WO2021106426A1 - Filter inspection system and filter inspection method for fine particle analysis device - Google Patents

Filter inspection system and filter inspection method for fine particle analysis device Download PDF

Info

Publication number
WO2021106426A1
WO2021106426A1 PCT/JP2020/039257 JP2020039257W WO2021106426A1 WO 2021106426 A1 WO2021106426 A1 WO 2021106426A1 JP 2020039257 W JP2020039257 W JP 2020039257W WO 2021106426 A1 WO2021106426 A1 WO 2021106426A1
Authority
WO
WIPO (PCT)
Prior art keywords
filter
unit
filter inspection
gas
threshold value
Prior art date
Application number
PCT/JP2020/039257
Other languages
French (fr)
Japanese (ja)
Inventor
峻 熊野
弘基 水野
永野 久志
野尻 辰夫
Original Assignee
株式会社日立製作所
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社日立製作所 filed Critical 株式会社日立製作所
Publication of WO2021106426A1 publication Critical patent/WO2021106426A1/en

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N1/00Sampling; Preparing specimens for investigation
    • G01N1/02Devices for withdrawing samples
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N15/00Investigating characteristics of particles; Investigating permeability, pore-volume or surface-area of porous materials
    • G01N15/08Investigating permeability, pore-volume, or surface area of porous materials
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N27/00Investigating or analysing materials by the use of electric, electrochemical, or magnetic means
    • G01N27/62Investigating or analysing materials by the use of electric, electrochemical, or magnetic means by investigating the ionisation of gases, e.g. aerosols; by investigating electric discharges, e.g. emission of cathode

Definitions

  • the present invention relates to a technique of a filter inspection system and a filter inspection method in a fine particle analyzer.
  • the substances of fine particles adhering to the inspection object are analyzed.
  • an analyzer that measures deposits quickly and in real time with high sensitivity.
  • an analyzer that measures deposit components adhering to industrial products quickly and in real time with high sensitivity.
  • devices are used at airports and the like to analyze whether fine particles adhering to passengers' hands or luggage are dangerous goods.
  • Patent Document 1 states, "Providing a method for analyzing in real time while continuously collecting and concentrating fine particles.
  • the gas and / or fine particles of the substance to be detected adhering to the certification target 2 are separated by an air flow from the air supply unit 5.
  • the peeled sample is sucked, concentrated and collected by the fine particle collecting unit 10
  • the ion source unit 21 generates ions of the sample
  • the mass spectrometer 23 detects the sample from the obtained mass spectrum.
  • the detection target substance adhering to the certification target 2 is continuously detected in real time quickly and with low false alarm.
  • the analytical method is disclosed (see summary).
  • Patent Document 2 states, "A certification unit that authenticates a target, an air supply unit that generates an injection airflow from at least two different directions with respect to the target, and a gas and / or fine particles separated from the target.
  • An analyzer that includes an analysis determination control unit that determines the presence or absence of the substance to be detected is disclosed (see summary).
  • Patent Documents 1 and 2 also use a cyclone as a part for concentrating and collecting fine particles, and a heated primary filter is placed at the end of the cyclone.
  • a heated primary filter is placed at the end of the cyclone.
  • the intake gas and fine particles are separated, and the fine particles fall to the lower end of the cyclone.
  • the dropped fine particles are gasified by a heated primary filter, and this gas is introduced into a gas analyzer.
  • a secondary filter is installed between the primary filter and the gas analyzer to prevent dust that has passed through the primary filter and dust that has fallen when the primary filter is replaced from entering the gas analyzer.
  • the primary filter and the secondary filter are collectively referred to as a filter.
  • the fine particles may be deposited on the primary filter or the secondary filter as described above.
  • the present invention has been made in view of such a background, and an object of the present invention is to realize appropriate filter replacement.
  • the present invention comprises a first filter unit that is heated, a suction unit that is connected to the downstream side of the first filter unit via a gas pipe and performs suction, and the first filter unit.
  • a filter inspection gas is introduced between the first filter unit, the second filter unit provided between the suction unit, and the first filter unit and the second filter unit.
  • the first pressure measurement unit installed on the downstream side of the second filter unit, and the first pressure value measured by the first pressure measurement unit, the above. It has a control unit that controls a gas introduction unit for filter inspection and a storage unit that stores a first threshold value, which is a predetermined threshold value.
  • the control unit includes the first filter unit and the second filter unit.
  • the filter inspection mode for inspecting the continuity state in the filter unit and the non-filter inspection mode which is a mode other than the filter inspection mode, are executed, and in the filter inspection mode, the gas introduced from the filter inspection gas introduction unit is introduced.
  • the flow rate of the filter inspection gas is increased as compared with the time when the non-filter inspection mode is performed, so that the flow rate of the filter inspection gas is equal to or higher than the flow rate flowing from the first filter section toward the suction section.
  • the output unit prompts the replacement of at least the second filter unit. It is characterized by outputting an alarm.
  • FIG. 1 is a schematic view of a fine particle analysis system 1 according to the first embodiment.
  • the fine particle analysis system 1 has a fine particle analysis device 100 and a control device 200 to which the alarm device 201 and the storage device 202 are connected.
  • the control device 200 acquires a pressure value from the pressure sensor 131 of the fine particle analyzer 100, and controls the filter inspection gas introduction device 101 and the intake device 114.
  • the control device 200 also has a function as a fine particle analysis processing device.
  • the storage device 202 stores threshold values Pt1, Pt2 and the like used for pressure comparison described later. Then, when the filter 120 needs to be replaced, the control device 200 issues an alarm from the alarm device 201.
  • the fine particle analyzer 100 includes a cyclone collecting unit 111, a heater 112, a primary filter 121, a secondary filter 122, a gas introduction device 101 for filter inspection, and a gas analyzer 130.
  • the cyclone collecting unit 111 includes a fine particle suction port 111A, and the gas outside the cyclone collecting unit 111 is sucked from the fine particle suction port 111A by the suction of the intake device 114 connected to the cyclone collecting unit 111.
  • the following methods can be considered as a method for acquiring an inspection object (not shown).
  • the concentration of the exfoliated fine particles M in the air is very low, it is difficult to perform the analysis by the gas analyzer 130 as it is. Therefore, the concentration of the separated fine particles M is increased by the cyclone collecting portion 111 provided between the gas analyzer 130 and the fine particle suction port 111A. By doing so, the analysis by the gas analyzer 130 can be performed.
  • the cyclone collecting unit 111 separates and concentrates the fine particles M sucked together with the air flow.
  • a mass spectrometer or an ion mobility analyzer which is a typical gas analyzer 130, can generally suck only a sample flow rate of 1 L / min or less. For example, it is assumed that the fine particles M are peeled off by injecting gas from the air nozzle at a flow rate of 40 L / min. If the gas analyzer 130 sucks only 1 L / min in the air flow of 40 L / min, the inspection sensitivity becomes 1/40.
  • the cyclone collecting unit 111 installed between the fine particle suction port 111A and the gas analyzer 130 separates and concentrates the deposits.
  • the cyclone collecting unit 111 can collect a sample having a particle size and density above a certain level to the lower part of the cyclone collecting unit 111 by utilizing centrifugal force.
  • the fine particles M having a particle size of 1 ⁇ m or more rotate in the cyclone collecting portion 111 and are separated into the outer peripheral side in the cyclone collecting portion 111 by centrifugal force.
  • the radius of gyration decreases toward the bottom of the cyclone collecting portion 111.
  • the separated fine particles M settle to the lower end of the cyclone collecting portion 111 (arrow A2).
  • the other fine particles M (particle size less than 1 ⁇ m) are discharged from the suction pipe 117 by the intake device 114 together with the air flow (arrow A1).
  • the minimum particle size (separation limit particle size) of the fine particles M separated from the air flow by the rotational motion changes depending on the configuration of the cyclone collecting unit 111 and the suction flow rate of the intake device 114.
  • explosive fine particles which are dangerous substances, usually have a particle size of about 5 to 100 ⁇ m, so it is preferable to recover the fine particles M having this particle size. Even if chemical substances, harmful substances, dangerous substances, combustible substances, biological agents, viruses, fungi, genes, environmental substances, etc. are detected as long as they are attached to the inspection target as well as explosive particles. Good.
  • the fine particles M collected at the lower part of the cyclone collecting unit 111 settle to the heater 112 as they are.
  • the heater 112 is provided with a primary filter 121.
  • the settled fine particles M are collected by the primary filter 121 and vaporized by being heated by the heater 112.
  • the vaporized fine particles M pass through the secondary filter 122 and are introduced into the gas analyzer 130.
  • the secondary filter 122 has a role of preventing the fine particles M that have passed through the primary filter 121 from being introduced into the gas analyzer 130.
  • the primary filter 121 and the secondary filter 122 are collectively referred to as a filter 120.
  • the primary filter 121 may be removed from the fine particle analyzer 100.
  • the secondary filter 122 prevents the fine particles M deposited inside the primary filter 121 and the cyclone collecting unit 111 from falling and being introduced into the gas analyzer 130.
  • the heater 112 heats the fine particles M at, for example, 200 ° C.
  • the temperature of the heater 112 may be any temperature as long as the collected fine particles M can be vaporized, and may be changed depending on the components of the fine particles M to be inspected.
  • the primary filter 121 and the secondary filter 122 may have a filtration accuracy that can capture fine particles M having a particle size of 1 ⁇ m or more.
  • a stainless steel filter having a filtration accuracy of 1 to 50 ⁇ m or the like is used as the primary filter 121 and the secondary filter 122.
  • the diameter and filtration accuracy of the primary filter 121 and the secondary filter 122 do not necessarily have to be the same.
  • gas pipe 115 connecting the heater 112 and the secondary filter 122 and the gas pipe 116 connecting the secondary filter 122 and the gas analyzer 130 are also heated. This is to prevent the molecules vaporized by the heater 112 from adsorbing to the inner wall of the gas pipe 115.
  • the gas analyzer 130 for example, a linear ion trap mass spectrometer or the like is used. Further, as the gas analyzer 130, a quadrupole ion trap mass spectrometer, a quadrupole filter mass spectrometer, a triple quadrupole mass spectrometer, a time-of-flight mass spectrometer, a magnetic field mass spectrometer, etc. are applied. You may. Further, as the gas analyzer 130, an ion mobility analyzer or the like may be used. Further, as the gas analyzer 130, an apparatus in which an ion mobility analyzer and a mass spectrometer are connected can also be used.
  • the gas analyzer 130 may be used as the gas analyzer 130.
  • the semiconductor sensor may be used as the gas analyzer 130. That is, the gas analyzer 130 may be anything as long as it can analyze the gasified sample.
  • the control device 200 analyzes the mass spectrum measured by the gas analyzer 130, and identifies the components of the fine particles M and the concentration from the mass spectrum.
  • the storage device 202 stores a database of dangerous goods in advance. In this database, a specified threshold value for identifying the components of dangerous substances and determining the concentration is set. When the concentration of the detected component exceeds the specified threshold value, the control device 200 makes a positive determination.
  • the mass spectrometer but also other gas analyzers such as the ion mobility analyzer 130 analyze the fine particles M by collating with the database stored in the storage device 202.
  • the pressure sensor 131 will be described later.
  • the fine particle analyzer 100 can collect the collected fine particles M by the cyclone collecting unit 111, heat and vaporize them, and perform a series of analysis sequences of analysis by the gas analyzer 130 in real time and automatically. ..
  • the problem of the fine particle analyzer 100 is that a large amount of fine particles M are sucked at once or operated for a long time, and as a result, when a large amount of fine particles M is sucked, the primary filter 121 and the cyclone are collected. Fine particles M are deposited on the inner wall of the portion 111 and the secondary filter 122.
  • the fine particles M are deposited on the primary filter 121, even if new fine particles M fall on the fine particles M, heat is not transferred and they do not vaporize, or even if they are vaporized, the fine particles M deposited on the primary filter 121 are inspected. It occurs that the target molecule is adsorbed. Similarly, if the fine particles M are deposited on the secondary filter 122, the inspection target molecules flowing from the primary filter 121 are adsorbed on the deposit of the secondary filter 122.
  • the inspection target molecule is not introduced into the gas analyzer 130, which causes a decrease in the sensitivity of the fine particle analyzer 100.
  • FIG. 2 is a diagram showing the signal intensity obtained by the gas analyzer 130 when the RDX fine particles, which are one of the explosives, are introduced into the cyclone collecting unit 111.
  • a case where the secondary filter 122 is normal (reference numeral H1) and a case where deposits are accumulated and the conductance (conduction state) is lowered (reference numeral H2) are compared.
  • the RDX gas vaporized by the primary filter 121 is adsorbed on the deposits on the secondary filter 122, so that the sensitivity is lowered as shown by reference numeral H2.
  • the lines shown above the symbols H1 and H2 indicate the standard deviation.
  • the gas analyzer 130 is provided with a pressure sensor 131.
  • the pressure sensor 131 is installed in the ion source 132 connected to the gas pipe 115.
  • the decrease in conductance in the filter 120 can be detected as a decrease in pressure obtained by the pressure sensor 131.
  • the pressure is affected by both the primary filter 121 and the secondary filter 122. Therefore, with the conventional technology, it is not possible to determine which filter 120 causes the conductance decrease.
  • the reference numeral M1 will be described later.
  • the filter inspection gas introduction device 101 is provided in the gas pipe 115.
  • the filter inspection gas introduction device 101 introduces the filter inspection gas into the gas pipe 115.
  • FIG. 3A is a diagram showing a gas flow state in the fine particle analyzer 100 when the introduction flow rate of the filter inspection gas from the filter inspection gas introduction device 101 is 0 L / min.
  • FIG. 3B is a diagram showing a gas flow state in the fine particle analyzer 100 when the introduction flow rate of the filter inspection gas from the filter inspection gas introduction device 101 is 1 L / min.
  • the filter inspection gas introduction device 101 is installed in order to determine which of the primary filter 121 and the secondary filter 122 has the conductance decrease.
  • the fine particle analyzer 100 is in the following state (see FIG. 3A).
  • Q is the flow rate sucked by the gas analyzer 130
  • P1 is the measured value of the pressure sensor 131 in the gas analyzer 130.
  • C1 is the conductance of the primary filter 121
  • C2 is the conductance of the secondary filter 122.
  • the suction flow rate Q of the gas analyzer 130 is constant.
  • the pressure P1 measured by the pressure sensor 131 is affected by both the conductor C1 of the primary filter 121 and the conductor C2 of the secondary filter 122. That is, even if the pressure P1 measured by the pressure sensor 131 changes, it is unknown whether the conductance of the secondary filter 122 has changed.
  • the amount of the filter inspection gas introduced from the filter inspection gas introduction device 101 coincides with the suction flow rate of the gas analyzer 130. Therefore, in the gas pipe 115, the flow rate on the upstream side of the filter inspection gas introduction device 101 (Q2 in FIG. 3B) is 0 L / min.
  • the relational expression represented by the following equation (3) holds. Then, the equation (4) is derived from the equation (3).
  • FIGS. 4A and 4B are diagrams showing the measured values by the pressure sensor 131 when deposits are generated on the primary filter 121 and the secondary filter 122 and the conductance is lowered.
  • FIG. 4A shows the measured value by the pressure sensor 131 when the flow rate of the filter inspection gas from the filter inspection gas introduction device 101 is 0 L / min.
  • FIG. 4B is a measured value of the pressure sensor 131 when the flow rate of the filter inspection gas from the filter inspection gas introduction device 101 is 1 L / min.
  • the pressure P1 decreases when the secondary filter 122 is deposited, regardless of whether or not the primary filter 121 is deposited.
  • the pressure P1 is determined by the conductance of the secondary filter 122. Because.
  • the primary filter 121 to the pressure sensor 131 is matched.
  • the effect of can be made invisible. Therefore, by comparing the pressure P1 before and after the introduction of the filter inspection gas by the filter inspection gas introduction device 101, it is possible to determine whether or not the fine particles M are deposited on at least the primary filter 121.
  • the fine particle analyzer 100 in the present embodiment has two states, an analysis mode and a filter inspection mode, and the amount of the filter inspection gas introduced from the filter inspection gas introduction device 101 in the analysis mode and the filter inspection mode. It is characterized by changing. It is not always necessary to set the filter inspection gas introduction amount from the filter inspection gas introduction device 101 in the analysis mode to 0 L / min. For example, in the analysis mode, the filter inspection gas of about 0.1 L / min may be introduced into the gas pipe 115 from the filter inspection gas introduction device 101.
  • the filter inspection gas introduction device 101 may introduce the analysis support substance M1 into the gas pipe 151 separately from the role of the filter inspection.
  • the analysis support substance M1 is an internal standard substance, a dopant that increases the sensitivity of the gas analyzer 130, and the like.
  • the gas analyzer 130 is a mass spectrometer
  • the accuracy of the mass-to-charge ratio which is the horizontal axis of the mass spectrum obtained as data, is important.
  • the output of the internal voltage of the gas analyzer 130 changes due to the temperature rise of the gas analyzer 130 or the like, the measured mass-to-charge ratio shifts. In order to correct this deviation, it is common practice to always introduce an internal standard substance into the gas analyzer 130 at a constant concentration.
  • an internal standard substance or a dopant may be used as the filter inspection gas.
  • an internal standard substance or a dopant may be used in the analysis mode, and an internal standard substance or a filter inspection gas different from the dopant may be used in the filter inspection mode.
  • the fine particle analyzer 100 in this embodiment can be operated unattended. Therefore, there is a need for a function of automatically determining whether or not the sensitivity of the fine particle analyzer 100 has decreased. If a certain amount of the internal standard substance is always introduced, the control device 200 can grasp the sensitivity state based on the gas analysis result of the substance.
  • both positive and negative ions have been analyzed, it is advisable to introduce both positive and negative internal standards.
  • 10,6-Tribromoresorcinol, 5-Bromo, 2-Chlorophenol, 4, 4'-Dimethylbenzophenone and the like may be introduced.
  • an organic acid such as lactic acid.
  • the internal standard substance and the dopant can be introduced from the filter inspection gas introduction device 101 at about 0.1 L / min in the analysis mode, and the introduction flow rate can be increased in the filter inspection mode.
  • the introduction of the analysis support substance M1 (internal standard substance, dopant) can be omitted.
  • FIG. 5 is a flowchart showing a filter inspection procedure in the fine particle analysis system 1 of the first embodiment.
  • a mass spectrometer is used as the gas analyzer 130, and the suction flow rate of the gas analyzer 130 is assumed to be 1 L / min.
  • the pressure sensor 131 is installed in the ion source 132 of the gas analyzer 130 (mass spectrometer) and monitors the pressure of the ion source 132.
  • the filter inspection gas introduction device 101 is used not only for the filter inspection but also as an internal standard substance gas introduction mechanism, and in the analysis mode, the internal standard substance gas is introduced at a flow rate of 0.1 L / min.
  • the fine particle analyzer 100 is operating in the analysis mode (S101).
  • the intake device 114 is operating, and the fine particles M are collected by the cyclone phenomenon.
  • the analysis support substance M1 (internal standard substance or dopant) is introduced into the gas pipe 115 at 0.1 L / min from the filter inspection gas introduction device 101.
  • the introduction of the analysis support substance M1 can be omitted.
  • the control device 200 constantly monitors the pressure P1 in the ion source 132, and continuously determines whether or not the pressure P1 is equal to or less than the preset threshold value Pt1 (S102). ).
  • step S102 The determination in step S102 is referred to as a first check.
  • the control device 200 returns the process to step S101 and returns the process to the monitoring of the pressure P1 in the analysis mode.
  • the control device 200 shifts the mode of the fine particle analyzer 100 from the analysis mode to the filter inspection mode (S103).
  • the control device 200 Upon transition to the filter inspection mode, the control device 200 stops the intake device 114 (S104). By doing so, the area upstream of the primary filter 121 can be regarded as atmospheric pressure (1 atm). In that state, the control device 200 increases the introduction flow rate (flow rate) of the filter inspection gas from the filter inspection gas introduction device 101 from 0.1 L / min to 1 L / min (S105). Then, the control device 200 determines whether or not the pressure P1 after executing step S105 is equal to or less than the threshold value Pt2 (S106). The determination in step S106 is referred to as a second check.
  • the threshold value Pt1 and the threshold value Pt2 are values determined by the primary filter 121 and the secondary filter 122, and Pt1> Pt2.
  • the control device 200 gives an alarm (replacement alarm) to replace at least the secondary filter 122.
  • An alarm is issued from the device 201 (S107).
  • the control device 200 sets an alarm (replacement alarm) for replacement of the primary filter 121 to the alarm device 201. Is issued from (S108).
  • FIG. 6 is a diagram showing a modified example of the first embodiment.
  • the conductance of both the primary filter 121 and the secondary filter 122 can be calculated.
  • the second check may be performed periodically instead of executing the second check only when the pressure P1 monitored in the first check is equal to or less than the threshold value Pt1.
  • the pressure P1 has a change in conductance with time as shown in FIG.
  • the control device 200 can also estimate the exchange prediction time D1 (dotted line L2) from the actual change in conductance (solid line L1) and notify the user of the estimated exchange prediction time D1.
  • the pressure P1 used for the filter inspection the internal pressure of the gas analyzer 130, specifically, the pressure at the ion source 132 of the mass spectrometer or the ion mobility analyzer is measured.
  • the pressure P1 used for the filter inspection is not limited to this, and a value measured on the downstream side of the secondary filter 122 may be used.
  • the pressure of the gas pipe 116 connecting the secondary filter 122 and the gas analyzer 130 may be measured.
  • the pressure sensor 131 provided in the ion source 132 of the gas analyzer 130 it is not necessary to install a new pressure sensor 131.
  • the upstream pressure of the primary filter 121 can be considered as atmospheric pressure by stopping the intake device 114. Therefore, the introduction flow rate Q1 of the filter inspection gas and the suction flow rate Q of the gas analyzer 130 can be easily matched.
  • the first check is performed, and when "Yes" is determined as a result of the first check, the mode is changed to the filter inspection mode. By doing so, it is possible to prevent unnecessary filter inspection from being performed.
  • FIG. 7 is a diagram showing a gas flow state in the second embodiment.
  • the pressure P1 is represented by the equation (4) by matching the suction flow rate Q of the gas analyzer 130 with the introduction flow rate Q1 of the filter inspection gas introduction device 101. ing.
  • these flow rates do not have to be exactly the same.
  • Q1 and Q2 are the same as those in the equations (1) to (4).
  • equation (13) becomes equation (3) when Q2 is zero.
  • the conductance C2 of the secondary filter 122 is determined by the pressure P1
  • the error becomes large when the flow rate of Q1 is large. Therefore, it is not always necessary to set Q2 to 0 L / min, but it is desirable to make a judgment under the condition that Q2 is as small as possible. At least, it is desirable that Q1 is larger than Q2.
  • FIG. 8 is a flowchart showing a filter inspection procedure in the fine particle analysis system 1 of the third embodiment.
  • the control device 200 increases the introduction flow rate Q1 of the filter inspection gas to 2 L / min in the filter inspection mode (S105a). After that, the control device 200 also increases the suction flow rate Q of the gas analyzer 130 from 1 L / min in the analysis mode to 2 L / min (S201). After that, the control device 200 performs the second check. As shown by the equation (4), the monitored pressure P1 decreases as the conductance C2 of the secondary filter 122 increases and as the flow rate Q decreases.
  • the suction flow rate Q is appropriately changed between the analysis mode and the filter inspection mode. Note that each flow rate is not limited to these values.
  • the same effect as that of the first embodiment can be obtained even if the suction flow rate by the gas analyzer 130 changes in the filter inspection mode.
  • FIG. 9 is a flowchart showing a filter inspection procedure in the fine particle analysis system 1 of the fourth embodiment.
  • the first check (S102) is followed by the cleaning process (S301) of the primary filter 121, and then the third check (S302) is performed on the flowchart shown in FIG.
  • an air nozzle (not shown) is installed in the cyclone collecting unit 111 or the heater 112, and high-speed gas is injected into the primary filter 121 to inject high-speed gas to deposits on the primary filter 121.
  • a method of blowing off is conceivable.
  • the control device 200 performs the third check (S302).
  • the content of the third check is the same as the content of the first check.
  • the control device 200 returns the process to step S101 and shifts to the analysis mode again.
  • the third check if the pressure P1 remains below the threshold value Pt1 even after cleaning and does not recover (S302 ⁇ Yes), the primary filter 121 cannot be completely cleaned or the conductance of the secondary filter 122 decreases. Since it cannot be determined whether or not the control device 200 is used, the control device 200 shifts to the filter inspection mode in step S103.
  • the fourth embodiment when "Yes" is detected in the first check, it is suspected that fine particles M are deposited on the primary filter 121, and the primary filter 121 is first washed. After that, the third check similar to the first check is performed, and if "Yes” is still detected, the accumulation of fine particles M on the secondary filter 122 is suspected, and the mode shifts to the filter inspection mode. By doing so, the number of transitions to the filter inspection mode can be reduced, and the stop time of gas analysis by the gas analyzer 130 can be reduced.
  • FIG. 10 is a diagram showing the configuration of the fine particle analysis system 1a according to the fifth embodiment
  • FIG. 11 is a flowchart showing a procedure for filter inspection in the fine particle analyzer 100a according to the fifth embodiment.
  • the internal pressure sensor 141 for measuring the internal pressure of the cyclone collecting unit 111 is connected to the suction pipe 117 of the cyclone collecting unit 111.
  • the filter inspection is performed after the intake device 114 is stopped, so that the internal pressure P upstream of the primary filter 121, that is, the cyclone collecting unit 111 is atmospheric pressure (1 atm). I've been thinking.
  • Pcyc is a measured value of the internal pressure sensor 141.
  • step S104 the process of “stopping the intake device 114” in step S104 is omitted from the flowchart shown in FIG. 5, and the other steps are the same as the flowchart of FIG. The explanation of is omitted.
  • the time required for stopping / restarting the intake device 114 is not required, and the time for filter inspection can be shortened.
  • the conductance C2 at the time of inspection of the secondary filter 122 can be calculated. Further, by applying the calculated conductance C2 of the secondary filter 122 to the equations (1) and (2), it is possible to calculate the conductance C1 of the primary filter 121 at the time of inspection. According to this method, both the conductance C1 of the primary filter 121 and the conductance C2 of the secondary filter 122 can be calculated by one pressure sensor 131. Then, if the conductance of both filters 120 in a normal state is measured in advance, the control device 200 can determine whether or not replacement is necessary based on the conductance value at the time of inspection.
  • FIG. 12 is a flowchart showing a filter inspection procedure in the fine particle analysis system 1 of the sixth embodiment.
  • the control device 200 determines whether or not the calculated conductance C2 of the secondary filter 122 is less than the preset threshold value Ct2 (). S401). The determination in step S401 is referred to as a fourth check.
  • the control device 200 calculates the conductance C2 of the secondary filter 122 based on the pressure P1 acquired before step S106 and the equation (4).
  • step S108 when the conductance C2 of the secondary filter 122 is equal to or higher than the threshold value Ct2 (S401 ⁇ No), the control device 200 executes the process of step S108.
  • the control device 200 issues an alarm (replacement alarm) to replace the secondary filter 122 from the alarm device 201.
  • an exchange alarm is issued to the effect that at least the secondary filter 122 is exchanged.
  • step S107a of FIG. 12 the replacement alarm is issued only for the secondary filter 122.
  • Other processing is the same as the processing of FIG.
  • step S401 the control device 200 may determine whether the conductance C1 of the primary filter 121 is larger than the preset threshold value Ct1.
  • the replacement determination threshold may be set by conductance or by the pressure measured by the pressure sensor 131.
  • the first check and the second chuck have a one-step threshold value determination, but the present invention is not limited to this, and a multi-step threshold value determination may be used.
  • the control device 200 issues a caution alarm for a decrease in conductance of the filter 120 and necessarily requests replacement. It does not have to be.
  • the control device 200 issues an alarm (replacement alarm) prompting the replacement of the filter 120, and replaces or cleans the filter 120 to replace the filter 120. It may be set that the analysis mode cannot be returned until the conductance is restored to the normal level.
  • Both the first check and the second check are effective in having a plurality of threshold values.
  • FIG. 13 is a flowchart showing a filter inspection procedure in the fine particle analysis system 1 of the seventh embodiment.
  • the control device 200 determines whether or not the pressure P1 is equal to or less than the preset threshold value Pt11 (S501).
  • the determination process in step S501 is referred to as a fifth check.
  • the control device 200 returns the process to step S101.
  • the control device 200 determines whether or not the pressure P1 is equal to or less than the preset threshold value Pt12 (S502).
  • step S502 The determination process in step S502 is referred to as a sixth check.
  • the control device 200 issues a caution alarm (S503), and returns the process to step S101.
  • the caution alarm warns that the filter 120 is about to be replaced.
  • the control device 200 proceeds to step S103.
  • step S105 the control device 200 determines whether or not the pressure P1 is equal to or lower than the preset threshold value Pt21 (S511).
  • the determination process in step S511 is referred to as a seventh check.
  • the control device 200 issues a caution alarm (S512), and proceeds to step S108.
  • the caution alarm warns that the secondary filter 122 may be about to be replaced.
  • the control device 200 determines whether or not the pressure P1 is equal to or less than the preset threshold value Pt22 (S513).
  • step S513 The determination process in step S513 is referred to as an eighth check.
  • Pt21> Pt22 the control device 200 proceeds to step S108.
  • the control device 200 proceeds to step S107.
  • Other processing is the same as the processing shown in FIG.
  • either the process of steps S501 to S503 and the process of steps S511 to S513 may be omitted.
  • the threshold value determination is performed in two stages, respectively, but the determination may be performed in three or more stages.
  • the user can prepare for the replacement of the filter 120 in advance because the warning for the replacement of the filter 120 is issued before the replacement of the filter 120 is warned.
  • FIG. 14 is a flowchart showing a filter inspection procedure in the fine particle analysis system 1 of the eighth embodiment.
  • the filter 120 is replaced (S601).
  • the filter 120 to be replaced is either the primary filter 121 or the secondary filter 122.
  • step S612 and step S613 are the same as the processing of step S104 and step S105 of FIG.
  • the control device 200 acquires the pressure P1 measured by the pressure sensor 131 (S614). Then, the control device 200 calculates conductances C1 and C2 based on the pressures P1 acquired in each of steps S603 and S614 and the equations (1) to (4) (S615). Next, the control device 200 calculates the threshold values Pt1 and Pt2 used for the pressure determination based on the calculated conductances C1 and C2 (S621) and stores them in the storage device 202 (S622) to update the threshold values Pt1 and Pt2. To do. Here, both the threshold values Pt1 and Pt2 are calculated and updated, but in reality, the threshold values for the exchanged filter 120 may be updated.
  • a threshold value that reflects the difference between the filters 120 before and after the replacement can be used.
  • the eighth embodiment is based on the first embodiment, it can also be applied to the second to seventh embodiments.
  • FIG. 15 is a diagram showing a hardware configuration of the control device 200 according to the first to eighth embodiments.
  • the control device 200 includes a memory 211, a CPU (Central Processing Unit) 212, and a communication device 213.
  • the program stored in the storage device 202 shown in FIG. 1 is loaded in the memory 211.
  • the CPU 212 executes the program loaded in the memory 211.
  • the communication device 213 acquires the pressure P1 from the pressure sensor 131, and transmits an instruction to the filter inspection gas introduction device 101 and the intake device 114.
  • An alarm for replacement of the filter 120 (replacement alarm), a replacement prediction time, and the like may be displayed on a display device (not shown) connected to the control device 200.
  • the control device 200 and the fine particle analyzer 100 may be connected via a network so that the fine particle analyzer 100 can be monitored from the outside.
  • the present invention is not limited to the above-described embodiment, and includes various modifications.
  • the above-described embodiment has been described in detail in order to explain the present invention in an easy-to-understand manner, and is not necessarily limited to those having all the described configurations.
  • it is possible to replace a part of the configuration of one embodiment with the configuration of another embodiment and it is also possible to add the configuration of another embodiment to the configuration of one embodiment.
  • each of the above-mentioned configurations, functions, control devices 200, alarm devices 201, storage devices 202 and the like may be realized by hardware, for example, by designing a part or all of them by an integrated circuit or the like.
  • each of the above-described configurations, functions, and the like may be realized by software by interpreting and executing a program in which a processor such as a CPU 212 realizes each function.
  • a processor such as a CPU 212 realizes each function.
  • HD Hard Disk
  • a memory 211 a memory 211
  • a recording device such as SSD (Solid State Drive)
  • IC Integrated Circuit
  • control lines and information lines are shown as necessary for explanation, and not all the control lines and information lines are necessarily shown in the product. In practice, almost all configurations can be considered interconnected.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Analytical Chemistry (AREA)
  • General Health & Medical Sciences (AREA)
  • Physics & Mathematics (AREA)
  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Pathology (AREA)
  • Biochemistry (AREA)
  • Immunology (AREA)
  • General Physics & Mathematics (AREA)
  • Electrochemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Dispersion Chemistry (AREA)
  • Other Investigation Or Analysis Of Materials By Electrical Means (AREA)
  • Sampling And Sample Adjustment (AREA)

