WO2021106644A1 - Rfidタグ - Google Patents

Rfidタグ Download PDF

Info

Publication number
WO2021106644A1
WO2021106644A1 PCT/JP2020/042556 JP2020042556W WO2021106644A1 WO 2021106644 A1 WO2021106644 A1 WO 2021106644A1 JP 2020042556 W JP2020042556 W JP 2020042556W WO 2021106644 A1 WO2021106644 A1 WO 2021106644A1
Authority
WO
WIPO (PCT)
Prior art keywords
substrate
conductor
rfid tag
wiring
rfid
Prior art date
Application number
PCT/JP2020/042556
Other languages
English (en)
French (fr)
Inventor
周一 山本
Original Assignee
京セラ株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 京セラ株式会社 filed Critical 京セラ株式会社
Priority to US17/779,621 priority Critical patent/US11748591B2/en
Priority to CN202080081649.4A priority patent/CN114730365A/zh
Priority to EP20894566.7A priority patent/EP4068159A4/en
Priority to JP2021561310A priority patent/JP7366148B2/ja
Publication of WO2021106644A1 publication Critical patent/WO2021106644A1/ja

Links

Images

Classifications

    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06KGRAPHICAL DATA READING; PRESENTATION OF DATA; RECORD CARRIERS; HANDLING RECORD CARRIERS
    • G06K19/00Record carriers for use with machines and with at least a part designed to carry digital markings
    • G06K19/06Record carriers for use with machines and with at least a part designed to carry digital markings characterised by the kind of the digital marking, e.g. shape, nature, code
    • G06K19/067Record carriers with conductive marks, printed circuits or semiconductor circuit elements, e.g. credit or identity cards also with resonating or responding marks without active components
    • G06K19/07Record carriers with conductive marks, printed circuits or semiconductor circuit elements, e.g. credit or identity cards also with resonating or responding marks without active components with integrated circuit chips
    • G06K19/077Constructional details, e.g. mounting of circuits in the carrier
    • G06K19/07749Constructional details, e.g. mounting of circuits in the carrier the record carrier being capable of non-contact communication, e.g. constructional details of the antenna of a non-contact smart card
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06KGRAPHICAL DATA READING; PRESENTATION OF DATA; RECORD CARRIERS; HANDLING RECORD CARRIERS
    • G06K19/00Record carriers for use with machines and with at least a part designed to carry digital markings
    • G06K19/06Record carriers for use with machines and with at least a part designed to carry digital markings characterised by the kind of the digital marking, e.g. shape, nature, code
    • G06K19/067Record carriers with conductive marks, printed circuits or semiconductor circuit elements, e.g. credit or identity cards also with resonating or responding marks without active components
    • G06K19/07Record carriers with conductive marks, printed circuits or semiconductor circuit elements, e.g. credit or identity cards also with resonating or responding marks without active components with integrated circuit chips
    • G06K19/077Constructional details, e.g. mounting of circuits in the carrier
    • G06K19/07749Constructional details, e.g. mounting of circuits in the carrier the record carrier being capable of non-contact communication, e.g. constructional details of the antenna of a non-contact smart card
    • G06K19/0775Constructional details, e.g. mounting of circuits in the carrier the record carrier being capable of non-contact communication, e.g. constructional details of the antenna of a non-contact smart card arrangements for connecting the integrated circuit to the antenna
    • G06K19/07756Constructional details, e.g. mounting of circuits in the carrier the record carrier being capable of non-contact communication, e.g. constructional details of the antenna of a non-contact smart card arrangements for connecting the integrated circuit to the antenna the connection being non-galvanic, e.g. capacitive
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06KGRAPHICAL DATA READING; PRESENTATION OF DATA; RECORD CARRIERS; HANDLING RECORD CARRIERS
    • G06K19/00Record carriers for use with machines and with at least a part designed to carry digital markings
    • G06K19/06Record carriers for use with machines and with at least a part designed to carry digital markings characterised by the kind of the digital marking, e.g. shape, nature, code
    • G06K19/067Record carriers with conductive marks, printed circuits or semiconductor circuit elements, e.g. credit or identity cards also with resonating or responding marks without active components
    • G06K19/07Record carriers with conductive marks, printed circuits or semiconductor circuit elements, e.g. credit or identity cards also with resonating or responding marks without active components with integrated circuit chips
    • G06K19/077Constructional details, e.g. mounting of circuits in the carrier
    • G06K19/0772Physical layout of the record carrier
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06KGRAPHICAL DATA READING; PRESENTATION OF DATA; RECORD CARRIERS; HANDLING RECORD CARRIERS
    • G06K19/00Record carriers for use with machines and with at least a part designed to carry digital markings
    • G06K19/06Record carriers for use with machines and with at least a part designed to carry digital markings characterised by the kind of the digital marking, e.g. shape, nature, code
    • G06K19/067Record carriers with conductive marks, printed circuits or semiconductor circuit elements, e.g. credit or identity cards also with resonating or responding marks without active components
    • G06K19/07Record carriers with conductive marks, printed circuits or semiconductor circuit elements, e.g. credit or identity cards also with resonating or responding marks without active components with integrated circuit chips
    • G06K19/077Constructional details, e.g. mounting of circuits in the carrier
    • G06K19/07749Constructional details, e.g. mounting of circuits in the carrier the record carrier being capable of non-contact communication, e.g. constructional details of the antenna of a non-contact smart card
    • G06K19/07773Antenna details
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06KGRAPHICAL DATA READING; PRESENTATION OF DATA; RECORD CARRIERS; HANDLING RECORD CARRIERS
    • G06K19/00Record carriers for use with machines and with at least a part designed to carry digital markings
    • G06K19/06Record carriers for use with machines and with at least a part designed to carry digital markings characterised by the kind of the digital marking, e.g. shape, nature, code
    • G06K19/067Record carriers with conductive marks, printed circuits or semiconductor circuit elements, e.g. credit or identity cards also with resonating or responding marks without active components
    • G06K19/07Record carriers with conductive marks, printed circuits or semiconductor circuit elements, e.g. credit or identity cards also with resonating or responding marks without active components with integrated circuit chips
    • G06K19/077Constructional details, e.g. mounting of circuits in the carrier
    • G06K19/07749Constructional details, e.g. mounting of circuits in the carrier the record carrier being capable of non-contact communication, e.g. constructional details of the antenna of a non-contact smart card
    • G06K19/07773Antenna details
    • G06K19/07788Antenna details the antenna being of the capacitive type
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01QANTENNAS, i.e. RADIO AERIALS
    • H01Q1/00Details of, or arrangements associated with, antennas
    • H01Q1/12Supports; Mounting means
    • H01Q1/22Supports; Mounting means by structural association with other equipment or articles
    • H01Q1/2208Supports; Mounting means by structural association with other equipment or articles associated with components used in interrogation type services, i.e. in systems for information exchange between an interrogator/reader and a tag/transponder, e.g. in Radio Frequency Identification [RFID] systems
    • H01Q1/2225Supports; Mounting means by structural association with other equipment or articles associated with components used in interrogation type services, i.e. in systems for information exchange between an interrogator/reader and a tag/transponder, e.g. in Radio Frequency Identification [RFID] systems used in active tags, i.e. provided with its own power source or in passive tags, i.e. deriving power from RF signal
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01QANTENNAS, i.e. RADIO AERIALS
    • H01Q9/00Electrically-short antennas having dimensions not more than twice the operating wavelength and consisting of conductive active radiating elements
    • H01Q9/04Resonant antennas
    • H01Q9/0407Substantially flat resonant element parallel to ground plane, e.g. patch antenna
    • H01Q9/0421Substantially flat resonant element parallel to ground plane, e.g. patch antenna with a shorting wall or a shorting pin at one end of the element
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K1/00Printed circuits
    • H05K1/02Details
    • H05K1/14Structural association of two or more printed circuits
    • H05K1/144Stacked arrangements of planar printed circuit boards
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K1/00Printed circuits
    • H05K1/18Printed circuits structurally associated with non-printed electric components
    • H05K1/189Printed circuits structurally associated with non-printed electric components characterised by the use of a flexible or folded printed circuit
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K2201/00Indexing scheme relating to printed circuits covered by H05K1/00
    • H05K2201/04Assemblies of printed circuits
    • H05K2201/042Stacked spaced PCBs; Planar parts of folded flexible circuits having mounted components in between or spaced from each other
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K2201/00Indexing scheme relating to printed circuits covered by H05K1/00
    • H05K2201/05Flexible printed circuits [FPCs]
    • H05K2201/055Folded back on itself
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K2201/00Indexing scheme relating to printed circuits covered by H05K1/00
    • H05K2201/09Shape and layout
    • H05K2201/09145Edge details
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K2201/00Indexing scheme relating to printed circuits covered by H05K1/00
    • H05K2201/10Details of components or other objects attached to or integrated in a printed circuit board
    • H05K2201/10007Types of components
    • H05K2201/10098Components for radio transmission, e.g. radio frequency identification [RFID] tag, printed or non-printed antennas
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K2201/00Indexing scheme relating to printed circuits covered by H05K1/00
    • H05K2201/10Details of components or other objects attached to or integrated in a printed circuit board
    • H05K2201/10227Other objects, e.g. metallic pieces
    • H05K2201/10378Interposers
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K2203/00Indexing scheme relating to apparatus or processes for manufacturing printed circuits covered by H05K3/00
    • H05K2203/16Inspection; Monitoring; Aligning
    • H05K2203/167Using mechanical means for positioning, alignment or registration, e.g. using rod-in-hole alignment

