WO2021104494A1 - 一种显示装置 - Google Patents

一种显示装置 Download PDF

Info

Publication number
WO2021104494A1
WO2021104494A1 PCT/CN2020/132446 CN2020132446W WO2021104494A1 WO 2021104494 A1 WO2021104494 A1 WO 2021104494A1 CN 2020132446 W CN2020132446 W CN 2020132446W WO 2021104494 A1 WO2021104494 A1 WO 2021104494A1
Authority
WO
WIPO (PCT)
Prior art keywords
emitting diode
circuit board
light emitting
window
reflective coating
Prior art date
Application number
PCT/CN2020/132446
Other languages
English (en)
French (fr)
Inventor
李富琳
Original Assignee
海信视像科技股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from CN201911205512.0A external-priority patent/CN112882281A/zh
Priority claimed from CN201922112164.4U external-priority patent/CN210982988U/zh
Application filed by 海信视像科技股份有限公司 filed Critical 海信视像科技股份有限公司
Publication of WO2021104494A1 publication Critical patent/WO2021104494A1/zh

Links

Images

Classifications

    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/13Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells
    • G02F1/133Constructional arrangements; Operation of liquid crystal cells; Circuit arrangements
    • G02F1/1333Constructional arrangements; Manufacturing methods
    • G02F1/1335Structural association of cells with optical devices, e.g. polarisers or reflectors
    • G02F1/1336Illuminating devices