Abstract

In order to achieve appropriate filter replacement, this invention is characterized in that a control device (200) executes a filter-inspection mode in which the conduction states of a primary filter (121) and secondary filter (122) are inspected and a non-filter-inspection mode that is a mode other than the filter-inspection mode, and in the filter-inspection mode, the flow rate of filter inspection gas that is introduced from a filter inspection gas introduction device (101) is made to be higher than in the non-filter inspection mode, the flow rate of the filter inspection gas is made to be higher than or equal to the flow rate of gas flowing from the primary filter (121) toward the gas analysis device (130), and if a first pressure value measured by the pressure sensor (131) is lower than a first threshold stored in the storage device (202), an alarm device (201) at least outputs an alarm prompting the replacement of the secondary filter (122).

Description

微粒子分析装置におけるフィルタ検査システム及びフィルタ検査方法Filter inspection system and filter inspection method in particle analyzer
 本発明は、微粒子分析装置におけるフィルタ検査システム及びフィルタ検査方法の技術に関する。 The present invention relates to a technique of a filter inspection system and a filter inspection method in a fine particle analyzer.
 光学分野や、環境分野等で、検査対象物に付着した微粒子の物質を分析することが行われている。特に、環境分野では環境汚染の状態を把握するために、付着物を迅速、リアルタイムに計測しつつ、高感度に計測する分析装置が求められている。また、工業分野では生産プロセスの管理や品質管理を目的として、工業製品に付着した付着物成分を迅速、リアルタイムに計測しつつ、高感度に計測する分析装置が求められている。セキュリティ分野では、空港等で乗客の手や荷物に付着した微粒子が危険物であるかを分析する装置が用いられている。 In the fields of optics, environment, etc., the substances of fine particles adhering to the inspection object are analyzed. In particular, in the environmental field, in order to grasp the state of environmental pollution, there is a demand for an analyzer that measures deposits quickly and in real time with high sensitivity. Further, in the industrial field, for the purpose of production process control and quality control, there is a demand for an analyzer that measures deposit components adhering to industrial products quickly and in real time with high sensitivity. In the security field, devices are used at airports and the like to analyze whether fine particles adhering to passengers' hands or luggage are dangerous goods.
 また、付着物微粒子だけでなく、大気中の微粒子を分析する装置も必要とされている。例えば、大気汚染の問題となっているPM2.5等の微粒子の成分を分析することは重要である。 In addition, a device that analyzes not only fine particles of deposits but also fine particles in the atmosphere is required. For example, it is important to analyze the components of fine particles such as PM2.5, which is a problem of air pollution.
 特許文献1には、「微粒子を連続で回収濃縮しながら、リアルタイムで分析する方法を提供する。認証対象2に付着する検出対象物質のガス及び/又は微粒子を送気部5からの気流で剥離させ、剥離した試料を吸引し、微粒子捕集部10で濃縮して捕集し、イオン源部21で試料のイオンを生成し、質量分析部23で質量分析する。得られた質量スペクトルから検出対象物質に由来する質量スペクトルの有無を判定し、その結果を表示部27に表示することで、認証対象2に付着した検出対象物質を連続的にリアルタイムで迅速かつ低誤報で検出する」分析装置及び分析方法が開示されている(要約参照)。 Patent Document 1 states, "Providing a method for analyzing in real time while continuously collecting and concentrating fine particles. The gas and / or fine particles of the substance to be detected adhering to the certification target 2 are separated by an air flow from the air supply unit 5. Then, the peeled sample is sucked, concentrated and collected by the fine particle collecting unit 10, the ion source unit 21 generates ions of the sample, and the mass spectrometer 23 detects the sample from the obtained mass spectrum. By determining the presence or absence of a mass spectrum derived from the target substance and displaying the result on the display unit 27, the detection target substance adhering to the certification target 2 is continuously detected in real time quickly and with low false alarm. " And the analytical method is disclosed (see summary).
 また、例えば、特許文献2には、「対象を認証する認証部と、前記対象に対して少なくとも2つの異なる方向から噴射気流を発生させる送気部と、前記対象から剥離したガス及び/又は微粒子を回収する回収口と、前記対象から剥離したガス及び/又は微粒子を吸引する吸気部と、前記送気部の噴射気流及び前記吸気部の吸引を制御する流量制御部と、前記吸引したガス及び/又は微粒子に含まれる検出対象物質を濃縮して捕集する微粒子捕集部と、前記微粒子捕集部から導入される前記検出対象物質を分析する分析部と、前記分析部で分析した結果から前記検出対象物質の有無を判定する分析判定制御部と、を備える」分析装置が開示されている(要約参照)。 Further, for example, Patent Document 2 states, "A certification unit that authenticates a target, an air supply unit that generates an injection airflow from at least two different directions with respect to the target, and a gas and / or fine particles separated from the target. A collection port for collecting the gas and / or an intake unit that sucks the gas and / or fine particles separated from the target, a flow control unit that controls the injection airflow of the air supply unit and the suction of the intake unit, and the sucked gas and / Or from the fine particle collection unit that concentrates and collects the detection target substance contained in the fine particles, the analysis unit that analyzes the detection target substance introduced from the fine particle collection unit, and the results of analysis by the analysis unit. An analyzer that includes an analysis determination control unit that determines the presence or absence of the substance to be detected is disclosed (see summary).
国際公開第2012/063796号International Publication No. 2012/063796 国際公開第2016/027320号International Publication No. 2016/027320
 特許文献1,2に記載の技術でも微粒子の濃縮・捕集部としてサイクロンを利用し、サイクロンの末端に加熱された1次フィルタを配置している。サイクロンでは吸気したガスと微粒子が分離され、微粒子はサイクロンの下端へと落下する。落下した微粒子は加熱されている1次フィルタでガス化し、このガスはガス分析装置へと導入される。 The techniques described in Patent Documents 1 and 2 also use a cyclone as a part for concentrating and collecting fine particles, and a heated primary filter is placed at the end of the cyclone. In the cyclone, the intake gas and fine particles are separated, and the fine particles fall to the lower end of the cyclone. The dropped fine particles are gasified by a heated primary filter, and this gas is introduced into a gas analyzer.
 1次フィルタとガス分析装置との間には2次フィルタが設置されており、1次フィルタを通り抜けた粉塵や、1次フィルタ交換時に落下した粉塵がガス分析装置へと入りこむのを防ぐ。以下、1次フィルタ及び2次フィルタをあわせて、フィルタと適宜称する。このようなシステムを長期間運用したり、大量の微粒子を捕集したりした場合、前記したように、1次フィルタや2次フィルタに微粒子が堆積することがある。 A secondary filter is installed between the primary filter and the gas analyzer to prevent dust that has passed through the primary filter and dust that has fallen when the primary filter is replaced from entering the gas analyzer. Hereinafter, the primary filter and the secondary filter are collectively referred to as a filter. When such a system is operated for a long period of time or a large amount of fine particles are collected, the fine particles may be deposited on the primary filter or the secondary filter as described above.
 1次フィルタに微粒子が堆積した場合、以下のような問題が発生する。すなわち、1次フィルタの上に新たな微粒子が落下してきても、熱が伝わらず気化しない、もしくは気化したガスが堆積している微粒子に吸着してガス分析装置に到達しないという問題が発生する。また、2次フィルタに微粒子が堆積した場合も、堆積物が十分に加熱されず、1次フィルタで気化した分子が2次フィルタの堆積物に吸着してしまいガス分析装置に到達しない。前記したように、これらのフィルタの洗浄や交換には装置を分解する必要があり、洗浄時は分析を止める必要がある。また、フィルタに微粒子が堆積した場合、フィルタで圧力損失が生じるため、ガス分析装置に接続された圧力計で計測される圧力値で堆積を検出できるが、1次フィルタと2次フィルタとのどちらで堆積が発生しているかを判断する点で改良が必要である。 When fine particles are deposited on the primary filter, the following problems occur. That is, even if new fine particles fall on the primary filter, there is a problem that heat is not transferred and the particles do not vaporize, or the vaporized gas is adsorbed on the accumulated fine particles and does not reach the gas analyzer. Further, even when fine particles are deposited on the secondary filter, the deposit is not sufficiently heated, and the molecules vaporized by the primary filter are adsorbed on the deposit of the secondary filter and do not reach the gas analyzer. As mentioned above, cleaning or replacement of these filters requires disassembling the device and stopping analysis during cleaning. In addition, when fine particles are deposited on the filter, pressure loss occurs in the filter, so the deposition can be detected by the pressure value measured by the pressure gauge connected to the gas analyzer. Improvements are needed in determining whether sedimentation has occurred in.
 このような背景に鑑みて本発明がなされたのであり、本発明は、適切なフィルタ交換を実現させることを課題とする。 The present invention has been made in view of such a background, and an object of the present invention is to realize appropriate filter replacement.
 前記した課題を解決するため、本発明は、加熱されている第1のフィルタ部と、前記第1のフィルタ部の下流側にガス配管を介して接続され、吸引を行う吸引部と、前記第1のフィルタ部と、前記吸引部との間に少なくとも1つ設けられる第2のフィルタ部と、前記第1のフィルタ部と前記第2のフィルタ部との間に、フィルタ検査用ガスを導入するフィルタ検査用ガス導入部と、前記第2のフィルタ部の下流側に設置される第1の圧力計測部と、前記第1の圧力計測部によって計測される第1の圧力値を基に、前記フィルタ検査用ガス導入部を制御する制御部と、所定の閾値である第1の閾値を格納する記憶部と、を有し、前記制御部は、前記第1のフィルタ部、及び、前記第2のフィルタ部における導通状態を検査するフィルタ検査モードと、前記フィルタ検査モード以外のモードである非フィルタ検査モードとを実行し、フィルタ検査モード時において、前記フィルタ検査用ガス導入部から導入される前記フィルタ検査用ガスの流量を、非フィルタ検査モードが行われている時よりも上昇させて、前記フィルタ検査用ガスの流量を前記第1のフィルタ部から前記吸引部に向かって流れる流量以上とし、前記第1の圧力計測部によって計測された前記第1の圧力値が、前記記憶部に格納されている前記第1の閾値より低い場合、出力部から少なくとも前記第2のフィルタ部の交換を促すアラームを出力することを特徴とする。
 その他の解決手段は実施形態中において適宜記載する。
In order to solve the above-mentioned problems, the present invention comprises a first filter unit that is heated, a suction unit that is connected to the downstream side of the first filter unit via a gas pipe and performs suction, and the first filter unit. A filter inspection gas is introduced between the first filter unit, the second filter unit provided between the suction unit, and the first filter unit and the second filter unit. Based on the filter inspection gas introduction unit, the first pressure measurement unit installed on the downstream side of the second filter unit, and the first pressure value measured by the first pressure measurement unit, the above. It has a control unit that controls a gas introduction unit for filter inspection and a storage unit that stores a first threshold value, which is a predetermined threshold value. The control unit includes the first filter unit and the second filter unit. The filter inspection mode for inspecting the continuity state in the filter unit and the non-filter inspection mode, which is a mode other than the filter inspection mode, are executed, and in the filter inspection mode, the gas introduced from the filter inspection gas introduction unit is introduced. The flow rate of the filter inspection gas is increased as compared with the time when the non-filter inspection mode is performed, so that the flow rate of the filter inspection gas is equal to or higher than the flow rate flowing from the first filter section toward the suction section. When the first pressure value measured by the first pressure measuring unit is lower than the first threshold value stored in the storage unit, the output unit prompts the replacement of at least the second filter unit. It is characterized by outputting an alarm.
Other solutions will be described as appropriate in the embodiments.
 本発明によれば、適切なフィルタ交換を実現することができる。 According to the present invention, appropriate filter replacement can be realized.
第1実施形態における微粒子分析システムの概略図である。It is the schematic of the fine particle analysis system in 1st Embodiment. 爆薬の1種であるRDX微粒子をサイクロン捕集部に導入した際にガス分析装置で得られたシグナル強度を示す図である。It is a figure which shows the signal intensity obtained by the gas analyzer when RDX fine particle which is one kind of explosive is introduced into the cyclone collection part. フィルタ検査用ガス導入装置からのフィルタ検査用ガスの導入流量が0L/minである場合での微粒子分析装置におけるガスの流動状況を示す図である。It is a figure which shows the flow state of the gas in the fine particle analyzer when the introduction flow rate of the filter inspection gas from the filter inspection gas introduction apparatus is 0L / min. フィルタ検査用ガス導入装置からのフィルタ検査用ガスの導入流量が1L/minである場合での微粒子分析装置におけるガスの流動状況を示す図である。It is a figure which shows the flow state of the gas in the fine particle analyzer when the introduction flow rate of the filter inspection gas from the filter inspection gas introduction apparatus is 1L / min. フィルタ検査用ガス導入装置からのフィルタ検査用ガスの流量が0L/minの場合における圧力センサでの計測値を示している。The value measured by the pressure sensor when the flow rate of the filter inspection gas from the filter inspection gas introduction device is 0 L / min is shown. フィルタ検査用ガス導入装置からのフィルタ検査用ガスの流量が1L/minの場合における圧力センサの計測値である。It is a measured value of a pressure sensor when the flow rate of the filter inspection gas from the filter inspection gas introduction device is 1 L / min. 第1実施形態の微粒子分析システムにおけるフィルタ検査の手順を示すフローチャートである。It is a flowchart which shows the procedure of the filter inspection in the fine particle analysis system of 1st Embodiment. 第1実施形態の変形例を示す図である。It is a figure which shows the modification of 1st Embodiment. 第2実施形態におけるガスの流動状況を示す図である。It is a figure which shows the flow state of the gas in 2nd Embodiment. 第3実施形態の微粒子分析システムにおけるフィルタ検査の手順を示すフローチャートである。It is a flowchart which shows the procedure of the filter inspection in the fine particle analysis system of 3rd Embodiment. 第4実施形態の微粒子分析システムにおけるフィルタ検査の手順を示すフローチャートである。It is a flowchart which shows the procedure of the filter inspection in the fine particle analysis system of 4th Embodiment. 第5実施形態における微粒子分析システムの構成を示す図である。It is a figure which shows the structure of the fine particle analysis system in 5th Embodiment. 第5実施形態の微粒子分析装置におけるフィルタ検査の手順を示すフローチャートである。It is a flowchart which shows the procedure of the filter inspection in the fine particle analyzer of 5th Embodiment. 第6実施形態の微粒子分析システムにおけるフィルタ検査の手順を示すフローチャートである。It is a flowchart which shows the procedure of the filter inspection in the fine particle analysis system of 6th Embodiment. 第7実施形態の微粒子分析システムにおけるフィルタ検査の手順を示すフローチャートである。It is a flowchart which shows the procedure of the filter inspection in the fine particle analysis system of 7th Embodiment. 第8実施形態の微粒子分析システムにおけるフィルタ検査の手順を示すフローチャートである。It is a flowchart which shows the procedure of the filter inspection in the fine particle analysis system of 8th Embodiment. 第1~第8実施形態における制御装置のハードウェア構成を示す図である。It is a figure which shows the hardware composition of the control device in 1st to 8th Embodiment.
 以下、添付図面を参照して本発明を実施するための形態(「実施形態」という)について説明する。なお、本実施形態では、本発明の原理に則った具体的な例を示しているが、これらは本発明の理解のためのものであり、決して本発明を限定的に解釈するために用いられるものではない。以下に記載される実施形態と既知の技術との組み合わせや置換による変形例も本発明の範囲に含まれる。なお、実施形態を説明するためのすべての図面において、同一機能を有するものは、同一符号を付して、その繰り返しの説明は省略する。 Hereinafter, embodiments (referred to as “embodiments”) for carrying out the present invention will be described with reference to the accompanying drawings. In the present embodiment, specific examples based on the principle of the present invention are shown, but these are for the purpose of understanding the present invention and are never used for a limited interpretation of the present invention. It's not a thing. Modifications due to combinations or substitutions between the embodiments described below and known techniques are also included in the scope of the present invention. In all the drawings for explaining the embodiments, those having the same function are designated by the same reference numerals, and the repeated description thereof will be omitted.
 [第1実施形態]
 まず、図1~図6を参照して、本発明の第1実施形態について説明する。以降の説明で、流量としてL/minで記載する箇所は大気圧1atm下での換算値である。
[First Embodiment]
First, the first embodiment of the present invention will be described with reference to FIGS. 1 to 6. In the following description, the part described in L / min as the flow rate is a converted value under 1 atm of atmospheric pressure.
 (微粒子分析システム1)
 図1は第1実施形態における微粒子分析システム1の概略図である。
 微粒子分析システム1は、微粒子分析装置100と、アラーム装置201及び記憶装置202が接続されている制御装置200とを有する。
 制御装置200は、微粒子分析装置100の圧力センサ131から圧力の値を取得し、フィルタ検査用ガス導入装置101や、吸気装置114の制御を行う。また、制御装置200は、微粒子分析処理装置としての機能も有している。また、記憶装置202には、後記する圧力の比較に用いる閾値Pt1,Pt2等が格納されている。そして、フィルタ120の交換の必要がある場合、制御装置200はアラーム装置201からアラームを発報する。
(Particle analysis system 1)
FIG. 1 is a schematic view of a fine particle analysis system 1 according to the first embodiment.
The fine particle analysis system 1 has a fine particle analysis device 100 and a control device 200 to which the alarm device 201 and the storage device 202 are connected.
The control device 200 acquires a pressure value from the pressure sensor 131 of the fine particle analyzer 100, and controls the filter inspection gas introduction device 101 and the intake device 114. The control device 200 also has a function as a fine particle analysis processing device. Further, the storage device 202 stores threshold values Pt1, Pt2 and the like used for pressure comparison described later. Then, when the filter 120 needs to be replaced, the control device 200 issues an alarm from the alarm device 201.
