reduction step is not particularly limited, but preferably 5 MPa / second from the viewpoint of obtaining a cell structure having uniform and fine cells. ⁇ 300 MPa / sec.
  • the heating temperature is preferably 40 ° C. to 250 ° C., and more preferably 60 ° C. to 250 ° C., for example.
  • the cell structure and apparent density of the resin foam layer in the resin foam composite of the present invention are, for example, when foam-molding a resin composition such as a thermoplastic resin composition, depending on the type of resin constituting the resin foam layer. It is adjusted by selecting a foaming method and foaming conditions (for example, the type and amount of a foaming agent, the temperature, pressure and time during foaming).
  • the resin foam layer in the resin foam composite of the present invention is particularly preferably formed by foaming a resin composition such as a thermoplastic resin composition and then slicing the surface. Specifically, it is formed by foaming a resin composition such as the thermoplastic resin composition to obtain a foam (sheet-like foam A), and then slicing the surfaces on both sides of the foam. It is preferable.
  • the sheet-like foam A (foam obtained by foaming a resin composition such as the thermoplastic resin composition) is a layered portion having a higher density than the inside (compared to the inside) near the surface. It often has a layered portion having a low expansion ratio, a skin layer).
  • this layered portion (skin layer) can be removed, and the opening can be provided by exposing the internal cell structure to the foam surface.
  • the resin foam layer of arbitrary thickness can be obtained with sufficient thickness precision by slicing.
  • the skin layer on the surface can be peeled off one surface at a time using a continuous slicing device (slice line) as shown in FIG.
  • a continuous slicing device as shown in FIG.
  • an opening is formed on both surfaces of a long foam original fabric (for example, sheet-like foam A) by passing it twice through a continuous slicing device in order to remove the skin layer on the surface.
  • the resin foam layer used in the present invention is preferably formed by foaming the resin composition and further heat-melting the surface to form a surface layer.
  • foaming the thermoplastic resin composition it is preferable to further heat-melt the surface to form a surface layer.
  • the surface layer is obtained by subjecting the surface of the foam to heat-melting treatment. Is preferably formed.
  • the thickness of the resin foam layer can be adjusted to be thin by melting the surface in the thickness direction.
  • a sheet-like foam obtained by foaming the resin composition and before the heat-melting treatment may be referred to as a “foam structure”.
  • the heat-melting treatment is not particularly limited, but it suppresses the generation of wrinkles during winding, particularly the generation of wrinkles during high-speed winding, and obtains better winding stability and improves the thickness accuracy.
  • the heating and melting treatment is not particularly limited, and examples thereof include a press treatment using a hot roll, a laser irradiation treatment, a contact melting treatment on a heated roll, and a flame treatment.
  • the treatment can be suitably performed using a thermal laminator or the like.
  • the material of the roll include rubber, metal, and fluorine-based resin (for example, Teflon (registered trademark)).
  • the temperature during the heat-melting treatment is not particularly limited, but is 15 ° C. lower than the softening point or melting point of the resin included in the foam structure (more preferably, 12 degrees lower than the softening point or melting point of the resin included in the foam structure).
  • the temperature is 20 ° C. higher than the softening point or melting point of the resin contained in the foam structure (more preferably, 10 ° C. higher than the softening point or melting point of the resin contained in the foam structure). It is preferable that Further, when a heat-melting treatment is performed as a resin foam composite in which an adhesive layer is laminated, the temperature during the heat-melting treatment is not particularly limited, but is 40 ° C. or higher than the softening point or melting point of the resin.
  • the temperature is 20 ° C. higher than the softening point or melting point of the thermoplastic resin contained in the foam structure (more preferably from the softening point or melting point of the thermoplastic resin contained in the foam structure).
  • the temperature is preferably 10 ° C. or higher). It is preferable that the temperature during the heat-melting treatment is higher than a softening point or a temperature 15 ° C.
  • the temperature during the heat-melting treatment is lower than a temperature higher by 20 ° C. than the softening point or melting point of a resin such as a thermoplastic resin, which can be suppressed from shrinking and generating wrinkles.
  • the treatment time of the heat-melting treatment is preferably about 0.1 seconds to 10 seconds, and preferably about 0.5 seconds to 7 seconds, although it depends on the treatment temperature. If the time is too short, melting may not proceed, and if the time is too long, shrinkage may cause wrinkles.
  • the above heat-melting treatment suppresses the generation of wrinkles during winding, particularly the generation of wrinkles during winding at high speed, and obtains better winding stability and further improves the thickness accuracy.
  • a heat-melting treatment apparatus that can adjust a gap (gap, interval) through which the foam structure passes.
  • a heat-melting processing apparatus for example, a continuous processing apparatus having a heating roll (thermal dielectric roll) 23 capable of adjusting the gap shown in FIG. That is, the foamed structure fed from the feed roll 21 is passed through the gap between the heating roll (thermal dielectric roll) 23 and the cooling roll 24, and contact melting processing is performed by the thermal roll (thermal dielectric roll) 23, and the thermal melting processing is performed.
  • the resin foam layer on which the surface layer is formed is wound with a winding roll 25.
  • the resin foam constituting the resin foam layer in the resin foam composite of the present invention has a low apparent density, is thin and flexible, and has excellent winding stability (winding stability). For this reason, a wide and long long roll can be obtained. Moreover, the resin foam which comprises the said resin foam layer is thin, and can make thickness accuracy high.
  • the surface coverage is preferably 40% or more. That is, the resin foam layer preferably has a surface layer having a surface coverage of 40% or more.
  • the surface coverage is preferably 40% or more, more preferably 45% or more, and still more preferably 50% or more.
  • the surface coverage is an index indicating the ratio of non-porous portions (portions that are not pores, bulk, non-foamed portions) existing on the surface, and is defined by the following formula (1). If the surface coverage is 100%, there will be no holes on the surface.
  • Surface coverage (%) [(surface area) ⁇ (area of pores existing on the surface)] / (surface area) ⁇ 100 (1)
  • the thickness of the resin foam layer in the resin foam composite of the present invention is not particularly limited as long as the thickness of the resin foam composite is designed to be 0.35 mm or less, but is 0.03 mm to 0.34 mm.
  • the thickness is preferably 0.04 mm to 0.28 mm, and more preferably 0.05 mm to 0.20 mm.
  • the thickness of the resin foam layer is within the above range, there is an advantage that the resin foam layer can be compressed and inserted into a narrow gap while maintaining high shock absorption.
  • the thickness of the resin foam is less than 0.03 mm, the shock absorption, which is the main application, may be reduced.
  • the thickness of the resin foam layer refers to the thickness including the surface layer.
  • required by following formula (2) of the resin foam layer in the resin foam composite of this invention is not specifically limited, It is preferable that it is 25% or less, More preferably, it is 15% or less, More preferably, it is 10% or less. It is.
  • the “value obtained from the formula (2)” is within 25%, the generation of wrinkles at the time of winding, particularly the generation of wrinkles at the time of winding at high speed, is suppressed, and better winding stability is obtained. Can be preferable.
  • production of a wrinkle can be prevented at the time of bonding with an adhesive layer, and it is preferable.
  • the high speed during winding refers to a speed of 10 to 40 m / min, for example.
  • Thickness tolerance The thickness is measured every 10 mm in the width direction from one end to the other at one point in the length direction, and one point at a point moved 1 m in the length direction from one point in the length direction. The thickness is measured every 10 mm in the width direction from the end to the other end, and the difference between the maximum value and the minimum value of all the measured values obtained.
  • Median thickness Measured thickness every 10 mm in the width direction from one end to the other at one point in the length direction, and further moved 1 m in the length direction from one point in the length direction. The thickness is measured every 10 mm in the width direction from one end portion to the other end portion, and is a value located in the center when all the obtained measurement values are arranged in ascending order.
  • the resin foam used for the resin foam layer may be a sheet-like material, wound up, or in a roll shape (rolled body). .
  • the width of the resin foam used for the resin foam layer is not particularly limited, but is 300 mm or more (for example, 300 mm to 1500 mm). Preferably, it is 400 mm or more (for example, 400 mm to 1200 mm), more preferably 500 mm or more (for example, 500 mm to 1000 mm). Since the said width
  • the length is not particularly limited, but is 5 m or more (for example, 5 m To 1000 m), preferably 30 m or more (for example, 30 m to 500 m), and more preferably 50 m or more (for example, 50 m to 300 m).
  • the pressure-sensitive adhesive layer refers to a layered material that provides an adhesive surface for the resin foam layer and an adhesive surface for an adherend.
  • the pressure-sensitive adhesive layer in the resin foam composite of the present invention includes a base material-less double-sided pressure-sensitive adhesive sheet (a pressure-sensitive adhesive sheet composed of only one pressure-sensitive adhesive layer), a double-sided pressure-sensitive adhesive sheet with a base material (both sides of the base material)
  • the pressure-sensitive adhesive sheet having a pressure-sensitive adhesive layer), a pressure-sensitive adhesive layer with a substrate described later, and the like are included.
  • the pressure-sensitive adhesive layer in the resin foam composite of the present invention is not particularly limited.
  • acrylic pressure-sensitive adhesive rubber pressure-sensitive adhesive (natural rubber pressure-sensitive adhesive, synthetic rubber pressure-sensitive adhesive, etc.), silicone pressure-sensitive adhesive, polyester It can be formed from a pressure-sensitive adhesive such as a pressure-sensitive adhesive, urethane pressure-sensitive adhesive, polyamide-based pressure-sensitive adhesive, epoxy-based pressure-sensitive adhesive, vinyl alkyl ether-based pressure-sensitive adhesive, or fluorine-based pressure-sensitive adhesive.
  • a pressure-sensitive adhesive such as a pressure-sensitive adhesive, urethane pressure-sensitive adhesive, polyamide-based pressure-sensitive adhesive, epoxy-based pressure-sensitive adhesive, vinyl alkyl ether-based pressure-sensitive adhesive, or fluorine-based pressure-sensitive adhesive.
  • an acrylic pressure-sensitive adhesive is preferably used because it has high adhesive properties and heat resistance.
  • the pressure-sensitive adhesives may be used alone or in combination of two or more.
  • the pressure-sensitive adhesive may be any form of pressure-sensitive adhesive such as an emulsion-based pressure-sensitive adhesive, a solvent-based pressure-sensitive adhesive, a hot-melt pressure-sensitive adhesive, an oligomer-based pressure-sensitive adhesive, or a solid-based pressure-sensitive adhesive.
  • the pressure-sensitive adhesive forming the pressure-sensitive adhesive layer in the resin foam composite of the present invention is preferably an acrylic pressure-sensitive adhesive because of its high transparency and excellent heat resistance and light resistance. That is, the pressure-sensitive adhesive layer in the resin foam composite of the present invention is preferably an acrylic pressure-sensitive adhesive layer.
  • the pressure-sensitive adhesive contains a base polymer and, as necessary, appropriate additives such as a crosslinking agent, a tackifier, a softener, a plasticizer, a filler, an anti-aging agent, and a colorant.
  • the acrylic pressure-sensitive adhesive has an acrylic polymer as a pressure-sensitive adhesive component (base polymer) or a main agent, and if necessary, a crosslinking agent, a tackifier, a softener, a plasticizer, a filler, an anti-aging agent.
  • appropriate additives such as colorants.
  • (Copolymerizable monomer) is preferably used as the other monomer component.
  • Examples of the (meth) acrylic acid alkyl ester include, for example, methyl (meth) acrylate, ethyl (meth) acrylate, propyl (meth) acrylate, isopropyl (meth) acrylate, butyl (meth) acrylate, (meth ) Isobutyl acrylate, s-butyl (meth) acrylate, t-butyl (meth) acrylate, pentyl (meth) acrylate, hexyl (meth) acrylate, heptyl (meth) acrylate, octyl (meth) acrylate , 2-ethylhexyl (meth) acrylate, isooctyl (meth) acrylate, nonyl (meth) acrylate, isononyl (meth) acrylate, decyl (meth) acrylate, isodecyl (meth) acrylate
  • (meth) acrylic acid alkyl ester As the above (meth) acrylic acid alkyl ester, among them, a (meth) acrylic acid alkyl ester having a linear or branched alkyl group having 4 to 18 carbon atoms (“(meth) acrylic acid C 4-18 (It may be referred to as “alkyl ester”).
  • the said (meth) acrylic-acid alkylester can be suitably selected according to the target adhesiveness etc.
  • the said (meth) acrylic-acid alkylester may be used individually or in combination of 2 or more types.
  • Examples of the copolymerizable monomer in the acrylic polymer include carboxyl group-containing monomers such as (meth) acrylic acid, itaconic acid, maleic acid, fumaric acid, crotonic acid, and isocrotonic acid, or anhydrides thereof.
  • Sulfonic acid group-containing monomers such as sodium vinyl sulfonate; aromatic vinyl compounds such as styrene and substituted styrene; cyano group-containing monomers such as acrylonitrile; olefins such as ethylene, propylene, and butadiene; vinyl acetate, etc.
  • Vinyl esters vinyl chloride; amide group-containing monomers such as acrylamide, methacrylamide, N-vinylpyrrolidone, N, N-dimethyl (meth) acrylamide; hydroxyl such as hydroxyalkyl (meth) acrylate and glycerin dimethacrylate Group-containing monomer; ) Amino group-containing monomers such as aminoethyl acrylate and (meth) acryloylmorpholine; Imido group-containing monomers such as cyclohexylmaleimide and isopropylmaleimide; Glycidyl (meth) acrylate, Methyl glycidyl (meth) acrylate, etc.
  • amide group-containing monomers such as acrylamide, methacrylamide, N-vinylpyrrolidone, N, N-dimethyl (meth) acrylamide
  • hydroxyl such as hydroxyalkyl (meth) acrylate and glycerin dime
  • Epoxy group-containing monomer isocyanate group-containing monomer such as 2-methacryloyloxyethyl isocyanate.
  • the copolymerizable monomers may be used alone or in combination of two or more. Suitable examples of the copolymerizable monomer include a modifying monomer
  • the base polymer in the pressure-sensitive adhesive can be prepared by a conventional polymerization method.
  • the acrylic polymer can be prepared by a conventional polymerization method such as a solution polymerization method, an emulsion polymerization method, or an ultraviolet irradiation polymerization method.
  • the pressure-sensitive adhesive layer can be formed by using a known or conventional forming method.
  • a method of applying a pressure-sensitive adhesive on a predetermined site or surface application method
  • a release film such as a release liner
  • Examples thereof include a method (transfer method) of applying an adhesive to form an adhesive layer and then transferring the adhesive layer onto a predetermined site or surface.
  • a known or conventional coating method such as a casting method, a roll coater method, a reverse coater method, a doctor blade method
  • a known or conventional coating method such as a casting method, a roll coater method, a reverse coater method, a doctor blade method
  • the pressure-sensitive adhesive layer in the resin foam composite of the present invention may be a single layer or a laminate.
  • the adhesive layer in the resin foam composite of this invention may be an adhesive layer in the adhesive layer with a base material containing a suitable base material.
  • the pressure-sensitive adhesive layer with a substrate may be, for example, a double-sided pressure-sensitive adhesive type having pressure-sensitive adhesive layers on both sides of the substrate.
  • the total thickness (thickness) of the resin foam composite includes the thickness of the resin foam and the base material. And the thickness of the adhesive layer with adhesive.
  • the resin foam composite of the present invention may be a resin foam composite in which the resin foam layer and the adhesive layer with a base material are laminated.
  • the resin foam composite of the present invention includes the resin foam layer, the pressure-sensitive adhesive layer in the pressure-sensitive adhesive layer with the base material, the base material in the pressure-sensitive adhesive layer with the base material, and the pressure-sensitive adhesive in the pressure-sensitive adhesive layer with the base material.
  • the layers may have a configuration in which the layers are stacked in this order.
  • this structure is corresponded to the structure by which the said resin foam layer and the adhesive layer with a double-sided adhesive type base material were laminated
  • the above-mentioned adhesive layer with a substrate is provided with a substrate in which an adhesive layer made of the above-mentioned adhesive is provided on both sides of a paper-based substrate, a fiber-based substrate, a metal-based substrate, a plastic substrate such as a PET film, etc. It may be an adhesive layer.
  • an adhesive layer with a base material is a double-sided adhesive type
  • the composition of two adhesive layers may be the same, and may differ.
  • the thickness of two adhesive layers may be the same, and may differ.
  • the material of the base material in the adhesive layer with a base material is not particularly limited, but a plastic material is suitable.
  • a plastic material material of the plastic film
  • various engineer plastic materials are preferably exemplified.
  • the plastic material include polyester [polyethylene terephthalate (PET), polyethylene naphthalate (PEN), polybutylene terephthalate (PBT), etc.]; olefin resin [polyethylene (PE), polypropylene (PP), ethylene-propylene copolymer Olefin-based resin containing ⁇ -olefin as monomer component such as polymer, ethylene-vinyl acetate copolymer (EVA), etc.]; polyethersulfone (PES) (polyethersulfone); polysulfone; polyvinylchloride (PVC); Polyphenylene sulfide (PPS); amide resin [polyamide (nylon), wholly aromatic polyamide (aramid), etc.], polyimide (PI
  • polyester in particular, polyethylene terephthalate
  • a base material in the said adhesive layer with a base material especially a polyester film (especially a polyethylene terephthalate film) is mentioned suitably.
  • the said base material may have any form of a single layer and a lamination
  • the thickness of the substrate is not particularly limited, but is preferably 0.0005 mm to 0.038 mm, more preferably 0.001 mm to 0.025 mm, and still more preferably 0.002 mm to 0.012 mm. is there.
  • the pressure-sensitive adhesive layer may have a pressure-sensitive adhesive surface protected by a release film (separator) (for example, release paper, release film, etc.).
  • a release film for example, release paper, release film, etc.
  • the release film (separator) is not included in the total thickness (thickness) of the resin foam composite of the present invention.
  • the thickness of the pressure-sensitive adhesive layer in the resin foam composite of the present invention is 0.0005 mm to 0.06 mm, preferably 0.0007 mm to 0.05 mm, more preferably 0.001 mm to 0.04 mm. More preferably, it is 0.002 mm to 0.04 mm.
  • the thickness of the pressure-sensitive adhesive layer is within the above range, there is an advantage that the foam can be compressed while maintaining an appropriate adhesive force.
  • the thickness of the pressure-sensitive adhesive layer is less than 0.0005 mm, sufficient adhesive strength cannot be obtained.
  • the thickness of the pressure-sensitive adhesive layer exceeds 0.06 mm, even if the pressure-sensitive adhesive layer is compressed in the thickness direction, The thickness of the pressure-sensitive adhesive layer after compression may not be sufficiently small, and even when the foam is compressed, it may not be smaller than the size of the gap to be applied. As a result, when trying to apply the resin foam composite to the gap, it may be difficult to use.
  • the thickness of an adhesive layer when the adhesive layer is an adhesive layer in an adhesive layer with a base material, the thickness of an adhesive layer means the thickness containing a base material.
  • the thickness of the pressure-sensitive adhesive layer in the resin foam composite of the present invention is a pressure-sensitive adhesive layer in a double-sided pressure-sensitive adhesive layer with a base
  • the thickness of the pressure-sensitive adhesive layer includes the thickness of the base and the both sides of the base And the thickness of the two pressure-sensitive adhesive layers.
  • the resin foam composite of this invention is the structure by which the said resin foam layer and the said adhesive layer were laminated
  • the shape of the resin foam composite of the present invention is not particularly limited, but may be a sheet shape (film shape) or a roll shape, and is punched or cut into various shapes depending on the application. Also good.
  • the method for producing the resin foam composite of the present invention is not particularly limited.
  • the resin foam composite of the present invention is produced by providing the pressure-sensitive adhesive layer on the resin foam layer.
  • the pressure-sensitive adhesive layer is provided on the resin foam layer, by adjusting the tension applied to the resin foam layer and the pressure-sensitive adhesive layer as low as possible, the thickness of the resin foam layer and the pressure-sensitive adhesive layer is very high. Even if it is thin, it does not cause wrinkles and the like, and a resin foam composite can be produced in a good state, particularly in a good appearance.
  • the tension at the time of applying a tension for the purpose of producing a resin foam composite in a good state, particularly in a good appearance state is not particularly limited.
  • the width of the resin foam layer and the pressure-sensitive adhesive layer is 500 mm 1 to 100N is preferable, more preferably 1 to 90N, and still more preferably 2 to 80N.
  • the tension is preferably 2 to 200 N, more preferably 2 to 180 N, and further preferably 4 to 160 N.
  • a tension of 100 N or more at a width of 500 mm and a tension of 200 N or more at a width of 1000 mm is applied, if the resin foam layer and the pressure-sensitive adhesive layer are thin, the resin foam layer and the pressure-sensitive adhesive layer are stretched due to the tension.
  • the tension applied to the resin foam layer and the pressure-sensitive adhesive layer is removed, the resin foam layer and the pressure-sensitive adhesive layer are contracted (shrinked) from the stretched state to the original state.
  • the pressure-sensitive adhesive layer is provided on the resin foam layer, wrinkles or the like are likely to occur.
  • tensile_strength which concerns on a resin foam layer and an adhesive layer is adjusted as winding tension
  • the pressure-sensitive adhesive layer may be provided only on one side of the resin foam layer, or may be provided on both sides. Moreover, when the said resin foam layer has a surface layer formed by heat-melting process, the said adhesive layer may be provided in the surface which has the surface layer in the said resin foam layer, or the said resin foam layer However, it is preferably provided on the surface of the resin foam layer that does not have the surface layer. In the resin foam composite of the present invention, the resin foam layer and the pressure-sensitive adhesive layer may be configured to be in direct contact with each other, but an intermediate layer such as an undercoat layer is provided for the purpose of improving adhesion. May be.
  • the total thickness (thickness) of the resin foam composite of the present invention is 0.35 mm or less.
  • the total thickness of the resin foam composite is not particularly limited as long as it is 0.35 mm or less, but is preferably 0.06 mm to 0.33 mm, more preferably 0.07 mm to 0.30 mm, and still more preferably. It is 0.08 mm to 0.25 mm. Since the total thickness is 0.35 mm or less, even if the gap to which the resin foam composite is applied is small, the function of the resin foam (for example, sealability, flexibility, shock absorption, etc.) can be exhibited. Moreover, if the total thickness (thickness) of a resin foam composite is 0.05 mm or more, it will become easy to ensure required intensity
  • the ratio of the thickness of the resin foam layer to the thickness of the pressure-sensitive adhesive layer is not particularly limited. It is preferable to determine the thickness of the resin foam layer and the pressure-sensitive adhesive layer so as to be 1 or more.
  • the ratio of the thickness of the resin foam layer to the thickness of the pressure-sensitive adhesive layer is more preferably 3.0 or more, and further preferably 5.0 or more. It is.
  • the ratio of the thickness of the resin foam layer to the thickness of the pressure-sensitive adhesive layer is usually 13 or less, preferably 11 or less. If the thickness ratio is 2.1 or more, there is an advantage that the foam can also be compressed within a range of appropriate adhesive strength. That is, since the foam can be compressed while ensuring sufficient adhesive force, the resin foam composite can be suitably applied to a smaller gap.
  • the resin foam composite of the present invention is preferably used for the purpose of attaching (attaching) various members or parts to a predetermined site.
  • an electrical or electronic device it is suitably used when attaching (attaching) a component constituting the electrical or electronic device to a predetermined part. That is, the resin foam composite of the present invention is preferably for electric or electronic equipment.
  • various members or parts are not particularly limited, but for example, various members or parts in electrical or electronic devices are preferably mentioned.
  • Examples of such a member or component for electric or electronic equipment include an image display member (display unit) (particularly a small image display member) mounted on an image display device such as a liquid crystal display, an electroluminescence display, or a plasma display. ), Optical members or optical parts such as cameras and lenses (particularly small cameras and lenses) that are mounted on mobile communication devices such as so-called “mobile phones” and “portable information terminals”.
  • the resin foam composite of the present invention is provided around the display unit such as an LCD (liquid crystal display) or the display unit and the casing (such as an LCD (liquid crystal display)) for the purpose of dust prevention, light shielding, buffering, etc. (Window part) and can be used.
  • the display unit such as an LCD (liquid crystal display) or the display unit and the casing (such as an LCD (liquid crystal display)) for the purpose of dust prevention, light shielding, buffering, etc. (Window part) and can be used.
  • the resin foam composite of the present invention is thin and flexible and can further increase the thickness accuracy. For this reason, even if the resin foam composite of the present invention is used for an electrical or electronic device in which a large number of parts and members such as a smartphone equipped with a touch panel are laminated, a high repulsive force is not generated. Display defects such as liquid crystal display unevenness in the display section are not caused.
  • the average cell diameter was 60 ⁇ m, and the apparent density was 0.047 g / cm 3 .
  • Resin foam layer A thickness 0.20 mm
  • Resin foam layer B thickness 0.30 mm
  • Resin foam layer C thickness 0.40 mm
  • Double-sided pressure-sensitive adhesive tape (trade name “No. 5603”, manufactured by Nitto Denko Corporation, pressure-sensitive adhesive tape provided with an acrylic pressure-sensitive adhesive layer on both surfaces of a PET substrate, tape thickness (thickness): 0.03 mm) was bonded to obtain a resin foam composite.
  • the total thickness of this resin foam composite was 0.23 mm.
  • Example 2 Double-sided pressure-sensitive adhesive tape (trade name “No. 5603”, manufactured by Nitto Denko Corporation, pressure-sensitive adhesive tape provided with an acrylic pressure-sensitive adhesive layer on both sides of a PET substrate, tape thickness (thickness): 0.03 mm) was bonded to obtain a resin foam composite. The total thickness of this resin foam composite was 0.33 mm.
  • Example 3 By passing the resin foam layer A through the continuous processing apparatus in which the temperature of the induction heating roll is set to 160 ° C. and the gap is set to 0.10 mm, one side is melt-processed by heat, and one side is heat-melted. A resin foam layer having a thickness of 0.10 mm was obtained. The surface coverage of the heat-melted surface layer was 89.1%. Thereafter, a double-sided pressure-sensitive adhesive tape (trade name “No. 5603”, manufactured by Nitto Denko Corporation, a pressure-sensitive adhesive tape provided with an acrylic pressure-sensitive adhesive layer on both sides of a PET base material, tape thickness (thickness) : 0.03 mm) was bonded together to obtain a resin foam composite. The total thickness of this resin foam composite was 0.13 mm.
  • Double-sided pressure-sensitive adhesive tape (trade name “No. 5603”, manufactured by Nitto Denko Corporation, pressure-sensitive adhesive tape provided with an acrylic pressure-sensitive adhesive layer on both surfaces of a PET substrate, tape thickness (thickness): 0.03 mm) was bonded. The total thickness of the obtained structure was 0.23 mm.
  • the PET release liner (thickness 0.075 mm) protecting the pressure-sensitive adhesive layer surface attached, the structure is passed through the continuous processing apparatus in which the temperature of the induction heating roll is set to 220 ° C. and the gap is set to 0.15 mm. As a result, the surface of the structure to which the double-sided pressure-sensitive adhesive tape was not applied was melted with heat to obtain a resin foam composite.
  • the thickness of the resin foam layer whose one surface was heat-melted was 0.07 mm
  • the thickness of the pressure-sensitive adhesive layer was 0.03 mm
  • the total thickness was 0.10 mm.
  • the surface coverage of the heat-melted surface layer was 88.4%.
  • Example 5 By passing the resin foam layer A through the continuous processing apparatus in which the temperature of the induction heating roll is set to 160 ° C. and the gap is set to 0.10 mm, one side is melt-processed by heat, and one side is heat-melted. A resin foam layer having a thickness of 0.10 mm was obtained. The surface coverage of the heat-melted surface layer in this resin foam layer was 89.1%. Thereafter, a double-sided pressure-sensitive adhesive tape (trade name “No. 5601”, manufactured by Nitto Denko Corporation, an acrylic pressure-sensitive adhesive layer on both sides of a PET base material is provided on the surface of the resin foam layer that has not been heat-melted. And a tape thickness (thickness): 0.01 mm) to obtain a resin foam composite. The total thickness of this resin foam composite was 0.11 mm.
  • Double-sided pressure-sensitive adhesive tape (trade name “No. 5601”, manufactured by Nitto Denko Corporation, pressure-sensitive adhesive tape provided with an acrylic pressure-sensitive adhesive layer on both surfaces of a PET substrate, tape thickness (thickness): 0.01 mm). The total thickness of the obtained structure was 0.21 mm.
  • the PET release liner (thickness 0.075 mm) protecting the pressure-sensitive adhesive layer surface attached, the structure is passed through the continuous processing apparatus in which the temperature of the induction heating roll is set to 220 ° C. and the gap is set to 0.15 mm.
  • the surface on which the double-sided pressure-sensitive adhesive tape was not attached was melted with heat to obtain a resin foam composite.
  • the thickness of the resin foam layer whose one surface was heat-melted was 0.07 mm
  • the thickness of the pressure-sensitive adhesive layer was 0.01 mm
  • the total thickness was 0.08 mm.
  • the surface coverage of the heat-melted surface layer was 94.1%.
  • Example 7 By passing the resin foam layer A through the continuous processing apparatus in which the temperature of the induction heating roll is set to 160 ° C. and the gap is set to 0.10 mm, one side is melt-processed by heat, and one side is heat-melted. A resin foam layer having a thickness of 0.10 mm was obtained. The surface coverage of the heat-melted surface layer in this resin foam layer was 89.1%. Thereafter, a double-sided pressure-sensitive adhesive tape (trade name “No. 5600”, manufactured by Nitto Denko Corporation, an adhesive tape provided with an acrylic pressure-sensitive adhesive layer on both surfaces of a PET base material on the surface of the resin foam layer that has not been heat-melted. And a tape thickness (thickness: 0.005 mm) were bonded together to obtain a resin foam composite. The total thickness of this resin foam composite was 0.105 mm.
  • Double-sided pressure-sensitive adhesive tape (trade name “No. 5610”, manufactured by Nitto Denko Corporation, pressure-sensitive adhesive tape provided with an acrylic pressure-sensitive adhesive layer on both surfaces of a PET substrate, tape thickness (thickness): 0.10 mm) was bonded to obtain a resin foam composite. The total thickness of this resin foam composite was 0.30 mm.
  • Double-sided pressure-sensitive adhesive tape (trade name “No. 5603”, manufactured by Nitto Denko Corporation, pressure-sensitive adhesive tape provided with an acrylic pressure-sensitive adhesive layer on both sides of a PET substrate, tape thickness (thickness): 0.03 mm) was bonded to obtain a resin foam composite. The total thickness of this resin foam composite was 0.43 mm.
  • Double-sided adhesive tape (trade name “No. 5603”, Nitto) on polyolefin-based foam (trade name “Bora La WF03”, manufactured by Sekisui Chemical Co., Ltd., thickness 0.30 mm, density: 0.20 g / cm 3 , sheet shape)
  • a resin foam composite was obtained by pasting together an adhesive tape made by Denko Co., Ltd., and an adhesive tape provided with an acrylic adhesive layer on both sides of the PET substrate, tape thickness (thickness): 0.03 mm. The total thickness of this resin foam composite was 0.33 mm.
  • a digital microscope (trade name “VHX-500” manufactured by Keyence Corporation) is used to capture an enlarged image of the foam bubble, and image analysis is performed using image analysis software (trade name “Win ROOF”, manufactured by Mitani Corporation). The average cell diameter ( ⁇ m) was determined. Note that the number of bubbles in the captured enlarged image is about 100.
  • a lens camera with built-in illumination (device name “0P72404”, manufactured by Keyence Corporation) was used as the illumination and camera, and a zoom lens (trade name “VH-Z100”, manufactured by Keyence Corporation) was used as the lens.
  • the illuminance was adjusted using an illuminometer (trade name “VHX600”, manufactured by Custom Inc.).
  • a resin foam layer having an apparent density of 0.03 to 0.30 g / cm 3 and a compressive stress of 50 N / cm 2 or less at 50% compression is used, and a thickness is 0.005 mm to 0.00.
  • a resin foam composite having a total thickness of 0.35 mm or less is used, and in a corresponding evaluation when inserted into a 0.1 mm gap, the compression load is 3.5 N / cm. Good results with 2 or less could be obtained.
  • Comparative Example 1 and Comparative Example 3 the thickness of the pressure-sensitive adhesive layer is not less than a specific range, and in Comparative Example 2, the total thickness of the resin foam composite is not less than the specific range. It can be seen that the compressive load value when 1 mm is inserted is high. Moreover, in the comparative example 4 which is a foam whose apparent density is a specific value or more, it is understood that the cushioning property is poor and the compression load value when 0.1 mm is inserted becomes high. Furthermore, it can be seen that also in Comparative Example 5 using a foam having a compressive stress at the time of 50% compression of a specific value or more, the cushioning property is poor, and the compressive load value when 0.1 mm is inserted becomes high.
  • the resin foam composite of the present invention is used for applications such as a dustproof material, a seal material, a soundproof material, and a buffer material used when attaching various members or parts to a predetermined site.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Health & Medical Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Medicinal Chemistry (AREA)
  • Polymers & Plastics (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Laminated Bodies (AREA)
  • Manufacture Of Porous Articles, And Recovery And Treatment Of Waste Products (AREA)
  • Compositions Of Macromolecular Compounds (AREA)