Definitions

  • This application relates to the field of display technology, and in particular to a display device.
  • liquid crystal display technology is widely used in the display field.
  • the liquid crystal display panel itself cannot emit light, and a backlight module is required to provide the brightness required for its display.
  • a backlight module is required to provide the brightness required for its display.
  • the backlight of different regions can be controlled separately. Then, the brightness of the backlight corresponding to the highlighted part of the displayed image can reach the maximum, and the brightness of the image can be maximized.
  • the backlight corresponding to the dark part can reduce the brightness, so that the displayed image can achieve better contrast.
  • Mini Light Emitting Diode As a backlight has become a hot spot in liquid crystal display technology. It is different from the traditional liquid crystal display which adopts the side-lit backlight scheme of the light guide plate, which uses a huge amount of Mini LED as the backlight
  • the power source can not only realize the thinning of the backlight, but also realize more refined dynamic control and improve the dynamic contrast of the liquid crystal display.
  • the Mini LED light board After the Mini LED light board is soldered to each Mini LED chip, it is necessary to coat the entire layer of protective glue on top of the chip, which wastes material. At the same time, the refractive index of the protective glue is usually greater than that of air, so it will happen at the interface between the protective glue and air. With total reflection, large-angle light cannot be emitted, which makes the light output efficiency of the Mini LED light board not high.
  • the present application provides a display device for improving the light extraction efficiency of Mini LEDs and reducing the manufacturing cost of Mini LED light panels.
  • the present application provides a display device, including:
  • Backlight module used to provide backlight
  • the display panel is located on the light emitting side of the backlight module and is used for image display;
  • the backlight module includes:
  • the circuit board has a bearing and supporting function and is used to provide electricity
  • Miniature light-emitting diodes located on the circuit board
  • the reflective coating is located on the surface of the circuit board on the side close to the micro light emitting diode, the reflective coating is provided with an opening, and the micro light emitting diode is located in the opening; the thickness of the reflective coating Greater than or equal to the height of the miniature light emitting diode;
  • the protective layer is located in the open window, covers the miniature light-emitting diode, and is used for packaging and protecting the light-emitting diode.
  • the surface of the window facing the micro light-emitting diode is an inclined surface relative to the circuit board, and the window is close to the The size of the side of the circuit board is smaller than the size of the side far from the circuit board; the inclined surface of the window is used to receive and reflect the light emitted by the micro light emitting diode with a larger angle than the set angle.
  • the surface of the protective layer facing away from the circuit board is an arc-shaped surface protruding toward the side facing away from the circuit board.
  • the maximum distance between the arc-shaped surface of the protective layer and the circuit board is greater than or equal to the thickness of the reflective coating.
  • the present application provides a display device, including:
  • Backlight module used to provide backlight
  • the display panel is located on the light emitting side of the backlight module and is used for image display;
  • the backlight module includes:
  • the circuit board has a bearing and supporting function and is used to provide electricity
  • Miniature light-emitting diodes located on the circuit board
  • the reflective coating is located on the surface of the circuit board on the side close to the micro light emitting diode, the reflective coating is provided with an opening, and the micro light emitting diode is located in the opening;
  • the surface of the window facing the micro light emitting diode is an inclined surface with respect to the circuit board, and the size of the window on the side close to the circuit board is smaller than the size on the side far from the circuit board;
  • the inclined surface of the window is used for receiving and reflecting the light emitted by the micro light emitting diode with an angle greater than the set angle.
  • the protective layer covers the reflective coating and the surface of the micro light emitting diode on the side facing away from the circuit board.
  • the angle between the inclined surface of the window and the normal of the circuit board satisfies the following relationship:
  • represents the angle between the inclined surface of the window and the normal of the circuit board
  • n represents the refractive index of the protective layer
  • It represents the angle between the light emitted by the micro light emitting diode and the normal line of the circuit board.
  • the material of the reflective coating is white oil.
  • the size of the micro light emitting diode is 50 ⁇ m to 300 ⁇ m.
  • the backlight module further includes:
  • a transparent substrate located on the side of the reflective coating and the protective layer away from the circuit board;
  • a diffuser plate located on the side of the transparent substrate away from the reflective coating and the protective layer;
  • the optical film is located on the side of the diffusion plate away from the transparent substrate.
  • the display device provided by the present application includes: a backlight module for providing backlight; a display panel, located on the light-exit side of the backlight module, for image display;
  • the backlight module includes: a circuit board, which has a bearing and supporting function, and is used for Provide electricity; miniature light-emitting diodes, located on the circuit board; reflective coating, located on the surface of the circuit board near the side of the miniature light-emitting diodes, the reflective coating is provided with an opening, and the miniature light-emitting diodes are located in the opening;
  • the protective layer covers the micro Light-emitting diodes are used for packaging and protecting light-emitting diodes.
  • the thickness of the reflective coating is set to be greater than or equal to the height of the micro light emitting diode, so that the opening has a greater depth, and the protective layer is arranged inside the opening to ensure that the protective layer fully covers the micro light emitting diode. Encapsulation protection, and compared with the solution of covering the entire protective layer, can greatly reduce the materials used for the protective layer and save the cost.
  • the inside surface of the window of the reflective coating is set as an inclined surface, which receives the light emitted by the micro light emitting diode at a greater than a set angle (that is, a large angle), and reflects it to the interface between the protective layer and the air medium,
  • the inclined surface can reduce the incident angle when light enters the interface between the protective layer and the air medium, and avoid total reflection of the light at the interface, thereby improving the efficiency of light emission.
  • FIG. 1 is a schematic diagram of a cross-sectional structure of a display device provided by an embodiment of the application
  • FIG. 2 is one of the schematic cross-sectional structure diagrams of the Mini LED light board provided by the embodiment of the application;
  • FIG. 3 is one of the schematic diagrams of the top view structure of the Mini LED light board provided by the embodiment of the application;
  • FIG. 4 is the second schematic diagram of the top view structure of the Mini LED light board provided by the embodiment of the application.
  • Figure 5 is a diagram of the emitted light path of the Mini LED in the related technology
  • Fig. 6 is a diagram of the exit light path of the Mini LED in Fig. 2;
  • FIG. 7 is the second schematic diagram of the cross-sectional structure of the Mini LED light board provided by the embodiment of the application.
  • FIG. 8 is the third schematic diagram of the cross-sectional structure of the Mini LED light board provided by the embodiment of the application.
  • Fig. 9 is a diagram of the exit light path of the Mini LED in Fig. 8;
  • FIG. 10 is a schematic diagram of a cross-sectional structure of a backlight module provided by an embodiment of the application.
  • FIG. 1 is a schematic structural diagram of a display device provided in an embodiment of the application. As shown in FIG. 1, the display device provided in an embodiment of the application includes:
  • the backlight module 100 is used to provide backlight; the backlight module 100 can uniformly emit light in the entire light emitting surface, and is used to provide the display panel with sufficient and uniformly distributed light, so that the display panel can display images normally.
  • the display panel 200 is located on the light emitting side of the backlight module 100 and is used for image display.
  • the display panel 200 has a plurality of pixel units arranged in an array, and each pixel unit can independently control the light transmittance and color of the backlight module 100 incident on the pixel unit, so that the light transmitted by all the pixel units constitutes The displayed image.
  • the above-mentioned display device provided by the embodiment of the present application may be a display device such as a liquid crystal display, a liquid crystal display, and a liquid crystal television, or may be a mobile terminal such as a mobile phone, a tablet computer, and a smart photo album.
  • the display device adopts a backlight module to provide backlight, and the display panel modulates the light emitted by the backlight module to realize image display.
  • the backlight module provided by the embodiments of the application can use Mini LED lamp panels as the light source.
  • the size of Mini LEDs is smaller than that of traditional LEDs, and a huge number of Mini LEDs are used as backlight sources, which can achieve more refined dynamic control and improve liquid crystal display.
  • the dynamic contrast of the display is provided by the embodiment of the present application.
  • the aforementioned backlight module 100 provided by the embodiment of the present application includes a Mini LED light board, and the Mini LED light board is used as a backlight source.
  • FIG. 2 is one of the schematic cross-sectional structure diagrams of the Mini LED light board provided by the embodiment of the application. As shown in FIG. 2, the Mini LED light board includes a circuit board 11, a micro light emitting diode 12, a reflective coating 13 and a protective layer 14.
  • the circuit board 11 has a bearing and supporting function and is used to provide power.
  • the circuit board 11 is used to provide driving electrical signals for the micro light emitting diode 12.
  • the micro light emitting diode 12 and the circuit board 11 are manufactured separately.
  • the surface of the circuit board 11 includes a plurality of openings for welding the micro light emitting diodes.
  • the openings include two soldering pads for welding the electrodes of the micro light emitting diodes.
  • the circuit board 11 may be a printed circuit board (Printed Circuit Board, PCB for short).
  • the PCB includes an electronic circuit and an insulating layer.
  • the insulating layer exposes the soldering pads of the micro light emitting diode 12 in the electronic circuit and exposes the rest. cover.
  • the circuit board 11 may also be an array substrate formed by fabricating a thin film transistor drive circuit on a base substrate, and the surface of the array substrate has connection electrodes connected to the thin film transistor drive circuit (that is, the above-mentioned pads in the window).
  • the electrodes of the micro light emitting diode 12 are welded in a one-to-one correspondence with each connecting electrode.
  • the substrate or base substrate of the above circuit board 11 may be made of flexible materials to form a flexible display device.
  • the circuit board 11 is plate-shaped, and the whole is rectangular or square.
  • the length of the circuit board 11 is 200mm-800mm, and the width is 100mm-500mm.
  • the display device may include a plurality of circuit boards 11, and the circuit boards 11 jointly provide a backlight for the display device through splicing.
  • the seams between adjacent circuit boards 11 should be as small as possible, and even seamless splicing can be realized.
  • the miniature light emitting diode 12 is located on the circuit board 11.
  • the micro light emitting diode 12 is welded on the pad of the circuit board 11.
  • the micro light emitting diode 12 is different from the ordinary light emitting diode, and specifically refers to the micro light emitting diode chip. Since the size of the micro light-emitting diode 12 is small, the light-emitting chip is beneficial to control the dynamic light emission to a smaller subarea, which is beneficial to improve the contrast of the picture.
  • the micro light emitting diode 102 may be a monochromatic micro light emitting diode with a size between 50 ⁇ m and 300 ⁇ m.
  • the reflective coating 13 is located on the surface of the circuit board 11 on the side close to the micro light emitting diode 12.
  • the reflective coating 13 can be a protective layer located above the circuit board.
  • the protective layer also has a reflective effect, which can reflect the light incident on the side of the circuit board 11 back, thereby improving the efficiency of light utilization.
  • the reflective coating 13 uses materials such as white oil.
  • the above-mentioned reflective protective layer is referred to as a reflective coating.
  • a window 131 is provided on the reflective coating 13, and the window 131 is exposed in the window for welding micro light-emitting diodes.
  • the micro light emitting diodes 12 will be soldered on the corresponding bonding pads of the circuit board, so that the micro light emitting diodes 12 are located in the corresponding openings 131.
  • the thickness of the reflective coating 13 is greater than or equal to the height of the micro light emitting diode 12.
  • the surface of the window 131 of the reflective coating 13 facing the micro light emitting diode 12 is an inclined surface with respect to the circuit board 11, and the window 131 is on the side close to the circuit board 11.
  • the size is smaller than the size on the side away from the circuit board 11.
  • the side wall on the inner side of the window 131 is an inclined surface.
  • the top view structure of the window 131 is shown in FIGS. 3 and 4, and the window 131 can be an inverted truncated cone shape, and its top view structure is as shown in FIG. Or, the window 131 can also be an inverted prism, and its top view structure is shown in Figure 4.
  • the inner side of the window 131 has a reflection effect on the large-angle light emitted by the micro light emitting diode 12, and the specific shape of the window 131 is not limited during production, as long as it has an inclined inner side surface and is used to receive the light emitted by the micro light emitting diode 12 The large angle of light and reflect it.
