WO2021104331A1 - 一种指向装置的设置方法 - Google Patents

一种指向装置的设置方法 Download PDF

Info

Publication number
WO2021104331A1
WO2021104331A1 PCT/CN2020/131571 CN2020131571W WO2021104331A1 WO 2021104331 A1 WO2021104331 A1 WO 2021104331A1 CN 2020131571 W CN2020131571 W CN 2020131571W WO 2021104331 A1 WO2021104331 A1 WO 2021104331A1
Authority
WO
WIPO (PCT)
Prior art keywords
strain
flexible circuit
force
resistive
deformation
Prior art date
Application number
PCT/CN2020/131571
Other languages
English (en)
French (fr)
Inventor
林懋瑜
许文龙
和蔼
梁岳舜
Original Assignee
深圳市汇创达科技股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 深圳市汇创达科技股份有限公司 filed Critical 深圳市汇创达科技股份有限公司
Publication of WO2021104331A1 publication Critical patent/WO2021104331A1/zh

Links

Images

Classifications

    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F3/00Input arrangements for transferring data to be processed into a form capable of being handled by the computer; Output arrangements for transferring data from processing unit to output unit, e.g. interface arrangements
    • G06F3/01Input arrangements or combined input and output arrangements for interaction between user and computer
    • G06F3/03Arrangements for converting the position or the displacement of a member into a coded form
    • G06F3/041Digitisers, e.g. for touch screens or touch pads, characterised by the transducing means
    • G06F3/0414Digitisers, e.g. for touch screens or touch pads, characterised by the transducing means using force sensing means to determine a position
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F3/00Input arrangements for transferring data to be processed into a form capable of being handled by the computer; Output arrangements for transferring data from processing unit to output unit, e.g. interface arrangements
    • G06F3/01Input arrangements or combined input and output arrangements for interaction between user and computer
    • G06F3/03Arrangements for converting the position or the displacement of a member into a coded form
    • G06F3/041Digitisers, e.g. for touch screens or touch pads, characterised by the transducing means
    • G06F3/045Digitisers, e.g. for touch screens or touch pads, characterised by the transducing means using resistive elements, e.g. a single continuous surface or two parallel surfaces put in contact
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F2203/00Indexing scheme relating to G06F3/00 - G06F3/048
    • G06F2203/041Indexing scheme relating to G06F3/041 - G06F3/045
    • G06F2203/04103Manufacturing, i.e. details related to manufacturing processes specially suited for touch sensitive devices
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F2203/00Indexing scheme relating to G06F3/00 - G06F3/048
    • G06F2203/041Indexing scheme relating to G06F3/041 - G06F3/045
    • G06F2203/04105Pressure sensors for measuring the pressure or force exerted on the touch surface without providing the touch position