 微粒子分析装置100は、サイクロン捕集部111、ヒータ112、1次フィルタ121、2次フィルタ122、フィルタ検査用ガス導入装置101、ガス分析装置130を有している。サイクロン捕集部111は微粒子吸引口111Aを備え、サイクロン捕集部111に接続された吸気装置114の吸引によって、微粒子吸引口111Aからサイクロン捕集部111の外部のガスが吸引されている。図示しない検査対象物の取得方法は以下の手法が考えられる。 The fine particle analyzer 100 includes a cyclone collecting unit 111, a heater 112, a primary filter 121, a secondary filter 122, a gas introduction device 101 for filter inspection, and a gas analyzer 130. The cyclone collecting unit 111 includes a fine particle suction port 111A, and the gas outside the cyclone collecting unit 111 is sucked from the fine particle suction port 111A by the suction of the intake device 114 connected to the cyclone collecting unit 111. The following methods can be considered as a method for acquiring an inspection object (not shown).
 (Z1)検査対象物を微粒子吸引口111Aに近付けることで、検査対象物に付着した微粒子Mがサイクロン捕集部111の内部へと吸引される。
 (Z2)特許文献1、2のように、微粒子吸引口111Aの上流にエアノズル(不図示)を備える微粒子取得装置(不図示)が設置されている場合が考えられる。このような場合、このエアノズルからガスを噴射して検査対象物にガスを吹き付けることで微粒子Mを剥離させ、剥離した微粒子Mが微粒子吸引口111Aから吸引される。
(Z1) By bringing the inspection target close to the fine particle suction port 111A, the fine particles M adhering to the inspection target are sucked into the cyclone collecting portion 111.
(Z2) As in Patent Documents 1 and 2, it is conceivable that a fine particle acquisition device (not shown) provided with an air nozzle (not shown) is installed upstream of the fine particle suction port 111A. In such a case, the fine particles M are peeled off by injecting gas from the air nozzle and blowing the gas onto the inspection object, and the peeled fine particles M are sucked from the fine particle suction port 111A.
 空気中における剥離された微粒子Mの濃度は、非常に低いため、そのままではガス分析装置130による分析を行うことが困難である。従って、ガス分析装置130と、微粒子吸引口111Aとの間に設けられているサイクロン捕集部111によって、剥離された微粒子Mの濃度が高められる。このようにすることで、ガス分析装置130による分析を行うことができる。 Since the concentration of the exfoliated fine particles M in the air is very low, it is difficult to perform the analysis by the gas analyzer 130 as it is. Therefore, the concentration of the separated fine particles M is increased by the cyclone collecting portion 111 provided between the gas analyzer 130 and the fine particle suction port 111A. By doing so, the analysis by the gas analyzer 130 can be performed.
 サイクロン捕集部111は、気流とともに吸引された微粒子Mを分離濃縮する。代表的なガス分析装置130である質量分析装置やイオンモビリティ分析装置は一般的に1L/min以下の試料流量しか吸引できない。例えば、エアノズルから40L/minの流量でガスを噴射して微粒子Mを剥離したとする。40L/minの気流のうちガス分析装置130では1L/minしか吸引しないとすると、検査感度が1/40になってしまう。 The cyclone collecting unit 111 separates and concentrates the fine particles M sucked together with the air flow. A mass spectrometer or an ion mobility analyzer, which is a typical gas analyzer 130, can generally suck only a sample flow rate of 1 L / min or less. For example, it is assumed that the fine particles M are peeled off by injecting gas from the air nozzle at a flow rate of 40 L / min. If the gas analyzer 130 sucks only 1 L / min in the air flow of 40 L / min, the inspection sensitivity becomes 1/40.
 そこで、前記したように、微粒子吸引口111Aとガス分析装置130との間に設置されるサイクロン捕集部111によって、付着物の分離濃縮が行われる。サイクロン捕集部111は遠心力を利用して、ある一定以上の粒径及び密度の試料をサイクロン捕集部111の下部へと捕集することが可能である。例えば、ある条件では、粒径1μm以上の微粒子Mは、サイクロン捕集部111内を回転運動し、遠心力によりサイクロン捕集部111内の外周側に分離される。回転半径は、サイクロン捕集部111の下方に向かうにつれ減少する。分離された微粒子Mはサイクロン捕集部111の下端へ沈降する(矢印A2)。それ以外(粒径1μm未満)の微粒子Mは、気流とともに吸引配管117から吸気装置114によって排出される(矢印A1)。回転運動により気流から分離される微粒子Mの最小粒径(分離限界粒径)は、サイクロン捕集部111の構成や吸気装置114の吸引流量によって変化する。 Therefore, as described above, the cyclone collecting unit 111 installed between the fine particle suction port 111A and the gas analyzer 130 separates and concentrates the deposits. The cyclone collecting unit 111 can collect a sample having a particle size and density above a certain level to the lower part of the cyclone collecting unit 111 by utilizing centrifugal force. For example, under certain conditions, the fine particles M having a particle size of 1 μm or more rotate in the cyclone collecting portion 111 and are separated into the outer peripheral side in the cyclone collecting portion 111 by centrifugal force. The radius of gyration decreases toward the bottom of the cyclone collecting portion 111. The separated fine particles M settle to the lower end of the cyclone collecting portion 111 (arrow A2). The other fine particles M (particle size less than 1 μm) are discharged from the suction pipe 117 by the intake device 114 together with the air flow (arrow A1). The minimum particle size (separation limit particle size) of the fine particles M separated from the air flow by the rotational motion changes depending on the configuration of the cyclone collecting unit 111 and the suction flow rate of the intake device 114.
 例えば、危険物である爆薬微粒子は、通常、粒径5~100μm程度であるため、この粒径の微粒子Mを回収するのがよい。爆薬微粒子だけでなく、検査対象物に付着しているものであれば、化学剤、有害物質、危険物質、可燃物質、生物剤、ウィルス、菌、遺伝子、環境物質等が検出対象とされてもよい。 For example, explosive fine particles, which are dangerous substances, usually have a particle size of about 5 to 100 μm, so it is preferable to recover the fine particles M having this particle size. Even if chemical substances, harmful substances, dangerous substances, combustible substances, biological agents, viruses, fungi, genes, environmental substances, etc. are detected as long as they are attached to the inspection target as well as explosive particles. Good.
 サイクロン捕集部111の下部で捕集された微粒子Mは、そのままヒータ112へと沈降する。ヒータ112には1次フィルタ121が備えられている。沈降してきた微粒子Mは、1次フィルタ121によって捕集され、ヒータ112によって加熱されることで気化する。気化した微粒子Mは2次フィルタ122を通過してガス分析装置130へ導入される。2次フィルタ122は1次フィルタ121を通り抜けた微粒子Mがガス分析装置130へと導入されるのを防ぐ役割がある。以下、1次フィルタ121と、2次フィルタ122とをあわせてフィルタ120と適宜称する。 The fine particles M collected at the lower part of the cyclone collecting unit 111 settle to the heater 112 as they are. The heater 112 is provided with a primary filter 121. The settled fine particles M are collected by the primary filter 121 and vaporized by being heated by the heater 112. The vaporized fine particles M pass through the secondary filter 122 and are introduced into the gas analyzer 130. The secondary filter 122 has a role of preventing the fine particles M that have passed through the primary filter 121 from being introduced into the gas analyzer 130. Hereinafter, the primary filter 121 and the secondary filter 122 are collectively referred to as a filter 120.
 また、1次フィルタ121を洗浄したり交換したりするために、1次フィルタ121を微粒子分析装置100から取り外すことがある。この際、2次フィルタ122は、1次フィルタ121や、サイクロン捕集部111の内部に堆積した微粒子Mが落下し、それがガス分析装置130へと導入されるのを防ぐ。ヒータ112は、例えば200℃で微粒子Mを加熱する。ヒータ112の温度は捕集する微粒子Mが気化できる温度であればよく、検査対象となる微粒子Mの成分によって変化してもよい。 Further, in order to clean or replace the primary filter 121, the primary filter 121 may be removed from the fine particle analyzer 100. At this time, the secondary filter 122 prevents the fine particles M deposited inside the primary filter 121 and the cyclone collecting unit 111 from falling and being introduced into the gas analyzer 130. The heater 112 heats the fine particles M at, for example, 200 ° C. The temperature of the heater 112 may be any temperature as long as the collected fine particles M can be vaporized, and may be changed depending on the components of the fine particles M to be inspected.
 1次フィルタ121及び2次フィルタ122は、粒径1μm以上の微粒子Mを捕捉できる濾過精度であればよい。例えば、1次フィルタ121及び2次フィルタ122として、濾過精度1~50μmのステンレスフィルタ等が用いられる。1次フィルタ121及び2次フィルタ122の直径や濾過精度は必ずしも同じである必要はない。 The primary filter 121 and the secondary filter 122 may have a filtration accuracy that can capture fine particles M having a particle size of 1 μm or more. For example, as the primary filter 121 and the secondary filter 122, a stainless steel filter having a filtration accuracy of 1 to 50 μm or the like is used. The diameter and filtration accuracy of the primary filter 121 and the secondary filter 122 do not necessarily have to be the same.
 また、ヒータ112と2次フィルタ122とを繋ぐガス配管115、及び、2次フィルタ122とガス分析装置130とを繋ぐガス配管116も加熱されている。これはヒータ112によって気化した分子がガス配管115の内壁へと吸着するのを防ぐためである。 Further, the gas pipe 115 connecting the heater 112 and the secondary filter 122 and the gas pipe 116 connecting the secondary filter 122 and the gas analyzer 130 are also heated. This is to prevent the molecules vaporized by the heater 112 from adsorbing to the inner wall of the gas pipe 115.
 ガス分析装置130として、例えば、リニアイオントラップ質量分析計等が用いられる。また、ガス分析装置130として、四重極イオントラップ質量分析計、四重極フィルタ質量分析計、三連四重極質量分析計、飛行時間型質量分析計、磁場型質量分析計等が適用されてもよい。さらに、ガス分析装置130として、イオンモビリティ分析装置等が利用されてもよい。また、ガス分析装置130として、イオンモビリティ分析装置と質量分析装置とを連結させた装置も利用できる。また、蛍光や、赤外線、紫外線等の各種光源を利用した装置がガス分析装置130として用いられてもよい。あるいは、半導体センサがガス分析装置130として用いられてもよい。つまり、ガス分析装置130は、ガス化した試料を分析可能であれば何でもよい。 As the gas analyzer 130, for example, a linear ion trap mass spectrometer or the like is used. Further, as the gas analyzer 130, a quadrupole ion trap mass spectrometer, a quadrupole filter mass spectrometer, a triple quadrupole mass spectrometer, a time-of-flight mass spectrometer, a magnetic field mass spectrometer, etc. are applied. You may. Further, as the gas analyzer 130, an ion mobility analyzer or the like may be used. Further, as the gas analyzer 130, an apparatus in which an ion mobility analyzer and a mass spectrometer are connected can also be used. Further, an apparatus using various light sources such as fluorescence, infrared rays, and ultraviolet rays may be used as the gas analyzer 130. Alternatively, the semiconductor sensor may be used as the gas analyzer 130. That is, the gas analyzer 130 may be anything as long as it can analyze the gasified sample.
 以下、質量分析装置がガス分析装置130として利用されている場合について記載する。制御装置200は、ガス分析装置130で計測された質量スペクトルを解析し、質量スペクトルから微粒子Mの成分の同定や濃度を特定する。記憶装置202は事前に危険物に関するデータベースを格納している。このデータベースには、危険物の成分の同定や、濃度判定のための規定閾値が設定されている。検出された成分の濃度が規定閾値を上回っていた場合、制御装置200は陽性判定を行う。質量分析装置に限らず、イオンモビリティ分析装置等その他のガス分析装置130においても記憶装置202に格納されているデータベースと照合することで微粒子Mの分析が行われる。なお、圧力センサ131は後記する。 Hereinafter, the case where the mass spectrometer is used as the gas analyzer 130 will be described. The control device 200 analyzes the mass spectrum measured by the gas analyzer 130, and identifies the components of the fine particles M and the concentration from the mass spectrum. The storage device 202 stores a database of dangerous goods in advance. In this database, a specified threshold value for identifying the components of dangerous substances and determining the concentration is set. When the concentration of the detected component exceeds the specified threshold value, the control device 200 makes a positive determination. Not only the mass spectrometer but also other gas analyzers such as the ion mobility analyzer 130 analyze the fine particles M by collating with the database stored in the storage device 202. The pressure sensor 131 will be described later.
 このように、微粒子分析装置100は捕集した微粒子Mをサイクロン捕集部111で捕集し、加熱気化させ、ガス分析装置130による分析という一連の分析シーケンスをリアルタイムにかつ自動で行うことができる。ここで、微粒子分析装置100の課題は大量の微粒子Mを一度に吸引したり、長時間運用したりすることで、結果的に大量の微粒子Mを吸引した場合に1次フィルタ121、サイクロン捕集部111の内壁、2次フィルタ122に微粒子Mが堆積してしまうことである。例えば、微粒子Mが1次フィルタ121に堆積すると、その上に新たな微粒子Mが落下して来ても熱が伝わらず気化しない、もしくは気化しても1次フィルタ121に堆積した微粒子Mに検査ターゲット分子が吸着してしまうことが発生する。また同様に、2次フィルタ122に微粒子Mが堆積してしまうと、1次フィルタ121から流れ込んできた検査ターゲット分子が2次フィルタ122の堆積物に吸着されてしまう。 In this way, the fine particle analyzer 100 can collect the collected fine particles M by the cyclone collecting unit 111, heat and vaporize them, and perform a series of analysis sequences of analysis by the gas analyzer 130 in real time and automatically. .. Here, the problem of the fine particle analyzer 100 is that a large amount of fine particles M are sucked at once or operated for a long time, and as a result, when a large amount of fine particles M is sucked, the primary filter 121 and the cyclone are collected. Fine particles M are deposited on the inner wall of the portion 111 and the secondary filter 122. For example, when the fine particles M are deposited on the primary filter 121, even if new fine particles M fall on the fine particles M, heat is not transferred and they do not vaporize, or even if they are vaporized, the fine particles M deposited on the primary filter 121 are inspected. It occurs that the target molecule is adsorbed. Similarly, if the fine particles M are deposited on the secondary filter 122, the inspection target molecules flowing from the primary filter 121 are adsorbed on the deposit of the secondary filter 122.
 このような状態となると、検査ターゲット分子がガス分析装置130へと導入されないことになり、微粒子分析装置100の感度低下の要因となる。 In such a state, the inspection target molecule is not introduced into the gas analyzer 130, which causes a decrease in the sensitivity of the fine particle analyzer 100.
 図2は爆薬の1種であるRDX微粒子をサイクロン捕集部111に導入した際にガス分析装置130で得られたシグナル強度を示す図である。
 図2では、2次フィルタ122が正常である場合(符号H1)と、堆積物が溜まりコンダクタンス(導通状態)が低下している場合(符号H2)とを比較している。堆積物が溜まっている場合、1次フィルタ121で気化したRDXガスが2次フィルタ122上の堆積物に吸着してしまうため、符号H2に示すように感度が低下する。なお、符号H1,H2の上部に示される線は標準偏差を示している。
FIG. 2 is a diagram showing the signal intensity obtained by the gas analyzer 130 when the RDX fine particles, which are one of the explosives, are introduced into the cyclone collecting unit 111.
In FIG. 2, a case where the secondary filter 122 is normal (reference numeral H1) and a case where deposits are accumulated and the conductance (conduction state) is lowered (reference numeral H2) are compared. When deposits are accumulated, the RDX gas vaporized by the primary filter 121 is adsorbed on the deposits on the secondary filter 122, so that the sensitivity is lowered as shown by reference numeral H2. The lines shown above the symbols H1 and H2 indicate the standard deviation.
 図1の説明に戻る。
 このように、フィルタ120に何かが堆積すると、フィルタ120のコンダクタンスが小さくなる。ここで、ガス分析装置130には圧力センサ131が備えられている。例えば、大気圧イオン源を利用した質量分析装置をガス分析装置130として利用している場合、ガス配管115に接続されているイオン源132に圧力センサ131が設置されている。フィルタ120におけるコンダクタンスの減少は圧力センサ131で得られる圧力の低下として検知できる。しかし、その圧力は1次フィルタ121と、2次フィルタ122との両方の影響を受けている。従って、これまでの技術では、どちらのフィルタ120でコンダクタンス低下が発生しているかは判断できない。なお、符号M1については後記する。
Returning to the description of FIG.
As described above, when something is deposited on the filter 120, the conductance of the filter 120 becomes small. Here, the gas analyzer 130 is provided with a pressure sensor 131. For example, when a mass spectrometer using an atmospheric pressure ion source is used as the gas analyzer 130, the pressure sensor 131 is installed in the ion source 132 connected to the gas pipe 115. The decrease in conductance in the filter 120 can be detected as a decrease in pressure obtained by the pressure sensor 131. However, the pressure is affected by both the primary filter 121 and the secondary filter 122. Therefore, with the conventional technology, it is not possible to determine which filter 120 causes the conductance decrease. The reference numeral M1 will be described later.
 [フィルタ検査用ガス導入装置101の動作]
 前記したような課題を受け、本実施形態ではフィルタ検査用ガス導入装置101をガス配管115に設けている。フィルタ検査用ガス導入装置101は、ガス配管115にフィルタ検査用ガスを導入するものである。
 図3Aは、フィルタ検査用ガス導入装置101からのフィルタ検査用ガスの導入流量が0L/minである場合での微粒子分析装置100におけるガスの流動状況を示す図である。また、図3Bは、フィルタ検査用ガス導入装置101からのフィルタ検査用ガスの導入流量が1L/minである場合での微粒子分析装置100におけるガスの流動状況を示す図である。
 ここで、本実施形態では、1次フィルタ121と2次フィルタ122のどちらでコンダクタンス低下が発生したかを判断するため、フィルタ検査用ガス導入装置101が設置されている。例えば、微粒子分析装置100が以下の状態であるものとする(図3A参照)。
[Operation of gas introduction device 101 for filter inspection]
In response to the above-mentioned problems, in the present embodiment, the filter inspection gas introduction device 101 is provided in the gas pipe 115. The filter inspection gas introduction device 101 introduces the filter inspection gas into the gas pipe 115.
FIG. 3A is a diagram showing a gas flow state in the fine particle analyzer 100 when the introduction flow rate of the filter inspection gas from the filter inspection gas introduction device 101 is 0 L / min. Further, FIG. 3B is a diagram showing a gas flow state in the fine particle analyzer 100 when the introduction flow rate of the filter inspection gas from the filter inspection gas introduction device 101 is 1 L / min.
Here, in the present embodiment, the filter inspection gas introduction device 101 is installed in order to determine which of the primary filter 121 and the secondary filter 122 has the conductance decrease. For example, it is assumed that the fine particle analyzer 100 is in the following state (see FIG. 3A).
 (Y1)吸気装置114は停止している。従って、サイクロン捕集部111はガスを吸引していない。
 (Y2)ガス分析装置130はQ=1L/minでガスを吸引している。
 (Y3)フィルタ検査用ガス導入装置101によるフィルタ検査用ガスの供給の流量Q1=0L/minである。ここで、1次フィルタ121と2次フィルタ122のコンダクタンスが直列に合成され、下記の式(1)に示される関係式が得られる。そして、式(1)から式(2)が導かれる。
(Y1) The intake device 114 is stopped. Therefore, the cyclone collecting unit 111 does not suck the gas.
