WO2021104998A1 - Dispositif de protection de structures statiques ou mobiles, terrestres, nautiques ou aeriennes contre le souffle d'une explosion ou detonation et les projections de matiere associees - Google Patents

Dispositif de protection de structures statiques ou mobiles, terrestres, nautiques ou aeriennes contre le souffle d'une explosion ou detonation et les projections de matiere associees Download PDF

Info

Publication number
WO2021104998A1
WO2021104998A1 PCT/EP2020/082747 EP2020082747W WO2021104998A1 WO 2021104998 A1 WO2021104998 A1 WO 2021104998A1 EP 2020082747 W EP2020082747 W EP 2020082747W WO 2021104998 A1 WO2021104998 A1 WO 2021104998A1
Authority
WO
WIPO (PCT)
Prior art keywords
shell
explosion
protective
vehicle
blast
Prior art date
Application number
PCT/EP2020/082747
Other languages
English (en)
Inventor
Francis COLLOMBET
Yves-Henri GRUNEVALD
Alain ROUQUAND
Original Assignee
Universite Toulouse Iii - Paul Sabatier
Composites Expertise & Solutions
Commissariat A L'energie Atomique Et Aux Energies Alternatives
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Universite Toulouse Iii - Paul Sabatier, Composites Expertise & Solutions, Commissariat A L'energie Atomique Et Aux Energies Alternatives filed Critical Universite Toulouse Iii - Paul Sabatier
Priority to EP20807066.4A priority Critical patent/EP4065923A1/fr
Priority to US17/776,412 priority patent/US12078457B2/en
Publication of WO2021104998A1 publication Critical patent/WO2021104998A1/fr

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F41WEAPONS
    • F41HARMOUR; ARMOURED TURRETS; ARMOURED OR ARMED VEHICLES; MEANS OF ATTACK OR DEFENCE, e.g. CAMOUFLAGE, IN GENERAL
    • F41H7/00Armoured or armed vehicles
    • F41H7/02Land vehicles with enclosing armour, e.g. tanks
    • F41H7/04Armour construction
    • F41H7/042Floors or base plates for increased land mine protection
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B64AIRCRAFT; AVIATION; COSMONAUTICS
    • B64CAEROPLANES; HELICOPTERS
    • B64C1/00Fuselages; Constructional features common to fuselages, wings, stabilising surfaces or the like
    • B64C1/06Frames; Stringers; Longerons ; Fuselage sections
    • B64C1/061Frames
    • B64C1/062Frames specially adapted to absorb crash loads
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B64AIRCRAFT; AVIATION; COSMONAUTICS
    • B64DEQUIPMENT FOR FITTING IN OR TO AIRCRAFT; FLIGHT SUITS; PARACHUTES; ARRANGEMENT OR MOUNTING OF POWER PLANTS OR PROPULSION TRANSMISSIONS IN AIRCRAFT
    • B64D11/00Passenger or crew accommodation; Flight-deck installations not otherwise provided for
    • B64D11/06Arrangements of seats, or adaptations or details specially adapted for aircraft seats
    • B64D11/0619Arrangements of seats, or adaptations or details specially adapted for aircraft seats with energy absorbing means specially adapted for mitigating impact loads for passenger seats, e.g. at a crash
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F41WEAPONS
    • F41HARMOUR; ARMOURED TURRETS; ARMOURED OR ARMED VEHICLES; MEANS OF ATTACK OR DEFENCE, e.g. CAMOUFLAGE, IN GENERAL
    • F41H5/00Armour; Armour plates
    • F41H5/013Mounting or securing armour plates
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F41WEAPONS
    • F41HARMOUR; ARMOURED TURRETS; ARMOURED OR ARMED VEHICLES; MEANS OF ATTACK OR DEFENCE, e.g. CAMOUFLAGE, IN GENERAL
    • F41H5/00Armour; Armour plates
    • F41H5/02Plate construction
    • F41H5/04Plate construction composed of more than one layer
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F41WEAPONS
    • F41HARMOUR; ARMOURED TURRETS; ARMOURED OR ARMED VEHICLES; MEANS OF ATTACK OR DEFENCE, e.g. CAMOUFLAGE, IN GENERAL
    • F41H5/00Armour; Armour plates
    • F41H5/02Plate construction
    • F41H5/04Plate construction composed of more than one layer
    • F41H5/0442Layered armour containing metal
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B63SHIPS OR OTHER WATERBORNE VESSELS; RELATED EQUIPMENT
    • B63BSHIPS OR OTHER WATERBORNE VESSELS; EQUIPMENT FOR SHIPPING 
    • B63B3/00Hulls characterised by their structure or component parts
    • B63B3/10Armoured hulls
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T50/00Aeronautics or air transport
    • Y02T50/40Weight reduction

