WO2021106627A1 - Polyimide, polyimide resin film, multilayer body and flexible device - Google Patents

Polyimide, polyimide resin film, multilayer body and flexible device Download PDF

Info

Publication number
WO2021106627A1
WO2021106627A1 PCT/JP2020/042409 JP2020042409W WO2021106627A1 WO 2021106627 A1 WO2021106627 A1 WO 2021106627A1 JP 2020042409 W JP2020042409 W JP 2020042409W WO 2021106627 A1 WO2021106627 A1 WO 2021106627A1
Authority
WO
WIPO (PCT)
Prior art keywords
polyimide
resin film
polyimide resin
structural unit
film
Prior art date
Application number
PCT/JP2020/042409
Other languages
French (fr)
Japanese (ja)
Inventor
佐伯昭典
三井博子
Original Assignee
東レ株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 東レ株式会社 filed Critical 東レ株式会社
Priority to JP2020564510A priority Critical patent/JPWO2021106627A1/ja
Publication of WO2021106627A1 publication Critical patent/WO2021106627A1/en

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B27/00Layered products comprising a layer of synthetic resin
    • B32B27/34Layered products comprising a layer of synthetic resin comprising polyamides
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G73/00Macromolecular compounds obtained by reactions forming a linkage containing nitrogen with or without oxygen or carbon in the main chain of the macromolecule, not provided for in groups C08G12/00 - C08G71/00
    • C08G73/06Polycondensates having nitrogen-containing heterocyclic rings in the main chain of the macromolecule
    • C08G73/10Polyimides; Polyester-imides; Polyamide-imides; Polyamide acids or similar polyimide precursors