(Y2) The gas analyzer 130 sucks gas at Q = 1 L / min.
(Y3) The flow rate Q1 = 0 L / min of the filter inspection gas supply by the filter inspection gas introduction device 101. Here, the conductances of the primary filter 121 and the secondary filter 122 are synthesized in series, and the relational expression shown in the following equation (1) is obtained. Then, the equation (2) is derived from the equation (1).
Q={(C1+C2)/(C1・C2)}-1・(P-P1)・・・(1)
P1=P-Q・{(C1+C2)/(C1・C2)}・・・(2)
Q = {(C1 + C2) / (C1 ・ C2)} -1・ (PP1) ・ ・ ・ (1)
P1 = PQ · {(C1 + C2) / (C1 · C2)} ... (2)
 ここで、Qはガス分析装置130が吸引する流量、P1はガス分析装置130における圧力センサ131の計測値である。また、C1は1次フィルタ121のコンダクタンス、C2は2次フィルタ122のコンダクタンスである。そして、Pは1次フィルタ121の上流圧力である。吸気装置114が停止中であれば、Pは大気圧(=1atm)である。 Here, Q is the flow rate sucked by the gas analyzer 130, and P1 is the measured value of the pressure sensor 131 in the gas analyzer 130. Further, C1 is the conductance of the primary filter 121, and C2 is the conductance of the secondary filter 122. And P is the upstream pressure of the primary filter 121. If the intake device 114 is stopped, P is atmospheric pressure (= 1 atm).
 ここでは、ガス分析装置130の吸引流量Qが一定と考える。式(2)から分かるように、圧力センサ131で計測される圧力P1は、1次フィルタ121のコンダクタC1、及び、2次フィルタ122のコンダクタC2の双方の影響を受ける。つまり、圧力センサ131で計測される圧力P1が変化したとしても、2次フィルタ122のコンダクタンスが変化したのかが分からない。 Here, it is considered that the suction flow rate Q of the gas analyzer 130 is constant. As can be seen from the equation (2), the pressure P1 measured by the pressure sensor 131 is affected by both the conductor C1 of the primary filter 121 and the conductor C2 of the secondary filter 122. That is, even if the pressure P1 measured by the pressure sensor 131 changes, it is unknown whether the conductance of the secondary filter 122 has changed.
 一方、図3Aに示す状況から、フィルタ検査用ガスを、フィルタ検査用ガス導入装置101から、例えば流量Q1=1L/min導入する(図3B参照)。つまり、Q1=Qである。このとき、フィルタ検査用ガス導入装置101から導入されるフィルタ検査用ガスの導入量は、ガス分析装置130の吸引流量と一致する。従って、ガス配管115において、フィルタ検査用ガス導入装置101の上流側の流量(図3BのQ2)は0L/minとなる。このときのガス分析装置130の圧力センサ131の計測値をP1とすると、下記の式(3)で示される関係式が成り立つ。そして、式(3)から式(4)が導かれる。 On the other hand, from the situation shown in FIG. 3A, for example, the flow rate Q1 = 1 L / min is introduced from the filter inspection gas introduction device 101 (see FIG. 3B). That is, Q1 = Q. At this time, the amount of the filter inspection gas introduced from the filter inspection gas introduction device 101 coincides with the suction flow rate of the gas analyzer 130. Therefore, in the gas pipe 115, the flow rate on the upstream side of the filter inspection gas introduction device 101 (Q2 in FIG. 3B) is 0 L / min. Assuming that the measured value of the pressure sensor 131 of the gas analyzer 130 at this time is P1, the relational expression represented by the following equation (3) holds. Then, the equation (4) is derived from the equation (3).
Q=C2(P-P1)・・・(3)
P1=P-(Q/C2)・・・(4)
Q = C2 (P-P1) ... (3)
P1 = P- (Q / C2) ... (4)
 フィルタ検査用ガス導入装置101から導入されるフィルタ検査用ガスの流量と、ガス分析装置130による吸引流量が一致すれば、サイクロン捕集部111からのガスが1次フィルタ121を通過しなくなる(図3BのQ2=0L/min)。従って、圧力P1には、1次フィルタ121の圧力損失が影響しなくなる。したがって、圧力P1は2次フィルタ122の状態によって変化するものとなる。 If the flow rate of the filter inspection gas introduced from the filter inspection gas introduction device 101 and the suction flow rate by the gas analyzer 130 match, the gas from the cyclone collecting unit 111 does not pass through the primary filter 121 (FIG. FIG. 3B Q2 = 0L / min). Therefore, the pressure loss of the primary filter 121 has no effect on the pressure P1. Therefore, the pressure P1 changes depending on the state of the secondary filter 122.
 また、図4A及び図4Bは、1次フィルタ121、2次フィルタ122に堆積物が発生してコンダクタンスが低下した場合における圧力センサ131での計測値を示す図である。図4Aはフィルタ検査用ガス導入装置101からのフィルタ検査用ガスの流量が0L/minの場合における圧力センサ131での計測値を示している。そして、図4Bはフィルタ検査用ガス導入装置101からのフィルタ検査用ガスの流量が1L/minの場合における圧力センサ131の計測値である。 Further, FIGS. 4A and 4B are diagrams showing the measured values by the pressure sensor 131 when deposits are generated on the primary filter 121 and the secondary filter 122 and the conductance is lowered. FIG. 4A shows the measured value by the pressure sensor 131 when the flow rate of the filter inspection gas from the filter inspection gas introduction device 101 is 0 L / min. FIG. 4B is a measured value of the pressure sensor 131 when the flow rate of the filter inspection gas from the filter inspection gas introduction device 101 is 1 L / min.
 図4Aに示すように、1次フィルタ121、2次フィルタ122のどちらに堆積が発生しても、そして両方に堆積が発生しても、両方とも堆積していない正常な場合に比べて圧力P1が低下している。これは、式(2)で示すように1次フィルタ121、2次フィルタ122のどちらのコンダクタンスが変化しても圧力P1が変化するからである。この条件では、P1が低下した場合に、2次フィルタ122が堆積したのか否かの判断がつかない。 As shown in FIG. 4A, no matter which of the primary filter 121 and the secondary filter 122 is deposited, and both are deposited, the pressure P1 is higher than in the normal case where neither is deposited. Is declining. This is because, as shown in the equation (2), the pressure P1 changes regardless of which conductance of the primary filter 121 or the secondary filter 122 changes. Under this condition, when P1 is lowered, it cannot be determined whether or not the secondary filter 122 is deposited.
 一方、図4Bでは、1次フィルタ121での堆積の有無に関わらず、2次フィルタ122に堆積が発生すると圧力P1が低下する。これは式(4)で示されるように、フィルタ検査用ガス導入装置101から1L/minのフィルタ検査用ガスが導入されると、圧力P1が2次フィルタ122のコンダクタンスによって決定されるようになるためである。 On the other hand, in FIG. 4B, the pressure P1 decreases when the secondary filter 122 is deposited, regardless of whether or not the primary filter 121 is deposited. As shown in the equation (4), when 1 L / min of the filter inspection gas is introduced from the filter inspection gas introduction device 101, the pressure P1 is determined by the conductance of the secondary filter 122. Because.
 このように、吸気装置114が停止している状態で、ガス分析装置130の吸引流量Qとフィルタ検査用ガス導入装置101の導入流量Q1を一致させることで、圧力センサ131への1次フィルタ121の影響を見えなくすることができる。従って、フィルタ検査用ガス導入装置101によるフィルタ検査用ガスの導入前後の圧力P1を比較することで、少なくとも1次フィルタ121に微粒子Mが堆積しているか否かを判定することができる。 In this way, by matching the suction flow rate Q of the gas analyzer 130 with the introduction flow rate Q1 of the filter inspection gas introduction device 101 while the intake device 114 is stopped, the primary filter 121 to the pressure sensor 131 is matched. The effect of can be made invisible. Therefore, by comparing the pressure P1 before and after the introduction of the filter inspection gas by the filter inspection gas introduction device 101, it is possible to determine whether or not the fine particles M are deposited on at least the primary filter 121.
 本実施形態における微粒子分析装置100は、分析モードとフィルタ検査モードとの2つの状態を有し、分析モード時とフィルタ検査モード時とでフィルタ検査用ガス導入装置101からのフィルタ検査用ガス導入量を変更することを特徴とする。必ずしも分析モード時におけるフィルタ検査用ガス導入装置101からのフィルタ検査用ガス導入量を0L/minとする必要はない。例えば、分析モード時にフィルタ検査用ガス導入装置101から0.1L/min程度のフィルタ検査用ガスがガス配管115に導入されていてもよい。 The fine particle analyzer 100 in the present embodiment has two states, an analysis mode and a filter inspection mode, and the amount of the filter inspection gas introduced from the filter inspection gas introduction device 101 in the analysis mode and the filter inspection mode. It is characterized by changing. It is not always necessary to set the filter inspection gas introduction amount from the filter inspection gas introduction device 101 in the analysis mode to 0 L / min. For example, in the analysis mode, the filter inspection gas of about 0.1 L / min may be introduced into the gas pipe 115 from the filter inspection gas introduction device 101.
 この場合、図1に示すように、フィルタ検査用ガス導入装置101は、フィルタ検査の役割とは別に、分析支援物質M1をガス配管151に導入してもよい。分析支援物質M1とは、内部標準物質や、ガス分析装置130の感度を上昇させるドーパント等である。ガス分析装置130が質量分析装置であった場合、データとして得られるマススペクトルの横軸である質量電荷比の精度が重要である。ガス分析装置130の温度上昇等の理由でガス分析装置130の内部電圧の出力が変化すると、計測される質量電荷比にずれが出る。このずれを補正するために内部標準物質を常に一定濃度でガス分析装置130に導入することが一般的に行われている。内部標準物質が計測される質量電荷比は既知であるため、その値を基準値としてずれ分を補正することができる。また、微粒子分析装置100の健全性を担保する意味でも内部標準物質の導入は重要である。ここで、フィルタ検査用ガスとして内部標準物質や、ドーパントが用いられてもよい。あるいは、分析モードでは内部標準物質や、ドーパントが用いられ、フィルタ検査モードでは内部標準物質や、ドーパントとは異なるフィルタ検査用ガスが用いられてもよい。 In this case, as shown in FIG. 1, the filter inspection gas introduction device 101 may introduce the analysis support substance M1 into the gas pipe 151 separately from the role of the filter inspection. The analysis support substance M1 is an internal standard substance, a dopant that increases the sensitivity of the gas analyzer 130, and the like. When the gas analyzer 130 is a mass spectrometer, the accuracy of the mass-to-charge ratio, which is the horizontal axis of the mass spectrum obtained as data, is important. When the output of the internal voltage of the gas analyzer 130 changes due to the temperature rise of the gas analyzer 130 or the like, the measured mass-to-charge ratio shifts. In order to correct this deviation, it is common practice to always introduce an internal standard substance into the gas analyzer 130 at a constant concentration. Since the mass-to-charge ratio measured by the internal standard substance is known, the deviation can be corrected using that value as a reference value. In addition, the introduction of an internal standard substance is important in order to ensure the soundness of the fine particle analyzer 100. Here, an internal standard substance or a dopant may be used as the filter inspection gas. Alternatively, an internal standard substance or a dopant may be used in the analysis mode, and an internal standard substance or a filter inspection gas different from the dopant may be used in the filter inspection mode.
 本実施形態における微粒子分析装置100は無人での運用が可能である。このため、微粒子分析装置100の感度が低下していないかを自動で判別する機能が必要である。内部標準物質を常に一定量導入しておけば、制御装置200は、その物質のガス分析結果を基に感度状態を把握することができる。 The fine particle analyzer 100 in this embodiment can be operated unattended. Therefore, there is a need for a function of automatically determining whether or not the sensitivity of the fine particle analyzer 100 has decreased. If a certain amount of the internal standard substance is always introduced, the control device 200 can grasp the sensitivity state based on the gas analysis result of the substance.
 正イオンと負イオンとの両方が分析されている場合は、正イオン用、負イオン用の両方の内部標準物質を導入するのがよい。例えば、10、6-Tribromoresorcinol、5-Bromo、2-Chlorophenol、4、4´-Dimethylbenzophenone等が導入されるのがよい。また、感度向上を考えると、例えば爆発物が検査対象物である場合、乳酸等の有機酸が導入されるのがよい。このようにすることで、ガス分析装置130のイオン化の段階で、乳酸がまずイオン化し、乳酸イオンが爆発物に付加し、乳酸付加体の爆発物イオンとしてガス分析装置130で計測されることになる。このように、分析モード時において内部標準物質やドーパントをフィルタ検査用ガス導入装置101から0.1L/min程度導入し、フィルタ検査モード時はその導入流量を増加させるという運用ができる。
 なお、分析支援物質M1(内部標準物質、ドーパント)の導入は省略可能である。
If both positive and negative ions have been analyzed, it is advisable to introduce both positive and negative internal standards. For example, 10,6-Tribromoresorcinol, 5-Bromo, 2-Chlorophenol, 4, 4'-Dimethylbenzophenone and the like may be introduced. Further, considering the improvement of sensitivity, for example, when an explosive is an object to be inspected, it is preferable to introduce an organic acid such as lactic acid. By doing so, at the stage of ionization of the gas analyzer 130, lactic acid is first ionized, lactic acid ions are added to the explosive, and the gas analyzer 130 measures as explosive ions of the lactic acid adduct. Become. In this way, the internal standard substance and the dopant can be introduced from the filter inspection gas introduction device 101 at about 0.1 L / min in the analysis mode, and the introduction flow rate can be increased in the filter inspection mode.
The introduction of the analysis support substance M1 (internal standard substance, dopant) can be omitted.
 (フローチャート)
 図5は、第1実施形態の微粒子分析システム1におけるフィルタ検査の手順を示すフローチャートである。
 ここでは、ガス分析装置130として質量分析装置を利用しており、ガス分析装置130の吸引流量は1L/minであるものとする。圧力センサ131はガス分析装置130(質量分析装置)のイオン源132に設置されており、イオン源132の圧力をモニタしている。また、フィルタ検査用ガス導入装置101は、フィルタ検査だけでなく内部標準物質ガス導入機構としても併用しており、分析モード時は流量0.1L/minで内部標準物質ガスを導入している。
(flowchart)
FIG. 5 is a flowchart showing a filter inspection procedure in the fine particle analysis system 1 of the first embodiment.
Here, a mass spectrometer is used as the gas analyzer 130, and the suction flow rate of the gas analyzer 130 is assumed to be 1 L / min. The pressure sensor 131 is installed in the ion source 132 of the gas analyzer 130 (mass spectrometer) and monitors the pressure of the ion source 132. Further, the filter inspection gas introduction device 101 is used not only for the filter inspection but also as an internal standard substance gas introduction mechanism, and in the analysis mode, the internal standard substance gas is introduced at a flow rate of 0.1 L / min.
 まず、微粒子分析装置100が分析モードで稼働している(S101)。分析モード時では吸気装置114が稼働しており、サイクロン現象により微粒子Mを回収している。なお、ステップS101で、フィルタ検査用ガス導入装置101からは分析支援物質M1(内部標準物質、あるいは、ドーパント)が0.1L/minでガス配管115に導入されている。ここで、前記したように、分析支援物質M1(内部標準物質、ドーパント)の導入は省略可能である。
 そして、分析モード時において、制御装置200は、イオン源132における圧力P1を常時モニタしており、圧力P1が事前に設定した閾値Pt1以下であるか否かを連続的に判定している(S102)。ステップS102の判定を第1チェックと称する。
 圧力P1が閾値Pt1より大きい場合(S102→No)、制御装置200はステップS101へ処理を戻し、分析モード時における圧力P1の監視へ処理を戻す。
 モニタしている圧力P1が閾値Pt1以下になると(S102→Yes)、制御装置200は、微粒子分析装置100のモードを分析モードからフィルタ検査モードへ遷移させる(S103)。
First, the fine particle analyzer 100 is operating in the analysis mode (S101). In the analysis mode, the intake device 114 is operating, and the fine particles M are collected by the cyclone phenomenon. In step S101, the analysis support substance M1 (internal standard substance or dopant) is introduced into the gas pipe 115 at 0.1 L / min from the filter inspection gas introduction device 101. Here, as described above, the introduction of the analysis support substance M1 (internal standard substance, dopant) can be omitted.
Then, in the analysis mode, the control device 200 constantly monitors the pressure P1 in the ion source 132, and continuously determines whether or not the pressure P1 is equal to or less than the preset threshold value Pt1 (S102). ). The determination in step S102 is referred to as a first check.
When the pressure P1 is larger than the threshold value Pt1 (S102 → No), the control device 200 returns the process to step S101 and returns the process to the monitoring of the pressure P1 in the analysis mode.
When the monitored pressure P1 becomes equal to or less than the threshold value Pt1 (S102 → Yes), the control device 200 shifts the mode of the fine particle analyzer 100 from the analysis mode to the filter inspection mode (S103).
 フィルタ検査モードに遷移すると、制御装置200は吸気装置114を停止する(S104)。そうすることで、1次フィルタ121よりも上流が大気圧(1atm)と見なせるようになる。その状態で、制御装置200は、フィルタ検査用ガス導入装置101からのフィルタ検査用ガスの導入流量(流量)を0.1L/minから1L/minへと増加させる(S105)。
 そして、制御装置200は、ステップS105を実行した後の圧力P1が閾値Pt2以下であるか否かを判定する(S106)。ステップS106の判定を第2チェックと称する。なお、閾値Pt1及び閾値Pt2は、1次フィルタ121、2次フィルタ122によって決定される値であり、Pt1>Pt2となる。
Upon transition to the filter inspection mode, the control device 200 stops the intake device 114 (S104). By doing so, the area upstream of the primary filter 121 can be regarded as atmospheric pressure (1 atm). In that state, the control device 200 increases the introduction flow rate (flow rate) of the filter inspection gas from the filter inspection gas introduction device 101 from 0.1 L / min to 1 L / min (S105).
Then, the control device 200 determines whether or not the pressure P1 after executing step S105 is equal to or less than the threshold value Pt2 (S106). The determination in step S106 is referred to as a second check. The threshold value Pt1 and the threshold value Pt2 are values determined by the primary filter 121 and the secondary filter 122, and Pt1> Pt2.
 圧力P1が閾値Pt2以下であれば(S106→Yes)、少なくとも2次フィルタ122のコンダクタンス低下が疑われるため、制御装置200は、少なくとも2次フィルタ122を交換する旨のアラーム(交換アラーム)をアラーム装置201から発報する(S107)。
 一方、圧力P1が閾値Pt2より大きければ(S106→No)、1次フィルタ121のみのコンダクタンス低下が疑われるため、制御装置200は、1次フィルタ121の交換のアラーム(交換アラーム)をアラーム装置201から発報する(S108)。
If the pressure P1 is equal to or less than the threshold value Pt2 (S106 → Yes), at least the conductance of the secondary filter 122 is suspected to decrease. Therefore, the control device 200 gives an alarm (replacement alarm) to replace at least the secondary filter 122. An alarm is issued from the device 201 (S107).
On the other hand, if the pressure P1 is larger than the threshold value Pt2 (S106 → No), it is suspected that the conductance of only the primary filter 121 is lowered. Therefore, the control device 200 sets an alarm (replacement alarm) for replacement of the primary filter 121 to the alarm device 201. Is issued from (S108).
