WO2021106758A1 - Control device and control method for automatic transmission - Google Patents

Control device and control method for automatic transmission Download PDF

Info

Publication number
WO2021106758A1
WO2021106758A1 PCT/JP2020/043300 JP2020043300W WO2021106758A1 WO 2021106758 A1 WO2021106758 A1 WO 2021106758A1 JP 2020043300 W JP2020043300 W JP 2020043300W WO 2021106758 A1 WO2021106758 A1 WO 2021106758A1
Authority
WO
WIPO (PCT)
Prior art keywords
line pressure
lower limit
gear
automatic transmission
limit value
Prior art date
Application number
PCT/JP2020/043300
Other languages
French (fr)
Japanese (ja)
Inventor
克宏 松尾
Original Assignee
ジヤトコ株式会社
日産自動車株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by ジヤトコ株式会社, 日産自動車株式会社 filed Critical ジヤトコ株式会社
Priority to JP2021561364A priority Critical patent/JP7127222B2/en
Publication of WO2021106758A1 publication Critical patent/WO2021106758A1/en

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16DCOUPLINGS FOR TRANSMITTING ROTATION; CLUTCHES; BRAKES
    • F16D48/00External control of clutches
    • F16D48/02Control by fluid pressure
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16HGEARING
    • F16H59/00Control inputs to control units of change-speed-, or reversing-gearings for conveying rotary motion
    • F16H59/68Inputs being a function of gearing status
    • F16H59/70Inputs being a function of gearing status dependent on the ratio established
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16HGEARING
    • F16H61/00Control functions within control units of change-speed- or reversing-gearings for conveying rotary motion ; Control of exclusively fluid gearing, friction gearing, gearings with endless flexible members or other particular types of gearing
    • F16H61/02Control functions within control units of change-speed- or reversing-gearings for conveying rotary motion ; Control of exclusively fluid gearing, friction gearing, gearings with endless flexible members or other particular types of gearing characterised by the signals used
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16HGEARING
    • F16H61/00Control functions within control units of change-speed- or reversing-gearings for conveying rotary motion ; Control of exclusively fluid gearing, friction gearing, gearings with endless flexible members or other particular types of gearing
    • F16H61/68Control functions within control units of change-speed- or reversing-gearings for conveying rotary motion ; Control of exclusively fluid gearing, friction gearing, gearings with endless flexible members or other particular types of gearing specially adapted for stepped gearings