Definitions

  • This disclosure relates to RFID (radio frequency identifier) tags.
  • an RFID tag in which an RFID IC (Integrated Circuit) is mounted on a ceramic sintered substrate including an antenna conductor (see International Publication No. 2018/016624).
  • the antenna conductor includes a plurality of laminated conductors.
  • the RFID tag of the present disclosure is RFID IC and A flexible substrate containing the first wiring conductor, A rigid substrate including the second wiring conductor, With The substrate surface of the flexible substrate includes a first region coupled to the rigid substrate and a second region including the opposite surface that is not coupled to the rigid substrate.
  • the first conductor portion and the second conductor portion included in the first wiring conductor are electrically connected via the second wiring conductor, and the first conductor portion and the second conductor portion are electrically connected via the second wiring conductor.
  • the RFID IC is connected to the first wiring conductor, the second wiring conductor, or both.
  • FIG. 1 is an exploded perspective view showing an RFID tag according to the first embodiment of the present disclosure.
  • FIG. 2 is an exploded perspective view of the RFID tag of FIG. 1 as viewed from diagonally below.
  • FIG. 3 is a schematic view showing a cross section taken along the line AA of FIG.
  • FIG. 4 is a diagram showing an equivalent circuit of the RFID tag of FIG.
  • the RFID tag 1 of the first embodiment of the present disclosure includes a first substrate 10 including wiring conductors (11, 12, 13a to 13d, 14a to 14d) and having flexibility, and wiring conductors (21, 21n, 22, 23a).
  • the third substrate 30 and the fourth substrate 40 are arranged between the first substrate 10 and the second substrate 20, and the third substrate 30 and the fourth substrate 40 are separated from each other.
  • the third substrate 30 and the fourth substrate 40 may be arranged on one side and the other side in one of the directions along the substrate surface 10A of the first substrate 10.
  • the side on which the third substrate 30 is arranged is referred to as a short-circuit side
  • the side on which the fourth substrate 40 is arranged is referred to as an anti-short-circuit side.
  • the direction from the second substrate 20 side to the first substrate 10 side is the height direction
  • the direction along the short-circuit side and the anti-short-circuit side is the first direction
  • the short-circuit side to the anti-short circuit side is the first direction. It will be described as two directions.
  • the third substrate 30 and the fourth substrate 40 are separated from each other in the second direction, and are arranged on one side (which may be one end) and the other (which may be the other end) in the second direction, respectively. ..
  • the first substrate 10 and the second substrate 20 and the wiring conductors included therein correspond to examples of the "flexible substrate” and the “first wiring conductor” according to the present disclosure, respectively.
  • the third substrate 30 and the fourth substrate 40 and the wiring conductors included therein correspond to an example of the "rigid substrate” and the "second wiring conductor” according to the present disclosure.
  • the first substrate 10 and the second substrate 20 are, for example, FPCs (Flexible Printed Circuits), and may be in the form of a film or a strip. Polyimide or the like may be applied as the substrate of the FPC.
  • the substrate has outer substrate surfaces 10A and 20A and inner substrate surfaces 10B and 20B, respectively. The inside means the side where the first substrate 10 and the second substrate 20 face each other, and the outside means the side opposite to the opposite side.
  • Membrane-like wiring conductors (11, 12, 21, 21n, 22) are located on the inner and outer substrate surfaces 10A, 10B, 20A, and 20B.
  • the wiring conductors (11, 12, 21, 21n, 22) may be covered with an insulating protective film except for a portion connected to other wiring.
  • the wiring conductor of the first substrate 10 includes an outer planar conductor 11, an inner wiring conductor 12, and via conductors 13a to 13d and 14a to 14d located in through holes between the substrate surfaces 10A and 10B.
  • One of the via conductors 13a to 13d is located on the short-circuit side of the center of the planar conductor 11.
  • the other via conductors 14a to 14d are located on the anti-short circuit side of the center of the planar conductor 11.
  • the planar conductor 11 and the wiring conductor 12 extend from the short-circuit side to the anti-short-circuit side.
  • the width of the wiring conductor 12 is narrower in the lateral direction than that of the planar conductor 11.
  • the wiring conductor 12 is divided at the center, and one of the divided wiring conductors 12 and the other are connected to two terminals of the RFID IC80, respectively.
  • the wiring conductors of the second substrate 20 include an outer planar conductor 22, a planar capacitive conductor 21 located inside, and a capacitive wiring portion 21n continuous with the capacitive conductor 21 on the inner substrate surface 20B.
  • the via conductors 23a to 23d located in the through holes between the substrate surfaces 20A and 20B and 24n are included.
  • the via conductors 23a to 23d are located on the short-circuit side of the center of the second substrate 20.
  • the via conductor 24n is located on the anti-short circuit side of the center of the second substrate 20.
  • the capacitive conductor 21 extends from the anti-short circuit side of the substrate surface 20B to the vicinity of the via conductors 23a to 23d.
  • the capacitive conductor 21 has substantially the same width as the planar conductors 11 and 22.
  • the capacitance wiring portion 21n has a width narrower than that of the capacitance conductor 21, and extends from a part of the short-circuit side of the capacitance conductor 21 to the short-circuit side of the substrate surface 20B.
  • the third substrate 30 and the fourth substrate 40 have a substrate that is harder than the first substrate 10 and the second substrate 20.
  • the third substrate 30 and the fourth substrate 40 may be, for example, a printed wiring board in which a wiring conductor is provided on a substrate containing an epoxy resin.
  • the third substrate 30 may be long in the first direction, and the length in the first direction may substantially coincide with the side of the first substrate 10 and the second substrate 20 on the anti-short circuit side.
  • the fourth substrate 40 may be long in the first direction, and the length in the first direction may substantially coincide with the short-circuited side of the first substrate 10 and the second substrate 20.
  • the wiring conductor of the third substrate 30 is located at the substrate surface 30A (corresponding to the first surface), the substrate surface 30B on the opposite side (corresponding to the second surface), and the through hole between the two substrate surfaces 30A and 30B. It has via conductors 31a to 31d and 31n. The plurality of via conductors 31a to 31d and 31n may be arranged in the first direction.
  • the wiring conductor of the fourth substrate 40 is located at the substrate surface 40A (corresponding to the first surface), the substrate surface 40B (corresponding to the second surface) on the opposite side, and the through hole between the two substrate surfaces 40A and 40B. It has via conductors 41a to 41d and 41n. The plurality of via conductors 41a to 41d and 41n may be arranged in the first direction.
  • the upper substrate surfaces 30A and 40A are coupled to the first substrate 10, and the lower substrate surfaces 30B and 40B are coupled to the second substrate 20.
  • the connection may be a method in which the wiring conductors are fixed to each other via solder or a conductive adhesive, or a method in which the wiring conductors are electrically connected to each other and the surrounding insulating portions are joined.
  • the third substrate 30 may be coupled along the short-circuit side side of the first substrate 10 and the second substrate 20.
  • the fourth substrate 40 may be coupled along the anti-short-circuit side side of the first substrate 10 and the second substrate 20.
  • the first substrate 10 and the second substrate 20 include regions A1 and A2 (corresponding to the first region according to the present disclosure) to which the third substrate 30 and the fourth substrate 40 are bonded, and the third substrate 30 and the fourth substrate 40.
  • the flexibility of the regions A1 and A2 is limited by the third substrate 30 and the fourth substrate 40, but the flexibility of the region B is maintained.
  • the via conductors 13a to 13d of the first substrate 10 pass through the via conductors 31a to 31d of the third substrate 30 and the via conductors 23a of the second substrate 20. It is electrically connected to ⁇ 23d. Further, the via conductors 14a to 14d of the first substrate 10 are connected to the via conductors 41a to 41d of the fourth substrate 40, and the via conductor 24n of the second substrate 20 is connected to the via conductor 41n of the fourth substrate 40.
  • the planar conductor 11 and the planar conductor 22 are short-circuited via the via conductors 13a to 13d, 31a to 31d, and 23a to 23d on the short-circuit side.
  • one end of the wiring conductor 12 and one end of the capacitance wiring portion 21n of the capacitance conductor 21 are electrically connected via the via conductor 31n.
  • the planar conductor 11 and the capacitive conductor 21 are electrically connected via the via conductors 14a to 14d and 41a to 41d, and one end of the wiring conductor 12 and the planar conductor 22 are via conductors. It is electrically connected via 41n and 24n.
  • the planar conductor 11 or the wiring conductor 12 corresponds to an example of the "first conductor portion" according to the present disclosure
  • the capacitive conductor 21 or the planar conductor 22 corresponds to an example of the "second conductor portion" according to the present disclosure. ..
  • the RFID IC80 uses the wiring conductors of the first substrate 10 to the fourth substrate 40 as an antenna, and performs wireless communication and power reception with a reader / writer using radio waves in the UHF (Ultra High Frequency) band, for example.
  • the RFID IC80 is joined to the inside in the region B of the first substrate 10 and is protected from impact from the outside world and the like.
  • the outer surface of the second substrate 20 is a surface to be attached to the mating member to which the RFID tag 1 is attached, and an adhesive sheet may be attached thereto.
  • planar conductors 11 and 22 and the planar capacitive conductor 21 are formed on the substrate surface 10A by the connection of the first substrate 10 to the fourth substrate 40 and the connection of the wiring conductors as described above. They are laminated in an arrangement that overlaps 10B, 20A, and 20B when viewed from the direction perpendicular to the direction.
  • the wiring conductors of the first substrate 10 to the fourth substrate 40 are connected to the RFID IC80 to form a plate-shaped inverted-F antenna including the capacitance C1.
  • the planar conductor 11 and the planar conductor 22 function as a radiation conductor and a ground conductor of a plate-shaped inverted F-type antenna, and the planar conductor 11 which is a radiation conductor is a via conductor 13a to 13d, 23a to 23d, 31a to 31d. Is short-circuited to the planar conductor 22 which is a ground conductor.
  • the capacitance conductor 21 and the planar conductor 22 function as the capacitance C1.
  • the signal terminal of the RFID IC80 is connected to the feeding point N1 of the planar conductor 11 which is a radiating conductor via the wiring conductor 12 and the capacitive conductor 21.