  • the inner surface of the window opening of the reflective coating 13 is set as an inclined surface, and the inclined surface is used to receive the emitted light from the micro light emitting diode 12 that is greater than a set angle (ie, a large angle), and perform a measurement on the received light.
  • a set angle ie, a large angle
  • FIG. 5 is a schematic diagram of the optical path of the large-angle light emitted by the micro light emitting diode 12 in the related art.
  • the light a emitted by the micro light emitting diode 12 at a large angle directly enters the medium of the protective layer 14.
  • the refractive index of the protective layer 14 is greater than that of air, total reflection will occur at the interface of the two media.
  • the incident angle of the light incident on the interface is greater than the critical angle At this time, the light can only be reflected back into the protective layer 14 and cannot be emitted to the outside.
  • the refractive index of the light-transmitting material used in the protective layer 14 is 1.4, the light that is greater than 44 degrees emitted by the micro light emitting diode 12 will be reflected back, thereby severely reducing the light emission efficiency.
  • the embodiment of the present application sets the inner side surface of the window 131 in the reflective coating 13 as an inclined surface.
  • 6 is a schematic diagram of the optical path of the large-angle light emitted by the micro light emitting diode 12 provided by the embodiment of the application. As shown in FIG. 6, the emitted light a with the same output angle will first be incident on the inner wall of the window. After reflection, the reflected light a 1 then enters the interface between the protective layer 14 and the air. Comparing Figures 5 and 6, it can be seen that after the outgoing light a is reflected by the window, the incident angle when it enters the interface between the protective layer 14 and the air will decrease.
  • the inner surface of the window is inclined to expand to the outside. Therefore, the exit angle of the light will be relatively reduced after being reflected. In this way, when the incident angle of the light incident on the interface between the protective layer 14 and the air is reduced, the light that would have been totally reflected is no longer satisfied at this time.
  • the reflection conditions can be emitted into the air medium, and the small-angle light emitted by the micro light emitting diode 12 will not be incident on the inclined surface of the window, so it can be smoothly emitted according to the original optical path.
  • the opening of the window on the inclined surface can make the large-angle emitted light that was originally totally reflected can be emitted to the outside, which improves the efficiency of light emission.
  • FIG. 7 is the second schematic diagram of the cross-sectional structure of the Mini LED light board provided by the embodiment of the application.
  • the thickness h1 of the reflective coating 13 may be set to be greater than or equal to the height h2 of the micro light emitting diode 12.
  • the height of the micro LED 12 is about 100 ⁇ m, and the thickness of the reflective coating 13 can be set in the range of 100 ⁇ m-200 ⁇ m.
  • a reflective coating with a thickness of 100 ⁇ m-200 ⁇ m can basically receive and reflect light in a wide range of angles emitted by the micro LED. Setting the thickness of the reflective coating at 100 ⁇ m-200 ⁇ m will not block the micro LED 12 A small angle range of light emitted.
  • a protective colloid material can be directly applied in the opening 131 where the micro light emitting diode 12 is located to package the micro light emitting diode 12, and the protective layer 14 is formed in the opening at this time. Since the protective colloid has certain fluidity, the height of the reflective coating 13 is set to be greater than or equal to the height of the micro light emitting diode 12. After the protective glue is applied in the window 131, the protective layer 14 can cover the micro light emitting diode 12 , And will not overflow outside the hollowed out area, achieve the purpose of packaging the micro light emitting diode 12, and at the same time can save the amount of protective glue used.
  • the protective glue has a certain viscosity, so it is applied in the window 131. Due to the surface tension of the colloidal material, the surface of the protective layer 14 facing away from the circuit board will be formed on the micro light emitting diode 12 to the side facing away from the circuit board 11. Curved surface. First of all, the protective layer 14 on the curved surface can protect the micro light emitting diode 12 from being completely covered, so as to meet the packaging requirements.
  • the emitted light reflected by the window 131 or the light directly emitted by the micro light-emitting diode 12, when incident on the interface of the curved surface, relative to the plane interface, the angle of incidence at the interface will be Further reduction can avoid the occurrence of total reflection, so that more large-angle light rays can be emitted to the outside after being reflected by the window 131.
  • the height of the protective layer 14 formed in the window can be controlled.
  • the maximum distance h3 between the arc-shaped surface of the protective layer 14 and the circuit board 11 can be set to be greater than or equal to the thickness h1 of the reflective coating.
  • the height of the micro light emitting diode 12 is about 100 ⁇ m
  • the thickness of the reflective coating 13 can be set in the range of 100 ⁇ m-200 ⁇ m
  • the maximum height of the protective layer 14 can be set in the range of 100 ⁇ m-300 ⁇ m. It can avoid using too little glue of the protective layer, so that the micro light emitting diode 12 is not fully packaged, and avoid using too much glue of the protective layer, thereby saving materials.
  • an embodiment of the present application provides a display device, which may include a backlight module and a display panel, the structure of which is the same as that of FIG. 1, and will not be repeated here.
  • the backlight module may include a Mini LED light board, and the Mini LED light board is used as a backlight source.
  • FIG. 8 is the third cross-sectional structure diagram of the Mini LED light board provided by the embodiment of the application.
  • the Mini LED light board provided by the embodiment of the application includes: a circuit board 11, a micro light emitting diode 12, and a reflective coating. 13 and protective layer 14.
  • the circuit board 11 has a bearing and supporting function, and is used to provide power
  • the miniature light emitting diode 12 is located on the circuit board 11;
  • the reflective coating 13 is located on the surface of the circuit board 11 on the side close to the micro light emitting diode 12, and an opening 131 is provided on the reflective coating 13, and the micro light emitting diode 12 is located in the opening;
  • the protective layer 14 covers the micro light emitting diode 12 and is used for packaging and protecting the light emitting diode 12.
  • circuit board 11 The materials and dimensions of the circuit board 11, the micro light-emitting diode 12, the reflective coating 13, and the protective layer 14 provided in the embodiments of the present application can be referred to the above-mentioned embodiments, which will not be repeated here.
  • the surface of the window 131 of the reflective coating 13 facing the micro light emitting diode 12 is an inclined surface with respect to the circuit board 11.
  • the size of the window 131 on the side close to the circuit board 11 is smaller than The size of the side away from the circuit board 11; the inclined surface of the window 131 is used to receive and reflect the light emitted by the micro light emitting diode 12 at an angle greater than the set angle.
  • Fig. 9 is a light path diagram of the large-angle light emitted by the micro light emitting diode 12 when the structure shown in Fig. 8 is adopted.
  • the same large-angle emitted light a will first be incident on the inclined surface of the window, and after passing through The reflection of the inclined surface of the window forms a reflected light a 1 , and the reflected light a 1 then enters the interface between the protective layer 14 and the air. Because the inner surface of the window 131 is an inclined surface that expands to the outside, the light is reflected by it. The later exit angle will be relatively reduced.
  • the Mini LED light board provided by the embodiment of the present application can be sprayed on the entire surface to form a protective layer 14 on the reflective coating 13 and the surface of the micro light-emitting diode 12. Simplify packaging steps and improve production efficiency.
  • the final surface of the protective layer 14 on the side away from the circuit board is usually flat.
  • the angle between the inclined surface of the window and the normal line of the circuit board 11 is ⁇
  • the angle between the emitted light a of the micro light emitting diode 12 and the normal line of the circuit board is Then the angle of incidence when the ray a is incident on the inclined surface is If the surface of the protective layer 14 on the side facing away from the circuit board 11 is perpendicular to the normal of the circuit board 11 , the incident angle of the light a 1 reflected by the inclined surface upon the upper surface of the protective layer 14 is
  • n is the refractive index of the protective layer
  • n 0 is the refractive index of air
  • represents the angle between the inclined surface of the window and the normal of the circuit board
  • n represents the refractive index of the protective layer. Represents the angle between the light emitted by the micro light-emitting diode and the normal of the circuit board.
  • the inclined surface of the window can be designed according to the maximum exit angle of the light emitted by the micro light emitting diode 12 The angle of inclination. For example, if it is considered that the micro light emitting diode 12 can reach an exit angle of 180°, that is, the maximum angle between the emitted light and the normal of the circuit board can reach 90°, which is the aforementioned angle
  • the protective layer 14 is made of silica gel with a refractive index of 1.4. Then, by substituting the above formula, the angle between the inclined surface and the normal of the circuit board 11 can be designed to be 67°.
  • the micro light emitting diode 12 usually has the maximum output angle, so the tilt angle between the inclined surface of the window and the normal line of the circuit board can be designed according to the maximum output angle, so that the light emitted by the micro light emitting diode can be designed. No total reflection occurs at the interface between the protective layer and the air, so that the light emitted by the micro light emitting diode can be emitted to the outside, and the light emission efficiency is improved.
  • FIG. 10 is a schematic cross-sectional structure diagram of a backlight module provided by an embodiment of the application. As shown in FIG. 10, the above-mentioned backlight module provided by an embodiment of the application may further include: a transparent substrate 15, a diffusion plate 16, and an optical film 16 .
  • the transparent substrate 15 is located on the side of the reflective coating 13 and the protective layer 14 away from the circuit board 11.
  • the transparent substrate 15 can transmit light from the micro light emitting diode 12 and is used to support the diffusion plate 16.
  • the material of the transparent substrate 15 can be selected from polymethyl methacrylate or polycarbonate.
  • the transparent substrate 15 serves as a supporting structure for the diffuser plate 16 so that the light emitted by the micro light-emitting diode 12 can be sufficiently mixed before reaching the diffuser plate 16.
  • the thickness of the transparent substrate 15 meets the light mixing distance of the micro light emitting diode 12 to ensure the backlight effect.
  • the thickness of the transparent substrate 15 is not greater than 10 mm.
  • the diffusion plate 46 is located on the side of the transparent substrate 15 away from the reflective coating 13 and the protective layer 14.
  • the diffuser plate 16 is usually provided with a scattering particle material. After the light enters the diffuser plate 16, the scattering material continuously refracts and reflects the light, so as to achieve the effect of dispersing the light, thereby achieving the effect of uniform light.
  • the material used for the diffusion plate is generally selected from at least one of polymethyl methacrylate PMMA, polycarbonate PC, polystyrene-based material PS, and polypropylene PP, which is not limited here.
  • the optical film 17 is located on the side of the diffuser 16 away from the transparent substrate 15.
  • the optical film set 17 may include one or more of prism films, quantum dot films, reflective polarizers, etc.
  • the purpose of adding these films to the backlight module is to adapt the backlight module to a variety of Practical application.
  • the prism sheet can change the exit angle of light, thereby changing the viewing angle of the display device.
  • the quantum dot film can provide quantum dots with higher monochromatic light emission, which can be applied to quantum dot TVs to improve the display color gamut of TVs.
  • the reflective polarizer can improve the utilization rate of light, and at the same time make the emitted light have the property of polarization, omitting the use of the polarizer under the liquid crystal display panel.
  • the display device includes: a backlight module for providing backlight; a display panel located on the light-emitting side of the backlight module for image display; the backlight module includes: a circuit board, which has a bearing and supporting function, Used to provide electricity; miniature light-emitting diodes, located on the circuit board; reflective coating, located on the surface of the circuit board near the side of the miniature light-emitting diodes, windows are provided on the reflective coating, and the miniature light-emitting diodes are located in the windows; protective layer Covering miniature light-emitting diodes for packaging and protecting light-emitting diodes.
  • the thickness of the reflective coating is set to be greater than or equal to the height of the micro light emitting diode, so that the opening has a greater depth, and the protective layer is arranged inside the opening to ensure that the protective layer fully covers the micro light emitting diode. Encapsulation protection, and compared with the solution of covering the entire protective layer, can greatly reduce the materials used for the protective layer and save the cost.
  • the inside surface of the window of the reflective coating is set as an inclined surface, which receives the light emitted by the micro light emitting diode at a greater than a set angle (that is, a large angle), and reflects it to the interface between the protective layer and the air medium,
  • the inclined surface can reduce the incident angle when light enters the interface between the protective layer and the air medium, and avoid total reflection of the light at the interface, thereby improving the efficiency of light emission.

