WO2021106774A1 - Automatic transmission control device and control method - Google Patents

Automatic transmission control device and control method Download PDF

Info

Publication number
WO2021106774A1
WO2021106774A1 PCT/JP2020/043351 JP2020043351W WO2021106774A1 WO 2021106774 A1 WO2021106774 A1 WO 2021106774A1 JP 2020043351 W JP2020043351 W JP 2020043351W WO 2021106774 A1 WO2021106774 A1 WO 2021106774A1
Authority
WO
WIPO (PCT)
Prior art keywords
brake
gear
interlock
determination
pressure sensor
Prior art date
Application number
PCT/JP2020/043351
Other languages
French (fr)
Japanese (ja)
Inventor
安範 村瀬
濱野 正宏
Original Assignee
ジヤトコ株式会社
日産自動車株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by ジヤトコ株式会社, 日産自動車株式会社 filed Critical ジヤトコ株式会社
Priority to JP2021561376A priority Critical patent/JP7300004B2/en
Publication of WO2021106774A1 publication Critical patent/WO2021106774A1/en

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60TVEHICLE BRAKE CONTROL SYSTEMS OR PARTS THEREOF; BRAKE CONTROL SYSTEMS OR PARTS THEREOF, IN GENERAL; ARRANGEMENT OF BRAKING ELEMENTS ON VEHICLES IN GENERAL; PORTABLE DEVICES FOR PREVENTING UNWANTED MOVEMENT OF VEHICLES; VEHICLE MODIFICATIONS TO FACILITATE COOLING OF BRAKES
    • B60T17/00Component parts, details, or accessories of power brake systems not covered by groups B60T8/00, B60T13/00 or B60T15/00, or presenting other characteristic features
    • B60T17/18Safety devices; Monitoring
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60TVEHICLE BRAKE CONTROL SYSTEMS OR PARTS THEREOF; BRAKE CONTROL SYSTEMS OR PARTS THEREOF, IN GENERAL; ARRANGEMENT OF BRAKING ELEMENTS ON VEHICLES IN GENERAL; PORTABLE DEVICES FOR PREVENTING UNWANTED MOVEMENT OF VEHICLES; VEHICLE MODIFICATIONS TO FACILITATE COOLING OF BRAKES
    • B60T8/00Arrangements for adjusting wheel-braking force to meet varying vehicular or ground-surface conditions, e.g. limiting or varying distribution of braking force
    • B60T8/32Arrangements for adjusting wheel-braking force to meet varying vehicular or ground-surface conditions, e.g. limiting or varying distribution of braking force responsive to a speed condition, e.g. acceleration or deceleration
    • B60T8/88Arrangements for adjusting wheel-braking force to meet varying vehicular or ground-surface conditions, e.g. limiting or varying distribution of braking force responsive to a speed condition, e.g. acceleration or deceleration with failure responsive means, i.e. means for detecting and indicating faulty operation of the speed responsive control means
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16HGEARING
    • F16H59/00Control inputs to control units of change-speed-, or reversing-gearings for conveying rotary motion
    • F16H59/50Inputs being a function of the status of the machine, e.g. position of doors or safety belts
    • F16H59/54Inputs being a function of the status of the machine, e.g. position of doors or safety belts dependent on signals from the brakes, e.g. parking brakes
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16HGEARING
    • F16H59/00Control inputs to control units of change-speed-, or reversing-gearings for conveying rotary motion
    • F16H59/68Inputs being a function of gearing status
    • F16H59/70Inputs being a function of gearing status dependent on the ratio established
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16HGEARING
    • F16H61/00Control functions within control units of change-speed- or reversing-gearings for conveying rotary motion ; Control of exclusively fluid gearing, friction gearing, gearings with endless flexible members or other particular types of gearing
    • F16H61/12Detecting malfunction or potential malfunction, e.g. fail safe; Circumventing or fixing failures
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16HGEARING
    • F16H61/00Control functions within control units of change-speed- or reversing-gearings for conveying rotary motion ; Control of exclusively fluid gearing, friction gearing, gearings with endless flexible members or other particular types of gearing
    • F16H61/68Control functions within control units of change-speed- or reversing-gearings for conveying rotary motion ; Control of exclusively fluid gearing, friction gearing, gearings with endless flexible members or other particular types of gearing specially adapted for stepped gearings