Abstract

Provided is a flexible resin foam composite that can be used for design gaps, which have become extremely narrow as electronics have become thinner. A resin foam composite obtained by laminating a resin foam layer and an adhesive layer, wherein the apparent density of the resin foam layer is 0.03-0.30 g/cm3, the compressive stress during 50% compression is 5.0 N/cm2 or lower, the thickness of the adhesive layer is 0.0005 mm-0.06 mm, and the total thickness of the resin foam composite is 0.35 mm or less. The ratio of the thickness of the resin foam layer and the thickness of the adhesive layer (thickness of resin foam layer/thickness of adhesive layer) is preferably 2.1 or higher.

Description

樹脂発泡複合体Resin foam composite
 本発明は、樹脂発泡体層と粘着剤層とが積層された樹脂発泡複合体に関する。 The present invention relates to a resin foam composite in which a resin foam layer and an adhesive layer are laminated.
 樹脂発泡体は、携帯電話やスマートフォン、タブレットPC等の電子機器のシール材や緩衝材として用いられている。特に貼り合わせ作業時にその位置合わせを簡便にするため、粘着剤層を設けた樹脂発泡複合体が好適に使用される。近年、電子機器の小型化や画面の大型化に伴いシール材や緩衝材として使用される樹脂発泡複合体の面積は小さくなっており、樹脂発泡複合体には、小さな面積でも十分なシール性や緩衝性を発揮する柔軟性が求められている。また、電子機器では薄層化も進んでおり、樹脂発泡複合体には、薄層化も求められている。 Resin foams are used as sealing materials and cushioning materials for electronic devices such as mobile phones, smartphones, and tablet PCs. In particular, a resin foam composite provided with a pressure-sensitive adhesive layer is preferably used in order to simplify the alignment during the bonding operation. In recent years, the area of resin foam composites used as sealing materials and cushioning materials has become smaller along with the downsizing of electronic devices and the enlargement of screens. There is a demand for flexibility to exhibit buffering properties. Electronic devices are also being made thinner, and resin foam composites are also required to be thinner.
 薄い樹脂発泡体として、発泡中または後工程において圧縮処理や延伸処理が施される方法や発泡後に塗工処理が施される方法により得られる発泡シートが知られている(例えば、特許文献1、特許文献2参照)。しかし、上記発泡シートには、発泡倍率を高くすることが難しいという問題があり、25%圧縮した際の反発力(25%圧縮時の反発応力)が3N/cm2を超えるなど、圧縮した際の反発力が大きいという問題があった。 As a thin resin foam, there is known a foam sheet obtained by a method in which a compression treatment or a stretching treatment is performed during foaming or in a later step or a method in which a coating treatment is performed after foaming (for example, Patent Document 1, Patent Document 2). However, the foamed sheet has a problem that it is difficult to increase the expansion ratio, and when the compression is performed such that the repulsion force at 25% compression (repulsion stress at 25% compression) exceeds 3 N / cm 2. There was a problem that the repulsive force of.
 また近年、携帯機器の薄型化に伴い、樹脂発泡体が用いられる設計ギャップ(ギャップ、隙間)が非常に狭くなり(例えば、0.1mm以下のギャップ)、樹脂発泡複合体は設計公差なども考慮して50%以上に圧縮されて用いられることも珍しくない。しかし、このような表示機器の非常に狭い設計ギャップに上記の圧縮した際の反発力が大きい樹脂発泡複合体を用いると、高い反発力から、例えば表示部の液晶に表示ムラなどが発生し、表示不良を引き起こすことがあった。 In recent years, with the thinning of mobile devices, the design gap (gap, gap) in which resin foam is used becomes very narrow (for example, a gap of 0.1 mm or less), and design tolerances are taken into account for resin foam composites. Thus, it is not uncommon to use compressed to 50% or more. However, when using a resin foam composite that has a large repulsive force when compressed in a very narrow design gap of such a display device, for example, display unevenness occurs in the liquid crystal of the display unit due to the high repulsive force, Display failure may occur.
 また厚みの薄い樹脂発泡体を用いて圧縮率を下げることにより反発力を低減することが考えられる。しかし前記したように、樹脂発泡体に粘着剤層を設けた樹脂発泡複合体の場合、粘着剤層自体は圧縮されないため、厚い粘着剤層を用いると、反発力が高くなり表示ムラが発生することがあった。 Also, it is conceivable to reduce the repulsive force by reducing the compression rate using a thin resin foam. However, as described above, in the case of a resin foam composite in which a resin foam is provided with a pressure-sensitive adhesive layer, the pressure-sensitive adhesive layer itself is not compressed. Therefore, if a thick pressure-sensitive adhesive layer is used, the repulsive force increases and display unevenness occurs. There was a thing.
特開2009-190195号公報JP 2009-190195 A 特開2010-1407号公報JP 2010-1407
 従って、本発明の目的は、電子機器の薄型化に伴い、非常に狭くなった設計ギャップに対して使用できる柔軟な樹脂発泡複合体を提供することにある。また、貼り合わせ作業時にその位置合わせを簡便にすることができる樹脂発泡複合体を提供することにある。 Therefore, an object of the present invention is to provide a flexible resin foam composite that can be used for a design gap that has become very narrow as the electronic equipment is made thinner. Moreover, it is providing the resin foam composite which can make the position alignment simple at the time of bonding operation | work.
 本発明者らは、上記目的を達成するため鋭意検討した結果、特定の樹脂発泡体層を用い、樹脂発泡複合体の厚みおよび粘着剤層の厚みを所定のものにすることで、反発力の上昇を抑えつつ、位置合わせを簡便にすることができる樹脂発泡複合体を得ることができることを見出した。本発明はこれらの知見に基づいて完成されたものである。 As a result of intensive studies to achieve the above object, the present inventors have used a specific resin foam layer, and by making the thickness of the resin foam composite and the thickness of the adhesive layer predetermined, It was found that a resin foam composite capable of simplifying the alignment while suppressing the rise can be obtained. The present invention has been completed based on these findings.
 すなわち、本発明は、樹脂発泡体層と粘着剤層とが積層された樹脂発泡複合体であって、上記樹脂発泡体層の見掛け密度が0.03~0.30g/cm3、50%圧縮時の圧縮応力が5.0N/cm2以下であり、粘着剤層の厚みが0.0005mm~0.06mmであり、樹脂発泡複合体の総厚が0.35mm以下である、樹脂発泡複合体を提供する。 That is, the present invention is a resin foam composite in which a resin foam layer and an adhesive layer are laminated, and the apparent density of the resin foam layer is 0.03 to 0.30 g / cm 3 , 50% compression. Resin foam composite in which the compression stress at the time is 5.0 N / cm 2 or less, the thickness of the pressure-sensitive adhesive layer is 0.0005 mm to 0.06 mm, and the total thickness of the resin foam composite is 0.35 mm or less I will provide a.
 特に上記樹脂発泡体層の厚みと、上記粘着剤層の厚みの比(樹脂発泡体層の厚み/粘着剤層の厚み)は、2.1以上であることが好ましい。 Particularly, the ratio of the thickness of the resin foam layer to the thickness of the pressure-sensitive adhesive layer (the thickness of the resin foam layer / the thickness of the pressure-sensitive adhesive layer) is preferably 2.1 or more.
 また上記粘着剤層は、アクリル系粘着剤層であることが好ましい。 The pressure-sensitive adhesive layer is preferably an acrylic pressure-sensitive adhesive layer.
 さらに上記樹脂発泡複合体では、上記樹脂発泡体層を構成する樹脂が、熱可塑性樹脂であることが好ましく、さらにポリオレフィン樹脂であることがより好ましい。 Further, in the resin foam composite, the resin constituting the resin foam layer is preferably a thermoplastic resin, and more preferably a polyolefin resin.
 また上記樹脂発泡複合体では、上記樹脂発泡体層の少なくとも一面に、加熱溶融処理により形成された表面層を有することが好ましい。 Further, the resin foam composite preferably has a surface layer formed by heat melting treatment on at least one surface of the resin foam layer.
 また上記樹脂発泡複合体では、上記樹脂発泡体層が、樹脂に高圧のガスを含浸させた後、減圧する工程を経て形成されていることが好ましい。 In the resin foam composite, the resin foam layer is preferably formed through a process of depressurizing after impregnating the resin with a high-pressure gas.
 さらに上記樹脂発泡複合体では、上記ガスが、不活性ガスであることが好ましく、二酸化炭素であることがより好ましい。 Further, in the resin foam composite, the gas is preferably an inert gas, and more preferably carbon dioxide.
 さらに上記樹脂発泡複合体では、上記高圧のガスが、超臨界状態であることがより好ましい。 Furthermore, in the resin foam composite, the high-pressure gas is more preferably in a supercritical state.
 また上記樹脂発泡複合体では、上記樹脂発泡体層が、独立気泡構造または半連続半独立気泡構造を有していることが好ましい。 In the resin foam composite, the resin foam layer preferably has a closed cell structure or a semi-continuous semi-closed cell structure.
 本発明の樹脂発泡複合体は、上記構成を有するため、柔軟で、圧縮した際の反発力の上昇を抑えることができる。このため、本発明の樹脂発泡複合体は、例えば液晶表示機器の非常に狭いギャップに対して使用しても、表示ムラや表示不良を引き起こすことがない。また、本発明の樹脂発泡複合体は、特に貼り合わせ作業時にその位置合わせを簡便にすることができる。 Since the resin foam composite of the present invention has the above configuration, it is flexible and can suppress an increase in repulsive force when compressed. For this reason, even if the resin foam composite of this invention is used with respect to the very narrow gap of a liquid crystal display device, for example, it does not cause a display nonuniformity or a display defect. Moreover, the resin foam composite of this invention can simplify the positioning especially at the time of bonding operation.
図1は、連続スライス装置の概略図である。FIG. 1 is a schematic diagram of a continuous slicing apparatus. 図2は、加熱ロールを有する連続処理装置の概略図である。FIG. 2 is a schematic view of a continuous processing apparatus having a heating roll.
本発明の樹脂発泡複合体は、樹脂発泡体層と粘着剤層(感圧接着剤層)とを積層した構成を少なくとも有する。 The resin foam composite of this invention has at least the structure which laminated | stacked the resin foam layer and the adhesive layer (pressure-sensitive adhesive layer).
[樹脂発泡体層]
 本発明の樹脂発泡複合体における樹脂発泡体層は、樹脂発泡体により構成される層である。上記樹脂発泡体は、樹脂組成物を発泡させることにより得られる。
[Resin foam layer]
The resin foam layer in the resin foam composite of the present invention is a layer composed of a resin foam. The resin foam is obtained by foaming a resin composition.
 上記樹脂発泡体層では、見掛け密度が0.03g/cm3~0.30g/cm3である。上記樹脂発泡体層では、見掛け密度が0.03g/cm3以上であるので、強度を確保でき、また、見掛け密度が0.30g/cm3以下であるので、良好な柔軟性を得ることができる。上記樹脂発泡体層の見掛け密度は、好ましくは0.04g/cm3~0.25g/cm3であり、より好ましくは0.045g/cm3~0.20g/cm3である。上記樹脂発泡体層の見掛け密度は、樹脂組成物に含浸させる発泡剤の量や圧力により発泡倍率を調節することにより、制御することができる。 The resin foam layer has an apparent density of 0.03 g / cm 3 to 0.30 g / cm 3 . In the resin foam layer, since the apparent density is 0.03 g / cm 3 or more, the strength can be secured, and since the apparent density is 0.30 g / cm 3 or less, good flexibility can be obtained. it can. The apparent density of the resin foam layer is preferably 0.04g / cm 3 ~ 0.25g / cm 3, more preferably 0.045g / cm 3 ~ 0.20g / cm 3. The apparent density of the resin foam layer can be controlled by adjusting the expansion ratio by the amount and pressure of the foaming agent impregnated in the resin composition.
 上記樹脂発泡体層では、50%圧縮時の圧縮応力が5.0N/cm2以下である。上記樹脂発泡体層では、50%圧縮時の圧縮応力が5.0N/cm2以下であるので、良好な柔軟性が得られ、圧縮された際の反発力を小さくすることができる。樹脂発泡体層の50%圧縮時の圧縮応力は、好ましくは4.0N/cm2以下であり、さらに好ましくは3.0N/cm2以下である。また0.1N/cm2以上であることが好ましく、0.2N/cm2以上であることがより好ましい。樹脂発泡体層の50%圧縮時の圧縮応力は、発泡倍率や発泡時の温度による連泡度を調整することにより制御することができる。連泡度とは、樹脂組成物の発泡時に独立気泡構造が連続化(連泡化)する程度をいう。 In the said resin foam layer, the compressive stress at the time of 50% compression is 5.0 N / cm < 2 > or less. In the said resin foam layer, since the compressive stress at the time of 50% compression is 5.0 N / cm < 2 > or less, favorable softness | flexibility is obtained and the repulsive force at the time of compression can be made small. The compressive stress at the time of 50% compression of the resin foam layer is preferably 4.0 N / cm 2 or less, and more preferably 3.0 N / cm 2 or less. Also it is preferably 0.1 N / cm 2 or more, and more preferably 0.2 N / cm 2 or more. The compressive stress at the time of 50% compression of the resin foam layer can be controlled by adjusting the foaming ratio and the degree of openness depending on the temperature at the time of foaming. The degree of open cell refers to the degree to which the closed cell structure is continuous (open cell) when the resin composition is foamed.
 なお、上記50%圧縮時の圧縮応力は、JIS K 6767に基づいて、樹脂発泡体層の厚み方向に初めの厚みの50%だけ圧縮したときの応力(N)を測定し、該応力を単位面積(cm2)当たりに換算することにより求められる。 The compressive stress at the time of 50% compression is the stress (N) measured when compressed by 50% of the initial thickness in the thickness direction of the resin foam layer based on JIS K 6767, and the stress is expressed in units. It is determined by converting per area (cm 2 ).
 本発明の樹脂発泡複合体における上記樹脂発泡体層は、上記のように、樹脂組成物を発泡させることにより得られる。上記樹脂発泡体層は、特に限定されないが、熱可塑性樹脂を含有する熱可塑性樹脂組成物を発泡させることにより形成されることが好ましい。中でも、ポリオレフィン系樹脂を含有するポリオレフィン系樹脂組成物を発泡させることにより形成されることが好ましい。つまり、本発明の樹脂発泡複合体における上記樹脂発泡体層は、ポリオレフィン系樹脂発泡体層であることが好ましい。なお、上記樹脂組成物には、樹脂の他に、その他の成分や添加剤が含まれていてもよい。また、上記樹脂、上記その他の成分、上記添加剤等は、単独で又は2種以上組み合わせて用いられてもよい。 The resin foam layer in the resin foam composite of the present invention can be obtained by foaming the resin composition as described above. The resin foam layer is not particularly limited, but is preferably formed by foaming a thermoplastic resin composition containing a thermoplastic resin. Especially, it is preferable to form by foaming the polyolefin resin composition containing polyolefin resin. That is, the resin foam layer in the resin foam composite of the present invention is preferably a polyolefin resin foam layer. In addition to the resin, the above resin composition may contain other components and additives. Moreover, the said resin, said other component, said additive, etc. may be used individually or in combination of 2 or more types.
 なお、上記樹脂組成物中の、樹脂の含有量は、特に限定されないが、樹脂組成物全量(100質量%)に対して、50質量%以上が好ましく、より好ましくは60質量%以上である。 In addition, although content of resin in the said resin composition is not specifically limited, 50 mass% or more is preferable with respect to the resin composition whole quantity (100 mass%), More preferably, it is 60 mass% or more.
 本発明の樹脂発泡複合体における上記樹脂発泡体層の気泡構造(セル構造)は、特に限定されないが、独立気泡構造、半連続半独立気泡構造(独立気泡構造と連続気泡構造とが混在している気泡構造であり、その割合は特に限定されない)が好ましく、より好ましくは半連続半独立気泡構造である。上記樹脂発泡体層の独立気泡構造部の割合は、特に限定されないが、柔軟性の点から、上記樹脂発泡体層の全体積(100%)に対して、40%以下であることが好ましく、より好ましくは30%以下である。気泡構造は、例えば、発泡成形の際に、樹脂組成物に含浸させる発泡剤の量や圧力により発泡倍率を調節することにより、制御することができる。 The cell structure (cell structure) of the resin foam layer in the resin foam composite of the present invention is not particularly limited, but is closed cell structure, semi-continuous semi-closed cell structure (closed cell structure and open cell structure are mixed) The ratio is not particularly limited), and a semi-continuous semi-closed cell structure is more preferable. The ratio of the closed cell structure part of the resin foam layer is not particularly limited, but is preferably 40% or less with respect to the total volume (100%) of the resin foam layer from the viewpoint of flexibility. More preferably, it is 30% or less. The cell structure can be controlled, for example, by adjusting the expansion ratio by the amount and pressure of the foaming agent impregnated in the resin composition during foam molding.
 本発明の樹脂発泡複合体における上記樹脂発泡体層の気泡構造における平均セル径(平均気泡径)は、特に限定されないが、例えば、10μm~150μmが好ましく、20μm~120μmがより好ましく、30μm~80μmがさらに好ましい。上記樹脂発泡体層の平均セル径が10μm以上であると、衝撃吸収性(クッション性)が向上しやすくする。また上記樹脂発泡体層の平均セル径が150μm以下であると、より微細なセル構造を有する発泡体となるので、微小なクリアランスに用いることがより容易となり、さらに防塵性が向上しやすくする。 The average cell diameter (average cell diameter) in the cell structure of the resin foam layer in the resin foam composite of the present invention is not particularly limited, but is preferably 10 μm to 150 μm, more preferably 20 μm to 120 μm, and more preferably 30 μm to 80 μm. Is more preferable. When the average cell diameter of the resin foam layer is 10 μm or more, impact absorbability (cushioning property) is easily improved. When the average cell diameter of the resin foam layer is 150 μm or less, the foam has a finer cell structure, so that it can be used more easily for minute clearances, and the dust resistance is easily improved.
 本発明の樹脂発泡複合体における上記樹脂発泡体層の素材である樹脂は、特に限定されないが、熱可塑性樹脂(熱可塑性ポリマー)が好ましい。つまり、本発明の樹脂発泡複合体における上記樹脂発泡体層は、熱可塑性樹脂を少なくとも含有する熱可塑性樹脂組成物を発泡させることにより得られることが好ましい。樹脂発泡体層の素材である上記熱可塑性樹脂(熱可塑性ポリマー)としては、熱可塑性を示すポリマーであって、高圧ガスを含浸可能なものであれば特に限定されない。このような熱可塑性樹脂として、例えば、ポリオレフィン系樹脂(詳細は後述する);ポリスチレン、アクリロニトリル-ブタジエン-スチレン共重合体(ABS樹脂)などのスチレン系樹脂;6-ナイロン、66-ナイロン、12-ナイロンなどのポリアミド系樹脂;ポリアミドイミド;ポリウレタン;ポリイミド;ポリエーテルイミド;ポリメチルメタクリレートなどのアクリル系樹脂;ポリ塩化ビニル;ポリフッ化ビニル;アルケニル芳香族樹脂;ポリエチレンテレフタレート、ポリブチレンテレフタレートなどのポリエステル系樹脂;ビスフェノールA系ポリカーボネートなどのポリカーボネート;ポリアセタール;ポリフェニレンスルフィドなどが挙げられる。熱可塑性樹脂は単独で又は2種以上を組み合わせて用いることができる。なお、熱可塑性樹脂が共重合体である場合、ランダム共重合体、ブロック共重合体のいずれの形態の共重合体であってもよい。 The resin that is the material of the resin foam layer in the resin foam composite of the present invention is not particularly limited, but is preferably a thermoplastic resin (thermoplastic polymer). In other words, the resin foam layer in the resin foam composite of the present invention is preferably obtained by foaming a thermoplastic resin composition containing at least a thermoplastic resin. The thermoplastic resin (thermoplastic polymer) that is the material of the resin foam layer is not particularly limited as long as it is a polymer exhibiting thermoplasticity and can be impregnated with a high-pressure gas. Examples of such thermoplastic resins include polyolefin resins (details will be described later); styrene resins such as polystyrene and acrylonitrile-butadiene-styrene copolymers (ABS resins); 6-nylon, 66-nylon, 12- Polyamide resins such as nylon; Polyamideimide; Polyurethane; Polyimide; Polyetherimide; Acrylic resins such as polymethyl methacrylate; Polyvinyl chloride; Polyvinyl fluoride; Alkenyl aromatic resins; Polyester resins such as polyethylene terephthalate and polybutylene terephthalate Resins; polycarbonates such as bisphenol A-based polycarbonates; polyacetals; polyphenylene sulfides. A thermoplastic resin can be used individually or in combination of 2 or more types. In addition, when a thermoplastic resin is a copolymer, the copolymer of any form of a random copolymer and a block copolymer may be sufficient.
 上記ポリオレフィン系樹脂としては、特に限定されないが、α-オレフィンを必須のモノマー成分として構成(形成)されたポリマー、すなわち、分子中(1分子中)に、少なくともα-オレフィンに由来する構成単位を有するポリマーであることが好ましい。上記ポリオレフィン系樹脂は、例えば、α-オレフィンのみから構成されたポリマーであってもよいし、α-オレフィンと、α-オレフィン以外のモノマー成分から構成されたポリマーであってもよい。 The polyolefin-based resin is not particularly limited, but a polymer composed (formed) of α-olefin as an essential monomer component, that is, a structural unit derived from at least α-olefin in a molecule (in one molecule). It is preferable that it is a polymer which has. The polyolefin resin may be, for example, a polymer composed only of α-olefin or a polymer composed of α-olefin and monomer components other than α-olefin.
 上記ポリオレフィン系樹脂は、単独重合体(ホモポリマー)、又は2種以上のモノマーを含む共重合体(コポリマー)であってもよい。また、上記ポリオレフィン系樹脂が共重合体である場合、ランダムコポリマーやブロックコポリマーであってもよい。上記ポリオレフィン系樹脂は、1種の重合体であってもよいし、2種以上の重合体を組み合わせたものであってもよい。 The polyolefin resin may be a homopolymer (homopolymer) or a copolymer (copolymer) containing two or more monomers. When the polyolefin resin is a copolymer, it may be a random copolymer or a block copolymer. One type of polymer may be sufficient as the said polyolefin resin, and what combined 2 or more types of polymers may be sufficient as it.
 上記ポリオレフィン系樹脂は、特に限定されないが、発泡倍率の高いポリオレフィン系樹脂発泡体が得られる点から、直鎖状のポリオレフィンであることが好ましい。 The polyolefin resin is not particularly limited, but is preferably a linear polyolefin from the viewpoint of obtaining a polyolefin resin foam having a high expansion ratio.
 上記α-オレフィンとしては、例えば、炭素数2~8のα-オレフィン(例えば、エチレン、プロピレン、ブテン-1、ペンテン-1、ヘキセン-1、4-メチル-ペンテン-1、へプテン-1、オクテン-1など)が挙げられる。なお、上記α-オレフィンは、単独で又は2種以上が組み合わされて用いられていてもよい。 Examples of the α-olefin include α-olefins having 2 to 8 carbon atoms (for example, ethylene, propylene, butene-1, pentene-1, hexene-1, 4-methyl-pentene-1, heptene-1, Octene-1). The α-olefin may be used alone or in combination of two or more.
 上記α-オレフィン以外のモノマー成分としては、例えば、酢酸ビニル、アクリル酸、アクリル酸エステル、メタクリル酸、メタクリル酸エステル、ビニルアルコールなどのエチレン性不飽和単量体が挙げられる。α-オレフィン以外のモノマー成分は、単独で又は2種以上を組み合わせて用いられてもよい。 Examples of monomer components other than the α-olefin include ethylenically unsaturated monomers such as vinyl acetate, acrylic acid, acrylic acid ester, methacrylic acid, methacrylic acid ester, and vinyl alcohol. Monomer components other than α-olefin may be used alone or in combination of two or more.
 上記ポリオレフィン系樹脂としては、例えば、低密度ポリエチレン、中密度ポリエチレン、高密度ポリエチレン、線状低密度ポリエチレン、ポリプロピレン(プロピレンホモポリマー)、エチレンとプロピレンとの共重合体、エチレンとエチレン以外のα-オレフィンとの共重合体、プロピレンとプロピレン以外のα-オレフィンとの共重合体、エチレンとプロピレンとエチレン及びプロピレン以外のα-オレフィンとの共重合体、プロピレンとエチレン性不飽和単量体との共重合体などが挙げられる。 Examples of the polyolefin resin include low density polyethylene, medium density polyethylene, high density polyethylene, linear low density polyethylene, polypropylene (propylene homopolymer), a copolymer of ethylene and propylene, and α- other than ethylene and ethylene. Copolymers of olefins, copolymers of propylene and α-olefins other than propylene, copolymers of ethylene and propylene and ethylene and α-olefins other than propylene, propylene and ethylenically unsaturated monomers A copolymer etc. are mentioned.
 上記ポリオレフィン系樹脂としては、耐熱性の点から、プロピレンを必須のモノマー成分として構成されたポリマー(ポリプロピレン系重合体)、すなわち、少なくともプロピレンに由来する構成単位を有するポリマーが好ましい。すなわち、上記ポリオレフィン系樹脂としては、例えば、ポリプロピレン(プロピレンホモポリマー)、エチレンとプロピレンとの共重合体、プロピレンとプロピレン以外のα-オレフィンとの共重合体などのポリプロピレン系重合体が挙げられる。上記プロピレン以外のα-オレフィンは、単独で又は2種以上が組み合わされて用いられていてもよい。 From the viewpoint of heat resistance, the polyolefin resin is preferably a polymer composed of propylene as an essential monomer component (polypropylene polymer), that is, a polymer having at least a structural unit derived from propylene. That is, examples of the polyolefin resin include polypropylene polymers such as polypropylene (propylene homopolymer), a copolymer of ethylene and propylene, and a copolymer of propylene and an α-olefin other than propylene. The α-olefins other than propylene may be used alone or in combination of two or more.
 上記α-オレフィンの含有量は、特に限定されないが、例えば、上記ポリオレフィン系樹脂を構成するモノマー成分全量(100質量%)に対して、0.1質量%~10質量%が好ましく、より好ましくは1質量%~5質量%である。 The content of the α-olefin is not particularly limited. For example, the content is preferably 0.1% by mass to 10% by mass, more preferably based on the total amount of monomer components (100% by mass) constituting the polyolefin resin. 1% by mass to 5% by mass.
 また、上記熱可塑性樹脂組成物には、上記熱可塑性樹脂の他に、その他の成分として、「ゴム及び/又は熱可塑性エラストマー」が含まれていてもよい。 In addition to the thermoplastic resin, the thermoplastic resin composition may contain “rubber and / or thermoplastic elastomer” as other components.
 上記ゴムとしては、特に限定されないが、例えば、天然ゴム、ポリイソブチレン、イソプレンゴム、クロロプレンゴム、ブチルゴム、ニトリルブチルゴムなどの天然または合成ゴムが挙げられる。上記ゴムは、単独で又は2種以上を組み合わせて用いられてもよい。 The rubber is not particularly limited, and examples thereof include natural or synthetic rubber such as natural rubber, polyisobutylene, isoprene rubber, chloroprene rubber, butyl rubber, and nitrile butyl rubber. The said rubber | gum may be used individually or in combination of 2 or more types.
 上記熱可塑性エラストマーとしては、特に限定されないが、例えば、エチレン-プロピレン共重合体、エチレン-プロピレン-ジエン共重合体、エチレン-酢酸ビニル共重合体、ポリブテン、ポリイソブチレン、塩素化ポリエチレンなどの熱可塑性オレフィン系エラストマー;スチレン-ブタジエン-スチレン共重合体、スチレン-イソプレン-スチレン共重合体、スチレン-イソプレン-ブタジエン-スチレン共重合体、それらの水素添加物ポリマーなどの熱可塑性スチレン系エラストマー;熱可塑性ポリエステル系エラストマー;熱可塑性ポリウレタン系エラストマー;熱可塑性アクリル系エラストマーなどが挙げられる。上記熱可塑性エラストマーは、単独で又は2種以上を組み合わせて用いられてもよい。 The thermoplastic elastomer is not particularly limited. For example, thermoplastics such as ethylene-propylene copolymer, ethylene-propylene-diene copolymer, ethylene-vinyl acetate copolymer, polybutene, polyisobutylene, chlorinated polyethylene, etc. Olefin-based elastomers; thermoplastic styrene-based elastomers such as styrene-butadiene-styrene copolymers, styrene-isoprene-styrene copolymers, styrene-isoprene-butadiene-styrene copolymers, and their hydrogenated polymers; thermoplastic polyesters Elastomers; thermoplastic polyurethane elastomers; thermoplastic acrylic elastomers and the like. The said thermoplastic elastomer may be used individually or in combination of 2 or more types.
 上記熱可塑性樹脂組成物中の、上記「ゴム及び/又は熱可塑性エラストマー」の含有量は、特に限定されないが、上記熱可塑性樹脂組成物全量(100質量%)に対して、0質量%~70質量%が好ましく、より好ましくは20質量%~60重量%、さらに好ましくは20質量%~50重量%である。 The content of the “rubber and / or thermoplastic elastomer” in the thermoplastic resin composition is not particularly limited, but is 0% by mass to 70% with respect to the total amount of the thermoplastic resin composition (100% by mass). % By mass is preferable, more preferably 20% by mass to 60% by mass, and still more preferably 20% by mass to 50% by mass.
 さらに、上記熱可塑性樹脂組成物には、上記熱可塑性樹脂の他に、その他の成分として、「ゴム及び/又は熱可塑性エラストマー、並びに軟化剤を含む混合物(組成物)」が含まれていてもよい。なお、上記「ゴム及び/又は熱可塑性エラストマー、並びに軟化剤を含む混合物(組成物)」は、必要に応じて添加剤を含んでいてもよい。 Furthermore, in addition to the thermoplastic resin, the thermoplastic resin composition may contain “a mixture (composition) containing a rubber and / or a thermoplastic elastomer and a softening agent” as other components. Good. The above-mentioned “mixture (composition) containing rubber and / or thermoplastic elastomer and softener” may contain additives as necessary.
 上記「ゴム及び/又は熱可塑性エラストマー、並びに軟化剤を含む混合物(組成物)」としては、例えば、ゴムと熱可塑性エラストマーと軟化剤とを少なくとも含む混合物、ゴムと軟化剤とを少なくとも含む混合物、熱可塑性エラストマーと軟化剤とを少なくとも含む混合物などが挙げられる。中でも、「ゴム及び/又は熱可塑性エラストマー、並びに軟化剤のみからなる混合物」が好ましい。 Examples of the “mixture (composition) containing rubber and / or thermoplastic elastomer and softening agent” include, for example, a mixture containing at least rubber, a thermoplastic elastomer and a softening agent, a mixture containing at least rubber and a softening agent, Examples thereof include a mixture containing at least a thermoplastic elastomer and a softening agent. Among these, “a mixture composed of only rubber and / or thermoplastic elastomer and softener” is preferable.
 上記「ゴム及び/又は熱可塑性エラストマー、並びに軟化剤を含む混合物」におけるゴムとしては、特に限定されないが、上記「ゴム及び/又は熱可塑性エラストマー」のゴムとして例示された上記ゴムが好ましく挙げられる。なお、該ゴムは、単独で又は2種以上を組み合わせて用いられてもよい。 The rubber in the “mixture containing a rubber and / or thermoplastic elastomer and a softening agent” is not particularly limited, but the rubber exemplified as the rubber of the “rubber and / or thermoplastic elastomer” is preferably exemplified. In addition, this rubber | gum may be used individually or in combination of 2 or more types.
 また、上記「ゴム及び/又は熱可塑性エラストマー、並びに軟化剤を含む混合物」におけるゴム及び/又は熱可塑性エラストマーとしては、発泡可能なものであれば特に限定されないが、例えば、周知慣用の「ゴム及び/又は熱可塑性エラストマー」が挙げられる。中でも、上記「ゴム及び/又は熱可塑性エラストマー」の熱可塑性エラストマーとして例示された上記熱可塑性エラストマーが好ましく挙げられる。なお、該熱可塑性エラストマーは、単独で又は2種以上を組み合わせて用いられてもよい。 Further, the rubber and / or thermoplastic elastomer in the above-mentioned “rubber and / or thermoplastic elastomer and mixture containing softener” is not particularly limited as long as it can be foamed. And / or thermoplastic elastomer ”. Among these, the thermoplastic elastomer exemplified as the thermoplastic elastomer of the “rubber and / or thermoplastic elastomer” is preferable. In addition, this thermoplastic elastomer may be used individually or in combination of 2 or more types.
 特に、熱可塑性樹脂としてポリオレフィン系樹脂を用いるポリオレフィン系樹脂組成物においては、上記「ゴム及び/又は熱可塑性エラストマー、並びに軟化剤を含む混合物」における「ゴムおよび/または熱可塑性エラストマー」としては、オレフィン系エラストマーが好ましく、特に好ましくはポリオレフィン成分とオレフィン系ゴム成分とがミクロ相分離した構造を有したオレフィン系エラストマーである。該ポリオレフィン成分とオレフィン系ゴム成分とがミクロ相分離した構造を有したオレフィン系エラストマーとしては、ポリプロピレン樹脂(PP)とエチレン-プロピレンゴム(EPM)またはエチレン-プロピレン-ジエンゴム(EPDM)とからなるエラストマーが好ましく例示される。なお、上記、ポリオレフィン成分とオレフィン系ゴム成分の質量比は、相溶性の点から、ポリオレフィン成分/オレフィン系ゴム=90/10~10/90であることが好ましく、より好ましくは80/20~20/80である。 In particular, in a polyolefin resin composition using a polyolefin resin as a thermoplastic resin, the “rubber and / or thermoplastic elastomer” in the “mixture containing a rubber and / or a thermoplastic elastomer and a softener” is an olefin. An olefin elastomer having a structure in which a polyolefin component and an olefin rubber component are microphase-separated is particularly preferable. Examples of the olefin elastomer having a structure in which the polyolefin component and the olefin rubber component are microphase-separated include an elastomer comprising polypropylene resin (PP) and ethylene-propylene rubber (EPM) or ethylene-propylene-diene rubber (EPDM). Is preferably exemplified. The mass ratio of the polyolefin component to the olefin rubber component is preferably polyolefin component / olefin rubber = 90/10 to 10/90, more preferably 80/20 to 20 from the viewpoint of compatibility. / 80.