Landscapes

  • Physics & Mathematics (AREA)
  • Nonlinear Science (AREA)
  • Mathematical Physics (AREA)
  • Chemical & Material Sciences (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • General Physics & Mathematics (AREA)
  • Optics & Photonics (AREA)
  • Planar Illumination Modules (AREA)
  • Liquid Crystal (AREA)

Abstract

一种显示装置,包括背光模组(100)和显示面板(200);背光模组(100)包括电路板(11),微型发光二极管(12),保护层(14)和反射涂层(13),反射涂层(13)上设有开窗(131),微型发光二极管(12)位于开窗(131)内。将反射涂层(13)的厚度(h1)设置得大于或等于微型发光二极管(12)的高度(h2),从而使得开窗(131)具有较大的深度,将保护层(14)设置于开窗(131)内部,对微型发光二极管(12)进行封装保护,同时可以大大减少保护层(14)的使用材料,节约成本。将反射涂层(13)的开窗(131)的内侧表面设置为倾斜表面,倾斜表面接收微型发光二极管(12)出射的大于设定角度的出射光线,并将其反射到保护层(14)和空气介质的交界面,倾斜表面可以减小光线入射到保护层(14)和空气介质的交界面时的入射角,避免光线在交界面发生全反射,从而提高光线的出射效率。