Definitions

  • the invention relates to the technical field of resistance strain gauge sensors, in particular to a method for setting a pointing device.
  • resistive strain gauge sensors have been gradually applied to various electronic devices as pointing devices, involving electronic devices such as notebook computers, mice, keyboards, handheld devices or joysticks. You can see the resistive strain gauge sensors in the above An application that can provide an input function in an electronic device.
  • a resistance strain gauge sensor is often installed between the keyboard keys of a common notebook computer near the center. The user only needs to touch the sensor with a finger, and it can sense the user's dial force and dial force. The direction of movement, which in turn causes the cursor on the screen to produce corresponding speed and displacement actions.
  • the existing resistive strain gauge sensor mainly includes: a housing, an action part housed in the shell, and a detection assembly that detects the deformation of the action part.
  • the action part is formed by an operation part, a fixing part and a deformation part.
  • the deforming portion is deformable due to the operating force acting on the operating portion, and the detecting assembly is provided on the deforming portion
  • the fixing portion is fixed in the housing, and the operating portion and the deforming portion can be Activities in the above shell.
  • the action part of the input device is fixed inside the housing, and the housing is mounted on the board of the keyboard device or the like. Therefore, when the operating force acts on the operating portion of the action portion and deformation is applied to the deformed portion, the housing is unlikely to fall off the substrate or the like.
  • this type of resistance strain gauge sensor is mainly to connect the deformed part and the fixed part in a fitting manner.
  • the mating method may cause changes in the characteristics of each part before and after mating, and there are many inspection procedures and subsequent adjustments cannot be made; due to the simultaneous occurrence of multiple quality variables during mating, including the inconsistent force of the deformed part, the mating process The micro-deformation caused by the deformation and the mutual influence during the mating process of the deformed part and the fixed part; due to the processing characteristics of the mating method, there are many processing steps, it is difficult to continue the calibration after assembly, and the high cost is not conducive to product application and promotion; Moreover, this type of sensor has extremely high requirements for production equipment and has a large number of detection and fine-tuning procedures for the detection components, resulting in product dispersion or increased processing costs.
  • the current conventional sensor When the current conventional sensor is attached to the structure of the electronic device, such as the keyboard main body, through the fastening hole of the fixing component, the overall height and overall weight of the electronic device are increased. Therefore, the electronic device is larger in size, resulting in heavier weight;
  • the current conventional stress sensor requires a large number of components, has a complex structure, is large in size, and cannot be miniaturized, thereby affecting the use of the application environment, reducing assembly efficiency and increasing cost.
  • the main purpose of this application is to provide a method for setting the pointing device, which solves the problem that the characteristics of each part before and after the fitting may change due to the use of the fitting method in the current manufacturing process of the pointing device, and the detection process is too many and impossible.
  • the present application provides a method for setting a pointing device, which includes: a flexible circuit substrate is provided with a multi-piece resistive strain detection part, and the stressed strain deformation part is joined to the flexible circuit substrate provided with the resistance detection strain part operating;
  • a torque of 20cN ⁇ m is preset for each screw, and the force-strained deformed part is fixed to the rigid support.
  • the through holes provided on the strain-bearing deformation portion are joined to the rigid support base by a plurality of screws, which avoids the shortcomings of the previous fitting process, reduces the number of processes, and reduces the product
  • the discreteness of the component reduces the number of components and the overall volume, and makes the pointing device miniaturized, which can be applied in various scenarios; at the same time, the components are stable after joining, which improves the production efficiency and reduces the processing cost.
  • FIG. 1 is a schematic flowchart of a specific implementation manner of a method for setting a pointing device according to an embodiment of the application;
  • FIG. 2 is a schematic structural diagram of a flexible circuit substrate provided with the resistive strain detection section provided by an embodiment of the application;
  • 3 and 4 are schematic structural diagrams of the upright and inverted settings of the force-strained deformation portion provided by the embodiments of the application;
  • FIG. 8 is a schematic diagram of a rigid support base provided by an embodiment of the application.
  • FIG. 11 is a schematic diagram of the structure of a flexible circuit substrate provided by an embodiment of the application.
  • FIG 12 and 13 are schematic diagrams of the front cross-section and the bottom cross-section of the flexible circuit substrate provided by the embodiments of the application.
  • Fig. 1 is a method for setting a pointing device according to an exemplary embodiment, which specifically includes the following steps:
  • Step 110 The flexible circuit substrate is provided with a multi-piece resistive strain detection part, and the stressed strain deformation part is connected to the flexible circuit substrate provided with the resistive strain detection part;
  • FIG. 2 it also includes: setting the resistive detection strain parts 71 to no less than 3, and no less than 3 resistive detection strain parts 71 are arranged in an orderly manner according to the sensor acquisition rule algorithm.
  • the surface provided is the opposite surface of the joint surface of the flexible circuit substrate and the strained and deformed portion.
  • the number of resistive detection strain parts is required to be no less than 3, which will greatly improve the accuracy and response speed of collection.
  • Figure 2 there are 4 resistance detection strain parts, but the set resistance detection strain parts The location and specific number of the, this application does not limit it.
  • the resistive strain detection part is arranged on the flexible circuit substrate by a printing method or a coating method.
  • the above method can ensure that the resistive sensing strain part is set on the flexible circuit substrate without greatly increasing the thickness of the flexible circuit substrate.
  • the above-mentioned technology is mature and low in cost, which greatly improves the yield of the product and is very suitable for large-scale commercial applications. .
  • a bonding surface positioning groove structure is provided at the bottom of the force-strained deformation part; the force-straining deformation part provided with the bonding surface positioning groove structure is joined to the flexible circuit substrate provided with the resistive strain detection part, Bonded together by an adhesive layer with high stress conductivity;
  • the force-strained deformation portion 10 is configured as a cylindrical convex table structure, and the bonding surface positioning groove 11 structure is provided at the bottom of the cylinder of the force-strained deformation portion, and the convex
  • the platform is set at the center of the cylinder, and the boss can be a cube shape, of course, it can also be an approximate cube shape, for example: each corner is set to a cube in the form of radians, which is not limited in this application.
  • a hollow structure hole 14 is also provided in the middle of the boss (the hollow structure can reduce the rigidity of the stress-strained deformation part, bring better contact pressure effect, and can improve the accuracy of control, and improve the user's Use experience; and due to the hollow structure, when a force is applied to the force-strained deformed part, the force will be dispersed to each part of the boss of the force-strained deformed part, the force-strained deformed part is not easy to fatigue, and can reduce the stress. The probability that the force-strain deformed part will be damaged); the hollow structure hole is a cylindrical hollow structure hole.
  • a plurality of through holes 13 (the through holes are used to install the through holes of the assembly screw) are arranged on the cylinder of the force-strained deformation part, and the plurality of through holes 13 are evenly arranged On the cylinder (which can ensure the uniform stress of the assembled screws after installation), the stressed strain deformation portion is joined with the rigid support base through a plurality of screws passing through the corresponding through holes.
  • the stressed strain deformation portion is joined with the rigid support base through a plurality of screws passing through the corresponding through holes.
  • the four through holes are evenly arranged on the cylinder, and the connecting line of any two through-holes opposite to each other is formed Two intersecting lines, the four included angles formed by the intersecting lines are all right angles, and the intersection point of the two intersecting lines is on the axis of the cylinder.
  • Such a setting method can ensure uniform stress on the assembled screws after installation.
  • the diameter of the cross section of the cylinder of the force-strained deformation portion is set to be greater than or equal to 7.0 mm and less than or equal to 25.0 mm.
  • the four through holes 1404 set on the stress and strain deformation part can use M1.8P0.2 screws.
  • the four through holes correspond to the horizontal spacing 1401, 1402, 1406, and 1407 to be set to be greater than or equal to 1.2mm and less than or equal to 10.0mm.
  • the stressed columnar structure 1403 in the stressed and strained deformation part is set to a single side length greater than or equal to 1.2mm and less than or equal to 5.0mm;
  • the stressed columnar structure in the stressed and strained deformation part Hollow structure aperture 1409 is set to a diameter greater than or equal to 0.2mm and less than or equal to 4.0mm;
  • the edge R angles 1411 and 1412 of the hollow structure in the force-bearing strain deformation part are set to be greater than or equal to 0.02mm and less than or equal to 2.20mm;
  • the depth of the hollow structure of the stressed columnar structure in the strain-deformed part is set to 1413 greater than or equal to 0.3 mm and less than or equal to 8.2 mm.
  • the size and shape of the locating groove on the bonding surface provided on the bottom surface of the force-strained deformation part are composed of 1414, 1415, 1416, 1417, 1418, 1419, 1421, 1422, and 1423 in Figure 7.
  • the size of the locating groove on the bonding surface Compatible with the shape and size of the flexible circuit board, the depth of the positioning groove on the bonding surface is set to be greater than or equal to 0.02mm and less than or equal to 4.20mm. This depth can ensure that the narrow end of the flexible circuit board is placed on the receiving surface.
  • the force-strain deforming part is easy to process and easy to assemble, which can reduce assembly errors and improve production efficiency.
  • the above-mentioned setting method is easy to process and convenient for assembly, which can reduce assembly errors and improve production efficiency.
  • it further includes: setting the shape of the positioning groove of the bonding surface of the force-strained deformation portion to be adapted to the shape of the bonding surface of the flexible circuit substrate, and positioning holes are provided on the bonding surface of the flexible circuit substrate.
  • the locating groove 11 on the bonding surface of the force-strained deformation portion is correspondingly provided with a locating post 12 that matches with the locating hole.