Definitions

  • the present invention relates to the control of an automatic transmission mounted on a vehicle.
  • the line pressure control device for the stepless transmission disclosed by JP2016-65585A predicts that the vehicle running state is maintained in the steady running state based on the vehicle information including the running state of the vehicle (processes of steps S102 to S105).
  • the line pressure is set to a low line pressure for steady running on the lower pressure side than the target line pressure as the normal line pressure that suppresses slippage of the power transmission part in response to the input torque request.
  • the present invention has been made by paying attention to the above problems, and it is intended to give the driver a sense of discomfort due to a decrease in shift responsiveness while reducing pump energy consumption by increasing driving opportunities for lowering the line pressure during driving.
  • the purpose is to suppress it.
  • the control device of the automatic transmission adjusts the line pressure based on the pump discharge oil from the oil pump driven by the drive source, and based on the line pressure. It is provided with a transmission control unit that performs shift control for switching a plurality of gear stages by changing the fastening state of a plurality of friction elements fastened as pressure.
  • the transmission control unit has a line pressure control unit that changes and controls the lower limit of the line pressure guaranteed as the minimum line pressure regardless of the magnitude of the input torque to the stepped transmission mechanism.
  • the line pressure control unit determines whether or not the vehicle is traveling in the gear stage on the high-speed stage side of the predetermined gear stage, and when it is determined that the gear stage is on the high-speed stage side of the predetermined gear stage, the line pressure lower limit The value is set lower than the lower limit value of the line pressure when it is determined that the gear stage is on the low speed side below the predetermined gear stage.
  • the pump energy consumption is reduced by increasing the driving opportunity to lower the line pressure during driving, and it is suppressed that the driver feels uncomfortable due to the deterioration of shift responsiveness. be able to.
  • FIG. 1 is an overall system diagram showing an engine vehicle equipped with an automatic transmission to which the control device of the first embodiment is applied.
  • FIG. 2 is a skeleton diagram showing an example of a gear train of an automatic transmission.
  • FIG. 3 is a fastening table diagram showing a fastening state of friction elements for shifting in an automatic transmission at each gear stage.
  • FIG. 4 is a shift map diagram showing an example of a shift map in an automatic transmission.
  • FIG. 5 is a hydraulic control system configuration diagram showing a control valve unit of an automatic transmission.
  • FIG. 6 is a flowchart showing the flow of the line pressure lower limit value control process executed by the line pressure control unit of the transmission control unit.
  • FIG. 1 is an overall system diagram showing an engine vehicle equipped with an automatic transmission to which the control device of the first embodiment is applied.
  • FIG. 2 is a skeleton diagram showing an example of a gear train of an automatic transmission.
  • FIG. 3 is a fastening table diagram showing a fastening state of friction elements for shifting in
  • FIG. 7 is a characteristic diagram showing an example of a first line pressure lower limit value and a second line pressure lower limit value in the target line pressure characteristic with respect to the input torque to the gear train.
  • FIG. 8 is a time chart showing switching characteristics between the first line pressure lower limit value and the second line pressure lower limit value when shifting from the 8th speed in-gear to the 8-9 speed shift to the 9th speed in-gear.
  • the control device of the first embodiment is applied to an engine vehicle (an example of a vehicle) equipped with an automatic transmission by shift-by-wire and park-by-wire having gear stages of 9th forward speed and 1st reverse speed. is there.
  • an engine vehicle an example of a vehicle
  • park-by-wire having gear stages of 9th forward speed and 1st reverse speed.
  • the configuration of the first embodiment will be described separately by dividing it into an “overall system configuration”, a “detailed configuration of an automatic transmission”, a “detailed configuration of a hydraulic control system”, and a “line pressure lower limit value control processing configuration”.
  • the drive system of the engine vehicle includes an engine 1, a torque converter 2, an automatic transmission 3, a propeller shaft 4, and drive wheels 5.
  • the torque converter 2 has a built-in lockup clutch 2a that directly connects the crankshaft of the engine 1 and the input shaft IN of the automatic transmission 3 by fastening.
  • the automatic transmission 3 incorporates a gear train 3a and a park gear 3b.
  • a control valve unit 6 including a spool valve for shifting, a hydraulic control circuit, a solenoid valve, and the like is attached to the automatic transmission 3.
  • the control valve unit 6 has six clutch solenoids 20 provided for each friction element, one line pressure solenoid 21, a lubrication solenoid 22, and a lockup solenoid 23 as solenoid valves. That is, it has a total of nine solenoid valves. Each of these solenoid valves has a three-way linear solenoid structure, and operates in pressure adjustment in response to a control command from the transmission control unit 10.
  • the electronic control system of the engine vehicle includes a transmission control unit 10 (abbreviation: “ATCU”), an engine control module 11 (abbreviation: “ECM”), and a CAN communication line. 70 and.
  • the transmission control unit 10 is started / stopped by an ignition signal from the sensor module unit 71 (abbreviation: “USM”). That is, the start / stop of the transmission control unit 10 is defined as "wake-up / sleep control" in which the start variation increases as compared with the case of start / stop by the ignition switch.
  • the transmission control unit 10 is provided integrally with mechatronics on the upper surface of the control valve unit 6, and the main board temperature sensor 31 and the sub board temperature sensor 32 are provided on the unit board by a redundant system while ensuring independence from each other. .. That is, the main board temperature sensor 31 and the sub board temperature sensor 32 transmit the sensor value information to the transmission control unit 10, but unlike the well-known automatic transmission unit, the transmission hydraulic oil (ATF) is installed in the oil pan. Sends temperature information that is not in direct contact with.
  • the transmission control unit 10 also inputs signals from the turbine rotation sensor 13, the output shaft rotation sensor 14, and the third clutch oil pressure sensor 15. Further, signals from the shifter control unit 18, the intermediate shaft rotation sensor 19, and the like are input.
  • the third clutch oil pressure sensor 15 detects the clutch oil pressure of the third clutch K3 and transmits a signal indicating the third clutch oil pressure PK3 to the transmission control unit 10.
  • the shifter control unit 18 determines the range position selected by the driver's select operation on the shifter 181 and transmits the range position signal to the transmission control unit 10.
  • the shifter 181 has a momentary structure, has a P range button 181b on the upper portion of the operation unit 181a, and has an unlock button 181c (only when N ⁇ R) on the side portion of the operation unit 181a.
  • the range positions include an H range (home range), an R range (reverse range), a D range (drive range), and N (d) and N (r) (neutral range).
  • the transmission control unit 10 monitors changes in the operating points (VSP, APO) due to the vehicle speed VSP and the accelerator opening APO on the shift map (see FIG. 4).
  • VSP operating point
  • APO accelerator opening APO on the shift map
  • the engine control module 11 inputs signals from the accelerator opening sensor 16, the engine rotation sensor 17, and the like.
  • the accelerator opening sensor 16 detects the accelerator opening caused by the driver's accelerator operation, and transmits a signal indicating the accelerator opening APO to the engine control module 11.
  • the engine rotation sensor 17 detects the rotation speed of the engine 1 and transmits a signal indicating the engine rotation speed Ne to the engine control module 11.
  • engine torque limit control In the engine control module 11, in addition to various controls of the engine itself, engine torque limit control and the like are performed by cooperative control with the transmission control unit 10. Since the transmission control unit 10 is connected to the transmission control unit 10 via a CAN communication line 70 capable of exchanging information in both directions, when an information request is input from the transmission control unit 10, the accelerator opening APO and the engine rotation speed Ne information is output to the transmission control unit 10. Further, the information of the engine torque Te and the turbine torque Tt calculated by estimation is output to the transmission control unit 10. Further, when an engine torque limit request based on the upper limit torque is input from the transmission control unit 10, engine torque limit control is executed in which the engine torque is limited by a predetermined upper limit torque.
  • the automatic transmission 3 has a gear train 3a (stepped transmission mechanism) in which a plurality of gear stages can be set and a plurality of friction elements, and is characterized by the following points.
  • a one-way clutch that mechanically engages / idles is not used as a shifting element.
  • the first brake B1, the second brake B2, the third brake B3, the first clutch K1, the second clutch K2, and the third clutch K3, which are friction elements, are independently engaged / released by the clutch solenoid 20 at the time of shifting. The state is controlled.
  • the automatic transmission 3 has, as planetary gears constituting the gear train 3a, the first planetary gear PG1, the second planetary gear PG2, and the third planetary gear PG1 in order from the input shaft IN to the output shaft OUT. It is equipped with a planetary gear PG3 and a fourth planetary gear PG4.
  • the first planetary gear PG1 is a single pinion type planetary gear, and has a first sun gear S1, a first carrier C1 that supports a pinion that meshes with the first sun gear S1, and a first ring gear R1 that meshes with the pinion.
  • the second planetary gear PG2 is a single pinion type planetary gear, and has a second sun gear S2, a second carrier C2 that supports a pinion that meshes with the second sun gear S2, and a second ring gear R2 that meshes with the pinion.
  • the third planetary gear PG3 is a single pinion type planetary gear, and has a third sun gear S3, a third carrier C3 that supports a pinion that meshes with the third sun gear S3, and a third ring gear R3 that meshes with the pinion.
  • the fourth planetary gear PG4 is a single pinion type planetary gear, and has a fourth sun gear S4, a fourth carrier C4 that supports a pinion that meshes with the fourth sun gear S4, and a fourth ring gear R4 that meshes with the pinion.
  • the automatic transmission 3 includes an input shaft IN, an output shaft OUT, a first connecting member M1, a second connecting member M2, and a transmission case TC.
  • the first brake B1, the second brake B2, the third brake B3, the first clutch K1, the second clutch K2, and the third clutch K3 are provided. There is.
  • the input shaft IN is a shaft in which the driving force from the engine 1 is input via the torque converter 2, and is always connected to the first sun gear S1 and the fourth carrier C4.
  • the input shaft IN is connected to the first carrier C1 via the second clutch K2 so as to be connectable and detachable.
  • the output shaft OUT is a shaft that outputs the drive torque shifted to the drive wheels 5 via the propeller shaft 4 and the final gear (not shown), and is always connected to the third carrier C3.
  • the output shaft OUT is connected to the fourth ring gear R4 via the first clutch K1 so as to be connectable and disconnectable.
  • the first connecting member M1 is a member that constantly connects the first ring gear R1 of the first planetary gear PG1 and the second carrier C2 of the second planetary gear PG2 without interposing a friction element.
  • the second connecting member M2 always connects the second ring gear R2 of the second planetary gear PG2, the third sun gear S3 of the third planetary gear PG3, and the fourth sun gear S4 of the fourth planetary gear PG4 without interposing a friction element. It is a member to do.
  • the first brake B1 is a friction element that can lock the rotation of the first carrier C1 with respect to the transmission case TC.
  • the second brake B2 is a friction element capable of locking the rotation of the third ring gear R3 with respect to the transmission case TC.
  • the third brake B3 is a friction element capable of locking the rotation of the second sun gear S2 with respect to the transmission case TC.
  • the first clutch K1 is a friction element that selectively connects the fourth ring gear R4 and the output shaft OUT.
  • the second clutch K2 is a friction element that selectively connects the input shaft IN and the first carrier C1.
  • the third clutch K3 is a friction element that selectively connects between the first carrier C1 and the second connecting member M2.
  • the first speed (1st) is achieved by simultaneously engaging the second brake B2, the third brake B3, and the third clutch K3.
  • the second speed (2nd) is achieved by simultaneously engaging the second brake B2, the second clutch K2, and the third clutch K3.
  • the third speed (3rd) is achieved by simultaneously engaging the second brake B2, the third brake B3, and the second clutch K2.
  • the 4th speed (4th) is achieved by simultaneously engaging the second brake B2, the third brake B3, and the first clutch K1.
  • the fifth speed (5th) is achieved by simultaneously engaging the third brake B3, the first clutch K1 and the second clutch K2.
  • the above 1st to 5th speeds are underdrive gears with a reduction gear ratio in which the gear ratio exceeds 1.
  • the 6th speed (6th) is achieved by simultaneously engaging the 1st clutch K1, the 2nd clutch K2, and the 3rd clutch K3.
  • This sixth speed stage is a directly connected stage having a gear ratio of 1.
  • the 7th speed (7th) is achieved by simultaneously engaging the 3rd brake B3, the 1st clutch K1 and the 3rd clutch K3.
  • the 8th speed (8th) is achieved by simultaneously engaging the first brake B1, the first clutch K1, and the third clutch K3.
  • the 9th speed stage (9th) is achieved by simultaneously engaging the first brake B1, the third brake B3, and the first clutch K1.
  • the 7th to 9th speeds described above are overdrive gears with a speed-increasing gear ratio of less than 1.
  • the shift shift is performed. .. That is, the shift to the adjacent gear stage is achieved by releasing one friction element and fastening one friction element while maintaining the fastening of two friction elements among the three friction elements. ..
  • the reverse speed stage (Rev) by selecting the R range position is achieved by simultaneously engaging the first brake B1, the second brake B2, and the third brake B3.
  • the N range position and the P range position are selected, basically all of the six friction elements B1, B2, B3, K1, K2, and K3 are in the released state.
  • a shift map as shown in FIG. 4 is stored and set in the transmission control unit 10, and shifting by switching gears from the 1st gear to the 9th gear on the forward side by selecting the D range is performed. This is done according to this shift map. That is, when the operating point (VSP, APO) at that time crosses the upshift line shown by the solid line in FIG. 4, an upshift shift request is issued. Further, when the operating point (VSP, APO) crosses the downshift line shown by the broken line in FIG. 4, a downshift shift request is issued.
  • the control valve unit 6 hydraulically controlled by the transmission control unit 10 includes a mechanical oil pump 61 and an electric oil pump 62 as hydraulic sources.
  • the mechanical oil pump 61 is pump-driven by the engine 1 (drive source)
  • the electric oil pump 62 is pump-driven by the electric motor 63 (drive source).
  • the control valve unit 6 includes a line pressure solenoid 21, a line pressure regulating valve 64, a clutch solenoid 20, and a lockup solenoid 23 as valves provided in the flood control circuit.
  • a lubrication solenoid 22, a lubrication pressure regulating valve 65, and a boost switching valve 66 are provided. Further, a P-nP switching valve 67 and a park hydraulic actuator 68 are provided.
  • the line pressure adjusting valve 64 regulates the discharged oil from at least one of the mechanical oil pump 61 and the electric oil pump 62 to the line pressure PL based on the valve operating signal pressure from the line pressure solenoid 21.
  • the line pressure solenoid 21 is driven to adjust the pressure by a control command from the line pressure control unit 100 included in the transmission control unit 10.
  • the clutch solenoid 20 is a transmission system solenoid that uses the line pressure PL as the original pressure and controls the fastening pressure and release pressure for each friction element (B1, B2, B3, K1, K2, K3). Although it is described in FIG. 5 that there is one clutch solenoid 20, each friction element (B1, B2, B3, K1, K2, K3) has six solenoids.
  • the clutch solenoid 20 is driven to adjust the pressure by a control command from the shift control unit 101 included in the transmission control unit 10.
  • the shift control unit 101 outputs an intermediate pressure command corresponding to the element input torque capable of suppressing clutch slippage to the clutch solenoid 20 during the in-gear that maintains the engaged state in the engagement pressure control of the friction element.
  • the line pressure control unit 100 outputs the target line pressure characteristic PLc with respect to the magnitude of the input torque to the gear train 3a from the target line pressure characteristic PLc'when the maximum pressure command is output to the clutch solenoid 20 during in-gear. Is also set to the low pressure side (see FIG. 7).
  • the lockup solenoid 23 controls the differential pressure of the lockup clutch 2a by using the surplus oil at the time of adjusting the line pressure PL by the line pressure adjusting valve 64.
  • the differential pressure control of the lockup clutch 2a is not the differential pressure control that keeps the fully engaged state against the fluctuation of the input torque, but the differential pressure control that allows a minute slip against the fluctuation of the input torque.
  • the lubrication solenoid 22 has a function of creating a valve operating signal pressure to the lubrication pressure regulating valve 65 and a switching pressure to the boost switching valve 66, and adjusting the lubrication flow rate supplied to the friction element to an appropriate flow rate for suppressing heat generation. .. Then, it is a solenoid that mechanically guarantees the minimum lubrication flow rate that suppresses heat generation of the friction element at times other than continuous shift protection, and adjusts the lubrication flow rate added to the minimum lubrication flow rate.
  • the lubrication pressure regulating valve 65 can control the lubrication flow rate supplied to the power train (PT) including the friction element and the gear train 3a via the cooler 69 by the valve operating signal pressure from the lubrication solenoid 22. Then, friction is reduced by optimizing the PT supply lubrication flow rate by the lubrication pressure regulating valve 65.
  • the boost switching valve 66 increases the amount of oil supplied to the centrifugal cancel chambers of the second clutch K2 and the third clutch K3 by the switching pressure from the lubrication solenoid 22. This boost switching valve 66 is used when the amount of oil supplied is temporarily increased in a scene where the amount of oil in the centrifugal cancel chamber is insufficient.
  • the P-nP switching valve 67 switches the line pressure path to the park hydraulic actuator 68 by the switching pressure from the lubrication solenoid 22 (or park solenoid).
  • the park lock that meshes the park gear 3b when the P range is selected and the park lock that disengages the park gear 3b when the park gear 3b is selected from the P range to a range other than the P range are released.
  • the P-nP switching valve 67 and the park hydraulic actuator 68 constituting the park module are operated based on the range position signal from the shifter control unit 18 to "park by". ⁇ Achieved "wire".
  • FIG. 6 shows a line pressure lower limit value control process executed by the line pressure control unit 100 that changes and controls the line pressure lower limit value.
  • the "line pressure lower limit value” is the minimum line regardless of the magnitude of the input torque in the low input torque range to the gear train 3a in the target line pressure characteristic PLc with respect to the magnitude of the input torque to the gear train 3a. Refers to the target line pressure value guaranteed as pressure (see FIG. 7).
  • step S1 following the start of processing, it is determined whether or not the vehicle is running. If YES (running), the process proceeds to step S2, and if NO (stopped), the process proceeds to step S5.
  • a traveling range position such as the D range is selected, it is determined that the vehicle is traveling when the vehicle speed is equal to or higher than the stop determination threshold value, and it is determined that the vehicle is stopped in other cases.
  • step S2 following the determination that the vehicle is running in S1, whether or not the gear stage of the automatic transmission 3 is the gear stage (8th speed stage, 9th speed stage) on the higher speed side than the 7th speed. judge. If YES (8th speed, 9th speed), the process proceeds to step S4, and if NO (1st to 7th speed), the process proceeds to step S3.
  • step S3 following the determination that the gear stage of the automatic transmission 3 in S2 is the 1st to 7th speed, the first line pressure lower limit value PL1min is selected as the line pressure lower limit value of the target line pressure characteristic. And proceed to return.
  • the “first line pressure lower limit value PL1min” is the minimum line in the low input torque range determined to ensure the desired shift response in the target line pressure characteristic PLc. Refers to pressure. That is, when the first line pressure lower limit value PL1min is selected, the target line pressure characteristic PLc is such that the target line pressure PLt is the first line pressure lower limit when the input torque Tin is in the low input torque range of the first input torque Tin1 or less. The value is PL1min. Then, when the input torque Tin exceeds the first input torque Tin1, it is given by the characteristic that the target line pressure PLt is proportionally increased as the input torque Tin increases.
  • the engine torque estimated value is used when the lockup clutch 2a is engaged, and the value obtained by multiplying the engine torque estimated value and the torque ratio in the torque converter 2 when the lockup clutch 2a is released is used. ..
  • step S4 following the determination that the gear stage of the automatic transmission 3 in S2 is the 8th speed or the 9th speed, it is determined whether or not the shift control is started. If YES (start of shift control between the 8th and 9th speeds), the process proceeds to step S6, and if NO (during in-gear at the 8th or 9th speed), the process proceeds to step S5.
  • the shift control start is determined by, for example, the line pressure control unit 100 inputting an upshift request from the 8th speed to the 9th speed or a downshift request from the 9th speed to the 8th speed from the shift control unit 101.
  • step S5 following the determination in S1 that the vehicle is stopped or the determination in S4 that the vehicle is in gear at the 8th or 9th speed, the second lower limit of the line pressure of the target line pressure characteristic is set. Select the lower limit of line pressure PL2min and proceed to return.
  • second line pressure lower limit value PL2min ( ⁇ first line pressure lower limit value PL1min) means, as shown in FIG. 7, a decrease in driving torque of oil pumps 61 and 62 among the target line pressure characteristic PLc.
  • the lower limit of the 2-line pressure is PL2min ( ⁇ PL1min). Then, when the input torque Tin exceeds the second input torque Tin2, the target line pressure PLt is proportionally increased as the input torque Tin increases.
  • step S6 following the determination in S4 that the shift control is started between the 8th speed and the 9th speed, the second line pressure lower limit value PL2min selected during the in-gear is changed to the first line pressure lower limit value PL1min.
  • the lower limit of the line pressure is changed step by step, and the process proceeds to step S7.
  • step S7 following the stepwise change from PL2min to PL1min in S6 or the determination that the shift control has not been completed in S8, the changed first line pressure lower limit value PL1min is maintained, and the process proceeds to step S8. move on.
  • step S8 following the maintenance of PL1min in S7, it is determined whether or not the shift control is completed. If YES (shift control ends), the process proceeds to step S9, and if NO (shift control not completed), the process returns to step S7.
  • the end of shift control is determined, for example, by calculating the actual gear ratio from the input rotation speed and the output rotation speed of the gear train 3a, and if the calculated actual gear ratio is within the error range of the gear ratio after shifting. ..
  • step S9 following the determination that the shift control is completed in S8 or the determination that the second line pressure lower limit value PL2min has not been reached in S10, the first line pressure lower limit value PL1min to the second line pressure lower limit PL2min is not reached. Gradually return to the value PL2min and proceed to step S10.
  • step S10 following the process of gradually returning from PL1min to PL2min in S9, it is determined whether or not the lower limit of line pressure has reached the second lower limit of line pressure PL2min. If YES (reached PL2min), the process proceeds to return, and if NO (reached PL2min), the process returns to step S9.
  • the clutch solenoid issues an intermediate pressure command equivalent to the element input torque that can suppress clutch slippage. It is assumed that a unit that outputs to is used. In this case, since the line pressure PL can be suppressed low as the fastening oil pressure is lowered, as shown in FIG. 7, when the target line pressure characteristic PLc is output to the clutch solenoid during in-gear, the maximum pressure command is output. It can be set to a lower pressure side than the target line pressure characteristic PLc'.
  • the line pressure control is always performed using the target line pressure characteristic PLc set on the lower pressure side than the target line pressure characteristic PLc'. Therefore, the fuel efficiency can be improved as compared with the case where the steady running state holding condition is given, but there is a demand for further increasing the chance of lowering the line pressure PL even under severely restricted conditions.
  • the target line pressure characteristic is a combination of the line pressure lower limit characteristic in the low input torque range and the input torque proportional characteristic in the high input torque range, and the line pressure is controlled by the line pressure lower limit characteristic.
  • the line pressure PL is adjusted based on the pump discharge oil from the mechanical oil pump 61 and the electric oil pump 62 and the oil pumps 61 and 62, and the line pressure PL is used as the original pressure.
  • the transmission control unit 10 is provided for shifting control for switching a plurality of gear stages by changing the fastening state of the plurality of friction elements.
  • the transmission control unit 10 is a line pressure control unit that changes and controls the lower limit of the line pressure guaranteed as the minimum line pressure regardless of the magnitude of the input torque to the gear train 3a. Has 100.
  • the line pressure control unit 100 determines whether or not the vehicle is traveling in the gear stage on the high-speed stage side of the predetermined gear stage, and determines that the gear stage is on the high-speed stage side of the predetermined gear stage.
  • a solution was adopted in which the lower limit of line pressure PL2min was set lower than the first line pressure lower limit PL1min when it was determined that the gear stage was on the low speed side below the predetermined gear stage.
  • the second line pressure lower limit value PL2min when it is determined that the gear stage is on the higher speed side than the predetermined gear stage is set lower than the first line pressure lower limit value PL1min. Therefore, when traveling in the gear stage on the high-speed stage side of the predetermined gear stage, the lower limit value of the line pressure is lowered, so that the driving torque of the mechanical oil pump 61 and the electric oil pump 62 can be reduced. Therefore, it is possible to improve the fuel efficiency performance by driving the mechanical oil pump 61 and the electricity cost performance by driving the electric oil pump 62. Further, the predetermined gear stage is set so that the delay in the response of the shift does not give the driver a sense of discomfort even if the supplied line pressure drops.
  • the 6th gear is the predetermined gear
  • the 8th and 9th gears are the gears on the higher speed side than the predetermined gear.
  • the first line pressure lower limit value PL1min is set higher than the second line pressure lower limit value PL2min when it is determined that the gear stage is on the low speed side below the predetermined gear stage. For this reason, when shifting according to the shift request while traveling in the gear stage on the lower speed side than the predetermined gear stage, the shift response is ensured without insufficient oil amount to the friction element to be fastened. become. That is, it is possible to prevent the driver from feeling uncomfortable due to the delay in shifting response.
  • the process proceeds to S1 ⁇ S2 ⁇ S3 ⁇ return. Therefore, in S3, the first line pressure lower limit value PL1min determined to secure the desired shift response is selected as the line pressure lower limit value of the target line pressure characteristic.
  • the process proceeds to S1 ⁇ S2 ⁇ S4 ⁇ S5 ⁇ return. Therefore, in S5, as the line pressure lower limit value of the target line pressure characteristic, the second line pressure lower limit value PL2min determined to secure the reduction in the driving torque of the oil pumps 61 and 62 is selected.
  • the process proceeds to S1 ⁇ S2 ⁇ S4 ⁇ S6 ⁇ S7 ⁇ S8. , While it is determined in S8 that the shift control has not been completed, the flow of proceeding from S7 to S8 is repeated.
  • the line pressure lower limit value is changed stepwise from the second line pressure lower limit value PL2min selected during the in-gear in the 8th speed stage or the 9th speed stage to the first line pressure lower limit value PL1min.
  • the changed first line pressure lower limit value PL1min is maintained.
  • the shifting response is changed during shifting. There is a risk of giving the driver a sense of discomfort due to the drop.
  • the gear stage (8th speed stage, 9th speed stage) is on the higher speed side than the predetermined gear stage, it is divided according to whether it is in gear or shifting. Then, when the second line pressure lower limit value PL2min is selected during in-gear and the first line pressure lower limit value PL1min is selected during shifting, the gear stage (8th speed stage, 9th speed stage) on the higher speed side than the predetermined gear stage is selected. While driving in, it is possible to reduce pump energy consumption and ensure gear shifting responsiveness at the same time.
  • the second line pressure lower limit value PL2min is stepped up. Change to the 1-line pressure lower limit PL1min (S4 ⁇ S6 in FIG. 6).
  • the first line pressure lower limit value PL1min is gradually returned to the second line pressure lower limit value PL2min (S8 ⁇ S9 in FIG. 6).
  • the first line pressure lower limit value PL1min is gradually returned to the second line pressure lower limit value PL2min, so that a temporary drop in the fastening oil pressure to the friction element is suppressed, and the shift control is performed. It is possible to prevent the friction element from slipping out immediately after the end.
  • the second line pressure lower limit value PL2min when it is determined that the vehicle is stopped is set to a low speed stage equal to or lower than a predetermined gear stage. It is set lower than the first line pressure lower limit value PL1min when it is determined that the vehicle is traveling in the gear stage on the side (S1 ⁇ S5 in FIG. 6).
  • the first line pressure lower limit value PL1min is selected based on the shift stage of the automatic transmission 3 in the vehicle stop scene at the gear stage on the lower speed stage side than the predetermined gear stage, shift response is not required even if the gear is changed. Even though it is a scene, the lower limit of the line pressure is unnecessarily raised.
  • control device of the automatic transmission 3 of the first embodiment has the effects listed below.
  • the line pressure PL is adjusted based on the pump discharge oil from the oil pumps (mechanical oil pump 61, electric oil pump 62) driven by the drive source (engine 1, electric motor 63), and the line pressure PL is based on the line pressure PL.
  • a control device for an automatic transmission 3 including a transmission control unit 10 that performs shift control for switching a plurality of gear stages by changing the engagement state of a plurality of friction elements B1, B2, B3, K1, K2, and K3 to be fastened as pressure.
  • the transmission control unit 10 has a line pressure control unit 100 that changes and controls the lower limit of the line pressure guaranteed as the minimum line pressure regardless of the magnitude of the input torque to the stepped transmission mechanism (gear train 3a).
  • the line pressure control unit 100 determines whether or not the vehicle is traveling in a gear stage on the high-speed stage side of the predetermined gear stage, and determines that the gear stage is on the high-speed stage side of the predetermined gear stage.
  • the lower limit value (second line pressure lower limit value PL2min) is set lower than the line pressure lower limit value (first line pressure lower limit value PL1min) when it is determined that the gear stage is on the low speed stage side below the predetermined gear stage. Therefore, it is possible to reduce the energy consumption of the pump by increasing the driving opportunities for lowering the line pressure PL during driving, and to suppress the driver from feeling uncomfortable due to the decrease in shift response.
  • the line pressure control unit 100 has a first line pressure lower limit value PL1min that secures a desired shift response and a second line that secures a decrease in drive torque of oil pumps (mechanical oil pump 61, electric oil pump 62). Select and control the lower limit of pressure PL2min When it is determined that the gear stage on the high speed side of the predetermined gear stage is in gear, the second line pressure lower limit value PL2min is selected, and it is determined that the gear stage on the high speed side of the predetermined gear stage is shifting. In this case, select the first line pressure lower limit value PL1min.
  • the pump can be pumped by selecting the second line pressure lower limit value PL2min during in-gear and selecting the first line pressure lower limit value PL1min during shifting while traveling in the gear stage on the higher speed side than the predetermined gear stage. It is possible to achieve both reduction of energy consumption and ensuring shift response.
  • the line pressure control unit 100 gradually returns from the first line pressure lower limit value PL1min to the second line pressure lower limit value PL2min. Therefore, when the shift control is finished, the first line pressure lower limit value PL1min is gradually returned to the second line pressure lower limit value PL2min, so that a temporary drop in the closing oil pressure to the friction element is suppressed, and the shift control is terminated. It is possible to prevent the friction element from slipping out immediately afterwards.
  • the line pressure control unit 100 determines whether or not the vehicle is stopped, and sets the lower limit of the line pressure (second line pressure lower limit PL2min) when the vehicle is stopped to be equal to or lower than the predetermined gear stage.
  • Set lower than the line pressure lower limit value (first line pressure lower limit value PL1min) when it is determined that the vehicle is traveling in the gear stage on the low speed stage side of. Therefore, when it is determined that the vehicle is stopped, by selecting the second line pressure lower limit value PL2min, the opportunity to lower the line pressure PL increases, and the pump energy consumption reduction performance ( fuel consumption performance / electricity cost performance) Can be further improved.
  • the transmission control unit 10 is a shift control unit that outputs an intermediate pressure command equivalent to an element input torque that can suppress clutch slippage to the clutch solenoid 20 during in-gear that maintains the engaged state in the engagement pressure control of the friction element.
  • Has 101 The line pressure control unit 100 outputs the target line pressure characteristic PLc with respect to the magnitude of the input torque to the stepped speed change mechanism (gear train 3a), and the target line pressure characteristic PLc'when the maximum pressure command is output to the clutch solenoid during in-gear. Set to the lower pressure side than.
  • control device for the automatic transmission has been described above based on the first embodiment.
  • specific configuration is not limited to the first embodiment, and design changes and additions are permitted as long as the gist of the invention according to each claim is not deviated from the claims.
  • the gear stage of the automatic transmission 3 is divided into two groups, the first line pressure lower limit value PL1min is selected in the gear stage group on the low speed stage side, and the high speed stage side.
  • An example of selecting the second line pressure lower limit value PL2min in the gear stage group of is shown.
  • the gear stages of the automatic transmission are divided into groups of 3 or more, or each gear stage is divided, and a different line pressure lower limit value is selected for each divided gear stage group or each divided gear stage. It may be an example of doing so.
  • the transmission control unit 10 outputs an intermediate pressure command corresponding to the element input torque capable of suppressing clutch slippage to the clutch solenoid 20 during the in-gear that maintains the engaged state in the fastening pressure control of the friction element.
  • An example having a control unit 101 is shown.
  • the transmission control unit can also be applied to an example having a shift control unit that outputs a maximum pressure command to the clutch solenoid during in-gear that maintains the engaged state in the fastening pressure control of the friction element.
  • Example 1 as an automatic transmission, an example of an automatic transmission 3 that achieves forward 9th speed and backward 1st speed by fastening three friction elements is shown.
  • an automatic transmission it may be an example of achieving a plurality of forward stages and reverse stages by fastening two friction elements, or as an example of achieving a plurality of forward stages and reverse stages by fastening four friction elements. Is also good.
  • the automatic transmission may be an example of an automatic transmission having a stepped gear stage other than the forward 9th speed and the reverse 1st speed, or with an auxiliary transmission that combines a belt type continuously variable transmission and a multi-speed transmission. It may be a continuously variable transmission.
  • control device of the automatic transmission 3 mounted on the engine vehicle is shown. However, it can be applied not only to an engine vehicle but also as a control device for an automatic transmission of a hybrid vehicle, an electric vehicle, or the like.