Definitions

  • the present invention relates to polyimides, polyimide resin films, laminates and flexible devices.
  • Organic film is more flexible than glass, is hard to break, and is lightweight. Recently, there has been an active movement to make flat panel displays flexible by replacing the substrate of flat panel displays with organic films.
  • the resin used for the organic film examples include polyester, polyamide, polyimide, polycarbonate, polyether sulfone, acrylic, epoxy, cycloolefin polymer and the like.
  • polyimide is a highly heat-resistant resin and is therefore suitable as a display substrate.
  • general polyimide resins are colored brown or yellow due to high aromatic ring density, have low transmittance in the visible light region, and are difficult to use in fields where transparency is required.
  • Patent Document 1 states that a polyimide obtained from an alicyclic acid dianhydride and various aromatic diamines or alicyclic diamines has high transparency. , Has low birefringence.
  • Patent Document 2 discloses a method for obtaining a flexible touch panel by using a transparent polyimide resin film obtained by firing in air.
  • the polyimide described in Patent Document 1 has a low oxidation resistance, and has a problem that it easily turns yellow due to thermal oxidation when heated in an air atmosphere. Further, when a display is manufactured on an organic film, a process in which an organic film is formed on a support substrate, an electronic device is formed on the organic film, and then the organic film is peeled off from the support substrate is common. In this peeling process, the polyimide described in Patent Document 1 has a problem that the irradiation energy required for peeling is high and the laser peeling property is poor.
  • Patent Document 2 discloses that a transparent polyimide resin film can be obtained by firing in air for 30 minutes.
  • the transparent polyimide resin film described in Patent Document 2 has a slightly low mechanical strength, there is a problem that the polyimide resin film is easily broken in the above-mentioned peeling process. Further, there is a problem that the bending resistance of the polyimide resin film is small.
  • An object of the present invention is to provide a polyimide and a polyimide resin film having good transparency, oxidation resistance, laser peeling property from a support substrate, low in-plane / out-of-plane birefringence, and excellent flexibility. ..
  • the present invention presents the polyimide structural unit A represented by the following formula (1), the polyimide structural unit B represented by the following formula (2), and the following formula. It is a polyimide containing the polyimide structural unit C represented by (3), and the maximum peak intensity existing in the range of 1450 to 1550 cm -1 in the IR spectrum when the polyimide is made into a resin film having a thickness of 10 ⁇ m.
  • Y is a polyimide characterized by satisfying the following formula, where Z is the maximum peak intensity existing in the range of 3400 to 3700 cm -1. Equation) 0.1 ⁇ Z / Y ⁇ 0.4
  • X 1 represents a direct bond or an oxygen atom.
  • X 2 represents an oxygen atom, -C (CF 3 ) 2- , -C (CH 3 ) 2- or -Si (CH 3 ) 2-.
  • 3 represents direct binding, -SO 2- , -C (CH 3 ) 2- or -C (CF 3 ) 2- ).
  • the present invention it is possible to provide a polyimide and a polyimide resin film having good transparency, oxidation resistance, laser peeling property from a support substrate, low in-plane / out-of-plane birefringence, and excellent flexibility. ..
  • the polyimide and polyimide resin film of the present invention can be used for flexible devices such as liquid crystal displays, organic EL displays, touch panels, color filters, electronic paper, micro LED displays and other display devices, solar cells, CMOS and other light receiving devices, transparent antennas and the like. It can be suitably used as a flexible substrate for a communication device or the like. By using such a flexible substrate, it is possible to manufacture a highly reliable flexible device.
  • IR spectrum of the polyimide resin film of Example 3 (2000-4000 cm -1 ) IR spectrum of the polyimide resin film of Example 3 (1480-1510 cm -1 ) IR spectrum of the polyimide resin film of Comparative Example 1 (2000 to 4000 cm -1 ) IR spectrum of the polyimide resin film of Comparative Example 1 (1480-1510 cm -1 ) IR spectrum of the polyimide resin film of Comparative Example 2 (2000 to 4000 cm -1 ) IR spectrum of the polyimide resin film of Comparative Example 2 (1480-1510 cm -1 )
  • the polyimide according to the embodiment of the present invention is represented by the polyimide structural unit A represented by the following formula (1), the polyimide structural unit B represented by the following formula (2), and the following formula (3). It is a polyimide containing a polyimide structural unit C, and in the IR spectrum when the polyimide is used as a resin film having a thickness of 10 ⁇ m, the maximum peak intensity existing in the range of 1480 to 1510 cm -1 is Y, 3400 to 3700 cm -1. When the maximum peak intensity existing in the range of is Z, the following equation is satisfied.
  • X 1 represents a direct bond or an oxygen atom.
  • X 2 represents an oxygen atom, -C (CF 3 ) 2- , -C (CH 3 ) 2- or -Si (CH 3 ) 2- .
  • X 3 represents direct binding, -SO 2- , -C (CH 3 ) 2- or -C (CF 3 ) 2- .
  • Z / Y represents the intensity ratio of the peak derived from the intermolecular hydrogen bond to the peak intensity derived from the monocyclic aromatic hydrocarbon.
  • the polyimide according to the embodiment of the present invention contains, for example, 5 mol% or more and 95 mol% or less of a diamine having a sulfonyl group in all the diamine residues contained in the polyimide, and the curing conditions for imidization are satisfied.
  • the heating temperature is higher than 230 ° C. and the heating time is 1 hour or more, the Z / Y tends to be 0.1 or more and 0.4 or less.
  • the sulfonyl group Since the sulfonyl group has properties as a hydrogen bond acceptor, it forms a hydrogen bond with a hydrogen bond donor such as an amino group or a hydroxyl group existing in a polyimide molecule, for example. Therefore, Z increases according to the content of the diamine having a sulfonyl group.
  • the solvent contained in the polyimide film is sufficiently removed and the imidization reaction proceeds sufficiently, so that the polyimide molecules are packed together. .. It is believed that this will result in the formation of more hydrogen bonds between the polyimide molecules.
  • the polyimide according to the embodiment of the present invention is excellent in mechanical strength and flexibility by containing the polyimide structural unit A, and can improve chemical resistance and lower the birefringence by containing the polyimide structural unit B.
  • the polyimide structural unit C By including the polyimide structural unit C, transparency and laser peelability can be improved without deteriorating mechanical properties.
  • the polyimide structural unit A is preferably a structural unit A'represented by the following formula (4)
  • the polyimide structural unit B is preferably a structural unit B'represented by the following formula (5), and has a polyimide structure.
  • the unit C is preferably the structural unit C'represented by the following formula (6).
  • X 1 represents a direct bond or an oxygen atom.
  • polyimide structural units A, B, and C all have a structure having excellent oxidation resistance, yellowing due to thermal oxidation is unlikely to occur even when heated in an atmospheric atmosphere. Therefore, by including all of the polyimide structural units A, B, and C, transparency, oxidation resistance, laser peelability from the support substrate are good, in-plane / out-of-plane birefringence is low, and flexibility is excellent. Polyimide can be obtained.
  • the total amount of the polyimide structural units A, B and C is preferably 80 mol% or more, more preferably 90 mol% or more of the total polyimide structural units.
  • the total polyimide structural unit is all the structural units constituting the polyimide.
  • the polyimide contains a structural unit other than the structural units A, B and C, the total amount (molar basis) of the structural units A, B and C and the other structural units is the total polyimide structural unit.
  • the polyimide of the present invention may contain other structural units as long as the effects of the present invention are not impaired.
  • other structural units include polyimide (a structural unit other than structural units A, B and C) which is a dehydrated ring-closed body of polyamic acid, polybenzoxazole which is a dehydrated ring-closed body of polyhydroxyamide, and the like.
  • a polyimide structural unit represented by the general formula (7) (however, a structural unit other than the structural units A, B and C) can be mentioned.
  • R 1 indicates a tetravalent tetracarboxylic acid residue
  • R 2 indicates a divalent diamine residue
  • Examples of the acid dianhydride used for R 1 include aromatic dianhydrides, alicyclic acid dianhydrides, and aliphatic dianhydrides described in International Publication No. 2017/099183. Of these, an acid dianhydride giving the structure represented by the formula (8) and an acid dianhydride giving the structure represented by the formula (9) are preferable.
  • R 1 includes a structure represented by the general formula (9), it is possible to obtain a polyimide having high transparency, small in-plane / out-of-plane birefringence, and a high glass transition temperature.
  • These other acid dianhydrides can be used alone or in combination of two or more.
  • Examples of the diamine compound used for R 2 include aromatic diamine compounds, alicyclic diamine compounds, and aliphatic diamine compounds described in International Publication No. 2017/099183. Among them, a diamine having a structure represented by any of the formulas (10) to (15) is preferable because it is possible to achieve both transparency and heat resistance. These aromatic diamine compounds, alicyclic diamine compounds, or aliphatic diamine compounds can be used alone or in combination of two or more.
  • the polyimide of the present invention may contain a triamine skeleton.
  • Triamine has three amino groups and forms a branched molecular chain by binding with three tetracarboxylic dianhydride components, so that a polyimide resin film having excellent mechanical strength can be obtained.
  • a polyimide precursor having such a triamine skeleton can be obtained by using a triamine compound as one of the polymerization components.
  • triamine compounds those having no aliphatic group include 2,4,4'-triaminodiphenyl ether (TAPE) and 1,3,5-tris (4-aminophenoxy) benzene (1,3).
  • TAPE 2,4,4'-triaminodiphenyl ether
  • 1,3,5-tris (4-aminophenoxy) benzene 1,3,5-tris (4-aminophenoxy) benzene
  • 5-TAPOB 1,2,3-tris (4-aminophenoxy) benzene
  • tris (4-aminophenyl) amine 1,3,5-tris (4-amino) Phenyl) benzene
  • 3,4,4'-triaminodiphenyl ether and the like can be mentioned.
  • triamine compound having an aliphatic group examples include tris (2-aminoethyl) amine (TAEA) and tris (3-aminopropyl) amine.
  • TAEA 2,4,4'-triaminodiphenyl ether
  • 1,3,5-tris (4-aminophenoxy) benzene 1,3,5-TAPOB
  • aminophenoxy) benzene 1,2,3-TAPOB or the like.
  • the polyimide of the present invention may have a structure represented by the general formula (16) in R 1 and / or R 2. Since the polyimide has a structure represented by the general formula (16), the residual stress generated between the polyimide resin film obtained by using the polyimide resin film and the support substrate can be reduced. Therefore, it is possible to suppress the warp of the substrate when the polyimide resin film is formed on the support substrate.
  • R 3 and R 4 each independently represent a monovalent organic group having 1 to 20 carbon atoms.
  • x represents an integer from 3 to 200.
  • Examples of the monovalent organic group having 1 to 20 carbon atoms in R 3 and R 4 include a hydrocarbon group, an amino group, an alkoxy group, an epoxy group and the like.
  • Examples of the hydrocarbon group in R 3 and R 4 include an alkyl group having 1 to 20 carbon atoms, a cycloalkyl group having 3 to 20 carbon atoms, and an aryl group having 6 to 20 carbon atoms.
  • the alkyl group having 1 to 20 carbon atoms is preferably an alkyl group having 1 to 10 carbon atoms, and specifically, a methyl group, an ethyl group, a propyl group, an isopropyl group, a butyl group, an isobutyl group, t-. Examples thereof include a butyl group, a pentyl group, and a hexyl group.
  • the cycloalkyl group having 3 to 20 carbon atoms is preferably a cycloalkyl group having 3 to 10 carbon atoms, and specific examples thereof include a cyclopentyl group and a cyclohexyl group.
  • the aryl group having 6 to 20 carbon atoms is preferably an aryl group having 6 to 12 carbon atoms, and specific examples thereof include a phenyl group, a tolyl group, and a naphthyl group.
  • Examples of the alkoxy group in R 3 and R 4 include a methoxy group, an ethoxy group, a propoxy group, an isopropyloxy group, a butoxy group, a phenoxy group, a propenyloxy group and a cyclohexyloxy group.
  • R 3 and R 4 in the general formula (16) are preferably a monovalent aliphatic hydrocarbon group having 1 to 3 carbon atoms or an aromatic group having 6 to 10 carbon atoms. This is because the obtained polyimide film has both high heat resistance and low residual stress.
  • the monovalent aliphatic hydrocarbon having 1 to 3 carbon atoms is preferably a methyl group
  • the aromatic group having 6 to 10 carbon atoms is preferably a phenyl group.
  • X in the general formula (16) is an integer of 3 to 200, preferably an integer of 5 to 100, more preferably 5 to 70, and even more preferably an integer of 8 to 50.
  • x is within the above range, the residual stress of the polyimide can be reduced and the warpage of the substrate can be reduced. In addition, it is possible to prevent the polyimide film from becoming cloudy and the mechanical strength of the polyimide film from being lowered.
  • the polyimide precursor resin having the structure represented by the general formula (16) can be obtained by using the silicone compound represented by the following general formula (17) as a monomer component.
  • the plurality of R 5s are independently single-bonded or divalent organic groups having 1 to 20 carbon atoms, and the plurality of R 6 , R 7 and R 8 are independently carbons. It is a monovalent organic group of numbers 1 to 20, and L 1 , L 2 and L 3 are independently amino groups, acid anhydride groups, carboxyl groups, hydroxy groups, epoxy groups, mercapto groups, and R 10 respectively. It is one group selected from the group consisting of. R 10 is a monovalent organic group having 1 to 20 carbon atoms. y is an integer of 3 to 200, and z is an integer of 0 to 197.
  • single bond is synonymous with “direct bond”. That is, it is a state in which L 1 or L 2 and Si are directly bonded.
  • the polyimide of the present invention can be obtained by imide ring closure of a polyimide precursor containing a structural unit represented by the following formula (18), a structural unit represented by (19) and a structural unit represented by (20). ..
  • Y 1 to Y 6 independently represent a hydrogen atom, a monovalent organic group having 1 to 10 carbon atoms, or a monovalent alkylsilyl group having 1 to 10 carbon atoms. ..
  • R 9 represents a tetravalent tetracarboxylic dian residue represented by the formula (21), and X 2 in the formula (21) is an oxygen atom, -C (CF 3 ) 2- , -C (CH 3 ). 2 - or -Si (CH 3) 2 - represents a.
  • R 10 represents a divalent diamine residue represented by the formula (22), and X 1 in the formula (22) represents a direct bond or an oxygen atom.
  • R 11 represents a divalent diamine residue represented by the formula (23), and X 3 in the formula (23) is a direct bond, -SO 2- , -C (CH 3 ) 2- or -C ( CF 3 ) Represents 2-.
  • R 12 represents a divalent diamine residue represented by the formula (24).
  • the imidization method is not particularly limited, and examples thereof include thermal imidization and chemical imidization. Above all, thermal imidization is preferable from the viewpoint of heat resistance of the polyimide resin film and transparency in the visible light region.
  • Polyimide precursor resins such as polyamic acid, polyamic acid ester, and polyamic acid silyl ester can be synthesized by reacting a diamine compound with an acid dianhydride or a derivative thereof.
  • the derivative include tetracarboxylic acid of the acid dianhydride, mono, di, tri, tetraester, and acid chloride of the tetracarboxylic acid, and specific examples thereof include methyl group, ethyl group, and n-propyl.
  • Examples thereof include structures esterified with a group, an isopropyl group, an n-butyl group, a sec-butyl group, a tert-butyl group and the like.
  • the reaction method of the polymerization reaction is not particularly limited as long as the desired polyimide precursor resin can be produced, and a known reaction method can be used.
  • a predetermined amount of all diamine components and a solvent are charged into a reactor and dissolved, and then a predetermined amount of an acid dianhydride component is charged, and the temperature at room temperature (25 ° C.) to 80 ° C. is 0.
  • Examples thereof include a method of stirring for 5 to 30 hours.
  • the solvent used is not particularly limited, and known solvents can be used.
  • this solvent N-methyl-2-pyrrolidone, N, N-dimethylformamide, N, N-dimethylacetamide, N, N-dimethylisobutylamide, 3-methoxy-N, N-dimethylpropionamide, 3- Butoxy-N, N-dimethylpropionamide, ⁇ -butyrolactone, ethyl lactate, 1,3-dimethyl-2-imidazolidinone, N, N'-dimethylpropylene urea, 1,1,3,3-tetramethylurea,
  • the weight average molecular weight (Mw) of the polyimide precursor is preferably 10,000 to 1,000,000, more preferably 30,000 to 500,000, still more preferably 65,000 to 300,000. is there.
  • the weight average molecular weight of the polyimide precursor is within the above range, it is possible to increase the strength of the obtained polyimide without deteriorating the flatness of the obtained coating film.
  • the weight average molecular weight, number average molecular weight and molecular weight distribution are determined by TOSOH DP-8020 type GPC device (guard column: TSK guard column ALPHA column: TSK-GEL ⁇ -M, developing solvent: N, N'-dimethylacetamide ( DMAc), 0.05M-LiCl, 0.05% phosphoric acid addition).
  • Both ends of the polyimide precursor may be sealed with an end sealant in order to adjust the molecular weight to a preferable range.
  • the terminal encapsulant that reacts with the acid dianhydride include monoamines and monohydric alcohols.
  • Examples of the terminal encapsulant that reacts with the diamine compound include acid anhydrides, monocarboxylic acids, monoacid chloride compounds, monoactive ester compounds, dicarbonates, vinyl ethers and the like.
  • various organic groups can be introduced as terminal groups by reacting the terminal encapsulant.
  • the introduction ratio of the encapsulant at the end of the acid anhydride group is preferably in the range of 0.1 to 60 mol%, particularly preferably 0.5 to 50 mol% with respect to the acid dianhydride component.
  • the introduction ratio of the encapsulant at the terminal of the amino group is preferably in the range of 0.1 to 100 mol%, particularly preferably 0.5 to 70 mol% with respect to the diamine component.
  • a plurality of different end groups may be introduced by reacting a plurality of end sealants.
  • the end-capping agent introduced into the polyimide precursor can be easily detected by the following method.
  • a polymer into which an end-capping agent has been introduced is dissolved in an acidic solution, decomposed into an amine component and an acid anhydride component, which are constituent units of the polymer, and this is measured by gas chromatography (GC) or NMR.
  • GC gas chromatography
  • NMR nuclear magnetic resonance
  • the end sealant can be easily detected.
  • the polymer into which the terminal encapsulant has been introduced can be easily detected by direct thermal decomposition gas chromatography (PGC), infrared spectrum, 1 H-NMR spectrum measurement and 13 C-NMR spectrum measurement.
  • PPC direct thermal decomposition gas chromatography
  • the method for producing the polyimide by imidizing the polyimide precursor obtained by the above method is not particularly limited, and a known reaction method can be used. Specific examples of the reaction method include a method of stirring the polyamide precursor solution obtained as described above at 100 to 200 ° C. for 0.5 to 30 hours.
  • the polyimide according to the embodiment of the present invention can be mixed with an appropriate component to obtain a polyimide resin composition.
  • the components that may be contained in the polyimide resin composition are not particularly limited, and examples thereof include a solvent, an ultraviolet absorber, a heat crosslinker, an inorganic filler, a surfactant, an internal release agent, and a colorant.
  • the polyimide resin composition according to the embodiment of the present invention may contain a solvent.
  • a solvent N-methyl-2-pyrrolidone, N, N-dimethylformamide, N, N-dimethylacetamide, N, N-dimethylisobutylamide, 3-methoxy-N, N-dimethylpropionamide, 3-butoxy- N, N-dimethylpropionamide, ⁇ -butyrolactone, ethyl lactate, 1,3-dimethyl-2-imidazolidinone, N, N'-dimethylpropylene urea, 1,1,3,3-tetramethylurea, dimethylsulfoxide , Sulfolane, propylene glycol monomethyl ether, propylene glycol monomethyl ether acetate, diethylene glycol ethyl methyl ether, diethylene glycol dimethyl ether, water, and the solvent described in International Publication No.
  • the solvent contained in the polyimide resin composition according to the embodiment of the present invention may be one kind or a plurality of kinds.
  • ⁇ -butyrolactone is preferably contained, and an amide solvent is preferably not contained, from the viewpoint of obtaining the above-mentioned effect with the transparency of the obtained polyimide and the inclusion of a small amount of the polyimide.
  • the polyimide resin composition according to the embodiment of the present invention may contain an ultraviolet absorber. Since the polyimide resin composition contains an ultraviolet absorber, it is greatly suppressed that physical properties such as transparency and mechanical properties of the polyimide are deteriorated when exposed to sunlight for a long period of time.
  • the ultraviolet absorber is not particularly limited and a known one can be used. Benzotriazole-based compounds, benzophenone-based compounds, and triazine-based compounds are preferably used from the viewpoint of transparency and non-coloring property.
  • the ultraviolet absorber is preferably a compound having a molecular weight of 1000 or less.
  • the ultraviolet absorber is a low molecular weight compound having a molecular weight of 1000 or less, the light resistance of the resin film can be improved without increasing the haze of the polyimide resin film.
  • the content of the ultraviolet absorber in the polyimide resin composition is preferably 0.5 to 5 parts by weight with respect to 100 parts by weight of the polyimide resin.
  • the light resistance resistance to light, particularly ultraviolet light
  • the transparency of the resin can be improved without impairing the transparency of the resin.
  • the polyimide resin composition according to the embodiment of the present invention may contain a thermal cross-linking agent.
  • a thermal cross-linking agent an epoxy compound or a compound having at least two alkoxymethyl groups or methylol groups is preferable. By having at least two of these groups, a crosslinked structure is formed by a condensation reaction with a resin and a homologous molecule, and the mechanical strength and chemical resistance of the cured film after heat treatment can be improved.
  • the content of the heat-crosslinking agent in the polyimide resin composition is preferably 0.01 to 10 parts by weight with respect to 100 parts by weight of the polyimide resin.
  • the polyimide resin composition contains a thermal cross-linking agent within the above range, it is possible to improve the mechanical properties and chemical resistance of the resin without impairing the transparency of the resin.
  • a coupling agent such as a silane coupling agent or a titanium coupling agent can be added in order to improve the adhesiveness with the base material.
  • the content of the coupling agent in the polyimide resin composition is preferably 0.1 to 5 parts by weight with respect to 100 parts by weight of the polyimide resin.
  • the polyimide resin composition according to the embodiment of the present invention may contain an inorganic filler.
  • the inorganic filler include silica fine particles, alumina fine particles, titania fine particles, and zirconia fine particles.
  • the shape of the inorganic filler is not particularly limited, and examples thereof include a spherical shape, an elliptical shape, a flat shape, a rod shape, and a fibrous shape.
  • the inorganic filler preferably has a small particle size in order to prevent light scattering.
  • the average particle size of the inorganic filler is preferably 0.5 to 100 nm, more preferably 0.5 to 30 nm.
  • the content of the inorganic filler in the polyimide resin composition is preferably 1 to 100 parts by weight with respect to 100 parts by weight of the polyimide resin.
  • the polyimide resin composition can reduce the CTE and birefringence of the polyimide resin without impairing the flexibility.
  • the polyimide resin composition according to the embodiment of the present invention can contain a surfactant.
  • a surfactant include fluorosurfactants such as Florard (trade name, manufactured by Sumitomo 3M Ltd.), Megafuck (trade name, manufactured by DIC Corporation), and Sulflon (trade name, manufactured by Asahi Glass Co., Ltd.). ..
  • KP341 (trade name, manufactured by Shin-Etsu Chemical Co., Ltd.), DBE (trade name, manufactured by Chisso Co., Ltd.), Polyflow, Granol (trade name, manufactured by Kyoeisha Chemical Co., Ltd.), BYK (manufactured by BIC Chemie Co., Ltd.), etc.
  • organic siloxane surfactants include organic siloxane surfactants.
  • acrylic polymer surfactants such as Polyflow (trade name, manufactured by Kyoeisha Chemical Co., Ltd.) can be mentioned.
  • the content of the surfactant in the polyimide resin composition is preferably 0.01 to 10 parts by weight with respect to 100 parts by weight of the polyimide resin.
  • the polyimide resin composition according to the embodiment of the present invention can contain an internal mold release agent.
  • the polyimide resin composition contains an internal mold release agent, the peelability of the polyimide resin film from the support substrate can be improved.
  • the internal release agent include long-chain fatty acids.
  • the content of the internal mold release agent in the polyimide resin composition is preferably 0.1 to 5 parts by weight with respect to 100 parts by weight of the polyimide resin.
  • the polyimide resin composition according to the embodiment of the present invention can contain a colorant. By adding a colorant to the polyimide resin composition, the color of the polyimide resin film can be adjusted.
  • colorant dyes, organic pigments, inorganic pigments and the like can be used, but organic pigments are preferable from the viewpoint of heat resistance and transparency. Among them, those having high transparency and excellent light resistance, heat resistance, and chemical resistance are preferable.
  • the polyimide resin film according to the embodiment of the present invention contains the above-mentioned polyimide. This can be obtained by molding the polyimide or polyimide resin composition into a film.
  • the polyimide resin film according to the embodiment of the present invention preferably contains ⁇ -butyrolactone at 1 ppm or more and 1000 ppm or less, more preferably 5 ppm or more and 500 ppm or less, and 10 ppm or more and 300 ppm or more with respect to the weight of the polyimide resin film. Is even more preferable.
  • the polyimide resin film contains ⁇ -butyrolactone in the above ratio, the mechanical peelability from the support substrate can be improved without deteriorating the characteristics of the circuit or element formed on the polyimide resin film.
  • the stress generated at the interface between the polyimide resin film and the circuit or element formed on the polyimide resin film can be relaxed. Therefore, it is possible to improve the crack resistance when the laminated body in which the circuit or the element is laminated on the polyimide resin film is bent.
  • a polyimide precursor resin solution is prepared using ⁇ -butyrolactone as a solvent and applied to a supporting base material. Then, a method of thermally imidizing by heating in the range of 240 ° C. to 290 ° C. for 45 to 180 minutes can be mentioned.
  • the polyimide resin film according to the embodiment of the present invention does not contain an amide solvent. Since the polyimide resin film does not contain an amide solvent, it is possible to suppress yellowing during thermal imidization and improve transparency.
  • amide-based solvents preferably not contained include N-methyl-2-pyrrolidone, N, N-dimethylformamide, N, N-dimethylacetamide, N, N-dimethylisobutyramide, 3-methoxy-N, N-dimethyl.
  • the content of the solvent contained in the polyimide resin film is a value measured by heat-desorbing GC / MS of the collected gas by putting the polyimide resin film cut into strips into a heating container and heating it.
  • the polyimide resin film according to the embodiment of the present invention preferably has a ⁇ -butyrolactone content of 1 ppm or more and 1000 ppm or less as measured by the above measuring method, and the content of the amide solvent is not more than the detection limit (polyimide resin). It is preferably less than 1 ppm based on the weight of the film).
  • the glass transition temperature (Tg) of the polyimide resin film according to the embodiment of the present invention is preferably 220 ° C. or higher and 250 ° C. or lower, and more preferably 225 ° C. or higher and 245 ° C. or lower.
  • Tg glass transition temperature
  • the term "warp” as used herein refers to the degree of rounding of a laminate composed of a film and a support substrate, which is visually determined.
  • “Residual stress” refers to the stress remaining inside the film after the resin composition is applied onto a substrate such as a glass substrate to form the film, and is a measure of the "warp" that can occur in the film. .. Specifically, it can be measured by the method described in the following examples.
  • a coating film of the polyimide precursor or the polyimide resin is formed.
  • a method of applying the polyimide precursor or the resin composition of the polyimide resin on the substrate to form a coating film it is applied by using a roll coating method, a spin coating method, a slit coating method, a doctor blade, a coater, or the like. The method of doing this can be mentioned.
  • the thickness and surface smoothness of the coating film may be controlled by repeating the coating. Above all, the slit die coating method is preferable from the viewpoint of surface smoothness and film thickness uniformity of the coating film.
  • the thickness of the coating film is appropriately selected according to the desired application and is not particularly limited, but is, for example, 1 to 500 ⁇ m, preferably 2 to 250 ⁇ m, and particularly preferably 5 to 125 ⁇ m.
  • the substrate include polyethylene terephthalate (PET) film, polyethylene naphthalate (PEN) film, polybutylene terephthalate (PBT) film, silicon wafer, glass wafer, oxide wafer, glass substrate, Cu substrate and SUS plate.
  • PET polyethylene terephthalate
  • PEN polyethylene naphthalate
  • PBT polybutylene terephthalate
  • silicon wafer glass wafer
  • oxide wafer glass substrate
  • Cu substrate and SUS plate a glass substrate is preferable from the viewpoint of surface smoothness and dimensional stability during heating.
  • non-alkali glass is particularly preferable from the viewpoint of dimensional stability.
  • the coating film is dried by evaporating the solvent from the coating film on the substrate.
  • the coating film may be vacuum-dried or heat-dried, but in consideration of the transparency of the obtained polyimide resin film, it is preferable to evaporate the solvent without white turbidity.
  • a hot plate, an oven, infrared rays, a vacuum chamber, or the like is used to dry the coating film in the drying step.
  • the heating temperature for drying varies depending on the type and purpose of the object to be heated such as a coating film, and it is preferable to carry out the heating in the range of room temperature to 170 ° C. for 1 minute to several hours.
  • Room temperature is usually 20 to 30 ° C, but is preferably 25 ° C.
  • the drying step may be performed a plurality of times under the same conditions or different conditions.
  • the polyimide precursor resin is imidized by performing a heating step thereafter, and a polyimide resin film is formed on the substrate.
  • the atmosphere of the heating step is not particularly limited, and may be air (oxygen concentration: about 21% by volume) or an inert gas such as nitrogen or argon.
  • the surface of the polyimide resin film is partially oxidized to improve the adhesion between the polyimide resin film and the circuits and elements formed on the polyimide resin film, and the polyimide resin film and elements
  • the atmosphere of the heating step is preferably air because the crack resistance when the laminate is bent can be improved.
  • the time required to reach the heating temperature for the heating step is not particularly limited, and a heating method can be selected according to the heating type of the production line.
  • a heating method can be selected according to the heating type of the production line.
  • a polyimide precursor or a polyimide resin coating film formed on a substrate is heated from room temperature to a heating temperature of 180 ° C. or higher and 550 ° C. or lower over 5 to 120 minutes while raising the temperature. You may.
  • the polyimide precursor or the polyimide resin coating film formed on the substrate may be directly put into an oven whose temperature has been raised to 180 ° C. or higher and 550 ° C. or lower in advance and heated.
  • the polyimide precursor or the polyimide resin coating film may be heated under reduced pressure, if necessary.
  • the polyimide resin film according to the embodiment of the present invention it is preferable to heat the polyimide precursor or the polyimide resin coating film in the range of 240 ° C. or higher and 290 ° C. or lower for 60 minutes or longer. By heating under the above conditions, it is possible to obtain a polyimide resin film having good transparency and mechanical strength.
  • the polyimide resin film obtained through each of the above steps can be used by peeling from the substrate, or can be used as it is without peeling.
  • the peeling method is not particularly limited and a known method can be used. For example, a method of immersing in a chemical solution such as hydrofluoric acid or a method of irradiating the interface between the polyimide resin film and the substrate with a laser (laser peeling). There is a method of making a notch in the end with a single blade and lifting it from the end to peel it (mechanical peeling). Since the polyimide resin film of the present invention is excellent in both laser peeling property and mechanical peeling property, it is preferable to perform peeling by either laser peeling method or mechanical peeling method.
  • the thickness of the polyimide resin film obtained as described above is appropriately selected depending on the desired application, but is preferably 1 to 100 ⁇ m, more preferably 2 to 30 ⁇ m, and particularly preferably 3 to 20 ⁇ m. is there.
  • the laminate according to the embodiment of the present invention includes an insulating layer and / or a wiring layer on the polyimide resin film.
  • the insulating layer preferably contains an alkali-soluble resin.
  • Alkali-soluble in the present invention means that 0.1 g or more is dissolved at 25 ° C. in a 0.045 mass% potassium hydroxide aqueous solution (100 g).
  • the insulating layer formed from the alkali-soluble resin is preferable because it can be patterned by photolithography, thereby forming an opening for conduction of the conductive layer.
  • the laminate according to the embodiment of the present invention preferably has an insulating layer formed of an alkali-soluble resin containing a (meth) acrylic copolymer. This is because the (meth) acrylic copolymer in the alkali-soluble resin enhances the flexibility of the insulating layer.
  • the film with a conductive layer according to the embodiment of the present invention is formed on the conductive layer from an alkali-soluble resin containing a cardo-based resin having two or more structures represented by the following structural formula (25). It is preferable to have an insulating layer. This is because the cardo-based resin enhances the hydrophobicity of the insulating layer, whereby the insulating property of the insulating layer can be improved.
  • the cardo-based resin having two or more structures represented by the structural formula (25) a commercially available product can be preferably used.
  • Examples of commercially available products of this cardo-based resin include "WR-301 (trade name)” (manufactured by ADEKA), "V-259ME (trade name)” (manufactured by Nippon Steel & Sumitomo Metal Chemical Co., Ltd.), and "Oxol CR-TR1 (manufactured by Nippon Steel & Sumitomo Metal Corporation).
  • the weight average molecular weights of the (meth) acrylic copolymer and the cardo-based resin are preferably 2,000 or more from the viewpoint of improving the coating characteristics. Further, each of these weight average molecular weights is preferably 200,000 or less from the viewpoint of improving the solubility of the insulating layer in the developing solution in the pattern formation of the insulating layer.
  • the weight average molecular weight refers to a polystyrene-equivalent value measured by GPC.
  • the weight average molecular weight of the (meth) acrylic copolymer (Mw (A1)) and the weight average molecular weight of the cardo-based resin is preferably 0.14 or more from the viewpoint of suppressing layer separation and forming a uniform cured film.
  • this ratio (Mw (A2) / Mw (A1)) is preferably 1.5 or less, preferably 1.0 or less, from the viewpoint of suppressing layer separation and forming a uniform cured film. Is more preferable.
  • the insulating layer in the present invention can be formed by using an insulating composition containing an alkali-soluble resin.
  • the content of the alkali-soluble resin contained in this insulating composition can be arbitrarily selected depending on the desired film thickness and application, but is 10% by mass or more and 70% by mass with respect to 100% by mass of the solid content. It is common to do the following.
  • the above insulating composition may contain an antioxidant.
  • an antioxidant When the above-mentioned insulating composition contains an antioxidant, the coloring of the insulating layer can be further reduced and the weather resistance of the insulating layer can be improved.
  • the type of antioxidant include benzotriazole, organic phosphorus, a compound having a hindered phenol structure, a compound having a hindered amine structure, and the like. Among these, by containing a compound having a phenolic hydroxyl group and / or a compound having an amino group, the adhesion between the insulating layer and the underlying layer is improved, and peeling at the time of bending is suppressed, which is preferable.
  • Specific examples of the compound having a benzotriazole, an organic phosphorus, and a hindered phenol structure include, but are not limited to, those described in JP-A-2019-101440.
  • Specific examples of the compound having a hindered amine structure include, but are not limited to, those described in International Publication No. 2015/012228.
  • the antioxidant can be contained alone or in combination of two or more.
  • the content of the antioxidant in the insulating layer is preferably 0.1 part by mass or more and 5 parts by mass or less with respect to 100 parts by mass of the solid content.
  • the above insulating composition further comprises a polyfunctional monomer, a curing agent, an ultraviolet absorber, a polymerization inhibitor, an adhesion improver, a solvent, a surfactant, a dissolution inhibitor, a stabilizer, a defoaming agent, and the like. It can also contain additives such as colorants.
  • the conductive layer preferably has a network structure having a line width of 0.1 to 9 ⁇ m.
  • the line width of the network structure of the conductive layer is more preferably 0.5 ⁇ m or more, and further preferably 1 ⁇ m or more.
  • the line width of the network structure of the conductive layer is more preferably 7 ⁇ m or less, and further preferably 6 ⁇ m or less.
  • the film thickness of the conductive layer is preferably 0.1 ⁇ m or more, more preferably 0.2 ⁇ m or more, and further preferably 0.3 ⁇ m or more.
  • the film thickness of the conductive layer is preferably 5 ⁇ m or less, more preferably 3 ⁇ m or less, and further preferably 1 ⁇ m or less.
  • Examples of the conductive particles contained in the conductive layer include those described in International Publication No. 2018/084067, and silver particles are more preferable.
  • the primary particle size of the conductive particles is preferably 10 to 200 nm, more preferably 10 to 60 nm in order to form a fine conductive pattern having desired conductivity.
  • 100 particles are randomly selected by observing the cross section of the conductive layer with a scanning electron microscope, and the primary particle size of each particle is measured to obtain them. It is calculated by taking the arithmetic average value of.
  • the particle size of the primary particles of each particle is the arithmetic mean value of the part having the longest diameter and the part having the shortest diameter in the primary particles.
  • the content of the conductive particles in the conductive layer is preferably 20% by mass or more from the viewpoint of improving conductivity, and preferably 95% by mass or less from the viewpoint of improving pattern processability. ..
  • the conductive layer preferably contains 0.1 to 80% by mass of an organic compound.
  • the conductive layer contains 0.1% by mass or more of the organic compound, it is possible to impart flexibility to the conductive layer and further improve the bending resistance of the conductive layer.
  • the conductive layer contains 80% by mass or less of the organic compound, the conductivity can be improved.
  • an alkali-soluble resin As the organic compound contained in the conductive layer, an alkali-soluble resin is preferable.
  • a (meth) acrylic copolymer having a carboxyl group is preferable.
  • the (meth) acrylic copolymer means a copolymer of a (meth) acrylic monomer and another monomer.
  • (meth) acrylic monomer and other monomers include, but are not limited to, those described in International Publication No. 2018/084067.
  • the (meth) acrylic copolymer preferably has a carbon-carbon double bond at the side chain or the molecular terminal from the viewpoint of increasing the rate of the curing reaction.
  • the functional group having a carbon-carbon double bond include a vinyl group, an allyl group, a (meth) acrylic group and the like.
  • the carboxylic acid equivalent of the alkali-soluble resin is preferably 400 to 1,000 g / mol.
  • the carboxylic acid equivalent of the acrylic soluble resin can be calculated by measuring the acid value.
  • the double bond equivalent of the alkali-soluble resin is preferably 150 to 10,000 g / mol because both hardness and crack resistance can be compatible at a high level.
  • the double bond equivalent of the acrylic soluble resin can be calculated by measuring the iodine value.
  • the weight average molecular weight (Mw) of the alkali-soluble resin is preferably 1,000 to 100,000. By setting the weight average molecular weight within the above range, good coating characteristics of the alkali-soluble resin can be obtained, and the solubility of the alkali-soluble resin in the developing solution when forming the pattern of the conductive layer is also good.
  • the weight average molecular weight of the alkali-soluble resin refers to a polystyrene-equivalent value measured by gel permeation chromatography (GPC).
  • the conductive layer may contain at least one of an organotin compound and a metal chelate compound.
  • the conductive layer contains at least one of the organotin compound and the metal chelate compound, the adhesion between the conductive layer and the gas barrier layer can be further improved.
  • the metal chelate compound is more preferable than the organic tin compound because the effect of improving the adhesion can be obtained without imposing an environmental load.
  • Known compounds can be used as the organotin compound and the metal chelate compound.
  • the conductive layer may contain an antioxidant. Since the conductive layer contains an antioxidant, the weather resistance of the conductive layer can be improved. Examples of the type of antioxidant include the same types that can be contained in the above-mentioned insulating layer. Among these, by containing a compound having a phenolic hydroxyl group and / or a compound having an amino group, the adhesion between the conductive layer and the underlying layer is improved, and peeling at the time of bending is suppressed, which is preferable.
  • the antioxidant can be contained alone or in combination of two or more.
  • the content of the antioxidant in the conductive layer is preferably 0.1 part by mass or more and 5 parts by mass or less with respect to 100 parts by mass of the solid content.
  • the conductive layer also has at least one of a dispersant, a photopolymerization initiator, a monomer, a photoacid generator, a thermoacid generator, a solvent, a sensitizer, a pigment and a dye having absorption in visible light, and improved adhesion. It preferably contains an agent, a surfactant, a polymerization inhibitor, an antioxidant and the like.
  • the conductive layer in the present invention can be formed by using a conductive composition.
  • the components contained in this conductive composition include conductive particles, alkali-soluble resins, organic tin compounds, metal chelate compounds, dispersants, photopolymerization initiators, monomers, photoacid generators, and thermoacid generators.
  • examples include at least one of a solvent, a sensitizer, a pigment and a dye having absorption in visible light, an adhesion improver, a surfactant, an antioxidant, a polymerization inhibitor and the like.
  • the conductive particles contained in the conductive composition preferably have a coating layer on at least a part of the particle surface.
  • the surface activity of the conductive particles can be lowered, at least one of the reaction between the conductive particles and the reaction between the conductive particles and the organic component can be suppressed, and the dispersibility of the conductive particles can be improved. ..
  • the coating layer on the surface of the conductive particles can be easily removed by heating at a high temperature of about 150 to 350 ° C. in the presence of oxygen. As a result, the conductive particles in the conductive composition can exhibit sufficient conductivity of the conductive layer.
  • the coating layer on the surface of the conductive particles preferably contains at least one of carbon and a carbon compound.
  • the coating layer contains at least one of carbon and a carbon compound, the dispersibility of the conductive particles in the conductive composition can be further improved.
  • a reactive gas having carbon such as methane gas is brought into contact with the conductive particles by a thermal plasma method.
  • the polyimide and polyimide resin films according to the embodiment of the present invention are display devices such as liquid crystal displays, organic EL displays, touch panels, electronic papers, color filters and micro LED displays, solar cells, light receiving devices such as CMOS, transparent antennas and the like. It can be used as a flexible substrate in a flexible device such as a communication device.
  • a flexible device such as a communication device.
  • the polyimide resin described in the present application has excellent oxidation resistance and good transparency, high light resistance reliability and transparency are required for flexible touch panels, flexible solar cells, and flexible transparent antennas. It can be suitably used in each application.
  • the manufacturing process of the flexible device includes a process of forming circuits and elements necessary for a display device and a light receiving device on a polyimide resin film formed on a substrate.
  • a circuit or element required for a device can be formed on a polyimide resin film by a known method.
  • the solid polyimide resin film on which the circuit or the element is formed on the surface can be peeled off from the substrate by using a known method such as laser peeling or mechanical peeling to obtain a flexible device.
  • A-1 Silver particles having an average thickness of 1 nm on the surface carbon coating layer and a primary particle size of 40 nm (manufactured by Nisshin Engineering Co., Ltd.).
  • Equipment Equipment DP-8020 (manufactured by Tosoh Corporation) Developing solvent: N, N'-dimethylacetamide (DMAc), 0.05M-LiCl, 0.05% phosphoric acid addition Guard column: TSK guard colon ALPHA (manufactured by Tosoh Corporation) Column: TSK-GEL ⁇ -M (manufactured by Tosoh Corporation) Flow velocity: 0.8 mL / min Column temperature: 23 ° C Detector: RI-8020 (manufactured by Tosoh Corporation).
  • Examples 1 to 14, 16 to 21, Comparative Examples 1 to 4 Using an oven (“IHPS-222”; manufactured by ESPEC CORPORATION), cure in air at the temperature and time shown in Table 1. To prepare a film-like material (on a glass substrate) of the polyimide resin composition. The curing was performed by putting the substrate into an oven adjusted to the temperature described in each of the examples and comparative examples.
  • IHPS-222 manufactured by ESPEC CORPORATION
  • Example 15 Using an inert oven (INH-21CD manufactured by Koyo Thermo System Co., Ltd.), the temperature is raised to 250 ° C. over 40 minutes under a nitrogen stream (oxygen concentration less than 100 ppm), held for 60 minutes, and held for 5 to 5 to A polyimide resin film (on a glass substrate) was prepared by cooling to 50 ° C. at 8 ° C./min.
  • inert oven IH-21CD manufactured by Koyo Thermo System Co., Ltd.
  • the film thickness of the obtained polyimide resin film was measured using a surface roughness / contour shape measuring machine (SURFCOM1400D; manufactured by Tokyo Precision Co., Ltd.) at a measurement magnification of 10,000 times, a measurement length of 1.0 mm, and a measurement speed. was measured at 0.30 mm / s.
  • SURFCOM1400D surface roughness / contour shape measuring machine
  • polyimide resin film (peeling film)
  • the polyimide resin film (on the glass substrate) prepared in (2) is peeled by making a notch in the part 1 cm from the four sides with a single blade and lifting it from the edge.
  • a polyimide resin film (release film) was obtained.
  • ⁇ Thermal desorption device TD-100 (Markes) ⁇ Primary heat desorption conditions: Desorption temperature 260 °C, trap temperature -27 °C, 15 min ⁇ Secondary heat desorption conditions: 320 °C, 5 min ⁇ GC device: 7890A (Agilent) -Column: DB-5MS 30 m x 0.25 mm ID film thickness 1 ⁇ m (Agilent J & W) -Column temperature: 40 ° C (4 min) to 280 ° C (22 min) Heating rate 10 ° C / min ⁇ MS device: 5975C (Agilent) ⁇ Ionization method: Electron ionization (EI) ⁇ Monitor ion: m / z 29-600 ⁇ GBL quantitative ion: m / z 86 ⁇ NMP quantitative ion: m / z 98 ⁇ Ion source temperature: 230 °C -Standard products: GBL (special grade manufactured by Wa
  • thermomechanical analyzer EXSTAR6000TMA / SS6000 manufactured by SII Nanotechnology
  • the glass transition temperature was measured under a nitrogen stream with a tensile load of 30 mN.
  • the temperature raising method was carried out under the following conditions.
  • the temperature was raised to 150 ° C. at a temperature rising rate of 5 ° C./min to remove the adsorbed water of the polyimide resin film sample
  • the temperature was cooled to room temperature at a temperature lowering rate of 5 ° C./min.
  • the main measurement was performed at a temperature rising rate of 5 ° C./min, and the glass transition temperature of this sample was determined.
  • the polyimide resin film (release film) shown in (3) was used for this measurement, and the width of the film used for the measurement was 5 mm and the distance between the chucks was 20 mm.
  • n (TE) and TM refractive index (n (TM)) at a wavelength of 632.8 nm are measured using a prism coupler (manufactured by METRICON, PC2010). did. n (TE) and n (TM) are refractive indexes in the parallel and vertical directions with respect to the polyimide film surface, respectively.
  • the in-plane / out-of-plane birefringence was calculated as the difference between n (TE) and n (TM) (n (TE) -n (TM)).
  • the polyimide resin film (release film) obtained in (3) was used for the measurement.
  • a conductive composition (AE-1) was prepared. Specifically, 80 g of conductive particles (A-1), 4.06 g of a surfactant (“DISPERBYK” (registered trademark) 21116: manufactured by DIC Corporation), 98.07 g of PGMEA, and 98.07 g of DPM are mixed. The mixture was treated with a homogenizer at 1200 rpm for 30 minutes. Further, the mixture was dispersed using a high-pressure wet medialess atomizer Nanomizer (manufactured by Nanomizer) to obtain a silver dispersion having a silver content of 40% by mass.
  • alkali-soluble resin AR
  • ACH ethylacetacetate aluminum diisopropylate
  • NCI-831 photopolymerization initiator
  • a conductive composition (AE-2) was obtained in the same manner as in Production Example 1 except that 0.24 g of Irganox 1010 (manufactured by BASF Japan Ltd.), which is a hindered phenolic antioxidant, was further added to the organic I solution. ..
  • a conductive composition (AE-3) was obtained in the same manner as in Production Example 1 except that 0.24 g of ADEKA STUB LA-87 (manufactured by ADEKA), which is a hindered amine-based antioxidant, was further added to the organic I solution. ..
  • an insulating composition (OA-1) was prepared. Specifically, in a clean bottle, 50.0 g of a cardo resin (V-259ME: manufactured by Nippon Steel Sumitomo Chemical Co., Ltd.), 18.0 g of a crosslinkable monomer (TAIC: manufactured by Nippon Kasei Co., Ltd.), and a crosslinkable monomer (M-315). : 10.0 g of Toa Synthetic Co., Ltd.), 20.0 g of epoxy compound (PG-100: manufactured by Osaka Gas Chemical Co., Ltd.), 0.2 g of photopolymerization initiator (OXE-01: manufactured by BASF Co., Ltd.) were added. Stirring for 1 hour gave an insulating composition (OA-1).
  • Step 1 Formation of Insulating Layer On the polyimide resin film (on the glass substrate) prepared in (2), the insulating compositions (OA-1 to 4) prepared in Production Examples 5 to 8 are subjected to 1000 rpm using a spin coater. After spin-coating for 5 seconds with, prebaking was performed at 100 ° C. for 2 minutes using a hot plate to prepare a prebaked film. The prebake film was exposed through a desired mask using an ultra-high pressure mercury lamp as a light source using a parallel light mask aligner. Then, using an automatic developing apparatus, shower development was performed with a 0.045 mass% potassium hydroxide aqueous solution for 60 seconds, and then rinse with water for 30 seconds to perform pattern processing. The patterned substrate was cured in air at 230 ° C. for 60 minutes using an oven to form an insulating layer having a thickness of 1.0 ⁇ m to obtain a laminated substrate.
  • the insulating compositions (OA-1 to 4) prepared in Production Examples 5 to 8 are subjected to 1000 r
  • Step 2 Formation of wiring layer On the laminated substrate prepared in step 1, the conductive compositions (AE-1 to 4) prepared in Production Examples 1 to 4 were applied to a spin coater (Mikasa Co., Ltd. "1H-360S (1H-360S). Spin-coat the substrate using a hot plate (“SCW-636 (trade name)” manufactured by Dainippon Screen Mfg. Co., Ltd.) for 10 seconds at 300 rpm and 2 seconds at 500 rpm. Prebaking was performed at 100 ° C. for 2 minutes to obtain a prebaked film having a film thickness of 0.9 ⁇ m.
  • SCW-636 trade name
  • a parallel light mask aligner (“PLA-501F (trade name)” manufactured by Canon Inc.) was used as a light source, and a prebake film was exposed through a desired mask. After that, using an automatic developing device (“AD-2000 (trade name)” manufactured by Takizawa Sangyo Co., Ltd.), shower-develop with 0.045 mass% potassium hydroxide aqueous solution for 60 seconds, and then rinse with water for 30 seconds. , Pattern processing was performed. Then, using an oven (“IHPS-222”; manufactured by ESPEC CORPORATION), post-baking was performed in air at 230 ° C. for 30 minutes to obtain a volume resistivity evaluation pattern.
  • AD-2000 automatic developing device
  • IHPS-222 manufactured by ESPEC CORPORATION
  • the surface resistivity value ⁇ s ( ⁇ / ⁇ ) was measured by a surface resistivity measuring machine (“Loresta” (registered trademark) -FP; manufactured by Mitsubishi Yuka Co., Ltd.), and the surface roughness shape was measured.
  • the film film resistivity ( ⁇ ⁇ cm) is calculated by measuring the film thickness t (cm) with a machine (“Surfcom” (registered trademark) 1400D; manufactured by Tokyo Precision Co., Ltd.) and multiplying both values. Conductivity was evaluated according to the evaluation criteria of.
  • Excellent 60 ⁇ ⁇ cm or less Good
  • B 60 ⁇ ⁇ cm or more and less than 80 ⁇ ⁇ cm possible
  • C 80 ⁇ ⁇ cm or more and less than 100 ⁇ ⁇ cm
  • D Defective
  • Synthesis example 1 A thermometer and a stirring rod with a stirring blade were set in a 300 mL four-necked flask. Next, 110 g of GBL was charged under a dry nitrogen air flow, and the temperature was raised to 30 ° C. After raising the temperature, the diamine compound 3,3'-DDS was 7.00 g (28.2 mmol), BAPS-m was 8.87 g (20.5 mmol), and TFMB was 0.82 g (2.56 mmol) with stirring. It was put in and washed with 20 g of GBL. After confirming that the diamine compound was dissolved, 16.2 g (52.3 mmol) of ODPA, which is an acid dianhydride, was added and washed with 20 g of GBL.
  • ODPA which is an acid dianhydride
  • the mixture was heated to 50 ° C. and reacted for 4 hours, cooled, 0.02 g of a surfactant (“F-477” manufactured by DIC Corporation) was added, and the mixture was stirred for 1 hour.
  • the obtained solution was filtered through a polyethylene filter (filter pore size 0.2 ⁇ m) to obtain a polyimide precursor composition.
  • the weight average molecular weight (Mw) of the polyimide precursor in the obtained composition was 85,000.
  • Synthesis example 2 5.01 g (20.2 mmol) of 3,3'-DDS, 8.72 g (20.2 mmol) of BAPS-m, 3.23 g (10.1 mmol) of TFMB, 16.0 g (51.5 mmol) of ODPA.
  • a polyimide precursor resin composition was obtained in the same manner as in Synthesis Example 1 except that the composition was changed to.
  • the weight average molecular weight (Mw) of the polyimide precursor in the obtained composition was 94000.
  • Synthesis example 3 5.08 g (20.5 mmol) of 3,3'-DDS, 8.39 g (20.5 mmol) of HFBAPP instead of BAPS-m, 3.27 g (10.2 mmol) of TFMB, 16.2 g of ODPA (16.2 mmol).
  • a polyimide precursor resin composition was obtained in the same manner as in Synthesis Example 1 except that the composition was changed to 52.2 mmol).
  • the weight average molecular weight (Mw) of the polyimide precursor in the obtained composition was 97,000.
  • Synthesis example 4 3.87 g (19.6 mmol) of 3,3'-DDS, 8.70 g (20.1 mmol) of BAPS-m, 3.22 g (10.1 mmol) of TFMB, 15.9 g (51.4 mmol) of ODPA.
  • a resin composition was obtained.
  • the weight average molecular weight (Mw) of the polyimide precursor in the obtained composition was 125,000.
  • Synthesis example 5 3.76 g (19.2 mmol) of 3,3'-DDS, 8.29 g (19.2 mmol) of BAPS-m, 3.07 g (9.59 mmol) of TFMB, 11.4 g (36.7 mmol) of ODPA.
  • a polyimide precursor resin composition was obtained in the same manner as in Synthesis Example 1 except that 5.43 g (12.2 mmol) of 6FDA was added at the same timing as ODPA.
  • the weight average molecular weight (Mw) of the polyimide precursor in the obtained composition was 92000.
  • Synthesis example 6 5.20 g (20.9 mmol) of 3,3'-DDS, 9.04 g (20.9 mmol) of BAPS-m, 3.35 g (10.5 mmol) of TFMB, 12.4 g (40.1 mmol) of ODPA.
  • a polyimide precursor resin composition was obtained in the same manner as in Synthesis Example 1 except that 2.91 g (13.4 mmol) of PMDA was added at the same timing as ODPA.
  • the weight average molecular weight (Mw) of the polyimide precursor in the obtained composition was 101000.
  • Synthesis example 7 2.45 g (9.87 mmol) of 3,3'-DDS, 8.53 g (19.7 mmol) of BAPS-m, 6.32 g (19.7 mmol) of TFMB, 15.6 g (50.4 mmol) of ODPA.
  • a polyimide precursor resin composition was obtained in the same manner as in Synthesis Example 1 except that the composition was changed to.
  • the weight average molecular weight (Mw) of the polyimide precursor in the obtained composition was 98,000.
  • Synthesis example 8 2.54 g (10.2 mmol) of 3,3'-DDS, 4.41 g (10.2 mmol) of BAPS-m, 9.81 g (30.6 mmol) of TFMB, 16.2 g (52.1 mmol) of ODPA.
  • a polyimide precursor resin composition was obtained in the same manner as in Synthesis Example 1 except that the composition was changed to.
  • the weight average molecular weight (Mw) of the polyimide precursor in the obtained composition was 102000.
  • Synthesis example 9 A polyimide precursor resin composition was obtained in the same manner as in Synthesis Example 4 except that the solvent used was changed from GBL to NMP.
  • the weight average molecular weight (Mw) of the polyimide precursor in the obtained composition was 120,000.
  • Synthesis example 10 2.50 g (10.1 mmol) of 3,3'-DDS, 4.35 g (10.1 mmol) of BAPS-m, 10.15 g (30.2 mmol) of 6FODA and 15.9 g (15.9 mmol) of ODPA by changing to TFMB.
  • a polyimide precursor resin composition was obtained in the same manner as in Synthesis Example 1 except that the composition was changed to 51.3 mmol).
  • the weight average molecular weight (Mw) of the polyimide precursor in the obtained composition was 107,000.
  • Synthesis example 11 1.28 g (5.14 mmol) of 3,3'-DDS, 2.22 g (5.14 mmol) of BAPS-m, 13.2 g (41.1 mmol) of TFMB, 16.3 g (52.4 mmol) of ODPA.
  • a polyimide precursor resin composition was obtained in the same manner as in Synthesis Example 1 except that the composition was changed to.
  • the weight average molecular weight (Mw) of the polyimide precursor in the obtained composition was 107,000.
  • Synthesis example 12 0.64 g (2.58 mmol) of 3,3'-DDS, 1.11 g (2.58 mmol) of BAPS-m, 14.9 g (46.4 mmol) of TFMB, 16.3 g (52.6 mmol) of ODPA.
  • a polyimide precursor resin composition was obtained in the same manner as in Synthesis Example 1 except that the composition was changed to.
  • the weight average molecular weight (Mw) of the polyimide precursor in the obtained composition was 110,000.
  • Synthesis example 13 2.55 g (10.3 mmol) of 3,3'-DDS, 4.44 g (10.3 mmol) of BAPS-m, 9.88 g (30.8 mmol) of TFMB, 12.2 g (39.3 mmol) of ODPA.
  • a polyimide precursor resin composition was obtained in the same manner as in Synthesis Example 1 except that 3.86 g (13.1 mmol) of BPDA was added at the same timing as ODPA.
  • the weight average molecular weight (Mw) of the polyimide precursor in the obtained composition was 116000.
  • Synthesis example 14 Other than changing 3,3'-DDS to 6.22 g (25.1 mmol), BAPS-m to 10.8 g (25.1 mmol), ODPA to 15.9 g (51.2 mmol), and not using TFMB. Obtained a polyimide precursor resin composition in the same manner as in Synthesis Example 1. The weight average molecular weight (Mw) of the polyimide precursor in the obtained composition was 64,000.
  • Synthesis example 15 A polyimide precursor resin composition was obtained in the same manner as in Synthesis Example 4 except that 3,3'-DDS was changed to 4,4'-DDS.
  • the weight average molecular weight (Mw) of the polyimide precursor in the obtained composition was 81000.
  • Synthesis example 16 Other than changing 3,3'-DDS to 5.38 g (21.7 mmol), TFMB to 10.4 g (32.5 mmol), ODPA to 17.1 g (55.3 mmol), and not using BAPS-m. Obtained a polyimide precursor resin composition in the same manner as in Synthesis Example 1. The weight average molecular weight (Mw) of the polyimide precursor in the obtained composition was 90000.
  • Examples 1 to 21 and Comparative Examples 1 to 4 A polyimide resin film was prepared by using the polyimide precursor resin composition shown in Table 1 and setting the curing conditions as shown in Table 1 by the method described in (2) above. The test results of the obtained polyimide resin film are shown in Table 2 below.
  • Examples 1 to 21 had good mechanical properties, laser peeling properties, optical properties, and heat-resistant oxidizing properties. Further, as an example of the circuit, when an insulating layer and a conductive wiring were formed on the polyimide resin film and the volume resistance and the bending resistance were evaluated, good characteristics were confirmed.
  • Comparative Example 1 It is probable that in Comparative Example 1, since the cure was not sufficiently advanced, the intermolecular interaction was weak and the mechanical properties were inferior. Further, it is considered that a large amount of GBL remaining in the film acts on the conductive wiring in the curing process to deteriorate the conductivity.
  • Comparative Example 2 Since the structural unit represented by the formula (1) is not included in Comparative Example 2, it is considered that the mechanical strength of the obtained polyimide film is lowered. In Comparative Example 3, since 4,4'-DDS was used instead of 3,3'-DDS, it is considered that the yellowness of the obtained polyimide resin film was increased and the mechanical strength was further decreased. Since BAPS-m is not contained in Comparative Example 4, it is considered that the chemical resistance of the polyimide film is lowered. Further, since cracks were generated when the insulating composition was applied, the conductivity and bending test could not be performed.