  • It also includes: arranging at least two positioning pillars, and arranging a plurality of positioning pillars evenly arranged in the positioning groove 11 of the fitting surface of the force-strained deformation portion.
  • the bottom surface of the deformed portion under stress and strain When the bottom surface of the deformed portion under stress and strain is joined to the flexible circuit substrate, it can be positioned by using two positioning posts.
  • the positioning posts can easily set the flexible circuit substrate in the positioning groove of the bonding surface of the deformed part under stress and strain. Perform the bonding between the strain-deformed part and the flexible circuit board.
  • the size of the positioning column is set to a diameter greater than or equal to 0.3 mm and less than or equal to 5.0 mm. In actual operation, the aforementioned size is convenient for positioning with the base and positioning of the flexible circuit board.
  • the material of the bondable layer with high stress conductivity can be a high-density, high-hardness, and high-modulus bonding material (for example: it can be a material with a stress conductivity of at least more than 2 Pa).
  • the force applied by the adhesive layer with high stress conductivity is transmitted to the flexible circuit board and the sensor on the flexible circuit board while reducing the loss as much as possible.
  • the feedback signal is obtained by collecting the change of the resistance value, and the sensor that collects the deformation amount through the resistance change has high accuracy and fast response speed, which brings a better user experience.
  • the bonding of the stress and strain deformation portion provided with the bonding surface positioning groove structure and the flexible circuit substrate is a step of bonding the two together through an adhesive bonding layer with high stress conductivity, including:
  • the stress and strain deformation part with the structure of the bonding surface positioning groove and the flexible circuit substrate are joined by a glue with high stress conductivity and a dispensing method (for example, using VISHAY's M-bond 200kit quick-drying glue for dispensing, This is a quick-drying glue based on silica gel), or a sheet-type double-sided tape with high stress conductivity to join the two together.
  • the step of joining the stress and strain deformation part with the positioning groove structure on the bonding surface and the flexible circuit substrate is through a sheet-type double-sided tape with high stress conductivity, and the step of joining the two together includes: setting The shape of the sheet-type double-sided tape is compatible with the shape of the positioning groove on the bonding surface of the force-strained deformation portion, and the sheet-type double-sided tape is provided with positioning that matches the positioning column hole.
  • the flexible circuit substrate can be conveniently arranged in the positioning groove of the bonding surface of the force-strained deformation part, and the force-strained deformation part and the flexible circuit substrate can be joined.
  • the stressed and strained portion and the flexible circuit board are bonded by means of a pressure holding jig.
  • the temperature is set to be greater than or equal to 20 degrees Celsius and less than or equal to 30 degrees Celsius
  • the relative humidity is set to be greater than or equal to 30% and less than or equal to 70%
  • the curing pressure holding force is set to be greater than or equal to 5.0 Newtons
  • the pressure holding time is not less than 5 minutes;
  • the bonding and curing operation through the pressure holding fixture set above can ensure that the contact surface of the two is even and flat, and there will be no bubbles, warping and degumming, which greatly improves the yield of products.
  • the holding pressure parameters and curing time during dispensing are different according to the glue or film used.
  • the holding time and curing conditions can be slightly adjusted according to the characteristics of individual materials, but the curing holding force is set to be greater than or equal to 5.0 Newtons, and the holding time is not less than 5 minutes.
  • the sheet-type double-sided tape in the form of a sheet is the bonding layer.
  • the process of setting the bonding layer can be implemented on the back of the flexible circuit substrate, and then it is bonded with the positioning groove area of the bonding surface provided by the stress and strain deformation part, or
  • the bonding layer setting process is implemented on the plane of the positioning groove area of the bonding surface provided in the strained and deformed part, and then bonded with the back of the flexible circuit board.
  • Step 120 When the stressed and strained part after the completion of the bonding with the flexible circuit board is joined with the rigid support base through a plurality of screws, a torque of 20cN ⁇ m is preset for each screw to fix the stressed and strained part On the rigid support base, and make the force strain deformation part produce a preset amount of deformation; collect the sampling data of each piece of resistive detection strain part, according to the different sampling data of each resistive detection strain part, the piece resistance type detection The screw in the corresponding position of the strain part is screwed in or out, so that the sampled data value of each resistive detection strain part is controlled between 2000 ⁇ and 3200 ⁇ , and the joining process of the strain deformation part and the rigid support base is completed.
  • the rigid support base can be made of metal materials. In practice, 304 stainless steel can be used. This material has strong adaptability to the environment, good water and humidity resistance, low cost, high strength, and convenient processing, which is very suitable for large-scale commercial applications; of course, copper, aluminum Other materials can also be used in this application, which is not limited in this application.
  • the distance 2102 between the centers of the two positioning holes used in the assembly of the rigid support base and the finished product can be set to be greater than or equal to 8.0mm and less than or equal to 30.0mm; the aperture 2108 can be set to be greater than or equal to 0.3mm and less than or equal to 5.0mm ,
  • the above settings are convenient for assembling products.
  • the two positioning holes 2107 of the rigid support base can be assembled with M1.8P0.2 screws to facilitate accurate assembly on the product.
  • the diameter of the two positioning holes 2109 can be set to be greater than or equal to 0.2mm and less than or equal to 5.0mm; this is convenient for positioning and installation.
  • the cross structure size 3001 in the screw can be set to be greater than or equal to 0.9mm and less than or equal to 3.2mm.
  • the size 3002 of the top of the inclined surface of the screw-thread engagement surface can be set to be greater than or equal to 0.8 mm and less than or equal to 3.2 mm.
  • the size of the screw nut diameter 3003 can be set to be greater than or equal to 1.2mm and less than or equal to 5.0mm.
  • the thickness of the screw nut 3005 can be set to be less than or equal to 1.5mm and greater than or equal to 0.2mm, and the length of the screw thread 3006 can be set to be less than or equal to 5.2mm and greater than or equal to 1.0mm.
  • the length of the force-strained deformation part 3007 beyond the screw nut can be set to be greater than or equal to 0.8mm and less than or equal to 10.0mm.
  • the center of the positioning hole used when the rigid support base is assembled for the finished product assembly is connected with the force-strained deformation structure.
  • the spacing of the four screw holes 2105 can be set to be greater than or equal to 0.8mm and less than or equal to 18.0mm; the above settings facilitate accurate assembly of products
  • the spacing 2106 can be set to be greater than or equal to 1.8mm and less than or equal to 20.0mm; the above setting facilitates accurate assembly of products.
  • the above-mentioned design method can make the processing easy and convenient to install, at the same time reduce the assembly error, improve the accuracy of the product, and bring a good user experience.
  • the step of collecting sampling data of each piece of resistively detecting strain part includes: connecting the signal contacts of each resistive detecting strain part of the flexible circuit substrate with a testing device, and collecting samples of each piece of resistive detecting strain part data.
  • the method further includes: setting the flexible circuit substrate 41 to a strip-shaped special-shaped structure, which has a width and a length, and setting the flexible circuit substrate to have a long shape
  • Strip shaped special-shaped structure which is set to have wider ends and narrower wiring in the middle to reduce the width of the flexible circuit substrate outlet position on the bonding surface of the stress and strain deformation part, and the wider end is set
  • a plurality of pins are connected to the corresponding interfaces of the external device, and the upper surface of the other end of the pin not provided with the pins is connected with the stress and strain deformation part.
  • the length 4116 of the flexible circuit board is set to be greater than or equal to 50.0 mm and less than or equal to 150.0 mm.
  • the width 4223 of the flexible circuit board is set to be greater than or equal to 5 mm and less than or equal to 10 mm.
  • the flexible circuit board is a special-shaped structure, with a thin front and a wide rear, and the angles of the edge chamfers 4113 and 4114 at the change in width are set to 135 degrees.
  • the front end of the flexible circuit substrate is designed as a printed resistance-type strain detection area, and its widths 4105 and 4112 are set to be greater than or equal to 0.5 mm and less than or equal to 7.0 mm.
  • the smaller size can make the module structure compact, which helps to realize the miniaturization of the module of the pointing device.
  • the front end of the flexible circuit board closely fits in the positioning groove of the bonding surface of the force-strained deformation part, and the positioning hole spacing 4102 is consistent with the size of the positioning post of the force-strained deformation part.
  • the flexible circuit board is connected to the corresponding interface of the external device through a plurality of pins, and the appropriate length and width are convenient for quick assembly and ensure the reliability of the product.
  • the plurality of pins extend along the axis direction of the flexible circuit substrate and extend out of the edge of the wider end of the flexible circuit substrate. This arrangement facilitates the connection with the corresponding interface of the external device.
  • the inner part of the pin is constrained inside the flexible circuit substrate.
  • the stress strain deformation part is modified by blending polyphenylene ether and polystyrene to a heat distortion temperature of 90°C to 175°C, a small dielectric constant and a dielectric loss tangent value, and good water resistance and heat resistance.
  • a heat distortion temperature 90°C to 175°C
  • a small dielectric constant and a dielectric loss tangent value 90°C to 175°C
  • a small dielectric constant and a dielectric loss tangent value made of polyphenylene ether (MPPE) material.
  • MPPE polyphenylene ether
  • MPPE polyphenylene ether
  • MPPE has low melt viscosity, easy injection molding during processing, and less stress cracking after molding. It has good water resistance and heat resistance and is not expensive. It is very suitable for the long-term stress and strain deformation part of this application. Components for contact pressure operation are very suitable for large-scale commercial applications.
  • the through holes provided on the strained and deformed part are joined with the rigid support base through a plurality of screws, which solves the shortcomings of the previous fitting process, reduces the process, reduces the dispersion of the product, and reduces
  • the number of components and the overall volume make the pointing device miniaturized, which can be applied in various scenarios; at the same time, the components are stable after being joined, which improves the production efficiency and reduces the processing cost, which has strong practicability.