Definitions

  • the present invention relates to the control of an automatic transmission mounted on a vehicle.
  • WO2017 / 051755A1 is a control device for an automatic transmission that controls an automatic transmission including a torque converter and a stepped transmission mechanism provided on a power transmission path from the torque converter to the drive wheels. It is disclosed that the interlock determination in the stepped speed change mechanism is executed based on the deceleration of the output shaft of the stepped speed change mechanism and the change of the torque converter during the non-traveling range selection of the machine.
  • the present invention has been made by paying attention to the above problems, and when determining the occurrence of an interlock during traveling, the interlock occurs and the interlock does not occur without making the information input system for the brake operation redundant. Sometimes the purpose is to prevent misjudgment of interlock.
  • the control device of the automatic transmission controls a transmission system solenoid provided for each of a plurality of friction elements included in the stepped transmission mechanism, and controls the transmission system solenoids of the plurality of friction elements. It is provided with a transmission control unit that performs shift control for switching a plurality of gear stages by changing the engagement state.
  • the transmission control unit is defined by a gear ratio abnormality condition in which the actual gear ratio deviates from the set gear ratio while traveling in a predetermined gear stage, and a deceleration condition in which the vehicle deceleration becomes a predetermined value or more when the brake is not operated.
  • the interlock determination unit that determines the interlock state that the stepped speed change mechanism is in the interlock state and the brake operation information that detects the non-operation of the brake are input to determine the acceleration / deceleration behavior of the vehicle. It has a brake operation information abnormality determination unit that determines that the brake operation information is abnormal when the correspondence of the brake operation information does not match. The interlock determination unit does not allow the interlock determination when the brake operation information abnormality determination unit determines that the brake operation information is abnormal.
  • the interlock occurs and the interlock does not occur without making the information input system for the brake operation redundant. It is possible to prevent erroneous lock determination.
  • FIG. 1 is an overall system diagram showing an engine vehicle equipped with an automatic transmission to which the control device of the first embodiment is applied.
  • FIG. 2 is a skeleton diagram showing an example of a gear train of an automatic transmission.
  • FIG. 3 is a fastening table diagram showing a fastening state of friction elements for shifting in an automatic transmission at each gear stage.
  • FIG. 4 is a shift map diagram showing an example of a shift map in an automatic transmission.
  • FIG. 5 is a hydraulic control system configuration diagram showing a control valve unit of an automatic transmission.
  • FIG. 6 is a block diagram showing a detailed configuration of a shift control unit of the transmission control unit.
  • FIG. 7 is a flowchart showing the flow of the brake fluid pressure sensor value abnormality determination process executed in the brake fluid pressure sensor value abnormality determination unit of the shift control unit.
  • FIG. 8 is a diagram showing a Hi-side diagnosis NG region and a Low-side diagnosis NG region in the brake fluid pressure sensor value abnormality determination process on the two-dimensional coordinate planes of the brake fluid pressure sensor value and acceleration / deceleration.
  • FIG. 9 is a flowchart showing the flow of the shift control process executed in the shift control unit using the normal / abnormal determination result of the brake fluid pressure sensor value.
  • FIG. 10 shows the transition action from the 5th gear to the neutral to the 8th gear when the first brake is erroneously engaged when the interlock is determined while traveling in the 5th gear. It is a time chart.
  • FIG. 11 shows the transition action from the 5th gear to the neutral to the 2nd gear when the first brake is not erroneously engaged when the interlock is determined while the vehicle is running in the 5th gear. It is
  • the control device of the first embodiment is applied to an engine vehicle (an example of a vehicle) equipped with an automatic transmission by shift-by-wire and park-by-wire having gear stages of 9th forward speed and 1st reverse speed. is there.
  • the configuration of the first embodiment is described as "overall system configuration", “detailed configuration of automatic transmission”, “detailed configuration of hydraulic control system”, “detailed configuration of shift control unit”, “brake fluid pressure sensor value abnormality determination processing”. The description will be divided into “configuration” and "shift control processing configuration”.
  • the drive system of the engine vehicle includes an engine 1 (driving drive source), a torque converter 2, an automatic transmission 3, a propeller shaft 4, and drive wheels 5.
  • the torque converter 2 has a built-in lockup clutch 2a that directly connects the crankshaft of the engine 1 and the transmission input shaft IN of the automatic transmission 3 by fastening.
  • the automatic transmission 3 incorporates a gear train 3a and a park gear 3b.
  • a control valve unit 6 including a spool valve for shifting, a hydraulic control circuit, a solenoid valve, and the like is attached to the automatic transmission 3.
  • the control valve unit 6 has six clutch solenoids 20 provided for each friction element, one line pressure solenoid 21, a lubrication solenoid 22, and a lockup solenoid 23 as solenoid valves. That is, it has a total of nine solenoid valves. Each of these solenoid valves has a three-way linear solenoid structure, and operates in pressure adjustment in response to a control command from the transmission control unit 10.
  • the electronic control system of the engine vehicle includes a transmission control unit 10 (abbreviation: “ATCU”), an engine control module 11 (abbreviation: “ECM”), and a vehicle behavior controller. 8 (abbreviation: “VDC”) and CAN communication line 70 are provided.
  • the transmission control unit 10 is started / stopped by an ignition signal from the sensor module unit 71 (abbreviation: “USM”). That is, the start / stop of the transmission control unit 10 is defined as "wake-up / sleep control” in which the start variation increases as compared with the case of start / stop by the ignition switch.
  • the transmission control unit 10 is provided integrally with mechatronics on the upper surface of the control valve unit 6, and the main board temperature sensor 31 and the sub board temperature sensor 32 are provided on the unit board by a redundant system while ensuring independence from each other. .. That is, the main board temperature sensor 31 and the sub board temperature sensor 32 transmit the sensor value information to the transmission control unit 10, but unlike the well-known automatic transmission unit, the transmission hydraulic oil (ATF) is installed in the oil pan. Sends temperature information that is not in direct contact with.
  • the transmission control unit 10 also inputs signals from the turbine rotation sensor 13, the output shaft rotation sensor 14, and the third clutch oil pressure sensor 15. Further, signals from the shifter control unit 18, the intermediate shaft rotation sensor 19, and the like are input.
  • the third clutch oil pressure sensor 15 detects the clutch oil pressure of the third clutch K3 and transmits a signal indicating the third clutch oil pressure PK3 to the transmission control unit 10.
  • the shifter control unit 18 determines the range position selected by the driver's select operation on the shifter 181 and transmits the range position signal to the transmission control unit 10.
  • the shifter 181 has a momentary structure, has a P range button 181b on the upper portion of the operation unit 181a, and has an unlock button 181c (only when N ⁇ R) on the side portion of the operation unit 181a.
  • the range positions include an H range (home range), an R range (reverse range), a D range (drive range), and N (d) and N (r) (neutral range).
  • the transmission control unit 10 monitors changes in the operating point (VSP, APO) due to the vehicle speed VSP and the accelerator opening APO on the shift map (see FIG. 4).
  • VSP operating point
  • APO accelerator opening APO on the shift map
  • the vehicle behavior controller 8 detects the driver's operation and the vehicle speed, automatically controls the brake and the output of the engine 1, and when turning a slippery road surface or a curved road or avoiding an obstacle, the vehicle Control to reduce skidding.
  • the vehicle behavior controller 8 has a brake fluid pressure sensor 81 as an input sensor, and acquires brake fluid pressure information necessary for brake control.
  • the transmission control unit 10 is connected to the CAN communication line 70, and when an information request is issued from the transmission control unit 10, the information of the brake fluid pressure sensor value is transmitted from the vehicle behavior controller 8 via the CAN communication line 70. It is transmitted to the transmission control unit 10.
  • the brake fluid pressure sensor failure diagnosed by the vehicle behavior controller 8 is an electrical abnormality (short / disconnection) and a low side sticking abnormality.
  • the engine control module 11 inputs signals from the accelerator opening sensor 16, the engine rotation sensor 17, and the like.
  • the accelerator opening sensor 16 detects the accelerator opening caused by the driver's accelerator operation, and transmits a signal indicating the accelerator opening APO to the engine control module 11.
  • the engine rotation sensor 17 detects the rotation speed of the engine 1 and transmits a signal indicating the engine rotation speed Ne to the engine control module 11.
  • the engine control module 11 is connected to the transmission control unit 10 via a CAN communication line 70 capable of exchanging information in both directions.
  • the engine control module 11 has a torque limit control unit 110 that limits the engine torque by a predetermined upper limit torque when a torque limit request is input from the transmission control unit 10 via the CAN communication line 70.
  • a torque limit control unit 110 limits the engine torque by a predetermined upper limit torque when a torque limit request is input from the transmission control unit 10 via the CAN communication line 70.
  • information on the accelerator opening APO and the engine rotation speed Ne is output to the transmission control unit 10.
  • the information of the engine torque Te and the turbine torque Tt calculated by estimation is output to the transmission control unit 10.
  • the automatic transmission 3 has a gear train 3a (stepped transmission mechanism) in which a plurality of gear stages can be set and a plurality of friction elements, and is characterized by the following points.
  • a one-way clutch that mechanically engages / idles is not used as a shifting element.
  • the first brake B1, the second brake B2, the third brake B3, the first clutch K1, the second clutch K2, and the third clutch K3, which are friction elements, are independently engaged / released by the clutch solenoid 20 at the time of shifting. The state is controlled.
  • the automatic transmission 3 has, as planetary gears constituting the gear train 3a, the first planetary gear PG1 and the second planetary gear PG2 in order from the transmission input shaft IN to the transmission output shaft OUT. And, a third planetary gear PG3 and a fourth planetary gear PG4 are provided.
  • the first planetary gear PG1 is a single pinion type planetary gear, and has a first sun gear S1, a first carrier C1 that supports a pinion that meshes with the first sun gear S1, and a first ring gear R1 that meshes with the pinion.
  • the second planetary gear PG2 is a single pinion type planetary gear, and has a second sun gear S2, a second carrier C2 that supports a pinion that meshes with the second sun gear S2, and a second ring gear R2 that meshes with the pinion.
  • the third planetary gear PG3 is a single pinion type planetary gear, and has a third sun gear S3, a third carrier C3 that supports a pinion that meshes with the third sun gear S3, and a third ring gear R3 that meshes with the pinion.
  • the fourth planetary gear PG4 is a single pinion type planetary gear, and has a fourth sun gear S4, a fourth carrier C4 that supports a pinion that meshes with the fourth sun gear S4, and a fourth ring gear R4 that meshes with the pinion.
  • the automatic transmission 3 includes a transmission input shaft IN, a transmission output shaft OUT, a first connecting member M1, a second connecting member M2, and a transmission case TC. ..
  • the first brake B1, the second brake B2, the third brake B3, the first clutch K1, the second clutch K2, and the third clutch K3 are provided. There is.
  • the transmission input shaft IN is a shaft in which the driving force from the engine 1 is input via the torque converter 2, and is always connected to the first sun gear S1 and the fourth carrier C4.
  • the transmission input shaft IN is connected to the first carrier C1 via the second clutch K2 so as to be connectable and disconnectable.
  • the transmission output shaft OUT is a shaft that outputs the drive torque shifted to the drive wheels 5 via the propeller shaft 4 and the final gear (not shown), and is always connected to the third carrier C3.
  • the transmission output shaft OUT is connected to the fourth ring gear R4 via the first clutch K1 so as to be able to connect and disconnect.
  • the first connecting member M1 is a member that constantly connects the first ring gear R1 of the first planetary gear PG1 and the second carrier C2 of the second planetary gear PG2 without interposing a friction element.
  • the second connecting member M2 always connects the second ring gear R2 of the second planetary gear PG2, the third sun gear S3 of the third planetary gear PG3, and the fourth sun gear S4 of the fourth planetary gear PG4 without interposing a friction element. It is a member to do.
  • the first brake B1 is a friction element that can lock the rotation of the first carrier C1 with respect to the transmission case TC.
  • the second brake B2 is a friction element capable of locking the rotation of the third ring gear R3 with respect to the transmission case TC.
  • the third brake B3 is a friction element capable of locking the rotation of the second sun gear S2 with respect to the transmission case TC.
  • the first clutch K1 is a friction element that selectively connects the fourth ring gear R4 and the transmission output shaft OUT.
  • the second clutch K2 is a friction element that selectively connects the transmission input shaft IN and the first carrier C1.
  • the third clutch K3 is a friction element that selectively connects between the first carrier C1 and the second connecting member M2.
  • the first speed (1st) is achieved by simultaneously engaging the second brake B2, the third brake B3, and the third clutch K3.
  • the second speed (2nd) is achieved by simultaneously engaging the second brake B2, the second clutch K2, and the third clutch K3.
  • the third speed (3rd) is achieved by simultaneously engaging the second brake B2, the third brake B3, and the second clutch K2.
  • the 4th speed (4th) is achieved by simultaneously engaging the second brake B2, the third brake B3, and the first clutch K1.
  • the fifth speed (5th) is achieved by simultaneously engaging the third brake B3, the first clutch K1 and the second clutch K2.
  • the above 1st to 5th speeds are underdrive gears with a reduction gear ratio in which the gear ratio exceeds 1.
  • the 6th speed (6th) is achieved by simultaneously engaging the 1st clutch K1, the 2nd clutch K2, and the 3rd clutch K3.
  • This sixth speed stage is a directly connected stage having a gear ratio of 1.
  • the 7th speed (7th) is achieved by simultaneously engaging the 3rd brake B3, the 1st clutch K1 and the 3rd clutch K3.
  • the 8th speed (8th) is achieved by simultaneously engaging the first brake B1, the first clutch K1, and the third clutch K3.
  • the 9th speed stage (9th) is achieved by simultaneously engaging the first brake B1, the third brake B3, and the first clutch K1.
  • the 7th to 9th speeds described above are overdrive gears with a speed-increasing gear ratio of less than 1.
  • the shift shift is performed. .. That is, the shift to the adjacent gear stage is achieved by releasing one friction element and fastening one friction element while maintaining the fastening of two friction elements among the three friction elements. ..
  • the reverse speed stage (Rev) by selecting the R range position is achieved by simultaneously engaging the first brake B1, the second brake B2, and the third brake B3.
  • the N range position and the P range position are selected, basically all of the six friction elements B1, B2, B3, K1, K2, and K3 are in the released state.
  • a shift map as shown in FIG. 4 is stored and set in the transmission control unit 10, and shifting by switching gears from the 1st gear to the 9th gear on the forward side by selecting the D range is performed. This is done according to this shift map. That is, when the operating point (VSP, APO) at that time crosses the upshift line shown by the solid line in FIG. 4, an upshift shift request is issued. Further, when the operating point (VSP, APO) crosses the downshift line shown by the broken line in FIG. 4, a downshift shift request is issued.
  • the control valve unit 6 hydraulically controlled by the transmission control unit 10 includes a mechanical oil pump 61 and an electric oil pump 62 as hydraulic sources.
  • the mechanical oil pump 61 is pump-driven by the engine 1
  • the electric oil pump 62 is pump-driven by the electric motor 63.
  • the control valve unit 6 includes a line pressure solenoid 21, a line pressure regulating valve 64, a clutch solenoid 20, and a lockup solenoid 23 as valves provided in the flood control circuit.
  • a lubrication solenoid 22, a lubrication pressure regulating valve 65, and a boost switching valve 66 are provided. Further, a P-nP switching valve 67 and a park hydraulic actuator 68 are provided.
  • the line pressure adjusting valve 64 regulates the discharged oil from at least one of the mechanical oil pump 61 and the electric oil pump 62 to the line pressure PL based on the valve operating signal pressure from the line pressure solenoid 21.
  • the line pressure solenoid 21 is driven to adjust the pressure by a control command from the line pressure control unit 100 included in the transmission control unit 10.
  • the line pressure control unit 100 controls the line pressure PL based on the target line pressure characteristic with respect to the magnitude of the input torque to the gear train 3a.
  • the clutch solenoid 20 is a transmission system solenoid that uses the line pressure PL as the original pressure and controls the fastening pressure and release pressure for each friction element (B1, B2, B3, K1, K2, K3). Although it is described in FIG. 5 that there is one clutch solenoid 20, each friction element (B1, B2, B3, K1, K2, K3) has six solenoids.
  • the clutch solenoid 20 is driven by adjusting the pressure according to a control command from the shift control unit 101 included in the transmission control unit 10, with the intention of improving fuel efficiency, with respect to a friction element that is engaged in the in-gear state.
  • An intermediate pressure command corresponding to an input torque that can suppress clutch slippage is output to the clutch solenoid 20.
  • the lockup solenoid 23 controls the clutch differential pressure of the lockup clutch 2a by using the line pressure PL and the pressure adjusting excess oil created by the line pressure adjusting valve 64 when the lockup clutch 2a is engaged.
  • the lockup solenoid 23 is driven to adjust the pressure by a control command from the lockup control unit 102 included in the transmission control unit 10.
  • the lock-up control unit 102 controls the clutch differential pressure of the gear train 3a to maintain a zero-slip engagement state that allows a minute slip of the lock-up clutch 2a while traveling in a region of a predetermined vehicle speed or higher set in a low vehicle speed range. Execute regardless of gear stage or shift. That is, instead of the clutch differential pressure control that maintains the completely engaged state, the variable torque is absorbed by sliding the lockup clutch 2a with respect to the variable torque input to the gear train 3a.
  • the lubrication solenoid 22 has a function of creating a valve operating signal pressure to the lubrication pressure regulating valve 65 and a switching pressure to the boost switching valve 66, and adjusting the lubrication flow rate supplied to the friction element to an appropriate flow rate for suppressing heat generation. .. Then, it is a solenoid that mechanically guarantees the minimum lubrication flow rate that suppresses heat generation of the friction element at times other than continuous shift protection, and adjusts the lubrication flow rate added to the minimum lubrication flow rate.
  • the lubrication pressure regulating valve 65 can control the lubrication flow rate supplied to the power train (PT) including the friction element and the gear train 3a via the cooler 69 by the valve operating signal pressure from the lubrication solenoid 22. Then, friction is reduced by optimizing the PT supply lubrication flow rate by the lubrication pressure regulating valve 65.
  • the boost switching valve 66 increases the amount of oil supplied to the centrifugal cancel chambers of the second clutch K2 and the third clutch K3 by the switching pressure from the lubrication solenoid 22. This boost switching valve 66 is used when the amount of oil supplied is temporarily increased in a scene where the amount of oil in the centrifugal cancel chamber is insufficient.
  • the P-nP switching valve 67 switches the line pressure path to the park hydraulic actuator 68 by the switching pressure from the lubrication solenoid 22 (or park solenoid).
  • the park lock that meshes the park gear 3b when the P range is selected and the park lock that disengages the park gear 3b when the park gear 3b is selected from the P range to a range other than the P range are released.
  • the P-nP switching valve 67 and the park hydraulic actuator 68 constituting the park module are operated based on the range position signal from the shifter control unit 18 to "park by". ⁇ Achieved "wire".
  • the shift control unit 101 includes a brake fluid pressure sensor value abnormality determination unit 101a (brake operation information abnormality determination unit), an interlock determination unit 101b, a solenoid function abnormality determination unit 101c, and normal shift control.
  • a unit 101d, a limp home control unit 101e, and a speed change system solenoid control unit 101f are provided.
  • the brake fluid pressure sensor value abnormality determination unit 101a inputs information on the brake fluid pressure sensor value from the vehicle behavior controller 8, and when the correspondence between the acceleration / deceleration behavior of the vehicle and the brake fluid pressure sensor value does not match, the brake fluid pressure sensor Judge that the value is abnormal.
  • the acceleration / deceleration behavior of the vehicle the output shaft rotation speed No. from the output shaft rotation sensor 14 is input, the time differential calculation process of the output shaft rotation speed No. is performed, and the rotation speed change (rotation speed increase) per unit time. : Acceleration behavior, rotation speed decrease: deceleration behavior).
  • the interlock determination unit 101b has a gear ratio abnormality condition in which the actual gear ratio deviates from the set gear ratio while traveling in the predetermined gear stage, and a deceleration condition in which the vehicle deceleration becomes equal to or higher than the predetermined value when the brake is not operated. If it is continuously established for a predetermined time, it is determined that the gear train 3a is in the interlock state.
  • the interlock determination unit 101b inputs the determination result from the brake fluid pressure sensor value abnormality determination unit 101a, and when the brake fluid pressure sensor value is determined to be abnormal, the interlock determination is not permitted.
  • the brake fluid pressure sensor value abnormality determination unit 101a determines that the brake fluid pressure sensor value is normal, the interlock determination is permitted and the non-operation of the brake is detected when the brake fluid pressure sensor value is equal to or less than a predetermined value.
  • the predetermined value of the brake fluid pressure sensor value can be set to, for example, a value at which the brake is activated and the friction elements in the in-gear slide with each other to cause deceleration.
  • the gear ratio abnormality condition in which the actual gear ratio deviates from the set gear ratio is the transmission input shaft rotation speed (turbine rotation speed Nt) during forward traveling by any of the 1st to 9th gears. ) And the transmission output shaft rotation speed (output shaft rotation speed No.), calculate the actual gear ratio. Then, if the difference between the calculated actual gear ratio and the set gear ratio at the predetermined gear stage at that time is less than the set value ( ⁇ H% with respect to the set gear ratio at the normal time), it is determined that the gear ratio is normal. Then, when the difference between the calculated actual gear ratio and the set gear ratio in the predetermined gear stage at that time becomes equal to or greater than the set value, it is determined that the gear ratio is abnormal.
  • the predetermined value of the vehicle deceleration is, for example, the deceleration threshold value for separating the brake slow deceleration and the interlock deceleration by acquiring the deceleration value in the interlock deceleration in which the gear train 3a is in the interlock state and the vehicle suddenly decelerates.
  • the deceleration threshold value for separating the brake slow deceleration and the interlock deceleration by acquiring the deceleration value in the interlock deceleration in which the gear train 3a is in the interlock state and the vehicle suddenly decelerates.
  • the solenoid function abnormality determination unit 101c determines that the solenoid function abnormality of the clutch solenoid 20 is determined when an abnormality of the gear ratio abnormality is confirmed during forward traveling by any of the 1st speed gear stages to the 9th speed gear stage.
  • the gear ratio abnormality time from the start of the gear ratio abnormality in the gear train 3a to the set time (> cumulative time) is accumulated during the in-gear excluding the shift transition period.
  • the gear ratio abnormality abnormality confirmation timer time the gear ratio abnormality abnormality is confirmed.
  • the normal shift control unit 101d When it is determined that neither the normal shift control unit 101d is in the interlock state nor the solenoid function is abnormal, the normal shift control unit 101d performs upshift and downshift using the operating point (VSP, APO) at that time and the shift map shown in FIG. Normal shift control is executed.
  • the engagement command / release command for the six clutch solenoids 20a, 20b, 20c, 20d, 20e, 20f in each gear stage is determined according to the engagement table shown in FIG. Output to the system solenoid control unit 101f.
  • 20a is a first brake solenoid
  • 20b is a second brake solenoid
  • 20c is a third brake solenoid
  • 20d is a first clutch solenoid
  • 20e is a second clutch solenoid
  • 20f is a third clutch solenoid.
  • the limp home control unit 101e executes an abnormality response limp home control common to the two types of abnormality determination modes.
  • a release instruction for releasing all six clutch solenoids 20a, 20b, 20c, 20d, 20e, and 20f is output.
  • the intermediate shaft of the six friction elements is set to the transmission case TC based on the rotation / stop information from the intermediate shaft rotation sensor 19 possessed by the gear train 3a.
  • the evacuation gear stage is determined based on the determination information of engagement / release of the first brake B1, and a command for shifting from the gear stage at that time to the determined evacuation gear stage is output to the transmission system solenoid control unit 101f. After that, it is fixed to the retract gear stage.
  • the actual gear ratio and the set gear ratio in the evacuation gear stage are again determined by the solenoid function abnormality determination unit 101c during forward traveling by the evacuation gear stage after shifting to the evacuation gear stage. Based on the difference, the gear ratio abnormality in the evacuation gear stage is determined. Then, when the gear ratio abnormality in the evacuation gear stage is determined and the release failure element is estimated, the limp home control unit 101e changes the evacuation gear stage based on the estimation of the release failure element, and the evacuation gear stage is changed. Shifts to the second evacuation gear stage changed from.
  • the limp home control unit 101e determines that the line pressure control function is abnormal and the engine 1 The request for limiting the upper limit torque of is output to the torque limit control unit 110.
  • the gear stage selected when the interlock or solenoid function abnormality is determined is the 8-speed gear stage or the 9-speed gear stage established with the first brake B1 engaged. Judge whether or not. Then, when a gear ratio abnormality is determined during traveling by the 8th gear or the 9th gear, the evacuation gear is determined to be the 3rd gear in the case of the 8th gear without shifting to the neutral state. In the case of a speed gear stage, the evacuation gear stage is determined to be the second speed gear stage, and the gears are changed to the determined gear stages. As shown in FIG.
  • a plurality of friction elements are fastened / determined by determining the 3rd gear stage in the case of the 8th gear stage and the 2nd speed gear stage as the evacuation gear stage in the case of the 9th gear stage.
  • the combination relationship of release is the reverse combination relationship, and even if any friction element is erroneously engaged or released in the 8th gear stage or the 9th gear stage, if it is the 3rd speed gear stage or the 2nd speed gear stage. This is because it can be established. That is, when the gear stage selected when the transmission system solenoid abnormality is determined is the 1st speed gear stage to the 7th speed gear stage established with the 1st brake B1 released, the state is changed from the neutral state to the evacuation gear stage fixed. Transition. Then, the evacuation gear stage when the 1st speed gear stage to the 7th speed gear stage is set is determined separately for each gear stage when the first brake B1 is erroneously engaged and when it is not erroneously engaged.
  • the speed change system solenoid control unit 101f outputs a engagement command / release command for the six clutch solenoids 20a, 20b, 20c, 20d, 20e, 20f based on a command from the normal speed change control unit 101d or the limp home control unit 101e. To do.
  • the transmission system solenoid control unit 101f uses the line pressure PL as the original pressure during the in-gear that maintains the engaged state of the three friction elements in each gear stage, and issues an intermediate pressure command equivalent to the input torque that can suppress clutch slippage. Output to the clutch solenoid 20 (transmission system solenoid).
  • step S1 following the start of processing, it is determined whether or not the prohibition condition is not satisfied. If YES (prohibition condition is not satisfied), the process proceeds to step S2 and step S6, and if NO (prohibition condition is not satisfied), the process proceeds to step S13.
  • “prohibition condition not satisfied” means a case where none of the following conditions (1), (2), and (3) is satisfied, and “prohibition condition is satisfied” means the following (1). , (2), (3) when at least one of the conditions is met. (1) When an abnormal value is received as the brake fluid pressure sensor value. (2) When the CAN reception from the vehicle behavior controller 8 is abnormal. (3) When the output shaft rotation sensor 14 is abnormal.
  • step S2 following the determination that the prohibition condition is not satisfied in S1, it is determined whether or not the Hi side diagnosis permission condition is satisfied. If YES (Hi side diagnosis permission condition is satisfied), the process proceeds to step S3, and if NO (Hi side diagnosis permission condition is not satisfied), the process proceeds to step S13.
  • the Hi-side diagnosis permission condition is given according to the following conditions (1), (2), and (3), and the Hi-side diagnosis permission condition is satisfied when the three conditions are satisfied, and any of the three conditions is satisfied. If it does not correspond, the Hi side diagnosis permission condition is not satisfied.
  • (1) When not in the P and R ranges.
  • (2) When the vehicle acceleration / deceleration is equal to or higher than the threshold value A set differently for each gear stage (see FIG. 8).
  • step S3 following the determination that the Hi-side diagnosis permission condition is satisfied in S2, it is determined whether or not the Hi-side diagnosis normal / abnormal determination is established. If YES (Hi side diagnosis normal / abnormal judgment established), the process proceeds to step S4, and if NO (Hi side diagnosis normal / abnormal determination not established), the process proceeds to step S13.
  • the vehicle acceleration / deceleration is on the acceleration side of the threshold value A or more
  • the brake fluid pressure sensor value is the threshold value K or less
  • the Hi side diagnosis normal determination is established.
  • the brake fluid pressure sensor value exceeds the threshold value B
  • the Hi-side diagnosis abnormality determination is established (see the Hi-side diagnosis NG region in FIG. 8). Since the deceleration characteristics of the vehicle are different in each gear stage when the interlock occurs, the threshold value K and the threshold value B are set differently in each gear stage.
  • step S4 following the determination that the Hi-side diagnosis normal / abnormal determination is established in S3, it is determined whether or not a predetermined time or more has passed since the determination that the Hi-side diagnosis normal / abnormal determination was established. If YES (the predetermined time or more has passed), the process proceeds to step S5, and if NO (the predetermined time or more has not passed), the process proceeds to step S13.
  • step S5 following the determination that the predetermined time or more has passed in S4, if the predetermined time or more has passed since the determination that the Hi side diagnosis normal judgment was established, the Hi side normal judgment flag is set and the Hi side diagnosis abnormality judgment is established. If a predetermined time or more has passed since the determination was made, the Hi side abnormality determination flag is set and the process proceeds to step S10.
  • step S6 following the determination that the prohibition condition is not satisfied in S1, it is determined whether or not the Low side diagnosis permission condition is satisfied. If YES (the low side diagnosis permission condition is satisfied), the process proceeds to step S7, and if NO (the low side diagnosis permission condition is not satisfied), the process proceeds to step S13.
  • the Low-side diagnosis permission condition is given according to the following conditions (1), (2), and (3), and the Low-side diagnosis permission condition is satisfied when the three conditions are satisfied, and any of the three conditions can be used. If it does not correspond, the condition for permitting diagnosis on the Low side is not satisfied. (1) When not in the P and R ranges. (2) When the vehicle acceleration / deceleration is less than the threshold value D set differently for each gear stage (see FIG. 8). (3) When the vehicle speed VSP exceeds the threshold L.
  • step S7 following the determination that the Low side diagnosis permission condition is satisfied in S6, it is determined whether or not the Low side diagnosis normal / abnormal determination is satisfied. If YES (low side diagnosis normal / abnormal judgment established), the process proceeds to step S8, and if NO (low side diagnosis normal / abnormal determination not established), the process proceeds to step S13.
  • the threshold value M and the threshold value E are set differently in each gear stage.
  • step S8 following the determination that the Low side diagnosis normal / abnormal determination is established in S7, it is determined whether or not a predetermined time or more has passed since the determination that the Low side diagnosis normal / abnormal determination was established. If YES (the predetermined time or more has passed), the process proceeds to step S9, and if NO (the predetermined time or more has not passed), the process proceeds to step S13.
  • step S9 following the determination that the predetermined time or more has passed in S8, if the predetermined time or more has passed since the determination that the Low side diagnosis normal judgment was established, the Low side normal judgment flag is set and the Low side diagnosis abnormality judgment is established. If a predetermined time or more has passed since the determination was made, the Low side abnormality determination flag is set and the process proceeds to step S10.
  • step S10 following S5 and S9, it is determined whether or not the Hi side normal determination flag and the Low side normal determination flag are set together. If YES (two normal determination flags are set together), the process proceeds to S11, and if NO (one or both of the two normal determination flags are not set), the process proceeds to step S12.
  • step S12 following the determination that one or both of the two normal determination flags in S10 are not set, the normal determination confirmation flag of the brake fluid pressure sensor value is set to indicate that the brake fluid pressure sensor value is abnormal.
  • the normal judgment confirmation flag shown is set to 0, and the process proceeds to return.
  • step S13 following the determination of NO in any of S1, S2, S3, S4, S6, S7, and S8, the previous value of the normal determination confirmation flag is maintained, and the process proceeds to return.
  • step S21 following the start of processing, it is determined whether or not the transmission system solenoid diagnostic condition is satisfied. If YES (transitional solenoid diagnostic condition is satisfied), the process proceeds to step S22, and if NO (transmission solenoid diagnostic condition is not satisfied), the process proceeds to step S28.
  • the speed change system solenoid diagnostic condition if the diagnosis prohibition condition is not satisfied and the diagnosis permission condition is satisfied, it is determined that the speed change system solenoid diagnosis condition is satisfied. Conditions such as a turbine rotation sensor abnormality, a vehicle speed sensor abnormality, and a line pressure solenoid electrical abnormality are given as diagnostic prohibition conditions.
  • the diagnostic permission conditions are other than the P, R, and N ranges, and conditions such as a vehicle speed of a predetermined vehicle speed or higher, a turbine rotation speed of a predetermined value or higher, and an engine rotation speed of a predetermined value or higher are given. Then, even if one of the diagnosis prohibition conditions is satisfied, or even if one of the diagnosis permission conditions is not satisfied, it is determined that the diagnosis condition is not satisfied.
  • the interlock determination conditions are a gear ratio abnormality condition in which the actual gear ratio deviates from the set gear ratio, and a deceleration condition in which the vehicle deceleration becomes the predetermined value or more when the brake fluid pressure sensor value is equal to or less than the predetermined value. Give in. Then, it is determined that the interlock determination condition is satisfied when both the gear ratio abnormality condition and the deceleration condition are satisfied.
  • step S24 following the determination that the interlock determination condition is satisfied in S23, it is determined whether or not the predetermined time has elapsed while the interlock determination condition is satisfied. If YES (predetermined time has elapsed), the process proceeds to step S25, and if NO (predetermined time has not elapsed), the process returns to step S22.
  • step S25 following the determination in S24 that the predetermined time has elapsed, the determination in S26 that IGN is ON, or the determination in S27 that the solenoid function abnormality determination condition is satisfied, the limp home control is executed, and the step is performed. Proceed to S26.
  • the limp home control for the interlock determination or the solenoid function abnormality determination for example, a control for shifting to the evacuation gear stage fixing after shifting to the neutral state is executed.
  • step S26 following the limp home control process in S25, it is determined whether or not the ignition is started and stopped (ignition off). If YES (IGN OFF), the process proceeds to the end, and if NO (IGN ON), the process returns to step S25.
  • the solenoid function abnormality determination condition is that the gear ratio abnormality time after the gear ratio abnormality occurs during forward traveling by any of the 1st speed gear stages to the 9th speed gear stage is accumulated, and the cumulative time is accumulated. It is given on the condition that the gear ratio abnormality abnormality confirmation timer time has been reached.
  • step S28 following the determination in S21 that the solenoid function abnormality determination condition is not satisfied or the determination that the solenoid function abnormality determination condition is not satisfied in S27, the operating point (VSP, APO) at that time and the shifting shown in FIG. 4 are performed.
  • the normal shift control process for upshifting and downshifting is executed using the map, and the process proceeds to step S29.
  • step S29 following the normal shift control process in S28, it is determined whether or not the ignition is started and stopped (ignition off). If YES (IGN OFF), the process proceeds to the end, and if NO (IGN ON), the process returns to step S21.
  • the gear ratio abnormality condition is a condition in which the actual gear ratio deviates from the set gear ratio in the predetermined gear stage
  • the deceleration condition is a condition in which the vehicle deceleration becomes equal to or higher than the predetermined value when the brake is not operated.
  • the determination that the brake is not operated is performed using the brake operation information from the brake system sensor or switch, but is the brake operation information itself normal? It has not been determined whether it is abnormal. Therefore, when the brake operation information indicates the brake operation when the brake is not operated, the deceleration by the interlock is mistaken as the deceleration by the brake, and it cannot be determined that the interlock state is reached. On the contrary, when the brake operation information indicates that the brake is not operated during the brake operation, there is a problem that the deceleration by the brake is mistaken as the deceleration by the interlock and the interlock state is erroneously determined.
  • an intermediate pressure command equivalent to an input torque lower than the maximum pressure command is output to each clutch solenoid of multiple friction elements fastened at each gear stage to maintain the engaged state.
  • Intermediate pressure clutch control shall be performed.
  • the brake operation when the brake operation is performed, a high braking force from the drive wheels is input to the gear train, so that the friction element is likely to slip, and the gear ratio abnormality condition is frequently satisfied.
  • the gear ratio abnormality condition is satisfied, the frequency of determining the deceleration condition increases, and the possibility of erroneously determining the interlock state when the brake operation information is abnormal increases. That is, there is a demand for surely preventing interlock erroneous determination while achieving improvement in fuel efficiency by suppressing the pressure applied to the friction element to a low level.
  • the transmission control unit 10 of the present disclosure has a gear ratio abnormal condition in which the actual gear ratio deviates from the set gear ratio while traveling in a predetermined gear stage, and a vehicle deceleration when the brake is not operated.
  • the deceleration condition that exceeds the predetermined value is continuously satisfied for a predetermined time
  • the interlock determination unit 101b that determines the interlock state that the gear train 3a is in the interlock state, and the brake operation information that detects the non-operation of the brake.
  • the brake operation information abnormality determination unit (brake fluid pressure sensor value abnormality determination unit 101a) for determining that the brake operation information is abnormal is provided. ..
  • the interlock determination unit 101b has adopted a solution that does not allow the interlock determination when the brake operation information abnormality determination unit determines that the brake operation information is abnormal.
  • the brake operation information is determined to be abnormal. That is, the vehicle behavior when the brake is operated becomes a sudden deceleration behavior, and the vehicle behavior when the brake is not operated becomes a behavior other than the sudden deceleration behavior (slow deceleration, constant speed, acceleration) according to the accelerator operation.
  • the brake operation information is normal even though one brake operation information is used as input information without providing a redundant configuration in which two or more sensors, switches, etc. are provided to compare signals. / Abnormality can be judged.
  • the interlock determination is not permitted. That is, when the brake operation information indicates the brake operation when the brake is not operated, it is possible to prevent the deceleration by the interlock from being mistaken as the deceleration by the brake. On the contrary, when the brake operation information indicates that the brake is not operated during the brake operation, it is possible to prevent the deceleration by the brake from being mistaken as the deceleration by the interlock.
  • the process proceeds from S1 to S2 ⁇ S6 ⁇ S7 ⁇ S8.
  • the process proceeds from S5 to S10. Further, when the Low side normal determination flag or the Low side abnormality determination flag is set by the Low side diagnosis process, the process proceeds from S9 to S10. In S10, it is determined whether or not the Hi-side normality determination flag and the Low-side normality determination flag are set together.
  • the process proceeds from S10 to S12, and in S12, the brake fluid pressure sensor value is abnormal.
  • Judgment confirmation flag 1.
  • the process proceeds from S21 to S22, and in S22, it is determined whether or not the normal determination confirmation flag of the brake fluid pressure sensor value is 1.
  • the gear ratio abnormality time after the gear ratio abnormality occurs is accumulated, and the cumulative time is accumulated. It is assumed that the solenoid function abnormality judgment condition that the gear ratio abnormality abnormality confirmation timer time has been reached is satisfied. In this case, the process proceeds from S27 to S25, and in S25, limp home control is executed by shifting to the neutral state and then shifting to the fixed retract gear stage instead of the normal shift control.
  • the gear ratio abnormality condition in which the actual gear ratio deviates from the set gear ratio and the normal judgment are confirmed during forward traveling by selecting one of the 1st gear to 9th gear by the normal shift control. It is assumed that the deceleration condition that the vehicle deceleration becomes equal to or more than the predetermined value is satisfied when the brake fluid pressure sensor value is equal to or less than the predetermined value. In this case, the process proceeds from S22 to S23 to S24 based on the establishment of the interlock determination condition, and it is determined in S24 whether or not the predetermined time has elapsed while the interlock determination condition is satisfied. Then, when it is determined in S24 that the predetermined time has elapsed, the process proceeds from S24 to S25, and in S25, the same limp home control as when the solenoid function abnormality determination condition is satisfied is executed instead of the normal shift control.
  • the limp home control shifts from the 5th gear to the neutral state to the 8th gear fixed. Is performed (see FIG. 11).
  • the limp home shifts from the 5th gear to the neutral state to the 2nd gear fixed. Control is performed (see FIG. 12). The limp home control is continued until the ignition is started and stopped.
  • FIG. 10 shows the transition action from the 5th gear to the neutral to the 8th gear when the first brake B1 is erroneously engaged when the interlock is determined while the vehicle is running in the 5th gear. This will be described with reference to the time chart shown.
  • the actual gear ratio exceeds the threshold value of ⁇ H% from the set gear ratio in the 5th speed gear at time t1, and a gear ratio abnormality occurs, and the normal judgment is confirmed. It is assumed that the deceleration exceeds the predetermined value when the brake fluid pressure sensor value is equal to or less than the predetermined value. In this case, when the time elapses from time t1 with the gear ratio abnormality condition and the deceleration condition being satisfied and the time set by the sudden deceleration abnormality confirmation timer is reached at time t2, it is determined that the interlock is confirmed.
  • the actual gear ratio exceeds the threshold value of ⁇ H% from the set gear ratio in the 5th speed gear at time t1, and a gear ratio abnormality occurs, and the normal judgment is confirmed. It is assumed that the deceleration exceeds the predetermined value when the brake fluid pressure sensor value is equal to or less than the predetermined value. In this case, when the time elapses from time t1 with the gear ratio abnormality condition and the deceleration condition being satisfied and the time set by the sudden deceleration abnormality confirmation timer is reached at time t2, it is determined that the interlock is confirmed.
  • the 1st speed In the case of interlock judgment (other than B1 erroneous fastening) in the gear stage to 7th gear stage it is divided into the following.
  • control device of the automatic transmission 3 of the first embodiment has the effects listed below.
  • a control device for an automatic transmission 3 including a transmission control unit 10 that performs speed change control for switching a plurality of gear stages by changing the fastening state of a plurality of friction elements.
  • the transmission control unit 10 has a gear ratio abnormality condition in which the actual gear ratio deviates from the set gear ratio while traveling in the predetermined gear stage, and a deceleration condition in which the vehicle deceleration becomes equal to or higher than the predetermined value when the brake is not operated.
  • the interlock determination unit 101b for determining that the stepped speed change mechanism (gear train 3a) is in the interlock state and the brake operation information for detecting the non-operation of the brake are input, and the vehicle accelerates / decelerates.
  • the brake operation information abnormality determination unit (brake hydraulic pressure sensor value abnormality determination unit 101a) for determining that the brake operation information is abnormal is provided.
  • the interlock determination unit 101b does not allow the interlock determination when the brake operation information abnormality determination unit (brake fluid pressure sensor value abnormality determination unit 101a) determines that the brake operation information is abnormal. Therefore, when determining the occurrence of an interlock during traveling, it is possible to prevent an interlock erroneous determination when the interlock occurs and when the interlock does not occur, without making the information input system for the brake operation redundant.
  • the brake operation information abnormality judgment unit inputs the information of the brake fluid pressure sensor value, and if the correspondence between the acceleration / deceleration behavior of the vehicle and the brake fluid pressure sensor value does not match, the brake fluid pressure sensor value is determined to be abnormal.
  • Brake fluid pressure sensor value abnormality determination unit 101a The interlock determination unit 101b permits the interlock determination when the brake fluid pressure sensor value abnormality determination unit 101a determines that the brake fluid pressure sensor value is normal, and the brake non-operation is performed when the brake fluid pressure sensor value is equal to or less than a predetermined value. Detect by being there. Therefore, in the interlock determination, it is possible to detect that the brake is not operated by using the brake fluid pressure sensor value determined to be normal.
  • the brake fluid pressure sensor value abnormality determination unit 101a sets a high side normal determination flag when the brake fluid pressure sensor value is equal to or less than the first threshold value (threshold K) when the vehicle is accelerating, and the vehicle decelerates.
  • the low side normal judgment flag is set. If the high side normal judgment flag and the low side normal judgment flag stand together, the normal judgment is established, and the normal judgment confirmation flag of the brake fluid pressure sensor value is set. If at least one of the high-side normal judgment flag and the low-side normal judgment flag is not set, the abnormality judgment is established and the normal judgment confirmation flag is lowered. Therefore, by determining whether the brake fluid pressure sensor value is normal / abnormal on the high side and the low side of the brake fluid pressure sensor value, it is possible to determine whether the brake fluid pressure sensor value is normal or abnormal. It can be judged with high accuracy.
  • the transmission control unit 10 has a limp home control unit 101e that secures vehicle running by fixing to the evacuation gear stage after the interlock determination.
  • the limp home control unit 101e releases all of the plurality of friction elements B1, B2, B3, K1, K2, K3.
  • the determination information of the engagement / release of a specific friction element (first brake B1) among the plurality of friction elements B1, B2, B3, K1, K2, K3 is confirmed.
  • the evacuation gear stage is determined based on After shifting to the evacuation gear stage determined from the transition to the neutral state, the gear is fixed to the evacuation gear stage. Therefore, when it is determined that the stepped speed change mechanism (gear train 3a) is in the interlock state, it is possible to shift to limp home control and secure the drivability of the vehicle while avoiding sudden deceleration due to the interlock. ..
  • the transmission control unit 10 issues an intermediate pressure command equivalent to an input torque that can suppress clutch slippage during in-gear that maintains the engaged state of the friction element (clutch solenoids 20a, 20b, 20c, 20d, It has a transmission system solenoid control unit 101f that outputs to 20e, 20f). For this reason, it is possible to prevent an erroneous determination in the deceleration determination in which the gear ratio abnormality condition is established more frequently due to the slippage of the friction element during the braking operation, and the frequency increases accordingly. In addition, in the case of an engine vehicle, it is possible to improve fuel efficiency by reducing the pump load by keeping the fastening oil pressure in the in-gear low.
  • control device for the automatic transmission has been described above based on the first embodiment.
  • specific configuration is not limited to the first embodiment, and design changes and additions are permitted as long as the gist of the invention according to each claim is not deviated from the claims.
  • the brake fluid pressure sensor value information is input as the brake operation information abnormality determination unit, and when the correspondence between the acceleration / deceleration behavior of the vehicle and the brake fluid pressure sensor value does not match, the brake fluid pressure sensor value is abnormal.
  • An example of the brake fluid pressure sensor value abnormality determination unit 101a for determining the above is shown.
  • the brake operation information abnormality determination unit is not limited to the brake fluid pressure sensor value as long as the information can detect the brake operation information.
  • a brake switch signal from the brake switch, a brake stroke value from the brake stroke sensor, or the like may be used.
  • the transmission control unit 10 outputs an intermediate pressure command equivalent to an input torque that can suppress clutch slippage to the clutch solenoid 20 during in-gear that maintains the engaged state in the fastening pressure control of the friction element.
  • An example having a solenoid control unit 101f is shown.
  • the transmission control unit can also be applied to an example having a shift control unit that outputs a maximum pressure command to the clutch solenoid during in-gear that maintains the engaged state in the fastening pressure control of the friction element.
  • Example 1 as an automatic transmission, an example of an automatic transmission 3 which has 6 friction elements and achieves forward 9th speed and backward 1st speed by fastening 3 friction elements is shown.
  • an automatic transmission an example may be obtained in which a plurality of forward stages and reverse stages are achieved by fastening two friction elements, and a plurality of forward stages and reverse stages are achieved by fastening four friction elements. It may be an example.
  • the automatic transmission may be an example of an automatic transmission having a stepped gear stage other than the forward 9th speed and the reverse 1st speed, or with an auxiliary transmission that combines a belt type continuously variable transmission and a multi-speed transmission. It may be a continuously variable transmission.
  • control device of the automatic transmission 3 mounted on the engine vehicle is shown. However, it can be applied not only to an engine vehicle but also as a control device for an automatic transmission of a hybrid vehicle, an electric vehicle, or the like.