Definitions

  • the technical field of the invention is that of protection devices for static or mobile structures, land, nautical or air, against explosions or detonations and associated material projections, such as explosions from buried mines for example.
  • the present invention relates to devices for ensuring the protection of any physical body in contact or not with a floor of a land vehicle, these devices being arranged between the floor of a land vehicle and a machine explosive.
  • Such protection devices can also ensure the protection of a vertical face of the structure and in these cases constitute lateral protection. Finally, they can be placed on the upper face (for example a roof) in the event of a threat resulting from a detonation located above the system to be protected (for example an aerial detonation).
  • the detonation of a mine located below a military land vehicle generates blast-type shock waves which can cause perforation of the floor of the military land vehicle directly exposing the occupants of the military land vehicle to the pressure of the blast and the intense heat generated by the explosion as well as the associated projections.
  • This overprotection can consist of a metal shell placed between the threat (placed on or buried in the ground) and the floor of the military land vehicle, at a distance from the latter, the shell making it possible to partially absorb the energy produced by the blast of the mine explosion.
  • the shell allows, in some cases but not always, to partially absorb the energy produced by the blast of the mine explosion through the principle of plastic deformation, for example.
  • the overprotection can be used to deflect the blast of the explosion and can in this case have a cross-sectional profile having the general shape of a V, the top of the V pointing in a direction oriented towards the blast of the 'explosion.
  • the stress is impulsive and can be broken down into two parts, a first part consisting of a shock wave resulting, for example in the case of a buried mine, from the arrival at super sonic speeds of a densified fluid consisting of by ejecta and projections (duration of a few tens of microseconds and pressure peak of several hundred bars).
  • a second part consists of an overpressure wave resulting from the expansion of the gases at very high temperatures generated by the detonation (duration of a few hundred mi croseconds and a pressure peak of several tens of bars).
  • the first part being purely impulsive, the shock wave is transmitted to the overprotection and therefore to the system to be protected before the flow is diverted. The form therefore intervenes only in the second part of the solicitation and, in all cases, quite reduced.
  • the overprotection is conventionally fixed to the vehicle by a set of mechanical connecting parts, such as deformable blocks, articulated panels, jacks, rods and / or ball joints, partly ensuring the absorption of the energy produced by the blast of the mine explosion.
  • This set of parts is however subject to malfunctions, such as alignment problems, and stresses, such as corrosion.
  • this set of parts does not prevent the transmission of a significant part of the shock wave of the military land vehicle and particularly to the floor.
  • the object of the invention is to provide a protection device making it possible to overcome such drawbacks.
  • the invention relates to a device for protecting a mobile or static structure against the blast of an explosion or detonation and the associated projections of material, comprising a protective shell made of several materials, said shell being located at a distance from the structure to be protected and connected to said structure by elastomeric connecting means, said protective shell being elastically deformable so as to be able to deform elastically over the duration of the stress by oscillating to spread over its surface and in time the blast energy of the explosion in several directions, then fully or partially returning to its original form after a lapse of time.
  • This period of time is of the order of a few tens of milliseconds.
  • partial return to its original shape is meant the fact that the protective shell is liable to undergo irreversible deformation.
  • connecting elements for example in the form of a rod, made of elastomer, for example of silicone.
  • the elastomer constituting the connecting elements undergoes an elastic deformation able to adapt at any time to the geometry and the position of the overprotection. Due to its low stiffness, it also constitutes an additional delay filter, the shock wave traveling through a material at a speed proportional to the stiffness of said material (so here about 3 times slower than in overprotection).
  • the solution of the invention avoids the use of a link mechanism liable to malfunction (no corrosion, no seizing, no problem of precise alignment,
  • the main technical function of the protection device is to cause a delay effect and to diffuse as widely as possible, in space and time, the stress generated by the explosion towards the structure to be protected by choosing the most suitable entry path.
  • the protection device When the mine explodes, initially, the stress is concentrated on a small area of the protective shell (the area of action of the first part of the stress) but its mechanical properties (average rigidity of a few tens of gigapascals) already allow it to have a local elastic deformation. This elastic deformation is globalized under the effect of time and of the second part of the stress. During all this time, the protection device will promote the distribution of all the stress over the entire surface of the protective shell by creating a first delay filter favored by a lower inertia compared to that of the structure to be protected .
  • the intrinsic structure of the protective device makes it possible to collect the stress, then to diffuse the effects within the protective shell. In other words, overprotection "deconcentrates” the solicitation (that is, “decreases the focus”) and spread it out in time and space.
  • the protective shell deforms elastically in a reversible manner by vibrating to propagate the shock wave in several directions.
  • the protective shell is made of one or more materials with a Young's modulus that is lower by a factor of 10 compared to prior art materials.
  • the multidirectional elastic deformation of the protective shell makes it possible to slow down the speed of propagation of these shock waves and improves their distribution in a much longer time than that necessary for the ejecta to have time to leave the area where they are could present a danger to the protected structure, its occupants and its contents.
  • the aggregates were ejected over a period of between 0.2 ps and 100 ps after the explosion while the protective structure vibrated for several milliseconds (i.e. approximately 30 times more).
  • the elastomeric connecting elements have the remarkable feature of slowing the transmission of the shock wave to the structure to be protected and its constituents, by example the floor of a vehicle. There are therefore internal reflections of the shock wave at the very heart of the overprotection: the device of the invention thus functions as a mechanism for imprisoning the shock wave.
  • the transmission of the shock wave to the connecting elements therefore takes place with a delay and by small amounts of energy spread over time.
  • the elastomeric connecting elements induce a new delay which is added to the previous one.
  • the connecting elements only weakly transmit the echo of the shock wave to the vehicle floor.
  • the effectiveness of the technical protection function is essentially due to its ability to be able to be elastically deformed while allowing a return of the waves which will make the protective shell vibrate: during the oscillations of the protective shell, the floor vehicle does not "see” anything in the sense that it is not impacted by shock waves. These vibrations of the protective shell will filter the input signal, typically attenuating it by a factor of 5 to 20.
  • the invention operates without an energy dissipation mechanism.
  • the protection device may additionally include a damping mechanism.
  • said shell has constituent materials whose Young's moduli are between 1000 and 200000 MPa in quasi-static.
  • said protective shell consists of a multilayer structure.
  • said protective shell comprises a first protective layer composed of several materials against the projections of materials and ejecta associated with said explosion, said first layer being intended to be oriented on the blast side of the explosion.
  • said protective shell comprises at least a first layer of material having a Young's modulus of between 1000 and 10,000 MPa, a first face oriented towards the structure to be protected, of which is covered by at least one structural layer and the second opposite face of which is covered by at least one other structural layer.
  • said structural layers are made of glass, basalt, aramid or carbon fibers.
  • the ends of at least part of the layers of material of said protective shell are curved.
  • the protective shell is of curved shape and is located at a distance from the part of the military land vehicle to be protected, said protective shell having a predefined radius of curvature when none stress is applied to it and being able to vibrate under the effect of blast of an explosion so as to have radii of curvature different from the initial radius of curvature, then to return completely or partially to its original shape once the blast of the explosion has dissipated.
  • the convex curved shape of the floor protection shell allows movement in the direction of the stress but also in other directions (for example horizontal in the case of a military land vehicle) to spread over time and in space the energy of the blast of the explosion at the structural scale and to transfer the forces to the rigid areas of the sides of the military land vehicle (side faces for a low tonnage armored vehicle (BFT), uprights for a light vehicle, such as a light reconnaissance and support vehicle (VLRA) or a special patrol vehicle (VPS)) via the elastomer connection means.
  • a light vehicle such as a light reconnaissance and support vehicle (VLRA) or a special patrol vehicle (VPS)
  • the arcuate curved shape of the protective shell promotes the lateral flow of the blast from the explosion.
  • the geometric continuity of an arched structure makes it possible to obtain a progressive distribution of stresses.
  • this arched shape makes it possible to improve the ground clearance of the military land vehicle compared to V solutions.
  • the protective shell has an initial flat shape and an evolving curved geometry during stress.
  • the protective shell may however have curved edges while being flat.
  • the protective shell is a combination of superimposed layers of composite material arranged according to a defined architecture, capable of withstanding the forces generated by the explosion of a given mine (for example an 8 kg NATO mine).
  • the composites by their performance and their lightness, offer optimal protection capacities without penalizing the total mass of the military land vehicle, and therefore its mobility.
  • the elastomeric connecting means are made of silicones, synthetic or natural rubber and the overprotection is only maintained in support on these elastomeric supports.
  • said shell is held on the elastomeric connecting means by means of removable devices and possibly to calibrated breaking level.
  • said overprotection is easily removable from said structure to be protected and from said elastomeric supports.
  • the means for maintaining said overprotection can be cut automatically beyond a certain level of stress as soon as the overprotection releases the elastic energy stored during said stress, or once the stress has ended .
  • the elastomeric connecting means are continuous or spaced supports extending around the periphery of the shell.
  • the connecting elements are in the form of a beam or juxtaposed blocks which are of square or rec tangular section, for example.
  • the invention applies to the protection of a part of a military land vehicle.
  • the invention also provides a device for protecting part of a land, nautical (such as a boat or submarine), or aerial military vehicle against damage associated with detrimental events, such as explosions of mines or other explosive devices.
  • the protection device can be used to protect a military land vehicle against the blast of an explosion, with projection of materials or not, occurring below the military land vehicle. In this case, it is placed under the floor of the military land vehicle so as to protect the occupant or occupants of the military land vehicle while avoiding, in the particular case of this implementation, vertical movements of the floor, source major trauma for the occupants (in particular to the lower limbs).
  • the protection device prevents horizontal movements of said vertical structure.
  • FIG.l Figure 1 is a schematic representation of an embodiment of the protection device according to the invention.
  • FIG. 2 is an exploded schematic representation of an embodiment of the protection device according to the invention.
  • FIG. 3 is a schematic representation in section of an embodiment lisation of the protection device according to the invention.
  • FIG. 4 is a partial schematic representation of a vehicle equipped with a protection device according to the invention.
  • FIG. 5 is a detailed lateral schematic representation in section of elastomeric connecting means connecting a protection device according to the invention to a land vehicle;
  • FIG. 6 is a schematic sectional view illustrating the different layers of the protective shell of the protective device according to an exemplary embodiment
  • Figure 7 shows schematically a first example of connecting and fixing elements of a protective device to a vehicle
  • Figure 8 shows schematically a second example of connecting and fixing elements of a protective device to a vehicle
  • Figure 9 shows schematically a third example of connecting and fixing elements of a protective device to a vehicle
  • Figure 10 shows schematically a fourth example of connecting and fixing elements of a protective device to a vehicle
  • Figure 11 shows schematically a fifth example of connecting and fixing elements of a protective device to a vehicle
  • Figure 12 shows schematically a sixth example of connecting and fixing elements of a protective device to a vehicle
  • FIG. 13A is a lateral schematic representation of an unedged protective shell under the effect of the shock wave caused by the blast of the explosion of a mine buried in the ground;
  • FIG. 13B is a lateral schematic representation of a protective shell having anti-delamination border zones under the effect of the shock wave caused by the blast of the explosion of 'a mine buried in the ground
  • Figure 14 is a detailed lateral schematic representation of a first edging solution of a protective shell according to the invention.
  • Figure 15 is a detailed lateral schematic representation of a second edging solution of a protective shell according to the invention.
  • Figure 16 is a schematic perspective view of detail of a third edging solution of a protective shell according to the invention.
  • Figure 17 schematically illustrates an example of non-structural layers of protection of a protective shell according to the invention, incorporating metal or ceramic tiles intended to improve puncture resistance ;
  • Figure 18 is a lateral schematic representation of detail in section of an embodiment of the maintenance of the connecting elements on either side of a protective shell according to the invention by reversible fixing means. Detailed description of the invention
  • the invention is presented for application to a military land vehicle.
  • the invention is equally suitable for nautical (boats or submarines), military, civilian and commercial air or land vehicles (such as transport vehicles on wheels or tracks).
  • It is also suitable for any static system, for example a side face or a roof of a building serving as a shelter (more commonly known as a "shelter” in the military field) or a protective wall.
  • Figures 1 to 3 show a protection device 2 against mines according to one embodiment of the invention.
  • FIG. 4 partially shows a vehicle 1 equipped with a protection device 2 against mines.
  • the illustrated vehicle 1 is a wheeled military land vehicle provided with a chassis, a bodywork and a floor 11.
  • a blast mine placed on the ground S generates during its initiation a strong pressure on the floor 11 of the vehicle.
  • a protection device 2 making it possible to protect the floor 11 of the vehicle 1 above which the crew compartment is located.
  • the protection device 2 aims to protect the physical bodies (people, equipment, etc.) located above the floor 11. Indeed, it is tolerated that the floor 11 may be subjected to irreversible deformations. On the other hand, the bodies located on the floor 11 must not suffer damage or reduced damage. The protection must be so effective that no flames or particles penetrate into the interior of the vehicle 1.
  • This protection device 2 is in the form of a so-called over-protection shell 21, of curved shape in this example, located under the vehicle, between the floor 11 and the floor S.
  • the shell 21 has a radius of predetermined curvature when no stress is applied to it.
  • It can, in a variant, be flat, have a variable radius of curvature, with or without curved edges.
  • the shell 21 is fixed to the vehicle 1 by means of connecting elements 22a, 22b, 23a, 23b which are deformable at each of its lateral ends.
  • the shell 21 extends over the entire width and length of the floor 11.
  • the shell 21 is shown partially and only the connecting elements 22a, 23a located at a lateral end of the shell 21 are illustrated. However, it will be understood that the connecting elements 22b, 23b are also provided at the level of the other lateral end of the shell 21 as shown in the figures. figures 1 to 3.
  • the goal sought by the implementation of the protection device 2 is to diffuse the effect of the blast of the explosion (parts one and two of the stress) as widely as possible, in space and time allowing an elastic deformation thereof.
  • the curved shape favors the deflection of the breath but is not the primary goal; the curved shape having the main purpose of adjusting the flexibility of the overprotection without increasing its mass.
  • the shell 21 is elastically deformed by vibrating and propagates the shock wave in several directions within it.
  • the deformable connecting elements 22a, 22b, 23a, 23b also absorb part of the impact energy and return the wave to the shell 21.
  • the protection device 2 thus acts as a device which reduces the violence of the impact and the destructive effects on the cabin of the vehicle 1.
  • the shell 21 is able to oscillate under the effect of the blast of an explosion and then automatically resume its shape once the blast of the explosion has dissipated.
  • This protection device 2 constitutes a structural filter for protection against the blast of the explosion, with or without projection of materials. It is configured to reduce the effects of the detonation of an explosive device located in the ground (underground mine) or on the ground, such detonation being generally short and intense.
  • This protection device 2 acts as a filter to reduce the input signal, formed by the blast of the explosion, and reduce the accelerations transmitted to the protected object, the floor 11 in the example illustrated, this which prevents any physical body placed in the example on floor 11 from suffering serious damage.