 図5では、第2チェックで圧力P1が閾値Pt2以上である場合は、必ず1次フィルタ121を交換することになっているが、必ずしもそうである必要はない。第1チェック及び第2チェックそれぞれに用いられた圧力P1を用いて、式(1)~(4)によって、検査時における1次フィルタ121及び2次フィルタ122のコンダクタンスC1,C2が算出できる。この時、1次フィルタ121のコンダクタンスC1が十分大きければ、1次フィルタ121を交換する必要はない。 In FIG. 5, when the pressure P1 is equal to or higher than the threshold value Pt2 in the second check, the primary filter 121 is always replaced, but this is not always the case. Using the pressures P1 used in each of the first check and the second check, the conductances C1 and C2 of the primary filter 121 and the secondary filter 122 at the time of inspection can be calculated by the equations (1) to (4). At this time, if the conductance C1 of the primary filter 121 is sufficiently large, it is not necessary to replace the primary filter 121.
 図6は、第1実施形態の変形例を示す図である。
 第1実施形態における微粒子分析装置100によれば、1次フィルタ121及び2次フィルタ122の両方のコンダクタンスを計算することができる。例えば、図5に示すように第1チェックでモニタしている圧力P1が閾値Pt1以下の場合のみに第2チェックを実行するのではなく、定期的に第2チェックを行ってもよい。その結果として、圧力P1には、図6のようなコンダクタンスの経時変化が得られる。制御装置200は、実際のコンダクタンスの変化(実線L1)から、交換予測時期D1を推測し(点線L2)、推測した交換予測時期D1をユーザに知らせることもできる。
FIG. 6 is a diagram showing a modified example of the first embodiment.
According to the fine particle analyzer 100 in the first embodiment, the conductance of both the primary filter 121 and the secondary filter 122 can be calculated. For example, as shown in FIG. 5, the second check may be performed periodically instead of executing the second check only when the pressure P1 monitored in the first check is equal to or less than the threshold value Pt1. As a result, the pressure P1 has a change in conductance with time as shown in FIG. The control device 200 can also estimate the exchange prediction time D1 (dotted line L2) from the actual change in conductance (solid line L1) and notify the user of the estimated exchange prediction time D1.
 第1実施形態において、フィルタ検査に用いられる圧力P1として、ガス分析装置130の内部圧力、具体的には、質量分析装置やイオンモビリティ分析装置のイオン源132における圧力が計測されている。しかし、これに限らず、フィルタ検査に用いる圧力P1は、2次フィルタ122よりも下流側を計測した値が用いられればよい。例えば、2次フィルタ122とガス分析装置130とを繋ぐガス配管116の圧力が計測されてもよい。 In the first embodiment, as the pressure P1 used for the filter inspection, the internal pressure of the gas analyzer 130, specifically, the pressure at the ion source 132 of the mass spectrometer or the ion mobility analyzer is measured. However, the pressure P1 used for the filter inspection is not limited to this, and a value measured on the downstream side of the secondary filter 122 may be used. For example, the pressure of the gas pipe 116 connecting the secondary filter 122 and the gas analyzer 130 may be measured.
 第1実施形態では、第2チェックで「Yes」が判定されても「1次フィルタ121:堆積あり、2次フィルタ122:堆積あり」と、「1次フィルタ121:堆積なし、2次フィルタ122:堆積あり」とがありうる。ここで、一般的に1次フィルタ121はユーザによって容易に交換できる。しかし、2次フィルタ122は、ユーザによる交換が困難であり、業者によって交換される。従って、2次フィルタ122の交換時期を知ることがユーザにとって重要である。第2チェックで「Yes」が判定されることは、1次フィルタ121の状態がどうであっても、少なくとも2次フィルタ122に堆積があることを示している。従って、第2チェックで「Yes」が判定された時点でユーザは業者に依頼すればよい。このように、第1実施形態によれば、ユーザが少なくとも2次フィルタ122の交換時期を知ることができる。この結果、適切なフィルタ120の交換を実現することができる。 In the first embodiment, even if "Yes" is determined in the second check, "primary filter 121: with deposition, secondary filter 122: with deposition" and "primary filter 121: without deposition, secondary filter 122" : There is accumulation ". Here, in general, the primary filter 121 can be easily replaced by the user. However, the secondary filter 122 is difficult for the user to replace and is replaced by a trader. Therefore, it is important for the user to know when to replace the secondary filter 122. If "Yes" is determined in the second check, it means that there is deposit in at least the secondary filter 122 regardless of the state of the primary filter 121. Therefore, when "Yes" is determined in the second check, the user may ask the vendor. In this way, according to the first embodiment, the user can know at least the replacement time of the secondary filter 122. As a result, appropriate replacement of the filter 120 can be realized.
 また、圧力センサ131としてガス分析装置130のイオン源132に備えられているものを利用することにより、新たな圧力センサ131を設置しなくてもよい。また、フィルタ検査モードでは吸気装置114が停止することにより、1次フィルタ121の上流圧力を大気圧として考えることができる。このため、フィルタ検査用ガスの導入流量Q1と、ガス分析装置130の吸引流量Qとを容易に一致させることができる。さらに、第1実施形態では第1チェックを行い、第1チェックの結果、「Yes」が判定された場合にフィルタ検査モードへ遷移している。このようにすることで、無駄なフィルタ検査が行われることを防止することができる。 Further, by using the pressure sensor 131 provided in the ion source 132 of the gas analyzer 130, it is not necessary to install a new pressure sensor 131. Further, in the filter inspection mode, the upstream pressure of the primary filter 121 can be considered as atmospheric pressure by stopping the intake device 114. Therefore, the introduction flow rate Q1 of the filter inspection gas and the suction flow rate Q of the gas analyzer 130 can be easily matched. Further, in the first embodiment, the first check is performed, and when "Yes" is determined as a result of the first check, the mode is changed to the filter inspection mode. By doing so, it is possible to prevent unnecessary filter inspection from being performed.
 [第2実施形態]
 図7は、第2実施形態におけるガスの流動状況を示す図である。
 第1実施形態では、ガス分析装置130の吸引流量Qと、フィルタ検査用ガス導入装置101の導入流量Q1とを一致させることで、圧力P1が式(4)で表されることが前提となっている。しかし、これらの流量は、完全に一致させなければならないわけではない。図7において、第1実施形態の流動状況は、ガス分析装置130の吸引流量Qとフィルタ検査用ガス導入装置101の導入流量Q1が一致するというのはQ2=0で、Q1=Qの場合に相当する。ここで、Q1,Q2は式(1)~(4)と同様である。一方で、Q1もQ2も0L/minでない場合を考える。1次フィルタ121と2次フィルタ122との間の圧力をPxと置くと、下記の式(11)及び式(12)の関係式を得る。なお、以下の式(11)~(13)でP,P1,Q,C1,C2は式(1)~(4)と同様である。
[Second Embodiment]
FIG. 7 is a diagram showing a gas flow state in the second embodiment.
In the first embodiment, it is premised that the pressure P1 is represented by the equation (4) by matching the suction flow rate Q of the gas analyzer 130 with the introduction flow rate Q1 of the filter inspection gas introduction device 101. ing. However, these flow rates do not have to be exactly the same. In FIG. 7, the flow rate of the first embodiment is such that the suction flow rate Q of the gas analyzer 130 and the introduction flow rate Q1 of the filter inspection gas introduction device 101 match when Q2 = 0 and Q1 = Q. Equivalent to. Here, Q1 and Q2 are the same as those in the equations (1) to (4). On the other hand, consider the case where neither Q1 nor Q2 is 0 L / min. When the pressure between the primary filter 121 and the secondary filter 122 is set as Px, the relational expressions of the following equations (11) and (12) are obtained. In the following equations (11) to (13), P, P1, Q, C1 and C2 are the same as those in the equations (1) to (4).
Q=Q1+Q2=C2(Px-P1)・・・(11)
Q2=C1(P-Px)・・・(12)
Q = Q1 + Q2 = C2 (Px-P1) ... (11)
Q2 = C1 (P-Px) ... (12)
 式(11)及び式(12)からPxを消すと、以下の式(13)の関係式が得られる。 By eliminating Px from the equations (11) and (12), the relational expression of the following equation (13) is obtained.
Q=C2(P-P1)-(C2/C1)Q2・・・(13) Q = C2 (P-P1)-(C2 / C1) Q2 ... (13)
 式(13)は、Q2がゼロの時に式(3)になることが分かる。圧力P1で2次フィルタ122のコンダクタンスC2を判断する場合、Q1の流量が多いと誤差も大きくなる。したがって、必ずしもQ2が0L/minとなるようにする必要はないが、できる限りQ2が小さくなるような条件で判定することが望ましい。少なくとも、Q1の方がQ2よりも大きい条件が望ましい。 It can be seen that equation (13) becomes equation (3) when Q2 is zero. When the conductance C2 of the secondary filter 122 is determined by the pressure P1, the error becomes large when the flow rate of Q1 is large. Therefore, it is not always necessary to set Q2 to 0 L / min, but it is desirable to make a judgment under the condition that Q2 is as small as possible. At least, it is desirable that Q1 is larger than Q2.
 このように、フィルタ検査用ガスの導入流量Q1と、ガス分析装置130の吸引流量Qとが一致しなくても、第1実施形態と同様の効果を得ることができる。 As described above, even if the introduction flow rate Q1 of the filter inspection gas and the suction flow rate Q of the gas analyzer 130 do not match, the same effect as that of the first embodiment can be obtained.
[第3実施形態]
 図8は、第3実施形態の微粒子分析システム1におけるフィルタ検査の手順を示すフローチャートである。
 図8に示すフローチャートでは、第1実施形態とは異なり、制御装置200は、フィルタ検査モード時においてフィルタ検査用ガスの導入流量Q1を2L/minに増加させる(S105a)。その後、制御装置200は、ガス分析装置130の吸引流量Qも分析モードの1L/minから2L/minへと増加させる(S201)。その後、制御装置200は、第2チェックを行う。式(4)で示すように、モニタしている圧力P1は、2次フィルタ122のコンダクタンスC2が大きくなるほど、そして流量Qが小さくなるほど低下する。2次フィルタ122のコンダクタンスC2の低下量が小さい場合、圧力センサ131の分解能が低いと圧力P1の低下を検知できない可能性がある。圧力変化を大きくするためには、ガス分析装置130による吸引流量Qを増大させることが望ましい。ガス分析装置130は分析モード時の最適吸引流量があるため、本実施形態では分析モード時とフィルタ検査モード時で吸引流量を適切に変化させる。なお、各流量は、これらの値に限らない。
[Third Embodiment]
FIG. 8 is a flowchart showing a filter inspection procedure in the fine particle analysis system 1 of the third embodiment.
In the flowchart shown in FIG. 8, unlike the first embodiment, the control device 200 increases the introduction flow rate Q1 of the filter inspection gas to 2 L / min in the filter inspection mode (S105a). After that, the control device 200 also increases the suction flow rate Q of the gas analyzer 130 from 1 L / min in the analysis mode to 2 L / min (S201). After that, the control device 200 performs the second check. As shown by the equation (4), the monitored pressure P1 decreases as the conductance C2 of the secondary filter 122 increases and as the flow rate Q decreases. When the amount of decrease in conductance C2 of the secondary filter 122 is small, the decrease in pressure P1 may not be detected if the resolution of the pressure sensor 131 is low. In order to increase the pressure change, it is desirable to increase the suction flow rate Q by the gas analyzer 130. Since the gas analyzer 130 has an optimum suction flow rate in the analysis mode, in the present embodiment, the suction flow rate is appropriately changed between the analysis mode and the filter inspection mode. Note that each flow rate is not limited to these values.
 第3実施形態によれば、フィルタ検査モード時において、ガス分析装置130による吸引流量が変化しても第1実施形態と同様の効果を得ることができる。 According to the third embodiment, the same effect as that of the first embodiment can be obtained even if the suction flow rate by the gas analyzer 130 changes in the filter inspection mode.
 [第4実施形態]
 図9は、第4実施形態の微粒子分析システム1におけるフィルタ検査の手順を示すフローチャートである。
 第4実施形態では、図5に示すフローチャートに対して、第1チェック(S102)の後に1次フィルタ121の洗浄処理(S301)が行われ、その後、第3チェック(S302)が行われる。ステップS301で行われる洗浄処理として、例えば、サイクロン捕集部111や、ヒータ112にエアノズル(不図示)を設置し、1次フィルタ121に高速ガスを噴射することで1次フィルタ121上の堆積物を吹き飛ばす手法が考えられる。
[Fourth Embodiment]
FIG. 9 is a flowchart showing a filter inspection procedure in the fine particle analysis system 1 of the fourth embodiment.
In the fourth embodiment, the first check (S102) is followed by the cleaning process (S301) of the primary filter 121, and then the third check (S302) is performed on the flowchart shown in FIG. As the cleaning process performed in step S301, for example, an air nozzle (not shown) is installed in the cyclone collecting unit 111 or the heater 112, and high-speed gas is injected into the primary filter 121 to inject high-speed gas to deposits on the primary filter 121. A method of blowing off is conceivable.
 その後、制御装置200は、第3チェック(S302)を行う。第3チェックの内容は、第1チェックの内容と同様である。
 第3チェックで、圧力P1が閾値Pt1より大きな値に回復した場合(S302→No)、制御装置200は、ステップS101へ処理を戻し、再び分析モードへと遷移する。一方で、第3チェックで、洗浄しても圧力P1が閾値Pt1以下のままで、回復しない場合(S302→Yes)、1次フィルタ121を洗浄し切れなかったか、2次フィルタ122のコンダクタンスが低下しているかの判断がつかないため、制御装置200は、ステップS103のフィルタ検査モードへと遷移する。
After that, the control device 200 performs the third check (S302). The content of the third check is the same as the content of the first check.
When the pressure P1 recovers to a value larger than the threshold value Pt1 in the third check (S302 → No), the control device 200 returns the process to step S101 and shifts to the analysis mode again. On the other hand, in the third check, if the pressure P1 remains below the threshold value Pt1 even after cleaning and does not recover (S302 → Yes), the primary filter 121 cannot be completely cleaned or the conductance of the secondary filter 122 decreases. Since it cannot be determined whether or not the control device 200 is used, the control device 200 shifts to the filter inspection mode in step S103.
 第4実施形態によれば、第1チェックにおいて、「Yes」が検出された場合、1次フィルタ121に対する微粒子Mの堆積を疑い、まず、1次フィルタ121の洗浄を行う。その後、第1チェックと同様の第3チェックを行い、それでも、「Yes」が検出された場合、2次フィルタ122に対する微粒子Mの堆積が疑われるため、フィルタ検査モードへ遷移する。このようにすることにより、フィルタ検査モードへ遷移する回数を減らすことができ、ガス分析装置130によるガス分析の停止時間を低減することができる。 According to the fourth embodiment, when "Yes" is detected in the first check, it is suspected that fine particles M are deposited on the primary filter 121, and the primary filter 121 is first washed. After that, the third check similar to the first check is performed, and if "Yes" is still detected, the accumulation of fine particles M on the secondary filter 122 is suspected, and the mode shifts to the filter inspection mode. By doing so, the number of transitions to the filter inspection mode can be reduced, and the stop time of gas analysis by the gas analyzer 130 can be reduced.
[第5実施形態]
 図10は、第5実施形態における微粒子分析システム1aの構成を示す図であり、図11は、第5実施形態の微粒子分析装置100aにおけるフィルタ検査の手順を示すフローチャートである。
 第5実施形態では、サイクロン捕集部111の内部圧力を計測する内部圧力センサ141がサイクロン捕集部111の吸引配管117に接続されている。これまでの実施形態では、吸気装置114を停止してからフィルタ検査が行われることで、1次フィルタ121より上流、すなわちサイクロン捕集部111の内部圧力Pが大気圧(1atm)であるものとして考えてきた。しかし、第5実施形態ではサイクロン捕集部111の内部圧力を計測可能であるため、吸気装置114を停止する必要はない。吸気装置114を停止しなければ、サイクロン捕集部111の内部圧力Pは大気圧ではないPcycとなる。従って、第5実施形態の式(1)~(4)、式(11)~(13)でP=Pcycとなる。ここで、Pcycは、内部圧力センサ141の計測値である。
[Fifth Embodiment]
FIG. 10 is a diagram showing the configuration of the fine particle analysis system 1a according to the fifth embodiment, and FIG. 11 is a flowchart showing a procedure for filter inspection in the fine particle analyzer 100a according to the fifth embodiment.
In the fifth embodiment, the internal pressure sensor 141 for measuring the internal pressure of the cyclone collecting unit 111 is connected to the suction pipe 117 of the cyclone collecting unit 111. In the conventional embodiments, the filter inspection is performed after the intake device 114 is stopped, so that the internal pressure P upstream of the primary filter 121, that is, the cyclone collecting unit 111 is atmospheric pressure (1 atm). I've been thinking. However, in the fifth embodiment, since the internal pressure of the cyclone collecting unit 111 can be measured, it is not necessary to stop the intake device 114. If the intake device 114 is not stopped, the internal pressure P of the cyclone collecting unit 111 becomes Pcyc, which is not atmospheric pressure. Therefore, P = Pcyc in the formulas (1) to (4) and the formulas (11) to (13) of the fifth embodiment. Here, Pcyc is a measured value of the internal pressure sensor 141.
 なお、図11に示すフローチャートでは、図5に示すフローチャートから、ステップS104の「吸気装置114停止」の処理が省略されたものであり、その他は、図5のフローチャートと同様であるので、ここでの説明を省略する。 In the flowchart shown in FIG. 11, the process of “stopping the intake device 114” in step S104 is omitted from the flowchart shown in FIG. 5, and the other steps are the same as the flowchart of FIG. The explanation of is omitted.
 第5実施形態によれば、吸気装置114の停止・再起動に要する時間が不要となり、フィルタ検査の時間を短縮することができる。 According to the fifth embodiment, the time required for stopping / restarting the intake device 114 is not required, and the time for filter inspection can be shortened.
 [第6実施形態]
 計測された圧力P1と、式(3)、式(4)とを基に、2次フィルタ122の検査時点でのコンダクタンスC2を算出することが可能である。また、算出した2次フィルタ122のコンダクタンスC2を式(1)、式(2)に適用することで、検査時点での1次フィルタ121のコンダクタンスC1も算出することが可能である。この手法によれば、一つの圧力センサ131で1次フィルタ121のコンダクタンスC1と、2次フィルタ122のコンダクタンスC2との両方を算出することができる。そして、正常な状態での双方のフィルタ120のコンダクタンスを予め計測しておけば、制御装置200は検査時のコンダクタンスの値を基に、交換が必要であるかを判断できる。
[Sixth Embodiment]
Based on the measured pressure P1 and the equations (3) and (4), the conductance C2 at the time of inspection of the secondary filter 122 can be calculated. Further, by applying the calculated conductance C2 of the secondary filter 122 to the equations (1) and (2), it is possible to calculate the conductance C1 of the primary filter 121 at the time of inspection. According to this method, both the conductance C1 of the primary filter 121 and the conductance C2 of the secondary filter 122 can be calculated by one pressure sensor 131. Then, if the conductance of both filters 120 in a normal state is measured in advance, the control device 200 can determine whether or not replacement is necessary based on the conductance value at the time of inspection.
 図12は、第6実施形態の微粒子分析システム1におけるフィルタ検査の手順を示すフローチャートである。
 図12に示すフローチャートでは、ステップS106の第2チェック後に、算出された2次フィルタ122のコンダクタンスC2が、予め設定されている閾値Ct2未満であるか否かを制御装置200が判定している(S401)。ステップS401の判定を第4チェックと称する。ここで、制御装置200は、ステップS106の前に取得されている圧力P1と、式(4)を基に2次フィルタ122のコンダクタンスC2を算出しておく。
FIG. 12 is a flowchart showing a filter inspection procedure in the fine particle analysis system 1 of the sixth embodiment.