 上記軟化剤としては、特に限定されないが、ゴム製品に一般的に用いられる軟化剤が好ましく挙げられる。上記軟化剤を含有させることにより、加工性、柔軟性を向上させることができる。 The above-mentioned softener is not particularly limited, but a softener generally used for rubber products is preferable. By containing the softening agent, processability and flexibility can be improved.
 上記軟化剤の具体例としては、プロセスオイル、潤滑油、パラフィン、流動パラフィン、石油アスファルト、ワセリン等の石油系物質;コールタール、コールタールピッチ等のコールタール類;ヒマシ油、アマニ油、ナタネ油、大豆油、ヤシ油等の脂肪油;トール油、蜜ロウ、カルナウバロウ、ラノリン等のロウ類;石油樹脂、クマロンインデン樹脂、アタクチックポリプロピレン等の合成高分子物質;ジオクチルフタレート、ジオクチルアジペート、ジオクチルセバケート等のエステル化合物;マイクロクリスタリンワックス、サブ(ファクチス)、液状ポリブタジエン、変性液状ポリブタジエン、液状チオコール、液状ポリイソプレン、液状ポリブテン、液状エチレン・α-オレフィン系共重合体等が挙げられる。中でも、パラフィン系、ナフテン系、芳香族系の鉱物油、液状ポリイソプレン、液状ポリブテン、液状エチレン・α-オレフィン系共重合体が好ましく、より好ましくは液状ポリイソプレン、液状ポリブテン、液状エチレン・α-オレフィン系共重合体である。なお、上記軟化剤は、単独で又は2種以上組み合わせて用いられてもよい。 Specific examples of the softener include petroleum oils such as process oil, lubricating oil, paraffin, liquid paraffin, petroleum asphalt and petroleum jelly; coal tars such as coal tar and coal tar pitch; castor oil, linseed oil and rapeseed oil Fatty oils such as soybean oil and coconut oil; waxes such as tall oil, beeswax, carnauba wax and lanolin; synthetic polymer substances such as petroleum resin, coumarone indene resin and atactic polypropylene; dioctyl phthalate, dioctyl adipate, dioctyl Examples include ester compounds such as sebacate; microcrystalline wax, sub (factis), liquid polybutadiene, modified liquid polybutadiene, liquid thiocol, liquid polyisoprene, liquid polybutene, and liquid ethylene / α-olefin copolymers. Of these, paraffinic, naphthenic and aromatic mineral oils, liquid polyisoprene, liquid polybutene, and liquid ethylene / α-olefin copolymers are preferable, and liquid polyisoprene, liquid polybutene, and liquid ethylene / α-α are more preferable. It is an olefin copolymer. In addition, the said softener may be used individually or in combination of 2 or more types.
 上記「ゴム及び/又は熱可塑性エラストマー、並びに軟化剤を含む混合物」中の、軟化剤の含有量は、特に限定されないが、ゴム及び/又は熱可塑性エラストマー成分100質量部に対して、1質量部~200質量部が好ましく、より好ましくは5質量部~100質量部、さらに好ましくは10質量部~50質量部である。なお、軟化剤の含有量が多すぎると、ゴムおよび/または熱可塑性エラストマーとの混練時に分散不良を起こす場合がある。 The content of the softening agent in the “mixture containing rubber and / or thermoplastic elastomer and softening agent” is not particularly limited, but is 1 part by mass with respect to 100 parts by mass of the rubber and / or thermoplastic elastomer component. Is preferably 200 parts by mass, more preferably 5 parts by mass to 100 parts by mass, and still more preferably 10 parts by mass to 50 parts by mass. In addition, when there is too much content of a softening agent, a dispersion | distribution defect may arise at the time of kneading | mixing with rubber | gum and / or a thermoplastic elastomer.
 上記「ゴム及び/又は熱可塑性エラストマー、並びに軟化剤を含む混合物」では、添加剤が添加されていてもよい。このような添加剤としては、特に限定されないが、例えば、老化防止剤、耐候剤、紫外線吸収剤、分散剤、可塑剤、カーボンブラック、帯電防止剤、界面活性剤、張力改質剤、流動性改質剤などが挙げられる。なお、このような添加剤は、単独で又は2種以上を組み合わせて用いられてもよい。 In the above “mixture containing rubber and / or thermoplastic elastomer and softener”, an additive may be added. Examples of such additives include, but are not limited to, anti-aging agents, weathering agents, ultraviolet absorbers, dispersants, plasticizers, carbon black, antistatic agents, surfactants, tension modifiers, fluidity. Examples thereof include modifiers. In addition, such an additive may be used individually or in combination of 2 or more types.
 上記「ゴム及び/又は熱可塑性エラストマー、並びに軟化剤を含む混合物」中の、上記添加剤の含有量は、特に限定されないが、例えば、ゴム及び/又は熱可塑性エラストマー成分100質量部に対して、0.01質量部~100質量部が好ましく、より好ましくは0.05質量部~50質量部、さらに好ましくは0.1質量部~30質量部である。なお、上記含有量が0.01質量部以上であると、添加剤を添加することによる効果をより発現しやすくなるので、好ましい。 The content of the additive in the “mixture containing rubber and / or thermoplastic elastomer and softener” is not particularly limited. For example, with respect to 100 parts by mass of the rubber and / or thermoplastic elastomer component, The amount is preferably 0.01 to 100 parts by mass, more preferably 0.05 to 50 parts by mass, and still more preferably 0.1 to 30 parts by mass. In addition, it is preferable for the content to be 0.01 parts by mass or more because the effect of adding the additive is more easily exhibited.
 上記「ゴム及び/又は熱可塑性エラストマー、並びに軟化剤を含む混合物」のメルトフローレート(MFR)(230℃)は、特に限定されないが、良好な成形性を得る点より、3g/10分~10g/10分が好ましく、より好ましくは4g/10分~9g/10分である。 The melt flow rate (MFR) (230 ° C.) of the above-mentioned “mixture containing rubber and / or thermoplastic elastomer and softener” is not particularly limited, but is 3 g / 10 min to 10 g from the viewpoint of obtaining good moldability. / 10 minutes are preferred, and more preferably 4 g / 10 minutes to 9 g / 10 minutes.
 上記「ゴム及び/又は熱可塑性エラストマー、並びに軟化剤を含む混合物」における「JIS A硬度」は、特に限定されないが、30°~90°が好ましく、より好ましくは40°~85°である。上記「JIS A硬度」が30°以上であると、高発泡倍率の樹脂発泡体が得やすくなり、好ましい。また、上記「JIS A硬度」が90°以下であると、柔軟な樹脂発泡体が得やすくなり、好ましい。なお、本明細書における「JIS A硬度」は、ISO7619(JIS K6253)に基づき測定された硬度をいうものとする。 The “JIS A hardness” in the “mixture containing rubber and / or thermoplastic elastomer and softener” is not particularly limited, but is preferably 30 ° to 90 °, more preferably 40 ° to 85 °. When the “JIS A hardness” is 30 ° or more, a resin foam having a high expansion ratio is easily obtained, which is preferable. Moreover, it is preferable that the “JIS A hardness” is 90 ° or less because a flexible resin foam is easily obtained. In addition, the “JIS A hardness” in this specification refers to the hardness measured based on ISO7619 (JIS K6253).
 上記熱可塑性樹脂組成物などの上記樹脂組成物には、本発明の効果を損なわない範囲で、添加剤が含まれていてもよい。上記添加剤としては、例えば、気泡核剤、結晶核剤、可塑剤、滑剤、着色剤(顔料、染料等)、紫外線吸収剤、酸化防止剤、老化防止剤、充填剤、補強剤、帯電防止剤、界面活性剤、張力改質剤、収縮防止剤、流動性改質剤、クレイ、加硫剤、表面処理剤、難燃剤などが挙げられる。なお、上記添加剤は、単独で又は2種以上を組み合わせて用いられてもよい。 The resin composition such as the thermoplastic resin composition may contain an additive as long as the effects of the present invention are not impaired. Examples of the additives include cell nucleating agents, crystal nucleating agents, plasticizers, lubricants, colorants (pigments, dyes, etc.), ultraviolet absorbers, antioxidants, anti-aging agents, fillers, reinforcing agents, and antistatic agents. Agents, surfactants, tension modifiers, shrinkage inhibitors, fluidity modifiers, clays, vulcanizing agents, surface treatment agents, flame retardants and the like. In addition, the said additive may be used individually or in combination of 2 or more types.
 均一で微細なセル構造を有する樹脂発泡体層を得る点より、上記樹脂組成物には、気泡核剤が含まれていることが好ましい。例えば、上記気泡核剤が熱可塑性樹脂組成物に含まれていると、均一で微細なセル構造を有する樹脂発泡体を容易に得ることができるので、上記熱可塑性樹脂組成物には、気泡核剤が含まれていることが好ましい。 From the viewpoint of obtaining a resin foam layer having a uniform and fine cell structure, the resin composition preferably contains a cell nucleating agent. For example, when the cell nucleating agent is contained in a thermoplastic resin composition, a resin foam having a uniform and fine cell structure can be easily obtained. It is preferable that an agent is included.
 上記気泡核剤としては、例えば、粒子が挙げられる。該粒子としては、例えば、タルク、シリカ、アルミナ、ゼオライト、炭酸カルシウム、炭酸マグネシウム、硫酸バリウム、酸化亜鉛、酸化チタン、水酸化アルミニウム、水酸化マグネシウム、マイカ、モンモリロナイト等のクレイ、カーボン粒子、グラスファイバー、カーボンチューブなどが挙げられる。なお、粒子は、単独で又は2種以上を組み合わせて用いられてもよい。 Examples of the bubble nucleating agent include particles. Examples of the particles include talc, silica, alumina, zeolite, calcium carbonate, magnesium carbonate, barium sulfate, zinc oxide, titanium oxide, aluminum hydroxide, magnesium hydroxide, mica, montmorillonite and other clays, carbon particles, and glass fibers. And carbon tubes. In addition, particle | grains may be used individually or in combination of 2 or more types.
 上記熱可塑性樹脂組成物などの樹脂組成物において、上記気泡核剤の含有量は、特に限定されない。例えば、上記熱可塑性樹脂組成物が上記熱可塑性樹脂と「ゴム及び/又は熱可塑性エラストマー、並びに軟化剤を含む混合物」とを含有する樹脂組成物である場合、このような樹脂組成物中の、上記気泡核剤の含有量は、特に限定されないが、上記熱可塑性樹脂と「ゴム及び/又は熱可塑性エラストマー、並びに軟化剤を含む混合物(組成物)」との総量(以下「樹脂成分の総量」と称する場合がある)100質量部に対して、0.5質量部~125質量部が好ましく、より好ましくは1質量部~120質量部である。 In the resin composition such as the thermoplastic resin composition, the content of the cell nucleating agent is not particularly limited. For example, when the thermoplastic resin composition is a resin composition containing the thermoplastic resin and “a mixture containing rubber and / or thermoplastic elastomer and softener”, in such a resin composition, The content of the cell nucleating agent is not particularly limited, but is the total amount of the thermoplastic resin and the “mixture (composition) containing rubber and / or thermoplastic elastomer and softener” (hereinafter referred to as “total amount of resin component”). 0.5 parts by mass to 125 parts by mass, and more preferably 1 part by mass to 120 parts by mass with respect to 100 parts by mass.
 上記粒子の平均粒子径(粒径)は、特に限定されないが、0.1μm~20μmであることが好ましい。上記平均粒子径が0.1μm未満であると発泡核剤として機能しない場合があり、一方、粒径が20μmを超えると発泡成形時にガス抜けの原因となる場合がある。 The average particle size (particle size) of the particles is not particularly limited, but is preferably 0.1 μm to 20 μm. If the average particle size is less than 0.1 μm, it may not function as a foam nucleating agent. On the other hand, if the particle size exceeds 20 μm, it may cause outgassing during foam molding.
 上記難燃剤が樹脂組成物に含まれていると、樹脂発泡体層が難燃性となり、電気又は電子機器用途などの難燃性が要求される用途に用いることができる。このため、上記熱可塑性樹脂組成物などの樹脂組成物には、難燃剤が含まれていてもよい。 When the above flame retardant is contained in the resin composition, the resin foam layer becomes flame retardant and can be used for applications requiring flame resistance such as electrical or electronic equipment. For this reason, the flame retardant may be contained in resin compositions, such as the said thermoplastic resin composition.
 上記難燃剤は、パウダー状であってもよいし、パウダー状以外の形態をしていてもよい。パウダー状の難燃剤としては、無機難燃剤が好ましい。無機難燃剤としては、例えば、臭素系難燃剤、塩素系難燃剤、リン系難燃剤、アンチモン系難燃剤、ノンハロゲン-ノンアンチモン系無機難燃剤などが挙げられる。ここで、塩素系難燃剤や臭素系難燃剤は、燃焼時に人体に対して有害で機器類に対して腐食性を有するガス成分を発生し、また、リン系難燃剤やアンチモン系難燃剤は、有害性や爆発性などの問題がある。このため、無機難燃剤としては、ノンハロゲン-ノンアンチモン系無機難燃剤が好ましい。ノンハロゲン-ノンアンチモン系無機難燃剤としては、例えば、水酸化アルミニウム、水酸化マグネシウム、酸化マグネシウム・酸化ニッケルの水和物、酸化マグネシウム・酸化亜鉛の水和物等の水和金属化合物などが挙げられる。なお、水和金属酸化物は表面処理されていてもよい。なお、難燃剤は、単独で又は2種以上を組み合わせて用いられてもよい。 The flame retardant may be in the form of powder or may be in a form other than powder. As the powdery flame retardant, an inorganic flame retardant is preferable. Examples of the inorganic flame retardant include bromine-based flame retardant, chlorine-based flame retardant, phosphorus-based flame retardant, antimony-based flame retardant, and non-halogen-non-antimony-based inorganic flame retardant. Here, chlorinated flame retardants and brominated flame retardants generate gas components that are harmful to the human body and corrosive to equipment during combustion, and phosphorous flame retardants and antimony flame retardants are There are problems such as toxicity and explosiveness. Therefore, as the inorganic flame retardant, a non-halogen-nonantimony inorganic flame retardant is preferable. Examples of the non-halogen-nonantimony inorganic flame retardant include hydrated metal compounds such as aluminum hydroxide, magnesium hydroxide, magnesium oxide / nickel oxide hydrate, magnesium oxide / zinc oxide hydrate, and the like. . The hydrated metal oxide may be surface treated. In addition, a flame retardant may be used individually or in combination of 2 or more types.
 上記難燃剤は、難燃性を有し、且つ発泡倍率の高い樹脂発泡体層が得られる点から、気泡核剤としての機能も有することが好ましい。気泡核剤としての機能を有する難燃剤としては、例えば、水酸化マグネシウム、水酸化アルミニウムなどが挙げられる。 The flame retardant preferably has a function as a cell nucleating agent from the viewpoint of obtaining a resin foam layer having flame retardancy and a high expansion ratio. Examples of the flame retardant having a function as a cell nucleating agent include magnesium hydroxide and aluminum hydroxide.
 上記熱可塑性樹脂組成物などの樹脂組成物において、上記難燃剤の含有量は、特に限定されない。例えば、上記熱可塑性樹脂組成物中の、上記難燃剤の含有量は、特に限定されないが、上記樹脂成分の総量100質量部に対して、30質量部~150質量部が好ましく、より好ましくは60質量部~120質量部である。難燃剤の使用量が少なすぎると、難燃化効果が小さくなり、逆に多すぎると、高発泡の発泡体を得ることが困難になる。 In the resin composition such as the thermoplastic resin composition, the content of the flame retardant is not particularly limited. For example, the content of the flame retardant in the thermoplastic resin composition is not particularly limited, but is preferably 30 to 150 parts by mass, more preferably 60 parts with respect to 100 parts by mass of the total resin component. Parts by mass to 120 parts by mass. If the amount of the flame retardant used is too small, the flame retardant effect is reduced. Conversely, if the amount is too large, it is difficult to obtain a highly foamed foam.
 また、上記滑剤が樹脂組成物に含まれていると、樹脂組成物の流動性を向上でき、熱劣化を抑制できる。このため、上記熱可塑性樹脂組成物などの樹脂組成物には、滑剤が含まれていてもよい。 Further, when the above-mentioned lubricant is contained in the resin composition, the fluidity of the resin composition can be improved and thermal degradation can be suppressed. For this reason, the resin composition such as the thermoplastic resin composition may contain a lubricant.
 上記滑剤としては、特に限定されないが、例えば、流動パラフィン、パラフィンワックス、マイクロワックス、ポリエチレンワックスなどの炭化水素系滑剤;ステアリン酸、ベヘニン酸、12-ヒドロキシステアリン酸などの脂肪酸系滑剤;ステアリン酸ブチル、ステアリン酸モノグリセリド、ペンタエリスリトールテトラステアレート、硬化ヒマシ油、ステアリン酸ステアリルなどのエステル系滑剤などが挙げられる。なお、滑剤は、単独で又は2種以上を組み合わせて用いられてもよい。 The lubricant is not particularly limited. For example, hydrocarbon lubricants such as liquid paraffin, paraffin wax, microwax and polyethylene wax; fatty acid lubricants such as stearic acid, behenic acid and 12-hydroxystearic acid; butyl stearate , Ester-based lubricants such as stearic acid monoglyceride, pentaerythritol tetrastearate, hydrogenated castor oil, stearyl stearate, and the like. In addition, a lubricant may be used alone or in combination of two or more.
 上記熱可塑性樹脂組成物などの樹脂組成物において、上記滑剤の含有量は、特に限定されない。例えば、上記熱可塑性樹脂組成物が上記熱可塑性樹脂と「ゴム及び/又は熱可塑性エラストマー、並びに軟化剤を含む混合物」とを含有する樹脂組成物である場合、このような樹脂組成物中の、上記滑剤の含有量は、特に限定されないが、上記樹脂成分の総量100質量部に対して、0.1質量部~10質量部が好ましく、より好ましくは0.5質量部~5質量部である。添加量が10質量部を超えると、流動性が高くなりすぎて発泡倍率が低下する場合がある。また、0.1質量部未満であると、流動性の向上が図れず、発泡時の延伸性が低下して発泡倍率が低下する場合がある。 In the resin composition such as the thermoplastic resin composition, the content of the lubricant is not particularly limited. For example, when the thermoplastic resin composition is a resin composition containing the thermoplastic resin and “a mixture containing rubber and / or thermoplastic elastomer and softener”, in such a resin composition, The content of the lubricant is not particularly limited, but is preferably 0.1 to 10 parts by mass, more preferably 0.5 to 5 parts by mass with respect to 100 parts by mass of the total resin component. . When the addition amount exceeds 10 parts by mass, the fluidity may become too high, and the expansion ratio may decrease. On the other hand, if it is less than 0.1 parts by mass, the fluidity cannot be improved, the stretchability at the time of foaming is lowered, and the foaming ratio may be lowered.
 また上記収縮防止剤は、発泡体の気泡膜の表面に分子膜を形成して発泡剤ガスの透過を効果的に抑制する作用を有する。このため、上記樹脂発泡体層において高発泡倍率の気泡構造を得る点より、上記熱可塑性樹脂組成物などの上記樹脂組成物には、収縮防止剤が含まれていてもよい。上記収縮防止剤としては、発泡剤ガスの透過を抑制する効果を示すものであれば特に限定されず、例えば、脂肪酸金属塩(例えば、ステアリン酸、ベヘニン酸、12-ヒドロキシステアリン酸などの脂肪酸のアルミニウム、カルシウム、マグネシウム、リチウム、バリウム、亜鉛、鉛の塩など);脂肪酸アミド[脂肪酸の炭素数12~38程度(好ましくは12~22程度)の脂肪酸アミド(モノアミド、ビスアミドのいずれであってもよいが、微細セル構造を得るためにはビスアミドが好適に用いられる。)、例えば、ステアリン酸アミド、オレイン酸アミド、エルカ酸アミド、メチレンビスステアリン酸アミド、エチレンビスステアリン酸アミド、ラウリン酸ビスアミドなど]等が挙げられる。なお、このような収縮防止剤は、単独で又は2種以上組み合わせて用いることができる。 The shrinkage-preventing agent has a function of effectively suppressing permeation of the foaming agent gas by forming a molecular film on the surface of the foam film. For this reason, the said resin composition, such as the said thermoplastic resin composition, may contain the shrinkage-preventing agent from the point which obtains the cell structure of the high expansion ratio in the said resin foam layer. The shrinkage-preventing agent is not particularly limited as long as it has an effect of suppressing the permeation of blowing agent gas. For example, fatty acid metal salts (for example, fatty acid such as stearic acid, behenic acid, 12-hydroxystearic acid) A salt of aluminum, calcium, magnesium, lithium, barium, zinc, lead, etc.); fatty acid amide [fatty acid amide (monoamide or bisamide) of about 12 to 38 carbon atoms (preferably about 12 to 22 carbon atoms) Bisamide is preferably used to obtain a fine cell structure.), For example, stearic acid amide, oleic acid amide, erucic acid amide, methylene bis stearic acid amide, ethylene bis stearic acid amide, lauric acid bisamide, etc. ] Etc. are mentioned. Such anti-shrinkage agents can be used alone or in combination of two or more.
 上記熱可塑性樹脂組成物などの樹脂組成物において、上記収縮防止剤の添加量(含有量)は、特に限定されない。例えば、上記熱可塑性樹脂組成物が上記熱可塑性樹脂と「ゴム及び/又は熱可塑性エラストマー、並びに軟化剤を含む混合物」とを含有する樹脂組成物である場合、このような樹脂組成物中の、上記収縮防止剤の添加量としては、特に限定されないが、樹脂成分の総量100質量部に対して、0.5質量部~10質量部であることが好ましく、より好ましくは0.7質量部~8質量部であり、さらに好ましくは1質量部~6質量部である。添加量が10質量部を超えると、セル成長過程においてガス効率を低下させてしまうため、セル径は小さいものが得られるものの未発泡部分も多くなり、発泡倍率が低下する場合がある。また、0.5質量部未満であると、被膜の形成が十分ではなく、発泡時にガス抜けが発生して、収縮がおこり、発泡倍率が低下する場合がある。 In the resin composition such as the thermoplastic resin composition, the addition amount (content) of the shrinkage inhibitor is not particularly limited. For example, when the thermoplastic resin composition is a resin composition containing the thermoplastic resin and “a mixture containing rubber and / or thermoplastic elastomer and softener”, in such a resin composition, The addition amount of the shrinkage inhibitor is not particularly limited, but is preferably 0.5 to 10 parts by mass, more preferably 0.7 to 10 parts by mass with respect to 100 parts by mass of the total amount of resin components. The amount is 8 parts by mass, more preferably 1 part by mass to 6 parts by mass. When the addition amount exceeds 10 parts by mass, gas efficiency is lowered in the cell growth process, so that a cell with a small cell diameter can be obtained, but the number of unfoamed portions increases, and the expansion ratio may decrease. On the other hand, if the amount is less than 0.5 parts by mass, the coating film is not sufficiently formed, gas escape occurs at the time of foaming, shrinkage occurs, and foaming ratio may decrease.
 なお、添加剤としては、特に限定されないが、例えば上記滑剤と上記収縮防止剤とを組み合わせて用いられてもよい。例えば、ステアリン酸モノグリセリドなどの滑剤と、エルカ酸アミド、ラウリン酸ビスアミドなどの収縮防止剤とが組み合わせて用いられてもよい。 The additive is not particularly limited, and for example, the above-mentioned lubricant and the above-mentioned shrinkage preventing agent may be used in combination. For example, a lubricant such as stearic acid monoglyceride and a shrinkage preventing agent such as erucic acid amide or lauric acid bisamide may be used in combination.
 上記樹脂組成物の作製方法は、特に限定されない。例えば、上記熱可塑性樹脂組成物は、特に限定されないが、上記熱可塑性樹脂、必要に応じてその他の成分、必要に応じて加えられる添加剤を、混練することにより作製されてもよい。また、一軸(単軸)混練押出機や二軸混練押出機など公知の溶融混練押出装置により混練し、押し出すことにより得てもよい。 The method for producing the resin composition is not particularly limited. For example, the thermoplastic resin composition is not particularly limited, but may be prepared by kneading the thermoplastic resin, other components as necessary, and additives added as necessary. Alternatively, it may be obtained by kneading and extruding with a known melt-kneading extruder such as a uniaxial (single-axis) kneading extruder or a biaxial kneading extruder.
 上記熱可塑性樹脂組成物などの上記樹脂組成物の形としては、特に限定されないが、例えば、ストランド状;シート状;平板状;ストランドを水冷又は空冷し、適当な長さに裁断したペレット状などが挙げられる。中でも、生産性の点から、混練してペレット化しておくことが好ましい。 The form of the resin composition such as the thermoplastic resin composition is not particularly limited. For example, a strand shape; a sheet shape; a flat plate shape; a strand shape that is water-cooled or air-cooled and cut into an appropriate length. Is mentioned. Especially, it is preferable to knead | mix and pelletize from a point of productivity.
 本発明の樹脂発泡複合体における上記樹脂発泡体層は、特に限定されないが、上記樹脂組成物を発泡させることにより形成されることが好ましく、特に、上記樹脂組成物を発泡させた後、さらに、表面を加熱溶融処理して表面層を形成することが好ましい。例えば、上記熱可塑性樹脂組成物(例えば、上記ポリオレフィン系樹脂組成物)を発泡させることにより形成されることが好ましい。特に、上記熱可塑性樹脂組成物(例えば、上記ポリオレフィン系樹脂組成物)を発泡させた後、さらに、表面を加熱溶融処理して表面層を形成することが好ましい。 The resin foam layer in the resin foam composite of the present invention is not particularly limited, but is preferably formed by foaming the resin composition, in particular, after foaming the resin composition, It is preferable to heat-melt the surface to form a surface layer. For example, it is preferably formed by foaming the thermoplastic resin composition (for example, the polyolefin resin composition). In particular, it is preferable to foam the thermoplastic resin composition (for example, the polyolefin resin composition) and then heat-melt the surface to form a surface layer.
 上記熱可塑性樹脂組成物(例えば、上記ポリオレフィン系樹脂組成物)などの樹脂組成物を発泡させる方法としては、特に限定されないが、例えば、物理的発泡方法や化学的発泡方法が挙げられる。上記物理的発泡方法は、低沸点液体(発泡剤)を樹脂組成物に含浸(分散)させ、次に発泡剤を揮発させることによりセル(気泡)を形成させる方法である。また、上記化学的発泡方法は、樹脂組成物に添加した化合物の熱分解により生じたガスによりセルを形成させる方法である。中でも、樹脂発泡体層の汚染を回避する点、微細で均一な気泡構造の得やすさの点より、物理的発泡方法が好ましく、発泡剤として高圧のガスを用いる物理的発泡方法がより好ましい。ゆえに、本発明の樹脂発泡複合体における上記樹脂発泡体層は、特に、上記熱可塑性樹脂組成物(例えば、上記ポリオレフィン系樹脂組成物)などの樹脂組成物に、高圧のガス(例えば、後述の不活性ガス)を含浸させた後、発泡させて形成されることが好ましい。 The method of foaming a resin composition such as the thermoplastic resin composition (for example, the polyolefin resin composition) is not particularly limited, and examples thereof include a physical foaming method and a chemical foaming method. The physical foaming method is a method of forming cells (bubbles) by impregnating (dispersing) a low boiling point liquid (foaming agent) in a resin composition and then volatilizing the foaming agent. Moreover, the said chemical foaming method is a method of forming a cell with the gas produced by the thermal decomposition of the compound added to the resin composition. Among these, the physical foaming method is preferable from the viewpoint of avoiding contamination of the resin foam layer and the ease of obtaining a fine and uniform cell structure, and the physical foaming method using a high-pressure gas as a foaming agent is more preferable. Therefore, the resin foam layer in the resin foam composite of the present invention is particularly suitable for a resin composition such as the thermoplastic resin composition (for example, the polyolefin resin composition) or the like with a high-pressure gas (for example, described later). It is preferably formed by foaming after impregnating with an inert gas.
 上記不活性ガスは、特に限定されないが、例えば、二酸化炭素、窒素ガス、空気、ヘリウム、アルゴンなどが挙げられる。特に、上記不活性ガスは、上記熱可塑性樹脂組成物などの上記樹脂組成物への含浸量が多く、含浸速度の速い点から、二酸化炭素が好ましい。なお、上記不活性ガスは、単独で又は2種以上を組み合わせて用いられてもよい。 The inert gas is not particularly limited, and examples thereof include carbon dioxide, nitrogen gas, air, helium, and argon. In particular, the inert gas is preferably carbon dioxide from the viewpoint that the amount of impregnation into the resin composition such as the thermoplastic resin composition is large and the impregnation rate is high. In addition, the said inert gas may be used individually or in combination of 2 or more types.
 上記発泡剤の混合量(含有量、含浸量)は、特に限定されないが、上記熱可塑性樹脂組成物などの樹脂組成物の総重量(100質量%)に対して、2質量%~10質量%が好ましい。上記範囲内とすることで、本発明の樹脂発泡複合体における上記樹脂発泡体層の見掛け密度を容易に所定の範囲とすることができる。 The mixing amount (content, impregnation amount) of the foaming agent is not particularly limited, but is 2% by mass to 10% by mass with respect to the total weight (100% by mass) of the resin composition such as the thermoplastic resin composition. Is preferred. By setting it within the above range, the apparent density of the resin foam layer in the resin foam composite of the present invention can be easily set within a predetermined range.
 上記不活性ガスは、熱可塑性樹脂組成物などの樹脂組成物への含浸速度を速めるという点から、含浸時に超臨界状態であることが好ましい。例えば、本発明の樹脂発泡複合体における上記樹脂発泡体層は、上記熱可塑性樹脂組成物(例えば、上記ポリオレフィン系樹脂組成物)を、超臨界流体を用いて発泡させることにより形成されることが好ましい。上記不活性ガスが超臨界流体(超臨界状態)であると、熱可塑性樹脂組成物などの樹脂組成物への溶解度が増大し、高濃度の含浸(混入)が可能である。また、高濃度で含浸することが可能であるため、含浸後に圧力を急激に降下させた際には、気泡核の発生が多くなり、その気泡核が成長してできる気泡の密度が気孔率が同じであっても大きくなるため、微細な気泡を得ることができる。なお、二酸化炭素の臨界温度は31℃、臨界圧力は7.4MPaである。 The above-mentioned inert gas is preferably in a supercritical state at the time of impregnation from the viewpoint of increasing the impregnation rate into a resin composition such as a thermoplastic resin composition. For example, the resin foam layer in the resin foam composite of the present invention may be formed by foaming the thermoplastic resin composition (for example, the polyolefin resin composition) using a supercritical fluid. preferable. When the inert gas is a supercritical fluid (supercritical state), the solubility in a resin composition such as a thermoplastic resin composition increases, and high concentration impregnation (mixing) is possible. In addition, since it is possible to impregnate at a high concentration, when the pressure is drastically lowered after the impregnation, the generation of bubble nuclei increases, and the density of bubbles formed by the growth of the bubble nuclei has a porosity. Even if they are the same, they become larger, so that fine bubbles can be obtained. Carbon dioxide has a critical temperature of 31 ° C. and a critical pressure of 7.4 MPa.
 発泡剤としてガスを用いる物理的発泡方法としては、熱可塑性樹脂組成物などの樹脂組成物に高圧のガス(例えば、不活性ガスなど)を含浸させた後、減圧(例えば大気圧まで)する工程(圧力を解放する工程)を経て発泡させることにより形成する方法が好ましい。具体的には、熱可塑性樹脂組成物などの樹脂組成物を成形することにより未発泡成形物を得て、該未発泡成形物に高圧のガスを含浸させた後、減圧(例えば大気圧まで)する工程を経て発泡させることにより形成する方法、または、溶融した熱可塑性樹脂組成物などの樹脂組成物にガス(例えば、不活性ガスなど)を加圧状態下で含浸させた後、減圧(例えば大気圧まで)して発泡させるとともに成形に付して形成する方法などが挙げられる。 As a physical foaming method using a gas as a foaming agent, a resin composition such as a thermoplastic resin composition is impregnated with a high-pressure gas (for example, an inert gas) and then reduced in pressure (for example, to atmospheric pressure). A method of forming by foaming through (the step of releasing pressure) is preferable. Specifically, an unfoamed molded product is obtained by molding a resin composition such as a thermoplastic resin composition, and the unfoamed molded product is impregnated with a high-pressure gas, and then reduced in pressure (for example, up to atmospheric pressure). A method of forming by foaming through a step of performing, or impregnating a molten resin composition such as a thermoplastic resin composition with a gas (for example, an inert gas) under a pressurized state, and then reducing the pressure (for example, And a method of forming by foaming and forming by molding.