  • the mounting surface of the RFID tag 1 (the outer surface of the second substrate 20) maintains flexibility in the region B, the surface to which the RFID tag 1 is mounted does not have a constant bending object, curved surface, or shape. Even so, the RFID tag 1 can be flexed and attached along the mating surface. Further, when the second substrate 20 bends along the mating surface, the deforming force may be transmitted to the first substrate 10 on the side opposite to the mounting surface. However, even in this case, since the first substrate 10 has flexibility in the region B, the first substrate 10 is appropriately deformed in response to this force, so that a large stress is generated in any part of the RFID tag 1. The RFID tag 1 can be stably fixed to the mating surface without the need for it.
  • the flexible first substrate 10 and the second substrate 20 are coupled to the third substrate 30 and the fourth substrate 40 including the outer surface. Includes the non-existing area B. Therefore, the flexibility of the RFID tag 1 is obtained in the region B, and the RFID 1 can be attached to an object, a curved surface, or a surface whose shape is not constant through the region B. Further, by providing the third substrate 30 and the fourth substrate 40 having rigidity, it is possible to prevent the distance between the radial conductor and the planar conductors 11 and 22 functioning as the ground conductor from being significantly changed. Therefore, even if it is flexible, the structure of the antenna in which a plurality of conductors are laminated is maintained. The antenna on which the conductors are laminated makes it possible to reduce the size of the RFID tag 1 including the antenna, and the antenna characteristics can be improved by maintaining the structure of the antenna.
  • a means for stacking a large number of flexible sheet wiring boards and forming an antenna with wiring conductors of each sheet wiring board is provided on each of a large number of sheet wiring boards, and wiring extending in the height direction is configured by connecting the via conductors of a plurality of sheet wiring boards. With such a via conductor, when the sheet wiring board is bent, stress is applied to each part of the via conductor.
  • the wiring conductor extending in the height direction is included in the rigid third substrate 30 and the fourth substrate 40.
  • the first substrate 10 and the second substrate 20 having two flexibility and the third substrate 30 and the fourth substrate 40 having two rigidity are provided.
  • the third substrate 30 is located between the first substrate 10 and the second substrate 20
  • the fourth substrate 40 is located between the first substrate 10 and the second substrate 20 apart from the third substrate. To do. Therefore, the third substrate 30 and the fourth substrate 40 make it easy to maintain the distance between the first substrate 10 and the second substrate 20.
  • the flexibility of the first substrate 10 and the second substrate 20 is exhibited in the region B where the third substrate 30 and the fourth substrate 40 are not bonded. Stable attachment of the RFID tag 1 can be realized even on a curved surface.
  • the RFID IC80 is joined to the inner surface (the surface on the second substrate 20 side) of the first substrate 10. According to this configuration, the RFID IC80 can be protected against impacts from the outside world, and the reliability of the RFID tag 1 can be further improved.
  • the planar conductors 11 and 22 included in the first substrate 10 and the second substrate 20 constitute a radiation conductor and a ground conductor of the plate-shaped inverted F antenna.
  • the planar conductors 11 and 22 overlap each other when viewed from the direction (height direction) from the substrate surface 30A of the third substrate 30 toward the opposite substrate surface 30B, and the via conductors 31a to the third substrate 30 It is short-circuited via 31d.
  • the plate-shaped inverted-F antenna having such a structure, it is possible to reduce the size of the RFID tag 1 and improve the antenna characteristics.
  • the second substrate 20 includes the capacitive conductor 21, and when viewed from the height direction, the radial conductor (plane conductor 11) and the ground conductor (plane conductor 22) The capacitive conductor 21 overlaps with the capacitance conductor 21.
  • the capacitive plate-shaped inverted-F antenna having such a structure makes it possible to further reduce the size of the RFID tag 1 and improve the antenna characteristics.
  • FIG. 5 is a cross-sectional view showing an RFID tag according to the second embodiment of the present disclosure. Since the RFID tag 1A of the second embodiment has flexibility in the region B as in the first embodiment, it can be attached to a flexible object, a curved surface, or a surface having a non-constant shape.
  • the RFID tag 1A of the second embodiment is an example in which the second substrate 20 is thicker than the first substrate 10. Specifically, the substrate 28 of the second substrate 20 may be thicker than the substrate 18 of the first substrate 10. When the second substrate 20 is attached to a curved surface, the relative angle between the third substrate 30 and the fourth substrate 40 opens and closes. Therefore, the amount of deflection of the first substrate 10 may be larger than that of the second substrate 20. According to the RFID tag 1A of the second embodiment, the substrate 18 of the first substrate 10 is thinned, and the first substrate 10 is more easily bent than the second substrate 20, so that the RFID tag is stable even in the above case. 1 can be attached.
  • FIG. 6 is a cross-sectional view showing an RFID tag according to the third embodiment of the present disclosure. Since the RFID tag 1B of the third embodiment has flexibility in the region B as in the first embodiment, it can be attached to a flexible object, a curved surface, or a surface having a non-constant shape.
  • the RFID tag 1B according to the third embodiment is an example in which the second substrate 20 is thinner than the first substrate 10. Specifically, the substrate 28 of the second substrate 20 may be thinner than the substrate 18 of the first substrate 10.
  • the base 28 of the second substrate 20 is an insulator (dielectric) arranged between the planar conductor 22 that functions as a ground conductor and the inner capacitive conductor 21, and by making the base 28 thinner, these The volume component between can be increased. Therefore, according to the RFID tag 1B of the third embodiment, the capacitance component of the antenna is increased by selecting different thicknesses of the substrate 18 of the first substrate 10 and the substrate 28 of the second substrate 20, and the RFID tag 1B is used. The antenna can be made smaller without deteriorating the antenna characteristics.
  • the bases 18 are included in the interposition without changing the thicknesses of the bases 18 and 28.
  • the value of the volume component can be changed.
  • the capacitance component can be increased and the plate-shaped inverted-F antenna with capacitance can be miniaturized.
  • the relative permittivity of the substrate can be appropriately adjusted by selecting the material of the substrate or increasing or decreasing the material density of the substrate.
  • FIG. 7 is a cross-sectional view showing an RFID tag according to the fourth embodiment of the present disclosure. Since the RFID tag 1C of the fourth embodiment has flexibility in the region B as in the first embodiment, it can be attached to a flexible object, a curved surface, or a surface having a non-constant shape.
  • the RFID tag 1C according to the fourth embodiment is an example in which the widths (lengths along the second direction) of the third substrate 30 and the fourth substrate 40 are different. Since the substrate 38 of the third substrate 30 and the substrate 48 of the fourth substrate 40 have a large relative permittivity, the electric charges appearing on the wiring conductors of the first substrate 10 and the second substrate 20 can be made constant by changing their widths. Even if this is the case, the strength of the electric field emitted to the outside changes. Therefore, the degree of freedom in designing the antenna characteristics of the RFID tag 1C can be improved by selecting different widths of the third substrate 30 and the fourth substrate 40.
  • the electric field strength radiated to the outside is increased by increasing the width of the fourth substrate 40 on the anti-short circuit side in which a large amount of electric charge appears among the planar conductors 11 and 22 and the capacitive conductor 21. Can be increased to improve the antenna gain. Further, by increasing the dielectric constant on the anti-short circuit side, the effect of shortening the wavelength of the radio wave can be obtained, and the RFID tag 1C can be further miniaturized.
  • the anti-short circuit side may be referred to as the open end side of the planar conductor (radiating conductor) 11.
  • the relative permittivity of the substrate 48 of the fourth substrate 40 By making the relative permittivity of the substrate 48 of the fourth substrate 40 larger than the relative permittivity of the substrate 38 of the third substrate 30, the electric field strength radiated to the outside without changing the widths of the substrates 38 and 48.
  • the antenna gain can be improved, and the RFID tag can be further miniaturized.
  • the flexible region B By not increasing the width of the substrate 48 as in the above configuration, the flexible region B does not become small and the overall flexibility does not decrease.
  • FIG. 8 is an exploded perspective view showing the RFID tag according to the fifth embodiment of the present disclosure.
  • the RFID tag 1D according to the fifth embodiment has notches 16a to 16d (corresponding to the first notch) at the four corners of the first substrate 10.
  • the third substrate 30 and the fourth substrate 40 have engaging portions (for example, protrusions) 35a, 35b, 45c, 45d that engage with the notches 16a to 16d at positions corresponding to the notches 16a to 16d.
  • the notches 16a to 16d are engaged with the engaging portions 35a, 35b, 45c, 45d.
  • the first substrate 10 can be easily positioned. Further, since the four corners of the flexible first substrate 10 are removed, the first substrate 10 is turned up from the corners during use of the RFID tag 1D, and the first substrate 10 is bonded. Can be suppressed from being unraveled. Further, in the dicing process included in the manufacturing process described later, it is possible to prevent the first substrate 10 from being turned up from the corners and breaking the bond between the first substrate 10 and the third substrate 30 and the fourth substrate 40. it can.
  • the four corners of the second substrate 20 also have notches (corresponding to the first notches), and the third substrate 30 and the fourth substrate 40 have engaging portions that engage with the notches of the second substrate 20. You may be doing it. With this configuration, the second substrate 20 can be easily positioned when the second substrate 20 is coupled to the third substrate 30 and the fourth substrate 40, and it is possible to prevent the corners of the second substrate 20 from being turned up in a dicing process or the like. it can.
  • FIG. 9 is an exploded perspective view showing the RFID tag according to the sixth embodiment of the present disclosure.
  • the first substrate 10 and the second substrate 20 have notches 16a to 16d and 26a to 26d (corresponding to the first notch) at the four corners.