Landscapes

  • Engineering & Computer Science (AREA)
  • General Engineering & Computer Science (AREA)
  • Theoretical Computer Science (AREA)
  • Human Computer Interaction (AREA)
  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Force Measurement Appropriate To Specific Purposes (AREA)
  • Measurement Of Force In General (AREA)

Abstract

一种指向装置的设置方法,包括:柔性线路基板设置多片电阻式检测应变部,将受力应变变形部与柔性线路基板进行接合操作(110);将受力应变变形部,通过多个螺丝与刚性支撑底座进行接合中,为各螺丝预置20cN·m的扭力,将受力应变变形部固定于刚性支撑底座上,并使受力应变变形部产生预设的变形量;根据采集的每片电阻式检测应变部的采样数据,将该片电阻式检测应变部对应的位置的螺丝进行旋入或旋出操作,使每片电阻式检测应变部的所有电阻式检测应变传感器的采样数据值控制在2000Ω至3200Ω之间(120)。该方法解决了当前的指向装置制造过程中,采用嵌合方式导致各部嵌合之前与嵌合之后的特性可能产生变化,检测工序多且无法做后续调整且成本高的问题。

Description

一种指向装置的设置方法 技术领域
本发明涉及电阻式应变规传感器技术领域,尤其涉及一种指向装置的设置方法。
背景技术
当前电阻式应变规传感器已逐渐被应用于各式的电子装置中作为指向装置,涉及如笔记本电脑、鼠标、键盘、手持设备或游戏杆等电子装置,皆可看到电阻式应变规传感器在上述电子装置中可以提供输入功能的应用。比较常见的笔记本电脑的键盘按键间,即可于其接近中央位置处时常设置有电阻式应变规传感器,使用者仅需通过手指触拨传感器,其便可感应使用者的拨动力道大小与拨动方向,进而使屏幕上的光标产生相应速度与位移动作。
现有电阻式应变规传感器,主要包括:壳体、被收放在该壳体内的动作部以及检测上述动作部的变形的检测组件,上述动作部由操作部、固定部和变形部形成为一体,而该变形部因作用在上述操作部上的操作力而可变形,而上述检测组件被设在上述变形部上,上述固定部被固定在上述壳体内,并且上述操作部以及上述变形部可在上述壳体内活动。输入设备的动作部被固定在壳体内部,该壳体被安装到键盘装置的基板等上。所以,当操作力作用到动作部的操作部上,而向变形部施加变形时,壳体不易于从上述基板等上脱落。
此类型电阻式应变规传感器设计主要是以嵌合方式将变形部和固定部连接。但是嵌合方式会导致各部嵌合之前与嵌合之后的特性可能产生变化,检测工序多且无法做后续调整;由于嵌合时同时出现多个质量变量,包括变形部受力不一致,嵌合工序造成的微变形,变形部与固定部嵌合过程中产生的相互影响;由于嵌合方式加工特性导致加工工序步骤多,难以在组立之后接续做到校准动作,成本高不利于产品应用推广;而且该类传感器对生产设备要求极高并且有大量检测与对检测组件的微调工序,导致产品离散性或加工成本提高。 当前常规传感器通过固定组件的紧固孔紧固螺钉附接到电子设备的诸如键盘主体的结构上时,电子设备的总体高度和总体重量增加,因此,电子设备体积较大,导致重量变大;而且当前的常规应力传感器需要大量组件,结构复杂,体积大,无法做到微型化,进而影响了应用环境的使用,降低了组装效率并使成本上升。
因此当前需要一种新的指向装置的技术方案来解决上述问题。
发明内容
本申请的主要目的在于提供了一种指向装置的设置方法,解决了当前的指向装置制造过程中,采用嵌合方式导致各部嵌合之前与嵌合之后的特性可能产生变化,检测工序多且无法做后续调整;且嵌合时同时出现多个质量变量,包括变形部受力不一致,嵌合工序造成的微变形,变形部与固定部嵌合过程中产生的相互影响;同时嵌合方式加工特性导致加工工序步骤多,难以在组立之后接续做到校准动作,成本高不利于产品应用推广;而且该类传感器对生产设备要求极高并且有大量检测与对检测组件的微调工序,导致产品离散性或加工成本提高;而且当前的常规应力传感器需要大量组件,结构复杂,体积大,无法做到微型化,进而影响了应用环境的使用,降低了组装效率并使成本上升的问题。
为了解决上述问题,本申请提供一种指向装置的设置方法,包括:柔性线路基板设置多片电阻式检测应变部,将受力应变变形部与设有电阻式检测应变部的柔性线路基板进行接合操作;
将与柔性线路基板完成接合后的受力应变变形部,通过多个螺丝与刚性支撑底座进行接合的过程中,为各螺丝预置20cN·m的扭力,将受力应变变形部固定于刚性支撑底座上,并使受力应变变形部产生预设的变形量;采集每片电阻式检测应变部的采样数据,根据各电阻式检测应变部不同的采样数据,将该片电阻式检测应变部对应的位置的螺丝进行旋入或旋出的操作,使每片电阻式检测应变部的所有电阻式检测应变传感器的采样数据值控制在2000Ω至3200Ω之间,完成受力应变变形部与刚性支撑底座的接合过程。
与现有技术相比,应用本发明,在受力应变变形部上设置的贯通孔,通 过多个螺丝与刚性支撑底座进行接合,避免了之前嵌合流程的缺点,减少了工序,降低了产品的离散性,减少了部件的数量以及整体的体积,使指向装置微型化,在各种场景都可以应用;同时各部件接合后稳定,提高了生成效率,并降低了加工成本。
附图概述
图1为本申请实施例提供的一种指向装置的设置方法的一种具体实施方式的流程示意图;
图2为本申请实施例提供的设置所述电阻式检测应变部的柔性线路基板的结构示意图;
图3和图4为本申请实施例提供的受力应变变形部的正立设置和倒立设置的结构示意图;
图5、图6和图7为本申请实施例提供的受力应变变形部的正面横截面、侧面横截面和底面横截面的示意图;
图8为本申请实施例提供的刚性支撑底座的示意图;
图9和图10为本申请实施例提供的螺丝的示意图;
图11为本申请实施例提供的柔性线路基板的结构示意图;
图12和图13为本申请实施例提供的柔性线路基板的正面横截面和底面横截面的示意图。
本发明的较佳实施方式
下面结合附图和具体实施方式对本发明作进一步说明。显然,所描述的实施例仅是本申请一部分实施例,而不是全部的实施例。基于本申请中的实施例,本领域普通技术人员在没有做出创造性劳动前提下所获得的所有其他实施例,都属于本申请保护的范围。
图1为一示例性实施例提供的一种指向装置的设置方法,具体包括以下步骤:
步骤110、柔性线路基板设置多片电阻式检测应变部,将受力应变变形部与设有电阻式检测应变部的柔性线路基板进行接合操作;