Abstract

A transmission control unit includes a line pressure control unit for changing and controlling a line pressure lower limit which is ensured as a minimum line pressure regardless of the magnitude of input torque to a gear train. The line pressure control unit determines whether the vehicle is traveling in a speed gear position higher than a predetermined gear position, and sets a second line pressure lower limit for the case in which the vehicle is determined to be traveling in a speed gear position higher than the predetermined gear position to be lower than a first line pressure lower limit for the case in which the vehicle is determined to be traveling in a speed gear position lower than the predetermined gear position.

Description

自動変速機の制御装置及び制御方法Control device and control method for automatic transmission
 本発明は、車両に搭載される自動変速機の制御に関する。 The present invention relates to the control of an automatic transmission mounted on a vehicle.
 JP2016-65585Aが開示する無段変速機のライン圧制御装置は、車両の運転状態を含む車両情報に基づいて車両走行状態が定常走行状態に保持されることを予測し(ステップS102~S105の処理を行う構成)、定常走行状態保持の予測時に、ライン圧を、入力トルク要求に対して動力伝達部分の滑りを抑える通常ライン圧としての目標ライン圧よりも低圧側の定常走行時用低ライン圧に制御するものが知られている。 The line pressure control device for the stepless transmission disclosed by JP2016-65585A predicts that the vehicle running state is maintained in the steady running state based on the vehicle information including the running state of the vehicle (processes of steps S102 to S105). When predicting that the steady running state is to be maintained, the line pressure is set to a low line pressure for steady running on the lower pressure side than the target line pressure as the normal line pressure that suppresses slippage of the power transmission part in response to the input torque request. There are known controls.
 しかしながら、JP2016-65585Aに記載された先行技術にあっては、車両走行状態が定常走行状態に保持されている場合にのみ、通常ライン圧としての目標ライン圧よりも低圧側の定常走行時用低ライン圧に制御している。よって、燃費性能を向上するため、ライン圧の設定に更なる改善が求められている、という課題があった。 However, in the prior art described in JP2016-65585A, only when the vehicle running state is maintained in the steady running state, the pressure is lower than the target line pressure as the normal line pressure for steady running. It is controlled by the line pressure. Therefore, in order to improve the fuel efficiency, there is a problem that the line pressure setting is required to be further improved.
 本発明は、上記課題に着目してなされたもので、走行中、ライン圧を下げる走行機会を増やすことでポンプ消費エネルギーを削減しながら、変速応答性の低下により運転者に違和感を与えるのを抑制することを目的とする。 The present invention has been made by paying attention to the above problems, and it is intended to give the driver a sense of discomfort due to a decrease in shift responsiveness while reducing pump energy consumption by increasing driving opportunities for lowering the line pressure during driving. The purpose is to suppress it.
 上記目的を達成するため、本発明のある態様によれば、自動変速機の制御装置は、駆動源により駆動されるオイルポンプからのポンプ吐出油に基づいてライン圧を調圧し、ライン圧を元圧として締結される複数の摩擦要素の締結状態変更により複数のギヤ段を切替える変速制御を行う変速機コントロールユニットを備える。変速機コントロールユニットは、有段変速機構への入力トルクの大きさにかかわらず最低限ライン圧として保証するライン圧下限値を変更制御するライン圧制御部を有する。ライン圧制御部は、所定のギヤ段より高速段側のギヤ段により走行しているか否かを判定し、所定のギヤ段より高速段側のギヤ段であると判定された場合のライン圧下限値を、所定のギヤ段以下の低速段側のギヤ段と判定された場合のライン圧下限値より低く設定する。 In order to achieve the above object, according to an aspect of the present invention, the control device of the automatic transmission adjusts the line pressure based on the pump discharge oil from the oil pump driven by the drive source, and based on the line pressure. It is provided with a transmission control unit that performs shift control for switching a plurality of gear stages by changing the fastening state of a plurality of friction elements fastened as pressure. The transmission control unit has a line pressure control unit that changes and controls the lower limit of the line pressure guaranteed as the minimum line pressure regardless of the magnitude of the input torque to the stepped transmission mechanism. The line pressure control unit determines whether or not the vehicle is traveling in the gear stage on the high-speed stage side of the predetermined gear stage, and when it is determined that the gear stage is on the high-speed stage side of the predetermined gear stage, the line pressure lower limit The value is set lower than the lower limit value of the line pressure when it is determined that the gear stage is on the low speed side below the predetermined gear stage.
 上記態様によれば、上記解決手段を採用したため、走行中、ライン圧を下げる走行機会を増やすことでポンプ消費エネルギーを削減しながら、変速応答性の低下により運転者に違和感を与えるのを抑制することができる。 According to the above aspect, since the above-mentioned solution is adopted, the pump energy consumption is reduced by increasing the driving opportunity to lower the line pressure during driving, and it is suppressed that the driver feels uncomfortable due to the deterioration of shift responsiveness. be able to.
図1は、実施例1の制御装置が適用された自動変速機を搭載するエンジン車を示す全体システム図である。FIG. 1 is an overall system diagram showing an engine vehicle equipped with an automatic transmission to which the control device of the first embodiment is applied. 図2は、自動変速機のギヤトレーンの一例を示すスケルトン図である。FIG. 2 is a skeleton diagram showing an example of a gear train of an automatic transmission. 図3は、自動変速機での変速用摩擦要素の各ギヤ段での締結状態を示す締結表図である。FIG. 3 is a fastening table diagram showing a fastening state of friction elements for shifting in an automatic transmission at each gear stage. 図4は、自動変速機での変速マップの一例を示す変速マップ図である。FIG. 4 is a shift map diagram showing an example of a shift map in an automatic transmission. 図5は、自動変速機のコントロールバルブユニットを示す油圧制御系構成図である。FIG. 5 is a hydraulic control system configuration diagram showing a control valve unit of an automatic transmission. 図6は、変速機コントロールユニットのライン圧制御部にて実行されるライン圧下限値制御処理の流れを示すフローチャートである。FIG. 6 is a flowchart showing the flow of the line pressure lower limit value control process executed by the line pressure control unit of the transmission control unit. 図7は、ギヤトレーンへの入力トルクに対する目標ライン圧特性において第1ライン圧下限値と第2ライン圧下限値の一例を示す特性図である。FIG. 7 is a characteristic diagram showing an example of a first line pressure lower limit value and a second line pressure lower limit value in the target line pressure characteristic with respect to the input torque to the gear train. 図8は、8速段インギヤ→8-9変速中→9速段インギヤへ移行した場合の第1ライン圧下限値と第2ライン圧下限値の切替え特性を示すタイムチャートである。FIG. 8 is a time chart showing switching characteristics between the first line pressure lower limit value and the second line pressure lower limit value when shifting from the 8th speed in-gear to the 8-9 speed shift to the 9th speed in-gear.
 以下、本発明の実施形態に係る自動変速機の制御装置を、図面に示す実施例1に基づいて説明する。 Hereinafter, the control device for the automatic transmission according to the embodiment of the present invention will be described based on the first embodiment shown in the drawings.
  実施例1の制御装置は、前進9速・後退1速のギヤ段を有するシフト・バイ・ワイヤ及びパーク・バイ・ワイヤによる自動変速機を搭載したエンジン車(車両の一例)に適用したものである。以下、実施例1の構成を「全体システム構成」、「自動変速機の詳細構成」、「油圧制御系の詳細構成」、「ライン圧下限値制御処理構成」に分けて説明する。 The control device of the first embodiment is applied to an engine vehicle (an example of a vehicle) equipped with an automatic transmission by shift-by-wire and park-by-wire having gear stages of 9th forward speed and 1st reverse speed. is there. Hereinafter, the configuration of the first embodiment will be described separately by dividing it into an “overall system configuration”, a “detailed configuration of an automatic transmission”, a “detailed configuration of a hydraulic control system”, and a “line pressure lower limit value control processing configuration”.
 [全体システム構成(図1)]
  エンジン車の駆動系には、図1に示すように、エンジン1と、トルクコンバータ2と、自動変速機3と、プロペラシャフト4と、駆動輪5と、を備える。トルクコンバータ2は、締結によりエンジン1のクランク軸と自動変速機3の入力軸INを直結するロックアップクラッチ2aを内蔵する。自動変速機3は、ギヤトレーン3aとパークギヤ3bを内蔵する。自動変速機3には、変速のためのスプールバルブや油圧制御回路やソレノイドバルブ等により構成されるコントロールバルブユニット6が取り付けられている。
[Overall system configuration (Fig. 1)]
As shown in FIG. 1, the drive system of the engine vehicle includes an engine 1, a torque converter 2, an automatic transmission 3, a propeller shaft 4, and drive wheels 5. The torque converter 2 has a built-in lockup clutch 2a that directly connects the crankshaft of the engine 1 and the input shaft IN of the automatic transmission 3 by fastening. The automatic transmission 3 incorporates a gear train 3a and a park gear 3b. A control valve unit 6 including a spool valve for shifting, a hydraulic control circuit, a solenoid valve, and the like is attached to the automatic transmission 3.
 コントロールバルブユニット6は、ソレノイドバルブとして、摩擦要素毎に6個設けられるクラッチソレノイド20と、それぞれ1個設けられるライン圧ソレノイド21、潤滑ソレノイド22、ロックアップソレノイド23を有する。即ち、合計9個のソレノイドバルブを有する。これらのソレノイドバルブは何れも3方向リニアソレノイド構造であり、変速機コントロールユニット10からの制御指令を受けて調圧作動する。 The control valve unit 6 has six clutch solenoids 20 provided for each friction element, one line pressure solenoid 21, a lubrication solenoid 22, and a lockup solenoid 23 as solenoid valves. That is, it has a total of nine solenoid valves. Each of these solenoid valves has a three-way linear solenoid structure, and operates in pressure adjustment in response to a control command from the transmission control unit 10.
 エンジン車の電子制御系には、図1に示すように、変速機コントロールユニット10(略称:「ATCU」という。)と、エンジンコントロールモジュール11(略称:「ECM」という。)と、CAN通信線70と、を備える。ここで、変速機コントロールユニット10は、センサモジュールユニット71(略称:「USM」という。)からのイグニッション信号によって起動/停止をする。つまり、変速機コントロールユニット10の起動/停止を、イグニッションスイッチによる起動/停止の場合に比べて起動バリエーションが増える「ウェイクアップ/スリープ制御」としている。 As shown in FIG. 1, the electronic control system of the engine vehicle includes a transmission control unit 10 (abbreviation: "ATCU"), an engine control module 11 (abbreviation: "ECM"), and a CAN communication line. 70 and. Here, the transmission control unit 10 is started / stopped by an ignition signal from the sensor module unit 71 (abbreviation: “USM”). That is, the start / stop of the transmission control unit 10 is defined as "wake-up / sleep control" in which the start variation increases as compared with the case of start / stop by the ignition switch.
 変速機コントロールユニット10は、コントロールバルブユニット6の上面位置に機電一体に設けられ、ユニット基板にメイン基板温度センサ31と、サブ基板温度センサ32と、を互いに独立性を担保しながら冗長系により備える。即ち、メイン基板温度センサ31とサブ基板温度センサ32は、センサ値情報を変速機コントロールユニット10に送信するが、周知の自動変速機ユニットとは異なり、オイルパン内で変速機作動油(ATF)に直接接触していない温度情報を送信する。この変速機コントロールユニット10は、他にタービン回転センサ13、出力軸回転センサ14、第3クラッチ油圧センサ15からの信号を入力する。さらに、シフタコントロールユニット18、中間軸回転センサ19、等からの信号を入力する。 The transmission control unit 10 is provided integrally with mechatronics on the upper surface of the control valve unit 6, and the main board temperature sensor 31 and the sub board temperature sensor 32 are provided on the unit board by a redundant system while ensuring independence from each other. .. That is, the main board temperature sensor 31 and the sub board temperature sensor 32 transmit the sensor value information to the transmission control unit 10, but unlike the well-known automatic transmission unit, the transmission hydraulic oil (ATF) is installed in the oil pan. Sends temperature information that is not in direct contact with. The transmission control unit 10 also inputs signals from the turbine rotation sensor 13, the output shaft rotation sensor 14, and the third clutch oil pressure sensor 15. Further, signals from the shifter control unit 18, the intermediate shaft rotation sensor 19, and the like are input.
 タービン回転センサ13は、トルクコンバータ2のタービン回転速度(=変速機入力軸回転速度)を検出し、タービン回転速度Ntを示す信号を変速機コントロールユニット10に送信する。出力軸回転センサ14は、自動変速機3の出力軸回転速度を検出し、出力軸回転速度No(=車速VSP)を示す信号を変速機コントロールユニット10に送信する。第3クラッチ油圧センサ15は、第3クラッチK3のクラッチ油圧を検出し、第3クラッチ油圧PK3を示す信号を変速機コントロールユニット10に送信する。 The turbine rotation sensor 13 detects the turbine rotation speed (= transmission input shaft rotation speed) of the torque converter 2 and transmits a signal indicating the turbine rotation speed Nt to the transmission control unit 10. The output shaft rotation sensor 14 detects the output shaft rotation speed of the automatic transmission 3 and transmits a signal indicating the output shaft rotation speed No. (= vehicle speed VSP) to the transmission control unit 10. The third clutch oil pressure sensor 15 detects the clutch oil pressure of the third clutch K3 and transmits a signal indicating the third clutch oil pressure PK3 to the transmission control unit 10.
 シフタコントロールユニット18は、運転者によるシフタ181へのセレクト操作により選択されたレンジ位置を判定し、レンジ位置信号を変速機コントロールユニット10に送信する。なお、シフタ181は、モーメンタリ構造であり、操作部181aの上部にPレンジボタン181bを有し、操作部181aの側部にロック解除ボタン181c(N→R時のみ)を有する。そして、レンジ位置として、Hレンジ(ホームレンジ)とRレンジ(リバースレンジ)とDレンジ(ドライブレンジ)とN(d),N(r)(ニュートラルレンジ)を有する。中間軸回転センサ19は、中間軸(インターミディエイトシャフト=第1キャリアC1に連結される回転メンバ)の回転速度を検出し、中間軸回転速度Nintを示す信号を変速機コントロールユニット10に送信する。 The shifter control unit 18 determines the range position selected by the driver's select operation on the shifter 181 and transmits the range position signal to the transmission control unit 10. The shifter 181 has a momentary structure, has a P range button 181b on the upper portion of the operation unit 181a, and has an unlock button 181c (only when N → R) on the side portion of the operation unit 181a. The range positions include an H range (home range), an R range (reverse range), a D range (drive range), and N (d) and N (r) (neutral range). The intermediate shaft rotation sensor 19 detects the rotation speed of the intermediate shaft (intermediate shaft = rotating member connected to the first carrier C1), and transmits a signal indicating the intermediate shaft rotation speed Nint to the transmission control unit 10.
 変速機コントロールユニット10では、変速マップ(図4参照)上での車速VSPとアクセル開度APOによる運転点(VSP,APO)の変化を監視することで、
1.オートアップシフト(アクセル開度を保った状態での車速上昇による)
2.足離しアップシフト(アクセル足離し操作による)
3.足戻しアップシフト(アクセル戻し操作による)
4.パワーオンダウンシフト(アクセル開度を保っての車速低下による)
5.小開度急踏みダウンシフト(アクセル操作量小による)
6.大開度急踏みダウンシフト(アクセル操作量大による:「キックダウン」)
7.緩踏みダウンシフト(アクセル緩踏み操作と車速上昇による)
8.コーストダウンシフト(アクセル足離し操作での車速低下による)
と呼ばれる基本変速パターンによる変速制御を行う。
The transmission control unit 10 monitors changes in the operating points (VSP, APO) due to the vehicle speed VSP and the accelerator opening APO on the shift map (see FIG. 4).
1. Auto upshift (due to vehicle speed increase while maintaining accelerator opening)
2. Foot release upshift (by accelerator foot release operation)
3. Foot return upshift (by accelerator return operation)
4. Power on / downshift (due to a decrease in vehicle speed while maintaining the accelerator opening)
5. Small opening sudden downshift (depending on the small amount of accelerator operation)
6. Large opening sudden downshift (depending on the amount of accelerator operation: "kickdown")
7. Slow downshift (due to slow accelerator operation and increased vehicle speed)
8. Coast downshift (due to a decrease in vehicle speed when the accelerator is released)
Shift control is performed according to a basic shift pattern called.
 エンジンコントロールモジュール11は、アクセル開度センサ16、エンジン回転センサ17、等からの信号を入力する。 The engine control module 11 inputs signals from the accelerator opening sensor 16, the engine rotation sensor 17, and the like.
 アクセル開度センサ16は、運転者のアクセル操作によるアクセル開度を検出し、アクセル開度APOを示す信号をエンジンコントロールモジュール11に送信する。エンジン回転センサ17は、エンジン1の回転速度を検出し、エンジン回転速度Neを示す信号をエンジンコントロールモジュール11に送信する。 The accelerator opening sensor 16 detects the accelerator opening caused by the driver's accelerator operation, and transmits a signal indicating the accelerator opening APO to the engine control module 11. The engine rotation sensor 17 detects the rotation speed of the engine 1 and transmits a signal indicating the engine rotation speed Ne to the engine control module 11.
 エンジンコントロールモジュール11では、エンジン単体の様々な制御に加え、変速機コントロールユニット10との協調制御によりエンジントルク制限制御等を行う。変速機コントロールユニット10とは、双方向に情報交換可能なCAN通信線70を介して接続されているため、変速機コントロールユニット10から情報リクエストが入力されると、アクセル開度APOやエンジン回転速度Neの情報を変速機コントロールユニット10に出力する。さらに、推定算出によるエンジントルクTeやタービントルクTtの情報を変速機コントロールユニット10に出力する。また、変速機コントロールユニット10から上限トルクによるエンジントルク制限要求が入力されると、エンジントルクを所定の上限トルクにより制限したトルクとするエンジントルク制限制御が実行される。 In the engine control module 11, in addition to various controls of the engine itself, engine torque limit control and the like are performed by cooperative control with the transmission control unit 10. Since the transmission control unit 10 is connected to the transmission control unit 10 via a CAN communication line 70 capable of exchanging information in both directions, when an information request is input from the transmission control unit 10, the accelerator opening APO and the engine rotation speed Ne information is output to the transmission control unit 10. Further, the information of the engine torque Te and the turbine torque Tt calculated by estimation is output to the transmission control unit 10. Further, when an engine torque limit request based on the upper limit torque is input from the transmission control unit 10, engine torque limit control is executed in which the engine torque is limited by a predetermined upper limit torque.
 [自動変速機の詳細構成(図2、図3、図4)]
  自動変速機3は、複数のギヤ段が設定可能なギヤトレーン3a(有段変速機構)と複数の摩擦要素を有し、下記の点を特徴とする。
(a) 変速要素として、機械的に係合/空転するワンウェイクラッチを用いていない。
(b) 摩擦要素である第1ブレーキB1、第2ブレーキB2、第3ブレーキB3、第1クラッチK1、第2クラッチK2、第3クラッチK3は、変速時にクラッチソレノイド20によってそれぞれ独立に締結/解放状態が制御される。
(c) 摩擦要素の締結圧制御において締結状態を維持するインギヤ中、クラッチソレノイドに最大圧指令を出力するのではなく、クラッチ滑りを抑えることができる要素入力トルク相当の中間圧指令をクラッチソレノイド20に出力する。
(d) 第2クラッチK2と第3クラッチK3は、クラッチピストン油室に作用する遠心力による遠心圧を相殺する遠心キャンセル室を有する。
[Detailed configuration of automatic transmission (Fig. 2, Fig. 3, Fig. 4)]
The automatic transmission 3 has a gear train 3a (stepped transmission mechanism) in which a plurality of gear stages can be set and a plurality of friction elements, and is characterized by the following points.
(a) A one-way clutch that mechanically engages / idles is not used as a shifting element.
(b) The first brake B1, the second brake B2, the third brake B3, the first clutch K1, the second clutch K2, and the third clutch K3, which are friction elements, are independently engaged / released by the clutch solenoid 20 at the time of shifting. The state is controlled.
(c) In the in-gear that maintains the engaged state in the engagement pressure control of the friction element, instead of outputting the maximum pressure command to the clutch solenoid, the clutch solenoid 20 issues an intermediate pressure command equivalent to the element input torque that can suppress clutch slippage. Output to.
(d) The second clutch K2 and the third clutch K3 have a centrifugal canceling chamber that cancels the centrifugal pressure due to the centrifugal force acting on the clutch piston oil chamber.
 自動変速機3は、図2に示すように、ギヤトレーン3aを構成する遊星歯車として、入力軸INから出力軸OUTに向けて順に、第1遊星歯車PG1と、第2遊星歯車PG2と、第3遊星歯車PG3と、第4遊星歯車PG4と、を備えている。 As shown in FIG. 2, the automatic transmission 3 has, as planetary gears constituting the gear train 3a, the first planetary gear PG1, the second planetary gear PG2, and the third planetary gear PG1 in order from the input shaft IN to the output shaft OUT. It is equipped with a planetary gear PG3 and a fourth planetary gear PG4.
 第1遊星歯車PG1は、シングルピニオン型遊星歯車であり、第1サンギヤS1と、第1サンギヤS1に噛み合うピニオンを支持する第1キャリアC1と、ピニオンに噛み合う第1リングギヤR1と、を有する。 The first planetary gear PG1 is a single pinion type planetary gear, and has a first sun gear S1, a first carrier C1 that supports a pinion that meshes with the first sun gear S1, and a first ring gear R1 that meshes with the pinion.
 第2遊星歯車PG2は、シングルピニオン型遊星歯車であり、第2サンギヤS2と、第2サンギヤS2に噛み合うピニオンを支持する第2キャリアC2と、ピニオンに噛み合う第2リングギヤR2と、を有する。 The second planetary gear PG2 is a single pinion type planetary gear, and has a second sun gear S2, a second carrier C2 that supports a pinion that meshes with the second sun gear S2, and a second ring gear R2 that meshes with the pinion.