Description

一种显示装置
相关申请交叉引用
本申请要求于2019年11月29日提交中国专利局、申请号为201911205512.0、申请名称为“一种显示装置”的中国专利申请以及于2019年11月29日提交中国专利局、申请号为201922112164.4、申请名称为“一种显示装置”的中国专利申请的优先权,其全部内容通过引用结合在本申请中。
技术领域
本申请涉及显示技术领域,尤其涉及一种显示装置。
背景技术
随着显示技术的发展,液晶显示技术在显示领域被广泛应用。液晶显示面板本身并不能发光,需要背光模组提供其显示所需要亮度。而由于液晶面板本身特性的限制,不同程度地存在漏光的现象,对比度的提升存在瓶颈。由此提出一种对背光模组进行区域调光(local dimming)的方案,可以对不同区域的背光单独控制,那么当显示图像中高亮部分所对应的背光亮度可以达到最大,而在图像中的黑暗部分所对应的背光可以降低亮度,从而可以使显示图像达到更佳的对比度。
微型发光二极管(Mini Light Emitting Diode,简称Mini LED)作为背光在液晶显示技术中已经成为了当前的热点,不同于传统液晶显示采取导光板侧入式的背光方案,其采用巨量Mini LED作为背光源,不仅可以实现背光的薄形化,还可以实现更为精细化的动态控制,提升液晶显示的动态对比度。
Mini LED灯板在焊接各Mini LED芯片之后,需要在芯片的上方整层涂覆保护胶,浪费材料,同时保护胶的折射率通常大于空气折射率,因此在保护胶与空气的交界面会发生全反射,导致大角度的光线无法出射,从而使得Mini LED灯板的出光效率不高。
发明内容
本申请提供了一种显示装置,用以提高Mini LED的出光效率、降低Mini  LED灯板的制作成本。
第一方面,本申请提供一种显示装置,包括:
背光模组,用于提供背光;
显示面板,位于所述背光模组的出光侧,用于图像显示;
所述背光模组包括:
电路板,具有承载和支撑作用,用于提供电力;
微型发光二极管,位于所述电路板上;
反射涂层,位于所述电路板靠近所述微型发光二极管一侧的表面,所述反射涂层上设有开窗,所述微型发光二极管位于所述开窗内;所述反射涂层的厚度大于或等于所述微型发光二极管的高度;
保护层,位于所述开窗内,覆盖所述微型发光二极管,用于封装保护所述发光二极管。
在本申请某些实施例中,在本申请提供的上述显示装置中,所述开窗面向所述微型发光二极管的表面为相对于所述电路板的倾斜表面,所述开窗在靠近所述电路板一侧的尺寸小于远离所述电路板一侧的尺寸;所述开窗的倾斜表面用于接收并反射所述微型发光二极管出射的大于设定角度的出射光线。
在本申请某些实施例中,在本申请提供的上述显示装置中,所述保护层背离所述电路板一侧表面为向背离所述电路板一侧凸出的弧形表面。
在本申请某些实施例中,在本申请提供的上述显示装置中,所述保护层的弧形表面与所述电路板之间的最大距离大于或等于所述反射涂层的厚度。
第二方面,本申请提供一种显示装置,包括:
背光模组,用于提供背光;
显示面板,位于所述背光模组的出光侧,用于图像显示;
所述背光模组包括:
电路板,具有承载和支撑作用,用于提供电力;
微型发光二极管,位于所述电路板上;
反射涂层,位于所述电路板靠近所述微型发光二极管一侧的表面,所述反射涂层上设置有开窗,所述微型发光二极管位于所述开窗内;
保护层,覆盖所述微型发光二极管,用于封装保护所述发光二极管;
其中,所述开窗面向所述微型发光二极管的表面为相对于所述电路板的倾斜表面,所述开窗在靠近所述电路板一侧的尺寸小于远离所述电路板一侧的尺寸;所述开窗的倾斜表面用于接收并反射所述微型发光二极管出射的大于设定角度的出射光线。
在本申请某些实施例中,在本申请提供的上述显示装置中,所述保护层覆盖所述反射涂层和所述微型发光二极管背离所述电路板一侧的表面。
在本申请某些实施例中,在本申请提供的上述显示装置中,所述开窗的倾斜表面与所述电路板的法线的夹角满足以下关系:
Figure PCTCN2020132446-appb-000001
其中,θ表示所述开窗的倾斜表面与所述电路板的法线的夹角,n表示所述保护层的折射率,
Figure PCTCN2020132446-appb-000002
表示所述微型发光二极管的出射光线与所述电路板的法线的夹角。
在本申请某些实施例中,在本申请提供的上述显示装置中,所述反射涂层的材料为白油。
在本申请某些实施例中,在本申请提供的上述显示装置中,所述微型发光二极管的尺寸为50μm~300μm。
在本申请某些实施例中,在本申请提供的上述显示装置中,所述背光模组还包括:
透明基板,位于所述反射涂层和所述保护层背离所述电路板的一侧;
扩散板,位于所述透明基板背离所述反射涂层和所述保护层的一侧;
光学膜片,位于所述扩散板背离所述透明基板的一侧。
本申请有益效果如下:
本申请提供的显示装置,包括:背光模组,用于提供背光;显示面板,位于背光模组的出光侧,用于图像显示;背光模组包括:电路板,具有承载和支撑作用,用于提供电力;微型发光二极管,位于电路板上;反射涂层,位于电路板靠近微型发光二极管一侧的表面,反射涂层上设置有开窗,微型发光二极管位于开窗内;保护层,覆盖微型发光二极管,用于封装保护发光二极管。
将反射涂层的厚度设置得大于或等于微型发光二极管的高度,从而使得开窗具有较大的深度,将保护层设置于开窗内部,保证保护层充分地覆盖微型发光二极管,对微型发光二极管进行封装保护,同时相比于整层覆盖保护层的方案,可以大大减少保护层的使用材料,节约成本。
将反射涂层的开窗的内侧表面设置为倾斜表面,该倾斜表面接收微型发光二极管出射的大于设定角度(即大角度)的出射光线,并将反射到保护层和空气介质的交界面,该倾斜表面可以减小光线入射到保护层和空气介质的交界面时的入射角,避免光线在该交界面发生全反射,从而提高光线的出射效率。
附图说明
为了更清楚地说明本申请实施例的技术方案,下面将对本申请实施例中所需要使用的附图作简单地介绍,显而易见地,下面所介绍的附图仅仅是本申请的一些实施例,对于本领域普通技术人员来讲,在不付出创造性劳动的前提下,还可以根据这些附图获得其他的附图。
图1为本申请实施例提供的显示装置的截面结构示意图;
图2为本申请实施例提供的Mini LED灯板的截面结构示意图之一;
图3为本申请实施例提供的Mini LED灯板的俯视结构示意图之一;
图4为本申请实施例提供的Mini LED灯板的俯视结构示意图之二;
图5为相关技术中Mini LED的出射光路图;
图6为图2中Mini LED的出射光路图;
图7为本申请实施例提供的Mini LED灯板的截面结构示意图之二;
图8为本申请实施例提供的Mini LED灯板的截面结构示意图之三;
图9为图8中Mini LED的出射光路图;
图10为本申请实施例提供的背光模组的截面结构示意图。
具体实施方式
为使本申请的上述目的、特征和优点能够更为明显易懂,下面将结合附图和实施例对本申请做进一步说明。然而,示例实施方式能够以多种形式实施,且不应被理解为限于在此阐述的实施方式;相反,提供这些实施方式使得本申请更全面和完整,并将示例实施方式的构思全面地传达给本领域的技术人员。在图中相同的附图标记表示相同或类似的结构,因而将省略对它们的重复描述。本申请中所描述的表达位置与方向的词,均是以附图为例进行的说明,但根据需要也可以做出改变,所做改变均包含在本申请保护范围内。本申请的附图仅用于示意相对位置关系不代表真实比例。
图1为本申请实施例提供的显示装置的结构示意图,如图1所示,本申请实施例提供的显示装置包括:
背光模组100,用于提供背光;背光模组100可以在整个出光面内均匀的发出光线,用于为显示面板提供亮度充足且分布均匀的光线,以使显示面板可以正常显示影像。
显示面板200,位于背光模组100的出光侧,用于图像显示。显示面板200具有多个呈阵列排布的像素单元,每个像素单元都可以独立的控制背光模组100入射到该像素单元的光线透过率和色彩,以使全部像素单元透过的光 线构成显示的图像。