 すなわち、本発明の樹脂発泡複合体における上記樹脂発泡体層を形成する場合には、上記熱可塑性樹脂組成物(例えば、上記ポリオレフィン系樹脂組成物)などの樹脂組成物を、シート状などの適宜な形状に成形して未発泡樹脂成形体(未発泡成形物)とした後、この未発泡樹脂成形体に、高圧のガスを含浸させ、圧力を解放することにより発泡させるバッチ方式で行ってもよく、また、上記熱可塑性樹脂組成物などの樹脂組成物を高圧条件下、高圧のガスと共に混練し、成形すると同時に圧力を解放し、成形と発泡を同時に行う連続方式で行ってもよい。 That is, when forming the resin foam layer in the resin foam composite of the present invention, a resin composition such as the thermoplastic resin composition (for example, the polyolefin resin composition) is appropriately used in a sheet form or the like. After forming into a non-foamed resin molded body (unfoamed molded product), the unfoamed resin molded body is impregnated with a high-pressure gas and foamed by releasing the pressure. Alternatively, a resin composition such as the above-mentioned thermoplastic resin composition may be kneaded with a high-pressure gas under high-pressure conditions, and may be molded in a continuous manner in which the pressure is released and molding and foaming are performed simultaneously.
 上記バッチ方式において、未発泡樹脂成形体を形成する方法は、特に限定されないが、例えば、熱可塑性樹脂組成物などの樹脂組成物を、単軸押出機、二軸押出機等の押出機を用いて成形する方法;熱可塑性樹脂組成物などの樹脂組成物を、ローラ、カム、ニーダ、バンバリ型等の羽根を設けた混練機を使用して均一に混練しておき、熱板のプレスなどを用いて所定の厚みにプレス成形する方法;熱可塑性樹脂組成物などの樹脂組成物を、射出成形機を用いて成形する方法などが挙げられる。また、未発泡樹脂成形体の形状は、特に限定されないが、例えば、シート状、ロール状、板状等が挙げられる。上記バッチ方式では、所望の形状や厚みの未発泡樹脂成形体が得られる適宜な方法により、熱可塑性樹脂組成物などの樹脂組成物から未発泡樹脂成形体が成形される。 In the batch method, the method for forming the unfoamed resin molded body is not particularly limited. For example, a resin composition such as a thermoplastic resin composition is used using an extruder such as a single screw extruder or a twin screw extruder. The resin composition such as a thermoplastic resin composition is uniformly kneaded using a kneader equipped with blades such as a roller, a cam, a kneader, and a banbari type, and a hot plate press or the like is used. And a method of press molding to a predetermined thickness using a resin composition such as a thermoplastic resin composition using an injection molding machine. The shape of the unfoamed resin molded body is not particularly limited, and examples thereof include a sheet shape, a roll shape, and a plate shape. In the above batch method, an unfoamed resin molded body is molded from a resin composition such as a thermoplastic resin composition by an appropriate method for obtaining an unfoamed resin molded body having a desired shape and thickness.
 上記バッチ方式では、未発泡樹脂成形体を耐圧容器中に入れて、高圧のガスを注入(導入、混入)し、未発泡樹脂成形体中にガスを含浸させるガス含浸工程、十分にガスを含浸させた時点で圧力を解放し(通常、大気圧まで)、未発泡樹脂成形体中に気泡核を発生させる減圧工程を経て、気泡構造が形成される。 In the above batch method, a non-foamed resin molded product is placed in a pressure-resistant container, a high-pressure gas is injected (introduced and mixed), and the non-foamed resin molded product is impregnated with gas. When the pressure is released, the pressure is released (usually up to atmospheric pressure), and a bubble structure is formed through a decompression step for generating bubble nuclei in the unfoamed resin molded body.
 一方、上記連続方式では、(i)熱可塑性樹脂組成物などの樹脂組成物を、押出機(例えば、単軸押出機、二軸押出機等)や射出成形機を使用して混練しながら、高圧のガスを注入(導入、混入)し、十分に高圧のガスを、熱可塑性樹脂組成物などの樹脂組成物に含浸させる混練含浸工程、(ii)押出機の先端に設けられたダイスなどを通して、ガスを含浸させた熱可塑性樹脂組成物などの樹脂組成物を押し出すことにより圧力を解放し(通常、大気圧まで)、成形と発泡を同時に行う成形減圧工程により、熱可塑性樹脂組成物などの樹脂組成物が発泡成形される。 On the other hand, in the above continuous method, (i) while kneading a resin composition such as a thermoplastic resin composition using an extruder (for example, a single screw extruder, a twin screw extruder, etc.) or an injection molding machine, A kneading impregnation step in which a resin composition such as a thermoplastic resin composition is impregnated with a high-pressure gas by introducing (introducing or mixing) the high-pressure gas, and (ii) through a die provided at the tip of the extruder The pressure is released by extruding a resin composition such as a thermoplastic resin composition impregnated with a gas (usually up to atmospheric pressure), and a thermoplastic resin composition or the like is formed by a molding decompression step in which molding and foaming are performed simultaneously. The resin composition is foam-molded.
 上記バッチ方式や連続方式では、必要に応じて、加熱により気泡核を成長させる加熱工程が設けられてもよい。なお、加熱工程を設けずに、室温で気泡核を成長させてもよい。さらにまた、気泡を成長させた後、必要により冷水などにより急激に冷却し、形状を固定化させてもよい。高圧のガスの導入は、連続的に行ってもよく不連続的に行ってもよい。なお、気泡核を成長させる際の加熱の方法は、特に限定されないが、ウォーターバス、オイルバス、熱ロール、熱風オーブン、遠赤外線、近赤外線、マイクロ波などの公知乃至慣用の方法が挙げられる。 In the batch method or the continuous method, a heating step for growing bubble nuclei by heating may be provided as necessary. Note that bubble nuclei may be grown at room temperature without providing a heating step. Furthermore, after the bubbles are grown, if necessary, the shape may be fixed rapidly by cooling with cold water or the like. The high-pressure gas may be introduced continuously or discontinuously. The heating method for growing the cell nuclei is not particularly limited, and examples thereof include known or conventional methods such as a water bath, an oil bath, a hot roll, a hot air oven, far infrared rays, near infrared rays, and microwaves.
 上記バッチ方式のガス含浸工程や上記連続方式の混練含浸工程において、ガスを含浸させるときの圧力は、ガスの種類や操作性等を考慮して適宜選択されるが、例えば、5MPa以上(例えば、5MPa~100MPa)が好ましく、より好ましくは7MPa以上(例えば、7MPa~100MPa)である。すなわち、上記熱可塑性樹脂組成物などの樹脂組成物に、圧力5MPa以上(例えば、圧力5MPa~100MPa)のガスを含浸させることが好ましく、圧力7MPa以上(例えば、圧力7MPa~100MPa)の不活性ガスを含浸させることがより好ましい。ガスの圧力が、5MPaより低い場合には、発泡時の気泡成長が著しく、セルが大きくなりすぎ、例えば、防塵効果が低下するなどの不都合が生じやすくなり、好ましくない。これは、圧力が低いと、ガスの含浸量が高圧時に比べて相対的に少なく、気泡核形成速度が低下して形成される気泡核数が少なくなるため、1気泡あたりのガス量が逆に増えて気泡径が極端に大きくなるからである。また、5MPaより低い圧力領域では、含浸圧力を少し変化させるだけでセル径、気泡密度が大きく変わるため、セル径及び気泡密度の制御が困難になりやすい。 In the batch type gas impregnation step and the continuous type kneading impregnation step, the pressure when impregnating the gas is appropriately selected in consideration of the type of gas, operability, etc., for example, 5 MPa or more (for example, 5 MPa to 100 MPa), more preferably 7 MPa or more (for example, 7 MPa to 100 MPa). That is, the resin composition such as the thermoplastic resin composition is preferably impregnated with a gas having a pressure of 5 MPa or more (for example, a pressure of 5 MPa to 100 MPa), and an inert gas having a pressure of 7 MPa or more (for example, a pressure of 7 MPa to 100 MPa). It is more preferable to impregnate. When the gas pressure is lower than 5 MPa, the bubble growth at the time of foaming is remarkable, the cell becomes too large, and disadvantages such as a decrease in the dustproof effect are likely to occur, which is not preferable. This is because when the pressure is low, the amount of impregnation of the gas is relatively small compared to when the pressure is high, and the number of bubble nuclei formed by decreasing the bubble nucleus formation rate is reduced. This is because the bubble diameter is extremely increased. Further, in the pressure region lower than 5 MPa, the cell diameter and the bubble density are greatly changed only by slightly changing the impregnation pressure, so that it is difficult to control the cell diameter and the bubble density.
 また、上記バッチ方式におけるガス含浸工程や上記連続方式における混練含浸工程で、ガスを含浸させるときの温度(含浸温度)は、用いるガスや樹脂の種類によって異なり、広い範囲で選択できるが、操作性等を考慮した場合、10℃~350℃が好ましい。より具体的には、バッチ方式での含浸温度は、10℃~250℃が好ましく、より好ましくは40℃~240℃であり、さらに好ましくは60℃~230℃である。また、連続方式では、含浸温度は、60℃~350℃が好ましく、より好ましくは100℃~320℃であり、さらに好ましくは150℃~300℃である。なお、高圧のガスとして二酸化炭素を用いる場合には、超臨界状態を保持するため、含浸時の温度(含浸温度)は32℃以上(特に40℃以上)であることが好ましい。また、ガスを含浸させた後、発泡成形する前に、ガスを含浸させた熱可塑性樹脂組成物などの樹脂組成物を、発泡成形に適した温度(例えば150℃~190℃)まで冷却してもよい。 In addition, in the gas impregnation step in the batch method and the kneading impregnation step in the continuous method, the temperature at which the gas is impregnated (impregnation temperature) varies depending on the type of gas and resin used and can be selected in a wide range. In consideration of the above, it is preferably 10 ° C. to 350 ° C. More specifically, the impregnation temperature in the batch method is preferably 10 ° C to 250 ° C, more preferably 40 ° C to 240 ° C, and further preferably 60 ° C to 230 ° C. In the continuous method, the impregnation temperature is preferably 60 ° C. to 350 ° C., more preferably 100 ° C. to 320 ° C., and further preferably 150 ° C. to 300 ° C. When carbon dioxide is used as the high-pressure gas, the temperature during impregnation (impregnation temperature) is preferably 32 ° C. or higher (particularly 40 ° C. or higher) in order to maintain a supercritical state. In addition, after the impregnation with the gas and before foam molding, the resin composition such as the thermoplastic resin composition impregnated with the gas is cooled to a temperature suitable for foam molding (for example, 150 ° C. to 190 ° C.). Also good.
 さらに、上記バッチ方式や上記連続方式において、減圧工程(圧力を解放する工程)での減圧速度は、特に限定されないが、均一で微細なセルを有する気泡構造を得る点から、好ましくは5MPa/秒~300MPa/秒である。 Furthermore, in the batch method or the continuous method, the pressure reduction rate in the pressure reduction step (step of releasing pressure) is not particularly limited, but preferably 5 MPa / second from the viewpoint of obtaining a cell structure having uniform and fine cells. ~ 300 MPa / sec.
 気泡核を成長させるために、加熱工程を設ける場合には、加熱温度は、例えば、40℃~250℃が好ましく、より好ましくは60℃~250℃である。 When a heating step is provided for growing bubble nuclei, the heating temperature is preferably 40 ° C. to 250 ° C., and more preferably 60 ° C. to 250 ° C., for example.
 なお、本発明の樹脂発泡複合体における上記樹脂発泡体層の気泡構造、見掛け密度は、構成する樹脂の種類に応じて、例えば、熱可塑性樹脂組成物などの樹脂組成物を発泡成形する際の発泡方法や発泡条件(例えば、発泡剤の種類や量、発泡の際の温度や圧力や時間など)を選択することにより調整される。 In addition, the cell structure and apparent density of the resin foam layer in the resin foam composite of the present invention are, for example, when foam-molding a resin composition such as a thermoplastic resin composition, depending on the type of resin constituting the resin foam layer. It is adjusted by selecting a foaming method and foaming conditions (for example, the type and amount of a foaming agent, the temperature, pressure and time during foaming).
 本発明の樹脂発泡複合体における樹脂発泡体層は、特に、熱可塑性樹脂組成物などの樹脂組成物を発泡成形してから表面をスライス加工することにより形成されることが好ましい。具体的には、上記熱可塑性樹脂組成物などの樹脂組成物を発泡させて発泡体(シート状発泡体A)を得た後、該発泡体の両面側の表面をスライス加工することにより形成されることが好ましい。上記のシート状発泡体A(上記熱可塑性樹脂組成物などの樹脂組成物を発泡させて得られる発泡体)は、表面付近に、内部と比較して密度の高い層状部分(内部と比較して発泡倍率の低い層状部分、スキン層)を有することが多い。スライス加工によればこの層状部分(スキン層)を除くことができ、発泡体表面に内部の気泡構造を露出させて、開口部を設けることができる。また、スライス加工により、任意の厚みの樹脂発泡体層を、厚み精度良く得ることができる。 The resin foam layer in the resin foam composite of the present invention is particularly preferably formed by foaming a resin composition such as a thermoplastic resin composition and then slicing the surface. Specifically, it is formed by foaming a resin composition such as the thermoplastic resin composition to obtain a foam (sheet-like foam A), and then slicing the surfaces on both sides of the foam. It is preferable. The sheet-like foam A (foam obtained by foaming a resin composition such as the thermoplastic resin composition) is a layered portion having a higher density than the inside (compared to the inside) near the surface. It often has a layered portion having a low expansion ratio, a skin layer). According to the slicing process, this layered portion (skin layer) can be removed, and the opening can be provided by exposing the internal cell structure to the foam surface. Moreover, the resin foam layer of arbitrary thickness can be obtained with sufficient thickness precision by slicing.
 スライス加工としては、図1に示すような連続スライス装置(スライスライン)を用いて、1面ずつ表面のスキン層を剥がしとることができる。つまり、長尺発泡体原反(例えば、シート状発泡体Aなど)を、表面のスキン層を除くために連続スライス装置に2回通過させることで、両表面に開口部が形成される。 As the slicing process, the skin layer on the surface can be peeled off one surface at a time using a continuous slicing device (slice line) as shown in FIG. In other words, an opening is formed on both surfaces of a long foam original fabric (for example, sheet-like foam A) by passing it twice through a continuous slicing device in order to remove the skin layer on the surface.
 本発明において用いる樹脂発泡体層は、上記樹脂組成物を発泡させた後、さらに、表面を加熱溶融処理して表面層を形成することが好ましい。特に、上記熱可塑性樹脂組成物を発泡させた後、さらに、表面を加熱溶融処理して表面層を形成することが好ましい。より、具体的には、上記熱可塑性樹脂組成物などの樹脂組成物を発泡させて発泡体(シート状の発泡体)を得た後、該発泡体の表面を加熱溶融処理することにより表面層を形成することが好ましい。このように、厚み方向の表面を溶融させることで、樹脂発泡体層の厚みを薄く調整することができる。さらに柔軟性の低下を最小限に抑えつつ、長さ方向の引張強さを高くして、破断や千切れ等の発生を抑制し、長尺の樹脂発泡体層を容易に連続して得ることがでる。さらに、発泡部分が非発泡状態(バルク)に戻ることで、さらに元々あった表面の粗さ(厚みの誤差)が小さくなり、厚み精度が向上するので、高速であっても、シワ(巻き取る際の巻きジワ)の発生を抑制できる。なお、本明細書において、上記樹脂組成物を発泡させることにより得られる、シート状の発泡体であって、加熱溶融処理する前の発泡体を「発泡構造体」と称する場合がある。 The resin foam layer used in the present invention is preferably formed by foaming the resin composition and further heat-melting the surface to form a surface layer. In particular, after foaming the thermoplastic resin composition, it is preferable to further heat-melt the surface to form a surface layer. More specifically, after foaming a resin composition such as the thermoplastic resin composition to obtain a foam (sheet-like foam), the surface layer is obtained by subjecting the surface of the foam to heat-melting treatment. Is preferably formed. Thus, the thickness of the resin foam layer can be adjusted to be thin by melting the surface in the thickness direction. Furthermore, it is possible to obtain a long resin foam layer easily and continuously by increasing the tensile strength in the length direction while minimizing the decrease in flexibility and suppressing the occurrence of breakage and tearing. I get out. Furthermore, since the foamed portion returns to the non-foamed state (bulk), the original surface roughness (thickness error) is reduced and the thickness accuracy is improved. The occurrence of winding wrinkles) can be suppressed. In the present specification, a sheet-like foam obtained by foaming the resin composition and before the heat-melting treatment may be referred to as a “foam structure”.
 加熱溶融処理は、特に限定されないが、巻き取り時のシワの発生、特に高速での巻き取り時のシワの発生を抑制し、より良好な巻取安定性を得る点、及び、厚み精度を向上させる点より、上記発泡構造体の少なくとも一方の面について全体的に施されることが好ましい。すなわち、本発明において用いる樹脂発泡体層を、上記熱可塑性樹脂組成物を発泡させた後、さらに、表面を加熱溶融処理することにより形成する場合、上記熱可塑性樹脂組成物を発泡させることにより発泡構造体を得た後、該発泡構造体の片面又は両面に加熱溶融処理を施すことにより形成することが好ましい。また、同じ面に加熱溶融処理を2回以上施してもよい。
 さらに、後述する粘着剤層を積層した樹脂発泡複合体として、加熱溶融処理を行ってもよい。発泡構造体と粘着剤層が積層された樹脂発泡複合体としてから、発泡構造体に対して加熱溶融処理を行い、表面層を形成してもよい。
The heat-melting treatment is not particularly limited, but it suppresses the generation of wrinkles during winding, particularly the generation of wrinkles during high-speed winding, and obtains better winding stability and improves the thickness accuracy. In view of the above, it is preferable to apply the entire foam structure to at least one surface. That is, when the resin foam layer used in the present invention is formed by foaming the thermoplastic resin composition and then subjecting the surface to heat-melting treatment, foaming is performed by foaming the thermoplastic resin composition. After obtaining the structure, it is preferable to form by heating and melting one or both sides of the foam structure. In addition, the same surface may be heat-melted twice or more.
Furthermore, you may heat-melt as a resin foam composite which laminated | stacked the adhesive layer mentioned later. After forming the resin foam composite in which the foam structure and the pressure-sensitive adhesive layer are laminated, the foam structure may be heat-melted to form a surface layer.
 上記加熱溶融処理としては、特に限定されないが、例えば、熱ロールによるプレス処理、レーザー照射処理、加熱されたロール上での接触溶融処理、フレーム処理などが挙げられる。熱ロールによるプレス処理の場合、熱ラミネーターなどを用いて好適に処理を行うことができる。なお、ロールの材質としては、ゴム、金属、フッ素系樹脂(例えば、テフロン(登録商標))などが挙げられる。 The heating and melting treatment is not particularly limited, and examples thereof include a press treatment using a hot roll, a laser irradiation treatment, a contact melting treatment on a heated roll, and a flame treatment. In the case of press treatment with a hot roll, the treatment can be suitably performed using a thermal laminator or the like. Examples of the material of the roll include rubber, metal, and fluorine-based resin (for example, Teflon (registered trademark)).
 上記加熱溶融処理の際の温度は、特に限定されないが、発泡構造体に含まれる樹脂の軟化点又は融点より15℃低い温度(より好ましくは発泡構造体に含まれる樹脂の軟化点又は融点より12℃低い温度)以上であること好ましく、また、発泡構造体に含まれる樹脂の軟化点又は融点より20℃高い温度(より好ましくは発泡構造体に含まれる樹脂の軟化点又は融点より10℃高い温度)以下であることが好ましい。
 また、粘着剤層を積層した樹脂発泡複合体として、加熱溶融処理を行う場合、加熱溶融処理の際の温度は、特に限定されないが、樹脂の軟化点又は融点より、40℃高い温度以上であることが好ましい。
 例えば、発泡構造体に含まれる熱可塑性樹脂(例えば、上記ポリオレフィン系樹脂など)の軟化点又は融点より15℃低い温度(より好ましくは発泡構造体に含まれる熱可塑性樹脂の軟化点又は融点より12℃低い温度)以上であること好ましく、また、発泡構造体に含まれる熱可塑性樹脂の軟化点又は融点より20℃高い温度(より好ましくは発泡構造体に含まれる熱可塑性樹脂の軟化点又は融点より10℃高い温度)以下であることが好ましい。加熱溶融処理の際の温度が構成する熱可塑性樹脂などの樹脂の軟化点又は融点より15℃低い温度より高いと、加熱溶融処理を効率よく施せる点で好ましい。また、加熱溶融処理の際の温度が、構成する熱可塑性樹脂などの樹脂の軟化点又は融点より20℃高い温度より低いと、収縮してシワなどが発生することを抑制でき、好ましい。
The temperature during the heat-melting treatment is not particularly limited, but is 15 ° C. lower than the softening point or melting point of the resin included in the foam structure (more preferably, 12 degrees lower than the softening point or melting point of the resin included in the foam structure). Preferably, the temperature is 20 ° C. higher than the softening point or melting point of the resin contained in the foam structure (more preferably, 10 ° C. higher than the softening point or melting point of the resin contained in the foam structure). It is preferable that
Further, when a heat-melting treatment is performed as a resin foam composite in which an adhesive layer is laminated, the temperature during the heat-melting treatment is not particularly limited, but is 40 ° C. or higher than the softening point or melting point of the resin. It is preferable.
For example, a temperature that is 15 ° C. lower than the softening point or melting point of a thermoplastic resin (for example, the above-mentioned polyolefin resin) included in the foam structure (more preferably 12 from the softening point or melting point of the thermoplastic resin included in the foam structure). Preferably, the temperature is 20 ° C. higher than the softening point or melting point of the thermoplastic resin contained in the foam structure (more preferably from the softening point or melting point of the thermoplastic resin contained in the foam structure). The temperature is preferably 10 ° C. or higher). It is preferable that the temperature during the heat-melting treatment is higher than a softening point or a temperature 15 ° C. lower than the melting point of a resin such as a thermoplastic resin constituting the heat-melting treatment because the heat-melting treatment can be performed efficiently. Moreover, it is preferable that the temperature during the heat-melting treatment is lower than a temperature higher by 20 ° C. than the softening point or melting point of a resin such as a thermoplastic resin, which can be suppressed from shrinking and generating wrinkles.
 また、加熱溶融処理の処理時間としては、処理温度にもよるが、例えば、0.1秒~10秒程度が好ましく、好ましくは0.5秒~7秒程度である。時間が短すぎると溶融が進まないことがあり、また、時間が長すぎると収縮してシワなどが発生することがあるためである。 Further, the treatment time of the heat-melting treatment is preferably about 0.1 seconds to 10 seconds, and preferably about 0.5 seconds to 7 seconds, although it depends on the treatment temperature. If the time is too short, melting may not proceed, and if the time is too long, shrinkage may cause wrinkles.
 特に、上記加熱溶融処理は、巻き取り時のシワの発生、特に高速での巻き取り時のシワの発生を抑制し、より良好な巻取安定性を得る点、及び、厚み精度をより向上させる点より、発泡構造体の通過するギャップ(隙間、間隔)を調整できる加熱溶融処理装置を用いることが好ましい。 In particular, the above heat-melting treatment suppresses the generation of wrinkles during winding, particularly the generation of wrinkles during winding at high speed, and obtains better winding stability and further improves the thickness accuracy. In view of this, it is preferable to use a heat-melting treatment apparatus that can adjust a gap (gap, interval) through which the foam structure passes.
 このような加熱溶融処理装置としては、例えば、図2のギャップを調整可能な加熱ロール(熱誘電ロール)23を有する連続処理装置が挙げられる。すなわち、繰り出しロール21から繰り出された発泡構造体を、加熱ロール(熱誘電ロール)23と冷却ロール24のギャップに通し、熱ロール(熱誘電ロール)23により接触溶融処理を行い、熱溶融処理により表面層が形成された樹脂発泡体層を巻取ロール25で巻回するものである。 As such a heat-melting processing apparatus, for example, a continuous processing apparatus having a heating roll (thermal dielectric roll) 23 capable of adjusting the gap shown in FIG. That is, the foamed structure fed from the feed roll 21 is passed through the gap between the heating roll (thermal dielectric roll) 23 and the cooling roll 24, and contact melting processing is performed by the thermal roll (thermal dielectric roll) 23, and the thermal melting processing is performed. The resin foam layer on which the surface layer is formed is wound with a winding roll 25.
 本発明の樹脂発泡複合体における樹脂発泡体層を構成する樹脂発泡体は、見掛け密度が低く、薄く柔軟で、巻き取り時の安定性(巻取安定性)に優れる。このため、幅広で、長い長尺ロールを得ることができる。また、上記樹脂発泡体層を構成する樹脂発泡体は、薄く、厚み精度を高くすることができる。 The resin foam constituting the resin foam layer in the resin foam composite of the present invention has a low apparent density, is thin and flexible, and has excellent winding stability (winding stability). For this reason, a wide and long long roll can be obtained. Moreover, the resin foam which comprises the said resin foam layer is thin, and can make thickness accuracy high.
 本発明の樹脂発泡複合体における樹脂発泡体層に表面層を設ける場合、表面被覆率が40%以上である面であることが好ましい。つまり、上記樹脂発泡体層は、表面被覆率が40%以上である表面層を有することが好ましい。 When the surface layer is provided on the resin foam layer in the resin foam composite of the present invention, the surface coverage is preferably 40% or more. That is, the resin foam layer preferably has a surface layer having a surface coverage of 40% or more.
 上記表面被覆率は、40%以上であることが好ましく、より好ましくは45%以上、さらに好ましくは50%以上である。 The surface coverage is preferably 40% or more, more preferably 45% or more, and still more preferably 50% or more.
 上記表面被覆率は、表面に存在する非孔部(表面に存在する孔ではない部分、バルク、非発泡状態の部分)の割合を示す指標であり、下記式(1)で定義される。なお、表面被覆率が100%であれば、その面には孔部が存在しないこととなる。
 表面被覆率(%)=[(表面の面積)-(表面に存在する孔の面積)]/(表面の面積)×100   (1)
The surface coverage is an index indicating the ratio of non-porous portions (portions that are not pores, bulk, non-foamed portions) existing on the surface, and is defined by the following formula (1). If the surface coverage is 100%, there will be no holes on the surface.
Surface coverage (%) = [(surface area) − (area of pores existing on the surface)] / (surface area) × 100 (1)
 本発明の樹脂発泡複合体における樹脂発泡体層の厚みは、樹脂発泡複合体の層厚が0.35mm以下となるよう設計されていれば特に限定されないが、0.03mm~0.34mmであることが好ましく、0.04mm~0.28mmであることがより好ましく、0.05mm~0.20mmであることがさらに好ましい。樹脂発泡体層の厚みが上記範囲内であると、高い衝撃吸収性を保ちながら狭い隙間に圧縮して挿入できるという利点がある。一方、樹脂発泡体の厚みが0.03mm未満では、主用途である衝撃吸収性が低下する場合があり、一方、樹脂発泡体の厚みが0.34mmを超えると0.1mmといった狭い隙間に挿入できない場合がある。なお本発明の樹脂発泡複合体において樹脂発泡体層の厚みとは、上記表面層を含む厚みをいう。 The thickness of the resin foam layer in the resin foam composite of the present invention is not particularly limited as long as the thickness of the resin foam composite is designed to be 0.35 mm or less, but is 0.03 mm to 0.34 mm. The thickness is preferably 0.04 mm to 0.28 mm, and more preferably 0.05 mm to 0.20 mm. When the thickness of the resin foam layer is within the above range, there is an advantage that the resin foam layer can be compressed and inserted into a narrow gap while maintaining high shock absorption. On the other hand, if the thickness of the resin foam is less than 0.03 mm, the shock absorption, which is the main application, may be reduced. On the other hand, if the thickness of the resin foam exceeds 0.34 mm, it is inserted into a narrow gap of 0.1 mm. There are cases where it is impossible. In the resin foam composite of the present invention, the thickness of the resin foam layer refers to the thickness including the surface layer.
 本発明の樹脂発泡複合体における樹脂発泡体層の下記式(2)で求められる値は、特に限定されないが、25%以下であることが好ましく、より好ましく15%以下、さらに好ましくは10%以下である。「式(2)より求められる値」が25%以内であると、巻き取り時のシワの発生、特に高速での巻き取り時のシワの発生を抑制し、より良好な巻取安定性を得ることができ好ましい。また、高い厚み精度を得ることができるので、粘着剤層との貼合せ時においてシワの発生を防げて好ましい。なお、本明細書において、巻き取り時の高速とは、例えば10~40m/分の速度をいう。
 (厚み公差)/(厚みの中心値)×100  (2)
 厚み公差:長さ方向の1点で一方の端部から他方の端部まで幅方向10mm毎に厚みを測定し、さらに上記長さ方向の1点から長さ方向に1m移動した点で一方の端部から他方の端部まで幅方向10mm毎に厚みを測定し、得られた全ての測定値の最大値と最小値の差をいう。
 厚みの中心値:長さ方向の1点で一方の端部から他方の端部まで幅方向10mm毎に厚みを測定し、さらに上記長さ方向の1点から長さ方向に1m移動した点で一方の端部から他方の端部まで幅方向10mm毎に厚みを測定し、得られた全ての測定値を小さい順に並べたとき中央に位置する値をいう。
Although the value calculated | required by following formula (2) of the resin foam layer in the resin foam composite of this invention is not specifically limited, It is preferable that it is 25% or less, More preferably, it is 15% or less, More preferably, it is 10% or less. It is. When the “value obtained from the formula (2)” is within 25%, the generation of wrinkles at the time of winding, particularly the generation of wrinkles at the time of winding at high speed, is suppressed, and better winding stability is obtained. Can be preferable. Moreover, since high thickness precision can be obtained, generation | occurrence | production of a wrinkle can be prevented at the time of bonding with an adhesive layer, and it is preferable. In the present specification, the high speed during winding refers to a speed of 10 to 40 m / min, for example.
(Thickness tolerance) / (median thickness) × 100 (2)
Thickness tolerance: The thickness is measured every 10 mm in the width direction from one end to the other at one point in the length direction, and one point at a point moved 1 m in the length direction from one point in the length direction. The thickness is measured every 10 mm in the width direction from the end to the other end, and the difference between the maximum value and the minimum value of all the measured values obtained.
Median thickness: Measured thickness every 10 mm in the width direction from one end to the other at one point in the length direction, and further moved 1 m in the length direction from one point in the length direction. The thickness is measured every 10 mm in the width direction from one end portion to the other end portion, and is a value located in the center when all the obtained measurement values are arranged in ascending order.
 本発明の樹脂発泡複合体における樹脂発泡体層において、樹脂発泡体層に用いられる樹脂発泡体は、シート状物であってよく、巻き取られ、ロール状(巻回体)であってもよい。 In the resin foam layer in the resin foam composite of the present invention, the resin foam used for the resin foam layer may be a sheet-like material, wound up, or in a roll shape (rolled body). .
 本発明の樹脂発泡複合体における樹脂発泡体層において、樹脂発泡体層に用いられる樹脂発泡体をシート状物で作製する場合、その幅は特に限定されないが、300mm以上(例えば300mm~1500mm)であることが好ましく、400mm以上(例えば400mm~1200mm)であることがより好ましく、500mm以上(例えば500mm~1000mm)であることがさらに好ましい。上記幅が300mm以上であるので、自由度の高い設計や加工ができ、好ましい。 In the resin foam layer in the resin foam composite of the present invention, the width of the resin foam used for the resin foam layer is not particularly limited, but is 300 mm or more (for example, 300 mm to 1500 mm). Preferably, it is 400 mm or more (for example, 400 mm to 1200 mm), more preferably 500 mm or more (for example, 500 mm to 1000 mm). Since the said width | variety is 300 mm or more, design and processing with a high freedom degree can be performed and it is preferable.
 また、本発明の樹脂発泡複合体における樹脂発泡体層において、樹脂発泡体層に用いられる樹脂発泡体をシート状物で作製する場合、その長さは、特に限定されないが、5m以上(例えば5m~1000m)であることが好ましく、30m以上(例えば30m~500m)であることがより好ましく、50m以上(例えば50m~300m)であることがさらに好ましい。 Moreover, in the resin foam layer in the resin foam composite of the present invention, when the resin foam used for the resin foam layer is made of a sheet-like material, the length is not particularly limited, but is 5 m or more (for example, 5 m To 1000 m), preferably 30 m or more (for example, 30 m to 500 m), and more preferably 50 m or more (for example, 50 m to 300 m).