Abstract

In the present invention, a transmission control unit has: an interlock determination unit that determines that a gear train is in an interlocked state when, during travel using a predetermined gear stage, the following conditions are continuously fulfilled for a predetermined time: a gear ratio abnormality condition, according to which the actual gear ratio deviates from a set gear ratio; and a deceleration condition, according to which vehicle deceleration is greater than or equal to a predetermined value during a non-braking operation; and a brake fluid pressure sensor value abnormality determination unit to which a brake fluid pressure sensor value for detecting a non-braking operation is inputted and that determines that the brake fluid pressure sensor value is abnormal if the correspondence relationship between the acceleration-deceleration behavior of the vehicle and the brake fluid pressure sensor value is inconsistent. The interlock determination unit does not allow an interlock determination when the brake fluid pressure sensor value is determined to be abnormal.

Description

自動変速機の制御装置及び制御方法Control device and control method for automatic transmission
 本発明は、車両に搭載される自動変速機の制御に関する。 The present invention relates to the control of an automatic transmission mounted on a vehicle.
 WO2017/051755A1には、トルクコンバータと、トルクコンバータから駆動輪への動力伝達経路上に設けられた有段変速機構とを備える自動変速機を制御する自動変速機の制御装置であって、自動変速機の非走行レンジ選択中に、有段変速機構の出力軸の減速度と、トルクコンバータの変化とに基づいて、有段変速機構におけるインターロック判定を実行することが開示されている。 WO2017 / 051755A1 is a control device for an automatic transmission that controls an automatic transmission including a torque converter and a stepped transmission mechanism provided on a power transmission path from the torque converter to the drive wheels. It is disclosed that the interlock determination in the stepped speed change mechanism is executed based on the deceleration of the output shaft of the stepped speed change mechanism and the change of the torque converter during the non-traveling range selection of the machine.
 しかしながら、WO2017/051755A1にあっては、車両減速度に基づき、インターロック判定を行う場合、インターロック発生時にインターロックでないと判定したり、又、インターロック非発生時にインターロックと判定したりする場合がある、という課題があった。 However, in WO2017 / 051755A1, when the interlock is determined based on the vehicle deceleration, it is determined that the interlock is not interlocked when the interlock occurs, or the interlock is determined when the interlock does not occur. There was a problem that there was.
 本発明は、上記課題に着目してなされたもので、走行中にインターロックの発生を判定する際、ブレーキ操作の情報入力系を冗長構成にすることなく、インターロック発生時及びインターロック非発生時にインターロック誤判定を防止することを目的とする。 The present invention has been made by paying attention to the above problems, and when determining the occurrence of an interlock during traveling, the interlock occurs and the interlock does not occur without making the information input system for the brake operation redundant. Sometimes the purpose is to prevent misjudgment of interlock.
 上記目的を達成するため、本発明のある態様に係る自動変速機の制御装置は、有段変速機構に有する複数の摩擦要素のそれぞれに設けられた変速系ソレノイドを制御し、複数の摩擦要素の締結状態を変更することにより複数のギヤ段を切替える変速制御を行う変速機コントロールユニットを備える。
 変速機コントロールユニットは、所定ギヤ段による走行中、実ギヤ比が設定ギヤ比から乖離するギヤ比異常条件と、ブレーキ非操作のときに車両減速度が所定値以上になる減速度条件とが所定時間継続して成立すると、有段変速機構がインターロック状態であると判定するインターロック判定を行うインターロック判定部と、ブレーキ非操作を検出するブレーキ操作情報を入力し、車両の加減速挙動とブレーキ操作情報の対応関係が整合しない場合、ブレーキ操作情報が異常と判定するブレーキ操作情報異常判定部とを有する。
 インターロック判定部は、ブレーキ操作情報異常判定部によりブレーキ操作情報が異常と判定されるとインターロック判定を許可しない。
In order to achieve the above object, the control device of the automatic transmission according to an aspect of the present invention controls a transmission system solenoid provided for each of a plurality of friction elements included in the stepped transmission mechanism, and controls the transmission system solenoids of the plurality of friction elements. It is provided with a transmission control unit that performs shift control for switching a plurality of gear stages by changing the engagement state.
The transmission control unit is defined by a gear ratio abnormality condition in which the actual gear ratio deviates from the set gear ratio while traveling in a predetermined gear stage, and a deceleration condition in which the vehicle deceleration becomes a predetermined value or more when the brake is not operated. When the time is continuously established, the interlock determination unit that determines the interlock state that the stepped speed change mechanism is in the interlock state and the brake operation information that detects the non-operation of the brake are input to determine the acceleration / deceleration behavior of the vehicle. It has a brake operation information abnormality determination unit that determines that the brake operation information is abnormal when the correspondence of the brake operation information does not match.
The interlock determination unit does not allow the interlock determination when the brake operation information abnormality determination unit determines that the brake operation information is abnormal.
 上記態様によれば、上記解決手段を採用したため、走行中にインターロックの発生を判定する際、ブレーキ操作の情報入力系を冗長構成にすることなく、インターロック発生時及びインターロック非発生時にインターロック誤判定を防止することができる。 According to the above aspect, since the above-mentioned solution is adopted, when determining the occurrence of the interlock during traveling, the interlock occurs and the interlock does not occur without making the information input system for the brake operation redundant. It is possible to prevent erroneous lock determination.
図1は、実施例1の制御装置が適用された自動変速機を搭載するエンジン車を示す全体システム図である。FIG. 1 is an overall system diagram showing an engine vehicle equipped with an automatic transmission to which the control device of the first embodiment is applied. 図2は、自動変速機のギヤトレーンの一例を示すスケルトン図である。FIG. 2 is a skeleton diagram showing an example of a gear train of an automatic transmission. 図3は、自動変速機での変速用摩擦要素の各ギヤ段での締結状態を示す締結表図である。FIG. 3 is a fastening table diagram showing a fastening state of friction elements for shifting in an automatic transmission at each gear stage. 図4は、自動変速機での変速マップの一例を示す変速マップ図である。FIG. 4 is a shift map diagram showing an example of a shift map in an automatic transmission. 図5は、自動変速機のコントロールバルブユニットを示す油圧制御系構成図である。FIG. 5 is a hydraulic control system configuration diagram showing a control valve unit of an automatic transmission. 図6は、変速機コントロールユニットの変速制御部の詳細構成を示すブロック図である。FIG. 6 is a block diagram showing a detailed configuration of a shift control unit of the transmission control unit. 図7は、変速制御部のブレーキ液圧センサ値異常判定部において実行されるブレーキ液圧センサ値異常判定処理の流れを示すフローチャートである。FIG. 7 is a flowchart showing the flow of the brake fluid pressure sensor value abnormality determination process executed in the brake fluid pressure sensor value abnormality determination unit of the shift control unit. 図8は、ブレーキ液圧センサ値と加減速の二次元座標面においてブレーキ液圧センサ値異常判定処理でのHi側診断NG領域とLow側診断NG領域を示す図である。FIG. 8 is a diagram showing a Hi-side diagnosis NG region and a Low-side diagnosis NG region in the brake fluid pressure sensor value abnormality determination process on the two-dimensional coordinate planes of the brake fluid pressure sensor value and acceleration / deceleration. 図9は、ブレーキ液圧センサ値の正常/異常判定結果を用いて変速制御部において実行される変速制御処理の流れを示すフローチャートである。FIG. 9 is a flowchart showing the flow of the shift control process executed in the shift control unit using the normal / abnormal determination result of the brake fluid pressure sensor value. 図10は、5速ギヤ段での走行中であってインターロックが判定されたとき第1ブレーキが誤締結である場合の5速ギヤ段→ニュートラル→8速ギヤ段固定への移行作用を示すタイムチャートである。FIG. 10 shows the transition action from the 5th gear to the neutral to the 8th gear when the first brake is erroneously engaged when the interlock is determined while traveling in the 5th gear. It is a time chart. 図11は、5速ギヤ段での走行中であってインターロックが判定されたとき第1ブレーキが誤締結以外である場合の5速ギヤ段→ニュートラル→2速ギヤ段固定への移行作用を示すタイムチャートである。FIG. 11 shows the transition action from the 5th gear to the neutral to the 2nd gear when the first brake is not erroneously engaged when the interlock is determined while the vehicle is running in the 5th gear. It is a time chart which shows.
 以下、本発明の実施形態に係る自動変速機の制御装置を、図面に示す実施例1に基づいて説明する。 Hereinafter, the control device for the automatic transmission according to the embodiment of the present invention will be described based on the first embodiment shown in the drawings.
  実施例1の制御装置は、前進9速・後退1速のギヤ段を有するシフト・バイ・ワイヤ及びパーク・バイ・ワイヤによる自動変速機を搭載したエンジン車(車両の一例)に適用したものである。以下、実施例1の構成を「全体システム構成」、「自動変速機の詳細構成」、「油圧制御系の詳細構成」、「変速制御部の詳細構成」、「ブレーキ液圧センサ値異常判定処理構成」、「変速制御処理構成」に分けて説明する。 The control device of the first embodiment is applied to an engine vehicle (an example of a vehicle) equipped with an automatic transmission by shift-by-wire and park-by-wire having gear stages of 9th forward speed and 1st reverse speed. is there. Hereinafter, the configuration of the first embodiment is described as "overall system configuration", "detailed configuration of automatic transmission", "detailed configuration of hydraulic control system", "detailed configuration of shift control unit", "brake fluid pressure sensor value abnormality determination processing". The description will be divided into "configuration" and "shift control processing configuration".
 [全体システム構成(図1)]
  以下、図1に基づいて全体システム構成を説明する。エンジン車の駆動系には、図1に示すように、エンジン1(走行用駆動源)と、トルクコンバータ2と、自動変速機3と、プロペラシャフト4と、駆動輪5と、を備える。トルクコンバータ2は、締結によりエンジン1のクランク軸と自動変速機3の変速機入力軸INを直結するロックアップクラッチ2aを内蔵する。自動変速機3は、ギヤトレーン3aとパークギヤ3bを内蔵する。自動変速機3には、変速のためのスプールバルブや油圧制御回路やソレノイドバルブ等により構成されるコントロールバルブユニット6が取り付けられている。
[Overall system configuration (Fig. 1)]
Hereinafter, the overall system configuration will be described with reference to FIG. As shown in FIG. 1, the drive system of the engine vehicle includes an engine 1 (driving drive source), a torque converter 2, an automatic transmission 3, a propeller shaft 4, and drive wheels 5. The torque converter 2 has a built-in lockup clutch 2a that directly connects the crankshaft of the engine 1 and the transmission input shaft IN of the automatic transmission 3 by fastening. The automatic transmission 3 incorporates a gear train 3a and a park gear 3b. A control valve unit 6 including a spool valve for shifting, a hydraulic control circuit, a solenoid valve, and the like is attached to the automatic transmission 3.
 コントロールバルブユニット6は、ソレノイドバルブとして、摩擦要素毎に6個設けられるクラッチソレノイド20と、それぞれ1個設けられるライン圧ソレノイド21、潤滑ソレノイド22、ロックアップソレノイド23を有する。即ち、合計9個のソレノイドバルブを有する。これらのソレノイドバルブは何れも3方向リニアソレノイド構造であり、変速機コントロールユニット10からの制御指令を受けて調圧作動する。 The control valve unit 6 has six clutch solenoids 20 provided for each friction element, one line pressure solenoid 21, a lubrication solenoid 22, and a lockup solenoid 23 as solenoid valves. That is, it has a total of nine solenoid valves. Each of these solenoid valves has a three-way linear solenoid structure, and operates in pressure adjustment in response to a control command from the transmission control unit 10.
 エンジン車の電子制御系には、図1に示すように、変速機コントロールユニット10(略称:「ATCU」という。)と、エンジンコントロールモジュール11(略称:「ECM」という。)と、車両挙動コントローラ8(略称:「VDC」)と、CAN通信線70と、を備える。ここで、変速機コントロールユニット10は、センサモジュールユニット71(略称:「USM」という。)からのイグニッション信号によって起動/停止をする。つまり、変速機コントロールユニット10の起動/停止を、イグニッションスイッチによる起動/停止の場合に比べて起動バリエーションが増える「ウェイクアップ/スリープ制御」としている。 As shown in FIG. 1, the electronic control system of the engine vehicle includes a transmission control unit 10 (abbreviation: "ATCU"), an engine control module 11 (abbreviation: "ECM"), and a vehicle behavior controller. 8 (abbreviation: "VDC") and CAN communication line 70 are provided. Here, the transmission control unit 10 is started / stopped by an ignition signal from the sensor module unit 71 (abbreviation: “USM”). That is, the start / stop of the transmission control unit 10 is defined as "wake-up / sleep control" in which the start variation increases as compared with the case of start / stop by the ignition switch.
 変速機コントロールユニット10は、コントロールバルブユニット6の上面位置に機電一体に設けられ、ユニット基板にメイン基板温度センサ31と、サブ基板温度センサ32と、を互いに独立性を担保しながら冗長系により備える。即ち、メイン基板温度センサ31とサブ基板温度センサ32は、センサ値情報を変速機コントロールユニット10に送信するが、周知の自動変速機ユニットとは異なり、オイルパン内で変速機作動油(ATF)に直接接触していない温度情報を送信する。この変速機コントロールユニット10は、他にタービン回転センサ13、出力軸回転センサ14、第3クラッチ油圧センサ15からの信号を入力する。さらに、シフタコントロールユニット18、中間軸回転センサ19、等からの信号を入力する。 The transmission control unit 10 is provided integrally with mechatronics on the upper surface of the control valve unit 6, and the main board temperature sensor 31 and the sub board temperature sensor 32 are provided on the unit board by a redundant system while ensuring independence from each other. .. That is, the main board temperature sensor 31 and the sub board temperature sensor 32 transmit the sensor value information to the transmission control unit 10, but unlike the well-known automatic transmission unit, the transmission hydraulic oil (ATF) is installed in the oil pan. Sends temperature information that is not in direct contact with. The transmission control unit 10 also inputs signals from the turbine rotation sensor 13, the output shaft rotation sensor 14, and the third clutch oil pressure sensor 15. Further, signals from the shifter control unit 18, the intermediate shaft rotation sensor 19, and the like are input.
 タービン回転センサ13は、トルクコンバータ2のタービン回転速度(=変速機入力軸回転速度)を検出し、タービン回転速度Ntを示す信号を変速機コントロールユニット10に送信する。出力軸回転センサ14は、自動変速機3の出力軸回転速度を検出し、出力軸回転速度No(=車速VSP)を示す信号を変速機コントロールユニット10に送信する。第3クラッチ油圧センサ15は、第3クラッチK3のクラッチ油圧を検出し、第3クラッチ油圧PK3を示す信号を変速機コントロールユニット10に送信する。 The turbine rotation sensor 13 detects the turbine rotation speed (= transmission input shaft rotation speed) of the torque converter 2 and transmits a signal indicating the turbine rotation speed Nt to the transmission control unit 10. The output shaft rotation sensor 14 detects the output shaft rotation speed of the automatic transmission 3 and transmits a signal indicating the output shaft rotation speed No. (= vehicle speed VSP) to the transmission control unit 10. The third clutch oil pressure sensor 15 detects the clutch oil pressure of the third clutch K3 and transmits a signal indicating the third clutch oil pressure PK3 to the transmission control unit 10.
 シフタコントロールユニット18は、運転者によるシフタ181へのセレクト操作により選択されたレンジ位置を判定し、レンジ位置信号を変速機コントロールユニット10に送信する。なお、シフタ181は、モーメンタリ構造であり、操作部181aの上部にPレンジボタン181bを有し、操作部181aの側部にロック解除ボタン181c(N→R時のみ)を有する。そして、レンジ位置として、Hレンジ(ホームレンジ)とRレンジ(リバースレンジ)とDレンジ(ドライブレンジ)とN(d),N(r)(ニュートラルレンジ)を有する。中間軸回転センサ19は、中間軸(インターミディエイトシャフト=第1キャリアC1に連結される回転メンバ)の回転速度を検出し、中間軸回転速度Nintを示す信号を変速機コントロールユニット10に送信する(図2を参照)。 The shifter control unit 18 determines the range position selected by the driver's select operation on the shifter 181 and transmits the range position signal to the transmission control unit 10. The shifter 181 has a momentary structure, has a P range button 181b on the upper portion of the operation unit 181a, and has an unlock button 181c (only when N → R) on the side portion of the operation unit 181a. The range positions include an H range (home range), an R range (reverse range), a D range (drive range), and N (d) and N (r) (neutral range). The intermediate shaft rotation sensor 19 detects the rotation speed of the intermediate shaft (intermediate shaft = rotating member connected to the first carrier C1), and transmits a signal indicating the intermediate shaft rotation speed Nint to the transmission control unit 10 ( See FIG. 2).
 変速機コントロールユニット10では、変速マップ(図4を参照)上での車速VSPとアクセル開度APOによる運転点(VSP,APO)の変化を監視することで、
1.オートアップシフト(アクセル開度を保った状態での車速上昇による)
2.足離しアップシフト(アクセル足離し操作による)
3.足戻しアップシフト(アクセル戻し操作による)
4.パワーオンダウンシフト(アクセル開度を保っての車速低下による)
5.小開度急踏みダウンシフト(アクセル操作量小による)
6.大開度急踏みダウンシフト(アクセル操作量大による:「キックダウン」)
7.緩踏みダウンシフト(アクセル緩踏み操作と車速上昇による)
8.コーストダウンシフト(アクセル足離し操作での車速低下による)
と呼ばれる基本変速パターンによる変速制御を行う。
The transmission control unit 10 monitors changes in the operating point (VSP, APO) due to the vehicle speed VSP and the accelerator opening APO on the shift map (see FIG. 4).
1. Auto upshift (due to vehicle speed increase while maintaining accelerator opening)
2. Foot release upshift (by accelerator foot release operation)
3. Foot return upshift (by accelerator return operation)
4. Power on / downshift (due to a decrease in vehicle speed while maintaining the accelerator opening)
5. Small opening sudden downshift (depending on the small amount of accelerator operation)
6. Large opening sudden downshift (depending on the amount of accelerator operation: "kickdown")
7. Slow downshift (due to slow accelerator operation and increased vehicle speed)
8. Coast downshift (due to a decrease in vehicle speed when the accelerator is released)
Shift control is performed according to a basic shift pattern called.
 車両挙動コントローラ8は、運転者操作や車両速度を検知して、ブレーキやエンジン1の出力の制御を自動的に行い、滑りやすい路面やカーブ路を曲がるときや障害物を回避するときに車両の横滑りを軽減する制御を行う。この車両挙動コントローラ8は、入力センサとしてブレーキ液圧センサ81を有し、ブレーキ制御時に必要なブレーキ液圧情報を取得するようにしている。また、変速機コントロールユニット10とは、CAN通信線70により接続され、変速機コントロールユニット10から情報リクエストを出すと、車両挙動コントローラ8からCAN通信線70を介してブレーキ液圧センサ値の情報が変速機コントロールユニット10へ送信される。なお、車両挙動コントローラ8において診断しているブレーキ液圧センサ故障は、電気異常(ショート/断線)とLow側固着異常である。 The vehicle behavior controller 8 detects the driver's operation and the vehicle speed, automatically controls the brake and the output of the engine 1, and when turning a slippery road surface or a curved road or avoiding an obstacle, the vehicle Control to reduce skidding. The vehicle behavior controller 8 has a brake fluid pressure sensor 81 as an input sensor, and acquires brake fluid pressure information necessary for brake control. Further, the transmission control unit 10 is connected to the CAN communication line 70, and when an information request is issued from the transmission control unit 10, the information of the brake fluid pressure sensor value is transmitted from the vehicle behavior controller 8 via the CAN communication line 70. It is transmitted to the transmission control unit 10. The brake fluid pressure sensor failure diagnosed by the vehicle behavior controller 8 is an electrical abnormality (short / disconnection) and a low side sticking abnormality.
 エンジンコントロールモジュール11は、アクセル開度センサ16、エンジン回転センサ17、等からの信号を入力する。 The engine control module 11 inputs signals from the accelerator opening sensor 16, the engine rotation sensor 17, and the like.
 アクセル開度センサ16は、運転者のアクセル操作によるアクセル開度を検出し、アクセル開度APOを示す信号をエンジンコントロールモジュール11に送信する。エンジン回転センサ17は、エンジン1の回転速度を検出し、エンジン回転速度Neを示す信号をエンジンコントロールモジュール11に送信する。 The accelerator opening sensor 16 detects the accelerator opening caused by the driver's accelerator operation, and transmits a signal indicating the accelerator opening APO to the engine control module 11. The engine rotation sensor 17 detects the rotation speed of the engine 1 and transmits a signal indicating the engine rotation speed Ne to the engine control module 11.
 エンジンコントロールモジュール11は、双方向に情報交換可能なCAN通信線70を介して変速機コントロールユニット10と接続されている。エンジンコントロールモジュール11には、変速機コントロールユニット10からCAN通信線70を介してトルク制限要求が入力されると、エンジントルクを所定の上限トルクにより制限したトルクとするトルク制限制御部110を有する。また、変速機コントロールユニット10から情報リクエストが入力されると、アクセル開度APOやエンジン回転速度Neの情報を変速機コントロールユニット10に出力する。さらに、推定算出によるエンジントルクTeやタービントルクTtの情報を変速機コントロールユニット10に出力する。 The engine control module 11 is connected to the transmission control unit 10 via a CAN communication line 70 capable of exchanging information in both directions. The engine control module 11 has a torque limit control unit 110 that limits the engine torque by a predetermined upper limit torque when a torque limit request is input from the transmission control unit 10 via the CAN communication line 70. When an information request is input from the transmission control unit 10, information on the accelerator opening APO and the engine rotation speed Ne is output to the transmission control unit 10. Further, the information of the engine torque Te and the turbine torque Tt calculated by estimation is output to the transmission control unit 10.
 [自動変速機の詳細構成(図2~図4)]
  以下、図2~図4に基づいて自動変速機3の詳細構成を説明する。自動変速機3は、複数のギヤ段が設定可能なギヤトレーン3a(有段変速機構)と複数の摩擦要素を有するもので、下記の点を特徴とする。
(a) 変速要素として、機械的に係合/空転するワンウェイクラッチを用いていない。
(b) 摩擦要素である第1ブレーキB1、第2ブレーキB2、第3ブレーキB3、第1クラッチK1、第2クラッチK2、第3クラッチK3は、変速時にクラッチソレノイド20によってそれぞれ独立に締結/解放状態が制御される。
(c) 摩擦要素の締結圧制御において締結状態を維持するインギヤ中、クラッチソレノイドに最大圧指令を出力するのではなく、クラッチ滑りを抑えることができる入力トルク相当の中間圧指令をクラッチソレノイド20に出力する。
(d) 第2クラッチK2と第3クラッチK3は、クラッチピストン油室に作用する遠心力による遠心圧を相殺する遠心キャンセル室を有する。
[Detailed configuration of automatic transmission (Figs. 2 to 4)]
Hereinafter, the detailed configuration of the automatic transmission 3 will be described with reference to FIGS. 2 to 4. The automatic transmission 3 has a gear train 3a (stepped transmission mechanism) in which a plurality of gear stages can be set and a plurality of friction elements, and is characterized by the following points.
(a) A one-way clutch that mechanically engages / idles is not used as a shifting element.
(b) The first brake B1, the second brake B2, the third brake B3, the first clutch K1, the second clutch K2, and the third clutch K3, which are friction elements, are independently engaged / released by the clutch solenoid 20 at the time of shifting. The state is controlled.
(c) In the in-gear that maintains the engaged state in the engagement pressure control of the friction element, instead of outputting the maximum pressure command to the clutch solenoid, an intermediate pressure command equivalent to the input torque that can suppress clutch slippage is sent to the clutch solenoid 20. Output.
(d) The second clutch K2 and the third clutch K3 have a centrifugal canceling chamber that cancels the centrifugal pressure due to the centrifugal force acting on the clutch piston oil chamber.
 自動変速機3は、図2に示すように、ギヤトレーン3aを構成する遊星歯車として、変速機入力軸INから変速機出力軸OUTに向けて順に、第1遊星歯車PG1と、第2遊星歯車PG2と、第3遊星歯車PG3と、第4遊星歯車PG4と、を備えている。 As shown in FIG. 2, the automatic transmission 3 has, as planetary gears constituting the gear train 3a, the first planetary gear PG1 and the second planetary gear PG2 in order from the transmission input shaft IN to the transmission output shaft OUT. And, a third planetary gear PG3 and a fourth planetary gear PG4 are provided.
 第1遊星歯車PG1は、シングルピニオン型遊星歯車であり、第1サンギヤS1と、第1サンギヤS1に噛み合うピニオンを支持する第1キャリアC1と、ピニオンに噛み合う第1リングギヤR1と、を有する。 The first planetary gear PG1 is a single pinion type planetary gear, and has a first sun gear S1, a first carrier C1 that supports a pinion that meshes with the first sun gear S1, and a first ring gear R1 that meshes with the pinion.
 第2遊星歯車PG2は、シングルピニオン型遊星歯車であり、第2サンギヤS2と、第2サンギヤS2に噛み合うピニオンを支持する第2キャリアC2と、ピニオンに噛み合う第2リングギヤR2と、を有する。 The second planetary gear PG2 is a single pinion type planetary gear, and has a second sun gear S2, a second carrier C2 that supports a pinion that meshes with the second sun gear S2, and a second ring gear R2 that meshes with the pinion.
 第3遊星歯車PG3は、シングルピニオン型遊星歯車であり、第3サンギヤS3と、第3サンギヤS3に噛み合うピニオンを支持する第3キャリアC3と、ピニオンに噛み合う第3リングギヤR3と、を有する。 The third planetary gear PG3 is a single pinion type planetary gear, and has a third sun gear S3, a third carrier C3 that supports a pinion that meshes with the third sun gear S3, and a third ring gear R3 that meshes with the pinion.
 第4遊星歯車PG4は、シングルピニオン型遊星歯車であり、第4サンギヤS4と、第4サンギヤS4に噛み合うピニオンを支持する第4キャリアC4と、ピニオンに噛み合う第4リングギヤR4と、を有する。 The fourth planetary gear PG4 is a single pinion type planetary gear, and has a fourth sun gear S4, a fourth carrier C4 that supports a pinion that meshes with the fourth sun gear S4, and a fourth ring gear R4 that meshes with the pinion.
 自動変速機3は、図2に示すように、変速機入力軸INと、変速機出力軸OUTと、第1連結メンバM1と、第2連結メンバM2と、トランスミッションケースTCと、を備えている。変速により締結/解放される摩擦要素として、第1ブレーキB1と、第2ブレーキB2と、第3ブレーキB3と、第1クラッチK1と、第2クラッチK2と、第3クラッチK3と、を備えている。 As shown in FIG. 2, the automatic transmission 3 includes a transmission input shaft IN, a transmission output shaft OUT, a first connecting member M1, a second connecting member M2, and a transmission case TC. .. As friction elements that are engaged / released by shifting, the first brake B1, the second brake B2, the third brake B3, the first clutch K1, the second clutch K2, and the third clutch K3 are provided. There is.
 変速機入力軸INは、エンジン1からの駆動力がトルクコンバータ2を介して入力される軸で、第1サンギヤS1と第4キャリアC4に常時連結している。そして、変速機入力軸INは、第2クラッチK2を介して第1キャリアC1に断接可能に連結している。 The transmission input shaft IN is a shaft in which the driving force from the engine 1 is input via the torque converter 2, and is always connected to the first sun gear S1 and the fourth carrier C4. The transmission input shaft IN is connected to the first carrier C1 via the second clutch K2 so as to be connectable and disconnectable.
 変速機出力軸OUTは、プロペラシャフト4及び図外のファイナルギヤ等を介して駆動輪5へ変速した駆動トルクを出力する軸であり、第3キャリアC3に常時連結している。そして、変速機出力軸OUTは、第1クラッチK1を介して第4リングギヤR4に断接可能に連結している。 The transmission output shaft OUT is a shaft that outputs the drive torque shifted to the drive wheels 5 via the propeller shaft 4 and the final gear (not shown), and is always connected to the third carrier C3. The transmission output shaft OUT is connected to the fourth ring gear R4 via the first clutch K1 so as to be able to connect and disconnect.
 第1連結メンバM1は、第1遊星歯車PG1の第1リングギヤR1と第2遊星歯車PG2の第2キャリアC2を、摩擦要素を介在させることなく常時連結するメンバである。第2連結メンバM2は、第2遊星歯車PG2の第2リングギヤR2と第3遊星歯車PG3の第3サンギヤS3と第4遊星歯車PG4の第4サンギヤS4を、摩擦要素を介在させることなく常時連結するメンバである。 The first connecting member M1 is a member that constantly connects the first ring gear R1 of the first planetary gear PG1 and the second carrier C2 of the second planetary gear PG2 without interposing a friction element. The second connecting member M2 always connects the second ring gear R2 of the second planetary gear PG2, the third sun gear S3 of the third planetary gear PG3, and the fourth sun gear S4 of the fourth planetary gear PG4 without interposing a friction element. It is a member to do.
 第1ブレーキB1は、第1キャリアC1の回転を、トランスミッションケースTCに対し係止可能な摩擦要素である。第2ブレーキB2は、第3リングギヤR3の回転を、トランスミッションケースTCに対し係止可能な摩擦要素である。第3ブレーキB3は、第2サンギヤS2の回転を、トランスミッションケースTCに対し係止可能な摩擦要素である。 The first brake B1 is a friction element that can lock the rotation of the first carrier C1 with respect to the transmission case TC. The second brake B2 is a friction element capable of locking the rotation of the third ring gear R3 with respect to the transmission case TC. The third brake B3 is a friction element capable of locking the rotation of the second sun gear S2 with respect to the transmission case TC.
 第1クラッチK1は、第4リングギヤR4と変速機出力軸OUTの間を選択的に連結する摩擦要素である。第2クラッチK2は、変速機入力軸INと第1キャリアC1の間を選択的に連結する摩擦要素である。第3クラッチK3は、第1キャリアC1と第2連結メンバM2の間を選択的に連結する摩擦要素である。 The first clutch K1 is a friction element that selectively connects the fourth ring gear R4 and the transmission output shaft OUT. The second clutch K2 is a friction element that selectively connects the transmission input shaft IN and the first carrier C1. The third clutch K3 is a friction element that selectively connects between the first carrier C1 and the second connecting member M2.
 図3に基づいて、各ギヤ段を成立させる変速構成を説明する。1速段(1st)は、第2ブレーキB2と第3ブレーキB3と第3クラッチK3の同時締結により達成する。2速段(2nd)は、第2ブレーキB2と第2クラッチK2と第3クラッチK3の同時締結により達成する。3速段(3rd)は、第2ブレーキB2と第3ブレーキB3と第2クラッチK2の同時締結により達成する。4速段(4th)は、第2ブレーキB2と第3ブレーキB3と第1クラッチK1の同時締結により達成する。5速段(5th)は、第3ブレーキB3と第1クラッチK1と第2クラッチK2の同時締結により達成する。以上の1速段~5速段が、ギヤ比が1を超えている減速ギヤ比によるアンダードライブギヤ段である。 Based on FIG. 3, a shift configuration for establishing each gear stage will be described. The first speed (1st) is achieved by simultaneously engaging the second brake B2, the third brake B3, and the third clutch K3. The second speed (2nd) is achieved by simultaneously engaging the second brake B2, the second clutch K2, and the third clutch K3. The third speed (3rd) is achieved by simultaneously engaging the second brake B2, the third brake B3, and the second clutch K2. The 4th speed (4th) is achieved by simultaneously engaging the second brake B2, the third brake B3, and the first clutch K1. The fifth speed (5th) is achieved by simultaneously engaging the third brake B3, the first clutch K1 and the second clutch K2. The above 1st to 5th speeds are underdrive gears with a reduction gear ratio in which the gear ratio exceeds 1.
 6速段(6th)は、第1クラッチK1と第2クラッチK2と第3クラッチK3の同時締結により達成する。この第6速段は、ギヤ比=1の直結段である。 The 6th speed (6th) is achieved by simultaneously engaging the 1st clutch K1, the 2nd clutch K2, and the 3rd clutch K3. This sixth speed stage is a directly connected stage having a gear ratio of 1.
 7速段(7th)は、第3ブレーキB3と第1クラッチK1と第3クラッチK3の同時締結により達成する。8速段(8th)は、第1ブレーキB1と第1クラッチK1と第3クラッチK3の同時締結により達成する。9速段(9th)は、第1ブレーキB1と第3ブレーキB3と第1クラッチK1の同時締結により達成する。以上の7速段~9速段は、ギヤ比が1未満の増速ギヤ比によるオーバードライブギヤ段である。 The 7th speed (7th) is achieved by simultaneously engaging the 3rd brake B3, the 1st clutch K1 and the 3rd clutch K3. The 8th speed (8th) is achieved by simultaneously engaging the first brake B1, the first clutch K1, and the third clutch K3. The 9th speed stage (9th) is achieved by simultaneously engaging the first brake B1, the third brake B3, and the first clutch K1. The 7th to 9th speeds described above are overdrive gears with a speed-increasing gear ratio of less than 1.
 さらに、1速段から9速段までのギヤ段のうち、隣接するギヤ段へのアップ変速を行う際、或いは、ダウン変速を行う際、図3に示すように、掛け替え変速により行う構成としている。即ち、隣接するギヤ段への変速は、三つの摩擦要素のうち、二つの摩擦要素の締結は維持したままで、一つの摩擦要素の解放と一つの摩擦要素の締結を行うことで達成される。 Further, among the gear stages from the 1st speed to the 9th speed, when the up shift is performed to the adjacent gear stage or the down shift is performed, as shown in FIG. 3, the shift shift is performed. .. That is, the shift to the adjacent gear stage is achieved by releasing one friction element and fastening one friction element while maintaining the fastening of two friction elements among the three friction elements. ..