本申请实施例提供的上述显示装置可为液晶显示屏、液晶显示器、液晶电视等显示设备,也可以为手机、平板电脑、智能相册等移动终端。显示装置中采用背光模组提供背光,由显示面板对背光模组出射的光线进行调制,实现图像显示。本申请实施例提供的背光模组可以采用Mini LED灯板作为光源,Mini LED的尺寸相对于传统LED更小,采用巨量Mini LED作为背光源,可以实现更为精细化的动态控制,提升液晶显示的动态对比度。
本申请实施例提供的上述背光模组100包括Mini LED灯板,Mini LED灯板作为背光源。图2为本申请实施例提供的Mini LED灯板的截面结构示意图之一,如图2所示,Mini LED灯板包括电路板11、微型发光二极管12、反射涂层13和保护层14。
电路板11,具有承载和支撑作用,用于提供电力。
在本申请实施例中,电路板11用于为微型发光二极管12提供驱动电信号。微型发光二极管12与电路板11分别单独制作,电路板11的表面包括多个用于焊接微型发光二极管的开窗,开窗内包括两个用于分别焊接微型发光二极管电极的焊盘,微型发光二极管12在制作完成后,再将微型发光二极管12转移至电路板11的焊盘开窗上方,通过回流焊等工艺将微型发光二极管12焊接在电路板11上,从而可以通过控制电路板11的输入信号,驱动微型发光二极管12发光。
在具体实施时,电路板11可以是印刷电路板(Printed Circuit Board,简称PCB),PCB包括电子线路和绝缘层,绝缘层将电子线路中焊接微型发光二极管12的焊盘裸露在外而将其余部分覆盖。
或者,电路板11也可以是在衬底基板上制作薄膜晶体管驱动电路形成的阵列基板,阵列基板的表面具有连接至薄膜晶体管驱动电路的连接电极(即上述的开窗内的焊盘),各微型发光二极管12的电极与各连接电极一一对应焊接。以上电路板11的衬底或衬底基板可以采用柔性材料来制作以形成柔性显示装置。
在本申请实施例中,电路板11为板状,整体呈长方形或正方形。电路板11的长度在200mm-800mm,宽度在100mm-500mm。根据显示装置的尺寸,在本申请实施例中,显示装置可以包括多个电路板11,电路板11之间通过拼接方式共同为显示装置提供背光。为了避免电路板11拼接带来的光学问题,相邻电路板11之间的拼缝尽量做到较小,甚至实现无缝拼接。
微型发光二极管12,位于电路板11上。微型发光二极管12焊接于电路 板11的焊盘上,微型发光二极管12不同于普通的发光二极管,其具体指的是微型发光二极管芯片。由于微型发光二极管12的尺寸很小,因此发光芯片有利于将动态发光控制到更小的分区,有利于提高画面的对比度。在本申请实施例中,微型发光二极管102可为单色微型发光二极管,尺寸在50μm-300μm之间。
反射涂层13,位于电路板11靠近微型发光二极管12一侧的表面,反射涂层13可以为位于电路板上方的保护层,当采用具有反射性质的材料涂覆在电路板11的表面时,该保护层同时具有反射作用,可以将向电路板11一侧入射的光线反射回去,从而提高光线的利用效率。在本申请实施例中,反射涂层13采用白油等材料。
在电路板布线之后在其表面涂覆一层白油,通过刻蚀等工艺将用于焊接微型发光二极管的焊盘所在的位置暴露出来。在本申请实施例中,将上述具有反射作用的保护层称之为反射涂层,如图2所示,反射涂层13上设置有开窗131,开窗内暴露用于焊接微型发光二极管的焊盘,在之后的制作工艺中,会将微型发光二极管12焊接在电路板对应的焊盘上,从而使得微型发光二极管12位于对应的开窗131内。在本申请实施例中,反射涂层13的厚度大于或等于微型发光二极管12的高度。
如图2所示,在本申请实施例中,反射涂层13的开窗131面向微型发光二极管12的表面为相对于电路板11的倾斜表面,且开窗131在靠近电路板11一侧的尺寸小于远离电路板11一侧的尺寸。
如图2所示,开窗131的内侧的侧壁为倾斜表面,开窗131的俯视结构如图3和图4所示,开窗131可以为倒置的圆台状,其俯视结构如图3所示;或者,开窗131也可以为倒置的棱台状,其俯视结构如图4所示。开窗131的内侧面对微型发光二极管12出射的大角度光线具有反射作用,在进行制作时不限定开窗131的具体形状,只要其具有倾斜的内侧面,且用于接收微型发光二极管12出射的大角度光线并对其进行反射即可。
本申请实施例将反射涂层13的开窗的内侧表面设置为倾斜表面,该倾斜表面用于接收微型发光二极管12出射的大于设定角度(即大角度)的出射光线,对接收的光线进行反射,由此减小反射光线入射到保护层14和空气介质时的入射角,可以改善由于保护层14与空气交界面的全反射问题,提高光线的出射效率。
以下对相关技术以及本申请实施例中微型发光二极管12的大角度出射光线的光路原理进行具体说明:
图5为相关技术中微型发光二极管12出射的大角度光线的光路示意图,如图5所示,微型发光二极管12大角度出射的光线a直接入射到保护层14的介质中,当光线入射到保护层14和空气的交界面时,由于保护层14的折射率大于空气折射率,因此会在两种介质的交界面处发生全反射现象,当入射到该交界面的光线的入射角大于临界角时,光线只能反射回保护层14内,而无法向外界出射。例如,当保护层14所采用的透光材料的折射率为1.4时,微型发光二极管12出射的大于44度的光线均会被反射回来,由此严重降低了光线的出射效率。
为了克服上述问题,本申请实施例将反射涂层13中开窗131的内侧表面设置为倾斜表面。图6为本申请实施例提供的微型发光二极管12出射的大角度光线的光路示意图,如图6所示,同样出射角度的出射光线a首先会入射到开窗的内壁上,由开窗的内壁进行反射,反射光线a 1再向保护层14和空气的交界面入射。对比图5和图6可以看出,出射光线a经过开窗的反射之后,入射到保护层14和空气交界面时的入射角会减小,这是因为开窗的内侧表面为向外侧扩张倾斜的表面,因此光线经其反射后出射角度会相对减小,这样,当光线入射到保护层14和空气的交界面的入射角度减小后,原本会发生全反射的光线此时不再满足全反射条件,可以向空气介质中出射,而微型发光二极管12出射的小角度光线不会入射到开窗的倾斜表面上,因此可以按照原光路顺利出射,由此通过在反射涂层13上设置具有倾斜表面的开窗,可以使得原本被全反射的大角度出射光线可以向外界出射,提高了光线的出射效率。
在具体实施时,为了使开窗131的倾斜表面可以接收到微型发光二极管12出射的大角度范围内的所有光线,可以增高反射涂层13的厚度。图7为本申请实施例提供的Mini LED灯板的截面结构示意图之二,如图7所示,可以设置反射涂层13的厚度h1大于或等于微型发光二极管12的高度h2。在具体实施时,微型发光二极管12的高度在100μm左右,可以将反射涂层13的厚度设置在100μm-200μm的范围内,微型发光二极管12出射的大角度光线一般会入射到反射涂层13靠近电路板11的底部位置,100μm-200μm厚度的反射涂层基本可以接收并反射微型发光二极管出射的大角度范围内的光线,将反射涂层的厚度设置在100μm-200μm也不会阻挡微型发光二极管12出射的小角度范围的光线。
如图2所示,本申请实施例可以在微型发光二极管12所在的开窗131内直接点涂保护胶体材料对微型发光二极管12进行封装,此时保护层14形成在开窗内。由于保护胶体具有一定的流动性,将反射涂层13的高度设置为大 于或等于微型发光二极管12的高度,可以在开窗131内点涂保护胶之后,使保护层14完成覆盖微型发光二极管12,而不会向外镂空区域以外溢出,达到对微型发光二极管12封装的目的,同时还可以节省保护胶的使用量。
而保护胶具有一定的粘性,因此点涂在开窗131内,由于胶体材料的表面张力,保护层14背离电路板一侧表面会在微型发光二极管12的上方形成向背离电路板11一侧凸出的弧形表面。首先,弧形表面的保护层14可以保护微型发光二极管12被完成覆盖,达到封装要求。其次,经开窗131反射后的出射光线,或由微型发光二极管12直接出射的光线,在入射到弧形表面的交界面时相对于平面的交界面来说,在该交界面的入射角度会进一步减小,可以避免全反射的发生,使得更多地大角度光线经开窗131反射后可以向外界出射。