[粘着剤層]
 本発明の樹脂発泡複合体において、粘着剤層は、上記樹脂発泡体層に対する粘着面と被着体に対する粘着面とを提供する層状物をいう。例えば、本発明の樹脂発泡複合体における粘着剤層には、基材レス両面粘着シート(1つの粘着剤層のみから構成される粘着シート)や、基材付き両面粘着シート(基材の両面側に粘着剤層を有する粘着シート)、後述の基材付き粘着剤層などが含まれる。
[Adhesive layer]
In the resin foam composite of the present invention, the pressure-sensitive adhesive layer refers to a layered material that provides an adhesive surface for the resin foam layer and an adhesive surface for an adherend. For example, the pressure-sensitive adhesive layer in the resin foam composite of the present invention includes a base material-less double-sided pressure-sensitive adhesive sheet (a pressure-sensitive adhesive sheet composed of only one pressure-sensitive adhesive layer), a double-sided pressure-sensitive adhesive sheet with a base material (both sides of the base material) The pressure-sensitive adhesive sheet having a pressure-sensitive adhesive layer), a pressure-sensitive adhesive layer with a substrate described later, and the like are included.
 本発明の樹脂発泡複合体における粘着剤層は、特に限定されないが、例えば、アクリル系粘着剤、ゴム系粘着剤(天然ゴム系粘着剤、合成ゴム系粘着剤など)、シリコーン系粘着剤、ポリエステル系粘着剤、ウレタン系粘着剤、ポリアミド系粘着剤、エポキシ系粘着剤、ビニルアルキルエーテル系粘着剤、フッ素系粘着剤などの粘着剤より形成することができる。特に、高い粘着特性と耐熱性を有することから、アクリル系粘着剤を用いることが好ましい。上記粘着剤は、単独で又は2種以上を組み合わせて用いられてもよい。なお、上記粘着剤は、エマルジョン系粘着剤、溶剤系粘着剤、ホットメルト型粘着剤、オリゴマー系粘着剤、固系粘着剤などのいずれの形態の粘着剤であってもよい。 The pressure-sensitive adhesive layer in the resin foam composite of the present invention is not particularly limited. For example, acrylic pressure-sensitive adhesive, rubber pressure-sensitive adhesive (natural rubber pressure-sensitive adhesive, synthetic rubber pressure-sensitive adhesive, etc.), silicone pressure-sensitive adhesive, polyester It can be formed from a pressure-sensitive adhesive such as a pressure-sensitive adhesive, urethane pressure-sensitive adhesive, polyamide-based pressure-sensitive adhesive, epoxy-based pressure-sensitive adhesive, vinyl alkyl ether-based pressure-sensitive adhesive, or fluorine-based pressure-sensitive adhesive. In particular, an acrylic pressure-sensitive adhesive is preferably used because it has high adhesive properties and heat resistance. The pressure-sensitive adhesives may be used alone or in combination of two or more. The pressure-sensitive adhesive may be any form of pressure-sensitive adhesive such as an emulsion-based pressure-sensitive adhesive, a solvent-based pressure-sensitive adhesive, a hot-melt pressure-sensitive adhesive, an oligomer-based pressure-sensitive adhesive, or a solid-based pressure-sensitive adhesive.
 特に、本発明の樹脂発泡複合体における粘着剤層を形成する粘着剤は、透明性が高く、耐熱性、耐光性に優れていることより、アクリル系粘着剤が好ましい。つまり、本発明の樹脂発泡複合体における粘着剤層は、アクリル系粘着剤層であることが好ましい。 In particular, the pressure-sensitive adhesive forming the pressure-sensitive adhesive layer in the resin foam composite of the present invention is preferably an acrylic pressure-sensitive adhesive because of its high transparency and excellent heat resistance and light resistance. That is, the pressure-sensitive adhesive layer in the resin foam composite of the present invention is preferably an acrylic pressure-sensitive adhesive layer.
 上記粘着剤は、ベースポリマーと、必要に応じて、架橋剤、粘着付与剤、軟化剤、可塑剤、充填剤、老化防止剤、着色剤などの適宜な添加剤とが含まれている。例えば、上記アクリル系粘着剤は、アクリル系ポリマーを粘着性成分(ベースポリマー)又は主剤とし、これに必要に応じて、架橋剤、粘着付与剤、軟化剤、可塑剤、充填剤、老化防止剤、着色剤などの適宜な添加剤が含まれている。 The pressure-sensitive adhesive contains a base polymer and, as necessary, appropriate additives such as a crosslinking agent, a tackifier, a softener, a plasticizer, a filler, an anti-aging agent, and a colorant. For example, the acrylic pressure-sensitive adhesive has an acrylic polymer as a pressure-sensitive adhesive component (base polymer) or a main agent, and if necessary, a crosslinking agent, a tackifier, a softener, a plasticizer, a filler, an anti-aging agent. And appropriate additives such as colorants.
 上記アクリル系粘着剤において、上記アクリル系ポリマーでは、(メタ)アクリル酸アルキルエステルを単量体主成分とし、必要に応じて、上記(メタ)アルキルエステルに対して共重合が可能な単量体(共重合性単量体)がその他の単量体成分として用いられていることが好ましい。上記(メタ)アクリル酸アルキルエステルとしては、例えば、(メタ)アクリル酸メチル、(メタ)アクリル酸エチル、(メタ)アクリル酸プロピル、(メタ)アクリル酸イソプロピル、(メタ)アクリル酸ブチル、(メタ)アクリル酸イソブチル、(メタ)アクリル酸s-ブチル、(メタ)アクリル酸t-ブチル、(メタ)アクリル酸ペンチル、(メタ)アクリル酸ヘキシル、(メタ)アクリル酸ヘプチル、(メタ)アクリル酸オクチル、(メタ)アクリル酸2-エチルヘキシル、(メタ)アクリル酸イソオクチル、(メタ)アクリル酸ノニル、(メタ)アクリル酸イソノニル、(メタ)アクリル酸デシル、(メタ)アクリル酸イソデシル、(メタ)アクリル酸ウンデシル、(メタ)アクリル酸ドデシル、(メタ)アクリル酸トリデシル、(メタ)アクリル酸テトラデシル、(メタ)アクリル酸ペンタデシル、(メタ)アクリル酸ヘキサデシル、(メタ)アクリル酸ヘプタデシル、(メタ)アクリル酸オクタデシル、(メタ)アクリル酸ノナデシル、(メタ)アクリル酸エイコシルなどの炭素数が1~20の直鎖状又は分岐鎖状のアルキル基を有する(メタ)アクリル酸アルキルエステル(「(メタ)アクリル酸C1-20アルキルエステル」と称する場合がある)が挙げられる。上記(メタ)アクリル酸アルキルエステルとしては、中でも、炭素数が4~18の直鎖状又は分岐鎖状のアルキル基を有する(メタ)アクリル酸アルキルエステル(「(メタ)アクリル酸C4-18アルキルエステル」と称する場合がある)が好ましく挙げられる。上記(メタ)アクリル酸アルキルエステルは、目的とする粘着性などに応じて適宜選択することができる。また、上記(メタ)アクリル酸アルキルエステルは、単独で又は2種以上組み合わせて用いられてもよい。 In the acrylic pressure-sensitive adhesive, in the acrylic polymer, a monomer that has (meth) acrylic acid alkyl ester as a main monomer component and can be copolymerized with the (meth) alkyl ester, if necessary. (Copolymerizable monomer) is preferably used as the other monomer component. Examples of the (meth) acrylic acid alkyl ester include, for example, methyl (meth) acrylate, ethyl (meth) acrylate, propyl (meth) acrylate, isopropyl (meth) acrylate, butyl (meth) acrylate, (meth ) Isobutyl acrylate, s-butyl (meth) acrylate, t-butyl (meth) acrylate, pentyl (meth) acrylate, hexyl (meth) acrylate, heptyl (meth) acrylate, octyl (meth) acrylate , 2-ethylhexyl (meth) acrylate, isooctyl (meth) acrylate, nonyl (meth) acrylate, isononyl (meth) acrylate, decyl (meth) acrylate, isodecyl (meth) acrylate, (meth) acrylic acid Undecyl, dodecyl (meth) acrylate, tridecyl (meth) acrylate, Carbons such as tetradecyl (meth) acrylate, pentadecyl (meth) acrylate, hexadecyl (meth) acrylate, heptadecyl (meth) acrylate, octadecyl (meth) acrylate, nonadecyl (meth) acrylate, eicosyl (meth) acrylate (Meth) acrylic acid alkyl ester having a linear or branched alkyl group having a number of 1 to 20 (sometimes referred to as “(meth) acrylic acid C 1-20 alkyl ester”). As the above (meth) acrylic acid alkyl ester, among them, a (meth) acrylic acid alkyl ester having a linear or branched alkyl group having 4 to 18 carbon atoms (“(meth) acrylic acid C 4-18 (It may be referred to as “alkyl ester”). The said (meth) acrylic-acid alkylester can be suitably selected according to the target adhesiveness etc. Moreover, the said (meth) acrylic-acid alkylester may be used individually or in combination of 2 or more types.
 また、上記アクリル系ポリマーにおける上記共重合性単量体としては、例えば、(メタ)アクリル酸、イタコン酸、マレイン酸、フマル酸、クロトン酸、イソクロトン酸などのカルボキシル基含有単量体又はその無水物;ビニルスルホン酸ナトリウムなどのスルホン酸基含有単量体;スチレン、置換スチレンなどの芳香族ビニル化合物;アクリロニトリルなどのシアノ基含有単量体;エチレン、プロピレン、ブタジエンなどのオレフィン類;酢酸ビニルなどのビニルエステル類;塩化ビニル;アクリルアミド、メタアクリルアミド、N-ビニルピロリドン、N,N-ジメチル(メタ)アクリルアミドなどのアミド基含有単量体;(メタ)アクリル酸ヒドロキシアルキル、グリセリンジメタクリレートなどのヒドロキシル基含有単量体;(メタ)アクリル酸アミノエチル、(メタ)アクリロイルモルホリンなどのアミノ基含有単量体;シクロヘキシルマレイミド、イソプロピルマレイミドなどのイミド基含有単量体;(メタ)アクリル酸グリシジル、(メタ)アクリル酸メチルグリシジルなどのエポキシ基含有単量体;2-メタクリロイルオキシエチルイソシアネートなどのイソシアネート基含有単量体などが挙げられる。他にも、トリエチレングリコールジ(メタ)アクリレート、ジエチレングリコールジ(メタ)アクリレート、エチレングリコールジ(メタ)アクリレート、テトラエチレングリコールジ(メタ)アクリレート、ネオペンチルグリコールジ(メタ)アクリレート、1,6-ヘキサンジオールジ(メタ)アクリレート、トリメチロールプロパントリ(メタ)アクリレート、ペンタエリスリトールトリ(メタ)アクリレート、ジペンタエリスリトールヘキサ(メタ)アクリレート、ジビニルベンゼンなどの多官能性の共重合性単量体(多官能モノマー)などが挙げられる。上記共重合性単量体は、単独で又は2種以上組み合わせて用いられてもよい。共重合性単量体としては、カルボキシル基などの官能基を有する改質用モノマーが好適に挙げられる。 Examples of the copolymerizable monomer in the acrylic polymer include carboxyl group-containing monomers such as (meth) acrylic acid, itaconic acid, maleic acid, fumaric acid, crotonic acid, and isocrotonic acid, or anhydrides thereof. Sulfonic acid group-containing monomers such as sodium vinyl sulfonate; aromatic vinyl compounds such as styrene and substituted styrene; cyano group-containing monomers such as acrylonitrile; olefins such as ethylene, propylene, and butadiene; vinyl acetate, etc. Vinyl esters; vinyl chloride; amide group-containing monomers such as acrylamide, methacrylamide, N-vinylpyrrolidone, N, N-dimethyl (meth) acrylamide; hydroxyl such as hydroxyalkyl (meth) acrylate and glycerin dimethacrylate Group-containing monomer; ) Amino group-containing monomers such as aminoethyl acrylate and (meth) acryloylmorpholine; Imido group-containing monomers such as cyclohexylmaleimide and isopropylmaleimide; Glycidyl (meth) acrylate, Methyl glycidyl (meth) acrylate, etc. Epoxy group-containing monomer; isocyanate group-containing monomer such as 2-methacryloyloxyethyl isocyanate. In addition, triethylene glycol di (meth) acrylate, diethylene glycol di (meth) acrylate, ethylene glycol di (meth) acrylate, tetraethylene glycol di (meth) acrylate, neopentyl glycol di (meth) acrylate, 1,6- Multifunctional copolymerizable monomers such as hexanediol di (meth) acrylate, trimethylolpropane tri (meth) acrylate, pentaerythritol tri (meth) acrylate, dipentaerythritol hexa (meth) acrylate, divinylbenzene Functional monomers) and the like. The copolymerizable monomers may be used alone or in combination of two or more. Suitable examples of the copolymerizable monomer include a modifying monomer having a functional group such as a carboxyl group.
 上記粘着剤におけるベースポリマーは、慣用の重合方法により調製することができる。例えば、上記アクリル系ポリマーは、溶液重合法、エマルション重合法、紫外線照射重合法等の慣用の重合方法により調製することができる。 The base polymer in the pressure-sensitive adhesive can be prepared by a conventional polymerization method. For example, the acrylic polymer can be prepared by a conventional polymerization method such as a solution polymerization method, an emulsion polymerization method, or an ultraviolet irradiation polymerization method.
 粘着剤層は、公知乃至慣用の形成方法を利用して形成することができ、例えば、所定の部位又は面上に粘着剤を塗布する方法(塗布方法)、剥離ライナーなどの剥離フィルム上に、粘着剤を塗布して粘着層を形成した後、該粘着剤層を、所定の部位又は面上に転写する方法(転写方法)などが挙げられる。なお、粘着剤層の形成に際しては、公知乃至慣用の塗布方法(流延方法、ロールコーター方法、リバースコータ方法、ドクターブレード方法など)を適宜利用することができる。 The pressure-sensitive adhesive layer can be formed by using a known or conventional forming method. For example, a method of applying a pressure-sensitive adhesive on a predetermined site or surface (application method), a release film such as a release liner, Examples thereof include a method (transfer method) of applying an adhesive to form an adhesive layer and then transferring the adhesive layer onto a predetermined site or surface. In forming the pressure-sensitive adhesive layer, a known or conventional coating method (such as a casting method, a roll coater method, a reverse coater method, a doctor blade method) can be used as appropriate.
 本発明の樹脂発泡複合体における粘着剤層は、単層であってもよいし、積層体であってもよい。また、本発明の樹脂発泡複合体における粘着剤層は、適当な基材を含む基材付き粘着剤層における粘着剤層であってもよい。上記基材付き粘着剤層は、例えば、基材の両面側に粘着剤層を有する両面粘着タイプであってもよい。なお、本発明の樹脂発泡複合体における粘着剤層が基材付き粘着剤層における粘着剤層である場合、上記樹脂発泡複合体の総厚(厚み)には、樹脂発泡体の厚みと基材付き粘着剤層の厚みとが含まれる。 The pressure-sensitive adhesive layer in the resin foam composite of the present invention may be a single layer or a laminate. Moreover, the adhesive layer in the resin foam composite of this invention may be an adhesive layer in the adhesive layer with a base material containing a suitable base material. The pressure-sensitive adhesive layer with a substrate may be, for example, a double-sided pressure-sensitive adhesive type having pressure-sensitive adhesive layers on both sides of the substrate. In addition, when the adhesive layer in the resin foam composite of this invention is an adhesive layer in an adhesive layer with a base material, the total thickness (thickness) of the resin foam composite includes the thickness of the resin foam and the base material. And the thickness of the adhesive layer with adhesive.
 つまり、本発明の樹脂発泡複合体は、上記樹脂発泡体層と、上記基材付き粘着剤層とが積層された樹脂発泡複合体であってもよい。例えば、本発明の樹脂発泡複合体は、上記樹脂発泡体層、上記基材付き粘着剤層における粘着剤層、上記基材付き粘着剤層における基材、上記基材付き粘着剤層における粘着剤層が、この順に積層された構成を有していてもよい。なお、この構成は、上記樹脂発泡体層と両面粘着タイプの基材付き粘着剤層が積層された構成に相当する。 That is, the resin foam composite of the present invention may be a resin foam composite in which the resin foam layer and the adhesive layer with a base material are laminated. For example, the resin foam composite of the present invention includes the resin foam layer, the pressure-sensitive adhesive layer in the pressure-sensitive adhesive layer with the base material, the base material in the pressure-sensitive adhesive layer with the base material, and the pressure-sensitive adhesive in the pressure-sensitive adhesive layer with the base material. The layers may have a configuration in which the layers are stacked in this order. In addition, this structure is corresponded to the structure by which the said resin foam layer and the adhesive layer with a double-sided adhesive type base material were laminated | stacked.
 上記基材付き粘着剤層は、紙系基材、繊維系基材、金属系基材、PETフィルムなどプラスチック系基材などの両面に、上記粘着剤からなる粘着剤層を設けた基材付き粘着剤層であってよい。なお、基材付き粘着剤層が両面粘着タイプである場合、2つの粘着剤層の組成は同一であってもよいし、異なっていてもよい。また、2つの粘着剤層の厚みは同一であってもよいし、異なっていてもよい。 The above-mentioned adhesive layer with a substrate is provided with a substrate in which an adhesive layer made of the above-mentioned adhesive is provided on both sides of a paper-based substrate, a fiber-based substrate, a metal-based substrate, a plastic substrate such as a PET film, etc. It may be an adhesive layer. In addition, when an adhesive layer with a base material is a double-sided adhesive type, the composition of two adhesive layers may be the same, and may differ. Moreover, the thickness of two adhesive layers may be the same, and may differ.
 上記基材付き粘着剤層における基材の材質としては、特に限定されないが、プラスチック材が好適である。このようなプラスチック材(プラスチックフィルムの材質)としては、各種エンジニアプラスチック材が好適に挙げられる。プラスチック材としては、例えば、ポリエステル[ポリエチレンテレフタレート(PET)、ポリエチレンナフタレート(PEN)、ポリブチレンテレフタレート(PBT)等];オレフィン系樹脂[ポリエチレン(PE)、ポリプロピレン(PP)、エチレン-プロピレン共重合体、エチレン-酢酸ビニル共重合体(EVA)等のα-オレフィンをモノマー成分とするオレフィン系樹脂等];ポリエーテルスルホン(PES)(ポリエーテルサルホン);ポリスルホン;ポリ塩化ビニル(PVC);ポリフェニレンスルフィド(PPS);アミド系樹脂[ポリアミド(ナイロン)、全芳香族ポリアミド(アラミド)等]、ポリイミド(PI)、ポリアミドイミド、ポリエーテルイミド(PEI)、ポリエステルイミド、メタクリレート系樹脂[ポリメチルメタクリレート(PMMA)など];スチレン系樹脂[ポリスチレン、アクリロニトリル-スチレン共重合体(AS樹脂)、アクリロニトリル-ブタジエン-スチレン共重合体(ABS樹脂)など];ポリカーボネート(PC);ポリアセタール;ポリアリーレンエーテル(ポリフェニレンエーテルなど);ポリフェニレンスルフィド;ポリアリレート;ポリアリール;ポリウレタン類;ポリエーテルケトン類[ポリエーテルエーテルケトン(PEEK)、ポリエーテルケトンケトンなど];ポリアクリル酸エステル類[ポリアクリル酸ブチル、ポリアクリル酸エチルなど];エポキシ系樹脂などが挙げられる。これらの素材(プラスチック材)は、単独で又は2種以上組み合わせて用いられてもよい。 The material of the base material in the adhesive layer with a base material is not particularly limited, but a plastic material is suitable. As such a plastic material (material of the plastic film), various engineer plastic materials are preferably exemplified. Examples of the plastic material include polyester [polyethylene terephthalate (PET), polyethylene naphthalate (PEN), polybutylene terephthalate (PBT), etc.]; olefin resin [polyethylene (PE), polypropylene (PP), ethylene-propylene copolymer Olefin-based resin containing α-olefin as monomer component such as polymer, ethylene-vinyl acetate copolymer (EVA), etc.]; polyethersulfone (PES) (polyethersulfone); polysulfone; polyvinylchloride (PVC); Polyphenylene sulfide (PPS); amide resin [polyamide (nylon), wholly aromatic polyamide (aramid), etc.], polyimide (PI), polyamideimide, polyetherimide (PEI), polyesterimide, methacrylate tree [Polymethyl methacrylate (PMMA), etc.]; Styrenic resin [Polystyrene, acrylonitrile-styrene copolymer (AS resin), acrylonitrile-butadiene-styrene copolymer (ABS resin), etc.]; Polycarbonate (PC); Polyacetal; Poly Arylene ether (polyphenylene ether, etc.); polyphenylene sulfide; polyarylate; polyaryl; polyurethanes; polyether ketones [polyether ether ketone (PEEK), polyether ketone ketone, etc.]; polyacrylates [polybutyl acrylate, Polyethyl acrylate, etc.]; epoxy resins and the like. These materials (plastic materials) may be used alone or in combination of two or more.
 上記プラスチック材としては、厚み精度、経済性(コスト)、引張強度や加工性等の観点より、特に、ポリエステル(中でも、ポリエチレンテレフタレート)が好適に挙げられる。すなわち、上記基材付き粘着剤層における基材としては、特に、ポリエステルフィルム(中でも、ポリエチレンテレフタレートフィルム)が好適に挙げられる。 As the plastic material, polyester (in particular, polyethylene terephthalate) is particularly preferable from the viewpoints of thickness accuracy, economy (cost), tensile strength, workability, and the like. That is, as a base material in the said adhesive layer with a base material, especially a polyester film (especially a polyethylene terephthalate film) is mentioned suitably.
 なお、上記基材は、単層、積層のいずれの形態を有していてもよく、構造上の制約を受けない。 In addition, the said base material may have any form of a single layer and a lamination | stacking, and does not receive the restrictions on a structure.
 上記基材の厚みとしては、特に限定されないが、0.0005mm~0.038mmであることが好ましく、より好ましくは0.001mm~0.025mmであり、さらに好ましくは0.002mm~0.012mmである。 The thickness of the substrate is not particularly limited, but is preferably 0.0005 mm to 0.038 mm, more preferably 0.001 mm to 0.025 mm, and still more preferably 0.002 mm to 0.012 mm. is there.
 また、上記粘着剤層は、剥離フィルム(セパレーター)(例えば、剥離紙、剥離フィルムなど)により、粘着面が保護されていてもよい。なお、剥離フィルム(セパレーター)は、本発明の樹脂発泡複合体の総厚(厚み)には含まれない。 The pressure-sensitive adhesive layer may have a pressure-sensitive adhesive surface protected by a release film (separator) (for example, release paper, release film, etc.). The release film (separator) is not included in the total thickness (thickness) of the resin foam composite of the present invention.
 本発明の樹脂発泡複合体における上記粘着剤層の厚みは、0.0005mm~0.06mmであり、好ましくは0.0007mm~0.05mmであり、より好ましくは0.001mm~0.04mmであり、さらに好ましくは0.002mm~0.04mmである。粘着剤層の厚みが上記範囲内であると、適正な粘着力を維持しつつ、発泡体も圧縮可能という利点がある。一方、粘着剤層の厚みが0.0005mm未満では、十分な粘着力が得られず、一方、粘着剤層の厚みが0.06mmを超えると、粘着剤層を厚み方向に圧縮しても、圧縮後の粘着剤層の厚みが十分に小さくならないことがあり、発泡体が圧縮されても、適用しようとする隙間の大きさより、小さくならないことがある。その結果、樹脂発泡複合体を隙間に適用しようとする際に、使用しにくくなる場合がある。なお、本発明の樹脂発泡複合体において、粘着剤層の厚みには、粘着剤層が基材付き粘着剤層における粘着剤層の場合は、基材を含む厚みをいう。例えば、本発明の樹脂発泡複合体における粘着剤層が両面粘着タイプの基材付き粘着層における粘着剤層の場合、上記粘着剤層の厚みには、基材の厚みと、基材の両面側に有する2つ粘着剤層の厚みとが含まれる。 The thickness of the pressure-sensitive adhesive layer in the resin foam composite of the present invention is 0.0005 mm to 0.06 mm, preferably 0.0007 mm to 0.05 mm, more preferably 0.001 mm to 0.04 mm. More preferably, it is 0.002 mm to 0.04 mm. When the thickness of the pressure-sensitive adhesive layer is within the above range, there is an advantage that the foam can be compressed while maintaining an appropriate adhesive force. On the other hand, if the thickness of the pressure-sensitive adhesive layer is less than 0.0005 mm, sufficient adhesive strength cannot be obtained. On the other hand, if the thickness of the pressure-sensitive adhesive layer exceeds 0.06 mm, even if the pressure-sensitive adhesive layer is compressed in the thickness direction, The thickness of the pressure-sensitive adhesive layer after compression may not be sufficiently small, and even when the foam is compressed, it may not be smaller than the size of the gap to be applied. As a result, when trying to apply the resin foam composite to the gap, it may be difficult to use. In addition, in the resin foam composite of this invention, when the adhesive layer is an adhesive layer in an adhesive layer with a base material, the thickness of an adhesive layer means the thickness containing a base material. For example, when the pressure-sensitive adhesive layer in the resin foam composite of the present invention is a pressure-sensitive adhesive layer in a double-sided pressure-sensitive adhesive layer with a base, the thickness of the pressure-sensitive adhesive layer includes the thickness of the base and the both sides of the base And the thickness of the two pressure-sensitive adhesive layers.
[樹脂発泡複合体]
 本発明の樹脂発泡複合体は、上記樹脂発泡体層と上記粘着剤層とが積層された構成である。粘着剤層を有していると、被着体への固定や仮止めに有利であり、組み付け性の点で有利である。なお、本発明の樹脂発泡複合体の形状は、特に限定されないが、シート状(フィルム状)、ロール状であってよく、また、用途に応じて種々の形状に打ち抜き加工、切断加工されていてもよい。
[Resin foam composite]
The resin foam composite of this invention is the structure by which the said resin foam layer and the said adhesive layer were laminated | stacked. Having an adhesive layer is advantageous for fixing to the adherend and temporary fixing, and is advantageous in terms of assembly. The shape of the resin foam composite of the present invention is not particularly limited, but may be a sheet shape (film shape) or a roll shape, and is punched or cut into various shapes depending on the application. Also good.
 本発明の樹脂発泡複合体の作製方法は、特に限定されない。例えば、本発明の樹脂発泡複合体は、上記樹脂発泡体層に上記粘着剤層を設けることにより、作製される。上記樹脂発泡体層に上記粘着剤層を設ける際に、樹脂発泡体層および粘着剤層にかかる張力をできるだけ低くなるように調整することにより、樹脂発泡体層および粘着剤層の厚みが非常に薄くても、シワ等を生じさせず、良好な状態、特に良好な外観状態で樹脂発泡複合体を製造することができる。良好な状態、特に良好な外観状態の樹脂発泡複合体の製造を目的として張力をかける際の張力としては、特に限定されないが、例えば、樹脂発泡体層および粘着剤層の幅が500mmである場合、1~100Nが好ましく、より好ましくは1~90N、さらに好ましくは2~80Nである。また、樹脂発泡体層および粘着剤層の幅が1000mmである場合、張力は、2~200Nが好ましく、より好ましくは2~180N、さらに好ましくは4~160Nである。例えば、500mm幅で100N以上、1000mm幅で200N以上の張力がかかる場合、樹脂発泡体層および粘着剤層の厚みが薄いと、張力により、樹脂発泡体層および粘着剤層が伸長された状態となり、その後の工程で、樹脂発泡体層および粘着剤層にかけられていた張力が取り除かれると、樹脂発泡体層および粘着剤層が伸長された状態から元の状態に収縮し(縮み)、貼合せ等により樹脂発泡体層上に粘着剤層を設ける際にシワ等が生じやすくなる。なお、樹脂発泡体層および粘着剤層に係る張力は、例えば、長尺状の樹脂発泡複合体を得る場合、ロール状に巻回する際の巻取張力として調整される。 The method for producing the resin foam composite of the present invention is not particularly limited. For example, the resin foam composite of the present invention is produced by providing the pressure-sensitive adhesive layer on the resin foam layer. When the pressure-sensitive adhesive layer is provided on the resin foam layer, by adjusting the tension applied to the resin foam layer and the pressure-sensitive adhesive layer as low as possible, the thickness of the resin foam layer and the pressure-sensitive adhesive layer is very high. Even if it is thin, it does not cause wrinkles and the like, and a resin foam composite can be produced in a good state, particularly in a good appearance. The tension at the time of applying a tension for the purpose of producing a resin foam composite in a good state, particularly in a good appearance state is not particularly limited. For example, when the width of the resin foam layer and the pressure-sensitive adhesive layer is 500 mm 1 to 100N is preferable, more preferably 1 to 90N, and still more preferably 2 to 80N. When the width of the resin foam layer and the pressure-sensitive adhesive layer is 1000 mm, the tension is preferably 2 to 200 N, more preferably 2 to 180 N, and further preferably 4 to 160 N. For example, when a tension of 100 N or more at a width of 500 mm and a tension of 200 N or more at a width of 1000 mm is applied, if the resin foam layer and the pressure-sensitive adhesive layer are thin, the resin foam layer and the pressure-sensitive adhesive layer are stretched due to the tension. In the subsequent process, when the tension applied to the resin foam layer and the pressure-sensitive adhesive layer is removed, the resin foam layer and the pressure-sensitive adhesive layer are contracted (shrinked) from the stretched state to the original state. When the pressure-sensitive adhesive layer is provided on the resin foam layer, wrinkles or the like are likely to occur. In addition, the tension | tensile_strength which concerns on a resin foam layer and an adhesive layer is adjusted as winding tension | tensile_strength at the time of winding in roll shape, for example, when obtaining a long-shaped resin foam composite.
 本発明の樹脂発泡複合体では、上記粘着剤層は、上記樹脂発泡体層の片面側にのみ設けられていてもよいし、両面側に設けられていてもよい。また、上記樹脂発泡体層が加熱溶融処理により形成された表面層を有する場合、上記粘着剤層は、上記樹脂発泡体層における表面層を有する面に設けてもよいし、上記樹脂発泡体層における表面層を有しない面に設けてもよいが、樹脂発泡体層の表面層を有さない面に設けることが好ましい。なお、本発明の樹脂発泡複合体では、樹脂発泡体層と粘着剤層は直接接するよう構成されていてもよいが、密着性を向上させる目的で、下塗り層のような中間層が設けられていてもよい。 In the resin foam composite of the present invention, the pressure-sensitive adhesive layer may be provided only on one side of the resin foam layer, or may be provided on both sides. Moreover, when the said resin foam layer has a surface layer formed by heat-melting process, the said adhesive layer may be provided in the surface which has the surface layer in the said resin foam layer, or the said resin foam layer However, it is preferably provided on the surface of the resin foam layer that does not have the surface layer. In the resin foam composite of the present invention, the resin foam layer and the pressure-sensitive adhesive layer may be configured to be in direct contact with each other, but an intermediate layer such as an undercoat layer is provided for the purpose of improving adhesion. May be.
 本発明の樹脂発泡複合体の総厚(厚み)は、0.35mm以下である。樹脂発泡複合体の総厚は、0.35mm以下である限り特に限定されないが、0.06mm~0.33mmであることが好ましく、より好ましくは0.07mm~0.30mmであり、さらに好ましくは0.08mm~0.25mmである。上記総厚が0.35mm以下であるので、樹脂発泡複合体が適用されるギャップが小さくても、樹脂発泡体の機能(例えば、シール性、柔軟性、衝撃吸収性など)を発揮できる。また、樹脂発泡複合体の総厚(厚み)が、0.05mm以上であれば、必要な強度を確保しやすくなる。 The total thickness (thickness) of the resin foam composite of the present invention is 0.35 mm or less. The total thickness of the resin foam composite is not particularly limited as long as it is 0.35 mm or less, but is preferably 0.06 mm to 0.33 mm, more preferably 0.07 mm to 0.30 mm, and still more preferably. It is 0.08 mm to 0.25 mm. Since the total thickness is 0.35 mm or less, even if the gap to which the resin foam composite is applied is small, the function of the resin foam (for example, sealability, flexibility, shock absorption, etc.) can be exhibited. Moreover, if the total thickness (thickness) of a resin foam composite is 0.05 mm or more, it will become easy to ensure required intensity | strength.
 本発明の樹脂発泡複合体において、上記樹脂発泡体層の厚みと、上記粘着剤層の厚みとの比(樹脂発泡体層の厚み/粘着剤層の厚み)は、特に限定されないが、2.1以上となるよう、樹脂発泡体層および粘着剤層の厚みを決定することが好ましい。上記樹脂発泡体層の厚みと上記粘着剤層の厚みとの比(樹脂発泡体層の厚み/粘着剤層の厚み)は、より好ましくは3.0以上であり、さらに好ましくは5.0以上である。また、上記樹脂発泡体層の厚みと上記粘着剤層の厚みとの比(樹脂発泡体層の厚み/粘着剤層の厚み)は、通常13以下であり、好ましくは11以下である。上記厚みの比が2.1以上であれば、適正な粘着力の範囲で発泡体も圧縮可能という利点がある。つまり、十分な粘着力を確保しつつ、発泡体を圧縮できるので、より小さい隙間に対して好適に樹脂発泡複合体を適用できる。 In the resin foam composite of the present invention, the ratio of the thickness of the resin foam layer to the thickness of the pressure-sensitive adhesive layer (the thickness of the resin foam layer / the thickness of the pressure-sensitive adhesive layer) is not particularly limited. It is preferable to determine the thickness of the resin foam layer and the pressure-sensitive adhesive layer so as to be 1 or more. The ratio of the thickness of the resin foam layer to the thickness of the pressure-sensitive adhesive layer (the thickness of the resin foam layer / the thickness of the pressure-sensitive adhesive layer) is more preferably 3.0 or more, and further preferably 5.0 or more. It is. The ratio of the thickness of the resin foam layer to the thickness of the pressure-sensitive adhesive layer (the thickness of the resin foam layer / the thickness of the pressure-sensitive adhesive layer) is usually 13 or less, preferably 11 or less. If the thickness ratio is 2.1 or more, there is an advantage that the foam can also be compressed within a range of appropriate adhesive strength. That is, since the foam can be compressed while ensuring sufficient adhesive force, the resin foam composite can be suitably applied to a smaller gap.