In the flowchart shown in FIG. 12, after the second check in step S106, the control device 200 determines whether or not the calculated conductance C2 of the secondary filter 122 is less than the preset threshold value Ct2 (). S401). The determination in step S401 is referred to as a fourth check. Here, the control device 200 calculates the conductance C2 of the secondary filter 122 based on the pressure P1 acquired before step S106 and the equation (4).
 そして、2次フィルタ122のコンダクタンスC2が、閾値Ct2以上である場合(S401→No)、制御装置200はステップS108の処理を実行する。
 また、2次フィルタ122のコンダクタンスC2が、閾値Ct2未満である場合(S401→Yes)、制御装置200は、2次フィルタ122の交換を行う旨のアラーム(交換アラーム)をアラーム装置201から発報する(S107a)。ここで、図5のステップS107では、少なくとも2次フィルタ122の交換を行う旨の交換アラームが発報されている。これに対し、図12のステップS107aでは、2次フィルタ122に限定して交換アラームが発報されている。その他の処理は、図5の処理と同様である。
Then, when the conductance C2 of the secondary filter 122 is equal to or higher than the threshold value Ct2 (S401 → No), the control device 200 executes the process of step S108.
When the conductance C2 of the secondary filter 122 is less than the threshold value Ct2 (S401 → Yes), the control device 200 issues an alarm (replacement alarm) to replace the secondary filter 122 from the alarm device 201. (S107a). Here, in step S107 of FIG. 5, an exchange alarm is issued to the effect that at least the secondary filter 122 is exchanged. On the other hand, in step S107a of FIG. 12, the replacement alarm is issued only for the secondary filter 122. Other processing is the same as the processing of FIG.
 なお、ステップS401で、1次フィルタ121のコンダクタンスC1が、予め設定されている閾値Ct1より大きいか否かを制御装置200が判定してもよい。 In step S401, the control device 200 may determine whether the conductance C1 of the primary filter 121 is larger than the preset threshold value Ct1.
 このように、第6実施形態によれば、2次フィルタ122の交換が必要であるか否かを明示することができる。なお、交換の判定閾値はコンダクタンスで設定してもよいし、圧力センサ131で計測する圧力で設定してもよい。 In this way, according to the sixth embodiment, it is possible to clearly indicate whether or not the secondary filter 122 needs to be replaced. The replacement determination threshold may be set by conductance or by the pressure measured by the pressure sensor 131.
 [第7実施形態]
 これまでの実施形態では、第1チェックや、第2チャックが1段階の閾値判定となっているが、これに限らず、多段階の閾値判定でもよい。例えば、閾値が2つ設定されており、計測される圧力P1が1つ目の閾値以下であれば、制御装置200は、フィルタ120のコンダクタンス低下の注意アラームを発報し、必ずしも交換を要求しなくてもよい。そして、計測される圧力P1が、2つ目の閾値以下の場合、制御装置200は、フィルタ120の交換を促すアラーム(交換アラーム)を発報し、フィルタ120の交換や洗浄等でフィルタ120のコンダクタンスを正常レベルに回復させるまでは分析モードに戻れないという設定としてもよい。閾値を複数持つのは第1チェックと第2チェックのどちらも有効である。
[7th Embodiment]
In the embodiments so far, the first check and the second chuck have a one-step threshold value determination, but the present invention is not limited to this, and a multi-step threshold value determination may be used. For example, if two threshold values are set and the measured pressure P1 is equal to or less than the first threshold value, the control device 200 issues a caution alarm for a decrease in conductance of the filter 120 and necessarily requests replacement. It does not have to be. Then, when the measured pressure P1 is equal to or less than the second threshold value, the control device 200 issues an alarm (replacement alarm) prompting the replacement of the filter 120, and replaces or cleans the filter 120 to replace the filter 120. It may be set that the analysis mode cannot be returned until the conductance is restored to the normal level. Both the first check and the second check are effective in having a plurality of threshold values.
 図13は、第7実施形態の微粒子分析システム1におけるフィルタ検査の手順を示すフローチャートである。
 図13に示すフローチャートでは、ステップS101の後、圧力P1が事前に設定した閾値Pt11以下であるか否かを制御装置200が判定する(S501)。ステップS501の判定処理を第5チェックと称する。
 そして、圧力P1が閾値Pt11より大きい場合(S501→No)、制御装置200はステップS101へ処理を戻す。
 圧力P1が閾値Pt11以下である場合(S501→Yes)、制御装置200は圧力P1が事前に設定した閾値Pt12以下であるか否かを判定する(S502)。ステップS502の判定処理を第6チェックと称する。ここで、Pt11>Pt12である。
 そして、圧力P1が閾値Pt12より大きい場合(S502→No)、制御装置200は注意アラームを発報し(S503)、ステップS101へ処理を戻す。注意アラームでは、フィルタ120の交換時期が近づいていることが警告される。ここでは、1次フィルタ121、2次フィルタ122の区別なく、フィルタ120の交換時期が近づいていることが警告される。
 圧力P1が閾値Pt12以下の場合(S502→Yes)、制御装置200はステップS103へ処理を進める。
FIG. 13 is a flowchart showing a filter inspection procedure in the fine particle analysis system 1 of the seventh embodiment.
In the flowchart shown in FIG. 13, after step S101, the control device 200 determines whether or not the pressure P1 is equal to or less than the preset threshold value Pt11 (S501). The determination process in step S501 is referred to as a fifth check.
Then, when the pressure P1 is larger than the threshold value Pt11 (S501 → No), the control device 200 returns the process to step S101.
When the pressure P1 is equal to or less than the threshold value Pt11 (S501 → Yes), the control device 200 determines whether or not the pressure P1 is equal to or less than the preset threshold value Pt12 (S502). The determination process in step S502 is referred to as a sixth check. Here, Pt11> Pt12.
Then, when the pressure P1 is larger than the threshold value Pt12 (S502 → No), the control device 200 issues a caution alarm (S503), and returns the process to step S101. The caution alarm warns that the filter 120 is about to be replaced. Here, regardless of the primary filter 121 and the secondary filter 122, it is warned that the replacement time of the filter 120 is approaching.
When the pressure P1 is equal to or less than the threshold value Pt12 (S502 → Yes), the control device 200 proceeds to step S103.
 また、ステップS105の後、圧力P1が事前に設定した閾値Pt21以下であるか否かを制御装置200が判定している(S511)。ステップS511の判定処理を第7チェックと称する。
 そして、圧力P1が閾値Pt21より大きい場合(S511→No)、制御装置200は注意アラームを発報し(S512)、ステップS108へ処理を進める。注意アラームでは、2次フィルタ122の交換時期が近づいている可能性があることが警告される。
 圧力P1が閾値Pt21以下である場合(S511→Yes)、制御装置200は圧力P1が事前に設定した閾値Pt22以下であるか否かを判定する(S513)。ステップS513の判定処理を第8チェックと称する。ここで、Pt21>Pt22である。
 そして、圧力P1が閾値Pt22より大きい場合(S512→No)、制御装置200はステップS108へ処理を進める。
 圧力P1が閾値Pt22以下の場合(S512→Yes)、制御装置200はステップS107へ処理を進める。
 その他の処理は図5に示す処理と同様である。
Further, after step S105, the control device 200 determines whether or not the pressure P1 is equal to or lower than the preset threshold value Pt21 (S511). The determination process in step S511 is referred to as a seventh check.
Then, when the pressure P1 is larger than the threshold value Pt21 (S511 → No), the control device 200 issues a caution alarm (S512), and proceeds to step S108. The caution alarm warns that the secondary filter 122 may be about to be replaced.
When the pressure P1 is equal to or less than the threshold value Pt21 (S511 → Yes), the control device 200 determines whether or not the pressure P1 is equal to or less than the preset threshold value Pt22 (S513). The determination process in step S513 is referred to as an eighth check. Here, Pt21> Pt22.
Then, when the pressure P1 is larger than the threshold value Pt22 (S512 → No), the control device 200 proceeds to step S108.
When the pressure P1 is equal to or less than the threshold value Pt22 (S512 → Yes), the control device 200 proceeds to step S107.
Other processing is the same as the processing shown in FIG.
 なお、図13の処理において、ステップS501~S503の処理、及び、ステップS511~S513の処理のどちらか一方が省略されてもよい。
 また、図13の処理では、それぞれ2段階で閾値判定が行われているが、3段階以上で判定されてもよい。
In the process of FIG. 13, either the process of steps S501 to S503 and the process of steps S511 to S513 may be omitted.
Further, in the process of FIG. 13, the threshold value determination is performed in two stages, respectively, but the determination may be performed in three or more stages.
 第7実施形態によれば、フィルタ120の交換が警告されるより前に、フィルタ120の交換の注意喚起が行われるため、ユーザはフィルタ120の交換のための準備を予め行うことができる。 According to the seventh embodiment, the user can prepare for the replacement of the filter 120 in advance because the warning for the replacement of the filter 120 is issued before the replacement of the filter 120 is warned.
 [第8実施形態]
 また、1次フィルタ121及び2次フィルタ122のどちらも機差が存在する可能性がある。このため、フィルタ120を新品に交換するたびに閾値Pt1,Pt2が変更されることが望ましい。したがって、フィルタ120の交換時にフィルタ検査モードへと遷移し、新品状態でコンダクタンスを把握し、その値を基に閾値を再設定するのがよい。
 図14は、第8実施形態の微粒子分析システム1におけるフィルタ検査の手順を示すフローチャートである。
 まず、フィルタ120が交換される(S601)。ここで、交換されるフィルタ120は、1次フィルタ121及び2次フィルタ122のいずれか一方である。
 その後、分析モードで微粒子分析装置100が稼働され(S602)、制御装置200は圧力センサ131によって計測された圧力P1を取得する(S603)。
 次に、制御装置200は、微粒子分析装置100をフィルタ検査モードに遷移させる(S611)。
 そして、制御装置200は吸気装置114を停止し(S612)、フィルタ検査用ガス導入装置101からのフィルタ検査用ガスの導入流量を0.1L/minから1L/minへと増加させる(S613)。ステップS612及びステップS613の処理は、図1のステップS104及びステップS105の処理と同様である。
[8th Embodiment]
Further, there may be a difference between the primary filter 121 and the secondary filter 122. Therefore, it is desirable that the threshold values Pt1 and Pt2 are changed every time the filter 120 is replaced with a new one. Therefore, it is preferable to shift to the filter inspection mode when the filter 120 is replaced, grasp the conductance in a new state, and reset the threshold value based on the value.
FIG. 14 is a flowchart showing a filter inspection procedure in the fine particle analysis system 1 of the eighth embodiment.
First, the filter 120 is replaced (S601). Here, the filter 120 to be replaced is either the primary filter 121 or the secondary filter 122.
After that, the fine particle analyzer 100 is operated in the analysis mode (S602), and the control device 200 acquires the pressure P1 measured by the pressure sensor 131 (S603).
Next, the control device 200 shifts the particle analyzer 100 to the filter inspection mode (S611).
Then, the control device 200 stops the intake device 114 (S612) and increases the flow rate of the filter inspection gas introduced from the filter inspection gas introduction device 101 from 0.1 L / min to 1 L / min (S613). The processing of step S612 and step S613 is the same as the processing of step S104 and step S105 of FIG.
 次に、制御装置200は、圧力センサ131によって計測された圧力P1を取得する(S614)。
 そして、制御装置200は、ステップS603及びステップS614のそれぞれで取得した圧力P1と、式(1)~(4)とを基に、コンダクタンスC1,C2を算出する(S615)。
 次に、制御装置200は、算出したコンダクタンスC1,C2を基に、圧力判定に用いる閾値Pt1,Pt2を算出し(S621)、記憶装置202に格納する(S622)ことで閾値Pt1,Pt2を更新する。ここで、閾値Pt1,Pt2の双方が算出され、更新されているが、実際には交換されたフィルタ120に関する閾値が更新されればよい。
Next, the control device 200 acquires the pressure P1 measured by the pressure sensor 131 (S614).
Then, the control device 200 calculates conductances C1 and C2 based on the pressures P1 acquired in each of steps S603 and S614 and the equations (1) to (4) (S615).
Next, the control device 200 calculates the threshold values Pt1 and Pt2 used for the pressure determination based on the calculated conductances C1 and C2 (S621) and stores them in the storage device 202 (S622) to update the threshold values Pt1 and Pt2. To do. Here, both the threshold values Pt1 and Pt2 are calculated and updated, but in reality, the threshold values for the exchanged filter 120 may be updated.
 第8実施形態によれば、交換前と、交換後におけるフィルタ120の機差を反映した閾値を用いることができる。
 なお、第8実施形態は、第1実施形態をベースとしているが、第2~第7実施形態に適用することも可能である。
According to the eighth embodiment, a threshold value that reflects the difference between the filters 120 before and after the replacement can be used.
Although the eighth embodiment is based on the first embodiment, it can also be applied to the second to seventh embodiments.
 [ハードウェア構成]
 図15は、第1~第8実施形態における制御装置200のハードウェア構成を示す図である。
 制御装置200は、メモリ211、CPU(Central Processing Unit)212、通信装置213を有している。
 メモリ211には、図1に示す記憶装置202に格納されているプログラムがロードされている。そして、CPU212がメモリ211にロードされているプログラムを実行する。また、通信装置213は、圧力センサ131から圧力P1を取得したり、フィルタ検査用ガス導入装置101、吸気装置114への指示を送信したりする。
[Hardware configuration]
FIG. 15 is a diagram showing a hardware configuration of the control device 200 according to the first to eighth embodiments.
The control device 200 includes a memory 211, a CPU (Central Processing Unit) 212, and a communication device 213.
The program stored in the storage device 202 shown in FIG. 1 is loaded in the memory 211. Then, the CPU 212 executes the program loaded in the memory 211. Further, the communication device 213 acquires the pressure P1 from the pressure sensor 131, and transmits an instruction to the filter inspection gas introduction device 101 and the intake device 114.
 フィルタ120の交換のためのアラーム(交換アラーム)や交換予測時期等が制御装置200に接続されている表示装置(不図示)に表示されてもよい。あるいは、制御装置200と、微粒子分析装置100とがネットワークを介して接続し、外部から微粒子分析装置100の監視ができるようにしてもよい。 An alarm for replacement of the filter 120 (replacement alarm), a replacement prediction time, and the like may be displayed on a display device (not shown) connected to the control device 200. Alternatively, the control device 200 and the fine particle analyzer 100 may be connected via a network so that the fine particle analyzer 100 can be monitored from the outside.
 本発明は前記した実施形態に限定されるものではなく、様々な変形例が含まれる。例えば、前記した実施形態は本発明を分かりやすく説明するために詳細に説明したものであり、必ずしも説明したすべての構成を有するものに限定されるものではない。また、ある実施形態の構成の一部を他の実施形態の構成に置き換えることが可能であり、ある実施形態の構成に他の実施形態の構成を加えることも可能である。また、各実施形態の構成の一部について、他の構成の追加・削除・置換をすることが可能である。 The present invention is not limited to the above-described embodiment, and includes various modifications. For example, the above-described embodiment has been described in detail in order to explain the present invention in an easy-to-understand manner, and is not necessarily limited to those having all the described configurations. Further, it is possible to replace a part of the configuration of one embodiment with the configuration of another embodiment, and it is also possible to add the configuration of another embodiment to the configuration of one embodiment. Further, it is possible to add / delete / replace a part of the configuration of each embodiment with another configuration.
 また、前記した各構成、機能、制御装置200、アラーム装置201、記憶装置202等は、それらの一部又はすべてを、例えば集積回路で設計すること等によりハードウェアで実現してもよい。また、図15に示すように、前記した各構成、機能等は、CPU212等のプロセッサがそれぞれの機能を実現するプログラムを解釈し、実行することによりソフトウェアで実現してもよい。各機能を実現するプログラム、テーブル、ファイル等の情報は、HD(Hard Disk)に格納すること以外に、メモリ211や、SSD(Solid State Drive)等の記録装置、又は、IC(Integrated Circuit)カードや、SD(Secure Digital)カード、DVD(Digital Versatile Disc)等の記録媒体に格納することができる。
 また、各実施形態において、制御線や情報線は説明上必要と考えられるものを示しており、製品上必ずしもすべての制御線や情報線を示しているとは限らない。実際には、ほとんどすべての構成が相互に接続されていると考えてよい。
Further, each of the above-mentioned configurations, functions, control devices 200, alarm devices 201, storage devices 202 and the like may be realized by hardware, for example, by designing a part or all of them by an integrated circuit or the like. Further, as shown in FIG. 15, each of the above-described configurations, functions, and the like may be realized by software by interpreting and executing a program in which a processor such as a CPU 212 realizes each function. In addition to storing information such as programs, tables, and files that realize each function in HD (Hard Disk), a memory 211, a recording device such as SSD (Solid State Drive), or an IC (Integrated Circuit) card. It can be stored in a recording medium such as an SD (Secure Digital) card or a DVD (Digital Versatile Disc).
Further, in each embodiment, the control lines and information lines are shown as necessary for explanation, and not all the control lines and information lines are necessarily shown in the product. In practice, almost all configurations can be considered interconnected.
 1,1a 微粒子分析システム(フィルタ検査システム)
 100,100a 微粒子分析装置
 101 フィルタ検査用ガス導入装置(フィルタ検査用ガス導入部)
 111 サイクロン捕集部
 114 吸気装置(サイクロン吸気部)
 115,116 ガス配管
 121 1次フィルタ(第1のフィルタ部)
 122 2次フィルタ(第2のフィルタ部)
 130 ガス分析装置(吸引部)
 131 圧力センサ(第1の圧力計測部)
 132 イオン源
 141 内部圧力センサ(第2の圧力計測部)
 200 制御装置(制御部)
 201 アラーム装置(出力部)
 202 記憶装置(記憶部;第1の閾値、第2の閾値を格納)
 Q1  流量(フィルタ分析用ガスの流量)
 M1  分析支援物質(内部標準物質、ドーパント)
 S101 分析モード(非フィルタ検査モード)
 S103 フィルタ検査モード
 S105 フィルタ検査ガス流量0.1L/min→1L/min(フィルタ検査用ガス流量変更ステップ)
 S107 アラーム発報(アラーム出力ステップ)
1,1a Fine particle analysis system (filter inspection system)
100,100a Fine particle analyzer 101 Filter inspection gas introduction device (filter inspection gas introduction unit)
111 Cyclone collection unit 114 Intake device (Cyclone intake unit)
115, 116 Gas piping 121 Primary filter (first filter section)
122 Secondary filter (second filter section)
130 Gas analyzer (suction unit)
131 Pressure sensor (first pressure measuring unit)
132 Ion source 141 Internal pressure sensor (second pressure measuring unit)
200 Control device (control unit)
201 Alarm device (output unit)
202 Storage device (storage unit; stores the first threshold value and the second threshold value)
Q1 flow rate (flow rate of gas for filter analysis)
M1 analysis support substance (internal standard substance, dopant)
S101 Analysis mode (non-filter inspection mode)
S103 Filter inspection mode S105 Filter inspection gas flow rate 0.1 L / min → 1 L / min (filter inspection gas flow rate change step)
S107 Alarm issuance (alarm output step)