 Rレンジ位置の選択による後退速段(Rev)は、第1ブレーキB1と第2ブレーキB2と第3ブレーキB3の同時締結により達成する。なお、Nレンジ位置及びPレンジ位置を選択したときは、基本的に6個の摩擦要素B1,B2,B3,K1,K2,K3の全てが解放状態とされる。 The reverse speed stage (Rev) by selecting the R range position is achieved by simultaneously engaging the first brake B1, the second brake B2, and the third brake B3. When the N range position and the P range position are selected, basically all of the six friction elements B1, B2, B3, K1, K2, and K3 are in the released state.
 そして、変速機コントロールユニット10には、図4に示すような変速マップが記憶設定されていて、Dレンジの選択により前進側の1速段から9速段までのギヤ段の切り替えによる変速は、この変速マップに従って行われる。即ち、そのときの運転点(VSP,APO)が図4の実線で示すアップシフト線を横切るとアップシフト変速要求が出される。又、運転点(VSP,APO)が図4の破線で示すダウンシフト線を横切るとダウンシフト変速要求が出される。 A shift map as shown in FIG. 4 is stored and set in the transmission control unit 10, and shifting by switching gears from the 1st gear to the 9th gear on the forward side by selecting the D range is performed. This is done according to this shift map. That is, when the operating point (VSP, APO) at that time crosses the upshift line shown by the solid line in FIG. 4, an upshift shift request is issued. Further, when the operating point (VSP, APO) crosses the downshift line shown by the broken line in FIG. 4, a downshift shift request is issued.
 [油圧制御系の詳細構成(図5)]
  以下、図5に基づいて油圧制御系の詳細構成を説明する。変速機コントロールユニット10によって油圧制御されるコントロールバルブユニット6は、図5に示すように、油圧源として、メカオイルポンプ61と電動オイルポンプ62を備える。メカオイルポンプ61は、エンジン1によりポンプ駆動され、電動オイルポンプ62は、電動モータ63によりポンプ駆動される。
[Detailed configuration of flood control system (Fig. 5)]
Hereinafter, the detailed configuration of the hydraulic control system will be described with reference to FIG. As shown in FIG. 5, the control valve unit 6 hydraulically controlled by the transmission control unit 10 includes a mechanical oil pump 61 and an electric oil pump 62 as hydraulic sources. The mechanical oil pump 61 is pump-driven by the engine 1, and the electric oil pump 62 is pump-driven by the electric motor 63.
 コントロールバルブユニット6は、油圧制御回路に設けられる弁として、ライン圧ソレノイド21とライン圧調圧弁64とクラッチソレノイド20とロックアップソレノイド23を備える。そして、潤滑ソレノイド22と潤滑調圧弁65とブースト切り替え弁66を備える。さらに、P-nP切り替え弁67とパーク油圧アクチュエータ68を備える。 The control valve unit 6 includes a line pressure solenoid 21, a line pressure regulating valve 64, a clutch solenoid 20, and a lockup solenoid 23 as valves provided in the flood control circuit. A lubrication solenoid 22, a lubrication pressure regulating valve 65, and a boost switching valve 66 are provided. Further, a P-nP switching valve 67 and a park hydraulic actuator 68 are provided.
 ライン圧調圧弁64は、メカオイルポンプ61と電動オイルポンプ62の少なくとも一方からの吐出油を、ライン圧ソレノイド21からのバルブ作動信号圧に基づいてライン圧PLに調圧する。 The line pressure adjusting valve 64 regulates the discharged oil from at least one of the mechanical oil pump 61 and the electric oil pump 62 to the line pressure PL based on the valve operating signal pressure from the line pressure solenoid 21.
 ここで、ライン圧ソレノイド21は、変速機コントロールユニット10に有するライン圧制御部100から制御指令により調圧駆動する。ライン圧制御部100は、ギヤトレーン3aへの入力トルクの大きさに対する目標ライン圧特性に基づいてライン圧PLを制御する。 Here, the line pressure solenoid 21 is driven to adjust the pressure by a control command from the line pressure control unit 100 included in the transmission control unit 10. The line pressure control unit 100 controls the line pressure PL based on the target line pressure characteristic with respect to the magnitude of the input torque to the gear train 3a.
 クラッチソレノイド20は、ライン圧PLを元圧とし、摩擦要素(B1,B2,B3,K1,K2,K3)毎に締結圧や解放圧を制御する変速系ソレノイドである。なお、図5ではクラッチソレノイド20が1個であるように記載しているが、摩擦要素(B1,B2,B3,K1,K2,K3)毎に6個のソレノイドを有する。ここで、クラッチソレノイド20は、変速機コントロールユニット10に有する変速制御部101からの制御指令により調圧駆動し、燃費性能の向上を意図し、インギヤ中に締結状態とされる摩擦要素に対し、クラッチ滑りを抑えることができる入力トルク相当の中間圧指令をクラッチソレノイド20へ出力する。 The clutch solenoid 20 is a transmission system solenoid that uses the line pressure PL as the original pressure and controls the fastening pressure and release pressure for each friction element (B1, B2, B3, K1, K2, K3). Although it is described in FIG. 5 that there is one clutch solenoid 20, each friction element (B1, B2, B3, K1, K2, K3) has six solenoids. Here, the clutch solenoid 20 is driven by adjusting the pressure according to a control command from the shift control unit 101 included in the transmission control unit 10, with the intention of improving fuel efficiency, with respect to a friction element that is engaged in the in-gear state. An intermediate pressure command corresponding to an input torque that can suppress clutch slippage is output to the clutch solenoid 20.
 ロックアップソレノイド23は、ロックアップクラッチ2aの締結時、ライン圧調圧弁64により作り出されたライン圧PLと調圧余剰油を用い、ロックアップクラッチ2aのクラッチ差圧を制御する。 The lockup solenoid 23 controls the clutch differential pressure of the lockup clutch 2a by using the line pressure PL and the pressure adjusting excess oil created by the line pressure adjusting valve 64 when the lockup clutch 2a is engaged.
 ここで、ロックアップソレノイド23は、変速機コントロールユニット10に有するロックアップ制御部102からの制御指令により調圧駆動する。ロックアップ制御部102は、低車速域に設定された所定車速以上の領域での走行中、ロックアップクラッチ2aの微小スリップを許容するゼロスリップ締結状態を維持するクラッチ差圧制御を、ギヤトレーン3aのギヤ段や変速にかかわらず実行する。即ち、完全締結状態を保つクラッチ差圧制御ではなく、ギヤトレーン3aへの変動するトルク入力に対してロックアップクラッチ2aを滑らせることにより変動トルクを吸収するようにしている。 Here, the lockup solenoid 23 is driven to adjust the pressure by a control command from the lockup control unit 102 included in the transmission control unit 10. The lock-up control unit 102 controls the clutch differential pressure of the gear train 3a to maintain a zero-slip engagement state that allows a minute slip of the lock-up clutch 2a while traveling in a region of a predetermined vehicle speed or higher set in a low vehicle speed range. Execute regardless of gear stage or shift. That is, instead of the clutch differential pressure control that maintains the completely engaged state, the variable torque is absorbed by sliding the lockup clutch 2a with respect to the variable torque input to the gear train 3a.
 潤滑ソレノイド22は、潤滑調圧弁65へのバルブ作動信号圧と、ブースト切り替え弁66への切替え圧とを作り出し、摩擦要素へ供給する潤滑流量を、発熱を抑える適正な流量に調圧する機能を有する。そして、連続変速プロテクション以外のときに摩擦要素の発熱を抑える最低潤滑流量をメカ保証し、最低潤滑流量に上乗せされる潤滑流量分を調整するソレノイドである。 The lubrication solenoid 22 has a function of creating a valve operating signal pressure to the lubrication pressure regulating valve 65 and a switching pressure to the boost switching valve 66, and adjusting the lubrication flow rate supplied to the friction element to an appropriate flow rate for suppressing heat generation. .. Then, it is a solenoid that mechanically guarantees the minimum lubrication flow rate that suppresses heat generation of the friction element at times other than continuous shift protection, and adjusts the lubrication flow rate added to the minimum lubrication flow rate.
 潤滑調圧弁65は、潤滑ソレノイド22からのバルブ作動信号圧によって、摩擦要素とギヤトレーン3aを含むパワートレーン(PT)へクーラー69を介して供給する潤滑流量をコントロールすることができる。そして、潤滑調圧弁65によってPT供給潤滑流量を適正化することでフリクションを低減する。 The lubrication pressure regulating valve 65 can control the lubrication flow rate supplied to the power train (PT) including the friction element and the gear train 3a via the cooler 69 by the valve operating signal pressure from the lubrication solenoid 22. Then, friction is reduced by optimizing the PT supply lubrication flow rate by the lubrication pressure regulating valve 65.
 ブースト切り替え弁66は、潤滑ソレノイド22からの切替え圧によって、第2クラッチK2と第3クラッチK3の遠心キャンセル室の供給油量を増加する。このブースト切り替え弁66は、遠心キャンセル室の油量が不足しているシーンで一時的に供給油量を増やすときに使用する。 The boost switching valve 66 increases the amount of oil supplied to the centrifugal cancel chambers of the second clutch K2 and the third clutch K3 by the switching pressure from the lubrication solenoid 22. This boost switching valve 66 is used when the amount of oil supplied is temporarily increased in a scene where the amount of oil in the centrifugal cancel chamber is insufficient.
 P-nP切り替え弁67は、潤滑ソレノイド22(又はパークソレノイド)からの切替え圧によってパーク油圧アクチュエータ68へのライン圧路を切り替える。Pレンジへの選択時にパークギヤ3bを噛合わせるパークロックと、PレンジからPレンジ以外のレンジへの選択時にパークギヤ3bの噛合を解除するパークロック解除を行う。 The P-nP switching valve 67 switches the line pressure path to the park hydraulic actuator 68 by the switching pressure from the lubrication solenoid 22 (or park solenoid). The park lock that meshes the park gear 3b when the P range is selected and the park lock that disengages the park gear 3b when the park gear 3b is selected from the P range to a range other than the P range are released.
 このように、運転者が操作するシフトレバーと機械的に連結され、Dレンジ圧油路やRレンジ圧油路やPレンジ圧油路等を切り替えるマニュアルバルブを廃止したコントロールバルブユニット6の構成としている。そして、シフタ181によりD,R,Nレンジを選択した際、シフタコントロールユニット18からのレンジ位置信号に基づいて、6個の摩擦要素を独立に締結/解放する制御を採用することで「シフト・バイ・ワイヤ」を達成している。さらに、シフタ181によりPレンジを選択した際、シフタコントロールユニット18からのレンジ位置信号に基づいて、パークモジュールを構成するP-nP切り替え弁67とパーク油圧アクチュエータ68を作動させることで「パーク・バイ・ワイヤ」を達成している。 In this way, as a configuration of the control valve unit 6 that is mechanically connected to the shift lever operated by the driver and abolishes the manual valve that switches the D range pressure oil passage, the R range pressure oil passage, the P range pressure oil passage, and the like. There is. Then, when the D, R, and N ranges are selected by the shifter 181, the control of independently fastening / releasing the six friction elements based on the range position signal from the shifter control unit 18 is adopted to "shift. "By-wire" has been achieved. Further, when the P range is selected by the shifter 181, the P-nP switching valve 67 and the park hydraulic actuator 68 constituting the park module are operated based on the range position signal from the shifter control unit 18 to "park by".・ Achieved "wire".
 [変速制御部の詳細構成(図6)]
  以下、図6に基づいて変速機コントロールユニット10の変速制御部101の詳細構成を説明する。変速制御部101は、図6に示すように、ブレーキ液圧センサ値異常判定部101a(ブレーキ操作情報異常判定部)と、インターロック判定部101bと、ソレノイド機能異常判定部101cと、通常変速制御部101dと、リンプホーム制御部101eと、変速系ソレノイド制御部101fと、を備える。
[Detailed configuration of shift control unit (Fig. 6)]
Hereinafter, the detailed configuration of the shift control unit 101 of the transmission control unit 10 will be described with reference to FIG. As shown in FIG. 6, the shift control unit 101 includes a brake fluid pressure sensor value abnormality determination unit 101a (brake operation information abnormality determination unit), an interlock determination unit 101b, a solenoid function abnormality determination unit 101c, and normal shift control. A unit 101d, a limp home control unit 101e, and a speed change system solenoid control unit 101f are provided.
 ブレーキ液圧センサ値異常判定部101aは、車両挙動コントローラ8からブレーキ液圧センサ値の情報を入力し、車両の加減速挙動とブレーキ液圧センサ値の対応関係が整合しない場合にブレーキ液圧センサ値が異常と判定する。ここで、車両の加減速挙動は、出力軸回転センサ14からの出力軸回転速度Noを入力し、出力軸回転速度Noの時間微分演算処理を行い、単位時間当たりの回転速度変化(回転速度上昇:加速挙動、回転速度低下:減速挙動)を求めることで取得する。 The brake fluid pressure sensor value abnormality determination unit 101a inputs information on the brake fluid pressure sensor value from the vehicle behavior controller 8, and when the correspondence between the acceleration / deceleration behavior of the vehicle and the brake fluid pressure sensor value does not match, the brake fluid pressure sensor Judge that the value is abnormal. Here, as for the acceleration / deceleration behavior of the vehicle, the output shaft rotation speed No. from the output shaft rotation sensor 14 is input, the time differential calculation process of the output shaft rotation speed No. is performed, and the rotation speed change (rotation speed increase) per unit time. : Acceleration behavior, rotation speed decrease: deceleration behavior).
 インターロック判定部101bは、所定ギヤ段による走行中、実ギヤ比が設定ギヤ比から乖離するギヤ比異常条件と、ブレーキ非操作のときに車両減速度が所定値以上になる減速度条件とが所定時間継続して成立すると、ギヤトレーン3aがインターロック状態であると判定する。このインターロック判定部101bは、ブレーキ液圧センサ値異常判定部101aからの判定結果を入力し、ブレーキ液圧センサ値が異常と判定されると、インターロック判定を許可しない。一方、ブレーキ液圧センサ値異常判定部101aによりブレーキ液圧センサ値が正常と判定されると、インターロック判定を許可し、ブレーキ非操作をブレーキ液圧センサ値が所定値以下であることにより検出する。ブレーキ液圧センサ値の所定値は、例えば、ブレーキが作動してインギヤ中の摩擦要素が互いに滑る減速度が生じる値に設定することができる。 The interlock determination unit 101b has a gear ratio abnormality condition in which the actual gear ratio deviates from the set gear ratio while traveling in the predetermined gear stage, and a deceleration condition in which the vehicle deceleration becomes equal to or higher than the predetermined value when the brake is not operated. If it is continuously established for a predetermined time, it is determined that the gear train 3a is in the interlock state. The interlock determination unit 101b inputs the determination result from the brake fluid pressure sensor value abnormality determination unit 101a, and when the brake fluid pressure sensor value is determined to be abnormal, the interlock determination is not permitted. On the other hand, when the brake fluid pressure sensor value abnormality determination unit 101a determines that the brake fluid pressure sensor value is normal, the interlock determination is permitted and the non-operation of the brake is detected when the brake fluid pressure sensor value is equal to or less than a predetermined value. To do. The predetermined value of the brake fluid pressure sensor value can be set to, for example, a value at which the brake is activated and the friction elements in the in-gear slide with each other to cause deceleration.
 ここで、実ギヤ比が設定ギヤ比から乖離するギヤ比異常条件は、1速ギヤ段~9速ギヤ段の何れかのギヤ段による前進走行中、変速機入力軸回転速度(タービン回転速度Nt)と変速機出力軸回転速度(出力軸回転速度No)から実ギヤ比を算出する。そして、算出される実ギヤ比とそのときの所定ギヤ段における設定ギヤ比の差が設定値(正常時の設定ギヤ比に対して±H%)未満であるとギヤ比が正常であると判定し、算出される実ギヤ比とそのときの所定ギヤ段における設定ギヤ比の差が設定値以上になるとギヤ比異常と判定する。車両減速度の所定値は、例えば、ギヤトレーン3aがインターロック状態になって車両が急減速するインターロック減速での減速値を多数の実験により取得し、ブレーキ緩減速とインターロック減速を切り分ける減速閾値により与える。 Here, the gear ratio abnormality condition in which the actual gear ratio deviates from the set gear ratio is the transmission input shaft rotation speed (turbine rotation speed Nt) during forward traveling by any of the 1st to 9th gears. ) And the transmission output shaft rotation speed (output shaft rotation speed No.), calculate the actual gear ratio. Then, if the difference between the calculated actual gear ratio and the set gear ratio at the predetermined gear stage at that time is less than the set value (± H% with respect to the set gear ratio at the normal time), it is determined that the gear ratio is normal. Then, when the difference between the calculated actual gear ratio and the set gear ratio in the predetermined gear stage at that time becomes equal to or greater than the set value, it is determined that the gear ratio is abnormal. The predetermined value of the vehicle deceleration is, for example, the deceleration threshold value for separating the brake slow deceleration and the interlock deceleration by acquiring the deceleration value in the interlock deceleration in which the gear train 3a is in the interlock state and the vehicle suddenly decelerates. Give by.
 ソレノイド機能異常判定部101cは、1速ギヤ段~9速ギヤ段の何れかのギヤ段による前進走行中、ギヤ比異常の異常が確定すると、クラッチソレノイド20のソレノイド機能異常と判定する。ここで、ギヤ比異常の異常確定は、変速過渡期を除くインギヤ中において、ギヤトレーン3aにおけるギヤ比異常を開始してから設定時間(>累積時間)までの間でのギヤ比異常時間を累積し、累積時間がギヤ比異常異常確定タイマー時間以上になるとギヤ比異常異常確定とする。 The solenoid function abnormality determination unit 101c determines that the solenoid function abnormality of the clutch solenoid 20 is determined when an abnormality of the gear ratio abnormality is confirmed during forward traveling by any of the 1st speed gear stages to the 9th speed gear stage. Here, to determine the abnormality of the gear ratio abnormality, the gear ratio abnormality time from the start of the gear ratio abnormality in the gear train 3a to the set time (> cumulative time) is accumulated during the in-gear excluding the shift transition period. , When the cumulative time exceeds the gear ratio abnormality abnormality confirmation timer time, the gear ratio abnormality abnormality is confirmed.
 通常変速制御部101dは、インターロック状態でもソレノイド機能異常でもないと判定されている場合、そのときの運転点(VSP,APO)と図4に示す変速マップを用いてアップシフト及びダウンシフトを行う通常変速制御を実行する。通常変速制御では、各ギヤ段における6個のクラッチソレノイド20a,20b,20c,20d,20e,20fに対する締結指令/解放指令を図3に示す締結表に従って決め、決めた締結指令/解放指令を変速系ソレノイド制御部101fへ出力する。なお、20aは第1ブレーキソレノイド、20bは第2ブレーキソレノイド、20cは第3ブレーキソレノイド、20dは第1クラッチソレノイド、20eは第2クラッチソレノイド、20fは第3クラッチソレノイドである。 When it is determined that neither the normal shift control unit 101d is in the interlock state nor the solenoid function is abnormal, the normal shift control unit 101d performs upshift and downshift using the operating point (VSP, APO) at that time and the shift map shown in FIG. Normal shift control is executed. In the normal shift control, the engagement command / release command for the six clutch solenoids 20a, 20b, 20c, 20d, 20e, 20f in each gear stage is determined according to the engagement table shown in FIG. Output to the system solenoid control unit 101f. 20a is a first brake solenoid, 20b is a second brake solenoid, 20c is a third brake solenoid, 20d is a first clutch solenoid, 20e is a second clutch solenoid, and 20f is a third clutch solenoid.
 リンプホーム制御部101eは、インターロック状態であると判定された場合、又は、ソレノイド機能異常と判定された場合、2種類の異常判定態様に共通する異常対応のリンプホーム制御を実行する。リンプホーム制御では、インターロック判定結果、又は、ソレノイド機能異常判定結果を入力すると、6個のクラッチソレノイド20a,20b,20c,20d,20e,20fを全て解放する解放指示を出力する。そして、解放指示の出力によりニュートラル状態への移行が確認されると、ギヤトレーン3aに有する中間軸回転センサ19からの回転/停止情報に基づいて、6個の摩擦要素のうち中間軸をトランスミッションケースTCに固定する第1ブレーキB1の締結・解放を判定する。次に、第1ブレーキB1の締結・解放の判定情報に基づいて退避ギヤ段を決定し、そのときのギヤ段から決定した退避ギヤ段へ変速する指令を変速系ソレノイド制御部101fへ出力し、その後、退避ギヤ段へ固定する。 When the limp home control unit 101e is determined to be in an interlock state or is determined to be a solenoid function abnormality, the limp home control unit 101e executes an abnormality response limp home control common to the two types of abnormality determination modes. In the limp home control, when the interlock determination result or the solenoid function abnormality determination result is input, a release instruction for releasing all six clutch solenoids 20a, 20b, 20c, 20d, 20e, and 20f is output. Then, when the transition to the neutral state is confirmed by the output of the release instruction, the intermediate shaft of the six friction elements is set to the transmission case TC based on the rotation / stop information from the intermediate shaft rotation sensor 19 possessed by the gear train 3a. Judgment of engagement / release of the first brake B1 to be fixed to. Next, the evacuation gear stage is determined based on the determination information of engagement / release of the first brake B1, and a command for shifting from the gear stage at that time to the determined evacuation gear stage is output to the transmission system solenoid control unit 101f. After that, it is fixed to the retract gear stage.
 ここで、ソレノイド機能異常が判定された場合、退避ギヤ段への変速後、退避ギヤ段による前進走行中、再度、ソレノイド機能異常判定部101cにおいて、実ギヤ比と退避ギヤ段における設定ギヤ比の差に基づいて、退避ギヤ段でのギヤ比異常を判定する。そして、退避ギヤ段でのギヤ比異常が判定され、且つ、解放故障要素が推定されると、リンプホーム制御部101eでは、解放故障要素の推定に基づいて退避ギヤ段を変更し、退避ギヤ段から変更した第2の退避ギヤ段に変速する。一方、ソレノイド機能異常判定部101cにて退避ギヤ段でのギヤ比異常が判定されたが解放故障要素が推定されないと、リンプホーム制御部101eでは、ライン圧制御の機能異常と判定し、エンジン1の上限トルクを制限する要求をトルク制限制御部110へ出力する。 Here, when a solenoid function abnormality is determined, the actual gear ratio and the set gear ratio in the evacuation gear stage are again determined by the solenoid function abnormality determination unit 101c during forward traveling by the evacuation gear stage after shifting to the evacuation gear stage. Based on the difference, the gear ratio abnormality in the evacuation gear stage is determined. Then, when the gear ratio abnormality in the evacuation gear stage is determined and the release failure element is estimated, the limp home control unit 101e changes the evacuation gear stage based on the estimation of the release failure element, and the evacuation gear stage is changed. Shifts to the second evacuation gear stage changed from. On the other hand, if the solenoid function abnormality determination unit 101c determines the gear ratio abnormality in the retracted gear stage but the release failure factor is not estimated, the limp home control unit 101e determines that the line pressure control function is abnormal and the engine 1 The request for limiting the upper limit torque of is output to the torque limit control unit 110.
 ここで、リンプホーム制御部101eは、インターロック又はソレノイド機能異常が判定された時に選択されているギヤ段が第1ブレーキB1を締結状態として成立する8速ギヤ段又は9速ギヤ段であるか否かを判定する。そして、8速ギヤ段又は9速ギヤ段による走行中にギヤ比異常を判定すると、ニュートラル状態へ移行することなく、8速ギヤ段の場合は退避ギヤ段を3速ギヤ段と決定し、9速ギヤ段の場合は退避ギヤ段を2速ギヤ段と決定し、それぞれ決定したギヤ段へ変速する。なお、8速ギヤ段の場合に3速ギヤ段を、9速ギヤ段の場合に2速ギヤ段を退避ギヤ段として決定するのは、図3に示すように、複数の摩擦要素の締結/解放の組み合わせ関係が逆の組み合わせ関係であり、8速ギヤ段又は9速ギヤ段でいずれかの摩擦要素に誤締結又は誤解放が生じていても3速ギヤ段又は2速ギヤ段であれば成立させることができるからである。即ち、変速系ソレノイド異常が判定された時に選択されているギヤ段が第1ブレーキB1を解放状態として成立する1速ギヤ段~7速ギヤ段であるとき、ニュートラル状態から退避ギヤ段固定へと移行する。そして、1速ギヤ段~7速ギヤ段であるときの退避ギヤ段は、各ギヤ段において第1ブレーキB1が誤締結のときと誤締結以外のときとで切り分けて決定する。 Here, in the limp home control unit 101e, whether the gear stage selected when the interlock or solenoid function abnormality is determined is the 8-speed gear stage or the 9-speed gear stage established with the first brake B1 engaged. Judge whether or not. Then, when a gear ratio abnormality is determined during traveling by the 8th gear or the 9th gear, the evacuation gear is determined to be the 3rd gear in the case of the 8th gear without shifting to the neutral state. In the case of a speed gear stage, the evacuation gear stage is determined to be the second speed gear stage, and the gears are changed to the determined gear stages. As shown in FIG. 3, a plurality of friction elements are fastened / determined by determining the 3rd gear stage in the case of the 8th gear stage and the 2nd speed gear stage as the evacuation gear stage in the case of the 9th gear stage. The combination relationship of release is the reverse combination relationship, and even if any friction element is erroneously engaged or released in the 8th gear stage or the 9th gear stage, if it is the 3rd speed gear stage or the 2nd speed gear stage. This is because it can be established. That is, when the gear stage selected when the transmission system solenoid abnormality is determined is the 1st speed gear stage to the 7th speed gear stage established with the 1st brake B1 released, the state is changed from the neutral state to the evacuation gear stage fixed. Transition. Then, the evacuation gear stage when the 1st speed gear stage to the 7th speed gear stage is set is determined separately for each gear stage when the first brake B1 is erroneously engaged and when it is not erroneously engaged.
 変速系ソレノイド制御部101fは、通常変速制御部101d又はリンプホーム制御部101eからの指令に基づいて、6個のクラッチソレノイド20a,20b,20c,20d,20e,20fに対する締結指令/解放指令を出力する。この変速系ソレノイド制御部101fは、各ギヤ段において3個の摩擦要素の締結状態を維持するインギヤ中、ライン圧PLを元圧とし、クラッチ滑りを抑えることができる入力トルク相当の中間圧指令をクラッチソレノイド20(変速系ソレノイド)へ出力する。 The speed change system solenoid control unit 101f outputs a engagement command / release command for the six clutch solenoids 20a, 20b, 20c, 20d, 20e, 20f based on a command from the normal speed change control unit 101d or the limp home control unit 101e. To do. The transmission system solenoid control unit 101f uses the line pressure PL as the original pressure during the in-gear that maintains the engaged state of the three friction elements in each gear stage, and issues an intermediate pressure command equivalent to the input torque that can suppress clutch slippage. Output to the clutch solenoid 20 (transmission system solenoid).
 [ブレーキ液圧センサ値異常判定処理構成(図7、図8)]
  以下、図7に基づいて変速制御部101のブレーキ液圧センサ値異常判定部101aにて実行されるブレーキ液圧センサ値異常判定処理構成を説明する。なお、図7のブレーキ液圧センサ値異常判定処理は、イグニッションオン中(イグニッション起動中)において繰り返し実行される。
[Brake fluid pressure sensor value abnormality determination processing configuration (FIGS. 7 and 8)]
Hereinafter, a brake fluid pressure sensor value abnormality determination processing configuration executed by the brake fluid pressure sensor value abnormality determination unit 101a of the shift control unit 101 will be described with reference to FIG. 7. The brake fluid pressure sensor value abnormality determination process of FIG. 7 is repeatedly executed while the ignition is on (the ignition is being activated).
 ステップS1では、処理スタートに続き、禁止条件非成立であるか否かを判断する。YES(禁止条件非成立)の場合はステップS2とステップS6へ進み、NO(禁止条件成立)の場合はステップS13へ進む。
 ここで、「禁止条件非成立」とは、下記の(1),(2),(3)の何れの条件にも該当しない場合をいい、「禁止条件成立」とは、下記の(1),(2),(3)のうち少なくとも1つの条件に該当する場合をいう。
(1)ブレーキ液圧センサ値として異常値を受信したとき。
(2)車両挙動コントローラ8からのCAN受信異常のとき。
(3)出力軸回転センサ14が異常であるとき。
In step S1, following the start of processing, it is determined whether or not the prohibition condition is not satisfied. If YES (prohibition condition is not satisfied), the process proceeds to step S2 and step S6, and if NO (prohibition condition is not satisfied), the process proceeds to step S13.
Here, "prohibition condition not satisfied" means a case where none of the following conditions (1), (2), and (3) is satisfied, and "prohibition condition is satisfied" means the following (1). , (2), (3) when at least one of the conditions is met.
(1) When an abnormal value is received as the brake fluid pressure sensor value.
(2) When the CAN reception from the vehicle behavior controller 8 is abnormal.
(3) When the output shaft rotation sensor 14 is abnormal.
 ステップS2では、S1での禁止条件非成立との判断に続き、Hi側診断許可条件成立であるか否かを判断する。YES(Hi側診断許可条件成立)の場合はステップS3へ進み、NO(Hi側診断許可条件不成立)の場合はステップS13へ進む。
 ここで、Hi側診断許可条件は、下記の(1),(2),(3)の条件により与え、3条件の成立によりHi側診断許可条件成立とし、3条件のうち何れかの条件に該当しないとHi側診断許可条件不成立とする。
(1)P,Rレンジ以外のとき。
(2)車両加減速度が各ギヤ段で異ならせて設定される閾値A以上のとき(図8を参照)。
(3)車速VSPが閾値Jを超えているとき。
In step S2, following the determination that the prohibition condition is not satisfied in S1, it is determined whether or not the Hi side diagnosis permission condition is satisfied. If YES (Hi side diagnosis permission condition is satisfied), the process proceeds to step S3, and if NO (Hi side diagnosis permission condition is not satisfied), the process proceeds to step S13.
Here, the Hi-side diagnosis permission condition is given according to the following conditions (1), (2), and (3), and the Hi-side diagnosis permission condition is satisfied when the three conditions are satisfied, and any of the three conditions is satisfied. If it does not correspond, the Hi side diagnosis permission condition is not satisfied.
(1) When not in the P and R ranges.
(2) When the vehicle acceleration / deceleration is equal to or higher than the threshold value A set differently for each gear stage (see FIG. 8).
(3) When the vehicle speed VSP exceeds the threshold value J.
 ステップS3では、S2でのHi側診断許可条件成立との判断に続き、Hi側診断正常/異常判定成立か否かを判断する。YES(Hi側診断正常/異常判定成立)の場合はステップS4へ進み、NO(Hi側診断正常/異常判定不成立)の場合はステップS13へ進む。ここで、車両加減速度が閾値A以上の加速側であるとき、ブレーキ液圧センサ値が閾値K以下であるとHi側診断正常判定成立とする。そして、ブレーキ液圧センサ値が閾値Bを超えるとHi側診断異常判定成立とする(図8のHi側診断NG領域を参照)。なお、閾値Kと閾値Bは、インターロックの発生時に車両の減速特性が各ギヤ段で異なるため、各ギヤ段で異ならせて設定される。 In step S3, following the determination that the Hi-side diagnosis permission condition is satisfied in S2, it is determined whether or not the Hi-side diagnosis normal / abnormal determination is established. If YES (Hi side diagnosis normal / abnormal judgment established), the process proceeds to step S4, and if NO (Hi side diagnosis normal / abnormal determination not established), the process proceeds to step S13. Here, when the vehicle acceleration / deceleration is on the acceleration side of the threshold value A or more, if the brake fluid pressure sensor value is the threshold value K or less, the Hi side diagnosis normal determination is established. Then, when the brake fluid pressure sensor value exceeds the threshold value B, the Hi-side diagnosis abnormality determination is established (see the Hi-side diagnosis NG region in FIG. 8). Since the deceleration characteristics of the vehicle are different in each gear stage when the interlock occurs, the threshold value K and the threshold value B are set differently in each gear stage.
 ステップS4では、S3でのHi側診断正常/異常判定成立との判断に続き、Hi側診断正常/異常判定成立と判断されてから所定時間以上経過したか否かを判断する。YES(所定時間以上経過した)の場合はステップS5へ進み、NO(所定時間以上経過していない)の場合はステップS13へ進む。 In step S4, following the determination that the Hi-side diagnosis normal / abnormal determination is established in S3, it is determined whether or not a predetermined time or more has passed since the determination that the Hi-side diagnosis normal / abnormal determination was established. If YES (the predetermined time or more has passed), the process proceeds to step S5, and if NO (the predetermined time or more has not passed), the process proceeds to step S13.
 ステップS5では、S4での所定時間以上経過したとの判断に続き、Hi側診断正常判定成立と判断されてから所定時間以上経過した場合はHi側正常判定フラグを立て、Hi側診断異常判定成立と判断されてから所定時間以上経過した場合はHi側異常判定フラグを立て、ステップS10へ進む。 In step S5, following the determination that the predetermined time or more has passed in S4, if the predetermined time or more has passed since the determination that the Hi side diagnosis normal judgment was established, the Hi side normal judgment flag is set and the Hi side diagnosis abnormality judgment is established. If a predetermined time or more has passed since the determination was made, the Hi side abnormality determination flag is set and the process proceeds to step S10.
 ステップS6では、S1での禁止条件非成立との判断に続き、Low側診断許可条件成立であるか否かを判断する。YES(Low側診断許可条件成立)の場合はステップS7へ進み、NO(Low側診断許可条件不成立)の場合はステップS13へ進む。
 ここで、Low側診断許可条件は、下記の(1),(2),(3)の条件により与え、3条件の成立によりLow側診断許可条件成立とし、3条件のうち何れかの条件に該当しないとLow側診断許可条件不成立とする。
(1)P,Rレンジ以外のとき。
(2)車両加減速度が各ギヤ段で異ならせて設定される閾値D未満のとき(図8を参照)。