  • the third substrate 30 and the fourth substrate 40 have notches 36a, 36b, 46c, 46d (second notches) extending in the height direction at locations corresponding to the four corners of the first substrate 10 and the second substrate 20. Equivalent to).
  • the notches 16a to 16d, 36a, 36b, 46c, 46d, and 26a to 26d may be arranged so that the edges of the notches have the same shape and the same size when viewed from the height direction.
  • an alignment jig is arranged in the notch portion to align the first substrate 10. It can be carried out. Further, when the joining step of the second substrate 20 is included, the alignment of the second substrate 20 can be performed in the same manner.
  • the first substrate 10 and the second substrate 20 are turned up from the corners during use of the RFID tag 1E or the like. Therefore, it is possible to prevent the first substrate 10 and the second substrate 20 from being unbonded. Further, in the dicing step included in the manufacturing process described later, the first substrate 10 and the second substrate 20 are turned up from the corners to form the first substrate 10, the second substrate 20, the third substrate 30, and the fourth substrate 40. It is possible to prevent the bond between the two from being broken.
  • FIG. 10 is a diagram illustrating a part of the RFID tag manufacturing process according to the embodiment. Subsequently, an example of the manufacturing method of the RFID tag 1 of the first embodiment will be described, but the following manufacturing method can be similarly adopted for the RFID tags 1A to 1F of the seventh embodiment described later from the second embodiment.
  • the method for manufacturing the RFID tag 1 according to the first embodiment is joined to the step J1 for joining the array substrates 110R and 120R in which the components of the plurality of RFID tags 1 are arranged in a matrix.
  • the dicing step J2 for cutting the array substrates 110R and 120R is included.
  • the array substrate 110R is a flexible substrate in which a plurality of first substrates 10 are arranged vertically and horizontally (for example, 3 rows and 3 columns). A plurality of RFID ICs 80 are mounted on the array substrate 110R.
  • the array substrate 120R is a hybrid substrate in which a rigid substrate 122 is integrally formed on a flexible substrate 121 in which a plurality of second substrates 20 are arranged vertically and horizontally.
  • the rigid substrate 122 has a plurality of penetrations corresponding to a portion including a plurality of sets of portions to be the third substrate 30 and the fourth substrate 40, a margin portion, and a gap portion between the third substrate 30 and the fourth substrate 40.
  • the through hole 122h may be formed so as to be continuous over a plurality of sets of parts arranged in the lateral direction.
  • the array board 110R and the array board 120R are joined.
  • the joining points are the upper surface of the portion to be the third substrate 30 and the fourth substrate 40 included in the array substrate 120R, and the lower surface of the corresponding portion of the array substrate 110R.
  • the joining may be a method in which the wiring conductors are fixed to each other via solder or a conductive adhesive, or a method in which the wiring conductors are electrically connected to each other and the surrounding insulating portions are joined.
  • the joined array substrates 110R and 120R are cut along the dividing lines D1 and D2.
  • the dividing line D1 is a line along the short-circuited edge and the anti-short-circuited edge of each RFID tag 1.
  • the dividing line D2 is a line along the edge extending in the longitudinal direction of the wiring conductor 12 of the RFID tag 1, and is a line passing through the through hole 122h.
  • a plurality of RFID tags 1 are divided and manufactured by the dicing step J2.
  • the configurations of the fifth and sixth embodiments are adopted.
  • the turning up can be suppressed.
  • the array substrate 110R has through holes as notches 16a to 16d at the intersections of the dividing lines D1 and D2, that is, at the corners of the individual RFID tags 1.
  • the flexible substrate 121 of the array substrate 120R may have the same through holes in the same arrangement.
  • the rigid substrate 122 of the array substrate 120R has protrusions that serve as engaging portions 35a, 35b, 45c, and 45d at the intersections of the dividing lines D1 and D2, that is, at the corners of the individual RFID tags 1.
  • the array substrate 110R and the array substrate 120R have notches 16a to 16d, 26a to 26d, 36a, 36b at the intersections of the dividing lines D1 and D2, that is, the corners of the individual RFID tags 1. , 46c, 46d.
  • FIG. 11 is an exploded perspective view showing the RFID tag according to the seventh embodiment of the present disclosure.
  • the rigid third substrate 30 or the fourth substrate 40 has one or more slits 34 and 44.
  • the slits 34 and 44 extend in the lateral direction of the regions A1 and A2.
  • the slits 34 and 44 have an open side end on the surface facing the first substrate 10, but may have an open side end on the surface facing the second substrate 20. Both sides may have open ends.
  • the slits on one surface and the slits on the other surface may be offset in the first direction, or may be in the same positions in the first direction.
  • the total depth (length in the height direction) of the slits on one surface and the slits on the other surface is greater than the height of the third substrate 30 or the fourth substrate 40. Is also shortened.
  • the depth of the slit on one surface and the slit on the other surface may both be less than half the height of the third substrate 30 or the fourth substrate 40.
  • the third substrate 30 or the fourth substrate 40 is divided into a plurality of portions at the slit portion, that is, the third substrate 30 or the fourth substrate 40 is formed in the longitudinal direction of the regions A1 and A2. A configuration that is divided into a plurality of parts may be adopted.
  • the RFID tag 1F of the seventh embodiment it is possible to bend the third substrate 30 or the fourth substrate 40 along a surface having a curvature in the longitudinal direction. Therefore, even if the mating surface to which the RFID tag 1F is attached is a curved surface having curvatures in two directions orthogonal to each other, the RFID tag 1F can be attached stably.
  • FIG. 12 is a cross-sectional view showing an RFID tag according to the eighth embodiment of the present disclosure.
  • the RFID tag 1G of the eighth embodiment includes a fifth substrate 50 including wiring conductors 51, 52, 53, 54, 55a to 55d and having flexibility, and a sixth substrate including wiring conductors 61a to 61d and 61n and having rigidity. 60 and. The direction from one substrate surface 60B (corresponding to the first surface) to the other substrate surface 60A (corresponding to the second surface) of the sixth substrate 60 will be described as upward.
  • the fifth substrate 50 corresponds to an example of the "flexible substrate” according to the present disclosure.
  • the sixth substrate 60 corresponds to an example of the “rigid substrate” according to the present disclosure.
  • the fifth substrate 50 is bent in a C shape, the region A11 at one end in the longitudinal direction is coupled to the substrate surface 60A of the sixth substrate 60, and the region A12 at the other end in the longitudinal direction is on the opposite side of the sixth substrate 60. It is coupled to the substrate surface 60B of.
  • the region B10 other than one end and the other end in the longitudinal direction of the fifth substrate 50 is not coupled to the sixth substrate 60, and the flexibility is maintained.
  • Areas A11 and A12 correspond to the first area according to the present disclosure
  • area B10 corresponds to the second area according to the present disclosure.
  • the wiring conductor of the upper portion 50U of the fifth substrate 50 bent in a C shape may have the same pattern as the wiring conductor included in the first substrate 10 of FIG.
  • An RFID IC80 is mounted inside the upper 50U.
  • the wiring conductor of the lower portion 50D of the fifth substrate 50 may have the same pattern as the wiring conductor included in the second substrate 20 of FIG.
  • the wiring conductor of the side portion 50S connecting the upper portion 50U and the lower portion 50D of the fifth substrate 50 may have the same pattern as the wiring conductor included in the fourth substrate 40 of FIG.
  • As the wiring conductor of the side portion 50S a linear or band-shaped conductor located on one surface and the other surface of the flexible substrate 58 may be adopted instead of the form of a via conductor.
  • the flexible fifth substrate 50 and the rigid sixth substrate 60 have notches 16a and 16b and engaging portions 35a and 35b shown in the fifth embodiment.
  • the same components as in may be applied.
  • the same components as the notches 16a, 16b, 36a, 36b, 26a, 26b shown in the sixth embodiment may be applied.
  • elements similar to the slit 34 or division configuration shown in the seventh embodiment may be applied.
  • a spacer having no wiring conductor may be arranged inside the side portion 50S of the fifth substrate 50, and a configuration may be adopted in which the gap between the upper portion 50U and the lower portion 50D is maintained also in the side portion 50S. ..
  • the fifth substrate 50 since the fifth substrate 50 has flexibility, the fifth substrate 50 is attached even if the object to which the RFID tag 1G is attached is a flexible object, a curved surface, or a surface whose shape is not constant. By bending and attaching the lower part 50D along the mating surface, stable attachment of the RFID tag 1G can be realized. Further, the rigid sixth substrate 60 is coupled to the fifth substrate 50, and the wiring conductor of the sixth substrate 60 and the wiring conductor of the fifth substrate 50 are connected to form an antenna, whereby the sixth substrate 60 is formed. As a result, two or more wiring conductors included in the antenna can be separated from each other at regular intervals. With this configuration, for example, a plate-shaped inverted-F antenna or a capacitive plate-shaped inverted-F antenna can be configured, and the antenna can be miniaturized and its characteristics can be improved.
  • the RFID tag of the present disclosure is not limited to the above embodiment.
  • a capacitive plate-shaped inverted-F antenna is applied as the antenna included in the RFID tag is shown, but the type of the antenna is not limited to this.
  • a plate-shaped inverted-F antenna having no capacitance may be applied, or the capacitance conductor may be arranged on the substrate surface 10B inside the first substrate 10.
  • the RFID IC 80 may be arranged on the substrate surface 20B inside the second substrate 20, or may be arranged on the third substrate 30 or the fourth substrate 40, and is included in the third substrate 30 or the fourth substrate 40. It may be connected to a wiring conductor.
  • the details shown in the embodiment can be appropriately changed without departing from the spirit of the invention.
  • This disclosure can be used for RFID tags.
  • 1, 1A to 1G RFID tag 10 1st substrate (flexible substrate) 20 Second substrate (flexible substrate) 30 Third substrate (rigid substrate) 40 Fourth substrate (rigid substrate) 10A, 10B, 20A, 20B, 30A, 30B, 40A, 40B Substrate surface A1, A2 area (first area) Area B (2nd area) 11, 22 Planar conductors 12 Wiring conductors 13a to 13d, 14a to 14d Via conductors 16a to 16d, 26a to 26d Notches 18, 28, 38, 48, 58 Base 21 Capacitive conductors 31a to 31d, 31n, 41a to 41d , 41n Via conductors 34, 44 Slits 35a, 35b, 45c, 45d Engagement parts 36a, 36b, 46c, 46d Notch 80 RFID IC 50 Fifth substrate (flexible substrate) 60 6th substrate (rigid substrate) 60A, 60B Substrate surface 51-54, 55a-55d, 61a-61d, 61n Wiring