 本発明の樹脂発泡複合体は、各種部材又は部品を、所定の部位に取り付ける(装着する)用途に好ましく用いられる。特に、電気又は電子機器において、電気又は電子機器を構成する部品を所定の部位に取り付ける(装着する)際に好適に用いられる。すなわち、本発明の樹脂発泡複合体は、電気又は電子機器用であることが好ましい。 The resin foam composite of the present invention is preferably used for the purpose of attaching (attaching) various members or parts to a predetermined site. In particular, in an electrical or electronic device, it is suitably used when attaching (attaching) a component constituting the electrical or electronic device to a predetermined part. That is, the resin foam composite of the present invention is preferably for electric or electronic equipment.
 上記の各種部材又は部品としては、特に限定されないが、例えば、電気又は電子機器類における各種部材又は部品などが好ましく挙げられる。このような電気又は電子機器用の部材又は部品としては、例えば、液晶ディスプレイ、エレクトロルミネッセンスディスプレイ、プラズマディスプレイ等の画像表示装置に装着される画像表示部材(表示部)(特に、小型の画像表示部材)や、いわゆる「携帯電話」や「携帯情報端末」等の移動体通信の装置に装着されるカメラやレンズ(特に、小型のカメラやレンズ)等の光学部材又は光学部品などが挙げられる。 The above-mentioned various members or parts are not particularly limited, but for example, various members or parts in electrical or electronic devices are preferably mentioned. Examples of such a member or component for electric or electronic equipment include an image display member (display unit) (particularly a small image display member) mounted on an image display device such as a liquid crystal display, an electroluminescence display, or a plasma display. ), Optical members or optical parts such as cameras and lenses (particularly small cameras and lenses) that are mounted on mobile communication devices such as so-called “mobile phones” and “portable information terminals”.
 より具体的には、本発明の樹脂発泡複合体は、防塵、遮光、緩衝等を目的として、LCD(液晶ディスプレイ)等の表示部周りや、LCD(液晶ディスプレイ)等の表示部と筐体(窓部)との間に挟み込んで使用することができる。 More specifically, the resin foam composite of the present invention is provided around the display unit such as an LCD (liquid crystal display) or the display unit and the casing (such as an LCD (liquid crystal display)) for the purpose of dust prevention, light shielding, buffering, etc. (Window part) and can be used.
 また、本発明の樹脂発泡複合体は、薄く柔軟で、さらに厚み精度を高くできる。このため、本発明の樹脂発泡複合体を、タッチパネルを搭載しているスマートフォンのような多数の部品や部材が積層している電気又は電子機器に用いても、高い反発力を生じることはなく、表示部の液晶表示ムラなどの表示不良を引き起こすことはない。 Also, the resin foam composite of the present invention is thin and flexible and can further increase the thickness accuracy. For this reason, even if the resin foam composite of the present invention is used for an electrical or electronic device in which a large number of parts and members such as a smartphone equipped with a touch panel are laminated, a high repulsive force is not generated. Display defects such as liquid crystal display unevenness in the display section are not caused.
 以下に、実施例に基づいて本発明をより詳細に説明するが、本発明はこれらの実施例により限定されるものではない。 Hereinafter, the present invention will be described in more detail based on examples, but the present invention is not limited to these examples.
[実施例]
 ポリプロピレン[メルトフローレート(MFR):0.35g/10min]:45質量部、ポリオレフィン系エラストマーと軟化剤(パラフィン系伸展油)の混合物[MFR(230℃):6g/10分、JIS A硬度:79°、軟化剤をポリオレフィン系エラストマー100質量部に対して30質量部配合]:55質量部、水酸化マグネシウム:10質量部、カーボン(商品名「旭♯35」旭カーボン株式会社製):10質量部、ステアリン酸モノグリセリド:1質量部、及び脂肪酸アミド(ラウリン酸ビスアミド):1.5質量部を、日本製鋼所(JSW)社製の二軸混練機にて、200℃の温度で混練した後、ストランド状に押出し、水冷後ペレット状に成形した。このペレットを、日本製鋼所社製の単軸押出機に投入し、220℃の雰囲気下、13(注入後12)MPaの圧力で、二酸化炭素ガスを注入した。二酸化炭素ガスは、ペレット全量に対して5.7質量%の割合で注入した。二酸化炭素ガスを十分飽和させた後、発泡に適した温度まで冷却後、ダイから円筒状に押出して、発泡体の内側表面を冷却するマンドレルと、押出機の環状ダイから押し出された円筒状の発泡体の外側表面を冷却する発泡体冷却用エアリングの間を通過させ、直径の一部を切断してシート状に展開して長尺発泡体原反を得た。
 この長尺発泡体原反を所定の幅に切断し(スリット加工)、図1に示す連続スライス装置(スライスライン)を用いて、1面ずつ表面の低発泡層を剥がしとり、厚みの異なる樹脂発泡体層A、樹脂発泡体層Bおよび樹脂発泡体層Cを得た。また、樹脂発泡体層A、樹脂発泡体層Bおよび樹脂発泡体層Cにおいて、平均セル径は60μm、見掛け密度は0.047g/cm3であった。
 樹脂発泡体層A:厚み0.20mm
 樹脂発泡体層B:厚み0.30mm
 樹脂発泡体層C:厚み0.40mm
[Example]
Polypropylene [melt flow rate (MFR): 0.35 g / 10 min]: 45 parts by mass, mixture of polyolefin elastomer and softener (paraffinic extender oil) [MFR (230 ° C.): 6 g / 10 min, JIS A hardness: 79 °, 30 parts by mass of softener with respect to 100 parts by mass of polyolefin elastomer]: 55 parts by mass, magnesium hydroxide: 10 parts by mass, carbon (trade name “Asahi # 35” manufactured by Asahi Carbon Co., Ltd.): 10 Part by mass, stearic acid monoglyceride: 1 part by mass, and fatty acid amide (lauric acid bisamide): 1.5 parts by mass were kneaded at a temperature of 200 ° C. in a twin-screw kneader manufactured by Japan Steel Works (JSW). Thereafter, it was extruded into a strand shape, cooled to water, and formed into a pellet shape. The pellets were put into a single screw extruder manufactured by Nippon Steel Works, and carbon dioxide gas was injected under an atmosphere of 220 ° C. at a pressure of 13 (12 after injection) MPa. Carbon dioxide gas was injected at a rate of 5.7% by mass with respect to the total amount of pellets. After sufficiently saturating the carbon dioxide gas, cooling to a temperature suitable for foaming, extruding from the die into a cylindrical shape, and a cylindrical mandrel extruded from the annular die of the extruder to cool the inner surface of the foam It passed between the foam cooling air rings that cool the outer surface of the foam, and a part of the diameter was cut and developed into a sheet to obtain a long foam original fabric.
This long foam original fabric is cut into a predetermined width (slit processing), and by using the continuous slicing device (slice line) shown in FIG. A foam layer A, a resin foam layer B, and a resin foam layer C were obtained. Further, in the resin foam layer A, the resin foam layer B, and the resin foam layer C, the average cell diameter was 60 μm, and the apparent density was 0.047 g / cm 3 .
Resin foam layer A: thickness 0.20 mm
Resin foam layer B: thickness 0.30 mm
Resin foam layer C: thickness 0.40 mm
(実施例1)
 上記樹脂発泡体層Aの片面に、両面粘着テープ(商品名「No.5603」、日東電工社製、PET基材の両面にアクリル系粘着剤層を設けた粘着テープ、テープ厚(厚み):0.03mm)を貼り合わせて、樹脂発泡複合体を得た。この樹脂発泡複合体の総厚は0.23mmであった。
(Example 1)
Double-sided pressure-sensitive adhesive tape (trade name “No. 5603”, manufactured by Nitto Denko Corporation, pressure-sensitive adhesive tape provided with an acrylic pressure-sensitive adhesive layer on both surfaces of a PET substrate, tape thickness (thickness): 0.03 mm) was bonded to obtain a resin foam composite. The total thickness of this resin foam composite was 0.23 mm.
(実施例2)
 上記樹脂発泡体層Bの片面に、両面粘着テープ(商品名「No.5603」、日東電工社製、PET基材の両面にアクリル系粘着剤層を設けた粘着テープ、テープ厚(厚み):0.03mm)を貼り合わせて、樹脂発泡複合体を得た。この樹脂発泡複合体の総厚は0.33mmであった。
(Example 2)
Double-sided pressure-sensitive adhesive tape (trade name “No. 5603”, manufactured by Nitto Denko Corporation, pressure-sensitive adhesive tape provided with an acrylic pressure-sensitive adhesive layer on both sides of a PET substrate, tape thickness (thickness): 0.03 mm) was bonded to obtain a resin foam composite. The total thickness of this resin foam composite was 0.33 mm.
(実施例3)
 上記樹脂発泡体層Aを、誘導発熱ロールの温度を160℃、ギャップを0.10mmにセットした上記連続処理装置内を通過させることにより、片面を熱で溶融処理して、片面が熱溶融処理された厚み0.10mmの樹脂発泡体層を得た。熱溶融処理された表面層の表面被覆率は89.1%であった。その後、熱溶融処理されていない面に、両面粘着テープ(商品名「No.5603」、日東電工社製、PET基材の両面にアクリル系粘着剤層を設けた粘着テープ、テープ厚(厚み):0.03mm)を貼り合わせて、樹脂発泡複合体を得た。この樹脂発泡複合体の総厚は0.13mmであった。
(Example 3)
By passing the resin foam layer A through the continuous processing apparatus in which the temperature of the induction heating roll is set to 160 ° C. and the gap is set to 0.10 mm, one side is melt-processed by heat, and one side is heat-melted. A resin foam layer having a thickness of 0.10 mm was obtained. The surface coverage of the heat-melted surface layer was 89.1%. Thereafter, a double-sided pressure-sensitive adhesive tape (trade name “No. 5603”, manufactured by Nitto Denko Corporation, a pressure-sensitive adhesive tape provided with an acrylic pressure-sensitive adhesive layer on both sides of a PET base material, tape thickness (thickness) : 0.03 mm) was bonded together to obtain a resin foam composite. The total thickness of this resin foam composite was 0.13 mm.
(実施例4)
 上記樹脂発泡体層Aの片面に、両面粘着テープ(商品名「No.5603」、日東電工社製、PET基材の両面にアクリル系粘着剤層を設けた粘着テープ、テープ厚(厚み):0.03mm)を貼り合わせた。得られた構造物の総厚は0.23mmであった。粘着剤層面を保護するPET剥離ライナー(厚み0.075mm)を貼付したまま、上記構造物を、誘導発熱ロールの温度を220℃、ギャップを0.15mmにセットした上記連続処理装置内を通過させることにより、上記構造物における両面粘着テープを貼付していない面を熱で溶融処理して、樹脂発泡複合体を得た。この樹脂発泡複合体において、片面が熱溶融処理された樹脂発泡体層の厚みは0.07mmであり、粘着剤層の厚みは0.03mmであり、総厚が0.10mmであった。また、熱溶融処理された表面層の表面被覆率は88.4%であった。
Example 4
Double-sided pressure-sensitive adhesive tape (trade name “No. 5603”, manufactured by Nitto Denko Corporation, pressure-sensitive adhesive tape provided with an acrylic pressure-sensitive adhesive layer on both surfaces of a PET substrate, tape thickness (thickness): 0.03 mm) was bonded. The total thickness of the obtained structure was 0.23 mm. With the PET release liner (thickness 0.075 mm) protecting the pressure-sensitive adhesive layer surface attached, the structure is passed through the continuous processing apparatus in which the temperature of the induction heating roll is set to 220 ° C. and the gap is set to 0.15 mm. As a result, the surface of the structure to which the double-sided pressure-sensitive adhesive tape was not applied was melted with heat to obtain a resin foam composite. In this resin foam composite, the thickness of the resin foam layer whose one surface was heat-melted was 0.07 mm, the thickness of the pressure-sensitive adhesive layer was 0.03 mm, and the total thickness was 0.10 mm. The surface coverage of the heat-melted surface layer was 88.4%.
(実施例5)
 上記樹脂発泡体層Aを、誘導発熱ロールの温度を160℃、ギャップを0.10mmにセットした上記連続処理装置内を通過させることにより、片面を熱で溶融処理して、片面が熱溶融処理された厚み0.10mmの樹脂発泡体層を得た。この樹脂発泡体層における熱溶融処理された表面層の表面被覆率は89.1%であった。その後、上記樹脂発泡体層の熱溶融処理されていない面に、両面粘着テープ(商品名「No.5601」、日東電工社製、PET基材の両面にアクリル系粘着剤層を設けた粘着テープ、テープ厚(厚み):0.01mm)を貼り合わせて、樹脂発泡複合体を得た。この樹脂発泡複合体の総厚は0.11mmであった。
(Example 5)
By passing the resin foam layer A through the continuous processing apparatus in which the temperature of the induction heating roll is set to 160 ° C. and the gap is set to 0.10 mm, one side is melt-processed by heat, and one side is heat-melted. A resin foam layer having a thickness of 0.10 mm was obtained. The surface coverage of the heat-melted surface layer in this resin foam layer was 89.1%. Thereafter, a double-sided pressure-sensitive adhesive tape (trade name “No. 5601”, manufactured by Nitto Denko Corporation, an acrylic pressure-sensitive adhesive layer on both sides of a PET base material is provided on the surface of the resin foam layer that has not been heat-melted. And a tape thickness (thickness): 0.01 mm) to obtain a resin foam composite. The total thickness of this resin foam composite was 0.11 mm.
(実施例6)
 上記樹脂発泡体層Aの片面に、両面粘着テープ(商品名「No.5601」、日東電工社製、PET基材の両面にアクリル系粘着剤層を設けた粘着テープ、テープ厚(厚み):0.01mm)を貼り合わせた。得られた構造物の総厚は0.21mmであった。粘着剤層面を保護するPET剥離ライナー(厚み0.075mm)を貼付したまま、上記構造物を、誘導発熱ロールの温度を220℃、ギャップを0.15mmにセットした上記連続処理装置内を通過させることにより、両面粘着テープを貼付していない面を熱で溶融処理して、樹脂発泡複合体を得た。この樹脂発泡複合体において、片面が熱溶融処理された樹脂発泡体層の厚みが0.07mmであり、粘着剤層の厚みが0.01mmであり、総厚が0.08mmであった。また、熱溶融処理された表面層の表面被覆率は94.1%であった。
(Example 6)
Double-sided pressure-sensitive adhesive tape (trade name “No. 5601”, manufactured by Nitto Denko Corporation, pressure-sensitive adhesive tape provided with an acrylic pressure-sensitive adhesive layer on both surfaces of a PET substrate, tape thickness (thickness): 0.01 mm). The total thickness of the obtained structure was 0.21 mm. With the PET release liner (thickness 0.075 mm) protecting the pressure-sensitive adhesive layer surface attached, the structure is passed through the continuous processing apparatus in which the temperature of the induction heating roll is set to 220 ° C. and the gap is set to 0.15 mm. Thus, the surface on which the double-sided pressure-sensitive adhesive tape was not attached was melted with heat to obtain a resin foam composite. In this resin foam composite, the thickness of the resin foam layer whose one surface was heat-melted was 0.07 mm, the thickness of the pressure-sensitive adhesive layer was 0.01 mm, and the total thickness was 0.08 mm. The surface coverage of the heat-melted surface layer was 94.1%.
(実施例7)
 上記樹脂発泡体層Aを、誘導発熱ロールの温度を160℃、ギャップを0.10mmにセットした上記連続処理装置内を通過させることにより、片面を熱で溶融処理して、片面が熱溶融処理された厚み0.10mmの樹脂発泡体層を得た。この樹脂発泡体層における熱溶融処理された表面層の表面被覆率は89.1%であった。その後、上記樹脂発泡体層における熱溶融処理されていない面に、両面粘着テープ(商品名「No.5600」、日東電工社製、PET基材の両面にアクリル系粘着剤層を設けた粘着テープ、テープ厚(厚み):0.005mm)を貼り合わせて、樹脂発泡複合体を得た。この樹脂発泡複合体の総厚は0.105mmであった。
(Example 7)
By passing the resin foam layer A through the continuous processing apparatus in which the temperature of the induction heating roll is set to 160 ° C. and the gap is set to 0.10 mm, one side is melt-processed by heat, and one side is heat-melted. A resin foam layer having a thickness of 0.10 mm was obtained. The surface coverage of the heat-melted surface layer in this resin foam layer was 89.1%. Thereafter, a double-sided pressure-sensitive adhesive tape (trade name “No. 5600”, manufactured by Nitto Denko Corporation, an adhesive tape provided with an acrylic pressure-sensitive adhesive layer on both surfaces of a PET base material on the surface of the resin foam layer that has not been heat-melted. And a tape thickness (thickness: 0.005 mm) were bonded together to obtain a resin foam composite. The total thickness of this resin foam composite was 0.105 mm.
(比較例1)
 上記樹脂発泡体層Aの片面に、両面粘着テープ(商品名「No.5610」、日東電工社製、PET基材の両面にアクリル系粘着剤層を設けた粘着テープ、テープ厚(厚み):0.10mm)を貼り合わせて、樹脂発泡複合体を得た。この樹脂発泡複合体の総厚は0.30mmであった。
(Comparative Example 1)
Double-sided pressure-sensitive adhesive tape (trade name “No. 5610”, manufactured by Nitto Denko Corporation, pressure-sensitive adhesive tape provided with an acrylic pressure-sensitive adhesive layer on both surfaces of a PET substrate, tape thickness (thickness): 0.10 mm) was bonded to obtain a resin foam composite. The total thickness of this resin foam composite was 0.30 mm.
(比較例2)
 上記樹脂発泡体層Cの片面に、両面粘着テープ(商品名「No.5603」、日東電工社製、PET基材の両面にアクリル系粘着剤層を設けた粘着テープ、テープ厚(厚み):0.03mm)を貼り合わせて、樹脂発泡複合体を得た。この樹脂発泡複合体の総厚は0.43mmであった。
(Comparative Example 2)
Double-sided pressure-sensitive adhesive tape (trade name “No. 5603”, manufactured by Nitto Denko Corporation, pressure-sensitive adhesive tape provided with an acrylic pressure-sensitive adhesive layer on both sides of a PET substrate, tape thickness (thickness): 0.03 mm) was bonded to obtain a resin foam composite. The total thickness of this resin foam composite was 0.43 mm.
(比較例3)
 上記樹脂発泡体層Aを、誘導発熱ロールの温度を160℃、ギャップを0.10mmにセットした上記連続処理装置内を通過させることにより、片面を熱で溶融処理して、片面が熱溶融処理された厚み0.10mmの樹脂発泡体層を得た。この樹脂発泡体層における熱溶融処理された表面層の表面被覆率は87.2%であった。その後、上記樹脂発泡体層における熱溶融処理されていない面に、両面粘着テープ(商品名「No.5608」、日東電工社製、PET基材の両面にアクリル系粘着剤層を設けた粘着テープ、テープ厚(厚み):0.08mm)を貼り合わせて、樹脂発泡複合体を得た。この樹脂発泡複合体の総厚は0.18mmであった。
(Comparative Example 3)
By passing the resin foam layer A through the continuous processing apparatus in which the temperature of the induction heating roll is set to 160 ° C. and the gap is set to 0.10 mm, one side is melt-processed by heat, and one side is heat-melted. A resin foam layer having a thickness of 0.10 mm was obtained. The surface coverage of the heat-melted surface layer in this resin foam layer was 87.2%. Thereafter, a double-sided pressure-sensitive adhesive tape (trade name “No. 5608”, manufactured by Nitto Denko Corporation, an acrylic pressure-sensitive adhesive layer on both surfaces of a PET base material is provided on the surface of the resin foam layer that has not been heat-melted. And a tape thickness (thickness): 0.08 mm) to obtain a resin foam composite. The total thickness of this resin foam composite was 0.18 mm.
 (比較例4)
 片面がPETフィルムでサポートされているウレタンフォーム(商品名「PORON SR-S-32P」、厚み0.20mm、発泡体層密度0.32g/cm3、ロジャースイノアック社製)のPET面側に、両面粘着テープ(商品名「No.5603」、日東電工社製、PET基材の両面にアクリル系粘着剤層を設けた粘着テープ、テープ厚(厚み):0.03mm)を貼り合わせて、樹脂発泡複合体を得た。この樹脂発泡複合体の総厚は0.23mmであった。
(Comparative Example 4)
On the PET surface side of urethane foam (trade name “PORON SR-S-32P”, thickness 0.20 mm, foam layer density 0.32 g / cm 3 , manufactured by Roger Sinoac Co., Ltd.) whose one side is supported by PET film, Double-sided adhesive tape (trade name “No. 5603”, manufactured by Nitto Denko Corporation, adhesive tape with acrylic adhesive layer provided on both sides of PET base material, tape thickness (thickness): 0.03 mm) are bonded together, and resin A foam composite was obtained. The total thickness of this resin foam composite was 0.23 mm.
(比較例5)
 ポリオレフィン系発泡体(商品名「ボラーラWF03」、積水化学工業社製、厚み0.30mm、密度:0.20g/cm3、シート状)に、両面粘着テープ(商品名「No.5603」、日東電工社製、PET基材の両面にアクリル系粘着剤層を設けた粘着テープ、テープ厚(厚み):0.03mm)を貼り合わせて、樹脂発泡複合体を得た。この樹脂発泡複合体の総厚は0.33mmであった。
(Comparative Example 5)
Double-sided adhesive tape (trade name “No. 5603”, Nitto) on polyolefin-based foam (trade name “Bora La WF03”, manufactured by Sekisui Chemical Co., Ltd., thickness 0.30 mm, density: 0.20 g / cm 3 , sheet shape) A resin foam composite was obtained by pasting together an adhesive tape made by Denko Co., Ltd., and an adhesive tape provided with an acrylic adhesive layer on both sides of the PET substrate, tape thickness (thickness): 0.03 mm. The total thickness of this resin foam composite was 0.33 mm.
[評価]
(見掛け密度)
 樹脂発泡体層を幅40mm×長さ40mmの打抜き刃型にて打抜き、シート状の測定用サンプルを得た。そして、上記測定用サンプルより、JIS K 6767に従って見かけ密度(g/cm3)を求めた。
 具体的には、上記測定用サンプルの幅、長さを測定し、測定端子の直径(φ)20mmである1/100ダイヤルゲージにて測定用サンプルの厚み(mm)を測定した。これらの測定値から樹脂発泡体層の体積(cm3)を算出した。次に、測定用サンプルの質量(g)を、最小目盛り0.01g以上の上皿天秤にて測定した。上記の体積及び質量の測定値より、見かけ密度(g/cm3)を算出した。
[Evaluation]
(Apparent density)
The resin foam layer was punched with a punching blade mold having a width of 40 mm and a length of 40 mm to obtain a sheet-like measurement sample. And the apparent density (g / cm < 3 >) was calculated | required from the said sample for a measurement according to JISK6767.
Specifically, the width and length of the measurement sample were measured, and the thickness (mm) of the measurement sample was measured with a 1/100 dial gauge having a measurement terminal diameter (φ) of 20 mm. The volume (cm 3 ) of the resin foam layer was calculated from these measured values. Next, the mass (g) of the measurement sample was measured with an upper pan balance having a minimum scale of 0.01 g or more. The apparent density (g / cm 3 ) was calculated from the measured values of the volume and mass.
(平均セル径)
 デジタルマイクロスコープ(商品名「VHX-500」キーエンス株式会社製)により、発泡体気泡部の拡大画像を取り込み、画像解析ソフト(商品名「Win ROOF」三
谷商事株式会社製)を用いて、画像解析することにより、平均セル径(μm)を求めた。なお、取り込んだ拡大画像の気泡数は100個程度である。
(Average cell diameter)
A digital microscope (trade name “VHX-500” manufactured by Keyence Corporation) is used to capture an enlarged image of the foam bubble, and image analysis is performed using image analysis software (trade name “Win ROOF”, manufactured by Mitani Corporation). The average cell diameter (μm) was determined. Note that the number of bubbles in the captured enlarged image is about 100.
(表面被覆率)
 樹脂発泡体層の熱で溶融処理された面の表面被覆率を測定し、その値を樹脂発泡体層の表面被覆率とした。
 表面被覆率は、下記式(1)より、求めた。
 表面被覆率(%)=[(表面の面積)-(表面に存在する孔の面積)]/(表面の面積)×100   (1)
 表面の面積及び表面に存在する孔の面積は、マイクロスコープ(装置名「VHX600」、株式会社キーエンス製)用いて得られた測定面の画像より求めた。
 マイクロスコープによる観察では、照明方法として側射照明を採用し、その照度は17000ルクスとした。また、倍率は500倍とした。
 照明兼カメラとして照明内蔵レンズカメラ(装置名「0P72404」、株式会社キーエンス製)を使用し、またレンズとしてズームレンズ(商品名「VH-Z100」、株式会社キーエンス製)を使用した。
 なお、照度は、照度計(商品名「VHX600」、カスタム社製)を用いて調節した。
(Surface coverage)
The surface coverage of the surface of the resin foam layer that was melt-treated with heat was measured, and the value was defined as the surface coverage of the resin foam layer.
The surface coverage was obtained from the following formula (1).
Surface coverage (%) = [(surface area) − (area of pores existing on the surface)] / (surface area) × 100 (1)
The area of the surface and the area of the holes existing on the surface were determined from the image of the measurement surface obtained using a microscope (device name “VHX600”, manufactured by Keyence Corporation).
In observation with a microscope, side illumination was adopted as the illumination method, and the illuminance was 17000 lux. The magnification was 500 times.
A lens camera with built-in illumination (device name “0P72404”, manufactured by Keyence Corporation) was used as the illumination and camera, and a zoom lens (trade name “VH-Z100”, manufactured by Keyence Corporation) was used as the lens.
The illuminance was adjusted using an illuminometer (trade name “VHX600”, manufactured by Custom Inc.).
(50%圧縮時の圧縮荷重)
 JIS K 6767に基づいて、樹脂発泡体層の厚み方向に初めの発泡体厚みの50%だけ圧縮後、10秒経過したときの応力(N)を測定し、該応力を単位面積(cm2)当たりに換算して、50%圧縮時の圧縮応力(N/cm2)とした。結果を表1、表2に示した。
(Compression load at 50% compression)
Based on JIS K 6767, the stress (N) is measured when 10 seconds have elapsed after compression of 50% of the initial foam thickness in the thickness direction of the resin foam layer, and the stress is measured in unit area (cm 2 ). Converted to hit, it was defined as compression stress (N / cm 2 ) at 50% compression. The results are shown in Tables 1 and 2.
(0.10mm挿入時の圧縮荷重)
 実施例および比較例の樹脂発泡複合体に対し、JIS K 6767に基づいて、厚み方向に厚みが0.10mmとなるよう圧縮後、10秒経過したときの応力(N)を測定し、該応力を単位面積(cm2)当たりに換算して、0.10mm挿入時の圧縮荷重(N/cm2)とした。0.10mm挿入時の圧縮荷重が3.5N/cm2以下であれば、0.1mmという狭いギャップに対して使用しても、変形等を引き起こさない柔軟性を有すると判断される。結果を表1、表2に示した。
(Compression load when 0.10 mm is inserted)
For the resin foam composites of Examples and Comparative Examples, the stress (N) was measured when 10 seconds passed after compression so that the thickness was 0.10 mm in the thickness direction based on JIS K 6767. Was converted per unit area (cm 2 ) to obtain a compressive load (N / cm 2 ) upon insertion of 0.10 mm. If the compressive load at the time of insertion of 0.10 mm is 3.5 N / cm 2 or less, it is judged that it has flexibility that does not cause deformation or the like even if it is used for a narrow gap of 0.1 mm. The results are shown in Tables 1 and 2.
(0.05mm挿入時の圧縮荷重)
 実施例および比較例の樹脂発泡複合体に対し、JIS K 6767に基づいて、厚み方向に厚みが0.05mmとなるよう圧縮後、10秒経過したときの応力(N)を測定し、該応力を単位面積(cm2)当たりに換算して、0.05mm挿入時の圧縮荷重(N/cm2)とした。0.05mm挿入時の圧縮荷重が3.5N/cm2以下であれば、0.05mmという狭いギャップに対して使用しても、変形等を引き起こさない柔軟性を有すると判断される。結果を表1、表2に示した。
(Compression load when 0.05 mm inserted)
For the resin foam composites of Examples and Comparative Examples, the stress (N) was measured when 10 seconds passed after compression so that the thickness was 0.05 mm in the thickness direction based on JIS K 6767. Was converted per unit area (cm 2 ) to obtain a compressive load (N / cm 2 ) when 0.05 mm was inserted. If the compressive load at the time of 0.05 mm insertion is 3.5 N / cm 2 or less, it is judged that it has flexibility that does not cause deformation or the like even if it is used for a narrow gap of 0.05 mm. The results are shown in Tables 1 and 2.
(粘着力)
 樹脂発泡複合体(幅:20mm×長さ:120mm)を、温度:23±2℃、湿度:50±5%RHの雰囲気下にて24時間以上保管した後(前処理条件はJIS Z 0237に準じる)、被着体(SUS)と樹脂発泡複合体の粘着剤層表面とが接する形態で、2kgローラ、1往復の条件で圧着し、30分放置して、測定用サンプルとした。その後、万能引張試験機(装置名「TCN-1kNB」ミネベア社製)にて、温度:23±2℃、湿度:50±5%RHの雰囲気下、樹脂発泡複合体の片方の端部を引張速度300mm/min、剥離角度90°で剥離した時の粘着力を測定した。粘着力が2N/20mm以上であれば、貼り合わせ作業時における位置合わせに支障のない粘着力を有すると判断される。結果を表1、表2に示した。
(Adhesive force)
After the resin foam composite (width: 20 mm × length: 120 mm) is stored for 24 hours or more in an atmosphere of temperature: 23 ± 2 ° C. and humidity: 50 ± 5% RH (pretreatment conditions are in JIS Z 0237) In the form where the adherend (SUS) and the pressure-sensitive adhesive layer surface of the resin foam composite are in contact with each other, they are pressure-bonded under conditions of 2 kg roller and 1 reciprocation, and left for 30 minutes to obtain a measurement sample. Thereafter, one end of the resin foam composite is pulled with an all-purpose tensile tester (device name “TCN-1kNB” manufactured by Minebea Co., Ltd.) in an atmosphere of temperature: 23 ± 2 ° C. and humidity: 50 ± 5% RH. The adhesive strength when peeled at a speed of 300 mm / min and a peel angle of 90 ° was measured. If the adhesive force is 2 N / 20 mm or more, it is determined that the adhesive force does not hinder the alignment during the bonding operation. The results are shown in Tables 1 and 2.
Figure JPOXMLDOC01-appb-T000001
Figure JPOXMLDOC01-appb-T000001
Figure JPOXMLDOC01-appb-T000002
Figure JPOXMLDOC01-appb-T000002
 実施例では、見掛け密度が0.03~0.30g/cm3、50%圧縮時の圧縮応力が5.0N/cm2以下である樹脂発泡体層を用い、厚みが0.005mm~0.06mmの粘着剤層と組み合わせて、総厚が0.35mm以下となる樹脂発泡複合体とすることにより、0.1mmのギャップへ挿入した場合に相当する評価において、圧縮荷重が3.5N/cm2以下との良好な結果を得ることができた。さらに0.05mmのギャップに対しても適応可能な樹脂発泡複合体とすることができた。またその際の粘着力も、貼り合わせ作業時における位置合わせに支障のない粘着力を有すると判断される。 In Examples, a resin foam layer having an apparent density of 0.03 to 0.30 g / cm 3 and a compressive stress of 50 N / cm 2 or less at 50% compression is used, and a thickness is 0.005 mm to 0.00. In combination with the 06 mm pressure-sensitive adhesive layer, a resin foam composite having a total thickness of 0.35 mm or less is used, and in a corresponding evaluation when inserted into a 0.1 mm gap, the compression load is 3.5 N / cm. Good results with 2 or less could be obtained. Furthermore, it was possible to obtain a resin foam composite that can be applied to a gap of 0.05 mm. Further, the adhesive force at that time is also determined to have an adhesive force that does not hinder the alignment during the bonding operation.
 一方、比較例1や比較例3では、粘着剤層の厚みが特定範囲以上の厚みであり、また比較例2では、樹脂発泡複合体の総厚が特定範囲以上の厚みであることから、0.1mm挿入時の圧縮荷重値が高くなることが分かる。また見掛け密度が特定値以上の発泡体である比較例4では、クッション性に乏しく、0.1mm挿入時の圧縮荷重値が高くなることが分かる。さらに50%圧縮時の圧縮応力が特定値以上の発泡体を用いた比較例5においても、クッション性に乏しく、0.1mm挿入時の圧縮荷重値が高くなることが分かる。 On the other hand, in Comparative Example 1 and Comparative Example 3, the thickness of the pressure-sensitive adhesive layer is not less than a specific range, and in Comparative Example 2, the total thickness of the resin foam composite is not less than the specific range. It can be seen that the compressive load value when 1 mm is inserted is high. Moreover, in the comparative example 4 which is a foam whose apparent density is a specific value or more, it is understood that the cushioning property is poor and the compression load value when 0.1 mm is inserted becomes high. Furthermore, it can be seen that also in Comparative Example 5 using a foam having a compressive stress at the time of 50% compression of a specific value or more, the cushioning property is poor, and the compressive load value when 0.1 mm is inserted becomes high.
 本発明の樹脂発泡複合体は、例えば、各種部材又は部品を、所定の部位に取り付ける際に用いられる防塵材、シール材、防音材、緩衝材等の用途に用いられる。 The resin foam composite of the present invention is used for applications such as a dustproof material, a seal material, a soundproof material, and a buffer material used when attaching various members or parts to a predetermined site.
 1   連続スライス装置(スライスライン)
 11  繰出ロール
 12  ピンチロール
 13  刃(スライス刃)
 14  ガイドロール
 15  巻取ロール
 16  樹脂発泡体
 2   加熱ロールを有する連続処理装置
 21  繰出ロール
 22  ガイドロール
 23  加熱ロール(熱誘電ロール)
 24  冷却ロール
 25  巻取ロール
 26  樹脂発泡体
 a  流れ方向 
1 Continuous slice device (slice line)
11 Feeding roll 12 Pinch roll 13 Blade (slicing blade)
DESCRIPTION OF SYMBOLS 14 Guide roll 15 Winding roll 16 Resin foam 2 Continuous processing apparatus which has a heating roll 21 Feeding roll 22 Guide roll 23 Heating roll (thermal dielectric roll)
24 Cooling roll 25 Winding roll 26 Resin foam a Flow direction