Abstract

The present invention provides a polyimide which contains a specific structural unit, and which is characterized in that with respect to the IR spectrum of a resin film formed of this polyimide and having a thickness of 10 μm, if Y is the maximum peak intensity present within the range of from 1,450 to 1,550 cm-1 and Z is the maximum peak intensity present within the range of from 3,400 to 3,700 cm-1, Y and Z satisfy formula 0.1 ≤ Z/Y ≤ 0.4; and this polyimide has good transparency, oxidation resistance and laser releasability from a supporting substrate, while having low in-plane/out-of-plane birefringence, and enables the achievement of a polyimide resin film having excellent flexibility and a flexible device.

Description

ポリイミド、ポリイミド樹脂膜、積層体およびフレキシブルデバイスPolyimide, polyimide resin film, laminate and flexible device
 本発明は、ポリイミド、ポリイミド樹脂膜、積層体およびフレキシブルデバイスに関する。 The present invention relates to polyimides, polyimide resin films, laminates and flexible devices.
 有機フィルムは、ガラスに比べて屈曲性に富み、割れにくく、軽量といった特長を有する。最近では、フラットパネルディスプレイの基板を有機フィルムに替えることで、フラットパネルディスプレイをフレキシブル化する動きが活発化している。 Organic film is more flexible than glass, is hard to break, and is lightweight. Recently, there has been an active movement to make flat panel displays flexible by replacing the substrate of flat panel displays with organic films.
 有機フィルムに用いられる樹脂としては、ポリエステル、ポリアミド、ポリイミド、ポリカーボネート、ポリエーテルスルホン、アクリル、エポキシ、シクロオレフィンポリマーなどが挙げられる。これらのうちポリイミドは、高耐熱性樹脂であることから、ディスプレイ基板として適している。しかしながら、一般的なポリイミド樹脂は、高い芳香環密度により茶色又は黄色に着色し、可視光線領域での透過率が低く、透明性が要求される分野に用いることは困難であった。 Examples of the resin used for the organic film include polyester, polyamide, polyimide, polycarbonate, polyether sulfone, acrylic, epoxy, cycloolefin polymer and the like. Of these, polyimide is a highly heat-resistant resin and is therefore suitable as a display substrate. However, general polyimide resins are colored brown or yellow due to high aromatic ring density, have low transmittance in the visible light region, and are difficult to use in fields where transparency is required.
 このようなポリイミド樹脂の透明性を向上するという課題に対して、特許文献1には、脂環式酸二無水物と種々の芳香族ジアミン又は脂環式ジアミンから得られるポリイミドが、高透明性、低複屈折性を有することが開示されている。 In response to the problem of improving the transparency of such a polyimide resin, Patent Document 1 states that a polyimide obtained from an alicyclic acid dianhydride and various aromatic diamines or alicyclic diamines has high transparency. , Has low birefringence.
 また、特許文献2には、空気中で焼成を行って得られる透明ポリイミド樹脂膜を用いてフレキシブルなタッチパネルを得る手法が開示されている。 Further, Patent Document 2 discloses a method for obtaining a flexible touch panel by using a transparent polyimide resin film obtained by firing in air.
特開平11-080350号公報Japanese Unexamined Patent Publication No. 11-080350 国際公開第2018/84067号International Publication No. 2018/84067
 しかし、特許文献1に記載のポリイミドは耐酸化性が低く、大気雰囲気下で加熱すると熱酸化により黄変し易いという問題があった。また、有機フィルム上でディスプレイを作製する場合、支持基板上に有機フィルムを成膜し、その上に電子デバイス作製した後に、有機フィルムを支持基板から剥離するといったプロセスが一般的である。この剥離プロセスにおいて、特許文献1に記載のポリイミドでは、剥離に必要な照射エネルギーが高くレーザー剥離性が悪いという問題があった。 However, the polyimide described in Patent Document 1 has a low oxidation resistance, and has a problem that it easily turns yellow due to thermal oxidation when heated in an air atmosphere. Further, when a display is manufactured on an organic film, a process in which an organic film is formed on a support substrate, an electronic device is formed on the organic film, and then the organic film is peeled off from the support substrate is common. In this peeling process, the polyimide described in Patent Document 1 has a problem that the irradiation energy required for peeling is high and the laser peeling property is poor.
 また、特許文献2には、空気中で30分間焼成を行うことで透明なポリイミド樹脂膜が得られる旨の開示がある。しかし、特許文献2に記載の透明ポリイミド樹脂膜は機械強度がやや低いため、上記のような剥離プロセスにおいてポリイミド樹脂膜が破断しやすいという問題があった。また、ポリイミド樹脂膜の折り曲げ耐性が小さいという問題があった。 Further, Patent Document 2 discloses that a transparent polyimide resin film can be obtained by firing in air for 30 minutes. However, since the transparent polyimide resin film described in Patent Document 2 has a slightly low mechanical strength, there is a problem that the polyimide resin film is easily broken in the above-mentioned peeling process. Further, there is a problem that the bending resistance of the polyimide resin film is small.
 本発明は、透明性、耐酸化性、支持基板からのレーザー剥離性が良好で、面内/面外複屈折が低く、可撓性に優れるポリイミドおよびポリイミド樹脂膜を提供することを目的とする。 An object of the present invention is to provide a polyimide and a polyimide resin film having good transparency, oxidation resistance, laser peeling property from a support substrate, low in-plane / out-of-plane birefringence, and excellent flexibility. ..
 上述した課題を解決し、目的を達成するために、本発明は、下記式(1)で表されるポリイミド構造単位Aと、下記式(2)で表されるポリイミド構造単位Bと、下記式(3)で表されるポリイミド構造単位Cと、を含むポリイミドであり、当該ポリイミドを厚さ10μmの樹脂膜としたときのIRスペクトルにおいて、1450~1550cm-1の範囲に存在する最大ピーク強度をY、3400~3700cm-1の範囲に存在する最大ピーク強度をZとした時に、下記式を満たすことを特徴とするポリイミドである。
式)0.1≦Z/Y≦0.4
In order to solve the above-mentioned problems and achieve the object, the present invention presents the polyimide structural unit A represented by the following formula (1), the polyimide structural unit B represented by the following formula (2), and the following formula. It is a polyimide containing the polyimide structural unit C represented by (3), and the maximum peak intensity existing in the range of 1450 to 1550 cm -1 in the IR spectrum when the polyimide is made into a resin film having a thickness of 10 μm. Y is a polyimide characterized by satisfying the following formula, where Z is the maximum peak intensity existing in the range of 3400 to 3700 cm -1.
Equation) 0.1 ≤ Z / Y ≤ 0.4
Figure JPOXMLDOC01-appb-C000005
Figure JPOXMLDOC01-appb-C000005
(Xは、直接結合または酸素原子を表す。Xは、酸素原子、-C(CF-、-C(CH-または-Si(CH-を表す。Xは、直接結合、-SO-、-C(CH-または-C(CF-を表す。) (X 1 represents a direct bond or an oxygen atom. X 2 represents an oxygen atom, -C (CF 3 ) 2- , -C (CH 3 ) 2- or -Si (CH 3 ) 2-. 3 represents direct binding, -SO 2- , -C (CH 3 ) 2- or -C (CF 3 ) 2- ).
 本発明によれば、透明性、耐酸化性、支持基板からのレーザー剥離性が良好で、面内/面外複屈折が低く、可撓性に優れるポリイミドおよびポリイミド樹脂膜を提供することができる。本発明のポリイミドおよびポリイミド樹脂膜は、フレキシブルデバイス、例えば液晶ディスプレイ、有機ELディスプレイ、タッチパネル、カラーフィルタ、電子ペーパー、マイクロLEDディスプレイ等の表示デバイス、太陽電池、CMOSなどの受光デバイス、透明アンテナ等の通信用デバイス等のフレキシブル基板として好適に用いることができる。このようなフレキシブル基板を用いることで、信頼性の高いフレキシブルデバイスの作製が可能である。 According to the present invention, it is possible to provide a polyimide and a polyimide resin film having good transparency, oxidation resistance, laser peeling property from a support substrate, low in-plane / out-of-plane birefringence, and excellent flexibility. .. The polyimide and polyimide resin film of the present invention can be used for flexible devices such as liquid crystal displays, organic EL displays, touch panels, color filters, electronic paper, micro LED displays and other display devices, solar cells, CMOS and other light receiving devices, transparent antennas and the like. It can be suitably used as a flexible substrate for a communication device or the like. By using such a flexible substrate, it is possible to manufacture a highly reliable flexible device.
実施例3のポリイミド樹脂膜のIRスペクトル(2000~4000cm-1IR spectrum of the polyimide resin film of Example 3 (2000-4000 cm -1 ) 実施例3のポリイミド樹脂膜のIRスペクトル(1480~1510cm-1IR spectrum of the polyimide resin film of Example 3 (1480-1510 cm -1 ) 比較例1のポリイミド樹脂膜のIRスペクトル(2000~4000cm-1IR spectrum of the polyimide resin film of Comparative Example 1 (2000 to 4000 cm -1 ) 比較例1のポリイミド樹脂膜のIRスペクトル(1480~1510cm-1IR spectrum of the polyimide resin film of Comparative Example 1 (1480-1510 cm -1 ) 比較例2のポリイミド樹脂膜のIRスペクトル(2000~4000cm-1IR spectrum of the polyimide resin film of Comparative Example 2 (2000 to 4000 cm -1 ) 比較例2のポリイミド樹脂膜のIRスペクトル(1480~1510cm-1IR spectrum of the polyimide resin film of Comparative Example 2 (1480-1510 cm -1 )
 以下、本発明に係るポリイミド、ポリイミド樹脂膜、積層体およびフレキシブルデバイスの実施形態を図面と共に詳細に説明する。なお、以下の実施の形態により本発明が限定されるものではない。 Hereinafter, embodiments of the polyimide, the polyimide resin film, the laminate, and the flexible device according to the present invention will be described in detail together with drawings. The present invention is not limited to the following embodiments.
 <ポリイミド>
 本発明の実施の形態に係るポリイミドは、下記式(1)で表されるポリイミド構造単位Aと、下記式(2)で表されるポリイミド構造単位Bと、下記式(3)で表されるポリイミド構造単位Cと、を含むポリイミドであり、当該ポリイミドを厚さ10μmの樹脂膜としたときのIRスペクトルにおいて、1480~1510cm-1の範囲に存在する最大ピーク強度をY、3400~3700cm-1の範囲に存在する最大ピーク強度をZとした時に、下記式を満たす。
<Polyimide>
The polyimide according to the embodiment of the present invention is represented by the polyimide structural unit A represented by the following formula (1), the polyimide structural unit B represented by the following formula (2), and the following formula (3). It is a polyimide containing a polyimide structural unit C, and in the IR spectrum when the polyimide is used as a resin film having a thickness of 10 μm, the maximum peak intensity existing in the range of 1480 to 1510 cm -1 is Y, 3400 to 3700 cm -1. When the maximum peak intensity existing in the range of is Z, the following equation is satisfied.
 式)0.1≦Z/Y≦0.4 Formula) 0.1 ≤ Z / Y ≤ 0.4
Figure JPOXMLDOC01-appb-C000006
Figure JPOXMLDOC01-appb-C000006
 Xは、直接結合または酸素原子を表す。Xは、酸素原子、-C(CF-、-C(CH-または-Si(CH-を表す。Xは、直接結合、-SO-、-C(CH-または-C(CF-を表す。 X 1 represents a direct bond or an oxygen atom. X 2 represents an oxygen atom, -C (CF 3 ) 2- , -C (CH 3 ) 2- or -Si (CH 3 ) 2- . X 3 represents direct binding, -SO 2- , -C (CH 3 ) 2- or -C (CF 3 ) 2- .
 IRスペクトルにおいて、1480~1510cm-1の領域には単環式芳香族炭化水素の環内炭素-炭素伸縮に伴う骨格振動による吸収が現れ、3400~3700cm-1の領域には分子間水素結合が形成されているO-H伸縮による吸収が現れると考えられる。よって、Z/Yは単環式芳香族炭化水素由来のピーク強度に対する分子間水素結合由来ピークの強度比を表す。 In IR spectrum, in the region of 1480 ~ 1510 cm -1 ring carbon of a monocyclic aromatic hydrocarbon - appeared absorption by skeletal vibration due to the carbon stretching, the intermolecular hydrogen bonds in the region of 3400 ~ 3700 cm -1 It is considered that absorption due to the formed OH expansion and contraction appears. Therefore, Z / Y represents the intensity ratio of the peak derived from the intermolecular hydrogen bond to the peak intensity derived from the monocyclic aromatic hydrocarbon.
 Z/Yが0.1未満の場合、分子間水素結合が弱いため、ポリイミド樹脂膜に対して外部から応力がかかった際に破断し易い。また、0.4より大きい場合は分子間水素結合が強すぎるため、ポリイミド樹脂膜に対して外部から応力がかかった際に膜内部で応力緩和ができず、膜が脆くなると考えられる。Z/Yが0.1以上0.4以下である時、良好な可撓性を有するポリイミドを得ることができる。 When Z / Y is less than 0.1, the intermolecular hydrogen bond is weak, so that the polyimide resin film is easily broken when stress is applied from the outside. If it is larger than 0.4, the intermolecular hydrogen bond is too strong, and it is considered that the stress cannot be relaxed inside the polyimide resin film when stress is applied to the polyimide resin film from the outside, and the film becomes brittle. When Z / Y is 0.1 or more and 0.4 or less, a polyimide having good flexibility can be obtained.
 本発明の実施の形態に係るポリイミドは、例えば、ポリイミドに含まれる全ジアミン残基中、スルホニル基を有するジアミンを5mol%以上、95mol%以下含んでおり、かつ、イミド化のためのキュア条件が、加熱温度が230℃より高く、かつ、加熱時間が1時間以上という条件である時に、Z/Yが0.1以上0.4以下となりやすい。 The polyimide according to the embodiment of the present invention contains, for example, 5 mol% or more and 95 mol% or less of a diamine having a sulfonyl group in all the diamine residues contained in the polyimide, and the curing conditions for imidization are satisfied. When the heating temperature is higher than 230 ° C. and the heating time is 1 hour or more, the Z / Y tends to be 0.1 or more and 0.4 or less.
 スルホニル基は水素結合受容体としての性質を有するため、例えばポリイミド分子中に存在するアミノ基や水酸基といった水素結合供与体との間で水素結合を形成する。従って、スルホニル基を有するジアミンの含有量に応じてZは大きくなる。 Since the sulfonyl group has properties as a hydrogen bond acceptor, it forms a hydrogen bond with a hydrogen bond donor such as an amino group or a hydroxyl group existing in a polyimide molecule, for example. Therefore, Z increases according to the content of the diamine having a sulfonyl group.
 一方で、Yは単環式芳香族環の含有量によってピーク強度が決まるため、一般的な芳香族ポリイミドでは最大ピーク強度がほぼ決まっている。よって、Zを調整することによって、Z/Yを0.1以上0.4以下に調整することが可能となる。 On the other hand, since the peak intensity of Y is determined by the content of the monocyclic aromatic ring, the maximum peak intensity of general aromatic polyimide is almost determined. Therefore, by adjusting Z, it is possible to adjust Z / Y to 0.1 or more and 0.4 or less.
 また、イミド化のためのキュア条件が上記の条件である場合、ポリイミド膜に含まれる溶剤が十分に抜け、かつ、イミド化反応が十分に進行することにより、ポリイミド分子同士がパッキングするようになる。このことによって、ポリイミド分子間でより多くの水素結合が形成されるようになると考えられる。 Further, when the curing conditions for imidization are the above conditions, the solvent contained in the polyimide film is sufficiently removed and the imidization reaction proceeds sufficiently, so that the polyimide molecules are packed together. .. It is believed that this will result in the formation of more hydrogen bonds between the polyimide molecules.
 本発明の実施の形態に係るポリイミドは、ポリイミド構造単位Aを含むことで機械強度および可撓性に優れ、ポリイミド構造単位Bを含むことで耐薬品性の向上および低複屈折率化が可能であり、ポリイミド構造単位Cを含むことで機械特性を悪化させることなく透明性およびレーザー剥離性を向上させることができる。ポリイミド構造単位Aは、好ましくは下記式(4)で表される構造単位A’であり、ポリイミド構造単位Bは、好ましくは下記式(5)で表される構造単位B’であり、ポリイミド構造単位Cは、好ましくは下記式(6)で表される構造単位C’である。式(4)中、Xは、直接結合または酸素原子を表す。 The polyimide according to the embodiment of the present invention is excellent in mechanical strength and flexibility by containing the polyimide structural unit A, and can improve chemical resistance and lower the birefringence by containing the polyimide structural unit B. By including the polyimide structural unit C, transparency and laser peelability can be improved without deteriorating mechanical properties. The polyimide structural unit A is preferably a structural unit A'represented by the following formula (4), and the polyimide structural unit B is preferably a structural unit B'represented by the following formula (5), and has a polyimide structure. The unit C is preferably the structural unit C'represented by the following formula (6). In formula (4), X 1 represents a direct bond or an oxygen atom.
Figure JPOXMLDOC01-appb-C000007
Figure JPOXMLDOC01-appb-C000007
 また、ポリイミド構造単位A、BおよびCはいずれも耐酸化性に優れる構造であるため、大気雰囲気下で加熱しても熱酸化による黄変が起こりづらい。よって、ポリイミド構造単位A、BおよびCの全てを含むことで、透明性、耐酸化性、支持基板からのレーザー剥離性が良好で、面内/面外複屈折が低く、可撓性に優れるポリイミドを得ることができる。 Further, since the polyimide structural units A, B, and C all have a structure having excellent oxidation resistance, yellowing due to thermal oxidation is unlikely to occur even when heated in an atmospheric atmosphere. Therefore, by including all of the polyimide structural units A, B, and C, transparency, oxidation resistance, laser peelability from the support substrate are good, in-plane / out-of-plane birefringence is low, and flexibility is excellent. Polyimide can be obtained.
 耐酸化性をより高める観点から、ポリイミド構造単位A、BおよびCの合計量は、全ポリイミド構造単位の80モル%以上であることが好ましく、90モル%以上であることがさらに好ましい。なお、全ポリイミド構造単位とは、ポリイミドを構成する全ての構造単位のことである。ポリイミドが構造単位A、BおよびC以外の構造単位を含む場合は、構造単位A、BおよびCと、その他の構造単位との合計量(モル基準)が、全ポリイミド構造単位である。 From the viewpoint of further enhancing the oxidation resistance, the total amount of the polyimide structural units A, B and C is preferably 80 mol% or more, more preferably 90 mol% or more of the total polyimide structural units. The total polyimide structural unit is all the structural units constituting the polyimide. When the polyimide contains a structural unit other than the structural units A, B and C, the total amount (molar basis) of the structural units A, B and C and the other structural units is the total polyimide structural unit.
 また、ポリイミド構造単位A、B、Cそれぞれの比率(モル基準)を(i)、(ii)、(iii)とした時、好ましくは(i):(ii):(iii)=5~80:1~70:1~70であり、更に好ましくは(i):(ii):(iii)=10~70:5~60:5~60であり、特に好ましくは(i):(ii):(iii)=15~60:15~50:15~55である。 Further, when the ratios (molar standard) of each of the polyimide structural units A, B, and C are (i), (ii), and (iii), preferably (i) :( ii) :( iii) = 5 to 80. 1 to 70: 1 to 70, more preferably (i) :( ii) :( iii) = 10 to 70: 5 to 60: 5 to 60, and particularly preferably (i) :( ii). : (Iii) = 15-60: 15-50: 15-55.
 本発明のポリイミドは、本発明の効果を妨げない範囲で、他の構造単位を含んでもよい。他の構造単位としては、ポリアミド酸の脱水閉環体であるポリイミド(構造単位A、BおよびC以外の構造単位からなるもの)、ポリヒドロキシアミドの脱水閉環体であるポリベンゾオキサゾール等が挙げられる。他の構造単位の一例として、一般式(7)で表されるポリイミド構造単位(ただし、構造単位A、BおよびC以外の構造単位であるもの)が挙げられる。 The polyimide of the present invention may contain other structural units as long as the effects of the present invention are not impaired. Examples of other structural units include polyimide (a structural unit other than structural units A, B and C) which is a dehydrated ring-closed body of polyamic acid, polybenzoxazole which is a dehydrated ring-closed body of polyhydroxyamide, and the like. As an example of another structural unit, a polyimide structural unit represented by the general formula (7) (however, a structural unit other than the structural units A, B and C) can be mentioned.
Figure JPOXMLDOC01-appb-C000008
Figure JPOXMLDOC01-appb-C000008
 Rは4価のテトラカルボン酸残基を示し、Rは2価のジアミン残基を示す。 R 1 indicates a tetravalent tetracarboxylic acid residue, and R 2 indicates a divalent diamine residue.
 Rに用いられる酸二無水物としては、国際公開第2017/099183号に記載の芳香族酸二無水物、脂環式酸二無水物又は、脂肪族酸二無水物などが挙げられる。なかでも、式(8)で表される構造を与える酸二無水物および式(9)で表される構造を与える酸二無水物が好ましい。Rが一般式(8)で表される構造を含むことで、ガラス転移温度が高いポリイミドを得ることができる。また、Rが一般式(9)で表される構造を含むことで、透明性が高く、面内/面外複屈折が小さく、ガラス転移温度が高いポリイミドを得ることができる。これらの他の酸二無水物は、単独で又は2種以上を組み合わせて使用することができる。 Examples of the acid dianhydride used for R 1 include aromatic dianhydrides, alicyclic acid dianhydrides, and aliphatic dianhydrides described in International Publication No. 2017/099183. Of these, an acid dianhydride giving the structure represented by the formula (8) and an acid dianhydride giving the structure represented by the formula (9) are preferable. By including the structure represented by the general formula (8) in R 1, a polyimide having a high glass transition temperature can be obtained. Further, since R 1 includes a structure represented by the general formula (9), it is possible to obtain a polyimide having high transparency, small in-plane / out-of-plane birefringence, and a high glass transition temperature. These other acid dianhydrides can be used alone or in combination of two or more.
Figure JPOXMLDOC01-appb-C000009
Figure JPOXMLDOC01-appb-C000009
 Rに用いられるジアミン化合物としては、国際公開第2017/099183号に記載の芳香族ジアミン化合物、脂環式ジアミン化合物、又は脂肪族ジアミン化合物などが挙げられる。なかでも、透明性と耐熱性の両立が可能である点から、式(10)~(15)のいずれかで表される構造を与えるジアミンが好ましい。これらの芳香族ジアミン化合物、脂環式ジアミン化合物、又は脂肪族ジアミン化合物は、単独で、又は2種以上を組み合わせて使用することができる。 Examples of the diamine compound used for R 2 include aromatic diamine compounds, alicyclic diamine compounds, and aliphatic diamine compounds described in International Publication No. 2017/099183. Among them, a diamine having a structure represented by any of the formulas (10) to (15) is preferable because it is possible to achieve both transparency and heat resistance. These aromatic diamine compounds, alicyclic diamine compounds, or aliphatic diamine compounds can be used alone or in combination of two or more.
Figure JPOXMLDOC01-appb-C000010
Figure JPOXMLDOC01-appb-C000010
 また、本発明のポリイミドはトリアミン骨格を含んでもよい。トリアミンは、3つのアミノ基を有しており、3つのテトラカルボン酸二無水物成分と結合することにより分岐状の分子鎖を形成するため、機械強度に優れたポリイミド樹脂膜を得ることが可能である。このようなトリアミン骨格を有するポリイミド前駆体は、トリアミン化合物を重合成分の1つとして用いることで、得ることができる。 Further, the polyimide of the present invention may contain a triamine skeleton. Triamine has three amino groups and forms a branched molecular chain by binding with three tetracarboxylic dianhydride components, so that a polyimide resin film having excellent mechanical strength can be obtained. Is. A polyimide precursor having such a triamine skeleton can be obtained by using a triamine compound as one of the polymerization components.
 トリアミン化合物の具体例のうち、脂肪族基を有さないものとして、2,4,4’-トリアミノジフェニルエーテル(TAPE)、1,3,5-トリス(4-アミノフェノキシ)ベンゼン(1,3,5-TAPOB)、1,2,3-トリス(4-アミノフェノキシ)ベンゼン(1,2,3-TAPOB)、トリス(4-アミノフェニル)アミン、1,3,5-トリス(4-アミノフェニル)ベンゼン、3,4,4’-トリアミノジフェニルエーテル等を挙げることができる。また、脂肪族基を有するトリアミン化合物の具体例として、トリス(2-アミノエチル)アミン(TAEA)、トリス(3-アミノプロピル)アミン等を挙げることができる。なかでも、脂肪族基を有さず、熱分解しにくい成分を用いることが好ましい。つまり、2,4,4’-トリアミノジフェニルエーテル(TAPE)、1,3,5-トリス(4-アミノフェノキシ)ベンゼン(1,3,5-TAPOB)、1,2,3-トリス(4-アミノフェノキシ)ベンゼン(1,2,3-TAPOB)等を用いることが好ましい。 Among specific examples of triamine compounds, those having no aliphatic group include 2,4,4'-triaminodiphenyl ether (TAPE) and 1,3,5-tris (4-aminophenoxy) benzene (1,3). , 5-TAPOB), 1,2,3-tris (4-aminophenoxy) benzene (1,2,3-TAPOB), tris (4-aminophenyl) amine, 1,3,5-tris (4-amino) Phenyl) benzene, 3,4,4'-triaminodiphenyl ether and the like can be mentioned. Specific examples of the triamine compound having an aliphatic group include tris (2-aminoethyl) amine (TAEA) and tris (3-aminopropyl) amine. Of these, it is preferable to use a component that does not have an aliphatic group and is not easily thermally decomposed. That is, 2,4,4'-triaminodiphenyl ether (TAPE), 1,3,5-tris (4-aminophenoxy) benzene (1,3,5-TAPOB), 1,2,3-tris (4-) It is preferable to use aminophenoxy) benzene (1,2,3-TAPOB) or the like.
 また、本発明のポリイミドは、Rおよび/またはRの中に一般式(16)で表される構造を有していてもよい。ポリイミドが一般式(16)で表される構造を有することで、これを用いて得られるポリイミド樹脂膜と支持基板との間に生じる残留応力を低減することができる。そのため、支持基板上にポリイミド樹脂膜を製膜した際の基板反りを抑制することができる。 Further, the polyimide of the present invention may have a structure represented by the general formula (16) in R 1 and / or R 2. Since the polyimide has a structure represented by the general formula (16), the residual stress generated between the polyimide resin film obtained by using the polyimide resin film and the support substrate can be reduced. Therefore, it is possible to suppress the warp of the substrate when the polyimide resin film is formed on the support substrate.
Figure JPOXMLDOC01-appb-C000011
Figure JPOXMLDOC01-appb-C000011
 式(16)中、RおよびRは、各々独立に、炭素数1~20の一価の有機基を示す。xは3~200の整数を示す。 In formula (16), R 3 and R 4 each independently represent a monovalent organic group having 1 to 20 carbon atoms. x represents an integer from 3 to 200.
 RおよびRにおける炭素数1~20の一価の有機基としては、炭化水素基、アミノ基、アルコキシ基、エポキシ基等を挙げることができる。RおよびRにおける炭化水素基としては、炭素数1~20のアルキル基、炭素数3~20のシクロアルキル基、炭素数6~20のアリール基等が挙げられる。 Examples of the monovalent organic group having 1 to 20 carbon atoms in R 3 and R 4 include a hydrocarbon group, an amino group, an alkoxy group, an epoxy group and the like. Examples of the hydrocarbon group in R 3 and R 4 include an alkyl group having 1 to 20 carbon atoms, a cycloalkyl group having 3 to 20 carbon atoms, and an aryl group having 6 to 20 carbon atoms.
 炭素数1~20のアルキル基としては、炭素数1~10のアルキル基であることが好ましく、具体的には、メチル基、エチル基、プロピル基、イソプロピル基、ブチル基、イソブチル基、t-ブチル基、ペンチル基、ヘキシル基等が挙げられる。炭素数3~20のシクロアルキル基としては、炭素数3~10のシクロアルキル基であることが好ましく、具体的には、シクロペンチル基、シクロヘキシル基等が挙げられる。炭素数6~20のアリール基としては、炭素数6~12のアリール基であることが好ましく、具体的には、フェニル基、トリル基、ナフチル基等が挙げられる。 The alkyl group having 1 to 20 carbon atoms is preferably an alkyl group having 1 to 10 carbon atoms, and specifically, a methyl group, an ethyl group, a propyl group, an isopropyl group, a butyl group, an isobutyl group, t-. Examples thereof include a butyl group, a pentyl group, and a hexyl group. The cycloalkyl group having 3 to 20 carbon atoms is preferably a cycloalkyl group having 3 to 10 carbon atoms, and specific examples thereof include a cyclopentyl group and a cyclohexyl group. The aryl group having 6 to 20 carbon atoms is preferably an aryl group having 6 to 12 carbon atoms, and specific examples thereof include a phenyl group, a tolyl group, and a naphthyl group.
 RおよびRにおけるアルコキシ基としては、メトキシ基、エトキシ基、プロポキシ基、イソプロピルオキシ基、ブトキシ基、フェノキシ基、プロペニルオキシ基およびシクロヘキシルオキシ基等が挙げられる。 Examples of the alkoxy group in R 3 and R 4 include a methoxy group, an ethoxy group, a propoxy group, an isopropyloxy group, a butoxy group, a phenoxy group, a propenyloxy group and a cyclohexyloxy group.
 一般式(16)におけるRおよびRは、炭素数1~3の一価の脂肪族炭化水素基、または炭素数6~10の芳香族基であることが好ましい。なぜならば、得られるポリイミド膜が、高い耐熱性と低い残留応力を兼ね備えるからである。ここで、炭素数1~3の一価の脂肪族炭化水素は、好ましくはメチル基であり、炭素数6~10の芳香族基は、好ましくはフェニル基である。 R 3 and R 4 in the general formula (16) are preferably a monovalent aliphatic hydrocarbon group having 1 to 3 carbon atoms or an aromatic group having 6 to 10 carbon atoms. This is because the obtained polyimide film has both high heat resistance and low residual stress. Here, the monovalent aliphatic hydrocarbon having 1 to 3 carbon atoms is preferably a methyl group, and the aromatic group having 6 to 10 carbon atoms is preferably a phenyl group.
 一般式(16)中のxは、3~200の整数であり、好ましくは5~100、より好ましくは5~70、さらに好ましくは8~50の整数である。xが上記範囲内である場合、ポリイミドの残留応力を低減し、基板反りを低減することができる。また、ポリイミド膜が白濁したり、ポリイミド膜の機械強度が低下したりすることを抑制できる。 X in the general formula (16) is an integer of 3 to 200, preferably an integer of 5 to 100, more preferably 5 to 70, and even more preferably an integer of 8 to 50. When x is within the above range, the residual stress of the polyimide can be reduced and the warpage of the substrate can be reduced. In addition, it is possible to prevent the polyimide film from becoming cloudy and the mechanical strength of the polyimide film from being lowered.
 一般式(16)で表される構造を有するポリイミド前駆体樹脂は、下記一般式(17)で表されるシリコーン化合物をモノマー成分として用いることにより得られる。 The polyimide precursor resin having the structure represented by the general formula (16) can be obtained by using the silicone compound represented by the following general formula (17) as a monomer component.
Figure JPOXMLDOC01-appb-C000012
Figure JPOXMLDOC01-appb-C000012
 式(17)中、複数あるRは、それぞれ独立に、単結合または炭素数1~20の二価の有機基であり、複数あるR、RおよびRは、それぞれ独立に、炭素数1~20の一価の有機基であり、L、LおよびLは、それぞれ独立に、アミノ基、酸無水物基、カルボキシル基、ヒドロキシ基、エポキシ基、メルカプト基、及びR10からなる群より選ばれる1つの基である。R10は炭素数1~20の一価の有機基である。yは、3~200の整数であり、zは、0~197の整数である。 In the formula (17), the plurality of R 5s are independently single-bonded or divalent organic groups having 1 to 20 carbon atoms, and the plurality of R 6 , R 7 and R 8 are independently carbons. It is a monovalent organic group of numbers 1 to 20, and L 1 , L 2 and L 3 are independently amino groups, acid anhydride groups, carboxyl groups, hydroxy groups, epoxy groups, mercapto groups, and R 10 respectively. It is one group selected from the group consisting of. R 10 is a monovalent organic group having 1 to 20 carbon atoms. y is an integer of 3 to 200, and z is an integer of 0 to 197.
 上記の中で「単結合」とは、「直接結合」と同義である。つまり、LまたはLとSiとが直接結合している状態である。 In the above, "single bond" is synonymous with "direct bond". That is, it is a state in which L 1 or L 2 and Si are directly bonded.
 本発明のポリイミドは、下記式(18)で表される構造単位、(19)で表される構造単位および(20)で表される構造単位を含むポリイミド前駆体をイミド閉環させることによって得られる。 The polyimide of the present invention can be obtained by imide ring closure of a polyimide precursor containing a structural unit represented by the following formula (18), a structural unit represented by (19) and a structural unit represented by (20). ..
Figure JPOXMLDOC01-appb-C000013
Figure JPOXMLDOC01-appb-C000013
 式(18)~(20)中、Y~Yは、各々独立に、水素原子、炭素数1~10の1価の有機基または炭素数1~10の1価のアルキルシリル基を示す。Rは式(21)で表される4価のテトラカルボン酸残基を示し、式(21)中のXは、酸素原子、-C(CF-、-C(CH-または-Si(CH-を表す。R10は式(22)で表される2価のジアミン残基を示し、式(22)中のXは、直接結合または酸素原子を示す。R11は式(23)で表される2価のジアミン残基を示し、式(23)中のXは、直接結合、-SO-、-C(CH-または-C(CF-を表す。R12は式(24)で表される2価のジアミン残基を示す。 In formulas (18) to (20), Y 1 to Y 6 independently represent a hydrogen atom, a monovalent organic group having 1 to 10 carbon atoms, or a monovalent alkylsilyl group having 1 to 10 carbon atoms. .. R 9 represents a tetravalent tetracarboxylic dian residue represented by the formula (21), and X 2 in the formula (21) is an oxygen atom, -C (CF 3 ) 2- , -C (CH 3 ). 2 - or -Si (CH 3) 2 - represents a. R 10 represents a divalent diamine residue represented by the formula (22), and X 1 in the formula (22) represents a direct bond or an oxygen atom. R 11 represents a divalent diamine residue represented by the formula (23), and X 3 in the formula (23) is a direct bond, -SO 2- , -C (CH 3 ) 2- or -C ( CF 3 ) Represents 2-. R 12 represents a divalent diamine residue represented by the formula (24).
Figure JPOXMLDOC01-appb-C000014
Figure JPOXMLDOC01-appb-C000014
 イミド化の方法としては特に限定されず、熱イミド化や化学イミド化が挙げられる。中でも、ポリイミド樹脂膜の耐熱性、可視光領域での透明性の観点から、熱イミド化が好ましい。 The imidization method is not particularly limited, and examples thereof include thermal imidization and chemical imidization. Above all, thermal imidization is preferable from the viewpoint of heat resistance of the polyimide resin film and transparency in the visible light region.
 ポリアミド酸やポリアミド酸エステル、ポリアミド酸シリルエステルなどのポリイミド前駆体樹脂は、ジアミン化合物と、酸二無水物又はその誘導体との反応により合成することができる。誘導体としては、該酸二無水物のテトラカルボン酸、そのテトラカルボン酸のモノ、ジ、トリ、又はテトラエステル、酸塩化物などが挙げられ、具体的にはメチル基、エチル基、n-プロピル基、イソプロピル基、n―ブチル基、sec-ブチル基、tert-ブチル基などでエステル化された構造が挙げられる。重合反応の反応方法は、目的のポリイミド前駆体樹脂が製造できれば特に制限はなく、公知の反応方法を用いることができる。 Polyimide precursor resins such as polyamic acid, polyamic acid ester, and polyamic acid silyl ester can be synthesized by reacting a diamine compound with an acid dianhydride or a derivative thereof. Examples of the derivative include tetracarboxylic acid of the acid dianhydride, mono, di, tri, tetraester, and acid chloride of the tetracarboxylic acid, and specific examples thereof include methyl group, ethyl group, and n-propyl. Examples thereof include structures esterified with a group, an isopropyl group, an n-butyl group, a sec-butyl group, a tert-butyl group and the like. The reaction method of the polymerization reaction is not particularly limited as long as the desired polyimide precursor resin can be produced, and a known reaction method can be used.
 具体的な反応方法としては、所定量の全てのジアミン成分および溶剤を反応器に仕込み、溶解させた後、所定量の酸二無水物成分を仕込み、室温(25℃)~80℃で0.5~30時間撹拌する方法などが挙げられる。 As a specific reaction method, a predetermined amount of all diamine components and a solvent are charged into a reactor and dissolved, and then a predetermined amount of an acid dianhydride component is charged, and the temperature at room temperature (25 ° C.) to 80 ° C. is 0. Examples thereof include a method of stirring for 5 to 30 hours.