 第3遊星歯車PG3は、シングルピニオン型遊星歯車であり、第3サンギヤS3と、第3サンギヤS3に噛み合うピニオンを支持する第3キャリアC3と、ピニオンに噛み合う第3リングギヤR3と、を有する。 The third planetary gear PG3 is a single pinion type planetary gear, and has a third sun gear S3, a third carrier C3 that supports a pinion that meshes with the third sun gear S3, and a third ring gear R3 that meshes with the pinion.
 第4遊星歯車PG4は、シングルピニオン型遊星歯車であり、第4サンギヤS4と、第4サンギヤS4に噛み合うピニオンを支持する第4キャリアC4と、ピニオンに噛み合う第4リングギヤR4と、を有する。 The fourth planetary gear PG4 is a single pinion type planetary gear, and has a fourth sun gear S4, a fourth carrier C4 that supports a pinion that meshes with the fourth sun gear S4, and a fourth ring gear R4 that meshes with the pinion.
 自動変速機3は、図2に示すように、入力軸INと、出力軸OUTと、第1連結メンバM1と、第2連結メンバM2と、トランスミッションケースTCと、を備えている。変速により締結/解放される摩擦要素として、第1ブレーキB1と、第2ブレーキB2と、第3ブレーキB3と、第1クラッチK1と、第2クラッチK2と、第3クラッチK3と、を備えている。 As shown in FIG. 2, the automatic transmission 3 includes an input shaft IN, an output shaft OUT, a first connecting member M1, a second connecting member M2, and a transmission case TC. As friction elements that are engaged / released by shifting, the first brake B1, the second brake B2, the third brake B3, the first clutch K1, the second clutch K2, and the third clutch K3 are provided. There is.
 入力軸INは、エンジン1からの駆動力がトルクコンバータ2を介して入力される軸で、第1サンギヤS1と第4キャリアC4に常時連結している。そして、入力軸INは、第2クラッチK2を介して第1キャリアC1に断接可能に連結している。 The input shaft IN is a shaft in which the driving force from the engine 1 is input via the torque converter 2, and is always connected to the first sun gear S1 and the fourth carrier C4. The input shaft IN is connected to the first carrier C1 via the second clutch K2 so as to be connectable and detachable.
 出力軸OUTは、プロペラシャフト4及び図外のファイナルギヤ等を介して駆動輪5へ変速した駆動トルクを出力する軸であり、第3キャリアC3に常時連結している。そして、出力軸OUTは、第1クラッチK1を介して第4リングギヤR4に断接可能に連結している。 The output shaft OUT is a shaft that outputs the drive torque shifted to the drive wheels 5 via the propeller shaft 4 and the final gear (not shown), and is always connected to the third carrier C3. The output shaft OUT is connected to the fourth ring gear R4 via the first clutch K1 so as to be connectable and disconnectable.
 第1連結メンバM1は、第1遊星歯車PG1の第1リングギヤR1と第2遊星歯車PG2の第2キャリアC2を、摩擦要素を介在させることなく常時連結するメンバである。第2連結メンバM2は、第2遊星歯車PG2の第2リングギヤR2と第3遊星歯車PG3の第3サンギヤS3と第4遊星歯車PG4の第4サンギヤS4を、摩擦要素を介在させることなく常時連結するメンバである。 The first connecting member M1 is a member that constantly connects the first ring gear R1 of the first planetary gear PG1 and the second carrier C2 of the second planetary gear PG2 without interposing a friction element. The second connecting member M2 always connects the second ring gear R2 of the second planetary gear PG2, the third sun gear S3 of the third planetary gear PG3, and the fourth sun gear S4 of the fourth planetary gear PG4 without interposing a friction element. It is a member to do.
 第1ブレーキB1は、第1キャリアC1の回転を、トランスミッションケースTCに対し係止可能な摩擦要素である。第2ブレーキB2は、第3リングギヤR3の回転を、トランスミッションケースTCに対し係止可能な摩擦要素である。第3ブレーキB3は、第2サンギヤS2の回転を、トランスミッションケースTCに対し係止可能な摩擦要素である。 The first brake B1 is a friction element that can lock the rotation of the first carrier C1 with respect to the transmission case TC. The second brake B2 is a friction element capable of locking the rotation of the third ring gear R3 with respect to the transmission case TC. The third brake B3 is a friction element capable of locking the rotation of the second sun gear S2 with respect to the transmission case TC.
 第1クラッチK1は、第4リングギヤR4と出力軸OUTの間を選択的に連結する摩擦要素である。第2クラッチK2は、入力軸INと第1キャリアC1の間を選択的に連結する摩擦要素である。第3クラッチK3は、第1キャリアC1と第2連結メンバM2の間を選択的に連結する摩擦要素である。 The first clutch K1 is a friction element that selectively connects the fourth ring gear R4 and the output shaft OUT. The second clutch K2 is a friction element that selectively connects the input shaft IN and the first carrier C1. The third clutch K3 is a friction element that selectively connects between the first carrier C1 and the second connecting member M2.
 図3に基づいて、各ギヤ段を成立させる変速構成を説明する。1速段(1st)は、第2ブレーキB2と第3ブレーキB3と第3クラッチK3の同時締結により達成する。2速段(2nd)は、第2ブレーキB2と第2クラッチK2と第3クラッチK3の同時締結により達成する。3速段(3rd)は、第2ブレーキB2と第3ブレーキB3と第2クラッチK2の同時締結により達成する。4速段(4th)は、第2ブレーキB2と第3ブレーキB3と第1クラッチK1の同時締結により達成する。5速段(5th)は、第3ブレーキB3と第1クラッチK1と第2クラッチK2の同時締結により達成する。以上の1速段~5速段が、ギヤ比が1を超えている減速ギヤ比によるアンダードライブギヤ段である。 Based on FIG. 3, a shift configuration for establishing each gear stage will be described. The first speed (1st) is achieved by simultaneously engaging the second brake B2, the third brake B3, and the third clutch K3. The second speed (2nd) is achieved by simultaneously engaging the second brake B2, the second clutch K2, and the third clutch K3. The third speed (3rd) is achieved by simultaneously engaging the second brake B2, the third brake B3, and the second clutch K2. The 4th speed (4th) is achieved by simultaneously engaging the second brake B2, the third brake B3, and the first clutch K1. The fifth speed (5th) is achieved by simultaneously engaging the third brake B3, the first clutch K1 and the second clutch K2. The above 1st to 5th speeds are underdrive gears with a reduction gear ratio in which the gear ratio exceeds 1.
 6速段(6th)は、第1クラッチK1と第2クラッチK2と第3クラッチK3の同時締結により達成する。この第6速段は、ギヤ比=1の直結段である。 The 6th speed (6th) is achieved by simultaneously engaging the 1st clutch K1, the 2nd clutch K2, and the 3rd clutch K3. This sixth speed stage is a directly connected stage having a gear ratio of 1.
 7速段(7th)は、第3ブレーキB3と第1クラッチK1と第3クラッチK3の同時締結により達成する。8速段(8th)は、第1ブレーキB1と第1クラッチK1と第3クラッチK3の同時締結により達成する。9速段(9th)は、第1ブレーキB1と第3ブレーキB3と第1クラッチK1の同時締結により達成する。以上の7速段~9速段は、ギヤ比が1未満の増速ギヤ比によるオーバードライブギヤ段である。 The 7th speed (7th) is achieved by simultaneously engaging the 3rd brake B3, the 1st clutch K1 and the 3rd clutch K3. The 8th speed (8th) is achieved by simultaneously engaging the first brake B1, the first clutch K1, and the third clutch K3. The 9th speed stage (9th) is achieved by simultaneously engaging the first brake B1, the third brake B3, and the first clutch K1. The 7th to 9th speeds described above are overdrive gears with a speed-increasing gear ratio of less than 1.
 さらに、1速段から9速段までのギヤ段のうち、隣接するギヤ段へのアップ変速を行う際、或いは、ダウン変速を行う際、図3に示すように、掛け替え変速により行う構成としている。即ち、隣接するギヤ段への変速は、三つの摩擦要素のうち、二つの摩擦要素の締結は維持したままで、一つの摩擦要素の解放と一つの摩擦要素の締結を行うことで達成される。 Further, among the gear stages from the 1st speed to the 9th speed, when the up shift is performed to the adjacent gear stage or the down shift is performed, as shown in FIG. 3, the shift shift is performed. .. That is, the shift to the adjacent gear stage is achieved by releasing one friction element and fastening one friction element while maintaining the fastening of two friction elements among the three friction elements. ..
 Rレンジ位置の選択による後退速段(Rev)は、第1ブレーキB1と第2ブレーキB2と第3ブレーキB3の同時締結により達成する。なお、Nレンジ位置及びPレンジ位置を選択したときは、基本的に6個の摩擦要素B1,B2,B3,K1,K2,K3の全てが解放状態とされる。 The reverse speed stage (Rev) by selecting the R range position is achieved by simultaneously engaging the first brake B1, the second brake B2, and the third brake B3. When the N range position and the P range position are selected, basically all of the six friction elements B1, B2, B3, K1, K2, and K3 are in the released state.
 そして、変速機コントロールユニット10には、図4に示すような変速マップが記憶設定されていて、Dレンジの選択により前進側の1速段から9速段までのギヤ段の切り替えによる変速は、この変速マップに従って行われる。即ち、そのときの運転点(VSP,APO)が図4の実線で示すアップシフト線を横切るとアップシフト変速要求が出される。又、運転点(VSP,APO)が図4の破線で示すダウンシフト線を横切るとダウンシフト変速要求が出される。 A shift map as shown in FIG. 4 is stored and set in the transmission control unit 10, and shifting by switching gears from the 1st gear to the 9th gear on the forward side by selecting the D range is performed. This is done according to this shift map. That is, when the operating point (VSP, APO) at that time crosses the upshift line shown by the solid line in FIG. 4, an upshift shift request is issued. Further, when the operating point (VSP, APO) crosses the downshift line shown by the broken line in FIG. 4, a downshift shift request is issued.
 [油圧制御系の詳細構成(図5)]
  変速機コントロールユニット10によって油圧制御されるコントロールバルブユニット6は、図5に示すように、油圧源として、メカオイルポンプ61と電動オイルポンプ62を備える。メカオイルポンプ61は、エンジン1(駆動源)によりポンプ駆動され、電動オイルポンプ62は、電動モータ63(駆動源)によりポンプ駆動される。
[Detailed configuration of flood control system (Fig. 5)]
As shown in FIG. 5, the control valve unit 6 hydraulically controlled by the transmission control unit 10 includes a mechanical oil pump 61 and an electric oil pump 62 as hydraulic sources. The mechanical oil pump 61 is pump-driven by the engine 1 (drive source), and the electric oil pump 62 is pump-driven by the electric motor 63 (drive source).
 コントロールバルブユニット6は、油圧制御回路に設けられる弁として、ライン圧ソレノイド21とライン圧調圧弁64とクラッチソレノイド20とロックアップソレノイド23を備える。そして、潤滑ソレノイド22と潤滑調圧弁65とブースト切り替え弁66を備える。さらに、P-nP切り替え弁67とパーク油圧アクチュエータ68を備える。 The control valve unit 6 includes a line pressure solenoid 21, a line pressure regulating valve 64, a clutch solenoid 20, and a lockup solenoid 23 as valves provided in the flood control circuit. A lubrication solenoid 22, a lubrication pressure regulating valve 65, and a boost switching valve 66 are provided. Further, a P-nP switching valve 67 and a park hydraulic actuator 68 are provided.
 ライン圧調圧弁64は、メカオイルポンプ61と電動オイルポンプ62の少なくとも一方からの吐出油を、ライン圧ソレノイド21からのバルブ作動信号圧に基づいてライン圧PLに調圧する。ここで、ライン圧ソレノイド21は、変速機コントロールユニット10に有するライン圧制御部100から制御指令により調圧駆動する。 The line pressure adjusting valve 64 regulates the discharged oil from at least one of the mechanical oil pump 61 and the electric oil pump 62 to the line pressure PL based on the valve operating signal pressure from the line pressure solenoid 21. Here, the line pressure solenoid 21 is driven to adjust the pressure by a control command from the line pressure control unit 100 included in the transmission control unit 10.
 クラッチソレノイド20は、ライン圧PLを元圧とし、摩擦要素(B1,B2,B3,K1,K2,K3)毎に締結圧や解放圧を制御する変速系ソレノイドである。なお、図5ではクラッチソレノイド20が1個であるように記載しているが、摩擦要素(B1,B2,B3,K1,K2,K3)毎に6個のソレノイドを有する。ここで、クラッチソレノイド20は、変速機コントロールユニット10に有する変速制御部101から制御指令により調圧駆動する。変速制御部101は、摩擦要素の締結圧制御において締結状態を維持するインギヤ中、クラッチ滑りを抑えることができる要素入力トルク相当の中間圧指令をクラッチソレノイド20へ出力する。これに伴い、ライン圧制御部100は、ギヤトレーン3aへの入力トルクの大きさに対する目標ライン圧特性PLcを、インギヤ中に最大圧指令をクラッチソレノイド20へ出力する場合の目標ライン圧特性PLc'よりも低圧側に設定している(図7を参照)。 The clutch solenoid 20 is a transmission system solenoid that uses the line pressure PL as the original pressure and controls the fastening pressure and release pressure for each friction element (B1, B2, B3, K1, K2, K3). Although it is described in FIG. 5 that there is one clutch solenoid 20, each friction element (B1, B2, B3, K1, K2, K3) has six solenoids. Here, the clutch solenoid 20 is driven to adjust the pressure by a control command from the shift control unit 101 included in the transmission control unit 10. The shift control unit 101 outputs an intermediate pressure command corresponding to the element input torque capable of suppressing clutch slippage to the clutch solenoid 20 during the in-gear that maintains the engaged state in the engagement pressure control of the friction element. Along with this, the line pressure control unit 100 outputs the target line pressure characteristic PLc with respect to the magnitude of the input torque to the gear train 3a from the target line pressure characteristic PLc'when the maximum pressure command is output to the clutch solenoid 20 during in-gear. Is also set to the low pressure side (see FIG. 7).
 ロックアップソレノイド23は、ライン圧調圧弁64によるライン圧PLの調圧時における余剰油を用いてロックアップクラッチ2aの差圧を制御する。なお、ロックアップクラッチ2aの差圧制御においては、入力トルクの変動に対して完全締結状態を保つ差圧制御ではなく、入力トルクの変動に対して微小スリップを許容する差圧制御とする。 The lockup solenoid 23 controls the differential pressure of the lockup clutch 2a by using the surplus oil at the time of adjusting the line pressure PL by the line pressure adjusting valve 64. The differential pressure control of the lockup clutch 2a is not the differential pressure control that keeps the fully engaged state against the fluctuation of the input torque, but the differential pressure control that allows a minute slip against the fluctuation of the input torque.
 潤滑ソレノイド22は、潤滑調圧弁65へのバルブ作動信号圧と、ブースト切り替え弁66への切替え圧とを作り出し、摩擦要素へ供給する潤滑流量を、発熱を抑える適正な流量に調圧する機能を有する。そして、連続変速プロテクション以外のときに摩擦要素の発熱を抑える最低潤滑流量をメカ保証し、最低潤滑流量に上乗せされる潤滑流量分を調整するソレノイドである。 The lubrication solenoid 22 has a function of creating a valve operating signal pressure to the lubrication pressure regulating valve 65 and a switching pressure to the boost switching valve 66, and adjusting the lubrication flow rate supplied to the friction element to an appropriate flow rate for suppressing heat generation. .. Then, it is a solenoid that mechanically guarantees the minimum lubrication flow rate that suppresses heat generation of the friction element at times other than continuous shift protection, and adjusts the lubrication flow rate added to the minimum lubrication flow rate.
 潤滑調圧弁65は、潤滑ソレノイド22からのバルブ作動信号圧によって、摩擦要素とギヤトレーン3aを含むパワートレーン(PT)へクーラー69を介して供給する潤滑流量をコントロールすることができる。そして、潤滑調圧弁65によってPT供給潤滑流量を適正化することでフリクションを低減する。 The lubrication pressure regulating valve 65 can control the lubrication flow rate supplied to the power train (PT) including the friction element and the gear train 3a via the cooler 69 by the valve operating signal pressure from the lubrication solenoid 22. Then, friction is reduced by optimizing the PT supply lubrication flow rate by the lubrication pressure regulating valve 65.
 ブースト切り替え弁66は、潤滑ソレノイド22からの切替え圧によって、第2クラッチK2と第3クラッチK3の遠心キャンセル室の供給油量を増加する。このブースト切り替え弁66は、遠心キャンセル室の油量が不足しているシーンで一時的に供給油量を増やすときに使用する。 The boost switching valve 66 increases the amount of oil supplied to the centrifugal cancel chambers of the second clutch K2 and the third clutch K3 by the switching pressure from the lubrication solenoid 22. This boost switching valve 66 is used when the amount of oil supplied is temporarily increased in a scene where the amount of oil in the centrifugal cancel chamber is insufficient.
 P-nP切り替え弁67は、潤滑ソレノイド22(又はパークソレノイド)からの切替え圧によってパーク油圧アクチュエータ68へのライン圧路を切り替える。Pレンジへの選択時にパークギヤ3bを噛合わせるパークロックと、PレンジからPレンジ以外のレンジへの選択時にパークギヤ3bの噛合を解除するパークロック解除を行う。 The P-nP switching valve 67 switches the line pressure path to the park hydraulic actuator 68 by the switching pressure from the lubrication solenoid 22 (or park solenoid). The park lock that meshes the park gear 3b when the P range is selected and the park lock that disengages the park gear 3b when the park gear 3b is selected from the P range to a range other than the P range are released.
 このように、運転者が操作するシフトレバーと機械的に連結され、Dレンジ圧油路やRレンジ圧油路やPレンジ圧油路等を切り替えるマニュアルバルブを廃止したコントロールバルブユニット6の構成としている。そして、シフタ181によりD,R,Nレンジを選択した際、シフタコントロールユニット18からのレンジ位置信号に基づいて、6個の摩擦要素を独立に締結/解放する制御を採用することで「シフト・バイ・ワイヤ」を達成している。さらに、シフタ181によりPレンジを選択した際、シフタコントロールユニット18からのレンジ位置信号に基づいて、パークモジュールを構成するP-nP切り替え弁67とパーク油圧アクチュエータ68を作動させることで「パーク・バイ・ワイヤ」を達成している。 In this way, as a configuration of the control valve unit 6 that is mechanically connected to the shift lever operated by the driver and abolishes the manual valve that switches the D range pressure oil passage, the R range pressure oil passage, the P range pressure oil passage, and the like. There is. Then, when the D, R, and N ranges are selected by the shifter 181, the control of independently fastening / releasing the six friction elements based on the range position signal from the shifter control unit 18 is adopted to "shift. "By-wire" has been achieved. Further, when the P range is selected by the shifter 181, the P-nP switching valve 67 and the park hydraulic actuator 68 constituting the park module are operated based on the range position signal from the shifter control unit 18 to "park by".・ Achieved "wire".
 [ライン圧下限値制御処理構成(図6)]
  図6は、ライン圧下限値を変更制御するライン圧制御部100にて実行されるライン圧下限値制御処理を示す。以下、図6の各ステップについて説明する。ここで、「ライン圧下限値」とは、ギヤトレーン3aへの入力トルクの大きさに対する目標ライン圧特性PLcにおいて、ギヤトレーン3aへの低入力トルク域にて入力トルクの大きさにかかわらず最低限ライン圧として保証する目標ライン圧値をいう(図7を参照)。
[Line pressure lower limit control processing configuration (Fig. 6)]
FIG. 6 shows a line pressure lower limit value control process executed by the line pressure control unit 100 that changes and controls the line pressure lower limit value. Hereinafter, each step of FIG. 6 will be described. Here, the "line pressure lower limit value" is the minimum line regardless of the magnitude of the input torque in the low input torque range to the gear train 3a in the target line pressure characteristic PLc with respect to the magnitude of the input torque to the gear train 3a. Refers to the target line pressure value guaranteed as pressure (see FIG. 7).
 ステップS1では、処理スタートに続き、走行中であるか否かを判定する。YES(走行中)の場合はステップS2へ進み、NO(停車中)の場合はステップS5へ進む。ここで、例えば、Dレンジなどの走行レンジ位置の選択時であって、車速が停車判定閾値以上の場合に走行中と判定し、それ以外の場合に停車中と判定する。 In step S1, following the start of processing, it is determined whether or not the vehicle is running. If YES (running), the process proceeds to step S2, and if NO (stopped), the process proceeds to step S5. Here, for example, when a traveling range position such as the D range is selected, it is determined that the vehicle is traveling when the vehicle speed is equal to or higher than the stop determination threshold value, and it is determined that the vehicle is stopped in other cases.
 ステップS2では、S1での走行中であるとの判定に続き、自動変速機3のギヤ段が、7速より高速段側のギヤ段(8速段、9速段)であるか否かを判定する。YES(8速段、9速段)の場合はステップS4へ進み、NO(1速段~7速段)の場合はステップS3へ進む。 In step S2, following the determination that the vehicle is running in S1, whether or not the gear stage of the automatic transmission 3 is the gear stage (8th speed stage, 9th speed stage) on the higher speed side than the 7th speed. judge. If YES (8th speed, 9th speed), the process proceeds to step S4, and if NO (1st to 7th speed), the process proceeds to step S3.
 ステップS3では、S2での自動変速機3のギヤ段が1速段~7速段であるとの判定に続き、目標ライン圧特性のライン圧下限値として、第1ライン圧下限値PL1minを選択し、リターンへ進む。 In step S3, following the determination that the gear stage of the automatic transmission 3 in S2 is the 1st to 7th speed, the first line pressure lower limit value PL1min is selected as the line pressure lower limit value of the target line pressure characteristic. And proceed to return.
 ここで、「第1ライン圧下限値PL1min」とは、図7に示すように、目標ライン圧特性PLcにおいて、所望の変速応答性を確保するように決められた低入力トルク域の最低限ライン圧をいう。即ち、第1ライン圧下限値PL1minが選択されると、目標ライン圧特性PLcは、入力トルクTinが第1入力トルクTin1以下の低入力トルク域のときに目標ライン圧PLtが第1ライン圧下限値PL1minとされる。そして、入力トルクTinが第1入力トルクTin1を超える高入力トルク域のときに入力トルクTinが大きくなるほど比例的に目標ライン圧PLtを高くする特性により与えられる。なお、ギヤトレーン3aへの入力トルクTinは、ロックアップクラッチ2aの締結時にエンジントルク推定値を用い、ロックアップクラッチ2aの解放時にエンジントルク推定値とトルクコンバータ2でのトルク比を乗算した値を用いる。 Here, as shown in FIG. 7, the “first line pressure lower limit value PL1min” is the minimum line in the low input torque range determined to ensure the desired shift response in the target line pressure characteristic PLc. Refers to pressure. That is, when the first line pressure lower limit value PL1min is selected, the target line pressure characteristic PLc is such that the target line pressure PLt is the first line pressure lower limit when the input torque Tin is in the low input torque range of the first input torque Tin1 or less. The value is PL1min. Then, when the input torque Tin exceeds the first input torque Tin1, it is given by the characteristic that the target line pressure PLt is proportionally increased as the input torque Tin increases. For the input torque Tin to the gear train 3a, the engine torque estimated value is used when the lockup clutch 2a is engaged, and the value obtained by multiplying the engine torque estimated value and the torque ratio in the torque converter 2 when the lockup clutch 2a is released is used. ..