Claims (11)

  1.  樹脂発泡体層と粘着剤層とが積層された樹脂発泡複合体であって、
     前記樹脂発泡体層の見掛け密度が0.03~0.30g/cm3、50%圧縮時の圧縮応力が5.0N/cm2以下であり、
     前記粘着剤層の厚みが0.0005mm~0.06mmであり、
     樹脂発泡複合体の総厚が0.35mm以下である、樹脂発泡複合体。
    A resin foam composite in which a resin foam layer and an adhesive layer are laminated,
    The apparent density of the resin foam layer is 0.03 to 0.30 g / cm 3 , and the compressive stress at 50% compression is 5.0 N / cm 2 or less,
    The pressure-sensitive adhesive layer has a thickness of 0.0005 mm to 0.06 mm;
    A resin foam composite in which the total thickness of the resin foam composite is 0.35 mm or less.
  2.  前記樹脂発泡体層の厚みと、前記粘着剤層の厚みとの比(樹脂発泡体層の厚み/粘着剤層の厚み)が2.1以上である、請求項1に記載の樹脂発泡複合体。 2. The resin foam composite according to claim 1, wherein the ratio of the thickness of the resin foam layer to the thickness of the pressure-sensitive adhesive layer (the thickness of the resin foam layer / the thickness of the pressure-sensitive adhesive layer) is 2.1 or more. .
  3.  前記粘着剤層が、アクリル系粘着剤層である、請求項1または2に記載の樹脂発泡複合体。 The resin foam composite according to claim 1 or 2, wherein the pressure-sensitive adhesive layer is an acrylic pressure-sensitive adhesive layer.
  4.  前記樹脂発泡体層を構成する樹脂が、熱可塑性樹脂である、請求項1~3の何れか一項に記載の樹脂発泡複合体。 The resin foam composite according to any one of claims 1 to 3, wherein the resin constituting the resin foam layer is a thermoplastic resin.
  5.  前記熱可塑性樹脂が、ポリオレフィン樹脂である、請求項1~4の何れか一項に記載の樹脂発泡複合体。 The resin foam composite according to any one of claims 1 to 4, wherein the thermoplastic resin is a polyolefin resin.
  6.  前記樹脂発泡体層の少なくとも一面に、加熱溶融処理により形成された表面層を有する、請求項1~5の何れか一項に記載の樹脂発泡複合体。 6. The resin foam composite according to any one of claims 1 to 5, which has a surface layer formed by heat melting treatment on at least one surface of the resin foam layer.
  7.  前記樹脂発泡体層が、樹脂に高圧のガスを含浸させた後、減圧する工程を経て形成されている、請求項1~6の何れか一項に記載の樹脂発泡複合体。 The resin foam composite according to any one of claims 1 to 6, wherein the resin foam layer is formed through a step of depressurizing after impregnating a resin with a high-pressure gas.
  8.  前記ガスが、不活性ガスである、請求項7に記載の樹脂発泡複合体。 The resin foam composite according to claim 7, wherein the gas is an inert gas.
  9.  前記不活性ガスが、二酸化炭素である、請求項8に記載の樹脂発泡複合体。 The resin foam composite according to claim 8, wherein the inert gas is carbon dioxide.
  10.  前記高圧のガスが、超臨界状態である、請求項7~9の何れか一項に記載の樹脂発泡複合体。 The resin foam composite according to any one of claims 7 to 9, wherein the high-pressure gas is in a supercritical state.
  11.  前記樹脂発泡体層が、独立気泡構造または半連続半独立気泡構造を有している、請求項1~10の何れか一項に記載の樹脂発泡複合体。 The resin foam composite according to any one of claims 1 to 10, wherein the resin foam layer has a closed cell structure or a semi-continuous semi-closed cell structure.
PCT/JP2014/059400 2013-04-10 2014-03-31 Resin foam composite WO2014168036A1 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
CN201480020767.9A CN105121529B (en) 2013-04-10 2014-03-31 Resin expanded complex
KR1020157031890A KR102218808B1 (en) 2013-04-10 2014-03-31 Resin foam composite