Claims (13)

  1.  加熱されている第1のフィルタ部と、
     前記第1のフィルタ部の下流側にガス配管を介して接続され、吸引を行う吸引部と、
     前記第1のフィルタ部と、前記吸引部との間に少なくとも1つ設けられる第2のフィルタ部と、
     前記第1のフィルタ部と前記第2のフィルタ部との間に、フィルタ検査用ガスを導入するフィルタ検査用ガス導入部と、
     前記第2のフィルタ部の下流側に設置される第1の圧力計測部と、
     前記第1の圧力計測部によって計測される第1の圧力値を基に、前記フィルタ検査用ガス導入部を制御する制御部と、
     所定の閾値である第1の閾値を格納する記憶部と、
     を有し、
     前記制御部は、
     前記第1のフィルタ部、及び、前記第2のフィルタ部における導通状態を検査するフィルタ検査モードと、前記フィルタ検査モード以外のモードである非フィルタ検査モードとを実行し、
     フィルタ検査モード時において、
     前記フィルタ検査用ガス導入部から導入される前記フィルタ検査用ガスの流量を、非フィルタ検査モードが行われている時よりも上昇させて、前記フィルタ検査用ガスの流量を前記第1のフィルタ部から前記吸引部に向かって流れる流量以上とし、
     前記第1の圧力計測部によって計測された前記第1の圧力値が、前記記憶部に格納されている前記第1の閾値より低い場合、出力部から少なくとも前記第2のフィルタ部の交換を促すアラームを出力する
     ことを特徴とする微粒子分析装置におけるフィルタ検査システム。
    The heated first filter section and
    A suction unit connected to the downstream side of the first filter unit via a gas pipe to perform suction, and a suction unit.
    A second filter unit provided between the first filter unit and the suction unit,
    A filter inspection gas introduction section for introducing a filter inspection gas between the first filter section and the second filter section, and a filter inspection gas introduction section.
    A first pressure measuring unit installed on the downstream side of the second filter unit and
    A control unit that controls the filter inspection gas introduction unit based on the first pressure value measured by the first pressure measurement unit.
    A storage unit that stores a first threshold value, which is a predetermined threshold value,
    Have,
    The control unit
    A filter inspection mode for inspecting the continuity state in the first filter unit and the second filter unit and a non-filter inspection mode which is a mode other than the filter inspection mode are executed.
    In filter inspection mode
    The flow rate of the filter inspection gas introduced from the filter inspection gas introduction unit is increased as compared with the time when the non-filter inspection mode is performed, and the flow rate of the filter inspection gas is increased to the first filter unit. The flow rate is equal to or greater than the flow rate from
    When the first pressure value measured by the first pressure measuring unit is lower than the first threshold value stored in the storage unit, the output unit prompts the replacement of at least the second filter unit. A filter inspection system in a particle analyzer characterized by outputting an alarm.
  2.  前記制御部は、
     前記フィルタ検査モード時において、前記フィルタ検査用ガス導入部から導入される前記フィルタ検査用ガスの流量が前記吸引部の吸引流量と一致するよう、前記フィルタ検査用ガスの流量を制御する
     ことを特徴とする請求項1に記載の微粒子分析装置におけるフィルタ検査システム。
    The control unit
    In the filter inspection mode, the flow rate of the filter inspection gas is controlled so that the flow rate of the filter inspection gas introduced from the filter inspection gas introduction unit matches the suction flow rate of the suction unit. The filter inspection system in the fine particle analyzer according to claim 1.
  3.  前記吸引部は、ガス分析装置であり、
     前記第1の圧力計測部は、
     前記ガス分析装置のイオン源に接続されている
     ことを特徴とする請求項1に記載の微粒子分析装置におけるフィルタ検査システム。
    The suction unit is a gas analyzer and
    The first pressure measuring unit is
    The filter inspection system in the fine particle analyzer according to claim 1, wherein the filter inspection system is connected to an ion source of the gas analyzer.
  4.  前記フィルタ検査用ガス導入部は、
     内部標準物質とドーパントの少なくとも1つを前記ガス配管に導入する
     ことを特徴とする請求項3に記載の微粒子分析装置におけるフィルタ検査システム。
    The filter inspection gas introduction section is
    The filter inspection system in the fine particle analyzer according to claim 3, wherein at least one of an internal standard substance and a dopant is introduced into the gas pipe.
  5.  前記制御部は、
     前記フィルタ検査モード時において、前記吸引部による吸引流量を前記非フィルタ検査モード時よりも増加させる
     ことを特徴とする請求項1に記載の微粒子分析装置におけるフィルタ検査システム。
    The control unit
    The filter inspection system in the fine particle analyzer according to claim 1, wherein the suction flow rate by the suction unit is increased in the filter inspection mode as compared with the non-filter inspection mode.
  6.  前記第1のフィルタ部の上流は、サイクロン捕集部に接続され、
     前記サイクロン捕集部に接続されたサイクロン吸気部が、前記制御部によって制御され、
     前記制御部は、
     前記非フィルタ検査モード時よりもフィルタ検査モード時には前記サイクロン吸気部を停止させる
     ことを特徴とする請求項1に記載の微粒子分析装置におけるフィルタ検査システム。
    The upstream of the first filter section is connected to the cyclone collecting section and is connected to the cyclone collecting section.
    The cyclone intake unit connected to the cyclone collection unit is controlled by the control unit.
    The control unit
    The filter inspection system in the fine particle analyzer according to claim 1, wherein the cyclone intake unit is stopped in the filter inspection mode rather than in the non-filter inspection mode.
  7.  前記サイクロン捕集部の内部圧力を計測する第2の圧力計測部を有し、
     前記制御部は、
     前記第2の圧力計測部によって計測された第2の圧力値と、前記第1の圧力計測部によって計測される前記第1の圧力値と、を基に、前記第1の圧力値が、前記第1の閾値より低いか否かを判定する
     ことを特徴とする請求項6に記載の微粒子分析装置におけるフィルタ検査システム。
    It has a second pressure measuring unit that measures the internal pressure of the cyclone collecting unit.
    The control unit
    Based on the second pressure value measured by the second pressure measuring unit and the first pressure value measured by the first pressure measuring unit, the first pressure value is the said. The filter inspection system in the fine particle analyzer according to claim 6, wherein it is determined whether or not the pressure is lower than the first threshold value.
  8.  前記記憶部は、前記第1の閾値とは異なり、前記第1の閾値より大きい値を有する第2の閾値を格納しており
     前記制御部は、
     前記非フィルタ検査モード時において、前記第1の圧力値が前記第2の閾値以下である場合、前記フィルタ検査モードへと遷移する
     ことを特徴とする請求項1に記載の微粒子分析装置におけるフィルタ検査システム。
    The storage unit stores a second threshold value having a value larger than the first threshold value, unlike the first threshold value, and the control unit stores the second threshold value.
    The filter inspection in the fine particle analyzer according to claim 1, wherein when the first pressure value is equal to or less than the second threshold value in the non-filter inspection mode, the mode transitions to the filter inspection mode. system.
  9.  前記記憶部は、前記第1の閾値とは異なり、前記第1の閾値より大きい値を有する第2の閾値を格納しており
     前記制御部は、
     前記非フィルタ検査モード時において、前記第1の圧力値が前記第2の閾値以下である場合、前記第1のフィルタ部の洗浄が行われ、
     前記第1のフィルタ部の洗浄が完了した後、前記第1の圧力値が前記第2の閾値以下である場合、前記フィルタ検査モードへ遷移する
     ことを特徴とする請求項1に記載の微粒子分析装置におけるフィルタ検査システム。
    The storage unit stores a second threshold value having a value larger than the first threshold value, unlike the first threshold value, and the control unit stores the second threshold value.
    In the non-filter inspection mode, when the first pressure value is equal to or less than the second threshold value, the first filter portion is washed.
    The fine particle analysis according to claim 1, wherein after the cleaning of the first filter portion is completed, when the first pressure value is equal to or less than the second threshold value, the process transitions to the filter inspection mode. Filter inspection system in the device.
  10.  前記制御部は、
     フィルタ検査モードで計算されるフィルタのコンダクタンスの経時変化を基に、交換時期を予測する
     ことを特徴とする請求項1に記載の微粒子分析装置におけるフィルタ検査システム。
    The control unit
    The filter inspection system in the fine particle analyzer according to claim 1, wherein the replacement time is predicted based on the time course of the conductance of the filter calculated in the filter inspection mode.
  11.  前記制御部は、
     前記第1の圧力計測部によって計測された前記第1の圧力値と、前記吸引部が吸引する流量と、前記第1のフィルタ部の上流の圧力値と、を基に、前記第1のフィルタ部のコンダクタンス、及び、前記第2のフィルタ部のコンダクタンスのうち、少なくとも一方を算出し、
     算出した前記第1のフィルタ部のコンダクタンス、及び、前記第2のフィルタ部のコンダクタンスのうち、少なくとも一方を基に、前記第2のフィルタ部における導通状態を判定する
     ことを特徴とする請求項1に記載の微粒子分析装置におけるフィルタ検査システム。
    The control unit
    The first filter is based on the first pressure value measured by the first pressure measuring unit, the flow rate sucked by the suction unit, and the pressure value upstream of the first filter unit. Calculate at least one of the conductance of the unit and the conductance of the second filter unit.
    Claim 1 is characterized in that the conduction state in the second filter unit is determined based on at least one of the calculated conductance of the first filter unit and the conductance of the second filter unit. The filter inspection system in the fine particle analyzer according to.
  12.  前記制御部は、
     フィルタ交換時に、フィルタ検査モードに遷移して前記第1のフィルタ部、及び、前記第2のフィルタ部のうち、交換された方のコンダクタンスを算出し、その値を基に記憶部に格納されている閾値を更新する
     ことを特徴とする請求項1に記載の微粒子分析装置におけるフィルタ検査システム。
    The control unit
    At the time of filter exchange, the state shifts to the filter inspection mode, the conductance of the exchanged one of the first filter unit and the second filter unit is calculated, and the conductance is stored in the storage unit based on the value. The filter inspection system in the fine particle analyzer according to claim 1, wherein the threshold value is updated.
  13.  加熱されている第1のフィルタ部と、
     前記第1のフィルタ部の下流側にガス配管を介して接続され、吸引を行う吸引部と、
     前記第1のフィルタ部と、前記吸引部との間に少なくとも1つ設けられる第2のフィルタ部と、
     前記第1のフィルタ部と前記第2のフィルタ部との間に、フィルタ検査用ガスを導入するフィルタ検査用ガス導入部と、
     前記第2のフィルタ部の下流側に設置される第1の圧力計測部と、
     前記第1の圧力計測部によって計測される第1の圧力値を基に、前記フィルタ検査用ガス導入部を制御する制御部と、
     所定の閾値である第1の閾値を格納する記憶部と、
     を有し、
     前記制御部が、
     前記第1のフィルタ部、及び、前記第2のフィルタ部における導通状態を検査するフィルタ検査モードと、前記フィルタ検査モード以外のモードである非フィルタ検査モードとを実行し、
     フィルタ検査モード時において、
     前記フィルタ検査用ガス導入部から導入される前記フィルタ検査用ガスの流量を、非フィルタ検査モードが行われている時よりも上昇させて前記第1のフィルタ部から前記吸引部に向かって流れる流量以上とするフィルタ検査用ガス流量変更ステップと、
     前記第1の圧力計測部によって計測された前記第1の圧力値が、前記記憶部に格納されている前記第1の閾値より低い場合、出力部から少なくとも前記第2のフィルタ部の交換を促すアラームを出力するアラーム出力ステップと
     を実行することを特徴とする微粒子分析装置におけるフィルタ検査方法。
    The heated first filter section and
    A suction unit connected to the downstream side of the first filter unit via a gas pipe to perform suction, and a suction unit.
    A second filter unit provided between the first filter unit and the suction unit,
    A filter inspection gas introduction section for introducing a filter inspection gas between the first filter section and the second filter section, and a filter inspection gas introduction section.
    A first pressure measuring unit installed on the downstream side of the second filter unit and
    A control unit that controls the filter inspection gas introduction unit based on the first pressure value measured by the first pressure measurement unit.
    A storage unit that stores a first threshold value, which is a predetermined threshold value,
    Have,
    The control unit
    A filter inspection mode for inspecting the continuity state in the first filter unit and the second filter unit and a non-filter inspection mode which is a mode other than the filter inspection mode are executed.
    In filter inspection mode
    The flow rate of the filter inspection gas introduced from the filter inspection gas introduction section is increased from that when the non-filter inspection mode is performed, and the flow rate flows from the first filter section toward the suction section. The above steps for changing the gas flow rate for filter inspection and
    When the first pressure value measured by the first pressure measuring unit is lower than the first threshold value stored in the storage unit, the output unit prompts the replacement of at least the second filter unit. A filter inspection method in a particle analyzer characterized by performing an alarm output step and an alarm output step.
PCT/JP2020/039257 2019-11-29 2020-10-19 Filter inspection system and filter inspection method for fine particle analysis device WO2021106426A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2019216961A JP7330872B2 (en) 2019-11-29 2019-11-29 FILTER INSPECTION SYSTEM AND FILTER INSPECTION METHOD IN PARTICLE ANALYZER
JP2019-216961 2019-11-29