Landscapes

  • Engineering & Computer Science (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Computer Hardware Design (AREA)
  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Theoretical Computer Science (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Structure Of Printed Boards (AREA)
  • Details Of Aerials (AREA)

Abstract

RFIDタグ(1)は、RFID用IC(80)と、第1配線導体(11,12,13a~13d,14a~14d,21,21n,22,23a~23d,24n)を含む可撓性を有する基板(10,20)と、第2配線導体(31a~31d,31n,41a~41d,41n)を含む剛性を有する基板(30,40)とを備える。そして、前記可撓性を有する基板(10,20)の基板面(10A,20B)は、前記剛性を有する基板(30,40)に結合された第1領域(A1,A2)と、反対の面(10B,20A)を含めて前記剛性を有する基板(30,40)に結合されていない第2領域(B)とを含み、前記第1配線導体に含まれる第1導体部(11,12)及び第2導体部(21,22)が前記第2配線導体を介して電気的に接続され、前記RFID用IC(80)が前記第1配線導体、前記第2配線導体又はこれら両方に接続されている。

Description

RFIDタグ
 本開示は、RFID(radio frequency identifier)タグに関する。
 従来、アンテナ導体を含んだセラミック焼結体の基板にRFID用IC(Integrated Circuit)が搭載されたRFIDタグがある(国際公開第2018/016624号を参照)。当該RFIDタグにおいて、アンテナ導体は積層された複数の導体を含む。
 本開示のRFIDタグは、
 RFID用ICと、
 第1配線導体を含む可撓性を有する基板と、
 第2配線導体を含む剛性を有する基板と、
 を備え、
 前記可撓性を有する基板の基板面は、前記剛性を有する基板に結合された第1領域と、反対の面を含めて前記剛性を有する基板に結合されていない第2領域とを含み、
 前記第1配線導体に含まれる第1導体部及び第2導体部が前記第2配線導体を介して電気的に接続され、
 前記RFID用ICが、前記第1配線導体、前記第2配線導体又はこれら両方に接続されている。
本開示の実施形態1に係るRFIDタグを示す分解斜視図である。 図1のRFIDタグを斜め下方から見た分解斜視図である。 図1のA-A線における断面を示す概略図である。 図1のRFIDタグの等価回路を示す図である。 本開示の実施形態2に係るRFIDタグを示す断面図である。 本開示の実施形態3に係るRFIDタグを示す断面図である。 本開示の実施形態4に係るRFIDタグを示す断面図である。 本開示の実施形態5に係るRFIDタグを示す分解斜視図である。 本開示の実施形態6に係るRFIDタグを示す分解斜視図である。 本開示の実施形態に係るRFIDタグの製造工程の一部を説明する図である。 本開示の実施形態7に係るRFIDタグを示す分解斜視図である。 本開示の実施形態8に係るRFIDタグを示す断面図である。
 以下、本開示の各実施形態について図面を参照して詳細に説明する。
 (実施形態1)
 図1は、本開示の実施形態1に係るRFIDタグを示す分解斜視図である。図2は、図1のRFIDタグを斜め下方から見た分解斜視図である。図3は、図1のA-A線における断面を示す概略図である。図4は、図1のRFIDタグの等価回路を示す図である。
 本開示の実施形態1のRFIDタグ1は、配線導体(11、12、13a~13d、14a~14d)を含み可撓性を有する第1基板10と、配線導体(21、21n、22、23a~23d、24n)を含み可撓性を有する第2基板20と、配線導体(31a~31d)を含み剛性を有する第3基板30と、配線導体(41a~41d)を含み剛性を有する第4基板40と、リーダライタと無線通信を行うRFID用IC80とを備える。第1基板10と第2基板20との間に第3基板30と第4基板40とが配置され、かつ、第3基板30と第4基板40とは、互いに離間する。第3基板30及び第4基板40は、前記第1基板10の基板面10Aに沿った方向のうち一つの方向における一方と他方とにそれぞれ配置されてもよい。以下では、第3基板30が配置される側を短絡側と呼び、第4基板40が配置される側を反短絡側と呼ぶ。また、以下では、第2基板20側から第1基板10側の方向を高さ方向とし、短絡側及び反短絡側の辺に沿った方向を第1方向とし、短絡側から反短絡側を第2方向として説明する。言い換えれば、第3基板30と第4基板40とは第2方向に離間し、第2方向の一方(一方の端部でもよい)と他方(他方の端部でもよい)とにそれぞれ配置される。第1基板10及び第2基板20とこれらに含まれる配線導体とは、それぞれ本開示に係る「可撓性を有する基板」と「第1配線導体」との一例に相当する。第3基板30及び第4基板40とこれらに含まれる配線導体とは、本開示に係る「剛性を有する基板」と「第2配線導体」との一例に相当する。
 第1基板10及び第2基板20は、例えばFPC(Flexible Printed Circuits)であり、フィルム状又は帯状であってもよい。FPCの基体としてはポリイミド等が適用されてもよい。基体は、外側の基板面10A、20Aと内側の基板面10B、20Bとをそれぞれ有する。内側とは第1基板10と第2基板20とが対向する側を意味し、外側とは上記対向する側の反対側を意味する。内側と外側の基板面10A、10B、20A、20Bには、膜状の配線導体(11、12、21、21n、22)が位置する。配線導体(11、12、21、21n、22)上には、他の配線と接続される部分を除いて、絶縁性を有する保護膜が覆っていてもよい。
 第1基板10の配線導体は、外側の面状導体11と、内側の配線導体12と、基板面10A、10B間の貫通孔に位置するビア導体13a~13d、14a~14dとを含む。一方のビア導体13a~13dは、面状導体11の中央よりも短絡側に位置する。他方のビア導体14a~14dは、面状導体11の中央よりも反短絡側に位置する。面状導体11及び配線導体12は、短絡側から反短絡側まで延在する。配線導体12は、面状導体11よりも短手方向の幅が狭い。配線導体12は、中央で分断されており、分断された一方と他方とがRFID用IC80の2つの端子にそれぞれ接続されている。
 第2基板20の配線導体は、外側の面状導体22と、内側に位置する面状の容量用導体21と、内側の基板面20Bにおいて容量用導体21に連続する容量用配線部21nと、基板面20A、20B間の貫通孔に位置するビア導体23a~23dと、24nとを含む。ビア導体23a~23dは、第2基板20の中央よりも短絡側に位置する。ビア導体24nは、第2基板20の中央よりも反短絡側に位置する。容量用導体21は、基板面20Bの反短絡側にからビア導体23a~23dの近傍にかけた領域に延在する。容量用導体21は、面状導体11、22と実質的に同じ幅を有する。容量用配線部21nは、容量用導体21よりも狭い幅を有し、容量用導体21の短絡側の一部から基板面20Bの短絡側へ延在する。
 第3基板30及び第4基板40は、第1基板10及び第2基板20よりも硬質な基体を有する。第3基板30及び第4基板40は、例えばエポキシ樹脂を含む基体に配線導体が設けられたプリント配線基板であってもよい。第3基板30は、第1方向に長く、第1方向の長さが、第1基板10及び第2基板20の反短絡側の辺と実質的に一致していてもよい。同様に、第4基板40は、第1方向に長く、第1方向の長さが、第1基板10及び第2基板20の短絡側の辺と実質的に一致していてもよい。
 第3基板30の配線導体は、基板面30A(第1面に相当)と、その反対側の基板面30B(第2面に相当)と、2つの基板面30A、30B間の貫通孔に位置するビア導体31a~31d、31nとを有する。複数のビア導体31a~31d、31nは、第1方向に並んでいてもよい。
 第4基板40の配線導体は、基板面40A(第1面に相当)と、その反対側の基板面40B(第2面に相当)と、2つの基板面40A、40B間の貫通孔に位置するビア導体41a~41d、41nとを有する。複数のビア導体41a~41d、41nは、第1方向に並んでいてもよい。
 上方の基板面30A、40Aは第1基板10に結合され、下方の基板面30B、40Bは第2基板20に結合されている。結合は、配線導体同士が半田又は導電性接着剤を介して固定される方式としてもよいし、配線導体同士が電気的に接続された上で周囲の絶縁部が接合される方式としてもよい。第3基板30は、第1基板10及び第2基板20の短絡側の辺に沿って結合されていてもよい。第4基板40は、第1基板10及び第2基板20の反短絡側の辺に沿って結合されていてもよい。
 第1基板10及び第2基板20は、第3基板30及び第4基板40が結合された領域A1、A2(本開示に係る第1領域に相当)と、第3基板30及び第4基板40が結合されない領域B(本開示に係る第2領域に相当)とを有する。領域A1、A2は、第3基板30及び第4基板40により可撓性が制限されるが、領域Bの可撓性は維持される。
 第1基板10から第4基板40が結合された状態において、第1基板10のビア導体13a~13dは、第3基板30のビア導体31a~31dを介して、第2基板20のビア導体23a~23dに電気的に接続される。さらに、第1基板10のビア導体14a~14dが第4基板40のビア導体41a~41dに接続され、第2基板20のビア導体24nが第4基板40のビア導体41nに接続される。これらの接続により、短絡側において、面状導体11と面状導体22とが、ビア導体13a~13d、31a~31d、23a~23dを介して短絡される。加えて、配線導体12の一端と容量用導体21の容量用配線部21nの一端とがビア導体31nを介して電気的に接続される。さらに、反短絡側において、面状導体11と容量用導体21とがビア導体14a~14d、41a~41dを介して電気的に接続され、配線導体12の一端と面状導体22とがビア導体41n、24nを介して電気的に接続される。面状導体11又は配線導体12は本開示に係る「第1導体部」の一例に相当し、容量用導体21又は面状導体22は本開示に係る「第2導体部」の一例に相当する。
 RFID用IC80は、第1基板10から第4基板40の配線導体をアンテナとし、例えばUHF(Ultra High Frequency)帯の電波を用いてリーダライタと無線通信及び受電を行う。RFID用IC80は第1基板10の領域Bにおける内側に接合され、外界からの衝撃等から保護される。第2基板20の外側の面は、RFIDタグ1を取り付ける相手部材への貼付け面であり、そこには粘着シートが添付されてもよい。