如图2所示还包括:设置所述电阻式检测应变部为71不少于3个,将不少于3个电阻式检测应变部71,根据传感器采集规则算法有序地设置排列在所述柔性线路基板41上,设置的表面为柔性线路基板与受力应变变形部接合面的对面上。当施加作用力到受力应变变形部时,作用力传递到柔性线路基板上,柔性线路基板上的多个电阻式检测应变部会相应的通过采集到电阻值的变化获得反馈信号,有序排列设置的多个电阻式检测应变部通过电阻式变化采集受力应变变形部的形变量,这样的设置会提高采集的精准度同时提高响应速度,带来更好的用户使用体验。本申请中要求电阻式检测应变部的数量不少于3个,这样会大大提高采集的精度和响应速度,在图2中设置了4个电阻式检测应变部,但设置的电阻式检测应变部的位置与具体数量,本申请对此不作限定。
所述电阻式检测应变部是通过印刷(Printing)方式或涂层(Coating)方式设置在所述柔性线路基板上。上述方式可以确保电阻式检测应变部设置在柔性线路基板上,不会很大增加柔性线路基板的厚度,上述技术成熟,成本较低,,大大提高了产品的良品率,很适合大规模商业应用。
其中,受力应变变形部的底部设置一贴合面定位凹槽结构;将设有贴合面定位凹槽结构的受力应变变形部与设有电阻式检测应变部的柔性线路基板的接合,通过应力传导性高的可粘合贴合层接合在一起;
如图3和图4所示,还包括:所述受力应变变形部10设置为一圆柱形凸台式结构,贴合面定位凹槽11结构设置在受力应变变形部的圆柱的底部,凸台设置在圆柱的中心位置,该凸台可以为一立方体形状,当然也可以为近似立方体的形状,例如:各角设置为弧度形式的立方体,本申请对此不作任何限定。
还包括:所述凸台中部还设置一中空结构孔14(中空结构可以降低受力应变变形部的刚性强度,带来更好的触压效果,并且可以提高控制的精确度, 提升了用户的使用体验度;而且由于中空结构,当施加作用力到受力应变变形部时,作用力会分散到受力应变变形部的凸台的各部分,受力应变变形部不易疲劳,且可降低受力应变变形部产生破损的概率);所述中空结构孔为圆柱形的中空结构孔。
如图3和图4所示,还包括:所述受力应变变形部的圆柱上设置多个贯通孔13(贯通孔用于安装组立螺丝的贯通孔),多个贯通孔13为均匀排列在圆柱上(可以保证安装后的组立螺丝的所受应力均匀),所述受力应变变形部通过多个螺丝穿过相应的贯通孔与刚性支撑底座进行接合。设置所述受力应变变形部的圆柱上的贯通孔为4个,本申请对此不作任何限定,4个贯通孔为均匀排列在圆柱上,其中,相对的任2个贯通孔的连线形成两条相交线,所述相交线所形成4个夹角均为直角,2条相交线的相交点在圆柱的轴线上。这样的设置方式可以确保安装后的组立螺丝的所受应力均匀。
如图5、图6和图7所示,受力应变变形部的圆柱的横截面的直径设定为大于等于7.0mm,小于等于25.0mm。
受力应变变形部上设置的四个贯通孔1404,可以使用M1.8P0.2规格螺丝,四个贯通孔对应水平间距1401,1402,1406,1407设置为大于等于1.2mm,小于等于10.0mm,便于很好的将受力应变变形部做接合操作;受力应变变形部中受力柱状结构1403设置为单边长大于等于1.2mm,小于等于5.0mm;受力应变变形部中受力柱状结构中空结构孔径1409设置为直径大于等于0.2mm,小于等于4.0mm;受力应变变形部中受力柱状结构中空结构边缘R角1411与1412设置为直径大于等于0.02mm,小于等于2.20mm;受力应变变形部中受力柱状结构中空结构深度设置为1413大于等于0.3mm,小于等于8.2mm。
受力应变变形部底面设置的贴合面定位凹槽的尺寸与形状由图7中1414,1415,1416,1417,1418,1419,1421,1422,1423所组成,贴合面定位凹槽的尺寸与形状与柔性线路基板外型尺寸相适应,贴合面定位凹槽的深度设置为大于等于0.02mm,小于等于4.20mm,该深度可以确保很好地将柔性线路基板的较窄一端放置在受力应变变形部中,易于加工,方便组立,可以减少组立误差, 提高生产效率。
上述设置方式,易于加工,方便组立,可以减少组立误差,提高生产效率。
如图4所示,还包括:设置所述受力应变变形部的贴合面定位凹槽的形状与柔性线路基板的接合面的形状相适应,所述柔性线路基板的接合面上设置定位孔,所述受力应变变形部的贴合面定位凹槽11对应设置与所述定位孔相配合的定位柱12。
还包括:设置所述定位柱至少为2个,且设置多个定位柱均匀排列在所述受力应变变形部的贴合面定位凹槽11中。
受力应变变形部底面与柔性线路基板接合时可以通过使用两个定位柱进行定位,通过定位柱可以很方便的将柔性线路基板设置于受力应变变形部的贴合面定位凹槽中,并进行受力应变变形部和柔性线路基板的接合。其中定位柱的尺寸设置为直径大于等于0.3mm,小于等于5.0mm,上述尺寸在实际操作中,便于与底座定位与柔性线路板定位使用。
在实际测试中,应力传导性高的可粘合贴合层的材料可以为高密度,高硬度,高模量的接合材料(例如:可以为应力传导性至少大于2帕的材料),这样可以确保施加作用力到受力应变变形部时,通过应力传导性高的可粘合贴合层施加的作用力在尽可能在减低耗损的情况下传递到柔性线路基板上,柔性线路基板上的传感器会相应的通过采集到电阻值的变化获得反馈信号,通过电阻式变化采集形变量的传感器的精准度高并且响应速度快,带来更好的用户使用体验。
其中,所述设有贴合面定位凹槽结构的受力应变变形部与柔性线路基板的接合是通过应力传导性高的可粘合贴合层将两者接合在一起的步骤,包括:设有贴合面定位凹槽结构的受力应变变形部与柔性线路基板的接合是通过应力传导性高的粘合剂采用点胶方式(例如采用VISHAY的M-bond 200kit快干胶水进行点胶,这是一种硅胶基础的快干胶),或者是通过应力传导性高的片材型双面胶,将两者接合在一起。
所述当设有贴合面定位凹槽结构的受力应变变形部与柔性线路基板的接合是通过应力传导性高的片材型双面胶,将两者接合在一起的步骤,包括:设置所述片材型双面胶的形状与所述受力应变变形部的贴合面定位凹槽的形状相适应,且所述片材型双面胶上设置与所述定位柱相配合的定位孔。
通过片材型双面胶的定位孔可以很方便的将柔性线路基板设置于受力应变变形部的贴合面定位凹槽中,并进行受力应变变形部和柔性线路基板的接合。
进一步地,在将设有贴合面定位凹槽结构的受力应变变形部与柔性线路基板进行粘合的固化过程中,通过保压治具方式将受力应变变形部与柔性线路基板进行粘合固化操作,其中,温度设定为大于等于摄氏20度且小于等于摄氏30度,相对湿度设定为大于等于30%且小于等于70%,固化保压作用力设定为大于等于5.0牛顿,保压固定时间不少于5分钟;