(3)車速VSPが閾値Lを超えているとき。
In step S6, following the determination that the prohibition condition is not satisfied in S1, it is determined whether or not the Low side diagnosis permission condition is satisfied. If YES (the low side diagnosis permission condition is satisfied), the process proceeds to step S7, and if NO (the low side diagnosis permission condition is not satisfied), the process proceeds to step S13.
Here, the Low-side diagnosis permission condition is given according to the following conditions (1), (2), and (3), and the Low-side diagnosis permission condition is satisfied when the three conditions are satisfied, and any of the three conditions can be used. If it does not correspond, the condition for permitting diagnosis on the Low side is not satisfied.
(1) When not in the P and R ranges.
(2) When the vehicle acceleration / deceleration is less than the threshold value D set differently for each gear stage (see FIG. 8).
(3) When the vehicle speed VSP exceeds the threshold L.
 ステップS7では、S6でのLow側診断許可条件成立との判断に続き、Low側診断正常/異常判定成立か否かを判断する。YES(Low側診断正常/異常判定成立)の場合はステップS8へ進み、NO(Low側診断正常/異常判定不成立)の場合はステップS13へ進む。
 ここで、車両加減速度が閾値D未満の減速側であるとき、ブレーキ液圧センサ値が閾値M以上であるとLow側診断正常判定成立とする。そして、ブレーキ液圧センサ値が閾値E未満であるとLow側診断異常判定成立とする(図8のLow側診断NG領域を参照)。なお、閾値Mと閾値Eは、インターロックの発生時に車両の減速特性が各ギヤ段で異なるため、各ギヤ段で異ならせて設定される。
In step S7, following the determination that the Low side diagnosis permission condition is satisfied in S6, it is determined whether or not the Low side diagnosis normal / abnormal determination is satisfied. If YES (low side diagnosis normal / abnormal judgment established), the process proceeds to step S8, and if NO (low side diagnosis normal / abnormal determination not established), the process proceeds to step S13.
Here, when the vehicle acceleration / deceleration is on the deceleration side below the threshold value D, if the brake fluid pressure sensor value is at least the threshold value M, the Low side diagnosis normal determination is established. Then, when the brake fluid pressure sensor value is less than the threshold value E, the Low side diagnosis abnormality determination is established (see the Low side diagnosis NG region in FIG. 8). Since the deceleration characteristics of the vehicle are different in each gear stage when the interlock occurs, the threshold value M and the threshold value E are set differently in each gear stage.
 ステップS8では、S7でのLow側診断正常/異常判定成立との判断に続き、Low側診断正常/異常判定成立と判断されてから所定時間以上経過したか否かを判断する。YES(所定時間以上経過した)の場合はステップS9へ進み、NO(所定時間以上経過していない)の場合はステップS13へ進む。 In step S8, following the determination that the Low side diagnosis normal / abnormal determination is established in S7, it is determined whether or not a predetermined time or more has passed since the determination that the Low side diagnosis normal / abnormal determination was established. If YES (the predetermined time or more has passed), the process proceeds to step S9, and if NO (the predetermined time or more has not passed), the process proceeds to step S13.
 ステップS9では、S8での所定時間以上経過したとの判断に続き、Low側診断正常判定成立と判断されてから所定時間以上経過した場合はLow側正常判定フラグを立て、Low側診断異常判定成立と判断されてから所定時間以上経過した場合はLow側異常判定フラグを立て、ステップS10へ進む。 In step S9, following the determination that the predetermined time or more has passed in S8, if the predetermined time or more has passed since the determination that the Low side diagnosis normal judgment was established, the Low side normal judgment flag is set and the Low side diagnosis abnormality judgment is established. If a predetermined time or more has passed since the determination was made, the Low side abnormality determination flag is set and the process proceeds to step S10.
 ステップS10では、S5とS9に続き、Hi側正常判定フラグとLow側正常判定フラグが共に立っているか否かを判断する。YES(2つの正常判定フラグが共に立っている)の場合はS11へ進み、NO(2つの正常判定フラグのうち一方又は両方が立っていない)の場合はステップS12へ進む。 In step S10, following S5 and S9, it is determined whether or not the Hi side normal determination flag and the Low side normal determination flag are set together. If YES (two normal determination flags are set together), the process proceeds to S11, and if NO (one or both of the two normal determination flags are not set), the process proceeds to step S12.
 ステップS11では、S10での2つの正常判定フラグが共に立っているとの判断に続き、ブレーキ液圧センサ値の正常判定確定フラグを、正常判定確定フラグ=1とし、リターンへ進む。 In step S11, following the determination that the two normal determination flags in S10 are standing together, the normal determination confirmation flag of the brake fluid pressure sensor value is set to the normal determination confirmation flag = 1, and the process proceeds to return.
 ステップS12では、S10での2つの正常判定フラグのうち一方又は両方が立っていないとの判断に続き、ブレーキ液圧センサ値の正常判定確定フラグを、ブレーキ液圧センサ値が異常であることを示す正常判定確定フラグ=0とし、リターンへ進む。 In step S12, following the determination that one or both of the two normal determination flags in S10 are not set, the normal determination confirmation flag of the brake fluid pressure sensor value is set to indicate that the brake fluid pressure sensor value is abnormal. The normal judgment confirmation flag shown is set to 0, and the process proceeds to return.
 ステップS13では、S1,S2,S3,S4,S6,S7,S8の何れかでのNOとの判断に続き、正常判定確定フラグの前回値を維持し、リターンへ進む。 In step S13, following the determination of NO in any of S1, S2, S3, S4, S6, S7, and S8, the previous value of the normal determination confirmation flag is maintained, and the process proceeds to return.
 [変速制御処理構成(図9)]
  以下、図9に基づいて変速機コントロールユニット10の変速制御部101にて実行される変速制御処理構成を説明する。なお、図9の変速制御処理は、イグニッションオン(イグニッション起動)により開始する。
[Shift control processing configuration (Fig. 9)]
Hereinafter, a shift control processing configuration executed by the shift control unit 101 of the transmission control unit 10 will be described with reference to FIG. The shift control process of FIG. 9 is started when the ignition is turned on (ignition activation).
 ステップS21では、処理スタートに続き、変速系ソレノイド診断条件が成立しているか否かを判断する。YES(変速系ソレノイド診断条件成立)の場合はステップS22へ進み、NO(変速系ソレノイド診断条件不成立)の場合はステップS28へ進む。
 ここで、変速系ソレノイド診断条件は、診断禁止条件が不成立で、且つ、診断許可条件が成立であると、変速系ソレノイド診断条件成立と判定される。診断禁止条件としては、タービン回転センサ異常、車速センサ異常、ライン圧ソレノイド電気異常等の条件が与えられる。診断許可条件としては、P,R,Nレンジ以外であって、車速が所定車速以上、タービン回転速度が所定値以上、エンジン回転速度が所定値以上等の条件が与えられる。そして、診断禁止条件のうち一つの条件が成立していても、又、診断許可条件のうち一つの条件が不成立であっても診断条件不成立と判断される。
In step S21, following the start of processing, it is determined whether or not the transmission system solenoid diagnostic condition is satisfied. If YES (transitional solenoid diagnostic condition is satisfied), the process proceeds to step S22, and if NO (transmission solenoid diagnostic condition is not satisfied), the process proceeds to step S28.
Here, as for the speed change system solenoid diagnostic condition, if the diagnosis prohibition condition is not satisfied and the diagnosis permission condition is satisfied, it is determined that the speed change system solenoid diagnosis condition is satisfied. Conditions such as a turbine rotation sensor abnormality, a vehicle speed sensor abnormality, and a line pressure solenoid electrical abnormality are given as diagnostic prohibition conditions. The diagnostic permission conditions are other than the P, R, and N ranges, and conditions such as a vehicle speed of a predetermined vehicle speed or higher, a turbine rotation speed of a predetermined value or higher, and an engine rotation speed of a predetermined value or higher are given. Then, even if one of the diagnosis prohibition conditions is satisfied, or even if one of the diagnosis permission conditions is not satisfied, it is determined that the diagnosis condition is not satisfied.
 ステップS22では、S21での変速系ソレノイド診断条件成立との判断、或いは、S24での所定時間未経過であるとの判断に続き、ブレーキ液圧センサ値の正常判定確定フラグ=1であるか否かを判断する。YES(正常判定確定フラグ=1)の場合はステップS23へ進み、NO(正常判定確定フラグ=0)の場合はステップS27へ進む。なお、ブレーキ液圧センサ値の正常判定確定フラグの情報は、ブレーキ液圧センサ値異常判定部101aから読み込まれる。 In step S22, following the determination in S21 that the transmission system solenoid diagnostic condition is satisfied or the determination in S24 that the predetermined time has not elapsed, whether or not the normal determination confirmation flag of the brake fluid pressure sensor value is 1. To judge. If YES (normal judgment confirmation flag = 1), the process proceeds to step S23, and if NO (normal judgment confirmation flag = 0), the process proceeds to step S27. The information of the normal determination confirmation flag of the brake fluid pressure sensor value is read from the brake fluid pressure sensor value abnormality determination unit 101a.
 ステップS23では、S22での正常判定確定フラグ=1であるとの判断に続き、インターロック判定条件成立か否かを判断する。YES(インターロック判定条件成立)の場合はステップS24へ進み、NO(インターロック判定条件不成立)の場合はステップS27へ進む。
 ここで、インターロック判定条件は、実ギヤ比が設定ギヤ比から乖離するギヤ比異常条件と、ブレーキ液圧センサ値が所定値以下のときに車両減速度が所定値以上になる減速度条件とで与える。そして、ギヤ比異常条件と減速度条件が共に成立している状態であるとインターロック判定条件成立と判断する。
In step S23, following the determination that the normal determination confirmation flag = 1 in S22, it is determined whether or not the interlock determination condition is satisfied. If YES (interlock determination condition is satisfied), the process proceeds to step S24, and if NO (interlock determination condition is not satisfied), the process proceeds to step S27.
Here, the interlock determination conditions are a gear ratio abnormality condition in which the actual gear ratio deviates from the set gear ratio, and a deceleration condition in which the vehicle deceleration becomes the predetermined value or more when the brake fluid pressure sensor value is equal to or less than the predetermined value. Give in. Then, it is determined that the interlock determination condition is satisfied when both the gear ratio abnormality condition and the deceleration condition are satisfied.
 ステップS24では、S23でのインターロック判定条件成立との判断に続き、インターロック判定条件が成立したままで所定時間が経過したか否かを判断する。YES(所定時間経過)の場合はステップS25へ進み、NO(所定時間未経過)の場合はステップS22へ戻る。 In step S24, following the determination that the interlock determination condition is satisfied in S23, it is determined whether or not the predetermined time has elapsed while the interlock determination condition is satisfied. If YES (predetermined time has elapsed), the process proceeds to step S25, and if NO (predetermined time has not elapsed), the process returns to step S22.
 ステップS25では、S24での所定時間経過との判断、或いは、S26でのIGN ONとの判断、或いは、S27でのソレノイド機能異常判定条件成立との判断に続き、リンプホーム制御を実行し、ステップS26へ進む。なお、インターロック判定、又は、ソレノイド機能異常判定に対するリンプホーム制御としては、例えば、ニュートラル状態へ移行した後、退避ギヤ段固定へと移行する制御が実行される。 In step S25, following the determination in S24 that the predetermined time has elapsed, the determination in S26 that IGN is ON, or the determination in S27 that the solenoid function abnormality determination condition is satisfied, the limp home control is executed, and the step is performed. Proceed to S26. As the limp home control for the interlock determination or the solenoid function abnormality determination, for example, a control for shifting to the evacuation gear stage fixing after shifting to the neutral state is executed.
 ステップS26では、S25でのリンプホーム制御処理に続き、イグニッション起動停止(イグニッションオフ)であるか否かを判定する。YES(IGN OFF)の場合はエンドへ進み、NO(IGN ON)の場合はステップS25へ戻る。 In step S26, following the limp home control process in S25, it is determined whether or not the ignition is started and stopped (ignition off). If YES (IGN OFF), the process proceeds to the end, and if NO (IGN ON), the process returns to step S25.
 ステップS27では、S22での正常判定確定フラグ=0との判断、或いは、S23でのインターロック判定条件不成立との判断に続き、クラッチソレノイド20のソレノイド機能異常判定条件成立であるか否かを判断する。YESの場合はステップS27へ進み、NOの場合はステップS28へ進む。
 ここで、ソレノイド機能異常判定条件は、1速ギヤ段~9速ギヤ段の何れかのギヤ段による前進走行中、ギヤ比異常が発生してからのギヤ比異常時間を累積し、累積時間がギヤ比異常異常確定タイマー時間に到達したという条件により与える。
In step S27, following the determination in S22 that the normal determination confirmation flag = 0 or the determination in S23 that the interlock determination condition is not satisfied, it is determined whether or not the solenoid function abnormality determination condition of the clutch solenoid 20 is satisfied. To do. If YES, the process proceeds to step S27, and if NO, the process proceeds to step S28.
Here, the solenoid function abnormality determination condition is that the gear ratio abnormality time after the gear ratio abnormality occurs during forward traveling by any of the 1st speed gear stages to the 9th speed gear stage is accumulated, and the cumulative time is accumulated. It is given on the condition that the gear ratio abnormality abnormality confirmation timer time has been reached.
 ステップS28では、S21での変速系ソレノイド診断条件不成立との判断、或いは、S27でのソレノイド機能異常判定条件不成立との判断に続き、そのときの運転点(VSP,APO)と図4に示す変速マップを用いてアップシフト及びダウンシフトを行う通常変速制御処理を実行し、ステップS29へ進む。 In step S28, following the determination in S21 that the solenoid function abnormality determination condition is not satisfied or the determination that the solenoid function abnormality determination condition is not satisfied in S27, the operating point (VSP, APO) at that time and the shifting shown in FIG. 4 are performed. The normal shift control process for upshifting and downshifting is executed using the map, and the process proceeds to step S29.
 ステップS29では、S28での通常変速制御処理に続き、イグニッション起動停止(イグニッションオフ)であるか否かを判定する。YES(IGN OFF)の場合はエンドへ進み、NO(IGN ON)の場合はステップS21へ戻る。 In step S29, following the normal shift control process in S28, it is determined whether or not the ignition is started and stopped (ignition off). If YES (IGN OFF), the process proceeds to the end, and if NO (IGN ON), the process returns to step S21.
 次に、「背景技術と課題解決方策」について説明する。そして、実施例1の作用を、「ブレーキ液圧センサ値異常判定処理作用」、「変速制御処理作用」、「5速ギヤ段での走行中におけるインターロック発生作用」に分けて説明する。 Next, "background technology and problem-solving measures" will be explained. Then, the operation of the first embodiment will be described separately by dividing it into "brake fluid pressure sensor value abnormality determination processing action", "shift control processing action", and "interlock generation action during traveling in the 5th gear".
 [背景技術と課題解決方策]
  自動変速機のギヤトレーンにてインターロックが発生したときのインターロック判定技術としては、所定ギヤ段による走行中、ギヤ比異常条件と減速度条件とが所定時間継続して成立することをインターロック判定条件として与えることが知られている。なお、ギヤ比異常条件は、実ギヤ比が所定ギヤ段における設定ギヤ比から乖離する条件であり、減速度条件は、ブレーキ非操作のときに車両減速度が所定値以上になる条件である。
[Background technology and problem-solving measures]
As an interlock determination technology when an interlock occurs in the gear train of an automatic transmission, it is determined that the gear ratio abnormality condition and the deceleration condition are continuously satisfied for a predetermined time while traveling in a predetermined gear stage. It is known to give as a condition. The gear ratio abnormality condition is a condition in which the actual gear ratio deviates from the set gear ratio in the predetermined gear stage, and the deceleration condition is a condition in which the vehicle deceleration becomes equal to or higher than the predetermined value when the brake is not operated.
 しかしながら、上記インターロック判定技術にあっては、ブレーキ非操作であることの判断を、ブレーキ系のセンサやスイッチからのブレーキ操作情報を用いて行っているが、ブレーキ操作情報そのものが正常であるか異常であるかの判定をしていない。このため、ブレーキ非操作のときにブレーキ操作情報がブレーキ操作を示す異常時には、インターロックによる減速をブレーキによる減速と誤認し、インターロック状態であることを判定できない。逆に、ブレーキ操作のときにブレーキ操作情報がブレーキ非操作を示す異常時には、ブレーキによる減速をインターロックによる減速と誤認し、インターロック状態を誤判定する、という課題があった。 However, in the above interlock determination technology, the determination that the brake is not operated is performed using the brake operation information from the brake system sensor or switch, but is the brake operation information itself normal? It has not been determined whether it is abnormal. Therefore, when the brake operation information indicates the brake operation when the brake is not operated, the deceleration by the interlock is mistaken as the deceleration by the brake, and it cannot be determined that the interlock state is reached. On the contrary, when the brake operation information indicates that the brake is not operated during the brake operation, there is a problem that the deceleration by the brake is mistaken as the deceleration by the interlock and the interlock state is erroneously determined.
 特に、燃費性能の向上を狙い、各ギヤ段にて締結される複数の摩擦要素のそれぞれのクラッチソレノイドに対して、最大圧指令より低い入力トルク相当の中間圧指令を出力し、締結状態を維持する中間圧クラッチ制御を行うものとする。この場合、ブレーキ操作を行うと駆動輪からの高い制動力がギヤトレーンへ入力されることで、摩擦要素で滑りが発生し易くなり、ギヤ比異常条件が成立する頻度が高くなる。ギヤ比異常条件が成立すると、減速度条件を判定する頻度も高くなり、ブレーキ操作情報が異常であるときにインターロック状態を誤判定する可能性も高くなってしまう。即ち、摩擦要素への締結油圧を低く抑えて燃費性能の向上を達成しながらも、インターロック誤判定を確実に防止したい、という要求がある。 In particular, with the aim of improving fuel efficiency, an intermediate pressure command equivalent to an input torque lower than the maximum pressure command is output to each clutch solenoid of multiple friction elements fastened at each gear stage to maintain the engaged state. Intermediate pressure clutch control shall be performed. In this case, when the brake operation is performed, a high braking force from the drive wheels is input to the gear train, so that the friction element is likely to slip, and the gear ratio abnormality condition is frequently satisfied. When the gear ratio abnormality condition is satisfied, the frequency of determining the deceleration condition increases, and the possibility of erroneously determining the interlock state when the brake operation information is abnormal increases. That is, there is a demand for surely preventing interlock erroneous determination while achieving improvement in fuel efficiency by suppressing the pressure applied to the friction element to a low level.
 本発明者等は、上記課題や上記要求に対する解決策を検証した結果、
(A) インターロック判定の前提として、ブレーキ操作情報そのものが正常であるか異常であるかを確認しておく必要がある。
(B) ブレーキ操作の有無との関連性が高い車両の加減速挙動を用いると、センサ等を冗長構成にすることなく、ブレーキ操作情報の正常/異常を判定することができる。
(C) ブレーキ操作情報が異常と判定されるとインターロック判定を許可しない内容にすると、ブレーキ操作情報の正常/異常判定結果をインターロック誤判定の防止に反映することができる。
という点に着目した。
As a result of verifying the above-mentioned problems and solutions to the above-mentioned requirements, the present inventors, etc.
(A) As a prerequisite for interlock judgment, it is necessary to confirm whether the brake operation information itself is normal or abnormal.
(B) By using the acceleration / deceleration behavior of the vehicle, which is highly related to the presence / absence of the brake operation, it is possible to determine the normality / abnormality of the brake operation information without making the sensor or the like redundant.
(C) If the interlock judgment is not permitted when the brake operation information is judged to be abnormal, the normal / abnormal judgment result of the brake operation information can be reflected in the prevention of the interlock erroneous judgment.
I focused on that point.
 上記着目点に基づいて、本開示の変速機コントロールユニット10は、所定ギヤ段による走行中、実ギヤ比が設定ギヤ比から乖離するギヤ比異常条件と、ブレーキ非操作のときに車両減速度が所定値以上になる減速度条件とが所定時間継続して成立すると、ギヤトレーン3aがインターロック状態であると判定するインターロック判定を行うインターロック判定部101bと、ブレーキ非操作を検出するブレーキ操作情報を入力し、車両の加減速挙動とブレーキ操作情報の対応関係が整合しない場合、ブレーキ操作情報が異常と判定するブレーキ操作情報異常判定部(ブレーキ液圧センサ値異常判定部101a)と、を有する。インターロック判定部101bは、ブレーキ操作情報異常判定部によりブレーキ操作情報が異常と判定されるとインターロック判定を許可しない、という解決手段を採用した。 Based on the above points of interest, the transmission control unit 10 of the present disclosure has a gear ratio abnormal condition in which the actual gear ratio deviates from the set gear ratio while traveling in a predetermined gear stage, and a vehicle deceleration when the brake is not operated. When the deceleration condition that exceeds the predetermined value is continuously satisfied for a predetermined time, the interlock determination unit 101b that determines the interlock state that the gear train 3a is in the interlock state, and the brake operation information that detects the non-operation of the brake. Is input, and when the correspondence between the acceleration / deceleration behavior of the vehicle and the brake operation information does not match, the brake operation information abnormality determination unit (brake fluid pressure sensor value abnormality determination unit 101a) for determining that the brake operation information is abnormal is provided. .. The interlock determination unit 101b has adopted a solution that does not allow the interlock determination when the brake operation information abnormality determination unit determines that the brake operation information is abnormal.
 即ち、車両の加減速挙動とブレーキ操作情報の対応関係が整合しない場合、ブレーキ操作情報が異常と判定される。つまり、ブレーキ操作時の車両挙動は急減速挙動になり、ブレーキ非操作時の車両挙動はアクセル操作に応じて急減速挙動以外の挙動(緩減速、一定速、加速)になる。この車両挙動とブレーキ操作情報の対応関係を用いることで、センサやスイッチ等を二以上設けて信号比較する冗長構成にすることなく、一つのブレーキ操作情報を入力情報としながらもブレーキ操作情報の正常/異常を判定することができる。 That is, if the correspondence between the acceleration / deceleration behavior of the vehicle and the brake operation information does not match, the brake operation information is determined to be abnormal. That is, the vehicle behavior when the brake is operated becomes a sudden deceleration behavior, and the vehicle behavior when the brake is not operated becomes a behavior other than the sudden deceleration behavior (slow deceleration, constant speed, acceleration) according to the accelerator operation. By using the correspondence between the vehicle behavior and the brake operation information, the brake operation information is normal even though one brake operation information is used as input information without providing a redundant configuration in which two or more sensors, switches, etc. are provided to compare signals. / Abnormality can be judged.
 そして、ブレーキ操作情報が異常と判定されるとインターロック判定が許可されない。つまり、ブレーキ非操作のときにブレーキ操作情報がブレーキ操作を示す異常時には、インターロックによる減速をブレーキによる減速と誤認することが防止される。逆に、ブレーキ操作のときにブレーキ操作情報がブレーキ非操作を示す異常時には、ブレーキによる減速をインターロックによる減速と誤認することが防止される。 And if the brake operation information is determined to be abnormal, the interlock determination is not permitted. That is, when the brake operation information indicates the brake operation when the brake is not operated, it is possible to prevent the deceleration by the interlock from being mistaken as the deceleration by the brake. On the contrary, when the brake operation information indicates that the brake is not operated during the brake operation, it is possible to prevent the deceleration by the brake from being mistaken as the deceleration by the interlock.
 この結果、走行中にインターロックの発生を判定する際、ブレーキ操作の情報入力系を冗長構成にすることなく、インターロック発生時及びインターロック非発生時にインターロック誤判定を防止できる。特に、摩擦要素の締結状態を維持するインギヤ中、クラッチ滑りを抑えることができる入力トルク相当の中間圧指令をクラッチソレノイド20へ出力する場合、摩擦要素の滑り発生により頻度が高くなるインターロック判定において誤判定を防止することができる。 As a result, when determining the occurrence of interlock during driving, it is possible to prevent erroneous interlock determination when interlock occurs and when interlock does not occur, without making the information input system for brake operation redundant. In particular, when an intermediate pressure command equivalent to an input torque that can suppress clutch slippage is output to the clutch solenoid 20 during in-gear that maintains the engaged state of the friction element, in the interlock determination that the frequency increases due to the occurrence of friction element slippage. It is possible to prevent erroneous judgment.
 [ブレーキ液圧センサ値異常判定処理作用(図7)]
  ブレーキ液圧センサ値異常判定処理作用を図7のフローチャートに基づいて説明する。まず、判定必要情報が異常であったり判定必要情報の受信が異常であったりし、ブレーキ液圧センサ値異常判定の禁止条件成立の場合は、S1からS13→リターンへ進み、正常判定確定フラグ=0とされる。一方、ブレーキ液圧センサ値異常判定の禁止条件不成立の場合は、S1からS2以降へ進むHi側診断処理と、S1からS6以降へ進むLow側診断処理とが並行して実行される。
[Brake fluid pressure sensor value abnormality determination processing action (Fig. 7)]
The brake fluid pressure sensor value abnormality determination processing action will be described with reference to the flowchart of FIG. First, if the judgment required information is abnormal or the reception of the judgment required information is abnormal, and the prohibition condition for the brake fluid pressure sensor value abnormality judgment is satisfied, the process proceeds from S1 to S13 → return, and the normal judgment confirmation flag = It is set to 0. On the other hand, when the prohibition condition for determining the abnormality of the brake fluid pressure sensor value is not satisfied, the Hi-side diagnostic process from S1 to S2 or later and the Low-side diagnostic process from S1 to S6 or later are executed in parallel.
 正常判定確定フラグ=0のときのHi側診断処理においては、Hi側診断許可条件が成立し、且つ、Hi側診断正常判定が成立であると、S1からS2→S3→S4へと進み、S4では、2つの条件成立状態のままで所定時間以上経過したか否かが判断される。そして、所定時間以上経過しない間は、S4からS13→リターンへ進み、正常判定確定フラグ=0が維持される。しかし、所定時間以上経過すると、S4からステップS5へと進み、S5では、Hi側正常判定フラグが立てられる。 In the Hi side diagnosis process when the normal judgment confirmation flag = 0, if the Hi side diagnosis permission condition is satisfied and the Hi side diagnosis normal judgment is satisfied, the process proceeds from S1 to S2 → S3 → S4, and S4. Then, it is determined whether or not a predetermined time or more has passed while the two conditions are satisfied. Then, as long as the predetermined time or more does not elapse, the process proceeds from S4 to S13 → return, and the normal determination confirmation flag = 0 is maintained. However, when the predetermined time or more elapses, the process proceeds from S4 to step S5, and in S5, the Hi-side normality determination flag is set.
 一方、正常判定確定フラグ=1のときのHi側診断処理においては、Hi側診断許可条件が成立し、且つ、Hi側診断異常判定が成立であると、S1からS2→S3→S4へと進み、S4では、2つの条件成立状態のままで所定時間以上経過したか否かが判断される。そして、所定時間以上経過しない間は、S4からS13→リターンへ進み、正常判定確定フラグ=1が維持される。しかし、所定時間以上経過すると、S4からステップS5へと進み、S5では、Hi側異常判定フラグが立てられる。 On the other hand, in the Hi side diagnosis process when the normal judgment confirmation flag = 1, if the Hi side diagnosis permission condition is satisfied and the Hi side diagnosis abnormality judgment is satisfied, the process proceeds from S1 to S2 → S3 → S4. , S4 determines whether or not a predetermined time or more has elapsed while the two conditions are satisfied. Then, as long as the predetermined time or more does not elapse, the process proceeds from S4 to S13 → return, and the normal determination confirmation flag = 1 is maintained. However, when the predetermined time or more elapses, the process proceeds from S4 to step S5, and in S5, the Hi side abnormality determination flag is set.
 正常判定確定フラグ=0のときのLow側診断処理においては、Low側診断許可条件が成立し、且つ、Low側診断正常判定が成立であると、S1からS2→S6→S7→S8へと進み、S8では、2つの条件成立状態のままで所定時間以上経過したか否かが判断される。そして、所定時間以上経過しない間は、S8からS13→リターンへ進み、正常判定確定フラグ=0が維持される。しかし、所定時間以上経過すると、S8からステップS9へと進み、S9では、Low側正常判定フラグが立てられる。 In the Low side diagnosis process when the normal judgment confirmation flag = 0, if the Low side diagnosis permission condition is satisfied and the Low side diagnosis normal judgment is satisfied, the process proceeds from S1 to S2 → S6 → S7 → S8. In S8, it is determined whether or not a predetermined time or more has elapsed while the two conditions are satisfied. Then, as long as the predetermined time or more does not elapse, the process proceeds from S8 to S13 → return, and the normal determination confirmation flag = 0 is maintained. However, when the predetermined time or more elapses, the process proceeds from S8 to step S9, and in S9, the Low side normality determination flag is set.
 一方、正常判定確定フラグ=0のときのLow側診断処理においては、Low側診断許可条件が成立し、且つ、Low側診断異常判定が成立であると、S1からS2→S6→S7→S8へと進み、S8では、2つの条件成立状態のままで所定時間以上経過したか否かが判断される。そして、所定時間以上経過しない間は、S8からS13→リターンへ進み、正常判定確定フラグ=0が維持される。しかし、所定時間以上経過すると、S8からステップS9へと進み、S9では、Low側異常判定フラグが立てられる。 On the other hand, in the Low side diagnosis process when the normal judgment confirmation flag = 0, if the Low side diagnosis permission condition is satisfied and the Low side diagnosis abnormality judgment is satisfied, S1 to S2 → S6 → S7 → S8. In S8, it is determined whether or not a predetermined time or more has elapsed while the two conditions are satisfied. Then, as long as the predetermined time or more does not elapse, the process proceeds from S8 to S13 → return, and the normal determination confirmation flag = 0 is maintained. However, when the predetermined time or more elapses, the process proceeds from S8 to step S9, and in S9, the Low side abnormality determination flag is set.
 Hi側診断処理によりHi側正常判定フラグ又はHi側異常判定フラグが立てられるとS5からS10へ進む。また、Low側診断処理によりLow側正常判定フラグ又はLow側異常判定フラグが立てられるとS9からS10へ進む。S10では、Hi側正常判定フラグとLow側正常判定フラグが共に立っているか否かが判断される。 When the Hi side normal judgment flag or the Hi side abnormality judgment flag is set by the Hi side diagnosis process, the process proceeds from S5 to S10. Further, when the Low side normal determination flag or the Low side abnormality determination flag is set by the Low side diagnosis process, the process proceeds from S9 to S10. In S10, it is determined whether or not the Hi-side normality determination flag and the Low-side normality determination flag are set together.
 S10において、Hi側正常判定フラグとLow側正常判定フラグのうち一方又は両方が立っていないと判断された場合、S10からS12へと進み、S12では、ブレーキ液圧センサ値が異常であることを示す正常判定確定フラグ=0とされる。つまり、Hi側異常判定フラグ又はLow側異常判定フラグが立てられていると、正常判定確定フラグ=0とされる。しかし、S10において、Hi側正常判定フラグとLow側正常判定フラグが共に立っていると判断された場合は、S10からS11へ進み、S11では、ブレーキ液圧センサ値が正常であることを示す正常判定確定フラグ=1とされる。 If it is determined in S10 that one or both of the Hi-side normality determination flag and the Low-side normality determination flag are not set, the process proceeds from S10 to S12, and in S12, the brake fluid pressure sensor value is abnormal. The normal judgment confirmation flag shown is set to 0. That is, when the Hi side abnormality determination flag or the Low side abnormality determination flag is set, the normal determination confirmation flag = 0. However, in S10, when it is determined that the Hi side normal judgment flag and the Low side normal judgment flag are both standing, the process proceeds from S10 to S11, and in S11, normal indicating that the brake fluid pressure sensor value is normal. Judgment confirmation flag = 1.