 ステップS4では、S2での自動変速機3のギヤ段が8速段又は9速段であるとの判定に続き、変速制御開始か否かを判定する。YES(8速段と9速段の間での変速制御開始)の場合はステップS6へ進み、NO(8速段又は9速段でのインギヤ中)の場合はステップS5へ進む。なお、変速制御開始は、例えば、変速制御部101からの8速→9速のアップシフト要求や9速→8速のダウンシフト要求をライン圧制御部100が入力することで判定する。 In step S4, following the determination that the gear stage of the automatic transmission 3 in S2 is the 8th speed or the 9th speed, it is determined whether or not the shift control is started. If YES (start of shift control between the 8th and 9th speeds), the process proceeds to step S6, and if NO (during in-gear at the 8th or 9th speed), the process proceeds to step S5. The shift control start is determined by, for example, the line pressure control unit 100 inputting an upshift request from the 8th speed to the 9th speed or a downshift request from the 9th speed to the 8th speed from the shift control unit 101.
 ステップS5では、S1での停車中であるとの判定、或いは、S4での8速段又は9速段でのインギヤ中との判定に続き、目標ライン圧特性のライン圧下限値として、第2ライン圧下限値PL2minを選択し、リターンへ進む。 In step S5, following the determination in S1 that the vehicle is stopped or the determination in S4 that the vehicle is in gear at the 8th or 9th speed, the second lower limit of the line pressure of the target line pressure characteristic is set. Select the lower limit of line pressure PL2min and proceed to return.
 ここで、「第2ライン圧下限値PL2min(<第1ライン圧下限値PL1min)」とは、図7に示すように、目標ライン圧特性PLcのうち、オイルポンプ61,62の駆動トルク低下を確保するように決められた低入力トルク域の最低限ライン圧をいう。即ち、第2ライン圧下限値PL2minが選択されると、目標ライン圧特性PLcは、入力トルクTinが第2入力トルクTin2(<Tin1)以下の低入力トルク域のときに目標ライン圧PLtが第2ライン圧下限値PL2min(<PL1min)とされる。そして、入力トルクTinが第2入力トルクTin2を超える高入力トルク域のときに入力トルクTinが大きくなるほど比例的に目標ライン圧PLtを高くする特性により与えられる。 Here, "second line pressure lower limit value PL2min (<first line pressure lower limit value PL1min)" means, as shown in FIG. 7, a decrease in driving torque of oil pumps 61 and 62 among the target line pressure characteristic PLc. The minimum line pressure in the low input torque range determined to be secured. That is, when the second line pressure lower limit value PL2min is selected, the target line pressure characteristic PLc is such that the target line pressure PLt is the second when the input torque Tin is in the low input torque range of the second input torque Tin2 (<Tin1) or less. The lower limit of the 2-line pressure is PL2min (<PL1min). Then, when the input torque Tin exceeds the second input torque Tin2, the target line pressure PLt is proportionally increased as the input torque Tin increases.
 ステップS6では、S4での8速段と9速段の間での変速制御開始との判定に続き、インギヤ中に選択されている第2ライン圧下限値PL2minから第1ライン圧下限値PL1minへステップ的にライン圧下限値を変更し、ステップS7へと進む。 In step S6, following the determination in S4 that the shift control is started between the 8th speed and the 9th speed, the second line pressure lower limit value PL2min selected during the in-gear is changed to the first line pressure lower limit value PL1min. The lower limit of the line pressure is changed step by step, and the process proceeds to step S7.
 ステップS7では、S6でのPL2min→PL1minへのステップ的変更、或いは、S8での変速制御未終了であるとの判定に続き、変更後の第1ライン圧下限値PL1minを維持し、ステップS8へ進む。 In step S7, following the stepwise change from PL2min to PL1min in S6 or the determination that the shift control has not been completed in S8, the changed first line pressure lower limit value PL1min is maintained, and the process proceeds to step S8. move on.
 ステップS8では、S7でのPL1minの維持に続き、変速制御終了か否かを判定する。YES(変速制御終了)の場合はステップS9へ進み、NO(変速制御未終了)の場合はステップS7へ戻る。なお、変速制御終了は、例えば、ギヤトレーン3aの入力回転速度と出力回転速度から実ギヤ比を算出し、算出した実ギヤ比が変速後の変速段ギヤ比の誤差範囲内に入っていたら判定する。 In step S8, following the maintenance of PL1min in S7, it is determined whether or not the shift control is completed. If YES (shift control ends), the process proceeds to step S9, and if NO (shift control not completed), the process returns to step S7. The end of shift control is determined, for example, by calculating the actual gear ratio from the input rotation speed and the output rotation speed of the gear train 3a, and if the calculated actual gear ratio is within the error range of the gear ratio after shifting. ..
 ステップS9では、S8での変速制御終了との判定、或いは、S10での第2ライン圧下限値PL2minへ未到達であるとの判定に続き、第1ライン圧下限値PL1minから第2ライン圧下限値PL2minへと徐々に戻し、ステップS10へ進む。 In step S9, following the determination that the shift control is completed in S8 or the determination that the second line pressure lower limit value PL2min has not been reached in S10, the first line pressure lower limit value PL1min to the second line pressure lower limit PL2min is not reached. Gradually return to the value PL2min and proceed to step S10.
 ステップS10では、S9でのPL1min→PL2minへ徐々に戻す処理に続き、ライン圧下限値が第2ライン圧下限値PL2minへ到達したか否かを判定する。YES(PL2minへ到達)の場合はリターンへ進み、NO(PL2minへ未到達)の場合はステップS9へ戻る。 In step S10, following the process of gradually returning from PL1min to PL2min in S9, it is determined whether or not the lower limit of line pressure has reached the second lower limit of line pressure PL2min. If YES (reached PL2min), the process proceeds to return, and if NO (reached PL2min), the process returns to step S9.
 次に、「技術背景と課題解決方策」について説明する。そして、実施例1の作用を、「ライン圧下限値制御処理作用」、「ライン圧下限値制御作用」に分けて説明する。 Next, "technical background and problem-solving measures" will be explained. Then, the operation of the first embodiment will be described separately for "line pressure lower limit value control processing action" and "line pressure lower limit value control action".
 [技術背景と課題解決方策(図7)]
  ライン圧を低下させる自動変速機としては、JP2016-65585Aに開示されているように、定常走行状態保持条件(エコモードON、かつ、高速道路走行中)が成立すると、CVTライン圧を下げる指示を出力するものが知られている。
[Technical background and problem-solving measures (Fig. 7)]
As an automatic transmission that lowers the line pressure, as disclosed in JP2016-65585A, when the steady-state holding condition (eco-mode ON and while driving on the highway) is satisfied, an instruction to lower the CVT line pressure is given. The output is known.
 しかし、エコモードをOFFとしている走行中や高速道路以外の道路での走行中である場合には、定常走行状態保持条件が成立せず、CVTライン圧として通常ライン圧制御が実行されることになる。よって、ライン圧を低下させる機会が定常走行状態保持条件により限られ、実効ある燃費性能の向上を望むことができない、という課題があった。 However, when the vehicle is traveling with the eco mode turned off or on a road other than an expressway, the steady-state holding condition is not satisfied, and the normal line pressure control is executed as the CVT line pressure. Become. Therefore, there is a problem that the opportunity to reduce the line pressure is limited by the steady running state holding condition, and it is not possible to expect an effective improvement in fuel efficiency.
 これに対し、変速機ユニットとして、実施例1のように、インギヤ中にクラッチソレノイドに最大圧指令を出力するのではなく、クラッチ滑りを抑えることができる要素入力トルク相当の中間圧指令をクラッチソレノイドへ出力するユニットを用いるとする。この場合、締結油圧を下げることに伴ってライン圧PLも低く抑えることができるため、図7に示すように、目標ライン圧特性PLcを、インギヤ中に最大圧指令をクラッチソレノイドへ出力する場合の目標ライン圧特性PLc'よりも低圧側に設定することができる。このため、走行中、定常走行状態保持条件の判定を要さず、常時、目標ライン圧特性PLc'よりも低圧側に設定された目標ライン圧特性PLcを用いてライン圧制御が行われる。よって、定常走行状態保持条件を与える場合よりも燃費性能を向上できるが、燃費性能に関しては、制約が厳しい条件下であってもライン圧PLを低下させる機会を更に増大したいという要望がある。 On the other hand, as the transmission unit, instead of outputting the maximum pressure command to the clutch solenoid during in-gear as in the first embodiment, the clutch solenoid issues an intermediate pressure command equivalent to the element input torque that can suppress clutch slippage. It is assumed that a unit that outputs to is used. In this case, since the line pressure PL can be suppressed low as the fastening oil pressure is lowered, as shown in FIG. 7, when the target line pressure characteristic PLc is output to the clutch solenoid during in-gear, the maximum pressure command is output. It can be set to a lower pressure side than the target line pressure characteristic PLc'. Therefore, during traveling, it is not necessary to determine the steady running state holding condition, and the line pressure control is always performed using the target line pressure characteristic PLc set on the lower pressure side than the target line pressure characteristic PLc'. Therefore, the fuel efficiency can be improved as compared with the case where the steady running state holding condition is given, but there is a demand for further increasing the chance of lowering the line pressure PL even under severely restricted conditions.
 本発明者は、上記課題やライン圧PLを低下させる機会を更に増大したいという要望を検討した結果、
(A) 目標ライン圧特性は、低入力トルク域のライン圧下限値特性と高入力トルク域の入力トルク比例特性を組み合わせた特性であり、ライン圧下限値特性によりライン圧が制御されるのは、主に入力トルクが低いコースト走行域である。このため、低入力トルク域のライン圧下限値特性については、ライン圧の値を更に下げる余地が残っている。
(B) ライン圧は摩擦要素の元圧であるためライン圧の高さは変速応答性に影響を与える要因になる。そこで、変速応答性の要求を自動変速機のギヤ段の低速段側と高速段側で比較した場合、ギヤ段が高速段側であるときよりギヤ段が低速段側であるときの方が変速応答性の要求が高い。
という点に着目した。
As a result of examining the above-mentioned problems and the desire to further increase the opportunity to reduce the line pressure PL, the present inventor has examined.
(A) The target line pressure characteristic is a combination of the line pressure lower limit characteristic in the low input torque range and the input torque proportional characteristic in the high input torque range, and the line pressure is controlled by the line pressure lower limit characteristic. , Mainly in the coastal driving range where the input torque is low. Therefore, there is still room for further lowering the line pressure value in the line pressure lower limit characteristic in the low input torque range.
(B) Since the line pressure is the original pressure of the friction element, the height of the line pressure is a factor that affects the shift response. Therefore, when comparing the requirements for shift responsiveness between the low-speed stage side and the high-speed stage side of the gear stage of the automatic transmission, shifting is performed when the gear stage is on the low-speed stage side rather than when the gear stage is on the high-speed stage side. High responsiveness requirements.
I focused on that point.
 上記着目点に基づいて、本開示では、メカオイルポンプ61及び電動オイルポンプ62と、オイルポンプ61,62からのポンプ吐出油に基づいてライン圧PLを調圧し、ライン圧PLを元圧として締結される複数の摩擦要素の締結状態変更により複数のギヤ段を切替える変速制御を行う変速機コントロールユニット10を備える。この自動変速機3の制御装置であって、変速機コントロールユニット10は、ギヤトレーン3aへの入力トルクの大きさにかかわらず最低限ライン圧として保証するライン圧下限値を変更制御するライン圧制御部100を有する。ライン圧制御部100は、所定のギヤ段より高速段側のギヤ段により走行しているか否かを判定し、所定のギヤ段より高速段側のギヤ段であると判定された場合の第2ライン圧下限値PL2minを、所定のギヤ段以下の低速段側のギヤ段と判定された場合の第1ライン圧下限値PL1minより低く設定する、という解決手段を採用した。 Based on the above points of interest, in the present disclosure, the line pressure PL is adjusted based on the pump discharge oil from the mechanical oil pump 61 and the electric oil pump 62 and the oil pumps 61 and 62, and the line pressure PL is used as the original pressure. The transmission control unit 10 is provided for shifting control for switching a plurality of gear stages by changing the fastening state of the plurality of friction elements. In the control device of the automatic transmission 3, the transmission control unit 10 is a line pressure control unit that changes and controls the lower limit of the line pressure guaranteed as the minimum line pressure regardless of the magnitude of the input torque to the gear train 3a. Has 100. The line pressure control unit 100 determines whether or not the vehicle is traveling in the gear stage on the high-speed stage side of the predetermined gear stage, and determines that the gear stage is on the high-speed stage side of the predetermined gear stage. A solution was adopted in which the lower limit of line pressure PL2min was set lower than the first line pressure lower limit PL1min when it was determined that the gear stage was on the low speed side below the predetermined gear stage.
 即ち、所定のギヤ段より高速段側のギヤ段であると判定された場合の第2ライン圧下限値PL2minは、第1ライン圧下限値PL1minより低く設定される。このため、所定のギヤ段より高速段側のギヤ段で走行しているとき、ライン圧下限値が低くされることで、メカオイルポンプ61や電動オイルポンプ62の駆動トルクを下げることができる。よって、メカオイルポンプ61の駆動による燃費性能や電動オイルポンプ62の駆動による電費性能を向上できる。また、所定のギヤ段は、供給されるライン圧が下がっても、変速の応答遅れが運転者に違和感を与えないギヤ段が設定される。このため、ライン圧下限値が低くされても、変速の応答性に関して運転者に違和感を与えるのを抑制できる。例えば、本実施例のように9速の変速段が有る場合には、6速がその所定の変速段となり、8速、9速が所定のギヤ段より高速側のギヤ段となる。 That is, the second line pressure lower limit value PL2min when it is determined that the gear stage is on the higher speed side than the predetermined gear stage is set lower than the first line pressure lower limit value PL1min. Therefore, when traveling in the gear stage on the high-speed stage side of the predetermined gear stage, the lower limit value of the line pressure is lowered, so that the driving torque of the mechanical oil pump 61 and the electric oil pump 62 can be reduced. Therefore, it is possible to improve the fuel efficiency performance by driving the mechanical oil pump 61 and the electricity cost performance by driving the electric oil pump 62. Further, the predetermined gear stage is set so that the delay in the response of the shift does not give the driver a sense of discomfort even if the supplied line pressure drops. Therefore, even if the lower limit of the line pressure is lowered, it is possible to suppress the driver from feeling uncomfortable with respect to the responsiveness of shifting. For example, when there is a 9th gear as in this embodiment, the 6th gear is the predetermined gear, and the 8th and 9th gears are the gears on the higher speed side than the predetermined gear.
 一方、所定のギヤ段以下の低速段側のギヤ段と判定された場合の第1ライン圧下限値PL1minは、第2ライン圧下限値PL2minより高く設定される。このため、所定のギヤ段より低速段側のギヤ段での走行中、変速要求にしたがって変速するとき、締結される摩擦要素への油量が不足することなく、変速応答性が確保されることになる。つまり、変速の応答遅れにより運転者に違和感を与えるのが抑制される。 On the other hand, the first line pressure lower limit value PL1min is set higher than the second line pressure lower limit value PL2min when it is determined that the gear stage is on the low speed side below the predetermined gear stage. For this reason, when shifting according to the shift request while traveling in the gear stage on the lower speed side than the predetermined gear stage, the shift response is ensured without insufficient oil amount to the friction element to be fastened. become. That is, it is possible to prevent the driver from feeling uncomfortable due to the delay in shifting response.
 この結果、走行中、ライン圧PLを下げる走行機会を増やすことでポンプ消費エネルギーを削減しながら、変速応答性の低下により運転者に違和感を与えるのを抑制することができることになる。特に、インギヤ中に最大圧指令を出力する場合の目標ライン圧特性PLc'よりも低圧側に目標ライン圧特性PLcを設定している場合であっても、ライン圧下限値と高速段側のギヤ段に着目したことで、ライン圧PLを下げる走行機会が確保されることになる。つまり、図7の矢印に示すように、目標ライン圧特性の全体的な低下と、低下させた目標ライン圧特性のうちのライン圧下限値の低下との相乗作用により、実効あるポンプ消費エネルギーの削減(=燃費性能/電費性能の向上)を達成できる。 As a result, it is possible to reduce the energy consumption of the pump by increasing the driving opportunity to lower the line pressure PL during driving, and to suppress the driver from feeling uncomfortable due to the decrease in shift responsiveness. In particular, even when the target line pressure characteristic PLc is set on the lower pressure side than the target line pressure characteristic PLc'when the maximum pressure command is output during in-gear, the line pressure lower limit value and the gear on the high speed stage side By paying attention to the steps, a driving opportunity to lower the line pressure PL will be secured. That is, as shown by the arrow in FIG. 7, the effective pump energy consumption is achieved by the synergistic action of the overall decrease in the target line pressure characteristic and the decrease in the lower limit of the line pressure among the reduced target line pressure characteristics. Reduction (= improvement of fuel efficiency / electricity cost performance) can be achieved.
 [ライン圧下限値制御処理作用(図6)]
  まず、ライン圧下限値制御処理作用を図6のフローチャートに基づいて説明する。停車中は、S1→S5→リターンへと進む。よって、S5では、目標ライン圧特性のライン圧下限値として、オイルポンプ61,62の駆動トルク低下を確保するように決められた第2ライン圧下限値PL2minが選択される。
[Line pressure lower limit control processing action (Fig. 6)]
First, the line pressure lower limit value control processing action will be described with reference to the flowchart of FIG. While the vehicle is stopped, the process proceeds from S1 to S5 to return. Therefore, in S5, as the line pressure lower limit value of the target line pressure characteristic, the second line pressure lower limit value PL2min determined to secure the reduction in the driving torque of the oil pumps 61 and 62 is selected.
 走行中であって、自動変速機3のギヤ段が1速段~7速段の場合は、S1→S2→S3→リターンへと進む。よって、S3では、目標ライン圧特性のライン圧下限値として、所望の変速応答性を確保するように決められた第1ライン圧下限値PL1minが選択される。 When the automatic transmission 3 is running and the gear stage of the automatic transmission 3 is the 1st speed to the 7th speed, the process proceeds to S1 → S2 → S3 → return. Therefore, in S3, the first line pressure lower limit value PL1min determined to secure the desired shift response is selected as the line pressure lower limit value of the target line pressure characteristic.
 走行中であって、自動変速機3のギヤ段が8速段又は9速段でのインギヤ状態である場合は、S1→S2→S4→S5→リターンへと進む。よって、S5では、目標ライン圧特性のライン圧下限値として、オイルポンプ61,62の駆動トルク低下を確保するように決められた第2ライン圧下限値PL2minが選択される。 If the automatic transmission 3 is in the in-gear state at the 8th or 9th speed while traveling, the process proceeds to S1 → S2 → S4 → S5 → return. Therefore, in S5, as the line pressure lower limit value of the target line pressure characteristic, the second line pressure lower limit value PL2min determined to secure the reduction in the driving torque of the oil pumps 61 and 62 is selected.
 走行中であって、自動変速機3が8速段又は9速段のインギヤ中から変速(アップ/ダウン変速)が開始される場合は、S1→S2→S4→S6→S7→S8へと進み、S8にて変速制御未終了であると判定されている間、S7→S8へと進む流れが繰り返される。S6では、8速段又は9速段でのインギヤ中に選択されている第2ライン圧下限値PL2minから第1ライン圧下限値PL1minへステップ的にライン圧下限値が変更される。S7では、変更後の第1ライン圧下限値PL1minが維持される。 If the automatic transmission 3 is running and the shift (up / down shift) is started from the in-gear of the 8th or 9th speed, the process proceeds to S1 → S2 → S4 → S6 → S7 → S8. , While it is determined in S8 that the shift control has not been completed, the flow of proceeding from S7 to S8 is repeated. In S6, the line pressure lower limit value is changed stepwise from the second line pressure lower limit value PL2min selected during the in-gear in the 8th speed stage or the 9th speed stage to the first line pressure lower limit value PL1min. In S7, the changed first line pressure lower limit value PL1min is maintained.
 そして、S8にて変速制御終了が判定されると、S8からS9→S10へと進み、S10にて第2ライン圧下限値PL2minへ未到達と判定されている間、S9→S10へと進む流れが繰り返される。S9では、ライン圧下限値が第1ライン圧下限値PL1minから第2ライン圧下限値PL2minへと所定の変化勾配により徐々に戻される。そして、S10にて第2ライン圧下限値PL2minへ到達と判定されると、S10からリターンへ進む。 Then, when the end of shift control is determined in S8, the flow proceeds from S8 to S9 → S10, and while it is determined in S10 that the second line pressure lower limit value PL2min has not been reached, the flow proceeds from S9 to S10. Is repeated. In S9, the lower limit of the line pressure is gradually returned from the first lower limit of the line pressure PL1min to the second lower limit of the line pressure PL2min by a predetermined change gradient. Then, when it is determined in S10 that the second line pressure lower limit value PL2min has been reached, the process proceeds from S10 to return.
 [ライン圧下限値制御作用(図8)]
  上記のように、ライン圧下限値制御処理において、所望の変速応答性を確保する第1ライン圧下限値PL1minと、メカオイルポンプ61と電動オイルポンプ62の駆動トルク低下を確保する第2ライン圧下限値PL2minの選択制御が行われる。そして、所定のギヤ段より高速段側のギヤ段(8速段、9速段)でインギヤ中と判定された場合は第2ライン圧下限値PL2minが選択される(図6のS4→S5)。所定のギヤ段より高速段側のギヤ段での変速中と判定された場合は第1ライン圧下限値PL1minを選択する(図6のS4~S10)。
[Line pressure lower limit control action (Fig. 8)]