 用いる溶剤としては、特に制限はなく、公知のものを用いることができる。例えば、この溶媒として、N-メチル-2-ピロリドン、N,N-ジメチルホルムアミド、N,N-ジメチルアセトアミド、N,N-ジメチルイソブチルアミド、3-メトキシ-N,N-ジメチルプロピオンアミド、3-ブトキシ-N,N-ジメチルプロピオンアミド、γ-ブチロラクトン、乳酸エチル、1,3-ジメチル-2-イミダゾリジノン、N,N’-ジメチルプロピレンウレア、1,1,3,3-テトラメチルウレア、ジメチルスルホキシド、スルホラン、プロピレングリコールモノメチルエーテル、プロピレングリコールモノメチルエーテルアセテート、ジエチレングリコールエチルメチルエーテル、ジエチレングリコールジメチルエーテル、水や、国際公開第2017/099183号に記載の溶剤などが挙げられる。これらは、単独で、または2種以上を組み合わせて使用することができる。これらの中でも、得られるポリイミド膜の透明性の観点からγ-ブチロラクトンが好ましい。 The solvent used is not particularly limited, and known solvents can be used. For example, as this solvent, N-methyl-2-pyrrolidone, N, N-dimethylformamide, N, N-dimethylacetamide, N, N-dimethylisobutylamide, 3-methoxy-N, N-dimethylpropionamide, 3- Butoxy-N, N-dimethylpropionamide, γ-butyrolactone, ethyl lactate, 1,3-dimethyl-2-imidazolidinone, N, N'-dimethylpropylene urea, 1,1,3,3-tetramethylurea, Examples thereof include dimethylsulfoxide, sulfolane, propylene glycol monomethyl ether, propylene glycol monomethyl ether acetate, diethylene glycol ethyl methyl ether, diethylene glycol dimethyl ether, water, and the solvent described in International Publication No. 2017/099183. These can be used alone or in combination of two or more. Among these, γ-butyrolactone is preferable from the viewpoint of the transparency of the obtained polyimide film.
 ポリイミド前駆体の重量平均分子量(Mw)は、好ましくは10,000~1,000,000であり、より好ましくは30,000~500,000であり、さらに好ましくは65,000~300,000である。 The weight average molecular weight (Mw) of the polyimide precursor is preferably 10,000 to 1,000,000, more preferably 30,000 to 500,000, still more preferably 65,000 to 300,000. is there.
 ポリイミド前駆体の重量平均分子量が上記範囲内であると、得られる塗膜の平坦性を悪化させることなく、得られるポリイミドの強度を高めることが可能である。 When the weight average molecular weight of the polyimide precursor is within the above range, it is possible to increase the strength of the obtained polyimide without deteriorating the flatness of the obtained coating film.
 なお、重量平均分子量、数平均分子量および分子量分布は、TOSOH製DP-8020型GPC装置(ガードカラム:TSK guard colomn ALPHA カラム:TSK-GEL α-M、展開溶剤:N,N’-ジメチルアセトアミド(DMAc)、0.05M-LiCl、0.05%リン酸添加)を用いて測定した値である。 The weight average molecular weight, number average molecular weight and molecular weight distribution are determined by TOSOH DP-8020 type GPC device (guard column: TSK guard column ALPHA column: TSK-GEL α-M, developing solvent: N, N'-dimethylacetamide ( DMAc), 0.05M-LiCl, 0.05% phosphoric acid addition).
 ポリイミド前駆体は、分子量を好ましい範囲に調整するために、末端封止剤により両末端を封止してもよい。酸二無水物と反応する末端封止剤としては、モノアミンや一価のアルコールなどが挙げられる。また、ジアミン化合物と反応する末端封止剤としては、酸無水物、モノカルボン酸、モノ酸クロリド化合物、モノ活性エステル化合物、二炭酸エステル類、ビニルエーテル類などが挙げられる。また、末端封止剤を反応させることにより、末端基として種々の有機基を導入することができる。 Both ends of the polyimide precursor may be sealed with an end sealant in order to adjust the molecular weight to a preferable range. Examples of the terminal encapsulant that reacts with the acid dianhydride include monoamines and monohydric alcohols. Examples of the terminal encapsulant that reacts with the diamine compound include acid anhydrides, monocarboxylic acids, monoacid chloride compounds, monoactive ester compounds, dicarbonates, vinyl ethers and the like. In addition, various organic groups can be introduced as terminal groups by reacting the terminal encapsulant.
 酸無水物基末端の封止剤の導入割合は、酸二無水物成分に対して、0.1~60モル%の範囲が好ましく、特に好ましくは0.5~50モル%である。また、アミノ基末端の封止剤の導入割合は、ジアミン成分に対して、0.1~100モル%の範囲が好ましく、特に好ましくは0.5~70モル%である。複数の末端封止剤を反応させることにより、複数の異なる末端基を導入してもよい。 The introduction ratio of the encapsulant at the end of the acid anhydride group is preferably in the range of 0.1 to 60 mol%, particularly preferably 0.5 to 50 mol% with respect to the acid dianhydride component. The introduction ratio of the encapsulant at the terminal of the amino group is preferably in the range of 0.1 to 100 mol%, particularly preferably 0.5 to 70 mol% with respect to the diamine component. A plurality of different end groups may be introduced by reacting a plurality of end sealants.
 ポリイミド前駆体に導入された末端封止剤は、以下の方法で容易に検出できる。例えば、末端封止剤が導入されたポリマーを酸性溶液に溶解し、ポリマーの構成単位であるアミン成分と酸無水成分に分解し、これをガスクロマトグラフィー(GC)や、NMR測定することにより、末端封止剤を容易に検出できる。その他に、末端封止剤が導入されたポリマーを直接、熱分解ガスクロマトグラフ(PGC)や赤外スペクトル、H-NMRスペクトル測定および13C-NMRスペクトル測定でも、容易に検出可能である。 The end-capping agent introduced into the polyimide precursor can be easily detected by the following method. For example, a polymer into which an end-capping agent has been introduced is dissolved in an acidic solution, decomposed into an amine component and an acid anhydride component, which are constituent units of the polymer, and this is measured by gas chromatography (GC) or NMR. The end sealant can be easily detected. In addition, the polymer into which the terminal encapsulant has been introduced can be easily detected by direct thermal decomposition gas chromatography (PGC), infrared spectrum, 1 H-NMR spectrum measurement and 13 C-NMR spectrum measurement.
 上記方法によって得られたポリイミド前駆体をイミド化してポリイミドを製造する方法には特に制限はなく、公知の反応方法を用いることができる。具体的な反応方法としては、前述のようにして得たポリアミド前駆体溶液を100~200℃で0.5~30時間撹拌する方法などが挙げられる。 The method for producing the polyimide by imidizing the polyimide precursor obtained by the above method is not particularly limited, and a known reaction method can be used. Specific examples of the reaction method include a method of stirring the polyamide precursor solution obtained as described above at 100 to 200 ° C. for 0.5 to 30 hours.
 <ポリイミド樹脂組成物>
 本発明の実施の形態に係るポリイミドを適当な成分と混合して、ポリイミド樹脂組成物とすることができる。ポリイミド樹脂組成物に含まれていてもよい成分としては、特に限定されないが、溶剤、紫外線吸収剤、熱架橋剤、無機フィラー、界面活性剤、内部剥離剤、着色剤等が挙げられる。
<Polyimide resin composition>
The polyimide according to the embodiment of the present invention can be mixed with an appropriate component to obtain a polyimide resin composition. The components that may be contained in the polyimide resin composition are not particularly limited, and examples thereof include a solvent, an ultraviolet absorber, a heat crosslinker, an inorganic filler, a surfactant, an internal release agent, and a colorant.
 (溶剤)
 本発明の実施の形態に係るポリイミド樹脂組成物は、溶剤を含有してもよい。溶剤としては、N-メチル-2-ピロリドン、N,N-ジメチルホルムアミド、N,N-ジメチルアセトアミド、N,N-ジメチルイソブチルアミド、3-メトキシ-N,N-ジメチルプロピオンアミド、3-ブトキシ-N,N-ジメチルプロピオンアミド、γ-ブチロラクトン、乳酸エチル、1,3-ジメチル-2-イミダゾリジノン、N,N’-ジメチルプロピレンウレア、1,1,3,3-テトラメチルウレア、ジメチルスルホキシド、スルホラン、プロピレングリコールモノメチルエーテル、プロピレングリコールモノメチルエーテルアセテート、ジエチレングリコールエチルメチルエーテル、ジエチレングリコールジメチルエーテル、水や、国際公開第2017/099183号に記載の溶剤などが挙げられる。本発明の実施の形態に係るポリイミド樹脂組成物に含まれる溶剤は1種類でもよいし、複数種類であってもよい。これらの中でも、得られるポリイミドの透明性と少量の含有で前記効果が得られる観点から、γ-ブチロラクトンを含むことが好ましく、アミド系溶剤を含まないことが好ましい。
(solvent)
The polyimide resin composition according to the embodiment of the present invention may contain a solvent. As the solvent, N-methyl-2-pyrrolidone, N, N-dimethylformamide, N, N-dimethylacetamide, N, N-dimethylisobutylamide, 3-methoxy-N, N-dimethylpropionamide, 3-butoxy- N, N-dimethylpropionamide, γ-butyrolactone, ethyl lactate, 1,3-dimethyl-2-imidazolidinone, N, N'-dimethylpropylene urea, 1,1,3,3-tetramethylurea, dimethylsulfoxide , Sulfolane, propylene glycol monomethyl ether, propylene glycol monomethyl ether acetate, diethylene glycol ethyl methyl ether, diethylene glycol dimethyl ether, water, and the solvent described in International Publication No. 2017/099183. The solvent contained in the polyimide resin composition according to the embodiment of the present invention may be one kind or a plurality of kinds. Among these, γ-butyrolactone is preferably contained, and an amide solvent is preferably not contained, from the viewpoint of obtaining the above-mentioned effect with the transparency of the obtained polyimide and the inclusion of a small amount of the polyimide.
 (紫外線吸収剤)
 本発明の実施の形態に係るポリイミド樹脂組成物は、紫外線吸収剤を含有してもよい。ポリイミド樹脂組成物が紫外線吸収剤を含有することで、長期間、太陽光に晒された際に、ポリイミドの透明性や機械特性などの物性が低下してしまうことが、大きく抑制される。
(UV absorber)
The polyimide resin composition according to the embodiment of the present invention may contain an ultraviolet absorber. Since the polyimide resin composition contains an ultraviolet absorber, it is greatly suppressed that physical properties such as transparency and mechanical properties of the polyimide are deteriorated when exposed to sunlight for a long period of time.
 紫外線吸収剤としては、特に限定はなく公知のものが使用できる。透明性、非着色性の面から、ベンゾトリアゾール系化合物、ベンゾフェノン系化合物、トリアジン系化合物が好ましく用いられる。 The ultraviolet absorber is not particularly limited and a known one can be used. Benzotriazole-based compounds, benzophenone-based compounds, and triazine-based compounds are preferably used from the viewpoint of transparency and non-coloring property.
 紫外線吸収剤は、分子量が1000以下の化合物であることが好ましい。紫外線吸収剤が分子量1000以下の低分子化合物であることで、ポリイミド樹脂膜のヘイズを増加させることなく、樹脂膜の耐光性を向上させることができる。 The ultraviolet absorber is preferably a compound having a molecular weight of 1000 or less. When the ultraviolet absorber is a low molecular weight compound having a molecular weight of 1000 or less, the light resistance of the resin film can be improved without increasing the haze of the polyimide resin film.
 ポリイミド樹脂組成物における紫外線吸収剤の含有量は、ポリイミド樹脂100重量部に対し、0.5~5重量部であることが好ましい。ポリイミド樹脂組成物が上記範囲内で紫外線吸収剤を含有することにより、樹脂の透明性を損なうことなく、耐光性(光、特に紫外光に対する耐性)を向上させることができる。 The content of the ultraviolet absorber in the polyimide resin composition is preferably 0.5 to 5 parts by weight with respect to 100 parts by weight of the polyimide resin. When the polyimide resin composition contains an ultraviolet absorber within the above range, the light resistance (resistance to light, particularly ultraviolet light) can be improved without impairing the transparency of the resin.
 (熱架橋剤)
 本発明の実施の形態に係るポリイミド樹脂組成物は、熱架橋剤を含有していてもよい。熱架橋剤としては、エポキシ化合物や、アルコキシメチル基またはメチロール基を少なくとも2つ有する化合物が好ましい。これらの基を少なくとも2つ有することで、樹脂および同種分子と縮合反応して架橋構造体が形成され、加熱処理後の硬化膜の機械強度や耐薬品性を向上させることができる。
(Thermal crosslinker)
The polyimide resin composition according to the embodiment of the present invention may contain a thermal cross-linking agent. As the thermal cross-linking agent, an epoxy compound or a compound having at least two alkoxymethyl groups or methylol groups is preferable. By having at least two of these groups, a crosslinked structure is formed by a condensation reaction with a resin and a homologous molecule, and the mechanical strength and chemical resistance of the cured film after heat treatment can be improved.
 ポリイミド樹脂組成物における熱架橋剤の含有量は、ポリイミド樹脂100重量部に対し、0.01~10重量部であることが好ましい。ポリイミド樹脂組成物が上記範囲内で熱架橋剤を含有することにより、樹脂の透明性を損なうことなく、樹脂の機械特性や耐薬品性を向上させることが可能である。 The content of the heat-crosslinking agent in the polyimide resin composition is preferably 0.01 to 10 parts by weight with respect to 100 parts by weight of the polyimide resin. When the polyimide resin composition contains a thermal cross-linking agent within the above range, it is possible to improve the mechanical properties and chemical resistance of the resin without impairing the transparency of the resin.
 (カップリング剤)
 本発明の実施の形態に係るポリイミド樹脂組成物は、基材との接着性向上のため、シランカップリング剤、チタンカップリング剤等のカップリング剤を添加することができる。ポリイミド樹脂組成物におけるカップリング剤の含有量は、ポリイミド樹脂100重量部に対し、0.1~5重量部であることが好ましい。
(Coupling agent)
To the polyimide resin composition according to the embodiment of the present invention, a coupling agent such as a silane coupling agent or a titanium coupling agent can be added in order to improve the adhesiveness with the base material. The content of the coupling agent in the polyimide resin composition is preferably 0.1 to 5 parts by weight with respect to 100 parts by weight of the polyimide resin.
 (無機フィラー)
 本発明の実施の形態に係るポリイミド樹脂組成物は、無機フィラーを含有していてもよい。無機フィラーとしては、シリカ微粒子、アルミナ微粒子、チタニア微粒子、ジルコニア微粒子などが挙げられる。無機フィラーの形状は特に限定されず、球状、楕円形状、偏平状、ロッド状、繊維状などが挙げられる。
(Inorganic filler)
The polyimide resin composition according to the embodiment of the present invention may contain an inorganic filler. Examples of the inorganic filler include silica fine particles, alumina fine particles, titania fine particles, and zirconia fine particles. The shape of the inorganic filler is not particularly limited, and examples thereof include a spherical shape, an elliptical shape, a flat shape, a rod shape, and a fibrous shape.
 無機フィラーは、光の散乱を防ぐため、粒径が小さいことが好ましい。具体的には、無機フィラーの平均粒径は0.5~100nmであることが好ましく、0.5~30nmの範囲がより好ましい。 The inorganic filler preferably has a small particle size in order to prevent light scattering. Specifically, the average particle size of the inorganic filler is preferably 0.5 to 100 nm, more preferably 0.5 to 30 nm.
 ポリイミド樹脂組成物における無機フィラーの含有量は、ポリイミド樹脂100重量部に対し、1~100重量部であることが好ましい。ポリイミド樹脂組成物が、上記範囲内で無機フィラーを含有することによって、可撓性を損なわず、ポリイミド樹脂のCTEや複屈折を低下させることが可能である。 The content of the inorganic filler in the polyimide resin composition is preferably 1 to 100 parts by weight with respect to 100 parts by weight of the polyimide resin. By containing the inorganic filler within the above range, the polyimide resin composition can reduce the CTE and birefringence of the polyimide resin without impairing the flexibility.
 (界面活性剤)
 本発明の実施の形態に係るポリイミド樹脂組成物は、界面活性剤を含有することができる。ポリイミド樹脂組成物が界面活性剤を含有することで、ポリイミド樹脂組成物を塗布する際の膜厚均一性を向上することができる。界面活性剤としては、フロラード(商品名、住友3M株式会社製)、メガファック(商品名、DIC株式会社製)、スルフロン(商品名、旭硝子株式会社製)等のフッ素系界面活性剤があげられる。また、KP341(商品名、信越化学工業株式会社製)、DBE(商品名、チッソ株式会社製)、ポリフロー、グラノール(商品名、共栄社化学株式会社製)、BYK(ビック・ケミー株式会社製)等の、有機シロキサン界面活性剤が挙げられる。さらに、ポリフロー(商品名、共栄社化学株式会社製)等のアクリル重合物界面活性剤が挙げられる。
(Surfactant)
The polyimide resin composition according to the embodiment of the present invention can contain a surfactant. When the polyimide resin composition contains a surfactant, the film thickness uniformity when the polyimide resin composition is applied can be improved. Examples of the surfactant include fluorosurfactants such as Florard (trade name, manufactured by Sumitomo 3M Ltd.), Megafuck (trade name, manufactured by DIC Corporation), and Sulflon (trade name, manufactured by Asahi Glass Co., Ltd.). .. In addition, KP341 (trade name, manufactured by Shin-Etsu Chemical Co., Ltd.), DBE (trade name, manufactured by Chisso Co., Ltd.), Polyflow, Granol (trade name, manufactured by Kyoeisha Chemical Co., Ltd.), BYK (manufactured by BIC Chemie Co., Ltd.), etc. Includes organic siloxane surfactants. Further, acrylic polymer surfactants such as Polyflow (trade name, manufactured by Kyoeisha Chemical Co., Ltd.) can be mentioned.
 ポリイミド樹脂組成物における界面活性剤の含有量は、ポリイミド樹脂100重量部に対し、0.01~10重量部であることが好ましい。 The content of the surfactant in the polyimide resin composition is preferably 0.01 to 10 parts by weight with respect to 100 parts by weight of the polyimide resin.
 (内部離型剤)
 本発明の実施の形態に係るポリイミド樹脂組成物は、内部離型剤を含有することができる。ポリイミド樹脂組成物が内部離型剤を含有することで、支持基板からのポリイミド樹脂膜の剥離性を向上させることができる。内部離型剤としては、長鎖脂肪酸等が挙げられる。ポリイミド樹脂組成物における内部離型剤の含有量は、ポリイミド樹脂100重量部に対し、0.1~5重量部であることが好ましい。
(Internal mold release agent)
The polyimide resin composition according to the embodiment of the present invention can contain an internal mold release agent. When the polyimide resin composition contains an internal mold release agent, the peelability of the polyimide resin film from the support substrate can be improved. Examples of the internal release agent include long-chain fatty acids. The content of the internal mold release agent in the polyimide resin composition is preferably 0.1 to 5 parts by weight with respect to 100 parts by weight of the polyimide resin.
 (着色剤)
 本発明の実施の形態に係るポリイミド樹脂組成物は、着色剤を含有することができる。ポリイミド樹脂組成物が着色剤を添加することで、ポリイミド樹脂膜の色味を調節することができる。
(Colorant)
The polyimide resin composition according to the embodiment of the present invention can contain a colorant. By adding a colorant to the polyimide resin composition, the color of the polyimide resin film can be adjusted.
 着色剤としては、染料、有機顔料、無機顔料等を用いることができるが、耐熱性、透明性の面から有機顔料が好ましい。中でも透明性が高く、耐光性、耐熱性、耐薬品性に優れたものが好ましい。 As the colorant, dyes, organic pigments, inorganic pigments and the like can be used, but organic pigments are preferable from the viewpoint of heat resistance and transparency. Among them, those having high transparency and excellent light resistance, heat resistance, and chemical resistance are preferable.
 <ポリイミド樹脂膜>
 本発明の実施の形態に係るポリイミド樹脂膜は、上記ポリイミドを含むものである。これは、上記ポリイミドまたはポリイミド樹脂組成物を膜状に成形して得ることができる。
<Polyimide resin film>
The polyimide resin film according to the embodiment of the present invention contains the above-mentioned polyimide. This can be obtained by molding the polyimide or polyimide resin composition into a film.
 本発明の実施の形態に係るポリイミド樹脂膜は、ポリイミド樹脂膜の重量に対してγ-ブチロラクトンを1ppm以上1000ppm以下含むことが好ましく、5ppm以上500ppm以下含むことがより好ましく、10ppm以上300ppm以上含むことがさらに好ましい。ポリイミド樹脂膜がγ-ブチロラクトンを上記比率で含むことで、ポリイミド樹脂膜の上に形成した回路や素子の特性を悪化させることなく、支持基板からの機械剥離性を向上させることができる。加えて、ポリイミド樹脂膜とその上に形成した回路や素子との界面に発生する応力を緩和することができる。そのため、ポリイミド樹脂膜の上に回路や素子が積層された積層体を折り曲げた際の耐クラック性を向上させることができる。 The polyimide resin film according to the embodiment of the present invention preferably contains γ-butyrolactone at 1 ppm or more and 1000 ppm or less, more preferably 5 ppm or more and 500 ppm or less, and 10 ppm or more and 300 ppm or more with respect to the weight of the polyimide resin film. Is even more preferable. When the polyimide resin film contains γ-butyrolactone in the above ratio, the mechanical peelability from the support substrate can be improved without deteriorating the characteristics of the circuit or element formed on the polyimide resin film. In addition, the stress generated at the interface between the polyimide resin film and the circuit or element formed on the polyimide resin film can be relaxed. Therefore, it is possible to improve the crack resistance when the laminated body in which the circuit or the element is laminated on the polyimide resin film is bent.
 ポリイミド樹脂膜の重量に対してγ-ブチロラクトンを1ppm以上1000ppm以下含むポリイミド樹脂膜を得る方法として、例えば溶剤としてγ-ブチロラクトンを用いてポリイミド前駆体樹脂溶液を作成し、それを支持基材に塗布して、240℃から290℃の範囲で45~180分加熱して熱イミド化する方法等が挙げられる。 As a method for obtaining a polyimide resin film containing 1 ppm or more and 1000 ppm or less of γ-butyrolactone with respect to the weight of the polyimide resin film, for example, a polyimide precursor resin solution is prepared using γ-butyrolactone as a solvent and applied to a supporting base material. Then, a method of thermally imidizing by heating in the range of 240 ° C. to 290 ° C. for 45 to 180 minutes can be mentioned.
 また、本発明の実施の形態に係るポリイミド樹脂膜はアミド系溶剤を含まないことが好ましい。ポリイミド樹脂膜がアミド系溶剤を含まないことにより熱イミド化時の黄変を抑制し、透明性を向上させることが可能である。含まないことが好ましいアミド系溶剤として、例えばN-メチル-2-ピロリドン、N,N-ジメチルホルムアミド、N,N-ジメチルアセトアミド、N,N-ジメチルイソブチルアミド、3-メトキシ-N,N-ジメチルプロピオンアミド、3-ブトキシ-N,N-ジメチルプロピオンアミド、1,3-ジメチル-2-イミダゾリジノン、N,N’-ジメチルプロピレンウレア、1,1,3,3-テトラメチルウレアなどが挙げられる。 Further, it is preferable that the polyimide resin film according to the embodiment of the present invention does not contain an amide solvent. Since the polyimide resin film does not contain an amide solvent, it is possible to suppress yellowing during thermal imidization and improve transparency. Examples of amide-based solvents preferably not contained include N-methyl-2-pyrrolidone, N, N-dimethylformamide, N, N-dimethylacetamide, N, N-dimethylisobutyramide, 3-methoxy-N, N-dimethyl. Propionamide, 3-butoxy-N, N-dimethylpropionamide, 1,3-dimethyl-2-imidazolidinone, N, N'-dimethylpropyleneurea, 1,1,3,3-tetramethylurea, etc. Be done.
 なお、本発明において、ポリイミド樹脂膜に含まれる溶剤の含有量は、短冊状にカットしたポリイミド樹脂膜を加熱容器に入れて加熱し、捕集したガスを熱脱離GC/MSによって測定した値である。本発明の実施の形態に係るポリイミド樹脂膜は、上記測定方法によって測定されたγ-ブチロラクトンの含有量が1ppm以上1000ppm以下であることが好ましく、アミド系溶剤の含有量が検出限界以下(ポリイミド樹脂膜の重量に対して1ppm未満)であることが好ましい。 In the present invention, the content of the solvent contained in the polyimide resin film is a value measured by heat-desorbing GC / MS of the collected gas by putting the polyimide resin film cut into strips into a heating container and heating it. Is. The polyimide resin film according to the embodiment of the present invention preferably has a γ-butyrolactone content of 1 ppm or more and 1000 ppm or less as measured by the above measuring method, and the content of the amide solvent is not more than the detection limit (polyimide resin). It is preferably less than 1 ppm based on the weight of the film).
 本発明の実施の形態に係るポリイミド樹脂膜のガラス転移温度(Tg)は、好ましくは220℃以上250℃以下であり、更に好ましくは225℃以上245℃以下である。ポリイミド樹脂膜のTgが220℃以上であることによって、デバイス作成時の変形を抑制することができる。また、ポリイミド樹脂膜のTgが250℃以下であることにより残留応力の低減が可能となり、反りを抑制することができる。ここでいう「反り」とは、目視により判断される膜と支持基板からなる積層体の丸まりの程度をいう。「残留応力」とは、樹脂組成物をガラス基板等の基板上に塗布して膜を形成した後の膜内部に残っている応力のことをいい、膜に生じ得る「反り」の目安となる。具体的には、下記実施例に記載の方法で測定することができる。 The glass transition temperature (Tg) of the polyimide resin film according to the embodiment of the present invention is preferably 220 ° C. or higher and 250 ° C. or lower, and more preferably 225 ° C. or higher and 245 ° C. or lower. When the Tg of the polyimide resin film is 220 ° C. or higher, deformation at the time of device production can be suppressed. Further, when the Tg of the polyimide resin film is 250 ° C. or lower, the residual stress can be reduced and the warp can be suppressed. The term "warp" as used herein refers to the degree of rounding of a laminate composed of a film and a support substrate, which is visually determined. "Residual stress" refers to the stress remaining inside the film after the resin composition is applied onto a substrate such as a glass substrate to form the film, and is a measure of the "warp" that can occur in the film. .. Specifically, it can be measured by the method described in the following examples.
 以下では、本発明の実施の形態に係るポリイミドまたはその組成物を用いてポリイミド樹脂膜を製造する方法について説明する。 Hereinafter, a method for producing a polyimide resin film using the polyimide or the composition thereof according to the embodiment of the present invention will be described.
 上記ポリイミド前駆体の樹脂組成物、またはポリイミド樹脂組成物を基板上に塗布することにより、ポリイミド前駆体、またはポリイミド樹脂の塗膜が形成される。このポリイミド前駆体、またはポリイミド樹脂の樹脂組成物を基板上に塗布して塗膜を形成する方法としては、ロールコート法、スピンコート法、スリットコート法、およびドクターブレード、コーターなどを用いて塗布する方法等が挙げられる。なお、塗膜形成工程では、塗布の繰り返しにより、塗膜の厚みや表面平滑性などを制御してもよい。中でも、塗膜の表面平滑性および膜厚均一性の観点から、スリットダイコート法が好ましい。 By applying the above-mentioned resin composition of the polyimide precursor or the polyimide resin composition on the substrate, a coating film of the polyimide precursor or the polyimide resin is formed. As a method of applying the polyimide precursor or the resin composition of the polyimide resin on the substrate to form a coating film, it is applied by using a roll coating method, a spin coating method, a slit coating method, a doctor blade, a coater, or the like. The method of doing this can be mentioned. In the coating film forming step, the thickness and surface smoothness of the coating film may be controlled by repeating the coating. Above all, the slit die coating method is preferable from the viewpoint of surface smoothness and film thickness uniformity of the coating film.
 塗膜の厚さは、所望の用途に応じて適宜選択され、特に限定されないが、例えば1~500μmであり、好ましくは2~250μmであり、特に好ましくは5~125μmである。基板としては、ポリエチレンテレフタレート(PET)フィルム、ポリエチレンナフタレート(PEN)フィルム、ポリブチレンテレフタレート(PBT)フィルム、シリコンウエハ、ガラスウエハ、オキサイドウエハ、ガラス基板、Cu基板およびSUS板などが挙げられる。中でも、表面平滑性、加熱時の寸法安定性の観点から、ガラス基板が好ましい。ガラス基板を構成するガラスとしては、寸法安定性の観点から、無アルカリガラスが特に好ましい。 The thickness of the coating film is appropriately selected according to the desired application and is not particularly limited, but is, for example, 1 to 500 μm, preferably 2 to 250 μm, and particularly preferably 5 to 125 μm. Examples of the substrate include polyethylene terephthalate (PET) film, polyethylene naphthalate (PEN) film, polybutylene terephthalate (PBT) film, silicon wafer, glass wafer, oxide wafer, glass substrate, Cu substrate and SUS plate. Of these, a glass substrate is preferable from the viewpoint of surface smoothness and dimensional stability during heating. As the glass constituting the glass substrate, non-alkali glass is particularly preferable from the viewpoint of dimensional stability.
 ついで、基板上の塗膜から溶媒を蒸発させることにより、この塗膜を乾燥する。具体的には、この乾燥工程では、この塗膜を真空乾燥や加熱乾燥すればよいが、得られるポリイミド樹脂膜の透明性を考慮すると、白濁なく溶媒を蒸発させることが好ましい。乾燥工程における塗膜の乾燥には、ホットプレート、オーブン、赤外線、真空チャンバーなどを使用する。 Then, the coating film is dried by evaporating the solvent from the coating film on the substrate. Specifically, in this drying step, the coating film may be vacuum-dried or heat-dried, but in consideration of the transparency of the obtained polyimide resin film, it is preferable to evaporate the solvent without white turbidity. A hot plate, an oven, infrared rays, a vacuum chamber, or the like is used to dry the coating film in the drying step.
 乾燥のための加熱の温度は、塗膜等の被加熱体の種類や目的により様々であり、室温から170℃の範囲で1分から数時間行うことが好ましい。室温とは、通常20~30℃であるが、好ましくは25℃である。さらに、乾燥工程は、同一の条件、又は異なる条件で複数回行ってもよい。 The heating temperature for drying varies depending on the type and purpose of the object to be heated such as a coating film, and it is preferable to carry out the heating in the range of room temperature to 170 ° C. for 1 minute to several hours. Room temperature is usually 20 to 30 ° C, but is preferably 25 ° C. Further, the drying step may be performed a plurality of times under the same conditions or different conditions.
 ポリイミド前駆体樹脂の場合、その後、加熱工程を行うことにより、ポリイミド前駆体はイミド化され、基板上にポリイミド樹脂膜が形成される。ポリイミド樹脂の場合、すでにイミド化されているため加熱工程を行わなくても良いが、加熱工程を行うことで、得られるポリイミド樹脂膜の機械強度や耐熱性の向上が可能であるため、加熱工程を行うことが好ましい。加熱工程の雰囲気は、特に限定されず、空気(酸素濃度:約21体積%)でも窒素やアルゴン等の不活性ガスでもよい。なかでも、大気雰囲気下で加熱を行うことでポリイミド樹脂膜の表面が一部酸化されてポリイミド樹脂膜とポリイミド樹脂膜上に形成した回路や素子との密着力が向上し、ポリイミドに回路や素子が積層された積層体を折り曲げた際の耐クラック性を向上させることができるため、加熱工程の雰囲気は空気が好ましい。 In the case of the polyimide precursor resin, the polyimide precursor is imidized by performing a heating step thereafter, and a polyimide resin film is formed on the substrate. In the case of the polyimide resin, since it is already imidized, it is not necessary to perform the heating step, but by performing the heating step, the mechanical strength and heat resistance of the obtained polyimide resin film can be improved, so that the heating step is performed. Is preferable. The atmosphere of the heating step is not particularly limited, and may be air (oxygen concentration: about 21% by volume) or an inert gas such as nitrogen or argon. In particular, by heating in an air atmosphere, the surface of the polyimide resin film is partially oxidized to improve the adhesion between the polyimide resin film and the circuits and elements formed on the polyimide resin film, and the polyimide resin film and elements The atmosphere of the heating step is preferably air because the crack resistance when the laminate is bent can be improved.
 また、加熱工程のための加熱温度に到達するまでに要する時間は、特に限定されず、製造ラインの加熱形式にあわせた昇温方法を選択することができる。例えば、オーブン内にて、基材上に形成されたポリイミド前駆体、またはポリイミド樹脂の塗膜を、室温から180℃以上550℃以下の加熱温度まで5~120分かけて昇温しながら加熱してもよい。あるいは、予め180℃以上550℃以下の範囲に昇温されたオーブン内に、基材上に形成されたポリイミド前駆体、またはポリイミド樹脂の塗膜をそのまま投入して加熱してもよい。また、当該ポリイミド前駆体、またはポリイミド樹脂の塗膜は、必要に応じて、減圧下にて加熱してもよい。 Further, the time required to reach the heating temperature for the heating step is not particularly limited, and a heating method can be selected according to the heating type of the production line. For example, in an oven, a polyimide precursor or a polyimide resin coating film formed on a substrate is heated from room temperature to a heating temperature of 180 ° C. or higher and 550 ° C. or lower over 5 to 120 minutes while raising the temperature. You may. Alternatively, the polyimide precursor or the polyimide resin coating film formed on the substrate may be directly put into an oven whose temperature has been raised to 180 ° C. or higher and 550 ° C. or lower in advance and heated. Further, the polyimide precursor or the polyimide resin coating film may be heated under reduced pressure, if necessary.
 本発明の実施の形態に係るポリイミド樹脂膜を得るには、ポリイミド前駆体、またはポリイミド樹脂の塗膜を、240℃以上290℃以下の範囲で60分以上加熱することが好ましい。上記条件で加熱を行うことで、透明性、機械強度が共に良好なポリイミド樹脂膜を得ることが可能である。 In order to obtain the polyimide resin film according to the embodiment of the present invention, it is preferable to heat the polyimide precursor or the polyimide resin coating film in the range of 240 ° C. or higher and 290 ° C. or lower for 60 minutes or longer. By heating under the above conditions, it is possible to obtain a polyimide resin film having good transparency and mechanical strength.
 以上の各工程を経て得られたポリイミド樹脂膜は、基板から剥離して用いることができるし、あるいは剥離せずにそのまま用いることもできる。剥離の方法としては特に制限はなく公知の方法を用いることができるが、一例としてフッ酸などの薬液に浸漬する方法や、レーザーをポリイミド樹脂被膜と基板との界面に照射する方法(レーザー剥離)や端部に片刃で切れ込みを入れ、端から持ち上げるようにして剥離を行う方法(機械剥離)などが挙げられる。本発明のポリイミド樹脂膜はレーザー剥離性および機械剥離性ともに優れるため、レーザー剥離または機械剥離のいずれかの方法で剥離を行うことが好ましい。 The polyimide resin film obtained through each of the above steps can be used by peeling from the substrate, or can be used as it is without peeling. The peeling method is not particularly limited and a known method can be used. For example, a method of immersing in a chemical solution such as hydrofluoric acid or a method of irradiating the interface between the polyimide resin film and the substrate with a laser (laser peeling). There is a method of making a notch in the end with a single blade and lifting it from the end to peel it (mechanical peeling). Since the polyimide resin film of the present invention is excellent in both laser peeling property and mechanical peeling property, it is preferable to perform peeling by either laser peeling method or mechanical peeling method.
 上述のようにして得られるポリイミド樹脂膜の厚みは、所望の用途に応じて適宜選択されるが、好ましくは1~100μmであり、より好ましくは2~30μmであり、特に好ましくは3~20μmである。 The thickness of the polyimide resin film obtained as described above is appropriately selected depending on the desired application, but is preferably 1 to 100 μm, more preferably 2 to 30 μm, and particularly preferably 3 to 20 μm. is there.
 <積層体>
 本発明の実施の形態に係る積層体は、上記ポリイミド樹脂膜上に絶縁層および/または配線層を備えるものである。
<Laminated body>
The laminate according to the embodiment of the present invention includes an insulating layer and / or a wiring layer on the polyimide resin film.
 (絶縁層)
 絶縁層はアルカリ可溶性樹脂を含むことが好ましい。本発明におけるアルカリ可溶性とは、0.045質量%の水酸化カリウム水溶液(100g)に対して、25℃で0.1g以上溶解することをいう。アルカリ可溶性樹脂から形成される絶縁層は、フォトリソグラフィーによりパターン加工することができ、それにより導電層の導通のための開口部を形成できるため、好ましい。また、本発明の実施の形態に係る積層体は、(メタ)アクリル系共重合体を含むアルカリ可溶性樹脂から形成される絶縁層を有することが好ましい。何故ならば、アルカリ可溶性樹脂中の(メタ)アクリル系共重合体により、絶縁層の柔軟性が高まるからである。さらに、本発明の実施の形態に係る導電層付きフィルムは、導電層上に、下記の構造式(25)で表される構造を2つ以上有するカルド系樹脂を含むアルカリ可溶性樹脂から形成される絶縁層を有することが好ましい。何故ならば、カルド系樹脂が絶縁層の疎水性を高め、これにより、絶縁層の絶縁性を向上させることができるからである。
(Insulation layer)