通过上述设置的保压治具方式进行粘合固化操作,可以确保两者的接触面均匀平整,不会产生气泡、曲翘和脱胶的现象,大大提高了生成的良品率。
在实际中,点胶时保压参数与固化时间根据使用的胶水或是胶膜有所不同,以VISHAY的M-bond 200kit快干胶水为例,在摄氏20度到摄氏30度温度的作业环境下,相对湿度范围在30%到70%之间,以5.0牛顿作为固化保压作用力,保压5分钟完成固化步骤。当使用其他的接合材料,可以依据个别不同特性将保压时间与固化条件依照个别材料特性稍作调整,但固化保压作用力设定为大于等于5.0牛顿,保压固定时间不少于5分钟,这样可以确保粘合固化的效果,可以确保柔性线路基板和受力应变变形部的接合的接触面均匀平整,不会产生气泡、曲翘和脱胶的现象;以蠕动式胶水点胶机或是片材形式的片材型双面胶为接合层,接合层设置的工序可实施于柔性线路基板的背面,再与受力应变变形部设置的贴合面定位凹槽区域平面做接合,或将接合层设置工序实施于受力应变变形部设置的贴合面定位凹槽区域平面,再与柔性线路基板的背面做接合,这些设置的工序都可以实现柔性线路基板和受力应变变形部的接合操作,本申请对此不作任何限定。
步骤120、将与柔性线路基板完成接合后的受力应变变形部,通过多个 螺丝与刚性支撑底座进行接合的过程中,为各螺丝预置20cN·m的扭力,将受力应变变形部固定于刚性支撑底座上,并使受力应变变形部产生预设的变形量;采集每片电阻式检测应变部的采样数据,根据各电阻式检测应变部不同的采样数据,将该片电阻式检测应变部对应的位置的螺丝进行旋入或旋出的操作,使每片电阻式检测应变部的采样数据值控制在2000Ω至3200Ω之间,完成受力应变变形部与刚性支撑底座的接合过程。
刚性支撑底座可以采用金属材料,实际中可以采用304不锈钢,该材质适应环境能力强,耐水耐潮湿能力不错,而且成本较低,强度大,加工方便,很适合大规模商业应用;当然铜、铝等材料也可以为本申请所应用,本申请对此不作限定。
如图8所示,刚性支撑底座与成品组装时使用的两个定位孔中心的间距2102可以设置为大于等于8.0mm,小于等于30.0mm;可以设置孔径2108为大于等于0.3mm,小于等于5.0mm,上述设置便于组装产品。
刚性支撑底座的两个定位孔2107可以使用M1.8P0.2规格螺丝组立,便于精确的组立于产品。
刚性支撑底座与受力应变变形部连接时使用两个定位孔2109孔径可以设置为大于等于0.2mm,小于等于5.0mm;这样便于定位,同时方便安装。
刚性支撑底座与受力应变变形部通过螺丝连接时使用四颗螺丝孔2104,使用M1.8P0.2规格螺丝(M为螺纹的外径为1.8mm,P:一般性指螺纹的螺距为0.2mm),上述设置便于精确的组立产品。
如图9和图10所示,刚性支撑底座与受力应变变形部进行连接的螺丝,螺丝内十字结构尺寸3001可以设置为大于等于0.9mm,小于等于3.2mm。螺丝与螺牙接合斜面顶部尺寸3002可以设置为大于等于0.8mm,小于等于3.2mm。螺丝螺帽直径3003尺寸可以设置为大于等于1.2mm,小于等于5.0mm。实例中螺丝螺纹3004设计规格M1.0P0.2细牙规格螺丝。螺丝螺帽厚度3005可以设置为小于等于1.5mm,大于等于0.2mm,螺丝螺牙部分长度3006可以设置为小于等于5.2mm,大于等于1.0mm。螺丝螺帽以外深入受力应变变形部分3007长度可以设置为大于等于0.8mm,小于等于10.0mm。此螺丝设计方式安装方便,可以减少组立误差,提高生产效率。
传刚性支撑底座进行成品组装时使用的定位孔中心与受力应变变形结构连接时使用四颗螺丝孔间距2105可以设置为大于等于0.8mm,小于等于18.0mm;上述设置便于精确的组立产品
刚性支撑底座进行成品组装时使用的定位孔中心与受力应变变形结构连接时使用四颗螺丝孔间距2106可以设置为大于等于1.8mm,小于等于20.0mm;上述设置便于精确的组立产品。
上述设计方式可以使加工容易并方便安装,同时减少组立误差,提高了产品的精度,带来了良好的用户体验。
其中,所述采集每片电阻式检测应变部的采样数据的步骤,包括:将柔性线路基板的各电阻式检测应变部的信号接点与测试装置进行连接,采集每片电阻式检测应变部的采样数据。
如图11、图12和图13所示,还包括:设置所述柔性线路基板41的形状为一长条形的异型结构,其具有宽度和长度,设置所述柔性线路基板的形状为一长条形的异型结构,该异型结构设置为两端较宽、中间通过较窄的走线连接,缩减受力应变变形部的贴合面定位凹槽边缘柔性线路基板出线位置宽度,较宽一端设置多个引脚,与外接装置对应的接口相连接,其未设置引脚的另一端的上表面与所述受力应变变形部进行接合。
柔性线路基板的长度4116设定为大于等于50.0mm,小于等于150.0mm。
柔性线路基板的宽度4223设定为大于等于5mm,小于等于10mm。
柔性线路基板为异型结构,前细后宽,宽度变化处边缘导角4113、4114的角度设定为为135度。
柔性线路基板的前端设计为印刷电阻式检测应变部件区域,其宽度4105、4112设定为大于等于0.5mm,小于等于7.0mm。较小的尺寸可以使得模块结构紧凑,有助于实现指向装置的模块微型化。
柔性线路基板的前端紧密贴合于受力应变变形部的贴合面定位凹槽内,定位孔间距4102与受力应变变形部的定位柱尺寸一致。此设计方式可以确保指向装置的安装角度准确,受力均匀,可以提高检测精度。
柔性线路基板通过多个引脚与外接装置对应的接口连接,合适的长度和宽度便于快捷组装,保证产品的可靠性。
多个引脚的多个沿着与柔性线路基板的轴线方向延伸,并伸出柔性线路基板的较宽一端的边缘,这样的设置便于和外接装置对应的接口连接。引脚的内部部分约束在柔性线路基板的内部。
所述受力应变变形部是通过聚苯醚和聚苯乙烯共混成为热变形温度在90℃至175℃、介电常数及介质损耗角正切值小,且耐水及耐热性好的改性聚苯醚(MPPE)的材料制成。MPPE融粘度较低,在加工时注射成型较易,同时成型后不易产生应力龟裂现象,耐水及耐热性好而且价格不高,非常适合作为本申请的受力应变变形部这种长时间进行触压操作的组件,很适合大规模商业应用。
以上所述,仅为本发明较佳的具体实施方式,但本发明的保护范围并不局限于此,任何熟悉该技术的人在本发明所揭露的技术范围内,可轻易想到的变化或替换,都应涵盖在本发明的保护范围之内。因此,本发明的保护范围应该以权利要求的保护范围为准。
工业实用性
通过上述的构造,在受力应变变形部上设置的贯通孔,通过多个螺丝与刚性支撑底座进行接合,解决了之前嵌合流程存在的缺点,减少了工序,降低了产品的离散性,减少了部件的数量以及整体的体积,使指向装置微型化,在各种场景都可以应用;同时各部件接合后稳定,提高了生成效率,并降低了加工成本,具有较强的实用性。