As described above, in the line pressure lower limit control process, the first line pressure lower limit PL1min that secures the desired shift response, and the second line pressure that secures the drive torque decrease of the mechanical oil pump 61 and the electric oil pump 62. Selection control of the lower limit PL2min is performed. Then, when it is determined that the gear stage (8th speed stage, 9th speed stage) on the high speed side of the predetermined gear stage is in gear, the second line pressure lower limit value PL2min is selected (S4 → S5 in FIG. 6). .. When it is determined that the gear is shifting in the gear stage on the higher speed side than the predetermined gear stage, the first line pressure lower limit value PL1min is selected (S4 to S10 in FIG. 6).
 即ち、所定のギヤ段より高速段側のギヤ段(8速段、9速段)でインギヤ中か変速中かにかかわらず第2ライン圧下限値PL2minを選択すると、変速中、変速応答性の低下により運転者に違和感を与えるおそれがある。これに対し、所定のギヤ段より高速段側のギヤ段(8速段、9速段)のときには、インギヤ中であるか変速中であるかで切り分ける。そして、インギヤ中は第2ライン圧下限値PL2minを選択し、変速中は第1ライン圧下限値PL1minを選択すると、所定のギヤ段より高速段側のギヤ段(8速段、9速段)での走行中、ポンプ消費エネルギーの削減と変速応答性の確保の両立が図られる。 That is, if the second line pressure lower limit value PL2min is selected in the gear stages (8th speed, 9th speed) on the high speed side from the predetermined gear stage regardless of whether the gear is in gear or during shifting, the shifting response is changed during shifting. There is a risk of giving the driver a sense of discomfort due to the drop. On the other hand, when the gear stage (8th speed stage, 9th speed stage) is on the higher speed side than the predetermined gear stage, it is divided according to whether it is in gear or shifting. Then, when the second line pressure lower limit value PL2min is selected during in-gear and the first line pressure lower limit value PL1min is selected during shifting, the gear stage (8th speed stage, 9th speed stage) on the higher speed side than the predetermined gear stage is selected. While driving in, it is possible to reduce pump energy consumption and ensure gear shifting responsiveness at the same time.
 上記のように、ライン圧下限値制御処理において、所定のギヤ段より高速段側のギヤ段での走行中、インギヤから変速制御開始へ移行すると、第2ライン圧下限値PL2minからステップ的に第1ライン圧下限値PL1minへ変更する(図6のS4→S6)。 As described above, in the line pressure lower limit control process, when shifting from the in-gear to the shift control start while traveling in the gear stage on the higher speed side than the predetermined gear stage, the second line pressure lower limit value PL2min is stepped up. Change to the 1-line pressure lower limit PL1min (S4 → S6 in FIG. 6).
 即ち、インギヤから変速制御開始へ移行するシーンにおいては、応答良く変速により締結される摩擦要素への油量を確保する必要があり、変速開始域で変速により締結される摩擦要素への油量が確保できないと、変速応答性を低下させることになる。これに対し、図8の時刻t1に示すように、8速インギヤから9速への変速制御を開始すると、第2ライン圧下限値PL2minからステップ的に第1ライン圧下限値PL1minへ変更され、変速により締結される摩擦要素への油量が応答良く供給される。このように、インギヤから変速制御開始へ移行する場合、第2ライン圧下限値PL2minからステップ的に第1ライン圧下限値PL1minへ変更することで、変速により締結される摩擦要素への油量が応答良く供給されることになる。よって、インギヤから変速制御開始へ移行する場合、第2ライン圧下限値PL2minから第1ライン圧下限値PL1minへ徐々に変更する場合に比べ、高い変速応答性を確保できる。 That is, in the scene of shifting from the in-gear to the start of shift control, it is necessary to secure the amount of oil for the friction element fastened by the shift with good response, and the amount of oil for the friction element fastened by the shift in the shift start range is If it cannot be secured, the shift response will be reduced. On the other hand, as shown at time t1 in FIG. 8, when the shift control from the 8-speed in-gear to the 9-speed is started, the second line pressure lower limit value PL2min is gradually changed to the first line pressure lower limit value PL1min. The amount of oil to the friction element fastened by shifting is supplied with good response. In this way, when shifting from the in-gear to the start of shift control, by gradually changing from the second line pressure lower limit value PL2min to the first line pressure lower limit value PL1min, the amount of oil to the friction element fastened by the shift is reduced. It will be supplied with good response. Therefore, when shifting from the in-gear to the start of shift control, higher shift responsiveness can be ensured as compared with the case of gradually changing from the second line pressure lower limit value PL2min to the first line pressure lower limit value PL1min.
 上記のように、ライン圧下限値制御処理において、変速制御を終了すると、第1ライン圧下限値PL1minから徐々に第2ライン圧下限値PL2minへ戻す(図6のS8→S9)。 As described above, when the shift control is completed in the line pressure lower limit value control process, the first line pressure lower limit value PL1min is gradually returned to the second line pressure lower limit value PL2min (S8 → S9 in FIG. 6).
 即ち、変速制御を終了するシーンにおいて、第1ライン圧下限値PL1minからステップ的に第2ライン圧下限値PL2minへ戻すと、変速終了により締結状態とされている摩擦要素への締結油圧の一時的な低下により、変速制御の終了直後に摩擦要素が滑り出すおそれがある。これに対し、図8に示すように、第1ライン圧下限値PL1minによる時刻t2にて変速制御を終了すると、徐々にライン圧下限値を低下させ、時刻t3にて第2ライン圧下限値PL2minへ戻される。このように、変速制御を終了すると、第1ライン圧下限値PL1minから徐々に第2ライン圧下限値PL2minへ戻すことで、摩擦要素への締結油圧の一時的な低下が抑えられ、変速制御の終了直後に摩擦要素が滑り出すのを防止できる。 That is, in the scene where the shift control is terminated, when the first line pressure lower limit value PL1min is gradually returned to the second line pressure lower limit value PL2min, the engagement hydraulic pressure to the friction element which is in the engagement state due to the termination of the shift is temporarily returned. Due to this decrease, the friction element may start to slip immediately after the shift control is completed. On the other hand, as shown in FIG. 8, when the shift control is completed at time t2 according to the first line pressure lower limit value PL1min, the line pressure lower limit value is gradually lowered, and the second line pressure lower limit value PL2min is gradually lowered at time t3. Returned to. In this way, when the shift control is completed, the first line pressure lower limit value PL1min is gradually returned to the second line pressure lower limit value PL2min, so that a temporary drop in the fastening oil pressure to the friction element is suppressed, and the shift control is performed. It is possible to prevent the friction element from slipping out immediately after the end.
 上記のように、ライン圧下限値制御処理において、停車しているか否かを判定し、停車していると判定された場合の第2ライン圧下限値PL2minを、所定のギヤ段以下の低速段側のギヤ段で走行している判定された場合の第1ライン圧下限値PL1minより低く設定する(図6のS1→S5)。 As described above, in the line pressure lower limit value control process, it is determined whether or not the vehicle is stopped, and the second line pressure lower limit value PL2min when it is determined that the vehicle is stopped is set to a low speed stage equal to or lower than a predetermined gear stage. It is set lower than the first line pressure lower limit value PL1min when it is determined that the vehicle is traveling in the gear stage on the side (S1 → S5 in FIG. 6).
 即ち、所定のギヤ段より低速段側のギヤ段での停車シーンにおいて、自動変速機3の変速段に基づいて第1ライン圧下限値PL1minを選択すると、変速しても変速応答性が要求されないシーンであるのもかかわらず、無駄にライン圧下限値を高めておくことになる。これに対し、停車していると判定された場合、第2ライン圧下限値PL2minを選択することで、ライン圧PLを下げる機会が増大し、ポンプ消費エネルギーの削減性能(=燃費性能/電費性能)を更に向上できる。 That is, if the first line pressure lower limit value PL1min is selected based on the shift stage of the automatic transmission 3 in the vehicle stop scene at the gear stage on the lower speed stage side than the predetermined gear stage, shift response is not required even if the gear is changed. Even though it is a scene, the lower limit of the line pressure is unnecessarily raised. On the other hand, when it is determined that the vehicle is stopped, by selecting the second line pressure lower limit value PL2min, the opportunity to lower the line pressure PL increases, and the pump energy consumption reduction performance (= fuel consumption performance / electricity cost performance) ) Can be further improved.
 以上述べたように、実施例1の自動変速機3の制御装置にあっては、下記に列挙する効果を奏する。 As described above, the control device of the automatic transmission 3 of the first embodiment has the effects listed below.
 (1) 駆動源(エンジン1、電動モータ63)により駆動されるオイルポンプ(メカオイルポンプ61、電動オイルポンプ62)からのポンプ吐出油に基づいてライン圧PLを調圧し、ライン圧PLを元圧として締結される複数の摩擦要素B1,B2,B3,K1,K2,K3の締結状態変更により複数のギヤ段を切替える変速制御を行う変速機コントロールユニット10を備える自動変速機3の制御装置であって、
変速機コントロールユニット10は、有段変速機構(ギヤトレーン3a)への入力トルクの大きさにかかわらず最低限ライン圧として保証するライン圧下限値を変更制御するライン圧制御部100を有し、
ライン圧制御部100は、所定のギヤ段より高速段側のギヤ段により走行しているか否かを判定し、所定のギヤ段より高速段側のギヤ段であると判定された場合のライン圧下限値(第2ライン圧下限値PL2min)を、所定のギヤ段以下の低速段側のギヤ段と判定された場合のライン圧下限値(第1ライン圧下限値PL1min)より低く設定する。
  このため、走行中、ライン圧PLを下げる走行機会を増やすことでポンプ消費エネルギーを削減しながら、変速応答性の低下により運転者に違和感を与えるのを抑制することができる。
(1) The line pressure PL is adjusted based on the pump discharge oil from the oil pumps (mechanical oil pump 61, electric oil pump 62) driven by the drive source (engine 1, electric motor 63), and the line pressure PL is based on the line pressure PL. A control device for an automatic transmission 3 including a transmission control unit 10 that performs shift control for switching a plurality of gear stages by changing the engagement state of a plurality of friction elements B1, B2, B3, K1, K2, and K3 to be fastened as pressure. There,
The transmission control unit 10 has a line pressure control unit 100 that changes and controls the lower limit of the line pressure guaranteed as the minimum line pressure regardless of the magnitude of the input torque to the stepped transmission mechanism (gear train 3a).
The line pressure control unit 100 determines whether or not the vehicle is traveling in a gear stage on the high-speed stage side of the predetermined gear stage, and determines that the gear stage is on the high-speed stage side of the predetermined gear stage. The lower limit value (second line pressure lower limit value PL2min) is set lower than the line pressure lower limit value (first line pressure lower limit value PL1min) when it is determined that the gear stage is on the low speed stage side below the predetermined gear stage.
Therefore, it is possible to reduce the energy consumption of the pump by increasing the driving opportunities for lowering the line pressure PL during driving, and to suppress the driver from feeling uncomfortable due to the decrease in shift response.
 (2) ライン圧制御部100は、所望の変速応答性を確保する第1ライン圧下限値PL1minと、オイルポンプ(メカオイルポンプ61、電動オイルポンプ62)の駆動トルク低下を確保する第2ライン圧下限値PL2minの選択制御を行い、
所定のギヤ段より高速段側のギヤ段でインギヤ中と判定された場合は第2ライン圧下限値PL2minを選択し、所定のギヤ段より高速段側のギヤ段での変速中と判定された場合は第1ライン圧下限値PL1minを選択する。
  このため、所定のギヤ段より高速段側のギヤ段での走行中、インギヤ中に第2ライン圧下限値PL2minを選択し、変速中に第1ライン圧下限値PL1minを選択することで、ポンプ消費エネルギーの削減と変速応答性の確保との両立を図ることができる。
(2) The line pressure control unit 100 has a first line pressure lower limit value PL1min that secures a desired shift response and a second line that secures a decrease in drive torque of oil pumps (mechanical oil pump 61, electric oil pump 62). Select and control the lower limit of pressure PL2min
When it is determined that the gear stage on the high speed side of the predetermined gear stage is in gear, the second line pressure lower limit value PL2min is selected, and it is determined that the gear stage on the high speed side of the predetermined gear stage is shifting. In this case, select the first line pressure lower limit value PL1min.
Therefore, the pump can be pumped by selecting the second line pressure lower limit value PL2min during in-gear and selecting the first line pressure lower limit value PL1min during shifting while traveling in the gear stage on the higher speed side than the predetermined gear stage. It is possible to achieve both reduction of energy consumption and ensuring shift response.
 (3) ライン圧制御部100は、所定のギヤ段より高速段側のギヤ段での走行中、インギヤから変速制御開始へ移行すると、第2ライン圧下限値PL2minからステップ的に第1ライン圧下限値PL1minへ変更する。
  このため、インギヤから変速制御開始へ移行する場合、ライン圧下限値のステップ的な変更によって変速により締結される摩擦要素への油量が応答良く供給され、ライン圧下限値を徐々に変更する場合に比べ、高い変速応答性を確保することができる。
(3) When the line pressure control unit 100 shifts from the in-gear to the start of shift control while traveling in the gear stage on the high-speed stage side of the predetermined gear stage, the line pressure control unit 100 steps from the second line pressure lower limit value PL2min to the first line pressure. Change to the lower limit PL1min.
Therefore, when shifting from the in-gear to the start of shift control, the amount of oil to the friction element to be fastened by shifting is responsively supplied by the stepwise change of the lower limit of the line pressure, and the lower limit of the line pressure is gradually changed. It is possible to secure high shift responsiveness as compared with the above.
 (4) ライン圧制御部100は、変速制御を終了すると、第1ライン圧下限値PL1minから徐々に第2ライン圧下限値PL2minへ戻す。
  このため、変速制御を終了すると、第1ライン圧下限値PL1minから徐々に第2ライン圧下限値PL2minへ戻すことで、摩擦要素への締結油圧の一時的な低下が抑えられ、変速制御の終了直後に摩擦要素が滑り出すのを防止することができる。
(4) When the shift control is completed, the line pressure control unit 100 gradually returns from the first line pressure lower limit value PL1min to the second line pressure lower limit value PL2min.
Therefore, when the shift control is finished, the first line pressure lower limit value PL1min is gradually returned to the second line pressure lower limit value PL2min, so that a temporary drop in the closing oil pressure to the friction element is suppressed, and the shift control is terminated. It is possible to prevent the friction element from slipping out immediately afterwards.
 (5) ライン圧制御部100は、停車しているか否かを判定し、停車していると判定された場合のライン圧下限値(第2ライン圧下限値PL2min)を、所定のギヤ段以下の低速段側のギヤ段で走行していると判定された場合のライン圧下限値(第1ライン圧下限値PL1min)より低く設定する。
  このため、停車していると判定された場合、第2ライン圧下限値PL2minを選択することで、ライン圧PLを下げる機会が増大し、ポンプ消費エネルギーの削減性能(=燃費性能/電費性能)を更に向上させることができる。
(5) The line pressure control unit 100 determines whether or not the vehicle is stopped, and sets the lower limit of the line pressure (second line pressure lower limit PL2min) when the vehicle is stopped to be equal to or lower than the predetermined gear stage. Set lower than the line pressure lower limit value (first line pressure lower limit value PL1min) when it is determined that the vehicle is traveling in the gear stage on the low speed stage side of.
Therefore, when it is determined that the vehicle is stopped, by selecting the second line pressure lower limit value PL2min, the opportunity to lower the line pressure PL increases, and the pump energy consumption reduction performance (= fuel consumption performance / electricity cost performance) Can be further improved.
 (6) 変速機コントロールユニット10は、摩擦要素の締結圧制御において締結状態を維持するインギヤ中、クラッチ滑りを抑えることができる要素入力トルク相当の中間圧指令をクラッチソレノイド20へ出力する変速制御部101を有し、
ライン圧制御部100は、有段変速機構(ギヤトレーン3a)への入力トルクの大きさに対する目標ライン圧特性PLcを、インギヤ中に最大圧指令をクラッチソレノイドへ出力する場合の目標ライン圧特性PLc'よりも低圧側に設定する。
  このため、目標ライン圧特性の全体的な低下と、低下させた目標ライン圧特性PLcのうちのライン圧下限値の低下との相乗作用により、実効あるポンプ消費エネルギーの削減性能(=燃費性能/電費性能)を達成することができる。
(6) The transmission control unit 10 is a shift control unit that outputs an intermediate pressure command equivalent to an element input torque that can suppress clutch slippage to the clutch solenoid 20 during in-gear that maintains the engaged state in the engagement pressure control of the friction element. Has 101
The line pressure control unit 100 outputs the target line pressure characteristic PLc with respect to the magnitude of the input torque to the stepped speed change mechanism (gear train 3a), and the target line pressure characteristic PLc'when the maximum pressure command is output to the clutch solenoid during in-gear. Set to the lower pressure side than.
Therefore, effective pump energy reduction performance (= fuel consumption performance /) is achieved by the synergistic action of the overall decrease in the target line pressure characteristic and the decrease in the lower limit of the line pressure among the reduced target line pressure characteristic PLc. Electricity cost performance) can be achieved.
 以上、本発明の実施形態に係る自動変速機の制御装置を実施例1に基づき説明してきた。しかし、具体的な構成については、この実施例1に限られるものではなく、請求の範囲の各請求項に係る発明の要旨を逸脱しない限り、設計の変更や追加等は許容される。 The control device for the automatic transmission according to the embodiment of the present invention has been described above based on the first embodiment. However, the specific configuration is not limited to the first embodiment, and design changes and additions are permitted as long as the gist of the invention according to each claim is not deviated from the claims.
 実施例1では、ライン圧制御部100として、自動変速機3のギヤ段を2つのグループに分け、低速段側のギヤ段グループのときに第1ライン圧下限値PL1minを選択し、高速段側のギヤ段グループのときに第2ライン圧下限値PL2minを選択する例を示した。しかし、ライン圧制御部としては、自動変速機のギヤ段を3以上のグループに分け、或いは、ギヤ段毎に分け、分けたギヤ段グループや分けたギヤ段毎に異なるライン圧下限値を選択するような例としても良い。 In the first embodiment, as the line pressure control unit 100, the gear stage of the automatic transmission 3 is divided into two groups, the first line pressure lower limit value PL1min is selected in the gear stage group on the low speed stage side, and the high speed stage side. An example of selecting the second line pressure lower limit value PL2min in the gear stage group of is shown. However, as the line pressure control unit, the gear stages of the automatic transmission are divided into groups of 3 or more, or each gear stage is divided, and a different line pressure lower limit value is selected for each divided gear stage group or each divided gear stage. It may be an example of doing so.
 実施例1では、変速機コントロールユニット10として、摩擦要素の締結圧制御において締結状態を維持するインギヤ中、クラッチ滑りを抑えることができる要素入力トルク相当の中間圧指令をクラッチソレノイド20へ出力する変速制御部101を有する例を示した。しかし、変速機コントロールユニットとしては、摩擦要素の締結圧制御において締結状態を維持するインギヤ中、最大圧指令をクラッチソレノイドへ出力する変速制御部を有する例に対しても適用することができる。 In the first embodiment, the transmission control unit 10 outputs an intermediate pressure command corresponding to the element input torque capable of suppressing clutch slippage to the clutch solenoid 20 during the in-gear that maintains the engaged state in the fastening pressure control of the friction element. An example having a control unit 101 is shown. However, the transmission control unit can also be applied to an example having a shift control unit that outputs a maximum pressure command to the clutch solenoid during in-gear that maintains the engaged state in the fastening pressure control of the friction element.
 実施例1では、自動変速機として、3つの摩擦要素の締結により前進9速後退1速を達成する自動変速機3の例を示した。しかし、自動変速機としては、2つの摩擦要素の締結により複数の前進段や後退段を達成する例としても良いし、4つの摩擦要素の締結により複数の前進段や後退段を達成する例としても良い。また、自動変速機としては、前進9速後退1速以外の有段ギヤ段を持つ自動変速機の例としても良いし、ベルト式無段変速機と多段変速機とを組み合わせた副変速機付き無段変速機としても良い。 In Example 1, as an automatic transmission, an example of an automatic transmission 3 that achieves forward 9th speed and backward 1st speed by fastening three friction elements is shown. However, as an automatic transmission, it may be an example of achieving a plurality of forward stages and reverse stages by fastening two friction elements, or as an example of achieving a plurality of forward stages and reverse stages by fastening four friction elements. Is also good. Further, the automatic transmission may be an example of an automatic transmission having a stepped gear stage other than the forward 9th speed and the reverse 1st speed, or with an auxiliary transmission that combines a belt type continuously variable transmission and a multi-speed transmission. It may be a continuously variable transmission.
 実施例1では、エンジン車に搭載される自動変速機3の制御装置の例を示した。しかし、エンジン車に限らず、ハイブリッド車や電気自動車等の自動変速機の制御装置としても適用することが可能である。 In the first embodiment, an example of the control device of the automatic transmission 3 mounted on the engine vehicle is shown. However, it can be applied not only to an engine vehicle but also as a control device for an automatic transmission of a hybrid vehicle, an electric vehicle, or the like.
 本願は、2019年11月29日付けで日本国特許庁に出願した特願2019-216980号に基づく優先権を主張し、その出願の全ての内容は、参照により本明細書に組み込まれる。 The present application claims priority based on Japanese Patent Application No. 2019-216980 filed with the Japan Patent Office on November 29, 2019, and the entire contents of the application are incorporated herein by reference.