  • the tructor's breath provides a brief and intense "input signal", the slow movement of the protected structure constituting the "output response".
  • the protection device 2 of the floor 11 of the vehicle 1 comprises two main elements:
  • connecting elements taking the form of beams or struts, 22a, 22b, 23a, 23b made of elastomer, such as silicone in this example, which are integral with fixing or fastening elements 24a, 24b, 25a, 25b of the shell 21 to the vehicle 1, in the example of Figures 1 and 2.
  • the beams 22a, 22b, 23a, 23b allow the arched shell 21 to deploy in the elastic range.
  • the shell has a Young's modulus or overall elasticity of between 1 GPa and 200 GPa.
  • the shell 21 is of convex shape oriented towards the ground S and is located at a distance from the floor 11. It is curved outwardly in the transverse direction of the vehicle 1 and is composed of a single multi-layered piece.
  • This arched part can be deployed, or be stretched, and is capable of undergoing a controlled deformation under the effect of the force of an explosion, possibly of deflecting the blast (but this is not essential ) and automatically return to shape once the force has dissipated.
  • the shell 21 helps to attenuate, or even absorb and deflect the force of the blast, that is to say the shock waves.
  • the shell 21 can be deformed without coming into contact with the floor 11 and therefore without impacting the latter.
  • the composite shell 21 is a light sandwich structure consisting of a compact stack of several layers, including one or more structural layers of glass fibers and matrix, for example epoxy, arranged on either side. another of at least one structural layer of plywood or of a material having specific properties (density, Young's modulus, compressive strength of the same order of magnitude) and a non-structural layer of protection against aggregates intended to be oriented towards the load side (figure 6).
  • the shell 21 is a composite structure composed of several layers of different materials:
  • a non-structural layer 211 for protection against aggregates this layer, intended to be oriented on the side of the stress, can be destroyed without this adversely affecting performance;
  • structural layers 212, 214 structural because multi-material assembly responding to mechanical properties.
  • the strength to stiffness ratio of the materials in these layers is adapted to the target to be protected. Examples: glass fibers or carbon fibers;
  • a structural layer 213 of plywood called a core (structural because it consists of several sheets of wood veneer glued to each other by crossing the direction of the grain of the wood).
  • the outer layer or layers 211 of fiberglass (exposed to the blast, and therefore oriented towards the side of the stress) have the function of protecting the floor 11 against flames and projections of materials (aggregates) thanks to their large size. resistance to physical and thermal shocks.
  • This or these outer layers of centimetric thickness serve as an initial barrier and aim to prevent or limit the penetration of the aggregates projected by the blast, in order to sufficiently reduce the risk of damage to the following layers 212 (external structural skin) and 213 (core of the hull).
  • the number of layers is variable and is closely linked to the type of stress on the face and the scope of the application. For example, a prototype developed and tested by the inventors comprises 55 layers of fiberglass. Depending on the thickness allowed, the number of layers can be up to 240 or even more.
  • each of the layers of glass fibers 212, 214 and plywood 213 may be greater or less depending on the design requirements, that is to say with regard to the maximum level of threat considered.
  • the core material for example here plywood, is chosen to have, for a given and low density (of the order of 100 to 1000 kg / m3), good rigidity in the three directions (some GPA), good shear strength, good compressive strength. It is naturally a brake on the propagation of a wave and allows a continuous connection with the adjacent layers.
  • the plywood must be able to deform: the wave by moving in the thickness of the shell causes an effect of "swelling" then of contraction which is localized preferentially in the thickness of the plywood forming the structural layer. 213 which acts as a bellows spring. This change in thickness causes a mechanical impedance mismatch favorable to the desired effect between the shell 21 and the connecting elements 22a, 22b, 23a, 23b and contributes to the resistance to the movement transmitted by reducing the peeling forces between the layers.
  • the mechanical properties of the composite structure can be sy metric or asymmetric depending on the type of stress against which one seeks to protect oneself.
  • Materials other than glass fibers can be considered for the structural layers 212, 214.
  • carbon fibers could be used.
  • fixing or support elements 24a, 25a take the form of longitudinal sections, or beams, which are here arranged on the sides of the vehicle on either side of the composite shell 21.
  • the upper support is referenced 25a and is arranged under the body C of the vehicle 1.
  • the lower support, referenced 24a is removable which allows a rapid change of the overprotection shell 21.
  • the overprotective shell 21 is mounted with a pre-tightening adapted to the stress of the elastomer blocks forming the connecting elements 22a, 23a.
  • This same support 24a can be fixed to the structure to be protected by screws or other devices which can shear automatically at a given level of force. If the stress exceeds a given level, once it has completely dissipated, the overprotection releases the stored elastic energy which causes an action in the opposite direction on said organs and will cause them to shear. The supports 24a and 24b will be ejected, which will automatically decouple the overprotection from the structure to be protected.
  • the floor 11 on which the feet of the passengers are intended to rest (FIG. 4) takes the form of a lowered area, or bowl, making it possible to reduce the total vehicle height and to minimize the “z” dimension without touching the its ground clearance (figure 5).
  • the games J1 and J2 are such that they allow the free movement of the overprotective shell 21.
  • the connecting elements 22a, 23a are arranged symmetrically with respect to the shell 21 and are of rectangular section in FIG. 5.
  • the lower stud forming a connecting element 23a may be smaller than the upper stud forming an element of link 22a.
  • the overprotective shell 21 is positioned by clamping between these two connecting elements 22a, 23a.
  • the connecting elements 22a, 23a are able to deform so as to allow the rotation and the translation of the shell 21 (notion of elasticity), to be able to also absorb part of the energy of the blast by deformation. and in returning the wave to the shell 21.
  • the connecting elements 22a, 23a fulfill the function of articulation and allow degrees of freedom, deforming without changing state.
  • connecting means are compact and light. They make it possible to dispense with, for example, rods or ball joints forming connecting means in the solutions of the prior art.
  • the connecting elements are compressible and are sized so that they can withstand stress without deteriorating under the effect of the high pressures generated during a mine explosion. Their Poisson's ratio is almost equal to 0.5 in a particular example.
  • the section of the connecting elements is square or rectangular, for example.
  • connecting elements are described below in relation to FIGS. 7 to 12. They appear in several of these examples in the overall form of a parallelepiped. [0121] It is noted that, in general, the choice of the section of the connecting element (23, 23-1, 23-2, 23-3, 23 ', 23 ", 23", 23 “” ) is guided by the static and dynamic properties of the elastomer, the geometry of the overprotection and its mode of operation, the nature of the threat, ...
  • the stiffness of the support (24, 24 ', 24 ”) can be obtained by any common means (box structure, section with adapted inertia, etc.) ⁇
  • the support (24, 24', 24 ”) Can be metallic but also composite, for example.
  • the connecting element 23 takes the form of an elastomeric block of rectangular section 255 mm * 135 mm and which extends continuously over the length of the overprotective shell 21.
  • the upper face constitutes the bearing face against the shell 21, the lower face being housed in a support 24 (arranged on the chassis side) of appropriate stiffness according to the size of the overprotection shell 21 (and therefore of the vehicle), threat, ...
  • the flanges 241a, 241b on the support 24 make it possible to promote the lateral retention of the block constituting the connecting element 23.
  • FIG. 8 is a variant of the solution of FIG. 7 in which the connecting element consists of several blocks 23-1, 23-2, 23-3 spaced apart (the choice of three blocks is only illustrative) the number of which depends, for example, on the size of the vehicle (or the system to be protected) and the threat.
  • FIG. 9 is a variant of the solution of FIG. 7 in which the connecting element 23 ’has chamfers on its face oriented towards the chassis side, the support 24’ having a complementary shape. There could be chamfers on the other face facing the overprotection side (not shown here).
  • Figure 10 is another variant of the solution of Figure 7 in which the connecting element 23 "has four rounded corners, the support 24" having a complementary shape.
  • the connecting element 23 "has a trapezoidal section, the reduction of the support section allows greater flexibility of lateral displacement.
  • the connecting element 23 "" has an ellipsoidal section, the support 24 "having a complementary curved shape.
  • the operation of the protection device 2 according to the invention is as follows.
  • the protection device 2 has a behavior during the detonation of a mine which is totally different from that of the known devices.
  • the known devices must above all be mechanically resistant to avoid any tearing. They can take advantage of a V or curved shape to deflect part of the breath or even use plastic deformation to absorb a small part of the energy, but they are heavy and are not designed to be able to deform significantly in the elastic range. (therefore without major damage) during period of demand, which greatly limits the effect of "deconcentration”. Finally, they do not take advantage of the dynamic advantages of a multi-material multi-layer system based on the stacking of layers having very different properties (coefficient 5 to 10 on the thicknesses and Young's moduli in the plane for example)
  • the shell 21 When an explosion occurs under the vehicle, the pressure is exerted on the shell 21 which is strong enough to elastically deform and also to stop splinters and projections.
  • the dimensions of the shell 21 give it an appropriate rigidity allowing it to distribute part of the energy received over the lateral connecting elements 22a, 22b, 23a, 23b.
  • the forces of the explosion are transferred through the shell 21 substantially to the sides of the vehicle.
  • the explosion is widely dispersed and absorbed by the composite shell 21.
  • the arch-shaped shell 21 oscillates and can take a quasi-planar shape before taking a shape having a radius of curvature smaller than initially and finally, after several oscillations, returning to its initial position. curve.
  • the beams constituting the lateral connecting elements are dimensioned to deform in bending and in compression in a relatively localized manner and make it possible (with a reduced bulk) to consume part of the energy produced by the blast of the mine. and return it to the hull 21.
  • the beams are made of elastomer, silicone or neoprene for example.
  • the silicone reflects part of the wave and transfers the rest to the structure to be protected. In addition to the delay effect mentioned, there is therefore a reduction. In fact, the silicone behaves like a free semi-edge (two media with very different properties): the wave cannot go any further and therefore largely returns to the over-protective shell. The silicone therefore participates in trapping the waves in the overprotection. The wave will therefore make many round trips before starting to feed the silicone. The vibratory response of the floor takes place very gradually, in small steps, and shifted in time.
  • the device of the invention has the following advantages in particular:
  • Multi-material and multi-layered arch structure making it possible to elastically withstand the stress, among other things, because it does not present any geometric discontinuity in the area of interest (no weak link),
  • the protection device 2 of the invention thus has a reduced weight and a relatively small total thickness without, however, penalizing the protection performance (the thickness of the composite shell 2 is a compromise between the weight and a short answer).
  • the person skilled in the art will size the protection device 2 according to the characteristics of the threat against which he wants to protect the vehicle as well as according to the characteristics of the vehicle itself.
  • protection device 2 of the invention can be configured to protect parts other than a vehicle floor, or even something other than a vehicle.
  • the curvature of the shell 21, however, is not essential. It was thus verified that when the radius of curvature is large, that is to say when the shell 21 is flat or almost flat, the performance is only slightly degraded. However, a curvature of the shell 21 improves the efficiency of the protection device 2 by providing rigidity at a lower cost, by avoiding concentrating the stresses at one point and by naturally filtering a part of the normal forces at the point of explosion. .
  • the radius of curvature of the shell 21 may be equal to 2.4 m or 4.8 m, for example for a vehicle of width equal to 2.5 m.
  • a larger radius of curvature makes it possible to reduce the bulk, but slightly reduces the efficiency of the system while remaining more efficient than a flat steel solution with the same parameters (everything being equal otherwise).
  • a curved shell 21 presents another advantage. Indeed, the curved shape induces an angle of inclination of the contact surface of the shell 21 on the connecting elements 24a, 24b, 25a, 25b. This angle favors deployment, that is, the resistance to lateral movements is lower (and the echo of the wave transmitted to the connecting elements is even lower). Indeed, the radius of curvature changes during the blast and this change promotes the shearing of the connecting elements. By deforming, the connecting elements transmit less movement to the floor 11.
  • the stacking of the layers of the shell 21 presents a vulnerability to shear at the level of the inter-layers which tend to propagate cracking when the edges are damaged.
  • the inventors had the idea of bringing the layers of the shell 21 upwards to avoid delamination of the shell: the significant change in direction of the layers improves the mechanical strength.
  • the opposite side edges of the shell 21 are cleverly folded back to avoid delamination.
  • Figures 13A and 13B show the contribution of such anti-delamination zb border zones.
  • FIG. 13A shows a non-edged shell 21 under the effect of the shock wave O (blast forming an overpressure zone) caused by the explosion of a mine M buried in the ground S.
  • the displacement of the shell 21 with border (zone zb) (FIG. 13B) is less by a value “d” than the displacement of the shell 21 without the border zone (FIG. 13A).
  • FIG. 14 illustrates a first edging solution, only one side edge of the shell 21 being shown. Note here that the top structural layer 214 is folded down and the bottom structural layer 212 is folded up so that the skins overlap on the side edges of the core 213.
  • the core corresponds to a structure comprising an alternation of layers of plywood or equivalent materials and layers of several composite materials.
  • the upper structural skin 214 can be distinguished and it is observed that the skin or lower structural layer 212 rises, which participates in the edging function (hooping) so that the link between the composite part (plies of composite 213a) of the core (the core 213 consisting of n stacks 213a and 213b (ply of plywood or other material with similar properties) and the structural bottom skin 212 is greatly improved.
  • protective structure 211 of the shell 21 also rises in the same direction as the lower skin structural 212.
  • each ply of the core 213 and of the upper skin 214 undergoes several changes of direction which decreases the risks of delamination.
  • the non-structural protective layer 211 of the shell 21 goes up in the same direction as the structural lower skin 212.
  • the peripheral ring 215 UD has a movement blocking function. In other words, it prevents displacement perpendicular to the plane of the layer.
  • the envelope 211 (subjected to impacts, flame, etc.) forming the non-structural protective layer of the shell 21 against aggregates is damaged and / or ablative. It is, in the solution of FIG. 16, also curved on its side edges.
  • This envelope is made of a mat of glass and an epoxy resin, but it could also be a polyurethane or a filled / reinforced elastomer.
  • This non-structural protective layer can incorporate metal or ceramic tiles intended to improve puncture resistance.
  • FIG. 17 is a top view showing the principle of the tiles: approximately 100 mm on the side, separated by a layer of mat in each layer of tile.
  • the numeric references 100 to 400 correspond to the stacking order of the tiles. In other words, the tiles 100 are stacked before the tiles 200, themselves stacked before the tiles 300, .... In short, the tiles can move with respect to each other without really providing additional stiffness. The overlap provides comprehensive coverage.
  • this edging acts as a fold containment frame in the event of delamination in the current area (area located inside the containment frame). It therefore adds a function, that of limiting the risk of projection of additional elements in the event that the threat is much greater than the maximum threat, which could end up damaging the overprotection.
  • the protection device functions as a blast wave trapping mechanism.
  • the speed of wave propagation in a material is proportional to the Young's modulus of that material.
  • the Young's modulus of the protective structure varies according to the layers between 10 MPa and 200,000 MPa.
  • the Young's modulus range of the more rigid materials currently used in overprotection extends from 3,000 MPa to 200,000 MPa depending on the layer.
  • the Young's modulus in statics of the different layers of the shell is, for example, equal to:
  • one of the desired properties is the resistance to stiffness ratio of the structural layers which correspond to references 212 and 214 in FIG. 13, which in the case of a UD Glass is close to 0.035 in traction and 0.023 in compression. In the case of an HR carbon, these ratios are respectively 0.022 and 0.014 (approximately -40% / glass). This explains the interest of fiberglass but also illustrates the potential to use other fibers.
  • the protective shell 21 is not embedded: it is the same mechanical principle as the bridge abutment that is applied.
  • a damping system can be introduced by selecting a flexible material which can be an ultra-damping rubber.
  • connection elements 22a, 23a on either side of the shell 21 can be maintained in different ways, and in particular by reversible fixing means.
  • this maintenance is effected by pinching, by a screw-nut system.
  • a shell 21 having the shape of an arc of an ellipse can also be envisaged.