The insulating layer preferably contains an alkali-soluble resin. Alkali-soluble in the present invention means that 0.1 g or more is dissolved at 25 ° C. in a 0.045 mass% potassium hydroxide aqueous solution (100 g). The insulating layer formed from the alkali-soluble resin is preferable because it can be patterned by photolithography, thereby forming an opening for conduction of the conductive layer. Further, the laminate according to the embodiment of the present invention preferably has an insulating layer formed of an alkali-soluble resin containing a (meth) acrylic copolymer. This is because the (meth) acrylic copolymer in the alkali-soluble resin enhances the flexibility of the insulating layer. Further, the film with a conductive layer according to the embodiment of the present invention is formed on the conductive layer from an alkali-soluble resin containing a cardo-based resin having two or more structures represented by the following structural formula (25). It is preferable to have an insulating layer. This is because the cardo-based resin enhances the hydrophobicity of the insulating layer, whereby the insulating property of the insulating layer can be improved.
Figure JPOXMLDOC01-appb-C000015
Figure JPOXMLDOC01-appb-C000015
 また、構造式(25)で表される構造を2つ以上有するカルド系樹脂としては、市販品を好ましく用いることができる。このカルド系樹脂の市販品としては、例えば、「WR-301(商品名)」(ADEKA社製)、「V-259ME(商品名)」(新日鉄住金化学社製)、「オグゾールCR-TR1(商品名)」、「オグゾールCR-TR2(商品名)」、「オグゾールCR-TR3(商品名)」、「オグゾールCR-TR4(商品名)」、「オグゾールCR-TR5(商品名)」、「オグゾールCR-TR6(商品名)」(以上、大阪ガスケミカル社製)等が挙げられる。 Further, as the cardo-based resin having two or more structures represented by the structural formula (25), a commercially available product can be preferably used. Examples of commercially available products of this cardo-based resin include "WR-301 (trade name)" (manufactured by ADEKA), "V-259ME (trade name)" (manufactured by Nippon Steel & Sumitomo Metal Chemical Co., Ltd.), and "Oxol CR-TR1 (manufactured by Nippon Steel & Sumitomo Metal Corporation). "Product name", "Ogsol CR-TR2 (product name)", "Ogsol CR-TR3 (product name)", "Ogsol CR-TR4 (product name)", "Ogsol CR-TR5 (product name)", " Exol CR-TR6 (trade name) ”(above, manufactured by Osaka Gas Chemical Co., Ltd.) and the like can be mentioned.
 (メタ)アクリル系共重合体およびカルド系樹脂の重量平均分子量は、それぞれ、塗布特性を向上させるという観点から、2,000以上であることが好ましい。また、これらの重量平均分子量は、それぞれ、絶縁層のパターン形成における現像液への絶縁層の溶解性を向上させるという観点から、200,000以下であることが好ましい。ここで、重量平均分子量は、GPCで測定されるポリスチレン換算値を言う。 The weight average molecular weights of the (meth) acrylic copolymer and the cardo-based resin are preferably 2,000 or more from the viewpoint of improving the coating characteristics. Further, each of these weight average molecular weights is preferably 200,000 or less from the viewpoint of improving the solubility of the insulating layer in the developing solution in the pattern formation of the insulating layer. Here, the weight average molecular weight refers to a polystyrene-equivalent value measured by GPC.
 また、絶縁層が(メタ)アクリル系共重合体およびカルド系樹脂をともに含有する場合、(メタ)アクリル系共重合体の重量平均分子量(Mw(A1))と、カルド系樹脂の重量平均分子量(Mw(A2))との比(Mw(A2)/Mw(A1))は、層分離を抑制して均一な硬化膜を形成するという観点から、0.14以上であることが好ましい。一方、この比(Mw(A2)/Mw(A1))は、層分離を抑制して均一な硬化膜を形成するという観点から、1.5以下であることが好ましく、1.0以下であることがより好ましい。 When the insulating layer contains both the (meth) acrylic copolymer and the cardo-based resin, the weight average molecular weight of the (meth) acrylic copolymer (Mw (A1)) and the weight average molecular weight of the cardo-based resin The ratio (Mw (A2) / Mw (A1)) to (Mw (A2)) is preferably 0.14 or more from the viewpoint of suppressing layer separation and forming a uniform cured film. On the other hand, this ratio (Mw (A2) / Mw (A1)) is preferably 1.5 or less, preferably 1.0 or less, from the viewpoint of suppressing layer separation and forming a uniform cured film. Is more preferable.
 本発明における絶縁層は、アルカリ可溶性樹脂を含む絶縁性組成物を用いて、形成することができる。この絶縁性組成物に含まれるアルカリ可溶性樹脂の含有量は、所望の膜厚や用途により任意に選択することができるが、固形分の100質量%に対して、10質量%以上、70質量%以下とすることが一般的である。 The insulating layer in the present invention can be formed by using an insulating composition containing an alkali-soluble resin. The content of the alkali-soluble resin contained in this insulating composition can be arbitrarily selected depending on the desired film thickness and application, but is 10% by mass or more and 70% by mass with respect to 100% by mass of the solid content. It is common to do the following.
 上記の絶縁性組成物は、酸化防止剤を含有してもよい。上記の絶縁性組成物が酸化防止剤を含有することで、絶縁層の着色をより低減することができるとともに、絶縁層の耐侯性を向上させることができる。酸化防止剤の種類としては、ベンゾトリアゾール、有機リン、ヒンダードフェノール構造を有する化合物、ヒンダードアミン構造を有する化合物等が挙げられる。これらの中でも、フェノール性水酸基を有する化合物および/またはアミノ基を有する化合物を含有することで、絶縁層と下地層との密着力が向上し、折り曲げ時の剥がれが抑制されるため好ましい。 The above insulating composition may contain an antioxidant. When the above-mentioned insulating composition contains an antioxidant, the coloring of the insulating layer can be further reduced and the weather resistance of the insulating layer can be improved. Examples of the type of antioxidant include benzotriazole, organic phosphorus, a compound having a hindered phenol structure, a compound having a hindered amine structure, and the like. Among these, by containing a compound having a phenolic hydroxyl group and / or a compound having an amino group, the adhesion between the insulating layer and the underlying layer is improved, and peeling at the time of bending is suppressed, which is preferable.
 ベンゾトリアゾール、有機リン、ヒンダードフェノール構造を有する化合物としては、具体的には特開2019-101440号に記載の物が挙げられるが、これに限定されない。ヒンダードアミン構造を有する化合物としては、具体的には国際公開第2015/012228号に記載の物が挙げられるが、これに限定されない。 Specific examples of the compound having a benzotriazole, an organic phosphorus, and a hindered phenol structure include, but are not limited to, those described in JP-A-2019-101440. Specific examples of the compound having a hindered amine structure include, but are not limited to, those described in International Publication No. 2015/012228.
 酸化防止剤は、単独で、あるいは2種以上組み合わせて含有することができる。絶縁層中の酸化防止剤の含有量は、固形分の100質量部に対して、0.1質量部以上、5質量部以下とすることが好ましい。 The antioxidant can be contained alone or in combination of two or more. The content of the antioxidant in the insulating layer is preferably 0.1 part by mass or more and 5 parts by mass or less with respect to 100 parts by mass of the solid content.
 上記の絶縁性組成物は、さらに必要に応じて、多官能モノマー、硬化剤、紫外線吸収剤、重合禁止剤、密着改良剤、溶剤、界面活性剤、溶解抑止剤、安定剤、消泡剤、着色剤等の添加剤を含有することもできる。 The above insulating composition further comprises a polyfunctional monomer, a curing agent, an ultraviolet absorber, a polymerization inhibitor, an adhesion improver, a solvent, a surfactant, a dissolution inhibitor, a stabilizer, a defoaming agent, and the like. It can also contain additives such as colorants.
 (導電層)
 導電層は、線幅が0.1~9μmである網目構造を有することが好ましい。線幅が0.1~9μmである網目構造を導電層が有することにより、導電層の導電性および視認性を向上させることができる。導電層の網目構造の線幅は、0.5μm以上であることがより好ましく、1μm以上であることがさらに好ましい。一方、導電層の網目構造の線幅は、7μm以下であることがより好ましく、6μm以下であることがさらに好ましい。
(Conductive layer)
The conductive layer preferably has a network structure having a line width of 0.1 to 9 μm. When the conductive layer has a network structure having a line width of 0.1 to 9 μm, the conductivity and visibility of the conductive layer can be improved. The line width of the network structure of the conductive layer is more preferably 0.5 μm or more, and further preferably 1 μm or more. On the other hand, the line width of the network structure of the conductive layer is more preferably 7 μm or less, and further preferably 6 μm or less.
 また、導電層の膜厚は、0.1μm以上であることが好ましく、0.2μm以上であることがより好ましく、0.3μm以上であることがさらに好ましい。一方、導電層の膜厚は、5μm以下であることが好ましく、3μm以下であることがより好ましく、1μm以下であることがさらに好ましい。 Further, the film thickness of the conductive layer is preferably 0.1 μm or more, more preferably 0.2 μm or more, and further preferably 0.3 μm or more. On the other hand, the film thickness of the conductive layer is preferably 5 μm or less, more preferably 3 μm or less, and further preferably 1 μm or less.
 導電層に含まれる導電性粒子としては、例えば国際公開第2018/084067号に記載のものが挙げられ、銀粒子がより好ましい。 Examples of the conductive particles contained in the conductive layer include those described in International Publication No. 2018/084067, and silver particles are more preferable.
 導電性粒子の1次粒子径は、所望の導電性を有する微細な導電パターンを形成するため、10~200nmであることが好ましく、10~60nmであることがより好ましい。ここで、導電性粒子の1次粒子径は、導電層の断面を走査型電子顕微鏡により観察して無作為に100個の粒子を選択し、各粒子の1次粒子径を測定して、それらの算術平均値をとることにより算出する。なお、各粒子の1次粒子の粒子径は、1次粒子において最も径の長い部分と短い部分との算術平均値とする。 The primary particle size of the conductive particles is preferably 10 to 200 nm, more preferably 10 to 60 nm in order to form a fine conductive pattern having desired conductivity. Here, as for the primary particle size of the conductive particles, 100 particles are randomly selected by observing the cross section of the conductive layer with a scanning electron microscope, and the primary particle size of each particle is measured to obtain them. It is calculated by taking the arithmetic average value of. The particle size of the primary particles of each particle is the arithmetic mean value of the part having the longest diameter and the part having the shortest diameter in the primary particles.
 導電層中における導電性粒子の含有量は、導電性を向上させるという観点から、20質量%以上であることが好ましく、パターン加工性を向上させるという観点から、95質量%以下であることが好ましい。 The content of the conductive particles in the conductive layer is preferably 20% by mass or more from the viewpoint of improving conductivity, and preferably 95% by mass or less from the viewpoint of improving pattern processability. ..
 また、導電層は、有機化合物を0.1~80質量%含有することが好ましい。導電層が有機化合物を0.1質量%以上含有することにより、導電層に柔軟性を付与し、導電層の曲げ耐性をより向上させることができる。一方、導電層が有機化合物を80質量%以下含有することにより、導電性を向上させることができる。 Further, the conductive layer preferably contains 0.1 to 80% by mass of an organic compound. When the conductive layer contains 0.1% by mass or more of the organic compound, it is possible to impart flexibility to the conductive layer and further improve the bending resistance of the conductive layer. On the other hand, when the conductive layer contains 80% by mass or less of the organic compound, the conductivity can be improved.
 導電層に含まれる有機化合物としては、アルカリ可溶性樹脂が好ましい。アルカリ可溶性樹脂としては、カルボキシル基を有する(メタ)アクリル系共重合体が好ましい。ここで、(メタ)アクリル系共重合体とは、(メタ)アクリル系モノマーと他のモノマーとの共重合体をいう。 As the organic compound contained in the conductive layer, an alkali-soluble resin is preferable. As the alkali-soluble resin, a (meth) acrylic copolymer having a carboxyl group is preferable. Here, the (meth) acrylic copolymer means a copolymer of a (meth) acrylic monomer and another monomer.
 (メタ)アクリル系モノマーおよび他のモノマーの具体例としては、例えば国際公開第2018/084067号に記載のものが挙げられるが、これらに限定されない。 Specific examples of the (meth) acrylic monomer and other monomers include, but are not limited to, those described in International Publication No. 2018/084067.
 アルカリ可溶性樹脂に、アルカリ可溶性を付与するカルボキシル基を導入するためには、例えば、(メタ)アクリル酸、イタコン酸、クロトン酸、マレイン酸、フマル酸、これらの酸無水物等を、上記(メタ)アクリル系モノマーと共重合する方法が挙げられる。 In order to introduce a carboxyl group that imparts alkali solubility to an alkali-soluble resin, for example, (meth) acrylic acid, itaconic acid, crotonic acid, maleic acid, fumaric acid, acid anhydrides thereof and the like can be used as described above (meth). ) A method of copolymerizing with an acrylic monomer can be mentioned.
 (メタ)アクリル系共重合体は、硬化反応の速度を大きくするという観点から、側鎖または分子末端に炭素-炭素二重結合を有することが好ましい。炭素-炭素二重結合を有する官能基としては、例えば、ビニル基、アリル基、(メタ)アクリル基等が挙げられる。 The (meth) acrylic copolymer preferably has a carbon-carbon double bond at the side chain or the molecular terminal from the viewpoint of increasing the rate of the curing reaction. Examples of the functional group having a carbon-carbon double bond include a vinyl group, an allyl group, a (meth) acrylic group and the like.
 アルカリ可溶性樹脂のカルボン酸当量は、400~1,000g/molであることが好ましい。アクリル可溶性樹脂のカルボン酸当量は、酸価を測定することにより算出することができる。また、アルカリ可溶性樹脂の二重結合当量は、硬度と耐クラック性とを高いレベルで両立できるため、150~10,000g/molであることが好ましい。アクリル可溶性樹脂の二重結合当量は、ヨウ素価を測定することにより算出することができる。 The carboxylic acid equivalent of the alkali-soluble resin is preferably 400 to 1,000 g / mol. The carboxylic acid equivalent of the acrylic soluble resin can be calculated by measuring the acid value. Further, the double bond equivalent of the alkali-soluble resin is preferably 150 to 10,000 g / mol because both hardness and crack resistance can be compatible at a high level. The double bond equivalent of the acrylic soluble resin can be calculated by measuring the iodine value.
 アルカリ可溶性樹脂の重量平均分子量(Mw)は、1,000~100,000であることが好ましい。重量平均分子量を上記範囲内のものとすることにより、アルカリ可溶性樹脂の良好な塗布特性が得られ、導電層をパターン形成する際における現像液へのアルカリ可溶性樹脂の溶解性も良好となる。ここで、アルカリ可溶性樹脂の重量平均分子量は、ゲルパーミエーションクロマトグラフィー(GPC)により測定されるポリスチレン換算値を言う。 The weight average molecular weight (Mw) of the alkali-soluble resin is preferably 1,000 to 100,000. By setting the weight average molecular weight within the above range, good coating characteristics of the alkali-soluble resin can be obtained, and the solubility of the alkali-soluble resin in the developing solution when forming the pattern of the conductive layer is also good. Here, the weight average molecular weight of the alkali-soluble resin refers to a polystyrene-equivalent value measured by gel permeation chromatography (GPC).
 また、導電層は、有機スズ化合物および金属キレート化合物のうち少なくとも一つを含有してもよい。導電層が有機スズ化合物および金属キレート化合物のうち少なくとも一つを含有することにより、導電層とガスバリア層との密着をより向上させることができる。特に、金属キレート化合物は、有機スズ化合物と比較して、環境負荷をかけずに密着性向上効果が得られることからより好ましい。有機スズ化合物および金属キレート化合物には、公知の化合物を用いることができる。 Further, the conductive layer may contain at least one of an organotin compound and a metal chelate compound. When the conductive layer contains at least one of the organotin compound and the metal chelate compound, the adhesion between the conductive layer and the gas barrier layer can be further improved. In particular, the metal chelate compound is more preferable than the organic tin compound because the effect of improving the adhesion can be obtained without imposing an environmental load. Known compounds can be used as the organotin compound and the metal chelate compound.
 また、導電層は酸化防止剤を含有してもよい。導電層が酸化防止剤を含有することで、導電層の耐侯性を向上させることができる。酸化防止剤の種類としては、上記絶縁層に含まれうるものと同じものが挙げられる。これらの中でも、フェノール性水酸基を有する化合物および/またはアミノ基を有する化合物を含有することで、導電層と下地層との密着力が向上し、折り曲げ時の剥がれが抑制されるため好ましい。 Further, the conductive layer may contain an antioxidant. Since the conductive layer contains an antioxidant, the weather resistance of the conductive layer can be improved. Examples of the type of antioxidant include the same types that can be contained in the above-mentioned insulating layer. Among these, by containing a compound having a phenolic hydroxyl group and / or a compound having an amino group, the adhesion between the conductive layer and the underlying layer is improved, and peeling at the time of bending is suppressed, which is preferable.
 酸化防止剤は、単独で、あるいは2種以上組み合わせて含有することができる。導電層中の酸化防止剤の含有量は、固形分の100質量部に対して、0.1質量部以上、5質量部以下とすることが好ましい。 The antioxidant can be contained alone or in combination of two or more. The content of the antioxidant in the conductive layer is preferably 0.1 part by mass or more and 5 parts by mass or less with respect to 100 parts by mass of the solid content.
 導電層は、他に、分散剤、光重合開始剤、モノマー、光酸発生剤、熱酸発生剤、溶剤、増感剤、可視光に吸収を有する顔料および染料のうち少なくとも一つ、密着改良剤、界面活性剤、重合禁止剤、酸化防止剤等を含有することが好ましい。 The conductive layer also has at least one of a dispersant, a photopolymerization initiator, a monomer, a photoacid generator, a thermoacid generator, a solvent, a sensitizer, a pigment and a dye having absorption in visible light, and improved adhesion. It preferably contains an agent, a surfactant, a polymerization inhibitor, an antioxidant and the like.
 また、本発明における導電層は、導電性組成物を用いて形成することができる。この導電性組成物に含まれる成分としては、例えば、導電性粒子、アルカリ可溶性樹脂、有機スズ化合物、金属キレート化合物、分散剤、光重合開始剤、モノマー、光酸発生剤、熱酸発生剤、溶剤、増感剤、可視光に吸収を有する顔料および染料のうち少なくとも一つ、密着改良剤、界面活性剤、酸化防止剤または重合禁止剤等が挙げられる。 Further, the conductive layer in the present invention can be formed by using a conductive composition. Examples of the components contained in this conductive composition include conductive particles, alkali-soluble resins, organic tin compounds, metal chelate compounds, dispersants, photopolymerization initiators, monomers, photoacid generators, and thermoacid generators. Examples include at least one of a solvent, a sensitizer, a pigment and a dye having absorption in visible light, an adhesion improver, a surfactant, an antioxidant, a polymerization inhibitor and the like.
 導電性組成物が含有する導電性粒子は、その粒子表面の少なくとも一部に被覆層を有することが好ましい。これにより、導電性粒子の表面活性を低下させて、導電性粒子同士の反応および導電性粒子と有機成分との反応のうち少なくとも一方を抑制し、導電性粒子の分散性を向上させることができる。さらに、導電層の加工にフォトリソグラフィーを用いた場合でも、露光光の散乱を抑制し、導電層を高精度にパターン加工することができる。一方、この導電性粒子表面の被覆層は、酸素の存在下、150~350℃程度の高温で加熱することにより容易に除去され得る。この結果、導電性組成物中の導電性粒子は、導電層の十分な導電性を発現することができる。 The conductive particles contained in the conductive composition preferably have a coating layer on at least a part of the particle surface. Thereby, the surface activity of the conductive particles can be lowered, at least one of the reaction between the conductive particles and the reaction between the conductive particles and the organic component can be suppressed, and the dispersibility of the conductive particles can be improved. .. Further, even when photolithography is used for processing the conductive layer, scattering of exposure light can be suppressed and the conductive layer can be patterned with high accuracy. On the other hand, the coating layer on the surface of the conductive particles can be easily removed by heating at a high temperature of about 150 to 350 ° C. in the presence of oxygen. As a result, the conductive particles in the conductive composition can exhibit sufficient conductivity of the conductive layer.
 導電性粒子表面の被覆層は、炭素および炭素化合物のうち少なくとも一つを含むことが好ましい。この被覆層が炭素および炭素化合物のうち少なくとも一つを含むことにより、導電性組成物中での導電性粒子の分散性をさらに向上させることができる。 The coating layer on the surface of the conductive particles preferably contains at least one of carbon and a carbon compound. When the coating layer contains at least one of carbon and a carbon compound, the dispersibility of the conductive particles in the conductive composition can be further improved.
 導電性粒子表面に、炭素および炭素化合物のうち少なくとも一つを含む被覆層を形成する方法としては、例えば、熱プラズマ法により、メタンガス等の炭素を有する反応性ガスと、導電性粒子とを接触させる方法(特開2007-138287号公報に記載の方法)等が挙げられる。 As a method of forming a coating layer containing at least one of carbon and a carbon compound on the surface of the conductive particles, for example, a reactive gas having carbon such as methane gas is brought into contact with the conductive particles by a thermal plasma method. (Method described in Japanese Patent Application Laid-Open No. 2007-138287) and the like.
 <用途>
 本発明の実施の形態に係るポリイミドおよびポリイミド樹脂膜は、液晶ディスプレイ、有機ELディスプレイ、タッチパネル、電子ペーパー、カラーフィルタ、マイクロLEDディスプレイといった表示デバイス、太陽電池、CMOSなどの受光デバイス、透明アンテナ等の通信用デバイス等のフレキシブルデバイスにおけるフレキシブル基板として使用することができる。特に、本願記載のポリイミド樹脂は耐酸化性に優れ、かつ、良好な透明性を有しているため、高い耐光性信頼性と透明性が求められる、フレキシブルタッチパネル、フレキシブル太陽電池、フレキシブル透明アンテナの各用途にて好適に用いることができる。
<Use>
The polyimide and polyimide resin films according to the embodiment of the present invention are display devices such as liquid crystal displays, organic EL displays, touch panels, electronic papers, color filters and micro LED displays, solar cells, light receiving devices such as CMOS, transparent antennas and the like. It can be used as a flexible substrate in a flexible device such as a communication device. In particular, since the polyimide resin described in the present application has excellent oxidation resistance and good transparency, high light resistance reliability and transparency are required for flexible touch panels, flexible solar cells, and flexible transparent antennas. It can be suitably used in each application.
 フレキシブルデバイスの製造工程は、基板上に形成したポリイミド樹脂膜の上に、表示デバイス、受光デバイスに必要な回路や素子を形成する工程を含む。例えば、ポリイミド樹脂膜上にデバイスに必要な回路や素子を公知の方法によって形成することができる。以上のようにして、回路や素子が表面に形成された固体状のポリイミド樹脂膜を、レーザー剥離や機械剥離等の公知の方法を用いて基板から剥離し、フレキシブルデバイスを得ることができる。 The manufacturing process of the flexible device includes a process of forming circuits and elements necessary for a display device and a light receiving device on a polyimide resin film formed on a substrate. For example, a circuit or element required for a device can be formed on a polyimide resin film by a known method. As described above, the solid polyimide resin film on which the circuit or the element is formed on the surface can be peeled off from the substrate by using a known method such as laser peeling or mechanical peeling to obtain a flexible device.
 以下、実施例等をあげて本発明を説明するが、本発明はこれらの例によって限定されるものではない。 Hereinafter, the present invention will be described with reference to examples and the like, but the present invention is not limited to these examples.
 <材料>
 (酸二無水物)
ODPA:4,4’-オキシジフタル酸無水物
6FDA:2,2-ビス(3,4-ジカルボキシフェニル)ヘキサフルオロプロパン二無水物
PMDA:ピロメリット酸二無水物
BPDA:3,3’ ,4,4’-ビフェニルテトラカルボン酸二無水物
 (ジアミン化合物)
3,3’-DDS:3,3’-ジアミノジフェニルスルホン
BAPS-m:ビス[4-(3-アミノフェノキシ)フェニル]スルホン
TFMB:2,2’-ビス(トリフルオロメチル)ベンジジン
6FODA:2,2’-ビス(トリフルオロメチル)-4,4’-ジアミノジフェニルエーテル
HFBAPP:2,2-ビス[4-(4-アミノフェノキシ)フェニル]ヘキサフルオロプロパン
4,4’-DDS:4,4’-ジアミノジフェニルスルホン
 (トリアミン化合物)
TAPOB:1,3,5-トリス(4-アミノフェノキシ)ベンゼン
 (溶剤)
GBL:γ-ブチロラクトン
NMP:N-メチル-2-ピロリドン
 (アルカリ可溶性樹脂)
アルカリ可溶性樹脂(A):メタクリル酸/メタクリル酸メチル/スチレン=54/23/23(モル%)からなる共重合体のカルボキシル基に対して、0.4当量のグリシジルメタクリレートを付加反応させたもの(重量平均分子量(Mw):29,000)
 (導電性粒子)
A-1:表面炭素被覆層の平均厚みが1nmで、1次粒子径が40nmの銀粒子(日清エンジニアリング(株)製)。
<Material>
(Acid dianhydride)
ODPA: 4,4'-oxydiphthalic anhydride 6FDA: 2,2-bis (3,4-dicarboxyphenyl) hexafluoropropane dianhydride PMDA: pyromellitic dianhydride BPDA: 3,3', 4, 4'-Biphenyltetracarboxylic dianhydride (diamine compound)
3,3'-DDS: 3,3'-diaminodiphenyl sulfone BAPS-m: Bis [4- (3-aminophenoxy) phenyl] sulfone TFMB: 2,2'-bis (trifluoromethyl) benzidine 6FODA: 2, 2'-bis (trifluoromethyl) -4,4'-diaminodiphenyl ether HFBAPP: 2,2-bis [4- (4-aminophenoxy) phenyl] hexafluoropropane 4,4'-DDS: 4,4'- Diaminodiphenyl sulfone (triamine compound)
TAPOB: 1,3,5-tris (4-aminophenoxy) benzene (solvent)
GBL: γ-Butyrolactone NMP: N-methyl-2-pyrrolidone (alkali-soluble resin)
Alkali-soluble resin (A): A copolymer obtained by adding 0.4 equivalents of glycidyl methacrylate to the carboxyl group of a copolymer composed of methacrylic acid / methyl methacrylate / styrene = 54/23/23 (mol%). (Weight average molecular weight (Mw): 29,000)
(Conductive particles)
A-1: Silver particles having an average thickness of 1 nm on the surface carbon coating layer and a primary particle size of 40 nm (manufactured by Nisshin Engineering Co., Ltd.).
 <評価>
 (1)ポリイミド前駆体樹脂の重量平均分子量の測定
 重量平均分子量(Mw)は、ゲルパーミエーションクロマトグラフィー(GPC)にて、下記の条件により測定した。また、重量平均分子量を算出するための検量線は、スタンダードポリスチレン(東ソー(株)製)を用いて作成した。
<Evaluation>
(1) Measurement of Weight Average Molecular Weight of Polyimide Precursor Resin The weight average molecular weight (Mw) was measured by gel permeation chromatography (GPC) under the following conditions. The calibration curve for calculating the weight average molecular weight was prepared using standard polystyrene (manufactured by Tosoh Corporation).
 機器装置:DP-8020(東ソー(株)製)
 展開溶剤:N,N’-ジメチルアセトアミド(DMAc)、0.05M-LiCl、0.05%リン酸添加
 ガードカラム:TSK guard colomn ALPHA(東ソー(株)製)
 カラム:TSK-GEL α-M(東ソー(株)製)
 流速:0.8mL/分
 カラム温度:23℃
 検出器:RI-8020(東ソー(株)製)。
Equipment Equipment: DP-8020 (manufactured by Tosoh Corporation)
Developing solvent: N, N'-dimethylacetamide (DMAc), 0.05M-LiCl, 0.05% phosphoric acid addition Guard column: TSK guard colon ALPHA (manufactured by Tosoh Corporation)
Column: TSK-GEL α-M (manufactured by Tosoh Corporation)
Flow velocity: 0.8 mL / min Column temperature: 23 ° C
Detector: RI-8020 (manufactured by Tosoh Corporation).
 (2)ポリイミド樹脂膜(ガラス基板上)の作成
  各実施例、比較例で作成したポリイミド前駆体樹脂組成物を、125mm□、0.5mm厚の無アルカリガラス基板(AN100、AGC社製)上にスピンコーター(ミカサ(株)製「1H-360S(商品名)」)を用いてキュア後の膜厚が10±0.5μmになるようにスピンコートした後、ホットプレート(大日本スクリーン製造(株)製「SCW-636(商品名)」)を用いて120℃で5分間プリベークし、プリベーク膜を作製した。作製した基板を、下記条件でキュアし、ポリイミド樹脂膜(ガラス基板上)を作成した。
(2) Preparation of Polyimide Resin Film (on Glass Substrate) The polyimide precursor resin composition prepared in each Example and Comparative Example was placed on a 125 mm □, 0.5 mm thick non-alkali glass substrate (AN100, manufactured by AGC Inc.). After spin-coating with a spin coater (“1H-360S (trade name)” manufactured by Mikasa Co., Ltd.) so that the film thickness after curing becomes 10 ± 0.5 μm, a hot plate (Dainippon Screen Mfg. Co., Ltd.) A prebaked film was prepared by prebaking at 120 ° C. for 5 minutes using "SCW-636 (trade name)" manufactured by Co., Ltd. The prepared substrate was cured under the following conditions to prepare a polyimide resin film (on a glass substrate).
 実施例1~14、16~21、比較例1~4:オーブン(「IHPS-222」;エスペック(株)製)を用いて、空気中、表1に記載の温度、時間でキュアを行うことによりポリイミド樹脂組成物の膜状物(ガラス基板上)を作製した。なお、キュアは各実施例、比較例に記載の温度に調整したオーブンに基板を投入することで行った。 Examples 1 to 14, 16 to 21, Comparative Examples 1 to 4: Using an oven (“IHPS-222”; manufactured by ESPEC CORPORATION), cure in air at the temperature and time shown in Table 1. To prepare a film-like material (on a glass substrate) of the polyimide resin composition. The curing was performed by putting the substrate into an oven adjusted to the temperature described in each of the examples and comparative examples.
 実施例15:イナートオーブン(光洋サーモシステム(株)製 INH-21CD)を用いて、窒素気流下(酸素濃度100ppm未満)、40分かけて250℃まで昇温し、60分間保持し、5~8℃/minで50℃まで冷却し、ポリイミド樹脂膜(ガラス基板上)を作製した。 Example 15: Using an inert oven (INH-21CD manufactured by Koyo Thermo System Co., Ltd.), the temperature is raised to 250 ° C. over 40 minutes under a nitrogen stream (oxygen concentration less than 100 ppm), held for 60 minutes, and held for 5 to 5 to A polyimide resin film (on a glass substrate) was prepared by cooling to 50 ° C. at 8 ° C./min.
 得られたポリイミド樹脂膜の膜厚は表面粗さ・輪郭形状測定機(SURFCOM1400D;(株)東京精密製)を用いて、測定倍率を10,000倍、測定長さを1.0mm、測定速度を0.30mm/sとして、測定した。 The film thickness of the obtained polyimide resin film was measured using a surface roughness / contour shape measuring machine (SURFCOM1400D; manufactured by Tokyo Precision Co., Ltd.) at a measurement magnification of 10,000 times, a measurement length of 1.0 mm, and a measurement speed. Was measured at 0.30 mm / s.
 (3)ポリイミド樹脂膜(剥離膜)の作製
 (2)で作成したポリイミド樹脂膜(ガラス基板上)四辺の端から1cmの部分に片刃で切れ込みを入れ、端から持ち上げるようにして剥離を行うことでポリイミド樹脂膜(剥離膜)を得た。
(3) Preparation of polyimide resin film (peeling film) The polyimide resin film (on the glass substrate) prepared in (2) is peeled by making a notch in the part 1 cm from the four sides with a single blade and lifting it from the edge. A polyimide resin film (release film) was obtained.
 (4)IRスペクトルのピーク強度比の測定
 (2)で得られたポリイミド樹脂膜のIRスペクトルのピーク強度比を下記手法にて測定した。
分析方法:FTIR-ATR 装置:FTS-55A(Bio-Rad社製) 
条件:ATRアタッチメント(Ge45°)
光源:特殊セラミックス
検出器:MCT
分解能:4cm-1 
積算回数:32回
測定範囲:400~4000cm-1
スペクトル縦軸:吸光度
手順1)2000~4000cm-1を基準にベースラインを引く
手順2)1480~1510cm-1の範囲に存在する最大ピークで規格化する
手順3)3400~3700cm-1の範囲に存在する最大ピークのベースラインからの高さを読み取る
手順4)IRスペクトルの1480~1510cm-1の範囲に存在する最大ピーク強度をY、3400~3700cm-1の範囲に存在する最大ピーク強度をZとした時のピーク強度比を下記式から算出する
 式)ピーク強度比=Z/Y。
(4) Measurement of peak intensity ratio of IR spectrum The peak intensity ratio of the IR spectrum of the polyimide resin film obtained in (2) was measured by the following method.
Analytical method: FTIR-ATR device: FTS-55A (manufactured by Bio-Rad)
Condition: ATR attachment (Ge45 °)
Light source: Special ceramics detector: MCT
Resolution: 4 cm -1
Number of integrations: 32 times Measurement range: 400-4000 cm -1
Spectrum vertical axis: Absorbance procedure 1) Draw a baseline based on 2000 to 4000 cm -1 2) Normalize with the maximum peak existing in the range of 1480 to 1510 cm -1 3) In the range of 3400 to 3700 cm -1 Procedure for reading the height of the existing maximum peak from the baseline 4) The maximum peak intensity existing in the range of 1480 to 1510 cm -1 of the IR spectrum is Y, and the maximum peak intensity existing in the range of 3400 to 3700 cm -1 is Z. The peak intensity ratio is calculated from the following formula) Peak intensity ratio = Z / Y.
 (5)ポリイミド樹脂膜に含まれるGBLおよびNMP量の測定
 ポリイミド樹脂組成物に含まれるGBLの量を下記の手順で測定した。
手順1)脱離ガスの捕集
 (3)で得たポリイミド樹脂膜(剥離膜)を短冊状にカットし、加熱容器に採取した。続いて、加熱容器ごと下記条件で加熱し、発生したガスを吸着管に捕集した。試料を用いず同様の操作を行った検体をブランクとした。
・加熱温度 : 400℃
・加熱時間 : 60 min
・雰囲気 : 窒素 50 mL/min
手順2)熱脱離GC/MS
 手順1の方法で吸着管に捕集したガスを熱脱離GC/MSで測定した。熱脱離GC/MSの条件を以下に示した。
・熱脱離装置 :TD-100(Markes)
・一次熱脱離条件 :脱離温度260℃,トラップ温度-27℃、15 min
・二次熱脱離条件 :320℃、5 min
・GC 装置 :7890A (Agilent)
・カラム :DB-5MS 30 m×0.25 mmID 膜厚1μm ( Agilent J&W)
・カラム温度 :40℃ (4 min) ~ 280℃ (22 min) 昇温速度 10℃/min
・MS 装置 :5975C(Agilent)
・イオン化法 :電子イオン化(EI)
・モニターイオン :m/z 29~600
・GBL 定量イオン :m/z 86
・NMP 定量イオン :m/z 98
・イオン源温度 :230℃
・標準品 :GBL (和光純薬工業(株)製 特級)、NMP (和光純薬工業(株)製 特級)
 標準品をメタノールで溶解して標準溶液を作成した。この溶液を適宜希釈し作成した標準溶液から、1μLを採取して吸着管に注入した後、試料と同条件で測定し、検量線を作成して定量を行った。
(5) Measurement of GBL and NMP Amount in Polyimide Resin Film The amount of GBL contained in the polyimide resin composition was measured by the following procedure.
Procedure 1) Collection of desorbed gas The polyimide resin film (peeling film) obtained in (3) was cut into strips and collected in a heating container. Subsequently, the entire heating container was heated under the following conditions, and the generated gas was collected in an adsorption tube. A sample obtained by performing the same operation without using a sample was used as a blank.
・ Heating temperature: 400 ℃
・ Heating time: 60 min
・ Atmosphere: Nitrogen 50 mL / min
Step 2) Thermal desorption GC / MS
The gas collected in the adsorption tube by the method of step 1 was measured by thermal desorption GC / MS. The conditions for thermal desorption GC / MS are shown below.
・ Thermal desorption device: TD-100 (Markes)
・ Primary heat desorption conditions: Desorption temperature 260 ℃, trap temperature -27 ℃, 15 min
・ Secondary heat desorption conditions: 320 ℃, 5 min
・ GC device: 7890A (Agilent)
-Column: DB-5MS 30 m x 0.25 mm ID film thickness 1 μm (Agilent J & W)
-Column temperature: 40 ° C (4 min) to 280 ° C (22 min) Heating rate 10 ° C / min
・ MS device: 5975C (Agilent)
・ Ionization method: Electron ionization (EI)
・ Monitor ion: m / z 29-600
・ GBL quantitative ion: m / z 86
・ NMP quantitative ion: m / z 98
・ Ion source temperature: 230 ℃
-Standard products: GBL (special grade manufactured by Wako Pure Chemical Industries, Ltd.), NMP (special grade manufactured by Wako Pure Chemical Industries, Ltd.)
The standard product was dissolved in methanol to prepare a standard solution. After collecting 1 μL of this solution from a standard solution prepared by appropriately diluting it and injecting it into an adsorption tube, measurement was performed under the same conditions as the sample, and a calibration curve was prepared for quantification.