Claims (7)

  1.  駆動源により駆動されるオイルポンプからのポンプ吐出油に基づいてライン圧を調圧し、前記ライン圧を元圧として締結される複数の摩擦要素の締結状態変更により複数のギヤ段を切替える変速制御を行う変速機コントロールユニットを備える自動変速機の制御装置であって、
     前記変速機コントロールユニットは、有段変速機構への入力トルクの大きさにかかわらず最低限ライン圧として保証するライン圧下限値を変更制御するライン圧制御部を有し、
     前記ライン圧制御部は、所定のギヤ段より高速段側のギヤ段により走行しているか否かを判定し、前記所定のギヤ段より高速段側のギヤ段であると判定された場合のライン圧下限値を、前記所定のギヤ段以下の低速段側のギヤ段と判定された場合のライン圧下限値より低く設定する
     自動変速機の制御装置。
    The line pressure is adjusted based on the pump discharge oil from the oil pump driven by the drive source, and the shift control for switching a plurality of gear stages by changing the fastening state of a plurality of friction elements to be fastened using the line pressure as the original pressure is performed. A control device for an automatic transmission equipped with a transmission control unit for performing the operation.
    The transmission control unit has a line pressure control unit that changes and controls the lower limit of the line pressure guaranteed as the minimum line pressure regardless of the magnitude of the input torque to the stepped transmission mechanism.
    The line pressure control unit determines whether or not the vehicle is traveling in a gear stage on the high-speed stage side of the predetermined gear stage, and determines that the gear stage is on the high-speed stage side of the predetermined gear stage. A control device for an automatic transmission that sets the lower limit of pressure to be lower than the lower limit of line pressure when it is determined that the gear is on the low speed side of the predetermined gear or lower.
  2.  請求項1に記載された自動変速機の制御装置において、
     前記ライン圧制御部は、所望の変速応答性を確保する第1ライン圧下限値と、前記オイルポンプの駆動トルク低下を確保する第2ライン圧下限値の選択制御を行い、
     前記所定のギヤ段より高速段側のギヤ段でインギヤ中と判定された場合は前記第2ライン圧下限値を選択し、前記所定のギヤ段より高速段側のギヤ段での変速中と判定された場合は前記第1ライン圧下限値を選択する
     自動変速機の制御装置。
    In the control device for the automatic transmission according to claim 1,
    The line pressure control unit performs selection control of a first line pressure lower limit value that secures a desired shift response and a second line pressure lower limit value that secures a decrease in driving torque of the oil pump.
    When it is determined that the gear stage on the high-speed stage side of the predetermined gear stage is in gear, the second line pressure lower limit value is selected, and it is determined that the gear stage on the high-speed stage side of the predetermined gear stage is shifting. If so, the control device of the automatic transmission that selects the first line pressure lower limit value.
  3.  請求項2に記載された自動変速機の制御装置において、
     前記ライン圧制御部は、前記所定のギヤ段より高速段側のギヤ段での走行中、インギヤから変速制御開始へ移行すると、前記第2ライン圧下限値からステップ的に前記第1ライン圧下限値へ変更する
     自動変速機の制御装置。
    In the control device for the automatic transmission according to claim 2.
    When the line pressure control unit shifts from the in-gear to the shift control start while traveling in the gear stage on the high-speed stage side of the predetermined gear stage, the first line pressure lower limit is stepwise from the second line pressure lower limit value. An automatic transmission control device that changes to a value.
  4.  請求項3に記載された自動変速機の制御装置において、
     前記ライン圧制御部は、変速制御を終了すると、前記第1ライン圧下限値から徐々に前記第2ライン圧下限値へ戻す
     自動変速機の制御装置。
    In the control device for the automatic transmission according to claim 3,
    The line pressure control unit is a control device for an automatic transmission that gradually returns from the first line pressure lower limit value to the second line pressure lower limit value when the shift control is completed.
  5.  請求項1から4までの何れか一項に記載された自動変速機の制御装置において、
     前記ライン圧制御部は、停車しているか否かを判定し、停車していると判定された場合のライン圧下限値を、前記所定のギヤ段以下の低速段側のギヤ段で走行していると判定された場合のライン圧下限値より低く設定する
     自動変速機の制御装置。
    In the control device for the automatic transmission according to any one of claims 1 to 4.
    The line pressure control unit determines whether or not the vehicle is stopped, and travels on the lower limit value of the line pressure when it is determined that the vehicle is stopped in the gear stage on the low speed side below the predetermined gear stage. An automatic transmission control device that sets the line pressure lower than the lower limit of the line pressure when it is determined to be present.
  6.  請求項1から5までの何れか一項に記載された自動変速機の制御装置において、
     前記変速機コントロールユニットは、前記摩擦要素の締結圧制御において締結状態を維持するインギヤ中、クラッチ滑りを抑えることができる要素入力トルク相当の中間圧指令をクラッチソレノイドへ出力する変速制御部を有し、
     前記ライン圧制御部は、前記有段変速機構への入力トルクの大きさに対する目標ライン圧特性を、前記インギヤ中に最大圧指令をクラッチソレノイドへ出力する場合の目標ライン圧特性よりも低圧側に設定する
     自動変速機の制御装置。
    In the control device for the automatic transmission according to any one of claims 1 to 5.
    The transmission control unit has a shift control unit that outputs an intermediate pressure command corresponding to an element input torque capable of suppressing clutch slippage to a clutch solenoid during in-gear that maintains a engaged state in the engagement pressure control of the friction element. ,
    The line pressure control unit sets the target line pressure characteristic for the magnitude of the input torque to the stepped transmission mechanism to a lower pressure side than the target line pressure characteristic when the maximum pressure command is output to the clutch solenoid during the in-gear. The control device for the automatic transmission to be set.
  7.  駆動源により駆動されるオイルポンプからのポンプ吐出油に基づいてライン圧を調圧し、前記ライン圧を元圧として締結される複数の摩擦要素の締結状態変更により複数のギヤ段を切替える変速制御を行う自動変速機の制御方法であって、
     有段変速機構への入力トルクの大きさにかかわらず最低限ライン圧として保証するライン圧下限値を変更制御し、
     所定のギヤ段より高速段側のギヤ段により走行しているか否かを判定し、前記所定のギヤ段より高速段側のギヤ段であると判定された場合のライン圧下限値を、前記所定のギヤ段以下の低速段側のギヤ段と判定された場合のライン圧下限値より低く設定する
     自動変速機の制御方法。
    A shift control is performed in which the line pressure is adjusted based on the pump discharge oil from the oil pump driven by the drive source, and a plurality of gear stages are switched by changing the fastening state of a plurality of friction elements fastened using the line pressure as the original pressure. It is a control method of the automatic transmission to be performed.
    The lower limit of the line pressure guaranteed as the minimum line pressure is changed and controlled regardless of the magnitude of the input torque to the stepped transmission mechanism.
    The predetermined line pressure lower limit value when it is determined whether or not the vehicle is traveling by the gear stage on the high-speed stage side of the predetermined gear stage and it is determined that the gear stage is on the high-speed stage side of the predetermined gear stage. A control method for an automatic transmission that sets the pressure lower than the lower limit of the line pressure when it is determined that the gear is on the low speed side below the gear.
PCT/JP2020/043300 2019-11-29 2020-11-20 Control device and control method for automatic transmission WO2021106758A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2021561364A JP7127222B2 (en) 2019-11-29 2020-11-20 AUTOMATIC TRANSMISSION CONTROL DEVICE AND CONTROL METHOD