Landscapes

  • Engineering & Computer Science (AREA)
  • General Engineering & Computer Science (AREA)
  • Aviation & Aerospace Engineering (AREA)
  • Mechanical Engineering (AREA)
  • Ceramic Engineering (AREA)
  • Aiming, Guidance, Guns With A Light Source, Armor, Camouflage, And Targets (AREA)
  • Buildings Adapted To Withstand Abnormal External Influences (AREA)

Abstract

La présente invention concerne un dispositif de protection (2) d'une structure mobile ou statique contre le souffle d'une explosion ou détonation et les projections de matière associées, comprenant une coque (21) de protection composée de plusieurs matériaux, ladite coque (21) de protection étant située à distance de la structure à protéger et reliée à ladite structure par des moyens de liaison en élastomère, ladite coque (21) de protection étant déformable de manière élastique de sorte à pouvoir se déformer élastiquement sur la durée de la sollicitation en oscillant pour étaler sur sa surface et dans le temps l'énergie du souffle de l'explosion dans plusieurs directions, puis de reprendre complètement ou en partie sa forme originelle après un laps de temps.

Description

Description
Titre de l'invention : Dispositif de protection de structures statiques ou mobiles, terrestres, nautiques ou aériennes contre le souffle d’une explosion ou détonation et les projections de matière associées Domaine de l’invention
[0001] Le domaine technique de l'invention est celui des dispositifs de protection de structures statiques ou mobiles, terrestres, nautiques ou aériennes, contre les explosions ou détonations et les projections de matière associées, telles que les explosions de mines enterrées par exemple.
[0002] Plus particulièrement, la présente invention concerne les dispositifs permettant d'assurer la protection de tout corps physique en contact ou non avec un plancher d’un véhicule terrestre, ces dispositifs étant disposés entre le plancher d’un véhicule terrestre et un engin explosif.
[0003] De tels dispositifs de protection peuvent également assurer la protection d’une face verticale de structure et constituent dans ces cas de figure une protection latérale. Ils peuvent enfin être placés en face supérieure (par exemple une toiture) dans le cas d’une menace issue d’une détonation située au-dessus du système à protéger (par exemple une détonation aérienne).
Art antérieur
[0004] A titre d’illustration, dans le cas des conflits armés, les véhicules militaires terrestres, tels que les véhicules blindés, sont menacés par des engins explosifs, tels que des mines, conçus pour causer des dommages au véhicule terrestre militaire et à ses occupants du fait notamment du souffle provoqué par la détonation des engins explosifs et des éclats et plus généralement de l’ensemble des projections associées.
[0005] Plus précisément, la détonation d'une mine située en dessous d'un véhicule terrestre militaire engendre des ondes de choc de type souffle qui peuvent provoquer une per foration du plancher du véhicule terrestre militaire exposant directement les occupants du véhicule terrestre militaire à la pression du souffle et la chaleur intense générée par l'explosion ainsi qu’aux projections associées.
[0006] Pour protéger les passagers d’un véhicule terrestre militaire de la mort ou de blessures graves qu’ils pourraient subir lorsque leur véhicule est soumis à une explosion de mine, il est connu de protéger le plancher du véhicule terrestre en disposant sous celui-ci un blindage ou une surprotection.
[0007] Cette surprotection peut consister en une coque de métal placée entre la menace (posée sur ou enfouie dans le sol) et le plancher du véhicule terrestre militaire, à distance de ce dernier, la coque permettant d'absorber partiellement l'énergie produite par le souffle de l’explosion de la mine.
[0008] Un mode de réalisation de cette surprotection est décrit dans le brevet américain US 8,640,594.
[0009] La coque permet, dans certains cas mais pas toujours, d'absorber partiellement l'énergie produite par le souffle de l’explosion de la mine à travers le principe de la dé formation plastique par exemple.
[0010] Toutefois, cette solution présente notamment un inconvénient. En effet, la sur protection est en métal. Il en résulte une masse importante pour la surprotection qui pénalise la mobilité du véhicule.
[0011] La surprotection peut être utilisée pour dévier le souffle de l’explosion et peut présenter dans ce cas un profil en coupe transversale ayant la forme générale d'un V, le sommet du V pointant dans une direction orientée vers le souffle de l'explosion.
[0012] Un mode de réalisation de ce type de surprotection est décrit dans le brevet américain US 2007/0186762.Toutefois, cette solution présente aussi notamment certains incon vénients. En effet, elle ne favorise pas l’absorption significative d’énergie, par exemple par déformation plastique, car sa géométrie lui confère une rigidité supplémentaire (principe de la triangulation en mécanique). Il en est de même pour la déformation élastique. Pour intégrer une telle surprotection en V sous le véhicule en gardant la même garde au sol, la hauteur totale du véhicule doit le plus souvent être augmentée. Un tel profil en V favorise une concentration des contraintes au niveau de l'arête du V qui doit, par conséquent, être renforcée. Enfin la sollicitation est impulsionnelle et peut être décomposée en deux parties, une première partie constituée par une onde de choc issue, par exemple dans le cas d’une mine enterrée, de l’arrivée à des vitesses super soniques d’un fluide densifié constitué par les éjectas et projections (durée de quelques dizaines de microsecondes et pic de pression de plusieurs centaines de bars). Une seconde partie constituée par une onde de surpression issue de l’expansion des gaz à très hautes températures générés par la détonation (durée de quelques centaines de mi crosecondes et pic de pression de plusieurs dizaines de bars). La première partie étant purement impulsionnelle, l’onde de choc est transmise à la surprotection et donc au système à protéger avant que le flux ne soit dévié. La forme n’intervient donc que dans la seconde partie de la sollicitation et de façon, dans tous les cas, assez réduite.
[0013] La surprotection est classiquement fixée au véhicule par un ensemble de pièces mé caniques de liaison, tels que des blocs déformables, des panneaux articulés, des vérins, des biellettes et/ou des rotules, assurant en partie l'absorption de l'énergie produite par le souffle de l’explosion de la mine. Cet ensemble de pièces est toutefois sujet à des dysfonctionnements, tels que des problèmes d'alignement, et contraintes, telles que la corrosion. Par ailleurs, cet ensemble de pièces n’empêche pas la transmission d’une partie significative de l’onde de choc du véhicule terrestre militaire et particulièrement au plancher.
[0014] L'invention a pour but de proposer un dispositif de protection permettant de pallier de tels inconvénients.
Exposé de l'invention
[0015] L'invention a pour objet un dispositif de protection d'une structure mobile ou statique contre le souffle d'une explosion ou détonation et les projections de matière associées, comprenant une coque de protection composée de plusieurs matériaux, ladite coque étant située à distance de la structure à protéger et reliée à ladite structure par des moyens de liaison en élastomère, ladite coque de protection étant déformable de manière élastique de sorte à pouvoir se déformer élastiquement sur la durée de la solli citation en oscillant pour étaler sur sa surface et dans le temps l’énergie du souffle de l’explosion dans plusieurs directions, puis de reprendre complètement ou en partie sa forme originelle après un laps de temps.
[0016] Ce laps de temps est de l’ordre de quelques dizaines de millisecondes.
[0017] On entend par retour partiel à sa forme originelle le fait que la coque de protection est susceptible de subir une déformation irréversible.
[0018] Pour relier la coque de protection à la structure mobile ou statique, qui peut être un véhicule terrestre militaire, il est proposé des éléments de liaison, par exemple en forme de boudin, en élastomère, par exemple en silicone. Ces éléments de liaison au torisent la rotation et la translation de la coque de protection dans toutes les directions. L'élastomère constituant les éléments de liaison subit une déformation élastique à même de s’adapter à tout moment à la géométrie et la position de la surprotection. De par sa faible raideur, il constitue également un filtre retardateur supplémentaire, l’onde de choc se déplacent dans un matériau à une vitesse proportionnelle à la raideur du dit matériau (donc ici environ 3 fois moins vite que dans la surprotection). La solution de l'invention évite la mise en œuvre d'un mécanisme de liaison susceptible de dys- fonctionner (pas de corrosion, pas de grippage, aucun problème d’alignement précis,
...). Enfin le système étant démontable aisément en cas de vieillissement pour une raison quelconque, le ou les éléments de liaison(s) élastomère(s) concernés peuvent être changés simplement. Autrement dit, aucune perte de performance n’est possible avec la solution de l'invention.
[0019] Le dispositif de protection a pour fonction technique principale de provoquer un effet retard et de diffuser le plus largement possible, dans l’espace et dans le temps, la solli citation générée par l’explosion vers la structure à protéger en choisissant le chemin d’entrée le plus approprié.
[0020] Elle a également pour but d’emmagasiner une quantité significative d’énergie élastique lui permettant, au bout d’un certain temps, environ 2 à 3 fois la durée de la sollicitation, soit environ 1 à 2 millisecondes (pour mémoire à ce moment-là, la solli citation est totalement terminée depuis plusieurs centaines de millisecondes), de générer un effort significatif dans la direction opposée à la sollicitation. Cet effort peut être utilisé pour provoquer la désolidarisation, par exemple à travers des dispositifs à niveau de rupture calibré (par exemple une goupille de cisaillement), de la sur protection du système à protéger et empêcher par là même toute future interaction dynamique entre la surprotection et le système à protéger
[0021] Lorsque la mine explose, dans un premier temps, la sollicitation est concentrée sur une surface réduite de la coque de protection (la zone d’action de la première partie de la sollicitation) mais ses propriétés mécaniques (rigidité moyenne de quelques dizaines de gigapascals) lui permettent déjà d’avoir une déformation élastique locale. Cette dé formation élastique se globalise sous l’effet du temps et de la seconde partie de la solli citation. Durant tout ce temps, le dispositif de protection va favoriser la répartition de l’ensemble de la sollicitation sur toute la surface de la coque de protection en créant un premier filtre retard favorisé par une inertie plus réduite par rapport à celle de la structure à protéger.
[0022] Il n’y a pas absorption de la sollicitation de l’explosion mais répartition des effets de la sollicitation sur et au sein de la surprotection jusqu’aux zones d’interaction entre la surprotection et le système à protéger.
[0023] La structure intrinsèque du dispositif de protection permet de recueillir la solli citation, puis d’en diffuser les effets au sein de la coque de protection. En d’autres termes, la surprotection « déconcentre » la sollicitation (c’est-à-dire « en diminue la concentration ») pour l’étaler dans le temps et l’espace.
[0024] Cette diffusion se fait de façon multimodale : la coque de protection se déforme élas- tiquement de façon réversible en vibrant pour propager l’onde de choc dans plusieurs directions. Pour faciliter cet effet, la coque de protection est réalisée dans un ou plusieurs matériaux présentant un module de Young plus bas d’un facteur 10 par rapport aux matériaux de l’état de la technique.
[0025] La déformation élastique multidirectionnelle de la coque de protection permet de ralentir la vitesse de propagation de ces ondes de choc et en améliore la répartition dans un temps bien supérieur à celui nécessaire pour que les éjectas aient le temps de quitter la zone où ils pourraient présenter un danger pour la structure protégée, ses occupants et son contenu.
[0026] Par exemple, lors d’essais effectués par les inventeurs, les granulats ont été éjectés sur une période comprise entre 0,2 ps et 100 ps après l’explosion alors que la structure de protection a vibré pendant plusieurs millisecondes (soit environ 30 fois plus).
[0027] Les éléments de liaison élastomère présentent la particularité remarquable de ralentir la transmission de l’onde de choc vers la structure à protéger et ses constituants, par exemple le plancher d’un véhicule. Il y a donc au sein même de la surprotection des ré flexions internes de l’onde de choc : le dispositif de l’invention fonctionne ainsi comme un mécanisme d’emprisonnement de l’onde de choc. La transmission de l’onde de choc aux éléments de liaison se fait donc avec retard et par petites quantités d’énergie étalées dans le temps. Les éléments de liaison en élastomère induisent un nouveau retard qui s’ajoute au précédent. Contrairement aux dispositifs de l‘art antérieur, les éléments de liaison ne transmettent que faiblement l’écho de l’onde de choc au plancher de véhicule.
[0028] L’efficacité de la fonction technique de protection est essentiellement due à sa capacité à pouvoir se déformer élastiquement tout en permettant un renvoi des ondes qui vont faire vibrer la coque de protection : pendant les oscillations de la coque de protection, le plancher de véhicule ne « voit » rien en ce sens qu’il n’est pas impacté par les ondes de choc. Ces vibrations de la coque de protection vont filtrer le signal d’entrée en l’atténuant typiquement d’un facteur 5 à 20.