 [変速制御処理作用(図9)]
  変速制御処理作用を図9のフローチャートに基づいて説明する。まず、イグニッション起動中、変速系ソレノイド診断条件が不成立のときは、S21→S28→S29へと進む流れが繰り返される。S28では、そのときの運転点(VSP,APO)と図4に示す変速マップを用いてアップシフト及びダウンシフトを行う通常変速制御が実行される。
[Shift control processing action (Fig. 9)]
The shift control processing action will be described with reference to the flowchart of FIG. First, when the transmission system solenoid diagnostic condition is not satisfied during the ignition activation, the flow of proceeding from S21 to S28 to S29 is repeated. In S28, normal shift control for upshifting and downshifting is executed using the operating points (VSP, APO) at that time and the shift map shown in FIG.
 Dレンジでの走行中、変速系ソレノイド診断条件が成立すると、S21からS22へ進み、S22では、ブレーキ液圧センサ値の正常判定確定フラグ=1であるか否かが判断される。正常判定確定フラグ=1の場合はS22からS23へ進み、S23では、インターロック判定条件成立か否かが判断される。正常判定確定フラグ=0の場合はS22からS27へ進み、S27では、ソレノイド機能異常判定条件成立か否かが判断される。 While traveling in the D range, if the transmission system solenoid diagnostic condition is satisfied, the process proceeds from S21 to S22, and in S22, it is determined whether or not the normal determination confirmation flag of the brake fluid pressure sensor value is 1. When the normal determination confirmation flag = 1, the process proceeds from S22 to S23, and in S23, it is determined whether or not the interlock determination condition is satisfied. When the normal determination confirmation flag = 0, the process proceeds from S22 to S27, and in S27, it is determined whether or not the solenoid function abnormality determination condition is satisfied.
 よって、変速系ソレノイド診断条件が成立、且つ、ブレーキ液圧センサ値の正常判定確定フラグ=0、且つ、ソレノイド機能異常判定条件不成立であるときは、S21→S22→S27→S28→S29へと進む流れが繰り返され、S28では通常変速制御が実行される。また、変速系ソレノイド診断条件が成立、且つ、ブレーキ液圧センサ値の正常判定確定フラグ=1、且つ、インターロック判定条件不成立、且つ、ソレノイド機能異常判定条件不成立であるときは、S21→S22→S23→S27→S28→S29へと進む流れが繰り返され、S28では通常変速制御が実行される。 Therefore, when the transmission system solenoid diagnosis condition is satisfied, the normal judgment confirmation flag of the brake fluid pressure sensor value = 0, and the solenoid function abnormality judgment condition is not satisfied, the process proceeds to S21 → S22 → S27 → S28 → S29. The flow is repeated, and in S28, normal shift control is executed. Further, when the transmission system solenoid diagnostic condition is satisfied, the normal judgment confirmation flag of the brake fluid pressure sensor value = 1, the interlock judgment condition is not satisfied, and the solenoid function abnormality judgment condition is not satisfied, S21 → S22 → The flow of proceeding from S23 → S27 → S28 → S29 is repeated, and normal shift control is executed in S28.
 一方、通常変速制御によって1速ギヤ段~9速ギヤ段の何れかのギヤ段を選択しての前進走行中、ギヤ比異常が発生してからのギヤ比異常時間を累積し、累積時間がギヤ比異常異常確定タイマー時間に到達したというソレノイド機能異常判定条件が成立したとする。この場合、S27からS25へと進み、S25では、通常変速制御に代え、ニュートラル状態へ移行してから退避ギヤ段固定へ移行する等によるリンプホーム制御が実行される。 On the other hand, during forward traveling with any of the 1st to 9th gears selected by the normal shift control, the gear ratio abnormality time after the gear ratio abnormality occurs is accumulated, and the cumulative time is accumulated. It is assumed that the solenoid function abnormality judgment condition that the gear ratio abnormality abnormality confirmation timer time has been reached is satisfied. In this case, the process proceeds from S27 to S25, and in S25, limp home control is executed by shifting to the neutral state and then shifting to the fixed retract gear stage instead of the normal shift control.
 さらに、通常変速制御によって1速ギヤ段~9速ギヤ段の何れかのギヤ段を選択しての前進走行中、実ギヤ比が設定ギヤ比から乖離するギヤ比異常条件と、正常判定が確定しているブレーキ液圧センサ値が所定値以下のときに車両減速度が所定値以上になる減速度条件が成立したとする。この場合、インターロック判定条件の成立に基づいてS22→S23→S24へと進み、インターロック判定条件が成立したままでS24では所定時間が経過したか否かが判断される。そして、S24にて所定時間が経過したと判断されると、S24からS25へ進み、S25では、ソレノイド機能異常判定条件が成立した場合と同じリンプホーム制御が通常変速制御に代えて実行される。 Furthermore, the gear ratio abnormality condition in which the actual gear ratio deviates from the set gear ratio and the normal judgment are confirmed during forward traveling by selecting one of the 1st gear to 9th gear by the normal shift control. It is assumed that the deceleration condition that the vehicle deceleration becomes equal to or more than the predetermined value is satisfied when the brake fluid pressure sensor value is equal to or less than the predetermined value. In this case, the process proceeds from S22 to S23 to S24 based on the establishment of the interlock determination condition, and it is determined in S24 whether or not the predetermined time has elapsed while the interlock determination condition is satisfied. Then, when it is determined in S24 that the predetermined time has elapsed, the process proceeds from S24 to S25, and in S25, the same limp home control as when the solenoid function abnormality determination condition is satisfied is executed instead of the normal shift control.
 例えば、5速ギヤ段での走行中にインターロック判定が確定したときに第1ブレーキB1が誤締結であると、5速ギヤ段→ニュートラル状態→8速ギヤ段固定へと移行するリンプホーム制御が行われる(図11を参照)。また、5速ギヤ段での走行中にインターロック判定が確定したときに第1ブレーキB1が誤締結以外であると、5速ギヤ段→ニュートラル状態→2速ギヤ段固定へと移行するリンプホーム制御が行われる(図12を参照)。なお、リンプホーム制御は、イグニッション起動停止まで継続される。 For example, if the first brake B1 is erroneously engaged when the interlock judgment is confirmed while driving in the 5th gear, the limp home control shifts from the 5th gear to the neutral state to the 8th gear fixed. Is performed (see FIG. 11). In addition, if the first brake B1 is not erroneously engaged when the interlock judgment is confirmed while driving in the 5th gear, the limp home shifts from the 5th gear to the neutral state to the 2nd gear fixed. Control is performed (see FIG. 12). The limp home control is continued until the ignition is started and stopped.
 [5速ギヤ段での走行中におけるインターロック発生作用(図10、図11)]
  5速ギヤ段での走行中であってインターロックが判定されたとき第1ブレーキB1が誤締結である場合の5速ギヤ段→ニュートラル→8速ギヤ段固定への移行作用を、図10に示すタイムチャートにより説明する。
[Interlock generation action during running in the 5th gear (FIGS. 10 and 11)]
FIG. 10 shows the transition action from the 5th gear to the neutral to the 8th gear when the first brake B1 is erroneously engaged when the interlock is determined while the vehicle is running in the 5th gear. This will be described with reference to the time chart shown.
 例えば、Dレンジ5速での減速中、時刻t1にて実ギヤ比が5速ギヤ段での設定ギヤ比から-H%の閾値を超えてギヤ比異常が生じ、且つ、正常判定が確定しているブレーキ液圧センサ値が所定値以下のときに減速度が所定値以上になったとする。この場合、時刻t1からギヤ比異常条件と減速度条件が成立したままで時間が経過し、時刻t2にて急減速異常確定タイマーによる設定時間に到達すると、インターロックの確定と判定する。 For example, during deceleration in the 5th speed of the D range, the actual gear ratio exceeds the threshold value of −H% from the set gear ratio in the 5th speed gear at time t1, and a gear ratio abnormality occurs, and the normal judgment is confirmed. It is assumed that the deceleration exceeds the predetermined value when the brake fluid pressure sensor value is equal to or less than the predetermined value. In this case, when the time elapses from time t1 with the gear ratio abnormality condition and the deceleration condition being satisfied and the time set by the sudden deceleration abnormality confirmation timer is reached at time t2, it is determined that the interlock is confirmed.
 よって、時刻t2にて6個のクラッチソレノイド20a,20b,20c,20d,20e,20fの全てに対して解放指令を出力し、5速ギヤ段からニュートラル状態へと移行する。そして、時刻t2から所定時間を経過した時刻t3にてニュートラル状態への移行を確認する。時刻t3からは中間軸回転センサ19からの中間軸回転(=インタミ回転)を監視し、インタミ回転が時刻t3から所定時間を経過した時刻t4までインタミ回転速度=0の状態が継続すると、時刻t4にて第1ブレーキB1が誤締結であると判定する。 Therefore, at time t2, a release command is output to all of the six clutch solenoids 20a, 20b, 20c, 20d, 20e, and 20f, and the fifth gear gear stage shifts to the neutral state. Then, the transition to the neutral state is confirmed at the time t3 when the predetermined time elapses from the time t2. From time t3, the intermediate axis rotation (= intami rotation) from the intermediate axis rotation sensor 19 is monitored, and when the intami rotation speed = 0 continues from time t3 to time t4 when a predetermined time elapses, time t4 Determines that the first brake B1 is erroneously engaged.
 このように、5速ギヤ段での減速中、インターロックの確定判定に基づき、ニュートラル状態へ移行した後、第1ブレーキB1が誤締結であると判定されたため、時刻t4にてニュートラル状態から退避ギヤ段である第8速ギヤ段へ変速し、その後、第8速ギヤ段のままでギヤ段を固定する。このため、時刻t4以降は、第1ブレーキB1を締結状態とする第8速ギヤ段固定を退避ギヤ段とし、車両のリンプホーム走行が確保されることになる。 In this way, during deceleration in the 5th gear, after shifting to the neutral state based on the definite judgment of the interlock, it was determined that the first brake B1 was erroneously engaged, so the vehicle evacuated from the neutral state at time t4. The speed is changed to the 8th gear, which is the gear, and then the gear is fixed with the 8th gear as it is. Therefore, after the time t4, the 8th speed gear stage fixing with the 1st brake B1 in the engaged state is set as the evacuation gear stage, and the limp home running of the vehicle is ensured.
 次に、5速ギヤ段での走行中であってインターロックが判定されたとき第1ブレーキB1が誤締結以外である場合の5速ギヤ段→ニュートラル→2速ギヤ段固定への移行作用を、図11に示すタイムチャートにより説明する。 Next, when the interlock is determined while traveling in the 5th gear, the transition action from the 5th gear to the neutral to the 2nd gear fixing when the first brake B1 is other than erroneous engagement is performed. , The time chart shown in FIG. 11 will be described.
 例えば、Dレンジ5速での減速中、時刻t1にて実ギヤ比が5速ギヤ段での設定ギヤ比から-H%の閾値を超えてギヤ比異常が生じ、且つ、正常判定が確定しているブレーキ液圧センサ値が所定値以下のときに減速度が所定値以上になったとする。この場合、時刻t1からギヤ比異常条件と減速度条件が成立したままで時間が経過し、時刻t2にて急減速異常確定タイマーによる設定時間に到達すると、インターロックの確定と判定する。 For example, during deceleration in the 5th speed of the D range, the actual gear ratio exceeds the threshold value of −H% from the set gear ratio in the 5th speed gear at time t1, and a gear ratio abnormality occurs, and the normal judgment is confirmed. It is assumed that the deceleration exceeds the predetermined value when the brake fluid pressure sensor value is equal to or less than the predetermined value. In this case, when the time elapses from time t1 with the gear ratio abnormality condition and the deceleration condition being satisfied and the time set by the sudden deceleration abnormality confirmation timer is reached at time t2, it is determined that the interlock is confirmed.
 よって、時刻t2にて6個のクラッチソレノイド20a,20b,20c,20d,20e,20fの全てに対して解放指令を出力し、5速ギヤ段からニュートラル状態へと移行する。そして、時刻t2から所定時間を経過した時刻t3にてニュートラル状態への移行を確認する。時刻t3からは中間軸回転センサ19からの中間軸回転(=インタミ回転)を監視し、インタミ回転が時刻t3から所定時間を経過した時刻t4までインタミ回転速度>0の状態が継続すると、時刻t4にて第1ブレーキB1が解放であると判定する。 Therefore, at time t2, a release command is output to all of the six clutch solenoids 20a, 20b, 20c, 20d, 20e, and 20f, and the fifth gear gear stage shifts to the neutral state. Then, the transition to the neutral state is confirmed at the time t3 when the predetermined time elapses from the time t2. From time t3, the intermediate axis rotation (= intami rotation) from the intermediate axis rotation sensor 19 is monitored, and when the intami rotation speed> 0 continues from time t3 to time t4 when a predetermined time elapses, time t4 Determines that the first brake B1 is released.
 このように、5速ギヤ段での減速中、インターロックの確定判定に基づき、ニュートラル状態へ移行した後、第1ブレーキB1は解放であると判定されたため、時刻t4にてニュートラル状態から退避ギヤ段である第2速ギヤ段へ変速し、その後、第2速ギヤ段のままでギヤ段を固定する。このため、時刻t4以降は、第1ブレーキB1を解放状態とする第2速ギヤ段固定を退避ギヤ段とし、車両のリンプホーム走行が確保されることになる。 In this way, during deceleration in the 5th gear, it was determined that the first brake B1 was released after shifting to the neutral state based on the definite judgment of the interlock. Therefore, the evacuation gear was released from the neutral state at time t4. The speed is changed to the second speed gear stage, which is the speed, and then the gear stage is fixed with the second speed gear stage as it is. Therefore, after the time t4, the second speed gear stage fixing in which the first brake B1 is released is set as the evacuation gear stage, and the limp home running of the vehicle is ensured.
 なお、インターロック判定によるリンプホーム制御を、8速ギヤ段又は9速ギヤ段でインターロック判定の場合、1速ギヤ段~7速ギヤ段でインターロック判定(B1誤締結)の場合、1速ギヤ段~7速ギヤ段でインターロック判定(B1誤締結以外)の場合、に分けると下記の通りである。 In addition, when the limp home control by the interlock judgment is the interlock judgment in the 8th gear stage or the 9th gear stage, and the interlock judgment in the 1st speed gear stage to the 7th speed gear stage (B1 erroneous engagement), the 1st speed In the case of interlock judgment (other than B1 erroneous fastening) in the gear stage to 7th gear stage, it is divided into the following.
 〈8速ギヤ段又は9速ギヤ段でインターロック判定の場合〉
・8速ギヤ段でインターロック判定の場合、ニュートラル状態へ移行することなく、3速ギヤ段固定⇒ギヤ比異常⇒トルク制限。
・9速ギヤ段でインターロック判定の場合、ニュートラル状態へ移行することなく、2速ギヤ段固定⇒ギヤ比異常⇒トルク制限。
<In the case of interlock judgment in 8th gear or 9th gear>
・ In the case of interlock judgment in the 8th gear stage, the 3rd gear stage is fixed ⇒ gear ratio abnormality ⇒ torque limit without shifting to the neutral state.
・ In the case of interlock judgment in the 9th gear stage, the 2nd speed gear stage is fixed ⇒ gear ratio abnormality ⇒ torque limit without shifting to the neutral state.
 〈1速ギヤ段~7速ギヤ段でインターロック判定(B1誤締結)の場合〉
・1速ギヤ段でインターロック判定(B1誤締結)の場合、ニュートラル状態⇒8速ギヤ段固定⇒ギヤ比異常⇒9速ギヤ段固定。
・2速ギヤ段でインターロック判定(B1誤締結)の場合、ニュートラル状態⇒8速ギヤ段固定⇒ギヤ比異常⇒9速ギヤ段固定。
・3速ギヤ段でインターロック判定(B1誤締結)の場合、ニュートラル状態⇒8速ギヤ段固定⇒ギヤ比異常⇒トルク制限。
・4速ギヤ段でインターロック判定(B1誤締結)の場合、ニュートラル状態⇒8速ギヤ段固定⇒ギヤ比異常⇒3速ギヤ段固定。
・5速ギヤ段でインターロック判定(B1誤締結)の場合、ニュートラル状態⇒8速ギヤ段固定⇒ギヤ比異常⇒3速ギヤ段固定。
・6速ギヤ段でインターロック判定(B1誤締結)の場合、ニュートラル状態⇒8速ギヤ段固定⇒ギヤ比異常⇒3速ギヤ段固定。
・7速ギヤ段でインターロック判定(B1誤締結)の場合、ニュートラル状態⇒8速ギヤ段固定⇒ギヤ比異常⇒3速ギヤ段固定。
<In the case of interlock judgment (B1 erroneous engagement) in the 1st to 7th gears>
・ In the case of interlock judgment (B1 erroneous engagement) in the 1st gear stage, neutral state ⇒ 8th gear stage fixed ⇒ gear ratio abnormality ⇒ 9th speed gear stage fixed.
・ In the case of interlock judgment (B1 erroneous engagement) in the 2nd gear stage, neutral state ⇒ 8th gear stage fixed ⇒ gear ratio abnormality ⇒ 9th gear stage fixed.
・ In the case of interlock judgment (B1 erroneous engagement) in the 3rd gear stage, neutral state ⇒ 8th gear stage fixed ⇒ gear ratio abnormality ⇒ torque limit.
・ In case of interlock judgment (B1 erroneous engagement) in 4th gear, neutral state ⇒ 8th gear fixed ⇒ gear ratio abnormal ⇒ 3rd gear fixed.
・ In the case of interlock judgment (B1 erroneous engagement) in the 5th gear stage, neutral state ⇒ 8th gear stage fixed ⇒ gear ratio abnormality ⇒ 3rd speed gear stage fixed.
・ In case of interlock judgment (B1 erroneous engagement) in 6th gear, neutral state ⇒ 8th gear fixed ⇒ gear ratio abnormal ⇒ 3rd gear fixed.
・ In case of interlock judgment (B1 erroneous engagement) in 7th gear, neutral state ⇒ 8th gear fixed ⇒ gear ratio abnormal ⇒ 3rd gear fixed.
 〈1速ギヤ段~7速ギヤ段でインターロック判定(B1誤締結以外)の場合〉
・1速ギヤ段でインターロック判定(B1誤締結以外)の場合、ニュートラル状態⇒5速ギヤ段固定⇒ギヤ比異常⇒6速ギヤ段固定。
・2速ギヤ段でインターロック判定(B1誤締結以外)の場合、ニュートラル状態⇒4速ギヤ段固定⇒ギヤ比異常⇒5速ギヤ段固定。
・3速ギヤ段でインターロック判定(B1誤締結以外)の場合、ニュートラル状態⇒6速ギヤ段固定⇒ギヤ比異常⇒7速ギヤ段固定。
・4速ギヤ段でインターロック判定(B1誤締結以外)の場合、ニュートラル状態⇒6速ギヤ段固定⇒ギヤ比異常⇒3速ギヤ段固定。
・5速ギヤ段でインターロック判定(B1誤締結以外)の場合、ニュートラル状態⇒2速ギヤ段固定⇒ギヤ比異常⇒1速ギヤ段固定。
・6速ギヤ段でインターロック判定(B1誤締結以外)の場合、ニュートラル状態⇒4速ギヤ段固定⇒ギヤ比異常⇒3速ギヤ段固定。
・7速ギヤ段でインターロック判定(B1誤締結以外)の場合、ニュートラル状態⇒3速ギヤ段固定⇒ギヤ比異常⇒2速ギヤ段固定。
<In the case of interlock judgment (other than B1 erroneous fastening) in the 1st to 7th gears>
・ In the case of interlock judgment (other than B1 erroneous engagement) in the 1st gear stage, neutral state ⇒ 5th gear stage fixed ⇒ gear ratio abnormality ⇒ 6th speed gear stage fixed.
・ In the case of interlock judgment (other than B1 erroneous engagement) in the 2nd gear stage, neutral state ⇒ 4th gear stage fixed ⇒ gear ratio abnormality ⇒ 5th gear stage fixed.
・ In the case of interlock judgment (other than B1 erroneous engagement) in the 3rd gear stage, neutral state ⇒ 6th gear stage fixed ⇒ gear ratio abnormality ⇒ 7th speed gear stage fixed.
・ In the case of interlock judgment (other than B1 erroneous engagement) in the 4th gear stage, neutral state ⇒ 6th gear stage fixed ⇒ gear ratio abnormality ⇒ 3rd speed gear stage fixed.
・ In the case of interlock judgment (other than B1 erroneous engagement) in the 5th gear stage, neutral state ⇒ 2nd speed gear stage fixed ⇒ gear ratio abnormality ⇒ 1st speed gear stage fixed.
・ In case of interlock judgment (other than B1 erroneous engagement) in 6th gear, neutral state ⇒ 4th gear fixed ⇒ gear ratio abnormal ⇒ 3rd gear fixed.
・ In the case of interlock judgment (other than B1 incorrect engagement) in the 7th gear stage, neutral state ⇒ 3rd speed gear stage fixed ⇒ gear ratio abnormality ⇒ 2nd speed gear stage fixed.
 以上述べたように、実施例1の自動変速機3の制御装置にあっては、下記に列挙する効果を奏する。 As described above, the control device of the automatic transmission 3 of the first embodiment has the effects listed below.
 (1) 有段変速機構に有する複数の摩擦要素B1,B2,B3,K1,K2,K3のそれぞれに設けられた変速系ソレノイド(クラッチソレノイド20a,20b,20c,20d,20e,20f)を制御し、複数の摩擦要素の締結状態を変更することにより複数のギヤ段を切替える変速制御を行う変速機コントロールユニット10を備える自動変速機3の制御装置であって、
 変速機コントロールユニット10は、所定ギヤ段による走行中、実ギヤ比が設定ギヤ比から乖離するギヤ比異常条件と、ブレーキ非操作のときに車両減速度が所定値以上になる減速度条件とが所定時間継続して成立すると、有段変速機構(ギヤトレーン3a)がインターロック状態であると判定するインターロック判定部101bと、ブレーキ非操作を検出するブレーキ操作情報を入力し、車両の加減速挙動とブレーキ操作情報の対応関係が整合しない場合、ブレーキ操作情報が異常と判定するブレーキ操作情報異常判定部(ブレーキ液圧センサ値異常判定部101a)と、を有し、
インターロック判定部101bは、ブレーキ操作情報異常判定部(ブレーキ液圧センサ値異常判定部101a)によりブレーキ操作情報が異常と判定されるとインターロック判定を許可しない。
  このため、走行中にインターロックの発生を判定する際、ブレーキ操作の情報入力系を冗長構成にすることなく、インターロック発生時及びインターロック非発生時にインターロック誤判定を防止することができる。
(1) Controls transmission system solenoids ( clutch solenoids 20a, 20b, 20c, 20d, 20e, 20f) provided in each of a plurality of friction elements B1, B2, B3, K1, K2, K3 of the stepped transmission mechanism. A control device for an automatic transmission 3 including a transmission control unit 10 that performs speed change control for switching a plurality of gear stages by changing the fastening state of a plurality of friction elements.
The transmission control unit 10 has a gear ratio abnormality condition in which the actual gear ratio deviates from the set gear ratio while traveling in the predetermined gear stage, and a deceleration condition in which the vehicle deceleration becomes equal to or higher than the predetermined value when the brake is not operated. When it is continuously established for a predetermined time, the interlock determination unit 101b for determining that the stepped speed change mechanism (gear train 3a) is in the interlock state and the brake operation information for detecting the non-operation of the brake are input, and the vehicle accelerates / decelerates. When the correspondence between the brake operation information and the brake operation information does not match, the brake operation information abnormality determination unit (brake hydraulic pressure sensor value abnormality determination unit 101a) for determining that the brake operation information is abnormal is provided.
The interlock determination unit 101b does not allow the interlock determination when the brake operation information abnormality determination unit (brake fluid pressure sensor value abnormality determination unit 101a) determines that the brake operation information is abnormal.
Therefore, when determining the occurrence of an interlock during traveling, it is possible to prevent an interlock erroneous determination when the interlock occurs and when the interlock does not occur, without making the information input system for the brake operation redundant.
 (2) ブレーキ操作情報異常判定部は、ブレーキ液圧センサ値の情報を入力し、車両の加減速挙動とブレーキ液圧センサ値の対応関係が整合しない場合、ブレーキ液圧センサ値が異常と判定するブレーキ液圧センサ値異常判定部101aであり、
インターロック判定部101bは、ブレーキ液圧センサ値異常判定部101aによりブレーキ液圧センサ値が正常と判定されるとインターロック判定を許可し、ブレーキ非操作をブレーキ液圧センサ値が所定値以下であることにより検出する。
  このため、インターロック判定において、正常と判定されたブレーキ液圧センサ値を用い、ブレーキ非操作であることを検出することができる。
(2) The brake operation information abnormality judgment unit inputs the information of the brake fluid pressure sensor value, and if the correspondence between the acceleration / deceleration behavior of the vehicle and the brake fluid pressure sensor value does not match, the brake fluid pressure sensor value is determined to be abnormal. Brake fluid pressure sensor value abnormality determination unit 101a.
The interlock determination unit 101b permits the interlock determination when the brake fluid pressure sensor value abnormality determination unit 101a determines that the brake fluid pressure sensor value is normal, and the brake non-operation is performed when the brake fluid pressure sensor value is equal to or less than a predetermined value. Detect by being there.
Therefore, in the interlock determination, it is possible to detect that the brake is not operated by using the brake fluid pressure sensor value determined to be normal.
 (3) ブレーキ液圧センサ値異常判定部101aは、車両が加速側挙動であるときブレーキ液圧センサ値が第1閾値(閾値K)以下であるとハイ側正常判定フラグを立て、車両が減速側挙動であるときブレーキ液圧センサ値が第2閾値(閾値M)以上であるとロー側正常判定フラグを立て、
ハイ側正常判定フラグとロー側正常判定フラグが共に立っていると正常判定成立とし、ブレーキ液圧センサ値の正常判定確定フラグを立て、
ハイ側正常判定フラグとロー側正常判定フラグの少なくとも一方のフラグが立っていないと異常判定成立とし、正常判定確定フラグを降ろす。
  このため、ブレーキ液圧センサ値の正常/異常の判定を、ブレーキ液圧センサ値のハイ側とロー側とで切り分けて行うことにより、ブレーキ液圧センサ値が正常であるか異常であるかを精度良く判定することができる。
(3) The brake fluid pressure sensor value abnormality determination unit 101a sets a high side normal determination flag when the brake fluid pressure sensor value is equal to or less than the first threshold value (threshold K) when the vehicle is accelerating, and the vehicle decelerates. When the brake fluid pressure sensor value is equal to or higher than the second threshold value (threshold M) in the side behavior, the low side normal judgment flag is set.
If the high side normal judgment flag and the low side normal judgment flag stand together, the normal judgment is established, and the normal judgment confirmation flag of the brake fluid pressure sensor value is set.
If at least one of the high-side normal judgment flag and the low-side normal judgment flag is not set, the abnormality judgment is established and the normal judgment confirmation flag is lowered.
Therefore, by determining whether the brake fluid pressure sensor value is normal / abnormal on the high side and the low side of the brake fluid pressure sensor value, it is possible to determine whether the brake fluid pressure sensor value is normal or abnormal. It can be judged with high accuracy.
 (4) 変速機コントロールユニット10は、インターロック判定後に退避ギヤ段に固定することで車両走行を確保するリンプホーム制御部101eを有し、
リンプホーム制御部101eは、インターロック判定部101bにより有段変速機構(ギヤトレーン3a)がインターロック状態を判定すると、複数の摩擦要素B1,B2,B3,K1,K2,K3を全て解放する解放指示を出力し、
解放指示の出力によりニュートラル状態への移行が確認されると、複数の摩擦要素B1,B2,B3,K1,K2,K3のうち特定の摩擦要素(第1ブレーキB1)の締結・解放の判定情報に基づいて退避ギヤ段を決定し、
ニュートラル状態への移行から決定した退避ギヤ段へ変速した後、退避ギヤ段に固定する。
  このため、有段変速機構(ギヤトレーン3a)がインターロック状態であると判定された場合、インターロックによる急減速を回避しつつ、リンプホーム制御に移行して車両の走行性を確保することができる。
(4) The transmission control unit 10 has a limp home control unit 101e that secures vehicle running by fixing to the evacuation gear stage after the interlock determination.
When the stepped speed change mechanism (gear train 3a) determines the interlock state by the interlock determination unit 101b, the limp home control unit 101e releases all of the plurality of friction elements B1, B2, B3, K1, K2, K3. Output,
When the transition to the neutral state is confirmed by the output of the release instruction, the determination information of the engagement / release of a specific friction element (first brake B1) among the plurality of friction elements B1, B2, B3, K1, K2, K3 is confirmed. The evacuation gear stage is determined based on
After shifting to the evacuation gear stage determined from the transition to the neutral state, the gear is fixed to the evacuation gear stage.
Therefore, when it is determined that the stepped speed change mechanism (gear train 3a) is in the interlock state, it is possible to shift to limp home control and secure the drivability of the vehicle while avoiding sudden deceleration due to the interlock. ..
 (5) 変速機コントロールユニット10は、摩擦要素の締結状態を維持するインギヤ中、クラッチ滑りを抑えることができる入力トルク相当の中間圧指令を変速系ソレノイド(クラッチソレノイド20a,20b,20c,20d,20e,20f)へ出力する変速系ソレノイド制御部101fを有する。
  このため、ブレーキ操作時に摩擦要素の滑り発生によりギヤ比異常条件が成立する頻度が高くなり、これに伴って頻度が高くなる減速度判定において誤判定を防止することができる。加えて、エンジン車の場合には、インギヤ中の締結油圧を低く抑えることで、ポンプ負荷の低減による燃費性能の向上を図ることができる。
(5) The transmission control unit 10 issues an intermediate pressure command equivalent to an input torque that can suppress clutch slippage during in-gear that maintains the engaged state of the friction element ( clutch solenoids 20a, 20b, 20c, 20d, It has a transmission system solenoid control unit 101f that outputs to 20e, 20f).
For this reason, it is possible to prevent an erroneous determination in the deceleration determination in which the gear ratio abnormality condition is established more frequently due to the slippage of the friction element during the braking operation, and the frequency increases accordingly. In addition, in the case of an engine vehicle, it is possible to improve fuel efficiency by reducing the pump load by keeping the fastening oil pressure in the in-gear low.
 以上、本発明の実施形態に係る自動変速機の制御装置を実施例1に基づき説明してきた。しかし、具体的な構成については、この実施例1に限られるものではなく、請求の範囲の各請求項に係る発明の要旨を逸脱しない限り、設計の変更や追加等は許容される。 The control device for the automatic transmission according to the embodiment of the present invention has been described above based on the first embodiment. However, the specific configuration is not limited to the first embodiment, and design changes and additions are permitted as long as the gist of the invention according to each claim is not deviated from the claims.
 実施例1では、ブレーキ操作情報異常判定部として、ブレーキ液圧センサ値の情報を入力し、車両の加減速挙動とブレーキ液圧センサ値の対応関係が整合しない場合、ブレーキ液圧センサ値が異常と判定するブレーキ液圧センサ値異常判定部101aの例を示した。しかし、ブレーキ操作情報異常判定部としては、ブレーキ操作情報を検出することができる情報であれば、ブレーキ液圧センサ値に限定されない。例えば、ブレーキスイッチからのブレーキスイッチ信号やブレーキストロークセンサからのブレーキストローク値、等を用いても良い。 In the first embodiment, the brake fluid pressure sensor value information is input as the brake operation information abnormality determination unit, and when the correspondence between the acceleration / deceleration behavior of the vehicle and the brake fluid pressure sensor value does not match, the brake fluid pressure sensor value is abnormal. An example of the brake fluid pressure sensor value abnormality determination unit 101a for determining the above is shown. However, the brake operation information abnormality determination unit is not limited to the brake fluid pressure sensor value as long as the information can detect the brake operation information. For example, a brake switch signal from the brake switch, a brake stroke value from the brake stroke sensor, or the like may be used.
 実施例1では、変速機コントロールユニット10として、摩擦要素の締結圧制御において締結状態を維持するインギヤ中、クラッチ滑りを抑えることができる入力トルク相当の中間圧指令をクラッチソレノイド20へ出力する変速系ソレノイド制御部101fを有する例を示した。しかし、変速機コントロールユニットとしては、摩擦要素の締結圧制御において締結状態を維持するインギヤ中、最大圧指令をクラッチソレノイドへ出力する変速制御部を有する例に対しても適用することができる。 In the first embodiment, the transmission control unit 10 outputs an intermediate pressure command equivalent to an input torque that can suppress clutch slippage to the clutch solenoid 20 during in-gear that maintains the engaged state in the fastening pressure control of the friction element. An example having a solenoid control unit 101f is shown. However, the transmission control unit can also be applied to an example having a shift control unit that outputs a maximum pressure command to the clutch solenoid during in-gear that maintains the engaged state in the fastening pressure control of the friction element.
 実施例1では、自動変速機として、6個の摩擦要素を有し、3個の摩擦要素の締結により前進9速後退1速を達成する自動変速機3の例を示した。しかし、自動変速機としては、2個の摩擦要素の締結により複数の前進段や後退段を達成する例としても良いし、4個の摩擦要素の締結により複数の前進段や後退段を達成する例としても良い。また、自動変速機としては、前進9速後退1速以外の有段ギヤ段を持つ自動変速機の例としても良いし、ベルト式無段変速機と多段変速機とを組み合わせた副変速機付き無段変速機としても良い。 In Example 1, as an automatic transmission, an example of an automatic transmission 3 which has 6 friction elements and achieves forward 9th speed and backward 1st speed by fastening 3 friction elements is shown. However, as an automatic transmission, an example may be obtained in which a plurality of forward stages and reverse stages are achieved by fastening two friction elements, and a plurality of forward stages and reverse stages are achieved by fastening four friction elements. It may be an example. Further, the automatic transmission may be an example of an automatic transmission having a stepped gear stage other than the forward 9th speed and the reverse 1st speed, or with an auxiliary transmission that combines a belt type continuously variable transmission and a multi-speed transmission. It may be a continuously variable transmission.
 実施例1では、エンジン車に搭載される自動変速機3の制御装置の例を示した。しかし、エンジン車に限らず、ハイブリッド車や電気自動車等の自動変速機の制御装置としても適用することが可能である。 In the first embodiment, an example of the control device of the automatic transmission 3 mounted on the engine vehicle is shown. However, it can be applied not only to an engine vehicle but also as a control device for an automatic transmission of a hybrid vehicle, an electric vehicle, or the like.
 本願は、2019年11月29日付けで日本国特許庁に出願した特願2019-216988号に基づく優先権を主張し、その出願の全ての内容は、参照により本明細書に組み込まれる。 The present application claims priority based on Japanese Patent Application No. 2019-216988 filed with the Japan Patent Office on November 29, 2019, and the entire contents of the application are incorporated herein by reference.