 上記のような第1基板10~第4基板40の結合と各配線導体の接続とにより、図3に示すように、面状導体11、22及び面状の容量用導体21は、基板面10A、10B、20A、20Bに垂直な方向から見て重なる配置で積層される。
 図4の等価回路に示すように、第1基板10~第4基板40の配線導体は、RFID用IC80に接続され、容量C1を含んだ板状逆F型アンテナを構成する。面状導体11と面状導体22とは板状逆F型アンテナの放射導体と接地導体として機能し、放射導体である面状導体11は、ビア導体13a~13d、23a~23d、31a~31dを介して、接地導体である面状導体22に短絡される。容量用導体21及び面状導体22は、容量C1として機能する。放射導体である面状導体11の給電点N1には、配線導体12と容量用導体21とを介してRFID用IC80の信号端子が接続される。
 RFIDタグ1からの無線送信時、RFID用IC80から送信信号が出力されると、板状逆F型アンテナの放射導体(面状導体11)及び容量用導体21と、接地導体(面状導体22)と、の間に送信信号に応じた電荷の移動が生じ、電荷の移動により電界が生じて無線信号が送信される。反短絡側と短絡側とを比較すると、反短絡側において強い電界強度が生じ、反短絡側から高い強度で無線信号が送信される。
 RFIDタグ1の取付面(第2基板20の外側の面)は、領域Bにおいて可撓性が維持されることから、RFIDタグ1を取り付ける相手が、撓む物体、曲面又は形状が一定でない面であっても、相手面に沿ってRFIDタグ1を撓めて取り付けることができる。さらに、相手面に沿って第2基板20が撓んだ場合に、取付面とは反対側の第1基板10にも変形させる力が伝わることがある。しかし、この場合でも、第1基板10の領域Bにおいて可撓性を有するため、この力に応じて第1基板10が適宜変形することで、RFIDタグ1のいずれかの箇所に大きな応力が生じることなく、RFIDタグ1を安定的に相手面に固定することができる。
 以上のように、実施形態1のRFIDタグ1によれば、可撓性を有する第1基板10及び第2基板20が、外側の面を含めて第3基板30及び第4基板40に結合されていない領域Bを含む。したがって、領域BにおいてRFIDタグ1の可撓性が得られ、RFID1を領域Bを介して撓む物体、曲面又は形状が一定でない面へ取り付け可能である。さらに、剛性を有する第3基板30及び第4基板40を備えることで、放射導体と接地導体として機能する面状導体11、22の距離が大きく変わることが抑制される。したがって、可撓性があっても複数に導体が積層されるアンテナの構造を維持する。導体が積層されたアンテナにより、アンテナを含めたRFIDタグ1の小型化を図ることができ、アンテナの構造が維持されることでアンテナ特性を向上できる。
 ここで、可撓性とアンテナの小型化及び性能向上を得るための別の手段として、可撓性のある多数枚のシート配線基板を重ね、各シート配線基板の配線導体によりアンテナを構成する手段を検討する。しかしながら、このような手段では、多数枚のシート配線基板の各々にビア導体を設け、高さ方向に延在する配線を、複数枚のシート配線基板のビア導体を継いで構成することになる。このようなビア導体では、シート配線基板を撓ませたときに、ビア導体の各部に応力が加わってしまう。一方、実施形態1のRFIDタグ1によれば、高さ方向に延在する配線導体は、剛性を有する第3基板30及び第4基板40に含まれる。したがって、第1基板10及び第2基板20を撓ませた場合でも、高さ方向に延在する配線導体(ビア導体31a~31d、31n、41a~41d、41n)には応力がかかり難く、高い配線導体の耐久性を得ることができる。
 さらに、実施形態1のRFIDタグ1によれば、2つの可撓性を有する第1基板10及び第2基板20と、2つの剛性を有する第3基板30及び第4基板40とを備える。そして、第3基板30は第1基板10と第2基板20との間に位置し、第4基板40は第3基板とは離間して第1基板10と第2基板20との間に位置する。したがって、第3基板30及び第4基板40により、第1基板10と第2基板20との間隔が維持しやすい。さらに、RFIDタグ1を曲面に取り付ける際には、第3基板30と第4基板40とが結合されていない領域Bで第1基板10及び第2基板20の可撓性が発揮されるので、曲面においてもRFIDタグ1の安定的な取付けを実現できる。
 さらに、実施形態1のRFIDタグ1によれば、RFID用IC80が、第1基板10の内方の面(第2基板20側の面)に接合されている。この構成によれば、外界からの衝撃等に対してRFID用IC80を保護することができ、RFIDタグ1の信頼性をより向上できる。
 さらに、実施形態1のRFIDタグ1によれば、第1基板10及び第2基板20に含まれる面状導体11、22が、板状逆F型アンテナの放射導体と接地導体とを構成する。そして、面状導体11、22は、第3基板30の基板面30Aから反対側の基板面30Bへ向かう方向(高さ方向)から見て、重なっており、第3基板30のビア導体31a~31dを介して短絡されている。このような構造の板状逆F型アンテナにより、RFIDタグ1の小型化とアンテナ特性の向上とを図ることができる。
 さらに、実施形態1のRFIDタグ1によれば、第2基板20が容量用導体21を含み、高さ方向から見て、放射導体(面状導体11)と接地導体(面状導体22)と容量用導体21とが、重なっている。このような構造の容量付き板状逆F型アンテナにより、RFIDタグ1のより小型化とアンテナ特性の向上とを図ることができる。
 (実施形態2)
 図5は、本開示の実施形態2に係るRFIDタグを示す断面図である。実施形態2のRFIDタグ1Aは、実施形態1と同様に領域Bに可撓性を有することから、撓む物体、曲面又は形状が一定でない面への取り付けが可能である。実施形態2のRFIDタグ1Aは、第1基板10よりも第2基板20を厚くした例である。具体的には、第1基板10の基体18よりも、第2基板20の基体28を厚くしてもよい。第2基板20を曲面に張り付けると、第3基板30と第4基板40との相対角度が開いたり閉じたりする。よって、第2基板20よりも第1基板10の撓み量が大きくなる場合がある。実施形態2のRFIDタグ1Aによれば、第1基板10の基体18が薄くなって、第1基板10が第2基板20よりも撓みやすいので、上記のような場合でも、安定的なRFIDタグ1の取り付けが可能となる。
 (実施形態3)
 図6は、本開示の実施形態3に係るRFIDタグを示す断面図である。実施形態3のRFIDタグ1Bは、実施形態1と同様に領域Bに可撓性を有することから、撓む物体、曲面又は形状が一定でない面への取り付けが可能である。実施形態3に係るRFIDタグ1Bは、第2基板20を第1基板10よりも薄くした例である。具体的には、第2基板20の基体28を、第1基板10の基体18よりも薄くしてもよい。第2基板20の基体28は接地導体として機能する面状導体22と内側の容量用導体21との間に配置される絶縁体(誘電体)であり、基体28を薄くすることで、これらの間の容量成分を大きくすることができる。したがって、実施形態3のRFIDタグ1Bによれば、第1基板10の基体18と第2基板20の基体28との厚みを異ならせる選択により、アンテナの容量成分を大きくして、RFIDタグ1Bのアンテナ特性を低下させずに、アンテナのより小型化を図ることができる。
 なお、第2基板20の基体28の比誘電率を、第1基板10の基体18の比誘電率よりも大きくすることで、基体18、28の厚みを変えずに、基体18を間に含んだ容量成分の値を変えることができる。このような構成によっても、図5のRFIDタグ1Bと同様に、容量成分を大きくし、容量付き板状逆F型アンテナの小型化を図ることができる。基体の比誘電率は、基体の材質の選定又は基体の材料密度の高低により適宜調整することができる。
 (実施形態4)
 図7は、本開示の実施形態4に係るRFIDタグを示す断面図である。実施形態4のRFIDタグ1Cは、実施形態1と同様に領域Bに可撓性を有することから、撓む物体、曲面又は形状が一定でない面への取り付けが可能である。実施形態4に係るRFIDタグ1Cは、第3基板30と第4基板40との幅(第2方向に沿った長さ)を異ならせた例である。第3基板30の基体38及び第4基板40の基体48は大きな比誘電率を有するため、これらの幅を変えることで、第1基板10及び第2基板20の配線導体に現れる電荷を一定とした場合でも、外部に放出される電界強度が変化する。したがって、第3基板30と第4基板40との幅を異ならせる選択により、RFIDタグ1Cのアンテナ特性の設計自由度を向上できる。
 例えば、図7の具体例では、面状導体11、22及び容量用導体21のうち電荷が多く現れる反短絡側の第4基板40の幅を増していることで、外部に放射される電界強度を増して、アンテナ利得を向上することができる。さらに、反短絡側の誘電率が高まることにより、電波の波長短縮の効果が得られ、RFIDタグ1Cのより小型化を図ることができる。反短絡側は、面状導体(放射導体)11の開放端側と呼んでもよい。
 なお、第4基板40の基体48の比誘電率を、第3基板30の基体38の比誘電率よりも大きくすることで、基体38、48の幅を変えずに外部に放射される電界強度を増して、アンテナ利得を向上することができ、また、RFIDタグのより小型化を図ることができる。当該構成のように基体48の幅を大きくしないことで、可撓性を有する領域Bが小さくならず全体の可撓性が低下しない。
 (実施形態5)
 図8は、本開示の実施形態5に係るRFIDタグを示す分解斜視図である。実施形態5に係るRFIDタグ1Dは、第1基板10の四隅に切欠き16a~16d(第1切欠きに相当)を有する。さらに、第3基板30及び第4基板40は、切欠き16a~16dに対応する位置に、切欠き16a~16dと係合する係合部(例えば突起)35a、35b、45c、45dを有する。
 このような構成によれば、第1基板10を第3基板30及び第4基板40と結合させる工程において、切欠き16a~16dを係合部35a、35b、45c、45dに係合させて、第1基板10を容易に位置決めできる。さらに、可撓性を有する第1基板10の4つの角部が除去されていることで、RFIDタグ1Dの使用中等に、第1基板10が角部からめくり上がって、第1基板10の結合が解かれてしまうことを抑制できる。さらに、後述する製造工程に含まれるダイシング工程において、第1基板10が角部からめくり上がって、第1基板10と第3基板30及び第4基板40との結合が解かれてしまうことを抑制できる。
 なお、第2基板20の四隅にも切欠き(第1切欠きに相当)を有し、第3基板30及び第4基板40が第2基板20の切欠きに係合する係合部を有していてもよい。当該構成により、第2基板20を第3基板30及び第4基板40と結合させる際に第2基板20を容易に位置決めでき、ダイシング工程等において第2基板20の角部がめくり上がることを抑制できる。
 (実施形態6)