Claims (10)

  1. 一种指向装置的设置方法,其特征在于,包括:
    柔性线路基板设置多片电阻式检测应变部,将受力应变变形部与设有电阻式检测应变部的柔性线路基板进行接合操作;
    将与柔性线路基板完成接合后的受力应变变形部,通过多个螺丝与刚性支撑底座进行接合的过程中,为各螺丝预置20cN·m的扭力,将受力应变变形部固定于刚性支撑底座上,并使受力应变变形部产生预设的变形量;采集每片电阻式检测应变部的采样数据,根据各电阻式检测应变部不同的采样数据,将该片电阻式检测应变部对应的位置的螺丝进行旋入或旋出的操作,使每片电阻式检测应变部的所有电阻式检测应变传感器的采样数据值控制在2000Ω至3200Ω之间,完成受力应变变形部与刚性支撑底座的接合过程。
  2. 根据权利要求1所述的方法,其特征在于,
    还包括:设置所述电阻式检测应变部为不少于3个,将不少于3个电阻式检测应变部,根据传感器采集规则算法有序地设置排列在所述柔性线路基板上,其中设置的表面为柔性线路基板与受力应变变形部接合面的对面上。
  3. 根据权利要求2所述的方法,其特征在于,
    所述电阻式检测应变部是通过印刷方式或涂层方式设置在所述柔性线路基板上。
  4. 根据权利要求2所述的方法,其特征在于,
    还包括:设置所述受力应变变形部为一圆柱形凸台式结构,凸台设置在圆柱的中心位置,该凸台为一立方体形状。
  5. 根据权利要求4所述的方法,其特征在于,
    还包括:设置所述凸台中部为一中空结构孔,所述中空结构孔为圆柱形的中空结构孔。
  6. 根据权利要求5所述的方法,其特征在于,
    还包括:所述受力应变变形部的圆柱上设置多个贯通孔,多个贯通孔为均匀排列在圆柱上,所述受力应变变形部通过多个螺丝穿过相应的贯通孔与刚性支撑底座进行接合。
  7. 根据权利要求6所述的方法,其特征在于,
    进一步包括:设置所述受力应变变形部的圆柱上的贯通孔为4个,4个贯通孔为均匀排列在圆柱上,其中,相对的任2个贯通孔的连线形成两条相交线,所述相交线所形成4个夹角均为直角,2条相交线的相交点在圆柱的轴线上。
  8. 根据权利要求6所述的方法,其特征在于,
    还包括:设置所述柔性线路基板的形状为一长条形的异型结构,该异型结构设置为两端较宽、中间通过较窄的走线连接,其中较宽一端设置多个引脚,与外接装置对应的接口相连接,其未设置引脚的另一端的上表面与所述受力应变变形部进行接合。
  9. 根据权利要求6所述的方法,其特征在于,
    所述采集每片电阻式检测应变部的采样数据的步骤,包括:将柔性线路基板的各电阻式检测应变部的信号接点与测试装置进行连接,采集每片电阻式检测应变部的采样数据。
  10. 根据权利要求6所述的方法,其特征在于,
    所述受力应变变形部是通过聚苯醚和聚苯乙烯共混成为热变形温度在90℃至175℃、介电常数及介质损耗角正切值小,且耐水及耐热性好的改性聚苯醚的材料制成。
PCT/CN2020/131571 2019-11-29 2020-11-25 一种指向装置的设置方法 WO2021104331A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201911200764.4 2019-11-29
CN201911200764.4A CN112099658B (zh) 2019-11-29 2019-11-29 一种指向装置的设置方法