[0029] L’invention fonctionne sans mécanisme de dissipation d’énergie. Toutefois, le dispositif de protection peut comprendre en complément un mécanisme d’ amortis sement.
[0030] Selon une approche particulière, ladite coque présente des matériaux constituants dont les modules de Young sont compris entre 1000 et 200000 MPa en quasi-statique.
[0031] Selon un mode de réalisation particulier de l’invention, ladite coque de protection consiste en une structure multicouche.
[0032] Avantageusement, ladite coque de protection comprend une première couche de protection composée de plusieurs matériaux contre les projections de matériaux et éjectas associées à ladite explosion, ladite première couche étant destinée à être orientée du côté du souffle de l’explosion.
[0033] De façon avantageuse, ladite coque de protection comprend au moins une première couche de matériau ayant un module de Young compris entre 1 000 et 10000 MPa dont une première face orientée vers la structure à protéger est recouverte par au moins une couche structurelle et dont la deuxième face opposée est recouverte par au moins une autre couche structurelle.
[0034] Avantageusement, lesdites couches structurelles sont en fibres de verre, de basalte, d’aramide ou de carbone.
[0035] Selon un mode de réalisation particulier de l’invention, les extrémités d’au moins une partie des couches de matériau de ladite coque de protection sont recourbées.
[0036] Selon un mode de réalisation particulier de l’invention, la coque de protection est de forme courbe et est située à distance de la partie du véhicule terrestre militaire à protéger, ladite coque de protection présentant un rayon de courbure prédéfini lorsqu'aucune contrainte ne lui est appliquée et étant apte à vibrer sous l'effet du souffle d'une explosion de sorte à présenter des rayons de courbure différents du rayon de courbure initial, puis de reprendre complètement ou en partie sa forme originelle une fois que le souffle de l’explosion s'est dissipé.
[0037] La forme courbe convexe de la coque de protection de plancher autorise un dé placement suivant la direction de la sollicitation mais aussi dans d’autres directions (par exemple horizontale dans le cas d’un véhicule terrestre militaire) pour étaler dans le temps et dans l’espace l'énergie du souffle de l’explosion à l'échelle structurelle et pour transférer les efforts vers les zones rigides des flancs du véhicule terrestre militaire (faces latérales pour un blindé de faible tonnage (BFT), montants pour un véhicule léger, tel un véhicule léger de reconnaissance et d'appui (VLRA) ou un véhicule de patrouille spéciale (VPS)) via les moyens de liaison en élastomère.
[0038] La forme courbe en arc de la coque de protection favorise l'écoulement latéral du souffle de l’explosion. La continuité géométrique d'une structure en arc permet d'obtenir une distribution progressive des contraintes.
[0039] Par ailleurs, cette forme en arc permet d’améliorer la garde au sol du véhicule terrestre militaire par rapport à des solutions en V.
[0040] Dans une variante de réalisation, la coque de protection présente une forme initiale plate et une géométrie courbe évolutive pendant la sollicitation. La coque de protection peut toutefois posséder des bords courbes tout en étant plate.
[0041] La coque de protection est une combinaison de couches superposées en matériau composite agencées suivant une architecture définie, capable de résister aux efforts générés par l'explosion d'une mine donnée (par exemple une mine OTAN de 8 kg).
[0042] Les composites, par leurs performances et leur légèreté, offrent des capacités de protection optimales sans pénaliser la masse totale du véhicule terrestre militaire, et donc sa mobilité.
[0043] La diffusion des forces de l'explosion et la déviation des éclats de mine sur les côtés du véhicule terrestre militaire permettent de minimiser les dommages causés au véhicule terrestre militaire. Une grande partie de la charge due au souffle de l’explosion est diffusée dans la structure de protection du véhicule terrestre militaire de manière relativement uniforme. De par ce dispositif les accélérations transmises au plancher du véhicule terrestre militaire sont notoirement réduite (facteur 5 à plus de 20) ce qui réduit d’autant le risque de traumatismes majeurs. Ainsi, la capacité de survie des équipages est grandement améliorée.
[0044] De façon avantageuse, les moyens de liaison élastomères sont en silicones, en ca outchoucs synthétiques ou naturels et la surprotection n’est maintenue en appui que sur ces supports élastomères.
[0045] Avantageusement, ladite coque est maintenue sur les moyens de liaison en élastomère par le biais de moyens de dispositifs démontables et éventuellement à niveau de rupture calibré.
[0046] Ainsi, ladite surprotection est aisément démontable de ladite structure à protéger et desdits supports élastomères.
[0047] De façon avantageuse, les moyens de maintien de ladite surprotection peuvent se sectionner automatiquement au-delà d’un certain niveau de sollicitation dès lors que la surprotection libère l’énergie élastique emmagasiné lors de ladite sollicitation, soit une fois la sollicitation terminée.
[0048] De façon avantageuse, les moyens de liaison en élastomère sont des supports continus ou espacés s'étendant en périphérie de la coque.
[0049] Selon un aspect particulier de l’invention, les éléments de liaison se présentent sous la forme d’une poutre ou de blocs juxtaposés qui sont de section carrée ou rec tangulaire, par exemple.
[0050] Suivant un mode de réalisation particulier mais non limitatif, l’invention s’applique à la protection d’une partie de véhicule terrestre militaire.
[0051] L'invention propose également un dispositif de protection d'une partie d'un véhicule militaire terrestre, nautique (tel que bateau ou sous-marin), ou aérien contre les dommages associés à des événements préjudiciables, tels que des explosions de mines ou autres dispositifs explosifs.
[0052] Le dispositif de protection peut être utilisé pour protéger un véhicule terrestre militaire contre le souffle d'une explosion, avec projection de matériaux ou non, survenant en-dessous du véhicule terrestre militaire. Dans ce cas de figure, il est disposé sous le plancher du véhicule terrestre militaire de sorte à protéger l'occupant ou les occupants du véhicule terrestre militaire en évitant, dans le cas particulier de cette mise en œuvre, les déplacements verticaux du plancher, source de traumatismes im portants pour les occupants (au niveau des membres inférieurs notamment).
[0053] Dans le cas de figure d’une structure verticale à protéger, on comprend que le dispositif de protection empêche les déplacements horizontaux de ladite structure verticale.
Présentation des figures
[0054] D’autres caractéristiques et avantages de l’invention apparaîtront à la lecture de la description suivante, donnée à titre d’exemple indicatif et non limitatif, et des dessins annexés, dans lesquels:
[0055] [fig.l] la figure 1 est une représentation schématique d’un mode de réalisation du dispositif de protection selon l'invention;
[0056] [fig-2] la figure 2 est une représentation schématique en éclaté d’un mode de réa lisation du dispositif de protection selon l'invention;
[0057] [fig-3] la figure 3 est une représentation schématique en coupe d’un mode de réa- lisation du dispositif de protection selon l'invention;
[0058] [fig-4] la figure 4 est une représentation schématique partielle d’un véhicule équipé d'un dispositif de protection selon l'invention;
[0059] [fig-5] la figure 5 est une représentation schématique latérale de détail en coupe de moyens de liaison en élastomère reliant un dispositif de protection conforme à l’invention à un véhicule terrestre;
[0060] [fig-6] la figure 6 est une vue en coupe schématique illustrant les différentes couches de la coque de protection du dispositif de protection selon un exemple de réalisation;
[0061] [fig.7] la figure 7 montre de façon schématique un premier exemple d’éléments de liaison et de fixation d'un dispositif de protection à un véhicule ;
[0062] [fig.8] la figure 8 montre de façon schématique un deuxième exemple d’éléments de liaison et de fixation d'un dispositif de protection à un véhicule ;
[0063] [fig-9] la figure 9 montre de façon schématique un troisième exemple d’éléments de liaison et de fixation d'un dispositif de protection à un véhicule ;
[0064] [fig.10] la figure 10 montre de façon schématique un quatrième exemple d’éléments de liaison et de fixation d'un dispositif de protection à un véhicule ;
[0065] [fig.l 1] la figure 11 montre de façon schématique un cinquième exemple d’éléments de liaison et de fixation d'un dispositif de protection à un véhicule ;
[0066] [fig.12] la figure 12 montre de façon schématique un sixième exemple d’éléments de liaison et de fixation d'un dispositif de protection à un véhicule ;
[0067] [fig.13 A] la figure 13A est une représentation schématique latérale d’une coque de protection non bordurée sous l’effet de l’onde de choc provoquée par le souffle de l’explosion d’une mine enterrée dans le sol;
[0068] [fig.l3B] : la figure 13B est une représentation schématique latérale d’une coque de protection présentant des zones de bordurage anti-délaminage sous l’effet de l’onde de choc provoquée par le souffle de l’explosion d’une mine enterrée dans le sol
[0069] [fig.14] la figure 14 est une représentation schématique latérale de détail d’une première solution de bordurage d’une coque de protection conforme à l’invention;
[0070] [fig.15] la figure 15 est une représentation schématique latérale de détail d’une deuxième solution de bordurage d’une coque de protection conforme à l’invention ;
[0071] [fig.16] la figure 16 est une représentation schématique en perspective de détail d’une troisième solution de bordurage d’une coque de protection conforme à l’invention ;
[0072] [fig.17] la figure 17 illustre de façon schématique un exemple de couches non struc turelles de protection d’une coque de protection conforme à l’invention, intégrant des tuiles métalliques ou céramiques destinées à améliorer la résistance à la perforation ;
[0073] [fig.18] : la figure 18 est une représentation schématique latérale de détail en coupe d’un mode de réalisation du maintien des éléments de liaison de part et d’autre d’une coque de protection conforme à l’invention par des moyens de fixation réversible. Description détaillée de l’invention
[0074] On notera que l’invention est présentée pour l’application à un véhicule terrestre militaire. Toutefois, l'invention est tout autant adaptée aux véhicules nautiques (bateaux ou sous-marins), aériens ou terrestres militaires, civils et commerciaux (tels que les véhicules de transport sur roues ou chenilles). Elle est également adaptée à tout système statique par exemple une face latérale ou une toiture d’une construction servant d’abri (plus communément appelée « shelter » dans le domaine militaire) ou un mur de protection.
[0075] Les figures 1 à 3 représentent un dispositif de protection 2 contre les mines selon un mode de réalisation de l’invention.
[0076] La figure 4 représente partiellement un véhicule 1 équipé d'un dispositif de protection 2 contre les mines. Le véhicule 1 illustré est un véhicule terrestre militaire à roues pourvu d'un châssis, d'une carrosserie et d'un plancher 11.
[0077] Une mine à effet de souffle posée sur le sol S engendre lors de son initiation une forte pression sur le plancher 11 du véhicule. Conformément à l'invention, pour permettre au plancher 11 de résister aux effets du souffle, on prévoit un dispositif de protection 2 permettant d'assurer la protection du plancher 11 du véhicule 1 au-dessus duquel se trouve le compartiment de l'équipage.
[0078] Dans ce cas particulier, le dispositif de protection 2 a pour objectif de protéger les corps physiques (personnes, matériel, ...) situés au-dessus du plancher 11. En effet, on tolère que le plancher 11 puisse subir des déformations irréversibles. Par contre, les corps situés sur le plancher 11 ne doivent pas subir de dommages ou des dommages réduits. La protection doit être efficace au point de ne permettre aucune pénétration de flammes ou de particules à l’intérieur de l’habitacle du véhicule 1.
[0079] Ce dispositif de protection 2 se présente sous la forme d'une coque 21 dite de sur protection, de forme courbe dans cet exemple, située sous le véhicule, entre le plancher 11 et le sol S. La coque 21 présente un rayon de courbure prédéterminé lorsqu'aucune contrainte ne lui appliquée.
[0080] Elle peut, dans une variante, être plane, avoir un rayon de courbure variable, avec ou sans bords recourbés.
[0081] La coque 21 est fixée au véhicule 1 par l'intermédiaire d'éléments de liaison 22a, 22b, 23a, 23b déformables à chacune de ses extrémités latérales. La coque 21 s'étend sur toute la largeur et longueur du plancher 11.
[0082] Sur les figures 4 et 5, la coque 21 est représentée partiellement et seuls les éléments de liaison 22a, 23a situés à une extrémité latérale de la coque 21 sont illustrés. On comprend toutefois que des éléments de liaison 22b, 23b sont également prévus au niveau de l’autre extrémité latérale de la coque 21 comme cela est représenté sur les figures 1 à 3.