Claims (6)

  1.  有段変速機構に有する複数の摩擦要素のそれぞれに設けられた変速系ソレノイドを制御し、前記複数の摩擦要素の締結状態を変更することにより複数のギヤ段を切替える変速制御を行う変速機コントロールユニットを備える自動変速機の制御装置であって、
     前記変速機コントロールユニットは、
     所定ギヤ段による走行中、実ギヤ比が設定ギヤ比から乖離するギヤ比異常条件と、ブレーキ非操作のときに車両減速度が所定値以上になる減速度条件とが所定時間継続して成立すると、前記有段変速機構がインターロック状態であると判定するインターロック判定を行うインターロック判定部と、
     前記ブレーキ非操作を検出するブレーキ操作情報を入力し、車両の加減速挙動と前記ブレーキ操作情報の対応関係が整合しない場合、前記ブレーキ操作情報が異常と判定するブレーキ操作情報異常判定部と、
    を有し、
     前記インターロック判定部は、前記ブレーキ操作情報異常判定部により前記ブレーキ操作情報が異常と判定されると前記インターロック判定を許可しない
     自動変速機の制御装置。
    A transmission control unit that controls a speed change system solenoid provided for each of a plurality of friction elements included in a stepped speed change mechanism and controls a speed change to switch a plurality of gear stages by changing the fastening state of the plurality of friction elements. It is a control device of an automatic transmission equipped with
    The transmission control unit is
    When the gear ratio abnormality condition in which the actual gear ratio deviates from the set gear ratio while traveling in the predetermined gear stage and the deceleration condition in which the vehicle deceleration becomes equal to or higher than the predetermined value when the brake is not operated are continuously satisfied for a predetermined time. , An interlock determination unit that performs an interlock determination to determine that the stepped speed change mechanism is in an interlock state,
    When the brake operation information for detecting the non-operation of the brake is input and the correspondence between the acceleration / deceleration behavior of the vehicle and the brake operation information does not match, the brake operation information abnormality determination unit for determining that the brake operation information is abnormal, and the brake operation information abnormality determination unit.
    Have,
    The interlock determination unit is a control device for an automatic transmission that does not allow the interlock determination when the brake operation information abnormality determination unit determines that the brake operation information is abnormal.
  2.  請求項1に記載された自動変速機の制御装置において、
     前記ブレーキ操作情報異常判定部は、ブレーキ液圧センサ値の情報を入力し、車両の加減速挙動と前記ブレーキ液圧センサ値の対応関係が整合しない場合、前記ブレーキ液圧センサ値が異常と判定するブレーキ液圧センサ値異常判定部であり、
     前記インターロック判定部は、前記ブレーキ液圧センサ値異常判定部により前記ブレーキ液圧センサ値が正常と判定されると前記インターロック判定を許可し、前記ブレーキ非操作を前記ブレーキ液圧センサ値が所定値以下であることにより検出する
     自動変速機の制御装置。
    In the control device for the automatic transmission according to claim 1,
    The brake operation information abnormality determination unit inputs information on the brake fluid pressure sensor value, and if the correspondence between the acceleration / deceleration behavior of the vehicle and the brake fluid pressure sensor value does not match, the brake fluid pressure sensor value is determined to be abnormal. Brake fluid pressure sensor value abnormality judgment unit
    When the brake fluid pressure sensor value abnormality determination unit determines that the brake fluid pressure sensor value is normal, the interlock determination unit permits the interlock determination, and the brake non-operation is performed by the brake fluid pressure sensor value. An automatic transmission control device that detects when the value is below a specified value.
  3.  請求項2に記載された自動変速機の制御装置において、
     前記ブレーキ液圧センサ値異常判定部は、車両が加速側挙動であるとき前記ブレーキ液圧センサ値が第1閾値以下であるとハイ側正常判定フラグを立て、車両が減速側挙動であるとき前記ブレーキ液圧センサ値が第2閾値以上であるとロー側正常判定フラグを立て、
     前記ハイ側正常判定フラグと前記ロー側正常判定フラグが共に立っていると正常判定成立とし、前記ブレーキ液圧センサ値の正常判定確定フラグを立て、
     前記ハイ側正常判定フラグと前記ロー側正常判定フラグの少なくとも一方のフラグが立っていないと異常判定成立とし、前記正常判定確定フラグを降ろす
     自動変速機の制御装置。
    In the control device for the automatic transmission according to claim 2.
    The brake fluid pressure sensor value abnormality determination unit sets a high-side normal determination flag when the brake fluid pressure sensor value is equal to or less than the first threshold value when the vehicle is accelerating, and the brake fluid pressure sensor value abnormality determination unit sets the high-side normal determination flag when the vehicle is decelerating. If the brake fluid pressure sensor value is equal to or higher than the second threshold value, the low side normality judgment flag is set.
    When the high side normal judgment flag and the low side normal judgment flag stand together, the normal judgment is established, and the normal judgment confirmation flag of the brake fluid pressure sensor value is set.
    A control device for an automatic transmission that determines that an abnormality determination is established and lowers the normal determination confirmation flag if at least one of the high-side normal determination flag and the low-side normal determination flag is not set.
  4.  請求項1から3までの何れか一項に記載された自動変速機の制御装置において、
     前記変速機コントロールユニットは、前記インターロック判定後に退避ギヤ段に固定することで車両走行を確保するリンプホーム制御部を有し、
     前記リンプホーム制御部は、前記インターロック判定部により前記有段変速機構がインターロック状態を判定すると、複数の摩擦要素を全て解放する解放指示を出力し、
     前記解放指示の出力によりニュートラル状態への移行が確認されると、複数の摩擦要素のうち特定の摩擦要素の締結・解放の判定情報に基づいて前記退避ギヤ段を決定し、
     前記ニュートラル状態への移行から決定した前記退避ギヤ段へ変速した後、前記退避ギヤ段に固定する
     自動変速機の制御装置。
    In the control device for the automatic transmission according to any one of claims 1 to 3.
    The transmission control unit has a limp home control unit that secures vehicle running by fixing to the evacuation gear stage after the interlock determination.
    When the stepped speed change mechanism determines the interlock state by the interlock determination unit, the limp home control unit outputs a release instruction to release all the plurality of friction elements.
    When the transition to the neutral state is confirmed by the output of the release instruction, the evacuation gear stage is determined based on the determination information of fastening / releasing of a specific friction element among the plurality of friction elements.
    A control device for an automatic transmission that is fixed to the evacuation gear stage after shifting to the evacuation gear stage determined from the transition to the neutral state.
  5.  請求項1から4までの何れか一項に記載された自動変速機の制御装置において、
     前記変速機コントロールユニットは、前記摩擦要素の締結状態を維持するインギヤ中、クラッチ滑りを抑えることができる入力トルク相当の中間圧指令を前記変速系ソレノイドへ出力する変速系ソレノイド制御部を有する
     自動変速機の制御装置。
    In the control device for the automatic transmission according to any one of claims 1 to 4.
    The transmission control unit has an automatic transmission having a transmission system solenoid control unit that outputs an intermediate pressure command corresponding to an input torque capable of suppressing clutch slippage to the transmission system solenoid during in-gear that maintains the engaged state of the friction element. Machine control device.
  6.  有段変速機構に有する複数の摩擦要素のそれぞれに設けられた変速系ソレノイドを制御し、前記複数の摩擦要素の締結状態を変更することにより複数のギヤ段を切替える変速制御を行う変速機コントロールユニットを備える自動変速機の制御方法であって、
     所定ギヤ段による走行中、実ギヤ比が設定ギヤ比から乖離するギヤ比異常条件と、ブレーキ非操作のときに車両減速度が所定値以上になる減速度条件とが所定時間継続して成立すると、前記有段変速機構がインターロック状態であると判定するインターロック判定を行い、
     前記ブレーキ非操作を検出するブレーキ操作情報を入力し、車両の加減速挙動と前記ブレーキ操作情報の対応関係が整合しない場合、前記ブレーキ操作情報が異常と判定し、
     前記ブレーキ操作情報が異常と判定されると前記インターロック判定を許可しない、
     自動変速機の制御方法。
    A transmission control unit that controls a speed change system solenoid provided for each of a plurality of friction elements included in a stepped speed change mechanism and controls a speed change to switch a plurality of gear stages by changing the fastening state of the plurality of friction elements. It is a control method of an automatic transmission equipped with
    When the gear ratio abnormality condition in which the actual gear ratio deviates from the set gear ratio while traveling in the predetermined gear stage and the deceleration condition in which the vehicle deceleration becomes equal to or higher than the predetermined value when the brake is not operated are continuously satisfied for a predetermined time. , The interlock determination for determining that the stepped speed change mechanism is in the interlock state is performed, and the interlock determination is performed.
    When the brake operation information for detecting the non-operation of the brake is input and the correspondence between the acceleration / deceleration behavior of the vehicle and the brake operation information does not match, it is determined that the brake operation information is abnormal.
    If the brake operation information is determined to be abnormal, the interlock determination is not permitted.
    How to control an automatic transmission.
PCT/JP2020/043351 2019-11-29 2020-11-20 Automatic transmission control device and control method WO2021106774A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2021561376A JP7300004B2 (en) 2019-11-29 2020-11-20 AUTOMATIC TRANSMISSION CONTROL DEVICE AND CONTROL METHOD