 (6)ガラス転移温度の測定
 熱機械分析装置(エスアイアイ・ナノテクノロジー社製 EXSTAR6000TMA/SS6000)を用いて、窒素気流下、引張荷重30mNでガラス転移温度の測定を行った。昇温方法は、以下の条件にて行った。第1段階で、昇温レート5℃/minで150℃まで昇温してポリイミド樹脂膜の試料の吸着水を除去し、第2段階で、降温レート5℃/minで室温まで空冷した。第3段階で、昇温レート5℃/minで本測定を行い、この試料のガラス転移温度を求めた。なお、この測定には、(3)で示したポリイミド樹脂膜(剥離膜)を用い、測定に用いるフィルムの幅は5mm、チャック間距離は20mmとした。
(6) Measurement of glass transition temperature Using a thermomechanical analyzer (EXSTAR6000TMA / SS6000 manufactured by SII Nanotechnology), the glass transition temperature was measured under a nitrogen stream with a tensile load of 30 mN. The temperature raising method was carried out under the following conditions. In the first step, the temperature was raised to 150 ° C. at a temperature rising rate of 5 ° C./min to remove the adsorbed water of the polyimide resin film sample, and in the second step, the temperature was cooled to room temperature at a temperature lowering rate of 5 ° C./min. In the third step, the main measurement was performed at a temperature rising rate of 5 ° C./min, and the glass transition temperature of this sample was determined. The polyimide resin film (release film) shown in (3) was used for this measurement, and the width of the film used for the measurement was 5 mm and the distance between the chucks was 20 mm.
 (7)反りの測定
 (2)で作成したポリイミド樹脂膜付きガラス基板を石定盤上に置き、30分静置した後の反り量を測定することで評価を行った。なお、反り量は四隅の浮き上がりの平均値と定義し、測定は室温23±2℃、湿度50±5%に調整された部屋で実施した。
(7) Measurement of Warpage The glass substrate with the polyimide resin film prepared in (2) was placed on a stone surface plate and allowed to stand for 30 minutes, and then the amount of warpage was measured for evaluation. The amount of warpage was defined as the average value of the floating of the four corners, and the measurement was carried out in a room adjusted to a room temperature of 23 ± 2 ° C. and a humidity of 50 ± 5%.
 (8)黄色度の測定
 黄色度の測定をカラーメーター(SM-T45、スガ試験機株式会社製)を用いて行った。光源にはC光源を用い、測定は透過光モードで行った。なお、測定には、(2)で作製したポリイミド樹脂膜(ガラス基板上)と、(2)で作成したポリイミド樹脂膜(ガラス基板上)をオーブン(「IHPS-222」;エスペック(株)製)を用いて大気雰囲気下(酸素濃度:21体積%)、250℃で1時間追加加熱したものと、を用いた。表1においては、それぞれ「キュア後」「追加加熱後」と示す。
(8) Measurement of yellowness The yellowness was measured using a color meter (SM-T45, manufactured by Suga Test Instruments Co., Ltd.). A C light source was used as the light source, and the measurement was performed in the transmitted light mode. For the measurement, the polyimide resin film (on the glass substrate) prepared in (2) and the polyimide resin film (on the glass substrate) prepared in (2) were placed in an oven (“IHPS-222”; manufactured by Espec Co., Ltd.). ) Was used in an air atmosphere (oxygen concentration: 21% by volume), and the mixture was additionally heated at 250 ° C. for 1 hour. In Table 1, "after curing" and "after additional heating" are shown, respectively.
 (9)面内/面外複屈折の測定
 プリズムカプラー(METRICON社製、PC2010)を用い、波長632.8nmのTE屈折率(n(TE))およびTM屈折率(n(TM))を測定した。n(TE)、n(TM)は、それぞれポリイミド膜面に対して、平行、垂直方向の屈折率である。面内/面外複屈折はn(TE)とn(TM)の差(n(TE)-n(TM))として計算した。なお、測定には(3)で得たポリイミド樹脂膜(剥離膜)を用いた。
(9) Measurement of in-plane / out-of-plane birefringence The TE refractive index (n (TE)) and TM refractive index (n (TM)) at a wavelength of 632.8 nm are measured using a prism coupler (manufactured by METRICON, PC2010). did. n (TE) and n (TM) are refractive indexes in the parallel and vertical directions with respect to the polyimide film surface, respectively. The in-plane / out-of-plane birefringence was calculated as the difference between n (TE) and n (TM) (n (TE) -n (TM)). The polyimide resin film (release film) obtained in (3) was used for the measurement.
 (10)ポリイミド樹脂膜の耐折性試験(MIT試験)
 (3)で得たポリイミド樹脂膜(剥離膜)を用いて下記条件にて試験を実施した。なお、測定数はn=3で実施し、その平均値を耐折回数とした。
試験方法:JIS P 8115(2001)準拠
試験片:短冊 110mm×10mm
試験条件:試験荷重;1.0kgf
     折り曲げ角度;135°
     折り曲げ面のR;0.38mm
     折り曲げ速度;毎分175回
     測定数;n=3
  試験環境:(23±2)℃、(50±5)%RH
  測定装置:MIT試験機 型式DA((株)東洋精機製作所製)。
(10) Folding resistance test of polyimide resin film (MIT test)
The test was carried out under the following conditions using the polyimide resin film (release film) obtained in (3). The number of measurements was set to n = 3, and the average value was taken as the number of folding resistances.
Test method: JIS P 8115 (2001) compliant Test piece: Strip 110 mm x 10 mm
Test conditions: Test load; 1.0 kgf
Bending angle; 135 °
R of bent surface; 0.38 mm
Bending speed; 175 measurements per minute; n = 3
Test environment: (23 ± 2) ° C, (50 ± 5)% RH
Measuring device: MIT testing machine Model DA (manufactured by Toyo Seiki Seisakusho Co., Ltd.).
 (11)基板密着力の測定(90°ピール試験)
 (2)で得られたポリイミド樹脂膜(ガラス基板上)を10mm幅、100mm長に切り出して、ホットプレートを用いて120℃×6分の脱水ベーク処理を行った後、引っ張り速度50mm/minの条件で90°ピール試験を行った。ここで、90°ピール試験においては、JIS C6481(1996、プリント配線板用銅張積層版試験法)に準拠した密着性試験機(山本鍍金試験器社製)を用いて90°ピール強度(N/cm)を測定し、以下の評価方法で判定を行った。
優良(A):0.3N/cm以下
良(B):0.3N/cm以上0.5N/cm未満
可(C):0.5N/cm以上0.8N/cm未満
不良(D):0.8N/cm以上。
(11) Measurement of substrate adhesion (90 ° peel test)
The polyimide resin film (on the glass substrate) obtained in (2) was cut out to a width of 10 mm and a length of 100 mm, dehydrated and baked at 120 ° C. for 6 minutes using a hot plate, and then pulled at a tensile speed of 50 mm / min. A 90 ° peel test was performed under the conditions. Here, in the 90 ° peel test, a 90 ° peel strength (N) using an adhesion tester (manufactured by Yamamoto Plating Tester Co., Ltd.) conforming to JIS C6481 (1996, copper-clad laminate test method for printed wiring boards). / Cm) was measured, and the judgment was made by the following evaluation method.
Excellent (A): 0.3 N / cm or less Good (B): 0.3 N / cm or more and less than 0.5 N / cm Possible (C): 0.5 N / cm or more and less than 0.8 N / cm Defective (D): 0.8 N / cm or more.
 (12)レーザー剥離試験
 (2)で得られたポリイミド樹脂膜(ガラス基板上)に対して、308nmのエキシマレーザー(形状:21mm×1.0mm)をガラス基板側から照射して、レーザー剥離試験を行った。レーザーは、短軸方向に0.25mmずつずらしながら照射した。照射領域の縁に沿って切り込みを入れた際に、膜が剥離したエネルギーを剥離に必要な照射エネルギー(剥離エネルギー)とし、以下の基準で評価を行った。
優良(A):剥離エネルギーが230mJ/cm以下。
良(B):照射エネルギーが230mJ/cmを超え、260mJ/cm以下。
可(C):照射エネルギーが260mJ/cmを超え、300mJ/cm以下。
不良(D):照射エネルギーが300mJ/cmを超える。
(12) Laser peeling test The polyimide resin film (on the glass substrate) obtained in (2) is irradiated with an excimer laser (shape: 21 mm × 1.0 mm) of 308 nm from the glass substrate side to perform a laser peeling test. Was done. The laser was irradiated while shifting by 0.25 mm in the minor axis direction. The energy at which the film was peeled off when a cut was made along the edge of the irradiation region was defined as the irradiation energy (peeling energy) required for peeling, and evaluation was performed according to the following criteria.
Excellent (A): Peeling energy is 230 mJ / cm 2 or less.
Good (B): irradiation energy exceeds 230mJ / cm 2, 260mJ / cm 2 or less.
Yes (C): irradiation energy exceeds 260mJ / cm 2, 300mJ / cm 2 or less.
Defective (D): Irradiation energy exceeds 300 mJ / cm 2.
 (13)導電性組成物の導電性評価
 下記方法にて、予め準備した導電性組成物および絶縁性組成物を用いて積層体の作製を行い、続いて、当該積層体を用いた導電性評価を行った。
(13) Conductivity Evaluation of Conductive Composition A laminate is produced using the conductive composition and the insulating composition prepared in advance by the following method, and then the conductivity evaluation using the laminate is performed. Was done.
 (製造例1:導電性組成物の作製)
 製造例1では、導電性組成物(AE-1)を調製した。詳細には、導電性粒子(A-1)を80g、界面活性剤(“DISPERBYK”(登録商標)21116:DIC社製)を4.06g、PGMEAを98.07g、DPMを98.07g、混合したものに、ホモジナイザーにて、1200rpm、30分間の処理を施した。さらに、高圧湿式メディアレス微粒化装置ナノマイザー(ナノマイザー社製)を用いて、混合物を分散して、銀含有量が40質量%の銀分散液を得た。
(Production Example 1: Preparation of Conductive Composition)
In Production Example 1, a conductive composition (AE-1) was prepared. Specifically, 80 g of conductive particles (A-1), 4.06 g of a surfactant (“DISPERBYK” (registered trademark) 21116: manufactured by DIC Corporation), 98.07 g of PGMEA, and 98.07 g of DPM are mixed. The mixture was treated with a homogenizer at 1200 rpm for 30 minutes. Further, the mixture was dispersed using a high-pressure wet medialess atomizer Nanomizer (manufactured by Nanomizer) to obtain a silver dispersion having a silver content of 40% by mass.
 有機化合物としてアルカリ可溶性樹脂(AR)を20g、金属キレート化合物としてエチルアセトアセテートアルミニウムジイソプロピレート(ALCH:川研ファインケミカル社製)を0.6g、光重合開始剤(NCI-831:ADEKA社製)を2.4g、PE-3Aを12.0g、混合したものに、PGMEAを132.6g、DPMを52.6g、添加し、撹拌することにより、導電性組成物用の有機I液を得た。上記の銀分散液と有機I液とを72.6/27.4の質量比で混合し、導電性組成物(AE-1)を得た。 20 g of alkali-soluble resin (AR) as an organic compound, 0.6 g of ethylacetacetate aluminum diisopropylate (ALCH: manufactured by Kawaken Fine Chemicals) as a metal chelate compound, photopolymerization initiator (NCI-831: manufactured by ADEKA) To a mixture of 2.4 g of PGMEA and 12.0 g of PE-3A, 132.6 g of PGMEA and 52.6 g of DPM were added, and the mixture was stirred to obtain an organic I solution for a conductive composition. .. The silver dispersion liquid and the organic I liquid were mixed at a mass ratio of 72.6 / 27.4 to obtain a conductive composition (AE-1).
 (製造例2:導電性組成物の作製)
 有機I液にさらにヒンダードフェノール系酸化防止剤であるIrganox1010(BASFジャパン社製)を0.24g添加したこと以外は製造例1と同様にして、導電性組成物(AE-2)を得た。
(Production Example 2: Preparation of Conductive Composition)
A conductive composition (AE-2) was obtained in the same manner as in Production Example 1 except that 0.24 g of Irganox 1010 (manufactured by BASF Japan Ltd.), which is a hindered phenolic antioxidant, was further added to the organic I solution. ..
 (製造例3:導電性組成物の作製)
 有機I液にさらにヒンダードアミン系酸化防止剤であるアデカスタブLA-87(ADEKA社製)を0.24g添加したこと以外は製造例1と同様にして、導電性組成物(AE-3)を得た。
(Production Example 3: Preparation of Conductive Composition)
A conductive composition (AE-3) was obtained in the same manner as in Production Example 1 except that 0.24 g of ADEKA STUB LA-87 (manufactured by ADEKA), which is a hindered amine-based antioxidant, was further added to the organic I solution. ..
 (製造例4:導電性組成物の作製)
 有機I液にさらにヒンダードフェノール系酸化防止剤であるアデカスタブAO-20(ADEKA社製)を0.24g添加したこと以外は製造例1と同様にして、導電性組成物(AE-4)を得た。
(Production Example 4: Preparation of Conductive Composition)
The conductive composition (AE-4) was prepared in the same manner as in Production Example 1 except that 0.24 g of ADEKA STUB AO-20 (manufactured by ADEKA), which is a hindered phenolic antioxidant, was further added to the organic I solution. Obtained.
 (製造例5:絶縁性組成物の作製)
 製造例5では、絶縁性組成物(OA-1)を調製した。詳細には、クリーンボトルに、カルド系樹脂(V-259ME:新日鉄住友化学社製)を50.0g、架橋性モノマー(TAIC:日本化成社製)を18.0g、架橋性モノマー(M-315:東亞合成社製)を10.0g、エポキシ化合物(PG-100:大阪ガスケミカル社製)を20.0g、光重合開始剤(OXE-01:BASF社製)を0.2g、添加し、1時間撹拌して、絶縁性組成物(OA-1)を得た。
(Production Example 5: Preparation of Insulating Composition)
In Production Example 5, an insulating composition (OA-1) was prepared. Specifically, in a clean bottle, 50.0 g of a cardo resin (V-259ME: manufactured by Nippon Steel Sumitomo Chemical Co., Ltd.), 18.0 g of a crosslinkable monomer (TAIC: manufactured by Nippon Kasei Co., Ltd.), and a crosslinkable monomer (M-315). : 10.0 g of Toa Synthetic Co., Ltd.), 20.0 g of epoxy compound (PG-100: manufactured by Osaka Gas Chemical Co., Ltd.), 0.2 g of photopolymerization initiator (OXE-01: manufactured by BASF Co., Ltd.) were added. Stirring for 1 hour gave an insulating composition (OA-1).
 (製造例6:絶縁性組成物の作製)
 さらにヒンダードフェノール系酸化防止剤であるIrganox1010(BASFジャパン社製)を0.2g添加したこと以外は製造例5と同様にして、絶縁性組成物(OA-2)を得た。
(Production Example 6: Preparation of Insulating Composition)
Further, an insulating composition (OA-2) was obtained in the same manner as in Production Example 5 except that 0.2 g of Irganox 1010 (manufactured by BASF Japan Ltd.), which is a hindered phenolic antioxidant, was added.
 (製造例7:絶縁性組成物の作製)
 さらにヒンダードアミン系酸化防止剤であるアデカスタブLA-87(ADEKA社製)を0.2g添加したこと以外は製造例5と同様にして、絶縁性組成物(OA-3)を得た。
(Production Example 7: Preparation of Insulating Composition)
Further, an insulating composition (OA-3) was obtained in the same manner as in Production Example 5 except that 0.2 g of ADEKA STUB LA-87 (manufactured by ADEKA), which is a hindered amine-based antioxidant, was added.
 (製造例8:絶縁性組成物の作製)
 さらにヒンダードフェノール系酸化防止剤であるアデカスタブAO-20(ADEKA社製)を0.2g添加したこと以外は製造例5と同様にして、絶縁性組成物(OA-4)を得た。
(Production Example 8: Preparation of Insulating Composition)
Further, an insulating composition (OA-4) was obtained in the same manner as in Production Example 5 except that 0.2 g of ADEKA STUB AO-20 (manufactured by ADEKA), which is a hindered phenolic antioxidant, was added.
 (導電性評価)
 手順1:絶縁層の形成
 (2)で作成したポリイミド樹脂膜(ガラス基板上)上に、製造例5~8で作成した絶縁性組成物(OA-1~4)をスピンコーターを用いて1000rpmで5秒スピンコートした後、ホットプレートを用いて100℃で2分間プリベークし、プリベーク膜を作製した。パラレルライトマスクアライナーを用いて超高圧水銀灯を光源とし、所望のマスクを介してプリベーク膜を露光した。この後、自動現像装置を用いて、0.045質量%水酸化カリウム水溶液で60秒間シャワー現像し、次いで水で30秒間リンスし、パターン加工を行った。パターン加工した基板をオーブンを用いて、空気中で230℃で60分間キュアし、厚さ1.0μmの絶縁層を形成し、積層基板を得た。
(Evaluation of conductivity)
Step 1: Formation of Insulating Layer On the polyimide resin film (on the glass substrate) prepared in (2), the insulating compositions (OA-1 to 4) prepared in Production Examples 5 to 8 are subjected to 1000 rpm using a spin coater. After spin-coating for 5 seconds with, prebaking was performed at 100 ° C. for 2 minutes using a hot plate to prepare a prebaked film. The prebake film was exposed through a desired mask using an ultra-high pressure mercury lamp as a light source using a parallel light mask aligner. Then, using an automatic developing apparatus, shower development was performed with a 0.045 mass% potassium hydroxide aqueous solution for 60 seconds, and then rinse with water for 30 seconds to perform pattern processing. The patterned substrate was cured in air at 230 ° C. for 60 minutes using an oven to form an insulating layer having a thickness of 1.0 μm to obtain a laminated substrate.
 手順2:配線層の形成
 手順1で作成した積層基板上に製造例1~4で作成した導電性組成物(AE-1~4)を、スピンコーター(ミカサ(株)製「1H-360S(商品名)」)を用いて300rpmで10秒、500rpmで2秒の条件でスピンコートし、基板をホットプレート(大日本スクリーン製造(株)製「SCW-636(商品名)」)を用いて100℃で2分間プリベークし、膜厚0.9μmのプリベーク膜を得た。パラレルライトマスクアライナー(キヤノン(株)製「PLA-501F(商品名)」)を用いて超高圧水銀灯を光源とし、所望のマスクを介してプリベーク膜を露光した。この後、自動現像装置(滝沢産業(株)製「AD-2000(商品名)」)を用いて、0.045質量%水酸化カリウム水溶液で60秒間シャワー現像し、次いで水で30秒間リンスし、パターン加工を行った。その後、オーブン(「IHPS-222」;エスペック(株)製)を用いて、空気中、230℃で30分間ポストベークを施すことにより、体積抵抗率評価パターンを得た。
Step 2: Formation of wiring layer On the laminated substrate prepared in step 1, the conductive compositions (AE-1 to 4) prepared in Production Examples 1 to 4 were applied to a spin coater (Mikasa Co., Ltd. "1H-360S (1H-360S). Spin-coat the substrate using a hot plate (“SCW-636 (trade name)” manufactured by Dainippon Screen Mfg. Co., Ltd.) for 10 seconds at 300 rpm and 2 seconds at 500 rpm. Prebaking was performed at 100 ° C. for 2 minutes to obtain a prebaked film having a film thickness of 0.9 μm. A parallel light mask aligner (“PLA-501F (trade name)” manufactured by Canon Inc.) was used as a light source, and a prebake film was exposed through a desired mask. After that, using an automatic developing device (“AD-2000 (trade name)” manufactured by Takizawa Sangyo Co., Ltd.), shower-develop with 0.045 mass% potassium hydroxide aqueous solution for 60 seconds, and then rinse with water for 30 seconds. , Pattern processing was performed. Then, using an oven (“IHPS-222”; manufactured by ESPEC CORPORATION), post-baking was performed in air at 230 ° C. for 30 minutes to obtain a volume resistivity evaluation pattern.
 得られた体積抵抗率評価パターンについて、表面抵抗測定機(“ロレスタ”(登録商標)-FP;三菱油化(株)製)により表面抵抗値ρs(Ω/□)を、表面粗さ形状測定機(“サーフコム”(登録商標)1400D;(株)東京精密製)により膜厚t(cm)を測定し、両値を乗算することにより、体積抵抗率(μΩ・cm)を算出し、以下の評価基準に従って導電性評価した。
優良(A):60μΩ・cm未満
良(B) :60μΩ・cm以上80μΩ・cm未満
可(C) :80μΩ・cm以上100μΩ・cm未満
不良(D):100μΩ・cm以上。
For the obtained volume resistivity evaluation pattern, the surface resistivity value ρs (Ω / □) was measured by a surface resistivity measuring machine (“Loresta” (registered trademark) -FP; manufactured by Mitsubishi Yuka Co., Ltd.), and the surface roughness shape was measured. The film film resistivity (μΩ · cm) is calculated by measuring the film thickness t (cm) with a machine (“Surfcom” (registered trademark) 1400D; manufactured by Tokyo Precision Co., Ltd.) and multiplying both values. Conductivity was evaluated according to the evaluation criteria of.
Excellent (A): 60 μΩ ・ cm or less Good (B): 60 μΩ ・ cm or more and less than 80 μΩ ・ cm possible (C): 80 μΩ ・ cm or more and less than 100 μΩ ・ cm Defective (D): 100 μΩ ・ cm or more.
 (14)折り曲げ耐性評価
 上記(13)で作製したのと同じ基板を1cm幅に切り出し、直径が1cm、5mm、1mm、0.8mmの金属棒を用いて、180度折り曲げ試験を行った。試験回数は1回とし、光学顕微鏡を用いてクラック発生の有無を観察し、以下の評価基準に従って曲げ耐性を評価した。
優秀(S):直径0.8mmでクラック発生なし
優良(A):直径1mmでクラック発生なし
良(B) :直径5mmでクラック発生なし、直径1mmでクラック発生あり
可(C) :直径1cmでクラック発生なし、直径5mmでクラック発生あり
不可(D):直径1cmでクラック発生あり。
(14) Evaluation of Bending Tolerance The same substrate prepared in (13) above was cut out to a width of 1 cm, and a 180-degree bending test was performed using a metal rod having a diameter of 1 cm, 5 mm, 1 mm, and 0.8 mm. The number of tests was one, and the presence or absence of cracks was observed using an optical microscope, and the bending resistance was evaluated according to the following evaluation criteria.
Excellent (S): No cracks at 0.8 mm in diameter Excellent (A): No cracks at 1 mm in diameter Good (B): No cracks at 5 mm in diameter, cracks can occur at 1 mm in diameter (C): 1 cm in diameter No cracks, no cracks with a diameter of 5 mm (D): Cracks with a diameter of 1 cm.
 合成例1
 300mL4つ口フラスコに、温度計、撹拌羽根付き撹拌棒をセットした。次に、乾燥窒素気流下、GBL110gを投入し、30℃に昇温した。昇温後、撹拌しながらジアミン化合物である3,3’-DDSを7.00g(28.2mmol)、BAPS-mを8.87g(20.5mmol)、TFMBを0.82g(2.56mmol)投入し、GBL20gで洗いこんだ。ジアミン化合物が溶解したことを確認した後、酸二無水物であるODPAを16.2g(52.3mmol)投入し、GBL20gで洗いこんだ。その後、50℃に昇温後4時間反応させ、冷却後、界面活性剤(DIC(株)製“F-477”)0.02gを加えて1時間撹拌した。得られた溶液をポリエチレン製のフィルター(フィルター孔径0.2μm)で濾過して、ポリイミド前駆体組成物を得た。得られた組成物中のポリイミド前駆体の重量平均分子量(Mw)は85000であった。
Synthesis example 1
A thermometer and a stirring rod with a stirring blade were set in a 300 mL four-necked flask. Next, 110 g of GBL was charged under a dry nitrogen air flow, and the temperature was raised to 30 ° C. After raising the temperature, the diamine compound 3,3'-DDS was 7.00 g (28.2 mmol), BAPS-m was 8.87 g (20.5 mmol), and TFMB was 0.82 g (2.56 mmol) with stirring. It was put in and washed with 20 g of GBL. After confirming that the diamine compound was dissolved, 16.2 g (52.3 mmol) of ODPA, which is an acid dianhydride, was added and washed with 20 g of GBL. Then, the mixture was heated to 50 ° C. and reacted for 4 hours, cooled, 0.02 g of a surfactant (“F-477” manufactured by DIC Corporation) was added, and the mixture was stirred for 1 hour. The obtained solution was filtered through a polyethylene filter (filter pore size 0.2 μm) to obtain a polyimide precursor composition. The weight average molecular weight (Mw) of the polyimide precursor in the obtained composition was 85,000.
 合成例2
 3,3’-DDSを5.01g(20.2mmol)、BAPS-mを8.72g(20.2mmol)、TFMBを3.23g(10.1mmol)、ODPAを16.0g(51.5mmol)に変更した以外は合成例1と同様にしてポリイミド前駆体樹脂組成物を得た。得られた組成物中のポリイミド前駆体の重量平均分子量(Mw)は94000であった。
Synthesis example 2
5.01 g (20.2 mmol) of 3,3'-DDS, 8.72 g (20.2 mmol) of BAPS-m, 3.23 g (10.1 mmol) of TFMB, 16.0 g (51.5 mmol) of ODPA. A polyimide precursor resin composition was obtained in the same manner as in Synthesis Example 1 except that the composition was changed to. The weight average molecular weight (Mw) of the polyimide precursor in the obtained composition was 94000.
 合成例3
 3,3’-DDSを5.08g(20.5mmol)、BAPS-mに代えてHFBAPPを8.39g(20.5mmol)、TFMBを3.27g(10.2mmol)、ODPAを16.2g(52.2mmol)に変更した以外は合成例1と同様にしてポリイミド前駆体樹脂組成物を得た。得られた組成物中のポリイミド前駆体の重量平均分子量(Mw)は97000であった。
Synthesis example 3
5.08 g (20.5 mmol) of 3,3'-DDS, 8.39 g (20.5 mmol) of HFBAPP instead of BAPS-m, 3.27 g (10.2 mmol) of TFMB, 16.2 g of ODPA (16.2 mmol). A polyimide precursor resin composition was obtained in the same manner as in Synthesis Example 1 except that the composition was changed to 52.2 mmol). The weight average molecular weight (Mw) of the polyimide precursor in the obtained composition was 97,000.
 合成例4
 3,3’-DDSを4.87g(19.6mmol)、BAPS-mを8.70g(20.1mmol)、TFMBを3.22g(10.1mmol)、ODPAを15.9g(51.4mmol)に変更し、さらに3,3’-DDS、BAPS-m、TFMBを加えるのと同じタイミングでさらにTAPOBを0.201g(0.50mmol)加えたこと以外は合成例1と同様にしてポリイミド前駆体樹脂組成物を得た。得られた組成物中のポリイミド前駆体の重量平均分子量(Mw)は125000であった。
Synthesis example 4
3.87 g (19.6 mmol) of 3,3'-DDS, 8.70 g (20.1 mmol) of BAPS-m, 3.22 g (10.1 mmol) of TFMB, 15.9 g (51.4 mmol) of ODPA. Polyimide precursor in the same manner as in Synthesis Example 1 except that 0.201 g (0.50 mmol) of TAPOB was further added at the same timing as when 3,3'-DDS, BAPS-m, and TFMB were added. A resin composition was obtained. The weight average molecular weight (Mw) of the polyimide precursor in the obtained composition was 125,000.
 合成例5
 3,3’-DDSを4.76g(19.2mmol)、BAPS-mを8.29g(19.2mmol)、TFMBを3.07g(9.59mmol)、ODPAを11.4g(36.7mmol)に変更し、さらにODPAと同じタイミングで6FDAを5.43g(12.2mmol)投入したこと以外は合成例1と同様にしてポリイミド前駆体樹脂組成物を得た。得られた組成物中のポリイミド前駆体の重量平均分子量(Mw)は92000であった。
Synthesis example 5
3.76 g (19.2 mmol) of 3,3'-DDS, 8.29 g (19.2 mmol) of BAPS-m, 3.07 g (9.59 mmol) of TFMB, 11.4 g (36.7 mmol) of ODPA. A polyimide precursor resin composition was obtained in the same manner as in Synthesis Example 1 except that 5.43 g (12.2 mmol) of 6FDA was added at the same timing as ODPA. The weight average molecular weight (Mw) of the polyimide precursor in the obtained composition was 92000.
 合成例6
 3,3’-DDSを5.20g(20.9mmol)、BAPS-mを9.04g(20.9mmol)、TFMBを3.35g(10.5mmol)、ODPAを12.4g(40.1mmol)に変更し、さらにODPAと同じタイミングでPMDAを2.91g(13.4mmol)投入したこと以外は合成例1と同様にしてポリイミド前駆体樹脂組成物を得た。得られた組成物中のポリイミド前駆体の重量平均分子量(Mw)は101000であった。
Synthesis example 6
5.20 g (20.9 mmol) of 3,3'-DDS, 9.04 g (20.9 mmol) of BAPS-m, 3.35 g (10.5 mmol) of TFMB, 12.4 g (40.1 mmol) of ODPA. A polyimide precursor resin composition was obtained in the same manner as in Synthesis Example 1 except that 2.91 g (13.4 mmol) of PMDA was added at the same timing as ODPA. The weight average molecular weight (Mw) of the polyimide precursor in the obtained composition was 101000.
 合成例7
 3,3’-DDSを2.45g(9.87mmol)、BAPS-mを8.53g(19.7mmol)、TFMBを6.32g(19.7mmol)、ODPAを15.6g(50.4mmol)に変更した以外は合成例1と同様にしてポリイミド前駆体樹脂組成物を得た。得られた組成物中のポリイミド前駆体の重量平均分子量(Mw)は98000であった。
Synthesis example 7
2.45 g (9.87 mmol) of 3,3'-DDS, 8.53 g (19.7 mmol) of BAPS-m, 6.32 g (19.7 mmol) of TFMB, 15.6 g (50.4 mmol) of ODPA. A polyimide precursor resin composition was obtained in the same manner as in Synthesis Example 1 except that the composition was changed to. The weight average molecular weight (Mw) of the polyimide precursor in the obtained composition was 98,000.
 合成例8
 3,3’-DDSを2.54g(10.2mmol)、BAPS-mを4.41g(10.2mmol)、TFMBを9.81g(30.6mmol)、ODPAを16.2g(52.1mmol)に変更した以外は合成例1と同様にしてポリイミド前駆体樹脂組成物を得た。得られた組成物中のポリイミド前駆体の重量平均分子量(Mw)は102000であった。
Synthesis example 8
2.54 g (10.2 mmol) of 3,3'-DDS, 4.41 g (10.2 mmol) of BAPS-m, 9.81 g (30.6 mmol) of TFMB, 16.2 g (52.1 mmol) of ODPA. A polyimide precursor resin composition was obtained in the same manner as in Synthesis Example 1 except that the composition was changed to. The weight average molecular weight (Mw) of the polyimide precursor in the obtained composition was 102000.
 合成例9
 用いる溶媒をGBLからNMPに変更したこと以外は合成例4と同様にしてポリイミド前駆体樹脂組成物を得た。得られた組成物中のポリイミド前駆体の重量平均分子量(Mw)は120000であった。
Synthesis example 9
A polyimide precursor resin composition was obtained in the same manner as in Synthesis Example 4 except that the solvent used was changed from GBL to NMP. The weight average molecular weight (Mw) of the polyimide precursor in the obtained composition was 120,000.
 合成例10
 3,3’-DDSを2.50g(10.1mmol)、BAPS-mを4.35g(10.1mmol)、TFMBに変えて6FODAを10.15g(30.2mmol)、ODPAを15.9g(51.3mmol)に変更した以外は合成例1と同様にしてポリイミド前駆体樹脂組成物を得た。得られた組成物中のポリイミド前駆体の重量平均分子量(Mw)は107000であった。
Synthesis example 10
2.50 g (10.1 mmol) of 3,3'-DDS, 4.35 g (10.1 mmol) of BAPS-m, 10.15 g (30.2 mmol) of 6FODA and 15.9 g (15.9 mmol) of ODPA by changing to TFMB. A polyimide precursor resin composition was obtained in the same manner as in Synthesis Example 1 except that the composition was changed to 51.3 mmol). The weight average molecular weight (Mw) of the polyimide precursor in the obtained composition was 107,000.
 合成例11
 3,3’-DDSを1.28g(5.14mmol)、BAPS-mを2.22g(5.14mmol)、TFMBを13.2g(41.1mmol)、ODPAを16.3g(52.4mmol)に変更した以外は合成例1と同様にしてポリイミド前駆体樹脂組成物を得た。得られた組成物中のポリイミド前駆体の重量平均分子量(Mw)は107000であった。
Synthesis example 11
1.28 g (5.14 mmol) of 3,3'-DDS, 2.22 g (5.14 mmol) of BAPS-m, 13.2 g (41.1 mmol) of TFMB, 16.3 g (52.4 mmol) of ODPA. A polyimide precursor resin composition was obtained in the same manner as in Synthesis Example 1 except that the composition was changed to. The weight average molecular weight (Mw) of the polyimide precursor in the obtained composition was 107,000.
 合成例12
 3,3’-DDSを0.64g(2.58mmol)、BAPS-mを1.11g(2.58mmol)、TFMBを14.9g(46.4mmol)、ODPAを16.3g(52.6mmol)に変更した以外は合成例1と同様にしてポリイミド前駆体樹脂組成物を得た。得られた組成物中のポリイミド前駆体の重量平均分子量(Mw)は110000であった。
Synthesis example 12
0.64 g (2.58 mmol) of 3,3'-DDS, 1.11 g (2.58 mmol) of BAPS-m, 14.9 g (46.4 mmol) of TFMB, 16.3 g (52.6 mmol) of ODPA. A polyimide precursor resin composition was obtained in the same manner as in Synthesis Example 1 except that the composition was changed to. The weight average molecular weight (Mw) of the polyimide precursor in the obtained composition was 110,000.
 合成例13
 3,3’-DDSを2.55g(10.3mmol)、BAPS-mを4.44g(10.3mmol)、TFMBを9.88g(30.8mmol)、ODPAを12.2g(39.3mmol)に変更し、さらにODPAと同じタイミングでBPDAを3.86g(13.1mmol)投入したこと以外は合成例1と同様にしてポリイミド前駆体樹脂組成物を得た。得られた組成物中のポリイミド前駆体の重量平均分子量(Mw)は116000であった。
Synthesis example 13
2.55 g (10.3 mmol) of 3,3'-DDS, 4.44 g (10.3 mmol) of BAPS-m, 9.88 g (30.8 mmol) of TFMB, 12.2 g (39.3 mmol) of ODPA. A polyimide precursor resin composition was obtained in the same manner as in Synthesis Example 1 except that 3.86 g (13.1 mmol) of BPDA was added at the same timing as ODPA. The weight average molecular weight (Mw) of the polyimide precursor in the obtained composition was 116000.
 合成例14
 3,3’-DDSを6.22g(25.1mmol)、BAPS-mを10.8g(25.1mmol)、ODPAを15.9g(51.2mmol)に変更し、TFMBを用いなかったこと以外は合成例1と同様にしてポリイミド前駆体樹脂組成物を得た。得られた組成物中のポリイミド前駆体の重量平均分子量(Mw)は64000であった。
Synthesis example 14
Other than changing 3,3'-DDS to 6.22 g (25.1 mmol), BAPS-m to 10.8 g (25.1 mmol), ODPA to 15.9 g (51.2 mmol), and not using TFMB. Obtained a polyimide precursor resin composition in the same manner as in Synthesis Example 1. The weight average molecular weight (Mw) of the polyimide precursor in the obtained composition was 64,000.
 合成例15
 3,3’-DDSを4,4’-DDSに変更したこと以外は合成例4と同様にしてポリイミド前駆体樹脂組成物を得た。得られた組成物中のポリイミド前駆体の重量平均分子量(Mw)は81000であった。
Synthesis example 15
A polyimide precursor resin composition was obtained in the same manner as in Synthesis Example 4 except that 3,3'-DDS was changed to 4,4'-DDS. The weight average molecular weight (Mw) of the polyimide precursor in the obtained composition was 81000.
 合成例16
 3,3’-DDSを5.38g(21.7mmol)、TFMBを10.4g(32.5mmol)、ODPAを17.1g(55.3mmol)に変更し、BAPS-mを用いなかったこと以外は合成例1と同様にしてポリイミド前駆体樹脂組成物を得た。得られた組成物中のポリイミド前駆体の重量平均分子量(Mw)は90000であった。
Synthesis example 16
Other than changing 3,3'-DDS to 5.38 g (21.7 mmol), TFMB to 10.4 g (32.5 mmol), ODPA to 17.1 g (55.3 mmol), and not using BAPS-m. Obtained a polyimide precursor resin composition in the same manner as in Synthesis Example 1. The weight average molecular weight (Mw) of the polyimide precursor in the obtained composition was 90000.
 実施例1~21および比較例1~4
 ポリイミド前駆体樹脂組成物として表1に記載のものを用い、キュア条件を表1に記載の通りに設定して上記(2)に記載の方法でポリイミド樹脂膜を作製した。得られたポリイミド樹脂膜の試験結果を以下の表2に示す。
Examples 1 to 21 and Comparative Examples 1 to 4
A polyimide resin film was prepared by using the polyimide precursor resin composition shown in Table 1 and setting the curing conditions as shown in Table 1 by the method described in (2) above. The test results of the obtained polyimide resin film are shown in Table 2 below.
Figure JPOXMLDOC01-appb-T000016
Figure JPOXMLDOC01-appb-T000016
Figure JPOXMLDOC01-appb-T000017
Figure JPOXMLDOC01-appb-T000017
 実施例1~21においては良好な機械特性、レーザー剥離性、光学特性、耐熱酸化性を有していることが確認できた。また、回路の一例としてポリイミド樹脂膜上に絶縁層および導電性配線を形成して、体積抵抗、折り曲げ耐性を評価したところ、良好な特性が確認できた。 It was confirmed that Examples 1 to 21 had good mechanical properties, laser peeling properties, optical properties, and heat-resistant oxidizing properties. Further, as an example of the circuit, when an insulating layer and a conductive wiring were formed on the polyimide resin film and the volume resistance and the bending resistance were evaluated, good characteristics were confirmed.
 比較例1はキュアが十分に進んでいないため分子間相互作用が弱く、機械特性が劣る結果となったと考えられる。また、膜中に多く残留したGBLがキュア工程で導電性配線に作用し、導電性を悪化させたと考えられる。 It is probable that in Comparative Example 1, since the cure was not sufficiently advanced, the intermolecular interaction was weak and the mechanical properties were inferior. Further, it is considered that a large amount of GBL remaining in the film acts on the conductive wiring in the curing process to deteriorate the conductivity.
 比較例2においては式(1)で表される構造単位を含まないため、得られたポリイミド膜の機械強度が低下したと考えられる。比較例3においては3,3’-DDSに変えて4,4’-DDSを用いたため、得られたポリイミド樹脂膜の黄色度が上昇し、さらに機械強度が低下したものと考えられる。比較例4においてはBAPS-mを含まないため、ポリイミド膜の耐薬品性が低下したものと考えられる。また、絶縁性組成物を塗布した際にクラックが生じたため、導電性並びに折り曲げ試験の実施ができなかった。 Since the structural unit represented by the formula (1) is not included in Comparative Example 2, it is considered that the mechanical strength of the obtained polyimide film is lowered. In Comparative Example 3, since 4,4'-DDS was used instead of 3,3'-DDS, it is considered that the yellowness of the obtained polyimide resin film was increased and the mechanical strength was further decreased. Since BAPS-m is not contained in Comparative Example 4, it is considered that the chemical resistance of the polyimide film is lowered. Further, since cracks were generated when the insulating composition was applied, the conductivity and bending test could not be performed.
1 ベースライン
2 3400~3700cm-1の範囲に存在する最大ピークの強度
3 1480~1510cm-1の範囲に存在する最大ピークの強度
1 Baseline 2 Intensity of maximum peak in the range of 3400 to 3700 cm -1 Intensity of maximum peak in the range of 1480 to 1510 cm -1