[0083] Le but recherché par la mise en œuvre du dispositif de protection 2 est de diffuser l’effet du souffle de l’explosion (parties une et deux de la sollicitation) le plus largement possible, dans l’espace et dans le temps en permettant une déformation élastique de celle-ci. La forme courbe favorise la déviation du souffle mais n’est pas le but premier recherché ; la forme courbe ayant essentiellement pour but d’ajuster la souplesse de la surprotection sans augmenter sa masse. Pour ce faire, il y a dé placement de la coque 21 à la fois dans la direction de la sollicitation mais aussi dans d’autres directions, sans impact sur le plancher 11, et transfert de l’énergie de l’explosion aux éléments de liaison 22a, 22b, 23a, 23b longitudinaux. La coque 21 se déforme élastiquement en vibrant et propage l’onde de choc dans plusieurs directions en son sein. Les éléments de liaison 22a, 22b, 23a, 23b déformables absorbent également une partie de l'énergie du choc et renvoient l’onde sur la coque 21.
[0084] Le dispositif de protection 2 agit ainsi comme un dispositif qui atténue la violence du choc et les effets destructeurs sur la cabine du véhicule 1.
[0085] La coque 21 est apte à osciller sous l'effet du souffle d'une explosion puis à reprendre automatiquement sa forme une fois que le souffle de l’explosion s'est dissipé.
[0086] Ce dispositif de protection 2 constitue un filtre structurel de protection au souffle de l’explosion, avec projection ou non de matériaux. Il est configuré pour réduire les effets de la détonation d'un dispositif explosif situé dans le sol (mine enterrée) ou sur le sol, une telle détonation étant généralement brève et intense.
[0087] Ce dispositif de protection 2 agit comme un filtre pour réduire le signal d’entrée, constitué par le souffle de l’explosion, et réduire les accélérations transmises à l’objet protégé, le plancher 11 dans l'exemple illustré, ce qui évite à tout corps physique posé dans l’exemple sur le plancher 11, de subir de graves dommages. Le souffle des tructeur constitue un « signal d’entrée » bref et intense, le déplacement lent de la structure protégée constituant la « réponse en sortie ».
[0088] Le dispositif de protection 2 du plancher 11 du véhicule 1 comprend deux éléments principaux :
[0089] une coque 21 composite, en forme d’arc dans l’exemple des figures 1 et 2, située à distance de l'objet à protéger (le plancher 11 du véhicule 1 en l'occurrence), et
[0090] des éléments de liaison, prenant la forme de poutres ou boudins, 22a, 22b, 23a, 23b en élastomère, tel que le silicone dans cet exemple, qui sont solidaires d’éléments de fixation ou d'attache 24a, 24b, 25a, 25b de la coque 21 au véhicule 1, dans l’exemple des figures 1 et 2.
[0091] Les poutres 22a, 22b, 23a, 23b autorisent la coque 21 en arc à se déployer dans le domaine élastique.
[0092] La coque 21, qui est en matériau composite (en fibres de verre et contreplaqué, par exemple), est légère et souple, en ce sens qu’elle est déformable dans le domaine élastique sous la gamme de sollicitations pour laquelle elle est conçue. De façon avantageuse, la coque présente un module de Young ou d’élasticité global compris entre 1 GPa et 200 GPa.
[0093] Dans l’exemple des figures 1 à 5, la coque 21 est de forme convexe orientée vers le sol S et est située à distance du plancher 11. Elle est incurvée vers l'extérieur dans le sens transversal du véhicule 1 et est composée d'une unique pièce multicouche.
[0094] Cette pièce en arc peut se déployer, ou bien se tendre, et est capable de subir une dé formation contrôlée sous l'effet de la force d'une explosion, éventuellement de dévier le souffle (mais ce n’est pas indispensable) et de reprendre automatiquement sa forme une fois que la force s'est dissipée.
[0095] La coque 21 contribue à atténuer, voire absorber et dévier la force du souffle, c'est-à-dire les ondes de choc.
[0096] La coque 21 peut se déformer sans venir en contact avec le plancher 11 et donc sans impacter ce dernier.
[0097] Selon une mise en œuvre particulière, la coque 21 composite est une structure sandwich légère constituée d’un empilement compact de plusieurs couches, dont une ou plusieurs couches structurelles de fibres de verre et matrice par exemple époxy disposées de part et d’autre d’au moins une couche structurelle de contreplaqué ou d’un matériau ayant des propriétés spécifiques (masse volumique, module de Young, résistance en compression du même ordre de grandeur) et une couche non- structurelle de protection contre les granulats destinée à être orientée du côté de la sollicitation (figure 6).
[0098] Dans l’exemple de la figure 6, la coque 21 est une structure composite composé de plusieurs couches de matériaux différents :
[0099] une couche non structurelle 211 de protection contre les granulats : cette couche, destinée à être orientée du côté de la sollicitation, peut se détruire sans que cela ne nuise à la performance;
[0100] des couches structurelles 212, 214 (structurelles car assemblage multi-matériaux répondant à des propriétés mécaniques). Le ratio résistance sur rigidité des matériaux de ces couches est adapté à la cible à protéger. Exemples : fibres de verre ou fibres de carbone ;
[0101] une couche structurelle 213 de contreplaqué, appelée âme (structurelle car constitué de plusieurs feuilles de placage en bois collées les unes sur les autres en croisant le sens du fil du bois).
[0102] La ou les couches 211 de fibre de verre extérieures (exposées au souffle, et donc orientées du côté de la sollicitation) ont pour fonction de protéger le plancher 11 contre les flammes et les projections de matériaux (granulats) grâce à leur grande résistance aux chocs physiques et thermiques. Ce ou ces couches externes d'épaisseur centi métrique servent de barrière initiale et visent à empêcher ou limiter la pénétration des granulats projetés par le souffle, afin de réduire suffisamment le risque de dommages aux couches suivantes 212 (peau structurelle externe) et 213 (âme de la coque).
[0103] Le nombre de couches est variable et est étroitement lié au type de sollicitations en visagées et au cadre de l’application. Par exemple, un prototype mis au point et testé par les inventeurs comprend 55 couches de fibre de verre. En fonction de l’épaisseur permise, le nombre de couches peut atteindre 240, voire plus.
[0104] L'épaisseur de chacune des couches de fibres de verre 212, 214 et de contreplaqué 213 peut être supérieure ou inférieure en fonction des exigences de conception, c’est-à-dire en regard du niveau maximal de menace considéré.
[0105] Le matériau d’âme, par exemple ici le contreplaqué, est choisi pour présenter, pour une masse volumique donnée et faible (de l’ordre de 100 à 1000 kg/m3), une bonne rigidité dans les trois directions (quelques GPA), une bonne résistance au cisaillement, une bonne tenue à la compression. Il est naturellement un frein à la propagation d’une onde et permet une liaison continue avec les couches adjacentes.
[0106] Le contreplaqué doit pouvoir se déformer : l’onde en se déplaçant dans l’épaisseur de la coque vient provoquer un effet de « gonflement » puis de contraction qui se localise de façon préférentielle dans l’épaisseur du contreplaqué formant la couche structurelle 213 qui agit comme un ressort à soufflet. Ce changement d’épaisseur provoque une désadaptation d’impédance mécanique favorable à l’effet recherché entre la coque 21 et les éléments de liaison 22a, 22b, 23a, 23b et participe à la résistance au mouvement transmis en réduisant les efforts de pelage entre les couches.
[0107] Il est à noter que les propriétés mécaniques de la structure composite peuvent être sy métriques ou asymétriques en fonction du type de sollicitation contre laquelle on cherche à se protéger.
[0108] La forme en arc de la structure de protection permet d’éviter les concentrations de contraintes (aucune discontinuité) contrairement à une structure en "V" présente dans l’art antérieur.
[0109] Il peut être envisagé d'autres matériaux que des fibres de verre pour les couches structurelles 212, 214. A titre d’exemple, des fibres de carbone pourront être utilisées.
[0110] Dans l’exemple de la figure 5, les éléments de liaison 22a, 23a en élastomère
(silicone par exemple) sont reliés à des éléments de fixation ou de support 24a, 25a de la coque 21 au véhicule 1.
[0111] Ces éléments de fixation ou de support 24a, 25a prennent la forme de profilés longi tudinaux, ou poutres, qui sont ici disposés sur les côtés du véhicule de part et d'autre de la coque 21 composite.
[0112] Sur la figure 5, le support supérieur est référencé 25a et est disposé sous la caisse C du véhicule 1. Le support inférieur, référencé 24a, est démontable ce qui permet un changement rapide de la coque 21 de surprotection. La coque 21 de surprotection est montée avec un pré-serrage adapté à la sollicitation des blocs élastomères formant les éléments de liaison 22a, 23a.
[0113] Ce même support 24a peut être fixé sur la structure à protéger par des vis ou autres dispositifs pouvant se cisailler automatiquement à un niveau d’effort donné. Si la solli citation dépasse un niveau donné, une fois celle-ci totalement dissipée, la surprotection libère l’énergie élastique emmagasinée ce qui provoque une action de direction opposée sur lesdits organes et provoquera leur cisaillement. Les supports 24a et 24 b seront éjectés ce qui découplera automatiquement la surprotection de la structure à protéger.
[0114] Le plancher 11 sur lequel sont destinés à reposer les pieds des passagers (figure 4) prend la forme d’une zone surbaissée, ou cuvette, permettant de réduire la hauteur totale véhicule et de minimiser la cote « z » sans toucher à la garde au sol de celui-ci (figure 5).
[0115] Les jeux J1 et J2 (figure 5) sont tels qu’ils permettent le mouvement libre de la coque 21 de surprotection.
[0116] Les éléments de liaison 22a, 23a sont disposés de façon symétrique par rapport à la coque 21 et sont de section rectangulaire sur la figure 5. Le plot inférieur formant élément de liaison 23a peut être plus petit que le plot supérieur formant élément de liaison 22a. La coque 21 de surprotection est positionnée par pincement entre ces deux éléments de liaison 22a, 23a.
[0117] Les éléments de liaison 22a, 23a sont aptes à se déformer de sorte à autoriser la rotation et la translation de la coque 21 (notion d'élasticité), à pouvoir absorber par dé formation également une partie de l'énergie du souffle et à renvoyer l’onde vers la coque 21. En d'autres termes, les éléments de liaison 22a, 23a remplissent la fonction d'articulation et autorisent des degrés de liberté, se déformant sans changer d'état.
[0118] Ces moyens de liaison sont compacts et légers. Ils permettent de s’affranchir, par exemple, de biellettes ou de rotules formant moyens de liaison dans les solutions de l'art antérieur. Les éléments de liaison sont compressibles et sont dimensionnés de sorte à pouvoir résister aux contraintes, sans se détériorer sous l’effet des pressions élevées générées lors de l'explosion d'une mine. Leur coefficient de Poisson est quasiment égal à 0,5 dans un exemple particulier.
[0119] La section des éléments de liaison (poutre ou blocs) est carrée ou rectangulaire, par exemple.
[0120] Différents exemples d’éléments de liaison sont décrits par la suite en relation avec les figures 7 à 12. Ils se présentent dans plusieurs de ces exemples sous la forme globale d’un parallélépipède. [0121] On note que, de façon générale, le choix de la section de l’élément de liaison (23, 23-1, 23-2, 23-3, 23’, 23”, 23’”, 23””) est guidé par les propriétés statique et dynamique de l’élastomère, la géométrie de la surprotection et son mode de fonc tionnement, la nature de la menace, ...
[0122] Par ailleurs, la raideur du support (24, 24’ , 24”) peut être obtenue par tout moyen courant (structure caissonnée, profilé à inertie adaptée, ....)· Le support (24, 24’, 24”) peut être métallique mais aussi composite, par exemple.
[0123] Sur la figure 7, l’élément de liaison 23 prend la forme d’un pavé en élastomère de section rectangulaire de 255 mm * 135 mm et qui s’étend en continu sur la longueur de la coque 21 de surprotection. La face supérieure constitue la face d’appui contre la coque 21, la face inférieure venant se loger dans un support 24 (disposé côté châssis) de raideur appropriée en fonction de la taille de la coque 21 de surprotection (et donc du véhicule), de la menace, ...
[0124] Les rebords 241a, 241b sur le support 24 permettent de favoriser le maintien latéral du bloc constituant l’élément de liaison 23.
[0125] La figure 8 est une variante de la solution de la figure 7 dans laquelle l’élément de liaison est constitué de plusieurs blocs 23-1, 23-2, 23-3 espacés (le choix de trois blocs est uniquement illustratif) dont le nombre dépend par exemple de la taille du véhicule (ou du système à protéger) et de la menace.
[0126] La figure 9 est une variante de la solution de la figure 7 dans laquelle l’élément de liaison 23’ présente des chanfreins sur sa face orientée côté châssis, le support 24’ présentant une forme complémentaire. Il pourrait y avoir des chanfreins sur l’autre face orientée côté surprotection (non représentés ici).
[0127] La figure 10 est encore une variante de la solution de la figure 7 dans laquelle l’élément de liaison 23” présente quatre coins arrondis, le support 24’ présentant une forme complémentaire.
[0128] Sur la figure 11, l’élément de liaison 23’” présente une section trapézoïdale, la réduction de section d’appui permet une plus grande souplesse de déplacement latéral.
[0129] Sur la figure 12, l’élément de liaison 23”” présente une section ellipsoïdale, le support 24” présentant une forme complémentaire incurvée.
[0130] Le fonctionnement du dispositif de protection 2 selon l'invention est le suivant.