 図9は、本開示の実施形態6に係るRFIDタグを示す分解斜視図である。実施形態6に係るRFIDタグ1Eにおいては、第1基板10及び第2基板20が、四隅に切欠き16a~16d、26a~26d(第1切欠きに相当)を有する。さらに、第3基板30及び第4基板40は、第1基板10及び第2基板20の四隅に対応する箇所に高さ方向に延在する切欠き36a、36b、46c、46d(第2切欠きに相当)を有する。
 切欠き16a~16d、36a、36b、46c、46d、26a~26dは、高さ方向から見て、同一形状、同一の大きさで、切欠きの縁部が重なるように配置されてもよい。
 このような構成によれば、第1基板10を第3基板30及び第4基板40と結合させる工程において、切欠き部分に位置合せ用の治具を配置し、第1基板10の位置合せを行うことができる。さらに、第2基板20の結合工程が含まれる場合には、第2基板20についても同様の方法で位置合せを行うことができる。
 さらに、可撓性を有する第1基板10及び第2基板20の角部が除去されていることで、RFIDタグ1Eの使用中等に、第1基板10及び第2基板20が角部からめくり上がって、第1基板10及び第2基板20の結合が解かれてしまうことを抑制することができる。さらに、後述する製造工程に含まれるダイシング工程において、第1基板10及び第2基板20が角部からめくり上がって、第1基板10及び第2基板20と第3基板30及び第4基板40との結合が解かれてしまうことを抑制できる。
 <RFIDタグの製造方法>
 図10は、実施形態に係るRFIDタグの製造工程の一部を説明する図である。続いて、実施形態1のRFIDタグ1の製造方法の一例を説明するが、下記の製造方法は、実施形態2から後述する実施形態7のRFIDタグ1A~1Fにも同様に採用できる。
 図10に示すように、実施形態1に係るRFIDタグ1の製造方法は、複数個のRFIDタグ1の部品がマトリックス状に配列されたアレイ基板110R、120Rを接合する工程J1と、接合されたアレイ基板110R、120Rを切断するダイシング工程J2とを含む。
 アレイ基板110Rは、複数の第1基板10が縦横(例えば3行3列)に配列されたフレキシブル基板である。アレイ基板110Rには、複数のRFID用IC80が搭載される。
 アレイ基板120Rは、複数の第2基板20が縦横に配列されたフレキシブル基板121上に、リジッド基板122が一体的に形成されたハイブリッド基板である。リジッド基板122は、第3基板30及び第4基板40となる部位を複数組含んだ部分と、余白部分と、第3基板30と第4基板40との間の間隙部に相当する複数の貫通孔122hとを含む。貫通孔122hは、横方向に並ぶ複数組の部品にかけて連続するように形成されていてもよい。
 接合工程J1では、アレイ基板110Rとアレイ基板120Rと接合する。接合箇所は、アレイ基板120Rに含まれる第3基板30及び第4基板40となる部位の上面と、アレイ基板110Rの対応する部位の下面とである。接合は、配線導体同士が半田又は導電性接着剤を介して固定される方式としてもよいし、配線導体同士が電気的に接続された上で周囲の絶縁部が接合される方式としてもよい。
 ダイシング工程J2では、接合されたアレイ基板110R、120Rを、分割ラインD1、D2に沿って切断する。分割ラインD1は、個々のRFIDタグ1の短絡側の縁部と反短絡側の縁部に沿ったラインである。分割ラインD2は、RFIDタグ1の配線導体12の長手方向に延びる縁部に沿ったラインであり、貫通孔122hを通るラインである。ダイシング工程J2により、複数のRFIDタグ1が分断されて製造される。
 ダイシング工程J2において、切断線の交差部において、アレイ基板110R(第1基板10)が剛性を有するアレイ基板120Rからめくり上がるような場合には、実施形態5、6の構成を採用することで、めくり上がりを抑制できる。実施形態5の構成を採用した場合、アレイ基板110Rは、分割ラインD1、D2の交差部すなわち個々のRFIDタグ1の角部に切欠き16a~16dとなる貫通孔を有する。さらに、アレイ基板120Rのフレキシブル基板121についても同様の配置で同様の貫通孔を有してもよい。加えて、アレイ基板120Rのリジッド基板122は、分割ラインD1、D2の交差部すなわち個々のRFIDタグ1の角部に係合部35a、35b、45c、45dとなる突起を有する。実施形態6の構成を採用した場合、アレイ基板110R及びアレイ基板120Rは、分割ラインD1、D2の交差部すなわち個々のRFIDタグ1の角部に切欠き16a~16d、26a~26d、36a、36b、46c、46dとなる貫通孔を有する。
 (実施形態7)
 図11は、本開示の実施形態7に係るRFIDタグを示す分解斜視図である。実施形態7のRFIDタグ1Fにおいては、剛性を有する第3基板30又は第4基板40が、1つ又は複数のスリット34、44を有する。スリット34、44は、領域A1、A2の短手方向に延在する。
 なお、第3基板30又は第4基板40の一方のみが、スリットを有する構成としてもよい。スリット34、44は、図11では、第1基板10に対向する面に開放側の端部があるが、第2基板20に対向する面に開放側の端部があってもよいし、これら両方の面に開放側の端部があってもよい。両方の面にある場合、一方の面のスリットと他方の面のスリットとが第1方向において、ずれていてもよいし、第1方向において、一致する位置にあってもよい。第1方向において一致する位置にある場合、一方の面のスリットと他方の面のスリットとは、合計の深さ(高さ方向の長さ)が第3基板30又は第4基板40の高さよりも短くされる。例えば、一方の面のスリットと他方の面のスリットとの深さが、共に第3基板30又は第4基板40の高さの半分以下であってもよい。また、スリットの代わりに、スリットの部分で、第3基板30又は第4基板40が複数に分断されている構成、すなわち、第3基板30又は第4基板40が領域A1、A2の長手方向において複数に分断される構成が採用されてもよい。
 実施形態7のRFIDタグ1Fによれば、第3基板30又は第4基板40の長手方向に曲率を有する面に沿っての撓みが可能となる。したがって、RFIDタグ1Fを取り付ける相手面が、互いに直交する2方向に曲率を有するような曲面であっても、安定的にRFIDタグ1Fを取り付けることができる。
 (実施形態8)
 図12は、本開示の実施形態8に係るRFIDタグを示す断面図である。実施形態8のRFIDタグ1Gは、配線導体51、52、53、54、55a~55dを含み可撓性を有する第5基板50と、配線導体61a~61d、61nを含み剛性を有する第6基板60とを備える。第6基板60の一方の基板面60B(第1面に相当)から他方の基板面60A(第2面に相当)の方向を上方として説明する。第5基板50は、本開示に係る「可撓性を有する基板」の一例に相当する。第6基板60は、本開示に係る「剛性を有する基板」の一例に相当する。
 第5基板50は、C字状に曲げられ、長手方向の一端部の領域A11が第6基板60の基板面60A結合され、長手方向の他端部の領域A12が第6基板60の反対側の基板面60Bに結合される。第5基板50の長手方向の一端部と他端部以外の領域B10は、第6基板60には結合されず、可撓性が維持される。領域A11、A12は本開示に係る第1領域に相当し、領域B10は本開示に係る第2領域に相当する。
 C字状に曲げられた第5基板50の上部50Uの配線導体は、図1の第1基板10に含まれる配線導体と同様のパターンであってもよい。上部50Uの内側にはRFID用IC80が搭載される。第5基板50の下部50Dの配線導体は、図1の第2基板20に含まれる配線導体と同様のパターンであってもよい。第5基板50の上部50Uと下部50Dとを連絡する側部50Sの配線導体は、図1の第4基板40に含まれる配線導体と同様のパターンであってもよい。側部50Sの配線導体としては、ビア導体の形態でなく、可撓性を有する基体58の一方の面と他方の面とに位置する線状又は帯状の導体が採用されてもよい。
 なお、実施形態8のRFIDタグ1Gにおいて、可撓性を有する第5基板50と剛性を有する第6基板60とには、実施形態5に示した切欠き16a、16b及び係合部35a、35bと同様の構成要素が適用されてもよい。同様に、実施形態6に示した切欠き16a、16b、36a、36b、26a、26bと同様の構成要素が適用されてもよい。さらに、実施形態7に示したスリット34又は分断の構成と同様の要素が適用されてもよい。また、第5基板50の側部50Sの内側には、配線導体を有さないスペーサが配置され、側部50Sにおいても上部50Uと下部50Dとの間隙が維持される構成が採用されてもよい。
 実施形態8のRFIDタグ1Gによれば、第5基板50が可撓性を有するので、RFIDタグ1Gを取り付ける相手が撓む物体、曲面又は形状が一定でない面であっても、第5基板50の下部50Dを相手面に沿って撓めて取り付けることで、安定的なRFIDタグ1Gの取り付けを実現できる。さらに、剛性を有する第6基板60が、第5基板50に結合され、第6基板60の配線導体と第5基板50の配線導体とが接続されてアンテナを構成することで、第6基板60により、アンテナに含まれる2つ以上の配線導体を一定間隔に離すことができる。この構成により、例えば板状逆F型アンテナ又は容量付き板状逆F型アンテナを構成できるなど、アンテナの小型化と特性の向上とを図ることができる。
 以上、本開示の各実施形態について説明した。しかし、本開示のRFIDタグは上記実施形態に限られるものでない。例えば、上記実施形態では、RFIDタグに含まれるアンテナとして、容量付き板状逆F型アンテナを適用した例を示したが、アンテナの種類はこれに制限されるものではない。例えば、容量を有さない板状逆F型アンテナが適用されてもよいし、容量用導体が第1基板10の内側の基板面10Bに配置されてもよい。さらに、RFID用IC80は、第2基板20の内側の基板面20Bに配置されてもよいし、第3基板30又は第4基板40に配置され、第3基板30又は第4基板40に含まれる配線導体に接続されてもよい。その他、実施形態で示した細部は、発明の趣旨を逸脱しない範囲で適宜変更可能である。
 本開示は、RFIDタグに利用できる。
 1、1A~1G RFIDタグ
 10 第1基板(可撓性を有する基板)
 20 第2基板(可撓性を有する基板)
 30 第3基板(剛性を有する基板)
 40 第4基板(剛性を有する基板)
 10A、10B、20A、20B、30A、30B、40A、40B 基板面
 A1、A2 領域(第1領域)
 B 領域(第2領域)
 11、22 面状導体
 12 配線導体
 13a~13d、14a~14d ビア導体
 16a~16d、26a~26d 切欠き
 18、28、38、48、58 基体
 21 容量用導体
 31a~31d、31n、41a~41d、41n ビア導体
 34、44 スリット
 35a、35b、45c、45d 係合部
 36a、36b、46c、46d 切欠き
 80 RFID用IC
 50 第5基板(可撓性を有する基板)
 60 第6基板(剛性を有する基板)
 60A、60B 基板面
 51~54、55a~55d、61a~61d、61n 配線導体
 A11、A12 領域(第1領域)
 B10 領域(第2領域)