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2019-216980 2019-11-29
JP2019216980 2019-11-29

Publications (1)

Publication Number Publication Date
WO2021106758A1 true WO2021106758A1 (en) 2021-06-03

Family

ID=76129293

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2020/043300 WO2021106758A1 (en) 2019-11-29 2020-11-20 Control device and control method for automatic transmission

Country Status (2)

Country Link
JP (1) JP7127222B2 (en)
WO (1) WO2021106758A1 (en)

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0198748A (en) * 1987-10-07 1989-04-17 Fuji Heavy Ind Ltd Control device for continuously variable transmission
JPH03157561A (en) * 1989-11-15 1991-07-05 Mazda Motor Corp Line pressure controller for automatic transmission
JPH051763A (en) * 1991-06-24 1993-01-08 Toyota Motor Corp Oil pressure control device for automatic transmission
JPH05302662A (en) * 1992-04-24 1993-11-16 Aisin Aw Co Ltd Automatic transmission
JP2013174260A (en) * 2012-02-23 2013-09-05 Aisin Aw Co Ltd Control device and control method of transmission
WO2016152337A1 (en) * 2015-03-23 2016-09-29 ジヤトコ株式会社 Vehicle and vehicle control method
JP2018096404A (en) * 2016-12-09 2018-06-21 トヨタ自動車株式会社 Control device of vehicle

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3157561B2 (en) 1991-10-17 2001-04-16 三菱化学株式会社 Laminated resin bag

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0198748A (en) * 1987-10-07 1989-04-17 Fuji Heavy Ind Ltd Control device for continuously variable transmission
JPH03157561A (en) * 1989-11-15 1991-07-05 Mazda Motor Corp Line pressure controller for automatic transmission
JPH051763A (en) * 1991-06-24 1993-01-08 Toyota Motor Corp Oil pressure control device for automatic transmission
JPH05302662A (en) * 1992-04-24 1993-11-16 Aisin Aw Co Ltd Automatic transmission
JP2013174260A (en) * 2012-02-23 2013-09-05 Aisin Aw Co Ltd Control device and control method of transmission
WO2016152337A1 (en) * 2015-03-23 2016-09-29 ジヤトコ株式会社 Vehicle and vehicle control method
JP2018096404A (en) * 2016-12-09 2018-06-21 トヨタ自動車株式会社 Control device of vehicle

Also Published As

Publication number Publication date
JP7127222B2 (en) 2022-08-29
JPWO2021106758A1 (en) 2021-06-03

Similar Documents

Publication Publication Date Title
JP4488058B2 (en) Vehicle driving force control device
US7393299B2 (en) Hydraulic control apparatus and hydraulic control method for automatic transmission
US9200701B2 (en) Vehicle transmission apparatus
JP4240058B2 (en) Shift control device for automatic transmission for vehicle
KR101633592B1 (en) Continuously variable transmission and control method therefor
JP2008169874A (en) Control device for vehicle drive mechanism
US7578760B2 (en) Automatic transmission controller for a vehicle and method for controlling an automatic transmission system for a vehicle
JP2010019407A (en) Control device of automatic transmission for vehicle
JP4774680B2 (en) Hydraulic control device for automatic transmission for vehicle
WO2021006086A1 (en) Diagnostic device for automatic transmission
JP4899441B2 (en) Vehicle control device
JP4690278B2 (en) Shift control device for automatic transmission
WO2021106758A1 (en) Control device and control method for automatic transmission
JPWO2020031677A1 (en) Control device for automatic transmission
WO2021106785A1 (en) Control device and control method for automatic transmission
WO2021106759A1 (en) Control device and control method for automatic transmission
WO2016132953A1 (en) Device for controlling automatic transmission
JP7165274B2 (en) VEHICLE CONTROL DEVICE, CONTROL METHOD, AND PROGRAM
JP7353719B2 (en) Automatic transmission control device
JP2007064464A (en) Gear shift control device of automatic transmission for vehicle
WO2021070759A1 (en) Device and method for controlling automatic transmission
WO2021070766A1 (en) Control device and control method for automatic transmission
JP3478439B2 (en) Hydraulic control device for automatic transmission
WO2021106774A1 (en) Automatic transmission control device and control method
JP5104092B2 (en) Shift control device for automatic transmission

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 20893613

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2021561364

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 20893613

Country of ref document: EP

Kind code of ref document: A1