[0131] Le dispositif de protection 2 selon l'invention a un comportement lors de la dé tonation d'une mine qui est totalement différent de celui des dispositifs connus.
[0132] Les dispositifs connus doivent avant tout résister mécaniquement pour éviter tout dé chirement. Ils peuvent mettre à profit une forme en V ou courbe pour dévier une partie du souffle voir utiliser la déformation plastique pour absorber une petite partie de l’énergie mais ils sont lourds et ne sont pas conçus pour pouvoir se déformer significa tivement dans le domaine élastique (donc sans endommagement majeur) pendant la période de sollicitation, ce qui limite très fortement l’effet de « déconcentration ». Enfin, ils ne tirent pas partie des avantages dynamiques d’un système multi matériaux multicouches basé sur l’empilement de couches ayant des propriétés très différentes (coefficient 5 à 10 sur les épaisseurs et les modules de Young dans le plan par exemple)
[0133] Si une petite partie du souffle est déviée par la forme convexe en arc de la coque 21, l’essentiel de la sollicitation reçue verticalement (dans le cas particulier d’un véhicule terrestre militaire) provoque un aplatissement progressif de la coque 21 en direction du plancher 11 ainsi qu’un déplacement latéral progressif des extrémités de l’arc.
[0134] Cette déformation mécanique a une cinématique plus lente que celle des dispositifs connus.
[0135] Quand une explosion se produit sous le véhicule, la pression s'exerce sur la coque 21 qui est suffisamment résistante pour déformer élastiquement et également arrêter les éclats et projections. Les dimensions de la coque 21 lui confèrent une rigidité ap propriée lui permettant de répartir sur les éléments de liaison 22a, 22b, 23a, 23b latéraux une partie de l'énergie reçue.
[0136] Ainsi, les forces de l’explosion sont transférées à travers la coque 21 sensiblement sur les côtés du véhicule. L’explosion est largement dispersée et absorbée par la coque 21 en composite. Suite à l’impact, la coque 21 en forme d’arc oscille et peut prendre une forme quasi planaire avant de prendre une forme ayant un rayon de courbure plus faible qu’ initialement et de finalement, après plusieurs oscillations, revenir à sa position initiale courbe.
[0137] Les poutres constituant les éléments de liaison latéraux sont dimensionnées pour se déformer en flexion et en compression d'une façon relativement localisée et permettent (avec un encombrement réduit) de consommer une partie de l'énergie produite par le souffle de la mine et d’en renvoyer vers la coque 21.
[0138] Les poutres sont en élastomère, en silicone ou en néoprène par exemple. Le silicone renvoie une partie de l’onde et transfère le reste à la structure à protéger. En plus de l’effet retard évoqué, il y a donc bien réduction. En effet, le silicone se comporte comme un semi-bord libre (deux milieux ayant des propriétés très différentes) : l’onde ne peut pas aller plus loin et retourne donc en grande partie dans la coque de sur protection. Le silicone participe donc à piéger les ondes dans la surprotection. L’onde va donc faire de nombreux aller-retour avant de commencer à alimenter le silicone. La réponse vibratoire du plancher s’effectue très progressivement, à petit pas, et décalé dans le temps.
[0139] Il est ainsi possible d'assurer une protection efficace du plancher 11 du véhicule avec une épaisseur de protection relativement faible comprise entre 100mm et 200mm, ce qui autorise la protection du plancher 11 de véhicules à garde au sol réduite. [0140] Le dispositif de l'invention présente notamment les avantages suivants :
[0141] Résistance, souplesse et tenue au cisaillement,
[0142] Structure en arc multi-matériaux et multicouches permettant de supporter élas- tiquement la sollicitation entres autres parce qu’elle ne présente aucune discontinuité géométrique dans la zone d’intérêt (pas de maillon faible), ,
[0143] Protection contre les éjectas, les granulats, et plus généralement les projections couramment rencontrées dans ce type de sollicitation (fonction bouclier),
[0144] Poutres en élastomère autorisant une compression infinie,
[0145] Faible masse : légèreté et mobilité,
[0146] Assemblage compact (encombrement réduit),
[0147] Aucune pièce métallique (pas de problème de corrosion), et
[0148] Maintenance réduite voire inexistante.
[0149] Le dispositif de protection 2 de l'invention présente ainsi un poids réduit et une épaisseur totale relativement réduite sans pour autant pénaliser les performances de protection (l’épaisseur de la coque 2 composite est un compromis entre le poids et un temps de réponse court).
[0150] A titre d'exemple, un prototype réalisé à l’échelle 1/3 a résisté à une accélération de 8000 g (« g » étant l’accélération de la pesanteur standard) et à une vitesse des pro jections (partie une de la sollicitation) de l’ordre de 1700m/s.
[0151] L'Homme du Métier dimensionnera le dispositif de protection 2 en fonction des ca ractéristiques de la menace contre laquelle il veut protéger le véhicule ainsi qu'en fonction des caractéristiques du véhicule lui-même.
[0152] On comprend par ailleurs que le dispositif de protection 2 de l'invention peut être configuré pour protéger d'autres parties qu'un plancher de véhicule, voire autre chose qu’un véhicule.
[0153] D’autres géométries de la coque 21 sont possibles.
[0154] De façon générale, toutes formes convexes à courbure constante ou variable sont possibles.
[0155] La courbure de la coque 21 n’est toutefois pas essentielle. Il a ainsi été vérifié que lorsque le rayon de courbure est grand, c’est-à-dire quand la coque 21 est plate ou quasi-plate, les performances ne sont que peu dégradées. Toutefois, une courbure de la coque 21 améliore l’efficacité du dispositif de protection 2 en apportant de la rigidité à moindre coût, en évitant de concentrer les contraintes en un point et en filtrant natu rellement une partie des forces normales au point d’explosion.
[0156] Le rayon de courbure de la coque 21 peut être égal à 2,4 m ou 4,8m, par exemple pour un véhicule de largeur égale à 2,5m. Un rayon de courbure plus important permet de réduire l’encombrement, mais diminue un peu l’efficacité du système tout en restant plus efficace qu’une solution plane acier avec les mêmes paramètres (tout étant égal par ailleurs).
[0157] Une coque 21 courbe présente un autre intérêt. En effet, la forme courbe induit un angle d’inclinaison de la surface de contact de la coque 21 sur les éléments de liaison 24a, 24b, 25a, 25b. Cet angle favorise le déploiement, c’est-à-dire que la résistance aux mouvements latéraux est plus faible (et l’écho de l’onde transmis aux éléments de liaison est encore plus faible). En effet, le rayon de courbure change au cours du souffle et ce changement favorise le cisaillement des éléments de liaison. En se déformant, les éléments de liaisons transmettent moins de mouvement au plancher 11.
[0158] L’empilement des couches de la coque 21 présente une vulnérabilité au cisaillement au niveau des inter-couches qui ont tendance à propager la fissuration lorsque les bords sont endommagés. Les inventeurs ont eu l’idée de ramener les couches de la coque 21 vers le haut pour éviter le délaminage de la coque : le changement significatif de direction des couches améliore la tenue mécanique. Ainsi, dans des zones de bordurage, les bords latéraux opposés de la coque 21 sont repliés astucieusement pour éviter le délaminage.
[0159] Les figures 13A et 13B montrent l’apport de telles zones de bordurage zb anti délaminage.
[0160] La figure 13A montre une coque 21 non bordurée sous l’effet de l’onde de choc O (souffle formant une zone de surpression) provoquée par l’explosion d’une mine M enterrée dans le sol S. A charge identique, le déplacement de la coque 21 avec bordurage (zone zb) (figure 13B) est inférieur d’une valeur « d » au déplacement de la coque 21 sans zone de bordurage (figure 13A).
[0161] Le déplacement sous l’effet du souffle est réduit pour une coque avec bordurage, de même que le risque de délaminage critique (rupture complète de la surprotection).
[0162] La figure 14 illustre une première solution de bordurage, seul un bord latéral de la coque 21 étant représenté. On note ici que la couche supérieure structurelle 214 est repliée vers le bas et la couche inférieure structurelle 212 est repliée vers le haut de sorte à ce que les peaux se recouvrent sur les bords latéraux de l’âme 213.
[0163] L’âme correspond à une structure comprenant une alternance de couches de contreplaqués ou de matériaux équivalents et de couches de plusieurs matériaux composites.
[0164] Dans l’exemple de la figure 15, on distingue la peau structurelle supérieure 214 et on constate que la peau ou couche inférieure structurelle 212 remonte, ce qui participe à la fonction bordurage (frettage) de sorte à ce que le lien entre la partie composite (plis de composite 213a) de l’âme (l’âme 213 étant constituées de n empilements 213a et 213b (pli de contreplaqué ou autre matériau aux propriétés proches) et la peau inférieure structurelle 212 est fortement amélioré. La couche non structurelle 211 de protection de la coque 21 remonte également dans la même direction que la peau inférieure structurelle 212.
[0165] Dans l’exemple de la figure 16, chaque pli de l’âme 213 et de la peau supérieure 214 subit plusieurs changements de direction ce qui diminue les risques de délaminage. La couche non structurelle 211 de protection de la coque 21 remonte dans la même direction que la peau inférieure structurelle 212.
[0166] La couronne 215 UD périphérique a une fonction de blocage du déplacement. En d’autres termes, elle empêche un déplacement perpendiculaire au plan de la couche.
[0167] L’enveloppe 211 (soumise aux impacts, flamme, ...) formant la couche non structurelle de protection de la coque 21 contre les granulats est endommageable et/ou ablative. Elle est, dans la solution de la figure 16, également recourbée sur ses bords latéraux. Cette enveloppe est constituée d’un mat de verre et d’une résine époxy, mais ce pourrait être aussi un polyuréthane ou un élastomère chargé/armé. Cette couche non structurelle de protection peut intégrer des tuiles métalliques ou céramiques destinées à améliorer la résistance à la perforation.
[0168] La figure 17 est une vue de dessus montrant le principe des tuiles : environ 100 mm de côté, séparées par une couche de mat en chaque couche de tuile. Les références nu mériques 100 à 400 correspondent à l’ordre d’empilement des tuiles. Autrement dit, les tuiles 100 sont empilées avant les tuiles 200, elles-mêmes empilées avant les tuiles 300,.... En résumé, les tuiles peuvent bouger les unes par rapport aux autres sans réellement apporter de raideur complémentaire. Le chevauchement permet d’assurer une couverture globale.
[0169] Il est important de noter que ce bordurage joue le rôle de cadre de contention des plis en cas d’apparition d’un délaminage en zone courante (zone située à l’intérieur du cadre de contention). Il ajoute donc une fonction, celle de limiter le risque de projection d’éléments complémentaire en cas où la menace serait très supérieure à la menace maximale ce qui pourrait finir par endommager la surprotection.
[0170] Un effet technique important de l’invention est le fait que le dispositif de protection fonctionne comme un mécanisme de piégeage de l’onde de souffle. La vitesse de pro pagation de l’onde dans un matériau est proportionnelle au module de Young de ce matériau. Pour s’opposer à la vitesse de propagation de l’onde, il faut un matériau avec un module de Young très bas. Le module de Young de la structure de protection varie suivant les couches entre 10 MPa et 200000 MPa.
[0171] A titre de comparaison, la plage de module de Young des matériaux plus rigides ac tuellement utilisés dans la surprotection s’étend de 3 000 MPa à 200000 MPa suivant les couches.
[0172] Le module de Young en statique des différentes couches de la coque est, par exemple, égal à :
[0173] environ 10 MPa pour l’élastomère ; [0174] environ 6000 MPa pour un mat de verre, quasi isotrope dans le plan ;
[0175] environ 5000 MPa pour une âme en contreplaqué, quasi isotrope ;
[0176] environ 21 000 MPa pour un plis de tissé en verre dans les directions des fibres ;
[0177] environ 36000 MPa dans les directions fibres, 7000 MPa dans les directions transverses, pour un UD verre ;
[0178] environ 200000 MPa pour des écailles acier.
[0179] Comme cela a été dit précédemment, l’une des propriétés recherchées est le ratio ré sistance sur raideur des couches structurelles qui correspondent aux références 212 et 214 sur la figure 13, qui dans le cas d’un UD Verre est voisin de 0.035 en traction et 0.023 en compression. Dans le cas d’un carbone HR, ces ratios sont respectivement de 0.022 et 0.014 (environ -40% / verre). Ceci explique l’intérêt de la fibre de verre mais illustre aussi la potentialité d’utiliser d'autres fibres.
[0180] Il est important de préciser que la coque 21 de protection n’est pas encastrée : c’est le même principe mécanique que la culée de pont qui est appliqué.
[0181] On peut introduire un système d’amortissement en sélectionnant un matériau souple qui peut être un caoutchouc ultra-amortissant.
[0182] Le maintien des éléments de liaison 22a, 23a de part et d’autre de la coque 21 peut se faire de différentes façons, et notamment par des moyens de fixation réversible. Ainsi, selon une mise en œuvre particulière illustrée sur la figure 18, ce maintien se fait par pincement, par un système de vis-écrou.
[0183] Une coque 21 ayant une forme en arc d’ellipse peut également être envisagée.