Publications (1)

Publication Number Publication Date
WO2021104331A1 true WO2021104331A1 (zh) 2021-06-03

Family

ID=73748506

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2020/131571 WO2021104331A1 (zh) 2019-11-29 2020-11-25 一种指向装置的设置方法

Country Status (2)

Country Link
CN (1) CN112099658B (zh)
WO (1) WO2021104331A1 (zh)

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2007057943A1 (ja) * 2005-11-15 2007-05-24 Appside Co., Ltd. 起歪体、静電容量式力センサー及び静電容量式加速度センサー
CN101943618A (zh) * 2009-07-09 2011-01-12 义隆电子股份有限公司 应力感应器及其组装方法
RU2564691C2 (ru) * 2014-02-04 2015-10-10 Общество с ограниченной ответственностью "ФИРМА ПОДИЙ" (ООО "ФИРМА ПОДИЙ") Тензометрический преобразователь
CN109084916A (zh) * 2018-09-27 2018-12-25 海伯森技术(深圳)有限公司 一种多维力传感器中应变片的固定装置、方法及传感器
CN211123997U (zh) * 2019-11-29 2020-07-28 深圳市汇创达科技股份有限公司 一种基于电阻式应变规传感方式的指向装置
CN211742091U (zh) * 2019-11-29 2020-10-23 深圳市汇创达科技股份有限公司 一种指向装置的接合装置

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TW454935U (en) * 1999-07-02 2001-09-11 Hoshiden Corp Multi-direction input apparatus
CN100465600C (zh) * 2003-09-09 2009-03-04 松下电器产业株式会社 应变检测装置
CN101619959A (zh) * 2009-08-18 2010-01-06 中国电力科学研究院 电阻应变片磁力贴片压紧装置及其粘贴电阻应变片的方法
JP5394175B2 (ja) * 2009-09-11 2014-01-22 アルプス電気株式会社 多方向入力装置
JP4987162B1 (ja) * 2011-12-15 2012-07-25 株式会社トライフォース・マネジメント 力覚センサ

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2007057943A1 (ja) * 2005-11-15 2007-05-24 Appside Co., Ltd. 起歪体、静電容量式力センサー及び静電容量式加速度センサー
CN101943618A (zh) * 2009-07-09 2011-01-12 义隆电子股份有限公司 应力感应器及其组装方法
RU2564691C2 (ru) * 2014-02-04 2015-10-10 Общество с ограниченной ответственностью "ФИРМА ПОДИЙ" (ООО "ФИРМА ПОДИЙ") Тензометрический преобразователь
CN109084916A (zh) * 2018-09-27 2018-12-25 海伯森技术(深圳)有限公司 一种多维力传感器中应变片的固定装置、方法及传感器
CN211123997U (zh) * 2019-11-29 2020-07-28 深圳市汇创达科技股份有限公司 一种基于电阻式应变规传感方式的指向装置
CN211742091U (zh) * 2019-11-29 2020-10-23 深圳市汇创达科技股份有限公司 一种指向装置的接合装置

Also Published As

Publication number Publication date
CN112099658A (zh) 2020-12-18
CN112099658B (zh) 2024-02-20

Similar Documents

Publication Publication Date Title
CN211123997U (zh) 一种基于电阻式应变规传感方式的指向装置
CN211742091U (zh) 一种指向装置的接合装置
CN108603799B (zh) 压力传感器、电子设备及该压力传感器的制作方法
CN108604149B (zh) 压力传感器、电子设备及该压力传感器的制作方法
WO2017152561A1 (zh) 触控基板及显示装置
CN106575174A (zh) 压力感应装置、压力测量设备、触控板及显示设备
CN103529320A (zh) 一种单层多点触摸屏柔性电路板和功能片的检测方法
WO2021104331A1 (zh) 一种指向装置的设置方法
US10983645B2 (en) Touch module and method for manufacturing the same
TWI788588B (zh) 一種壓力感測模組、觸控面板以及觸控面板兩點觸摸壓力檢測方法
WO2021104329A1 (zh) 一种基于电阻式应变规传感方式的指向装置的设置方法
WO2021104328A1 (zh) 一种制造指向装置的方法
CN211123983U (zh) 一种指向装置
CN211742069U (zh) 一种指向装置的受力应变变形部
CN217467633U (zh) 触控板、压力触控装置及电子设备
CN112083821B (zh) 一种基于电阻式应变规传感方式的指向装置的控制方法
CN103472341A (zh) 一种检测电容屏中的柔性线路板和功能片的装置
JPH07174646A (ja) 荷重センサ
CN212391154U (zh) 压力感应装置及电子设备
JP3136188U (ja) 力検出装置
US6411193B1 (en) Pointing stick with increased sensitivity
CN104406724B (zh) 测力传感器
CN207730350U (zh) 一种柔性薄膜压力传感器
JP4141574B2 (ja) ポインティングスティック用厚膜回路基板
CN203519739U (zh) 一种检测电容屏中的柔性线路板和功能片的装置

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 20894658

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

32PN Ep: public notification in the ep bulletin as address of the adressee cannot be established

Free format text: NOTING OF LOSS OF RIGHTS PURSUANT TO RULE 112(1) EPC (EPO FORM 1205A DATED 02.11.2022)

122 Ep: pct application non-entry in european phase

Ref document number: 20894658

Country of ref document: EP

Kind code of ref document: A1