Claims (14)

  1. 式(1)で表されるポリイミド構造単位Aと、式(2)で表されるポリイミド構造単位Bと、式(3)で表されるポリイミド構造単位Cと、を含むポリイミドであり、当該ポリイミドを厚さ10μmの樹脂膜としたときのIRスペクトルにおいて、1480~1510cm-1の範囲に存在する最大ピーク強度をY、3400~3700cm-1の範囲に存在する最大ピーク強度をZとした時に、下記式を満たすことを特徴とする、ポリイミド。
    式)0.1≦Z/Y≦0.4
    Figure JPOXMLDOC01-appb-C000001
    (Xは、直接結合または酸素原子を表す。Xは、酸素原子、-C(CF-、-C(CH-または-Si(CH-を表す。Xは、直接結合、-SO-、-C(CH-または-C(CF-を表す。)
    A polyimide containing a polyimide structural unit A represented by the formula (1), a polyimide structural unit B represented by the formula (2), and a polyimide structural unit C represented by the formula (3). In the IR spectrum when a resin film having a thickness of 10 μm is used, when the maximum peak intensity existing in the range of 1480 to 1510 cm -1 is Y and the maximum peak intensity existing in the range of 3400 to 3700 cm -1 is Z, A polyimide characterized by satisfying the following formula.
    Equation) 0.1 ≤ Z / Y ≤ 0.4
    Figure JPOXMLDOC01-appb-C000001
    (X 1 represents a direct bond or an oxygen atom. X 2 represents an oxygen atom, -C (CF 3 ) 2- , -C (CH 3 ) 2- or -Si (CH 3 ) 2-. 3 represents direct binding, -SO 2- , -C (CH 3 ) 2- or -C (CF 3 ) 2- ).
  2. 前記ポリイミド構造単位Aと前記ポリイミド構造単位Bと前記ポリイミド構造単位Cとの合計量が、全ポリイミド構造単位の80モル%以上である、請求項1に記載のポリイミド。 The polyimide according to claim 1, wherein the total amount of the polyimide structural unit A, the polyimide structural unit B, and the polyimide structural unit C is 80 mol% or more of the total polyimide structural units.
  3. 前記ポリイミド構造単位Aが下記式(4)で表される構造単位である、請求項1または2に記載のポリイミド。
    Figure JPOXMLDOC01-appb-C000002
    (Xは直接結合または酸素原子を表す。)
    The polyimide according to claim 1 or 2, wherein the polyimide structural unit A is a structural unit represented by the following formula (4).
    Figure JPOXMLDOC01-appb-C000002
    (X 1 represents a direct bond or an oxygen atom.)
  4. 前記ポリイミド構造単位Bが下記式(5)で表される構造単位である、請求項1~3のいずれかに記載のポリイミド。
    Figure JPOXMLDOC01-appb-C000003
    The polyimide according to any one of claims 1 to 3, wherein the polyimide structural unit B is a structural unit represented by the following formula (5).
    Figure JPOXMLDOC01-appb-C000003
  5. 前記ポリイミド構造単位Cが下記式(6)で表される構造単位である、請求項1~4のいずれかに記載のポリイミド。
    Figure JPOXMLDOC01-appb-C000004
    The polyimide according to any one of claims 1 to 4, wherein the polyimide structural unit C is a structural unit represented by the following formula (6).
    Figure JPOXMLDOC01-appb-C000004
  6. 請求項1~5のいずれかに記載のポリイミドを含むポリイミド樹脂膜。 A polyimide resin film containing the polyimide according to any one of claims 1 to 5.
  7. ガラス転移温度が220℃以上250℃以下である、請求項6に記載のポリイミド樹脂膜。 The polyimide resin film according to claim 6, wherein the glass transition temperature is 220 ° C. or higher and 250 ° C. or lower.
  8. γ-ブチロラクトンを、ポリイミド樹脂膜の重量に対して1ppm以上1000ppm以下の範囲で含有する、請求項6または7に記載のポリイミド樹脂膜。 The polyimide resin film according to claim 6 or 7, which contains γ-butyrolactone in a range of 1 ppm or more and 1000 ppm or less with respect to the weight of the polyimide resin film.
  9. アミド系溶剤を含まない、請求項6~8のいずれかに記載のポリイミド樹脂膜。 The polyimide resin film according to any one of claims 6 to 8, which does not contain an amide solvent.
  10. 請求項6~9のいずれかに記載のポリイミド樹脂膜上に絶縁層および/または導電層を備える、積層体。 A laminate comprising an insulating layer and / or a conductive layer on the polyimide resin film according to any one of claims 6 to 9.
  11. 請求項6~9のいずれかに記載のポリイミド樹脂膜上に絶縁層および導電層を備える積層体であって、前記絶縁層および導電層のいずれもが酸化防止剤を含む積層体。 A laminate having an insulating layer and a conductive layer on the polyimide resin film according to any one of claims 6 to 9, wherein both the insulating layer and the conductive layer contain an antioxidant.
  12. 前記酸化防止剤がアミノ基またはフェノール性水酸基を含有する化合物である、請求項11に記載の積層体。 The laminate according to claim 11, wherein the antioxidant is a compound containing an amino group or a phenolic hydroxyl group.
  13. 請求項6~9のいずれかに記載のポリイミド樹脂膜または請求項10~12のいずれかに記載の積層体を備えたフレキシブルデバイス。 A flexible device comprising the polyimide resin film according to any one of claims 6 to 9 or the laminate according to any one of claims 10 to 12.
  14. 前記フレキシブルデバイスが、フレキシブルタッチパネル、フレキシブル太陽電池またはフレキシブル透明アンテナである、請求項13に記載のフレキシブルデバイス。 The flexible device according to claim 13, wherein the flexible device is a flexible touch panel, a flexible solar cell, or a flexible transparent antenna.
PCT/JP2020/042409 2019-11-25 2020-11-13 Polyimide, polyimide resin film, multilayer body and flexible device WO2021106627A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2020564510A JPWO2021106627A1 (en) 2019-11-25 2020-11-13