Claims

Revendications
[Revendication 1] Dispositif de protection (2) d'une structure mobile ou statique contre le souffle d'une explosion ou détonation et les projections de matière associées, comprenant une coque (21) de protection composée de plusieurs matériaux, ladite coque (21) de protection étant située à distance de la structure à protéger et reliée à ladite structure par des moyens de liaison en élastomère, ladite coque (21) de protection étant déformable de manière élastique de sorte à pouvoir se déformer élas- tiquement sur la durée de la sollicitation en oscillant pour étaler sur sa surface et dans le temps l’énergie du souffle de l’explosion dans plusieurs directions, puis de reprendre complètement ou en partie sa forme originelle après un laps de temps.
[Revendication 2] Dispositif de protection (2) selon la revendication 1, caractérisé en ce que ladite coque (21) de protection présente des matériaux dont les modules de Young sont compris entre 1000 et 200000 MPa en quasi- statique.
[Revendication 3] Dispositif de protection (2) selon la revendication 1 ou 2, caractérisé en ce que ladite coque (21) de protection consiste en une structure mul- ticouche.
[Revendication 4] Dispositif de protection (2) selon l’une des revendications 1 à 3, ca ractérisé en ce que ladite coque (21) de protection comprend une première couche de protection composée de plusieurs matériaux contre les projections de matériaux et éjectas associées à ladite explosion, ladite première couche étant destinée à être orientée du côté du souffle de l’explosion.
[Revendication 5] Dispositif de protection (2) selon la revendication 3 ou 4, caractérisé en ce que ladite coque (21) de protection comprend au moins une première couche de matériau ayant un module de Young compris entre 1 000 et 10000 MPa dont une première face orientée vers la structure à protéger est recouverte par au moins une couche structurelle et dont la deuxième face opposée est recouverte par au moins une autre couche structurelle.
[Revendication 6] Dispositif de protection (2) selon l’une des revendications 3 à 5, ca ractérisé en ce que les extrémités d’au moins une partie des couches de matériau de ladite coque (21) de protection sont recourbées.
[Revendication 7] Dispositif de protection (2) selon l'une des revendications 1 à 6, ca ractérisé en ce que ladite coque (21) de protection est montée sur les moyens de liaison en élastomère par le biais de moyens de fixation dé- montables et éventuellement à niveau de rupture calibré.
[Revendication 8] Dispositif de protection (2) d’une partie d’un véhicule, selon l'une quelconque des revendications 1 à 7, caractérisé en ce que les moyens de liaison en élastomère sont des supports continus ou espacés s'étendant en périphérie de la coque (21) de protection.
[Revendication 9] Véhicule (1) comprenant au moins un dispositif de protection (2) selon l'une quelconque des revendications 1 à 8.
[Revendication 10] Véhicule (1) selon la revendication 9, caractérisé en ce qu'il s'agit d'un véhicule terrestre comprenant un plancher au-dessous duquel est disposé un dispositif de protection (2) selon l'une quelconque des revendications 1 à 8.
PCT/EP2020/082747 2019-11-27 2020-11-19 Dispositif de protection de structures statiques ou mobiles, terrestres, nautiques ou aeriennes contre le souffle d'une explosion ou detonation et les projections de matiere associees WO2021104998A1 (fr)

Priority Applications (2)

Application Number Priority Date Filing Date Title
EP20807066.4A EP4065923A1 (fr) 2019-11-27 2020-11-19 Dispositif de protection de structures statiques ou mobiles, terrestres, nautiques ou aeriennes contre le souffle d'une explosion ou detonation et les projections de matiere associees
US17/776,412 US12078457B2 (en) 2019-11-27 2020-11-19 Device for protecting static or mobile land, sea or overhead structures against the blast from an explosion or detonation and associated projections of material

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
FRFR1913335 2019-11-27
FR1913335A FR3103548B1 (fr) 2019-11-27 2019-11-27 Dispositif de protection de structures statiques ou mobiles, terrestres, nautiques ou aériennes contre le souffle d’une explosion ou détonation et les projections de matière associées

Publications (1)

Publication Number Publication Date
WO2021104998A1 true WO2021104998A1 (fr) 2021-06-03

Family

ID=69903339

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/EP2020/082747 WO2021104998A1 (fr) 2019-11-27 2020-11-19 Dispositif de protection de structures statiques ou mobiles, terrestres, nautiques ou aeriennes contre le souffle d'une explosion ou detonation et les projections de matiere associees

Country Status (4)

Country Link
US (1) US12078457B2 (fr)
EP (1) EP4065923A1 (fr)
FR (1) FR3103548B1 (fr)
WO (1) WO2021104998A1 (fr)

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE4011963A1 (de) * 1989-04-13 1990-10-18 Hubert Dr Ing Brendel Schockimpulsisolierende vorrichtung
DE19913845A1 (de) * 1999-03-26 2000-09-28 Henschel Wehrtechnik Gmbh Einrichtung zur Sicherung der Verfügbarkeit von militärischen Fahrzeugen
EP1464915A1 (fr) * 2003-04-01 2004-10-06 GEKE Technologie GmbH Dispositif de protection contre les mines
US20070186762A1 (en) 2005-12-22 2007-08-16 Blackwater Lodge And Training Center Llc Armored vehicle with blast deflecting hull
US20100101404A1 (en) * 2008-10-27 2010-04-29 Lorenzo James M High-energy impact absorbing polycarbonate mounting method
WO2010090661A1 (fr) * 2008-10-24 2010-08-12 Alcoa Inc. Système d'absorption de l'énergie des souffles d'explosion
US8640594B2 (en) 2011-02-01 2014-02-04 Corvid Technologies, Inc. Blast deflecting shield for ground vehicles and shielded ground vehicles and methods including same

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7082868B2 (en) * 2001-03-15 2006-08-01 Ati Properties, Inc. Lightweight armor with repeat hit and high energy absorption capabilities
IL224575A (en) * 2013-02-05 2014-01-30 Plasan Sasa Ltd Vehicle ventral system
GB2573810B (en) * 2018-05-18 2021-02-24 Graphene Composites Ltd Protective shield and shield wall

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE4011963A1 (de) * 1989-04-13 1990-10-18 Hubert Dr Ing Brendel Schockimpulsisolierende vorrichtung
DE19913845A1 (de) * 1999-03-26 2000-09-28 Henschel Wehrtechnik Gmbh Einrichtung zur Sicherung der Verfügbarkeit von militärischen Fahrzeugen
EP1464915A1 (fr) * 2003-04-01 2004-10-06 GEKE Technologie GmbH Dispositif de protection contre les mines
US20070186762A1 (en) 2005-12-22 2007-08-16 Blackwater Lodge And Training Center Llc Armored vehicle with blast deflecting hull
WO2010090661A1 (fr) * 2008-10-24 2010-08-12 Alcoa Inc. Système d'absorption de l'énergie des souffles d'explosion
US20100101404A1 (en) * 2008-10-27 2010-04-29 Lorenzo James M High-energy impact absorbing polycarbonate mounting method
US8640594B2 (en) 2011-02-01 2014-02-04 Corvid Technologies, Inc. Blast deflecting shield for ground vehicles and shielded ground vehicles and methods including same

Also Published As

Publication number Publication date
FR3103548A1 (fr) 2021-05-28
US20220404124A1 (en) 2022-12-22
FR3103548B1 (fr) 2023-04-14
EP4065923A1 (fr) 2022-10-05
US12078457B2 (en) 2024-09-03

Similar Documents

Publication Publication Date Title
EP0791145B1 (fr) Revetement amortisseur de chocs
FR2741708A1 (fr) Ensemble de blindage
FR2817608A1 (fr) Poutre composite a initiateur de rupture integre et fuselage d'aeronef integrant de telles poutres
CA2658317A1 (fr) Encadrement de porte pour aeronef
EP2268482B1 (fr) Peau amortissante de protection de pieces composites
FR2920042A1 (fr) Composant structurel absorbant les impulsions
EP0741856B1 (fr) Revetement pare-eclats pour vehicule blinde
WO1987001789A1 (fr) Elements de structure alveolaire multidirectionnelle a inertie pouvant varier et leurs procedes de fabrications
WO2021104998A1 (fr) Dispositif de protection de structures statiques ou mobiles, terrestres, nautiques ou aeriennes contre le souffle d'une explosion ou detonation et les projections de matiere associees
EP2903848B1 (fr) Reservoir resistant aux surpressions provoquees par un impact de projectile
FR2792623A1 (fr) Conteneur de securite pour le transport et/ou le stockage d'engins explosifs
FR2764370A1 (fr) Structure blindee auto porteuse
FR2607241A1 (fr) Dispositif permettant d'assurer la protection des personnes contre la deflagration d'engins ou materiaux explosifs
CA2534150C (fr) Procede et dispositif de filtrage et d'attenuation des vibrations
FR2971233A1 (fr) Substrat amortissant pour panneau structurel de satellite
FR2607238A1 (fr) Bouclier balistique
WO2024146992A1 (fr) Module tridimensionnel élémentaire constitutif d'un matériau architecturé
EP3985344A1 (fr) Ensemble transparent à résistance balistique ayant un cadre apte à se déformer à l impact
EP3594612B1 (fr) Dispositif de protection anti-souffle, anti-fragment, anti-balle, anti-ricochet et anti-véhicule, biface
EP2313266B1 (fr) Dispositif de protection de structures composites contre les impacts
FR2945338A1 (fr) Dispositif d'absorption d'energie en materiau composite sandwich a ponts orientes
FR2652878A1 (fr) Procede et dispositif de protection de bouteilles ou analogues.
FR2589786A1 (fr) Structure composite multicouche souple d'isolation phonique et thermique pour structures autoportantes et ses applications
FR2829662A1 (fr) Suspension pour module electronique devant fonctionner durant et apres impacts severes
FR2494832A1 (fr) Blindage a structure multidirectionnelle

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 20807066

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 2020807066

Country of ref document: EP

Effective date: 20220627