在制作过程中,通过控制点涂在开窗131内的保护胶的使用量,即可以控制形成在开窗中的保护层14的高度。本申请实施例中,如图7所示,可以设置保护层的14弧形表面与电路板11之间的最大距离h3大于或等于反射涂层的厚度h1。如上所述,微型发光二极管12的高度为100μm左右,可以将反射涂层13的厚度设置在100μm-200μm的范围内,那么保护层14的最大高度可以设置在100μm-300μm的范围内,这样既可以避免保护层的胶量使用过少,使微型发光二极管12没有得到全面的封装,也可以避免保护层的胶量使用过多,从而节约材料。
另一方面,本申请实施例提供一种显示装置,可以包括背光模组和显示面板,其结构与图1相同,在此不做赘述。
其中,背光模组可以包括Mini LED灯板,该Mini LED灯板作为背光源使用。
图8为本申请实施例提供的Mini LED灯板的截面结构示意图之三,如图8所示,本申请实施例提供的Mini LED灯板包括:电路板11、微型发光二极管12、反射涂层13和保护层14。
其中,电路板11,具有承载和支撑作用,用于提供电力;
微型发光二极管12,位于电路板11上;
反射涂层13,位于电路板11靠近微型发光二极管12一侧的表面,反射涂层13上设置有开窗131,微型发光二极管12位于开窗内;
保护层14,覆盖微型发光二极管12,用于封装保护发光二极管12。
本申请实施例提供的电路板11、微型发光二极管12、反射涂层13以及保护层14所采用的材料以及设置尺寸可参见上述实施例,在此不做作赘述。
如图8所示,本申请实施例中,反射涂层13的开窗131面向微型发光二极管12的表面为相对于电路板11的倾斜表面,开窗131在靠近电路板11一侧的尺寸小于远离电路板11一侧的尺寸;开窗131的倾斜表面用于接收并反射微型发光二极管12出射的大于设定角度的出射光线。
图9为采用图8所示结构时,微型发光二极管12出射的大角度光线的光路图,如图9所示,同样的大角度出射光线a首先会入射到开窗的倾斜表面上,在经过开窗的倾斜表面的反射后形成反射光线a 1,反射光线a 1进而向保护层14与空气的交界面入射,因为开窗131的内侧表面为向外侧扩张倾斜的表面,因此光线经其反射后出射角度会相对减小,这样,当光线入射到保护层14和空气的交界面的入射角度减小后,原本会发生全反射的光线此时不再满足全反射条件,可以向空气介质中出射,而微型发光二极管12出射的小角度光线不会入射到开窗的倾斜表面上,因此可以按照原光路顺利出射,由此通过在反射涂层13上设置具有倾斜表面的开窗131,可以使得原本被全反射的大角度出射光线可以向外界出射,提高了光线的出射效率。
如图8所示,本申请实施例提供的Mini LED灯板可以采用整面喷涂的方式在反射涂层13和微型发光二极管12的表面形成整层的保护层14,采用整层喷涂的方式可以简化封装步骤,提升生产效率。
在制作过程中,由于胶体的流动性,最终保护层14在背离电路板一侧的表面通常为平面。如图9所示,若开窗的倾斜表面与电路板11的法线的夹角为θ,微型发光二极管12的出射光线a与电路板的法线的夹角为
Figure PCTCN2020132446-appb-000003
则光线a入射到倾斜表面时的入射角为
Figure PCTCN2020132446-appb-000004
如果保护层14背离电路板11一侧的表面垂直于电路板11的法线,那么经过倾斜表面反射后的光线a 1入射到保护层14的上表面时的入射角为
Figure PCTCN2020132446-appb-000005
根据光的折射定律以及全反射定律,如果光线a 1入射到保护层14的上表面不发生全反射,则需要满足以下条件:
Figure PCTCN2020132446-appb-000006
其中,n为保护层的折射率,n 0为空气的折射率。
由此可以得到:
Figure PCTCN2020132446-appb-000007
其中,θ表示开窗的倾斜表面与电路板的法线的夹角,n表示保护层的折射率,
Figure PCTCN2020132446-appb-000008
表示微型发光二极管的出射光线与电路板的法线的夹角。
由上述公式可以看出,为了避免微型发光二极管12出射的光线在入射到保护层14与空气的交界面发生全反射,可以根据微型发光二极管12出射光 线的最大出射角度来设计开窗的倾斜表面的倾斜角度。例如,如果认为微型发光二极管12可以达到180°的出射角,即出射光线与电路板的法线的最大夹角可以达到90°,即上述的夹角
Figure PCTCN2020132446-appb-000009
保护层14采用硅胶材料,其折射率为1.4,那么代入上式可以得到倾斜表面与电路板11的法线的夹角可设计为67°。
在实际应用中,微型发光二极管12通常具有最大出射角,因此可以根据该最大出射角来设计开窗的倾斜表面与电路板的法线之间的倾斜角度,从而可以使微型发光二极管出射的光线都不会在保护层与空气的交界面发生全反射,以使微型发光二极管出射的光线都可以向外界出射,提高光线的出射效率。
图10为本申请实施例提供的背光模组的截面结构示意图,如图10所示,本申请实施例提供的上述背光模组,还可以包括:透明基板15、扩散板16和光学膜片16。
透明基板15,位于反射涂层13和保护层14背离电路板11的一侧。透明基板15,能够使来自微型发光二极管12的光线透过且用于支撑扩散板16。透明基板15的材料可选自聚甲基丙烯酸甲酯或聚碳酸酯等。透明基板15作为扩散板16的支撑结构,使微型发光二极管12发出的光在到达扩散板16前充分地混光。在本申请实施例中,透明基板15的厚度满足微型发光二极管12的混光距离,保证背光效果。在具体实施时,透明基板15的厚度不大于10mm。
扩散板46,位于透明基板15背离反射涂层13和保护层14的一侧。扩散板16中通常设置有散射粒子材料,光线入射到扩散板16之后,散射材料使光线不断发生折射与反射,从而达到将光线打散的效果,进而实现匀光的作用。扩散板所用材质一般选自聚甲基丙烯酸甲酯PMMA、聚碳酸酯PC、聚苯乙烯系材料PS、聚丙烯PP中的至少一种,在此不做限定。
光学膜片17,位于扩散板16背离透明基板15的一侧。光学膜片组17可以包括棱镜片、量子点膜片、反射式偏光片等中的一种或者多种,在背光模组中添加这些膜片的目的,是为了使背光模组适应多种多样的实际应用。例如,棱镜片可以改变光线的出射角度,从而改变显示装置的可观看角度。量子点膜可以提供单色性更高的量子点发光,应用于量子点电视,提高电视的显示色域。反射式偏光片可以提高光线的利用率,同时使出射光线具有偏振的性质,省略液晶显示面板下偏光片的使用。
本申请实施例提供的显示装置,包括:背光模组,用于提供背光;显示面板,位于背光模组的出光侧,用于图像显示;背光模组包括:电路板,具有承载和支撑作用,用于提供电力;微型发光二极管,位于电路板上;反射 涂层,位于电路板靠近微型发光二极管一侧的表面,反射涂层上设置有开窗,微型发光二极管位于开窗内;保护层,覆盖微型发光二极管,用于封装保护发光二极管。
将反射涂层的厚度设置得大于或等于微型发光二极管的高度,从而使得开窗具有较大的深度,将保护层设置于开窗内部,保证保护层充分地覆盖微型发光二极管,对微型发光二极管进行封装保护,同时相比于整层覆盖保护层的方案,可以大大减少保护层的使用材料,节约成本。
将反射涂层的开窗的内侧表面设置为倾斜表面,该倾斜表面接收微型发光二极管出射的大于设定角度(即大角度)的出射光线,并将反射到保护层和空气介质的交界面,该倾斜表面可以减小光线入射到保护层和空气介质的交界面时的入射角,避免光线在该交界面发生全反射,从而提高光线的出射效率。
尽管已描述了本申请的优选实施例,但本领域内的技术人员一旦得知了基本创造性概念,则可对这些实施例作出另外的变更和修改。所以,所附权利要求意欲解释为包括优选实施例以及落入本申请范围的所有变更和修改。
显然,本领域的技术人员可以对本申请进行各种改动和变型而不脱离本申请的精神和范围。这样,倘若本申请的这些修改和变型属于本申请权利要求及其等同技术的范围之内,则本申请也意图包含这些改动和变型在内。