Publications (1)

Publication Number Publication Date
WO2021106426A1 true WO2021106426A1 (en) 2021-06-03

Family

ID=76088844

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2020/039257 WO2021106426A1 (en) 2019-11-29 2020-10-19 Filter inspection system and filter inspection method for fine particle analysis device

Country Status (2)

Country Link
JP (1) JP7330872B2 (en)
WO (1) WO2021106426A1 (en)

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH09313852A (en) * 1996-05-27 1997-12-09 Orion Mach Co Ltd Filter controlling device
US6327893B1 (en) * 1999-12-07 2001-12-11 Aaf Mcquay Filter layer comparative testing method and apparatus
JP2011027307A (en) * 2009-07-23 2011-02-10 Dai-Dan Co Ltd Ventilation device
JP2014174074A (en) * 2013-03-12 2014-09-22 Hitachi Ltd Analyzer of substance and analysis method
WO2019151383A1 (en) * 2018-01-31 2019-08-08 三菱日立パワーシステムズ株式会社 Filter unit quality management system and filter unit quality management method
JP2019178942A (en) * 2018-03-30 2019-10-17 株式会社日立製作所 Microparticle analyzer, microparticle analysis system, and cleaning method

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH09313852A (en) * 1996-05-27 1997-12-09 Orion Mach Co Ltd Filter controlling device
US6327893B1 (en) * 1999-12-07 2001-12-11 Aaf Mcquay Filter layer comparative testing method and apparatus
JP2011027307A (en) * 2009-07-23 2011-02-10 Dai-Dan Co Ltd Ventilation device
JP2014174074A (en) * 2013-03-12 2014-09-22 Hitachi Ltd Analyzer of substance and analysis method
WO2019151383A1 (en) * 2018-01-31 2019-08-08 三菱日立パワーシステムズ株式会社 Filter unit quality management system and filter unit quality management method
JP2019178942A (en) * 2018-03-30 2019-10-17 株式会社日立製作所 Microparticle analyzer, microparticle analysis system, and cleaning method

Also Published As

Publication number Publication date
JP2021085839A (en) 2021-06-03
JP7330872B2 (en) 2023-08-22

Similar Documents

Publication Publication Date Title
JP6951283B2 (en) Fine particle analyzer, fine particle analysis system and cleaning method
CN107132318B (en) Fixed pollution source VOC on-line monitoring system
US6806450B2 (en) Hazardous material detection system
US8342003B2 (en) Systems and methods for measurement and analysis of pipeline contaminants
KR102179129B1 (en) An apparatus for integrated measuring stationary sources of stack exhaust gas
JP2010515040A (en) Apparatus and method for combined measurement for comprehensive and continuous tracking of trace amounts of tar present in a gas stream
KR102335707B1 (en) Manual Aerosol Thinner Mechanism
EP3510630B1 (en) Apparatus and method for analysing a chemical composition of aerosol particles
WO2021106426A1 (en) Filter inspection system and filter inspection method for fine particle analysis device
US7024950B2 (en) Method for intelligent sampling of particulates in exhaust lines
CN205910038U (en) Smoke discharging monitoring system
WO2008082377A1 (en) Systems and methods for measurement and analysis of pipeline contaminants
Hsu et al. Axial flow cyclone for segregation and collection of ultrafine particles: theoretical and experimental study
KR20150012535A (en) Carbon particle sampling filter pack and method for measuring carbon mass using the same
CN208043753U (en) Integrated volatile organic substance analyzer
CN112198096A (en) Beryllium dust concentration online monitoring equipment and monitoring method thereof
CN206311539U (en) A kind of inductively coupled plasma mass spectrometer coupling interface device
Chen et al. Review of Monitoring Methods for Submicronsized Particulates Emission in Coal-fired Power Plants
JP6751341B2 (en) Analysis system and analysis method
TW201912291A (en) Integrated volatile organic matter analysis machine
WO2022157814A1 (en) Particle separation apparatus
GB2473048A (en) Detecting and counting carbon nanotubes and separating larger particles
EP3433596A1 (en) Sampling probe apparatus for collecting a sample of a gas stream containing particulate matter and method of using the same
JP2024008223A (en) Ion source control method and ion source control device
CN114296125A (en) Radioactive aerosol sampling test system

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 20893063

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 20893063

Country of ref document: EP

Kind code of ref document: A1