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2019212256 2019-11-25
JP2019-212256 2019-11-25

Publications (1)

Publication Number Publication Date
WO2021106627A1 true WO2021106627A1 (en) 2021-06-03

Family

ID=76130108

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2020/042409 WO2021106627A1 (en) 2019-11-25 2020-11-13 Polyimide, polyimide resin film, multilayer body and flexible device

Country Status (3)

Country Link
JP (1) JPWO2021106627A1 (en)
TW (1) TW202120600A (en)
WO (1) WO2021106627A1 (en)

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH05222194A (en) * 1992-02-13 1993-08-31 Hitachi Chem Co Ltd Preparation of polyamic acid
JP2011183370A (en) * 2010-02-12 2011-09-22 Ube Industries Ltd Polyimide gas separation membrane and gas separation method
CN102604385A (en) * 2012-03-27 2012-07-25 清华大学 Colorless and high transparent flexible polyimide film and preparation method thereof
JP2015229691A (en) * 2014-06-03 2015-12-21 旭化成イーマテリアルズ株式会社 Polyimide precursor composition and polyimide film
WO2018084067A1 (en) * 2016-11-01 2018-05-11 東レ株式会社 Touch panel and method for producing touch panel
JP2018131601A (en) * 2017-02-15 2018-08-23 律勝科技股▲分▼有限公司 Polyimide resin, method for producing the same, and thin film
JP2019094499A (en) * 2015-04-17 2019-06-20 旭化成株式会社 Resin composition, polyimide resin film, and method for producing the same
JP2020003787A (en) * 2018-06-25 2020-01-09 東レ株式会社 Polyimide, polyimide film, color filter substrate, and display device

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH05222194A (en) * 1992-02-13 1993-08-31 Hitachi Chem Co Ltd Preparation of polyamic acid
JP2011183370A (en) * 2010-02-12 2011-09-22 Ube Industries Ltd Polyimide gas separation membrane and gas separation method
CN102604385A (en) * 2012-03-27 2012-07-25 清华大学 Colorless and high transparent flexible polyimide film and preparation method thereof
JP2015229691A (en) * 2014-06-03 2015-12-21 旭化成イーマテリアルズ株式会社 Polyimide precursor composition and polyimide film
JP2019094499A (en) * 2015-04-17 2019-06-20 旭化成株式会社 Resin composition, polyimide resin film, and method for producing the same
WO2018084067A1 (en) * 2016-11-01 2018-05-11 東レ株式会社 Touch panel and method for producing touch panel
JP2018131601A (en) * 2017-02-15 2018-08-23 律勝科技股▲分▼有限公司 Polyimide resin, method for producing the same, and thin film
JP2020003787A (en) * 2018-06-25 2020-01-09 東レ株式会社 Polyimide, polyimide film, color filter substrate, and display device

Also Published As

Publication number Publication date
TW202120600A (en) 2021-06-01
JPWO2021106627A1 (en) 2021-06-03

Similar Documents

Publication Publication Date Title
JP7152381B2 (en) Resin precursor, resin composition containing the same, polyimide resin film, resin film, and method for producing the same
JP6732871B2 (en) Resin composition, polyimide resin film, and method for producing the same
KR102000855B1 (en) Polyimide precursor resin composition
JP7033171B2 (en) Polyimide film with voids and its manufacturing method
JP6254197B2 (en) Polyimide precursor and resin composition containing the same
JP6086118B2 (en) Polyamic acid solution composition and polyimide
WO2007007730A1 (en) Positive photosensitive resin composition and process for pattern formation
JP7375318B2 (en) Polyimide precursor resin compositions, polyimide resin compositions and films thereof, laminates containing the same, and flexible devices
JP2020023671A (en) Polyimide precursor resin composition, polyimide resin composition and filmy matter thereof, laminate containing the same, and flexible device
KR20230066346A (en) Polymer composition, varnish, and polyimide film
WO2021106627A1 (en) Polyimide, polyimide resin film, multilayer body and flexible device
JPWO2019131896A1 (en) Polyimide, polyimide solution composition, polyimide film, and substrate
CN113166409B (en) Polyimide precursor, polyimide resin film, and flexible device
JP2019038916A (en) SOLUBLE TRANSPARENT POLYIMIDE POLYMERIZED IN γ-BUTYROLACTONE SOLVENT
CN113136103B (en) Polyimide precursor resin composition
JP2024018828A (en) Polyimide precursor composition, polyimide film and polyimide film/substrate laminate

Legal Events

Date Code Title Description
ENP Entry into the national phase

Ref document number: 2020564510

Country of ref document: JP

Kind code of ref document: A

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 20892563

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 20892563

Country of ref document: EP

Kind code of ref document: A1