Claims (11)

  1.  RFID用ICと、
     第1配線導体を含む可撓性を有する基板と、
     第2配線導体を含む剛性を有する基板と、
     を備え、
     前記可撓性を有する基板の基板面は、前記剛性を有する基板に結合された第1領域と、反対の面を含めて前記剛性を有する基板に結合されていない第2領域とを含み、
     前記第1配線導体に含まれる第1導体部及び第2導体部が前記第2配線導体を介して電気的に接続され、
     前記RFID用ICが、前記第1配線導体、前記第2配線導体又はこれら両方に接続されている、
     RFIDタグ。
  2.  前記可撓性を有する基板は、第1基板及び第2基板を含み、
     前記剛性を有する基板は、前記第1基板及び前記第2基板と結合された第3基板及び第4基板を含み、
     前記第3基板は、前記第1基板と前記第2基板との間に位置し、
     前記第4基板は、前記第3基板から離間した領域で、前記第1基板と前記第2基板との間に位置する、
     請求項1記載のRFIDタグ。
  3.  前記第1基板と前記第2基板とは厚みが異なる、
     請求項2記載のRFIDタグ。
  4.  前記第1基板は、容量用導体を含み、
     前記第1基板の基体と前記第2基板の基体との比誘電率が異なる、
     請求項2又は請求項3に記載のRFIDタグ。
  5.  前記第3基板と前記第4基板とは幅が異なる、
     請求項2から請求項4のいずれか一項に記載のRFIDタグ。
  6.  前記RFID用ICが、前記第1基板における前記第2基板に対向する面に搭載されている、
     請求項2から請求項5のいずれか一項に記載のRFIDタグ。
  7.  前記第1配線導体は、板状逆F型アンテナの接地導体及び放射導体を含み、
     前記剛性を有する基板は、前記可撓性を有する基板に結合される第1面と、前記第1面とは反対側に位置しかつ前記可撓性を有する基板に結合される第2面とを有し、
     前記第1面から前記第2面へ向かう方向に見たときに前記接地導体と前記放射導体とが重なり、かつ、前記第2配線導体を介して前記放射導体が前記接地導体に短絡されている、
     請求項1から請求項6のいずれか一項に記載のRFIDタグ。
  8.  前記第1配線導体は、容量用導体を含み、
     前記第1面から前記第2面へ向かう方向に見たときに前記接地導体、前記容量用導体及び前記放射導体とが重なっている、
     請求項7記載のRFIDタグ。
  9.  前記可撓性を有する基板は角部に第1切欠きを有し、
     前記剛性を有する基板は前記第1切欠きと係合する係合部を有する、
     請求項1から請求項8のいずれか一項に記載のRFIDタグ。
  10.  前記可撓性を有する基板は角部に第1切欠きを有し、
     前記剛性を有する基板は前記第1切欠きに対応する位置に第2切欠きを有する
     請求項1から請求項8のいずれか一項に記載のRFIDタグ。
  11.  前記剛性を有する基板は、前記可撓性を有する基板に結合される領域の短手方向に延びるスリットを有するか、あるいは、前記可撓性を有する基板に結合される領域の長手方向において複数に分断されている、
     請求項1から請求項10のいずれか一項に記載のRFIDタグ。
PCT/JP2020/042556 2019-11-26 2020-11-16 Rfidタグ WO2021106644A1 (ja)

Priority Applications (4)

Application Number Priority Date Filing Date Title
US17/779,621 US11748591B2 (en) 2019-11-26 2020-11-16 RFID tag
CN202080081649.4A CN114730365A (zh) 2019-11-26 2020-11-16 Rfid标签
EP20894566.7A EP4068159A4 (en) 2019-11-26 2020-11-16 RFID TAG
JP2021561310A JP7366148B2 (ja) 2019-11-26 2020-11-16 Rfidタグ

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2019-212779 2019-11-26
JP2019212779 2019-11-26

Publications (1)

Publication Number Publication Date
WO2021106644A1 true WO2021106644A1 (ja) 2021-06-03

Family

ID=76130231

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2020/042556 WO2021106644A1 (ja) 2019-11-26 2020-11-16 Rfidタグ

Country Status (5)

Country Link
US (1) US11748591B2 (ja)
EP (1) EP4068159A4 (ja)
JP (1) JP7366148B2 (ja)
CN (1) CN114730365A (ja)
WO (1) WO2021106644A1 (ja)

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012253699A (ja) * 2011-06-07 2012-12-20 Murata Mfg Co Ltd 無線通信デバイス、その製造方法及び無線通信デバイス付き金属物品
WO2013145312A1 (ja) * 2012-03-30 2013-10-03 富士通株式会社 Rfidタグ
WO2016129542A1 (ja) * 2015-02-10 2016-08-18 株式会社 フェニックスソリューション Rfタグ用アンテナ及びその製造方法、並びにrfタグ
WO2018016624A1 (ja) 2016-07-22 2018-01-25 京セラ株式会社 Rfidタグ用基板、rfidタグおよびrfidシステム

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20070040688A1 (en) * 2005-08-16 2007-02-22 X-Cyte, Inc., A California Corporation RFID inlays and methods of their manufacture
US20110186980A1 (en) * 2010-02-03 2011-08-04 Rfmarq, Inc. Wireless Element With Antenna Formed On A Thin Film Substrate For Embedding into Semiconductor packages
US20140224882A1 (en) * 2013-02-14 2014-08-14 Douglas R. Hackler, Sr. Flexible Smart Card Transponder
EP2784724A3 (en) * 2013-03-27 2015-04-22 Féinics AmaTech Teoranta Selective deposition of magnetic particles, and using magnetic material as a carrier medium to deposit other particles
JP6452001B2 (ja) * 2016-06-08 2019-01-16 株式会社村田製作所 電子装置、及び電子装置の製造方法

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012253699A (ja) * 2011-06-07 2012-12-20 Murata Mfg Co Ltd 無線通信デバイス、その製造方法及び無線通信デバイス付き金属物品
WO2013145312A1 (ja) * 2012-03-30 2013-10-03 富士通株式会社 Rfidタグ
WO2016129542A1 (ja) * 2015-02-10 2016-08-18 株式会社 フェニックスソリューション Rfタグ用アンテナ及びその製造方法、並びにrfタグ
WO2018016624A1 (ja) 2016-07-22 2018-01-25 京セラ株式会社 Rfidタグ用基板、rfidタグおよびrfidシステム

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP4068159A4

Also Published As

Publication number Publication date
JPWO2021106644A1 (ja) 2021-06-03
EP4068159A1 (en) 2022-10-05
US20220405542A1 (en) 2022-12-22
JP7366148B2 (ja) 2023-10-20
EP4068159A4 (en) 2023-12-20
CN114730365A (zh) 2022-07-08
US11748591B2 (en) 2023-09-05

Similar Documents

Publication Publication Date Title
JP6597659B2 (ja) アンテナ装置及びアンテナ装置の製造方法
US7304611B2 (en) Antenna system with high gain for radio waves polarized in particular direction
CN110729558B (zh) 片式天线模块和电子装置
KR20060047818A (ko) Ic태그 실장 배선판 및 ic태그 실장 배선판의 제조방법
CN110062982B (zh) 天线基板及其制造方法
JP4605318B2 (ja) アンテナ及び無線icデバイス
US9949368B2 (en) Resin substrate and electronic device
CN111697319A (zh) 天线装置、天线模块以及通信装置
CN111697320A (zh) 天线装置、天线模块以及通信装置
US8905316B2 (en) Wireless IC device
WO2021106644A1 (ja) Rfidタグ
WO2021095620A1 (ja) 伝送線路及び電子機器
JP7238754B2 (ja) アンテナ装置、アンテナモジュール、及び通信装置
JP7047910B2 (ja) アンテナ装置
JP2005159843A (ja) 円偏波型アンテナ装置
JP6883059B2 (ja) アンテナ
US10950946B2 (en) Antenna, module substrate, and module
CN111492379B (zh) Rfid标签用基板、rfid标签以及rfid系统
JP5034736B2 (ja) 無線icデバイス
WO2021039398A1 (ja) Rfidタグ
US11093812B2 (en) RFIC module, RFID tag, and article
WO2019181169A1 (ja) アンテナ装置

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 20894566

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2021561310

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 2020894566

Country of ref document: EP

Effective date: 20220627