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2019216988 2019-11-29
JP2019-216988 2019-11-29

Publications (1)

Publication Number Publication Date
WO2021106774A1 true WO2021106774A1 (en) 2021-06-03

Family

ID=76129490

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2020/043351 WO2021106774A1 (en) 2019-11-29 2020-11-20 Automatic transmission control device and control method

Country Status (2)

Country Link
JP (1) JP7300004B2 (en)
WO (1) WO2021106774A1 (en)

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003160046A (en) * 2001-11-22 2003-06-03 Nissan Motor Co Ltd Abnormality determination device of brake hydraulic pressure detection device
JP2004100746A (en) * 2002-09-05 2004-04-02 Denso Corp Driving force controlling method of vehicle and driving force controller using the same
JP2008232355A (en) * 2007-03-22 2008-10-02 Jatco Ltd Automatic transmission
WO2017022771A1 (en) * 2015-08-04 2017-02-09 ジヤトコ株式会社 Control device for automatic transmission and control method for automatic transmission
WO2019031177A1 (en) * 2017-08-10 2019-02-14 ジヤトコ株式会社 Interlock determination device and determination method for automatic transmission

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003160046A (en) * 2001-11-22 2003-06-03 Nissan Motor Co Ltd Abnormality determination device of brake hydraulic pressure detection device
JP2004100746A (en) * 2002-09-05 2004-04-02 Denso Corp Driving force controlling method of vehicle and driving force controller using the same
JP2008232355A (en) * 2007-03-22 2008-10-02 Jatco Ltd Automatic transmission
WO2017022771A1 (en) * 2015-08-04 2017-02-09 ジヤトコ株式会社 Control device for automatic transmission and control method for automatic transmission
WO2019031177A1 (en) * 2017-08-10 2019-02-14 ジヤトコ株式会社 Interlock determination device and determination method for automatic transmission

Also Published As

Publication number Publication date
JP7300004B2 (en) 2023-06-28
JPWO2021106774A1 (en) 2021-06-03

Similar Documents

Publication Publication Date Title
JP4333632B2 (en) Hydraulic control device for automatic transmission
WO2021006086A1 (en) Diagnostic device for automatic transmission
US7578760B2 (en) Automatic transmission controller for a vehicle and method for controlling an automatic transmission system for a vehicle
JP6922095B2 (en) Control device for automatic transmission
US9587738B2 (en) Automatic shift control system
WO2021106785A1 (en) Control device and control method for automatic transmission
WO2021106774A1 (en) Automatic transmission control device and control method
JP6913255B2 (en) Control device for automatic transmission
JP4848769B2 (en) Hydraulic control device for automatic transmission for vehicle
JP7207843B2 (en) Automatic transmission diagnostic device
WO2021106759A1 (en) Control device and control method for automatic transmission
JP7219349B2 (en) AUTOMATIC TRANSMISSION CONTROL DEVICE, CONTROL METHOD AND PROGRAM
CN114302836B (en) Vehicle control device, control method, and storage medium
JP7055932B2 (en) Temperature sensor diagnostic device for automatic transmission and diagnostic method
JP6942268B2 (en) Control device for automatic transmission
JP5790535B2 (en) Shift control device for automatic transmission for vehicle
JP4333631B2 (en) Hydraulic control device for automatic transmission
JP2010065850A (en) Controller of automatic transmission
JP2004060825A (en) Control device of automatic transmission for vehicle
JP2003322254A (en) Automatic transmission for vehicle
JPH06346966A (en) Speed change controller of automatic transmission

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 20891443

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2021561376

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 20891443

Country of ref document: EP

Kind code of ref document: A1