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
JP2013-082101 2013-04-10
JP2013082101 2013-04-10
JP2014061809A JP6358825B2 (en) 2013-04-10 2014-03-25 Resin foam composite
JP2014-061809 2014-03-25

Publications (1)

Publication Number Publication Date
WO2014168036A1 true WO2014168036A1 (en) 2014-10-16

Family

ID=51689446

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2014/059400 WO2014168036A1 (en) 2013-04-10 2014-03-31 Resin foam composite

Country Status (5)

Country Link
JP (1) JP6358825B2 (en)
KR (1) KR102218808B1 (en)
CN (1) CN105121529B (en)
TW (1) TW201500201A (en)
WO (1) WO2014168036A1 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2019197116A1 (en) * 2018-04-12 2019-10-17 Tesa Se Pressure sensitive adhesive tape comprising a foamed film, method for producing such a tape and foamed film
WO2021106911A1 (en) * 2019-11-25 2021-06-03 日東電工株式会社 Resin foaming body

Families Citing this family (20)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US10551658B2 (en) 2014-12-17 2020-02-04 Mitsubishi Chemical Corporation Image display apparatus with touch panel
TWI582873B (en) * 2015-02-26 2017-05-11 Hitachi Maxell A masking method for manufacturing the same, and a method of manufacturing the solder bump
EP3075770A1 (en) * 2015-03-31 2016-10-05 Evonik Röhm GmbH Production of pmma foams with fine pores utilizing nucleating agents
TWI610376B (en) * 2016-01-19 2018-01-01 日立麥克賽爾股份有限公司 Mask for arrangement, manufacturing method thereof, and method for forming solder bump
WO2017131082A1 (en) * 2016-01-26 2017-08-03 積水化学工業株式会社 Double-sided adhesive tape
WO2017170793A1 (en) * 2016-03-29 2017-10-05 積水化学工業株式会社 Closed-cell foam sheet, and display device
JP2019515438A (en) * 2016-04-29 2019-06-06 スリーエム イノベイティブ プロパティズ カンパニー Organic light emitting diode buffer film
JP6746393B2 (en) * 2016-06-15 2020-08-26 日東電工株式会社 Roll of resin foam sheet
JP6986121B2 (en) * 2016-06-15 2021-12-22 日東電工株式会社 Winding body of resin foam sheet
TWI609910B (en) * 2016-07-06 2018-01-01 Method for producing electronic crosslinked foaming composition
JP6769801B2 (en) * 2016-09-21 2020-10-14 日東電工株式会社 Manufacturing method for foaming members, electrical and electronic equipment, and foaming materials
KR102017291B1 (en) * 2016-10-27 2019-09-03 주식회사 엘지화학 Polymer foam adhesive tape and pressure sensitive type touch panel comprising the same
KR102017010B1 (en) * 2016-10-27 2019-09-03 주식회사 엘지화학 Polymer foam adhesive tape and pressure sensitive type touch panel comprising the same
CN109923187B (en) * 2016-10-27 2021-12-07 株式会社Lg化学 Polymer foam adhesive tape and pressure-sensitive touch panel including the same
KR102261471B1 (en) * 2017-03-08 2021-06-07 도레이 카부시키가이샤 Foam and its manufacturing method
JP6473846B1 (en) 2017-08-28 2019-02-20 日東電工株式会社 Resin sheet and resin sheet with adhesive layer
JP7107026B2 (en) * 2018-06-27 2022-07-27 Dic株式会社 Adhesive tape
EP3848429A4 (en) * 2018-09-05 2021-10-20 Mitsubishi Chemical Corporation Adhesive tape
JP7287180B2 (en) * 2018-09-05 2023-06-06 三菱ケミカル株式会社 Adhesive tape
TWI705885B (en) * 2019-05-28 2020-10-01 財團法人塑膠工業技術發展中心 A polypropylene composite for 3d printing

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005097566A (en) * 2003-08-22 2005-04-14 Nitto Denko Corp Foamed dust-preventing material and dust-preventing structure using the same
JP2008088283A (en) * 2006-10-02 2008-04-17 Nitto Denko Corp Polyolefin based resin foam and method for producing the same
JP2009280640A (en) * 2008-05-20 2009-12-03 Nitto Denko Corp Sealing material
JP2010138220A (en) * 2008-12-09 2010-06-24 Nitto Denko Corp Method for producing foamed sheet and foamed sheet
JP2010215805A (en) * 2009-03-17 2010-09-30 Nitto Denko Corp Shock absorbing material
JP2012140599A (en) * 2010-12-14 2012-07-26 Nitto Denko Corp Resin foam and foamed sealing material
JP2013036026A (en) * 2011-07-14 2013-02-21 Nitto Denko Corp Resin foam and foam sealing material
WO2013054620A1 (en) * 2011-10-11 2013-04-18 日東電工株式会社 Resin foam sheet and resin foam composite

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5081654B2 (en) 2008-02-12 2012-11-28 積水化学工業株式会社 Method for producing foam sheet or laminated foam sheet
JP5550819B2 (en) 2008-06-20 2014-07-16 積水化学工業株式会社 Manufacturing method of foamed rubber sheet
JP2011012235A (en) * 2009-07-06 2011-01-20 Nitto Denko Corp Resin foam

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005097566A (en) * 2003-08-22 2005-04-14 Nitto Denko Corp Foamed dust-preventing material and dust-preventing structure using the same
JP2008088283A (en) * 2006-10-02 2008-04-17 Nitto Denko Corp Polyolefin based resin foam and method for producing the same
JP2009280640A (en) * 2008-05-20 2009-12-03 Nitto Denko Corp Sealing material
JP2010138220A (en) * 2008-12-09 2010-06-24 Nitto Denko Corp Method for producing foamed sheet and foamed sheet
JP2010215805A (en) * 2009-03-17 2010-09-30 Nitto Denko Corp Shock absorbing material
JP2012140599A (en) * 2010-12-14 2012-07-26 Nitto Denko Corp Resin foam and foamed sealing material
JP2013036026A (en) * 2011-07-14 2013-02-21 Nitto Denko Corp Resin foam and foam sealing material
WO2013054620A1 (en) * 2011-10-11 2013-04-18 日東電工株式会社 Resin foam sheet and resin foam composite

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2019197116A1 (en) * 2018-04-12 2019-10-17 Tesa Se Pressure sensitive adhesive tape comprising a foamed film, method for producing such a tape and foamed film
WO2021106911A1 (en) * 2019-11-25 2021-06-03 日東電工株式会社 Resin foaming body
WO2021106910A1 (en) * 2019-11-25 2021-06-03 日東電工株式会社 Resin foam
CN114585670A (en) * 2019-11-25 2022-06-03 日东电工株式会社 Resin foam

Also Published As

Publication number Publication date
TW201500201A (en) 2015-01-01
CN105121529A (en) 2015-12-02
KR102218808B1 (en) 2021-02-22
JP6358825B2 (en) 2018-07-18
KR20150140761A (en) 2015-12-16
JP2014218077A (en) 2014-11-20
CN105121529B (en) 2019-04-12

Similar Documents

Publication Publication Date Title
JP6358825B2 (en) Resin foam composite
JP5990435B2 (en) Resin foam sheet and resin foam composite
TWI598275B (en) Resin foam and foam sealing material
JP6082239B2 (en) Resin foam sheet, resin foam sheet manufacturing method, and resin foam composite
JP5666926B2 (en) Foamed laminate for electrical or electronic equipment
TWI507456B (en) Resin foam and foam sealing material
JP2011012235A (en) Resin foam
JP6025827B2 (en) Method for producing resin foam and resin foam
WO2013183662A1 (en) Resin foam and foaming material
KR20110119556A (en) Resin foam and foamed member
JP6473846B1 (en) Resin sheet and resin sheet with adhesive layer
TWI569968B (en) A foamed laminate for electrical or electronic equipment
JP6110213B2 (en) Thermoplastic resin foam, foam sealing material, and method for producing thermoplastic resin foam
JP6769801B2 (en) Manufacturing method for foaming members, electrical and electronic equipment, and foaming materials
JP6533608B2 (en) Resin foam composite
JP5427972B2 (en) Resin foam
JP5872524B2 (en) Foam member

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 14782608

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 20157031890

Country of ref document: KR

Kind code of ref document: A

122 Ep: pct application non-entry in european phase

Ref document number: 14782608

Country of ref document: EP

Kind code of ref document: A1