Claims (10)

  1. 一种显示装置,其特征在于,包括:
    背光模组,用于提供背光;
    显示面板,位于所述背光模组的出光侧,用于图像显示;
    所述背光模组包括:
    电路板,具有承载和支撑作用,用于提供电力;
    微型发光二极管,位于所述电路板上;
    反射涂层,位于所述电路板靠近所述微型发光二极管一侧的表面,所述反射涂层上设置有开窗,所述微型发光二极管位于所述开窗内,所述反射涂层的厚度大于或等于所述微型发光二极管的高度;
    保护层,位于所述开窗内,覆盖所述微型发光二极管,用于封装保护所述发光二极管。
  2. 如权利要求1所述的显示装置,其特征在于,所述开窗面向所述微型发光二极管的表面为相对于所述电路板的倾斜表面,所述开窗在靠近所述电路板一侧的尺寸小于远离所述电路板一侧的尺寸;所述开窗的倾斜表面用于接收并反射所述微型发光二极管出射的大于设定角度的出射光线。
  3. 如权利要求1所述的显示装置,其特征在于,所述保护层背离所述电路板一侧表面为向背离所述电路板一侧凸出的弧形表面。
  4. 如权利要求3所述的显示装置,其特征在于,所述保护层的弧形表面与所述电路板之间的最大距离大于或等于所述反射涂层的厚度。
  5. 一种显示装置,其特征在于,包括:
    背光模组,用于提供背光;
    显示面板,位于所述背光模组的出光侧,用于图像显示;
    所述背光模组包括:
    电路板,具有承载和支撑作用,用于提供电力;
    微型发光二极管,位于所述电路板上;
    反射涂层,位于所述电路板靠近所述微型发光二极管一侧的表面,所述反射涂层上设置有开窗,所述微型发光二极管位于所述开窗内;
    保护层,覆盖所述微型发光二极管,用于封装保护所述发光二极管;
    其中,所述开窗面向所述微型发光二极管的表面为相对于所述电路板的倾斜表面,所述开窗在靠近所述电路板一侧的尺寸小于远离所述电路板一侧的尺寸;所述开窗的倾斜表面用于接收并反射所述微型发光二极管出射的大 于设定角度的出射光线。
  6. 如权利要求5所述的显示装置,其特征在于,所述保护层覆盖所述反射涂层和所述微型发光二极管背离所述电路板一侧的表面。
  7. 如权利要求2或5所述的显示装置,其特征在于,所述开窗的倾斜表面与所述电路板的法线的夹角满足以下关系:
    Figure PCTCN2020132446-appb-100001
    其中,θ表示所述开窗的倾斜表面与所述电路板的法线的夹角,n表示所述保护层的折射率,
    Figure PCTCN2020132446-appb-100002
    表示所述微型发光二极管的出射光线与所述电路板的法线的夹角。
  8. 如权利要求1或5所述的显示装置,其特征在于,所述反射涂层的材料为白油。
  9. 如权利要求1或5所述的显示装置,其特征在于,所述微型发光二极管的尺寸为50μm~300μm。
  10. 如权利要求1或5所述的显示装置,其特征在于,所述背光模组还包括:
    透明基板,位于所述反射涂层和所述保护层背离所述电路板的一侧;
    扩散板,位于所述透明基板背离所述反射涂层和所述保护层的一侧;
    光学膜片,位于所述扩散板背离所述透明基板的一侧。
PCT/CN2020/132446 2019-11-29 2020-11-27 一种显示装置 WO2021104494A1 (zh)

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
CN201911205512.0A CN112882281A (zh) 2019-11-29 2019-11-29 一种显示装置
CN201911205512.0 2019-11-29
CN201922112164.4 2019-11-29
CN201922112164.4U CN210982988U (zh) 2019-11-29 2019-11-29 一种显示装置

Publications (1)

Publication Number Publication Date
WO2021104494A1 true WO2021104494A1 (zh) 2021-06-03

Family

ID=76129183

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2020/132446 WO2021104494A1 (zh) 2019-11-29 2020-11-27 一种显示装置

Country Status (1)

Country Link
WO (1) WO2021104494A1 (zh)

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20160351539A1 (en) * 2015-06-01 2016-12-01 X-Celeprint Limited Inorganic-light-emitter display with integrated black matrix
CN106684108A (zh) * 2015-11-05 2017-05-17 群创光电股份有限公司 发光二极管显示设备
CN106784203A (zh) * 2017-03-31 2017-05-31 深圳市华星光电技术有限公司 一种像素结构及制造方法
CN107170772A (zh) * 2017-05-23 2017-09-15 深圳市华星光电技术有限公司 微发光二极管阵列基板的封装结构
CN107908041A (zh) * 2017-11-24 2018-04-13 珠海晨新科技有限公司 一种全面屏底部光源模块及全面屏
CN110420776A (zh) * 2019-08-06 2019-11-08 京东方科技集团股份有限公司 一种掩膜组件及Mini LED背光模组的制作方法
CN211786492U (zh) * 2019-11-29 2020-10-27 海信视像科技股份有限公司 一种显示装置

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20160351539A1 (en) * 2015-06-01 2016-12-01 X-Celeprint Limited Inorganic-light-emitter display with integrated black matrix
CN106684108A (zh) * 2015-11-05 2017-05-17 群创光电股份有限公司 发光二极管显示设备
CN106784203A (zh) * 2017-03-31 2017-05-31 深圳市华星光电技术有限公司 一种像素结构及制造方法
CN107170772A (zh) * 2017-05-23 2017-09-15 深圳市华星光电技术有限公司 微发光二极管阵列基板的封装结构
CN107908041A (zh) * 2017-11-24 2018-04-13 珠海晨新科技有限公司 一种全面屏底部光源模块及全面屏
CN110420776A (zh) * 2019-08-06 2019-11-08 京东方科技集团股份有限公司 一种掩膜组件及Mini LED背光模组的制作方法
CN211786492U (zh) * 2019-11-29 2020-10-27 海信视像科技股份有限公司 一种显示装置

Similar Documents

Publication Publication Date Title
CN111399280B (zh) 一种显示装置
CN113126363A (zh) 一种显示装置
WO2021051787A1 (zh) 一种显示装置及背光模组
CN112882282A (zh) 一种显示装置
CN210982989U (zh) 一种显示装置
CN210982990U (zh) 一种显示装置
CN211786492U (zh) 一种显示装置
CN210982988U (zh) 一种显示装置
WO2021104445A1 (zh) 一种显示装置
CN113777826B (zh) 一种显示装置
CN214098031U (zh) 一种显示装置
CN213399142U (zh) 一种显示装置
CN113777825B (zh) 一种显示装置
CN109445180B (zh) 一种背光模组及显示装置
CN215416207U (zh) 一种显示装置
US11320696B2 (en) Backlight module, display, and mobile terminal
CN113093434A (zh) 一种显示装置
WO2021190414A1 (zh) 一种显示装置
CN112882281A (zh) 一种显示装置
CN112882280A (zh) 一种显示装置
CN214751236U (zh) 一种显示装置
WO2021190399A1 (zh) 一种显示装置
WO2022247941A1 (zh) 一种显示装置
WO2021104494A1 (zh) 一种显示装置
WO2021104495A1 (zh) 一种显示装置

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 20891560

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 20891560

Country of ref document: EP

Kind code of ref document: A1