WO2021104318A1 - 镜头模组、电子设备及电子设备控制方法 - Google Patents

镜头模组、电子设备及电子设备控制方法 Download PDF

Info

Publication number
WO2021104318A1
WO2021104318A1 PCT/CN2020/131535 CN2020131535W WO2021104318A1 WO 2021104318 A1 WO2021104318 A1 WO 2021104318A1 CN 2020131535 W CN2020131535 W CN 2020131535W WO 2021104318 A1 WO2021104318 A1 WO 2021104318A1
Authority
WO
WIPO (PCT)
Prior art keywords
lens
side wall
magnet
bearing
electronic device
Prior art date
Application number
PCT/CN2020/131535
Other languages
English (en)
French (fr)
Inventor
许能华
Original Assignee
维沃移动通信有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 维沃移动通信有限公司 filed Critical 维沃移动通信有限公司
Publication of WO2021104318A1 publication Critical patent/WO2021104318A1/zh

Links

Images

Classifications

    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03BAPPARATUS OR ARRANGEMENTS FOR TAKING PHOTOGRAPHS OR FOR PROJECTING OR VIEWING THEM; APPARATUS OR ARRANGEMENTS EMPLOYING ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ACCESSORIES THEREFOR
    • G03B5/00Adjustment of optical system relative to image or object surface other than for focusing
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N23/00Cameras or camera modules comprising electronic image sensors; Control thereof
    • H04N23/60Control of cameras or camera modules
    • H04N23/68Control of cameras or camera modules for stable pick-up of the scene, e.g. compensating for camera body vibrations
    • H04N23/682Vibration or motion blur correction
    • H04N23/685Vibration or motion blur correction performed by mechanical compensation
    • H04N23/687Vibration or motion blur correction performed by mechanical compensation by shifting the lens or sensor position

Definitions

  • the embodiments of the present application relate to the field of terminal technology, and in particular, to a lens module, an electronic device, and an electronic device control method.
  • the electronic device can drive the lens to move in a direction perpendicular to the optical axis of the lens according to the shake direction and the amount of shake displacement of the lens to compensate for the offset caused by the lens shake.
  • an optical anti-shake system can be provided in the electronic device, and the base of the lens is connected to the optical anti-shake system through a suspension wire.
  • the optical image stabilization system can drive the suspension wire to deform in the direction perpendicular to the optical axis of the lens according to the lens shake direction and the amount of shake displacement, so that the suspension wire moves in the opposite direction to the shake direction. Move in the direction to compensate for the offset caused by lens shake.
  • the embodiments of the present application provide a lens module, an electronic device, and an electronic device control method, which can solve the problem of poor anti-shake effect of the lens in the electronic device.
  • a lens module in a first aspect of the embodiments of the present application, includes: a first bearing structure, a second bearing structure arranged in the first bearing structure, and a third bearing structure arranged in the second bearing structure.
  • the first bearing structure and the second bearing structure are connected by a first rotating component
  • the second bearing structure and the third bearing structure are connected by a second rotating component.
  • the rotating shaft of the first rotating component is connected to the second rotating component.
  • the axis of rotation of the rotating part is vertical.
  • a second aspect of the embodiments of the present application provides an electronic device including the lens module as described in the first aspect, and the first supporting structure in the lens module is connected to the housing of the electronic device.
  • a third aspect of the embodiments of the present application provides an electronic device control method, which is applied to the electronic device as described in the second aspect.
  • the electronic device control method includes: detecting that at least The first magnetic flux of a first magnet and the second magnetic flux of at least one second magnet, wherein at least one of the first magnets is a magnet of a first bearing structure, and the at least one second magnet is a magnet of a second bearing structure; The magnetic flux and the second magnetic flux control the movement of the lens component.
  • the lens module includes a first supporting structure, a second supporting structure connected to the first supporting structure through a first rotating member, and a third supporting structure connected to the second supporting structure through a second rotating member And the lens component connected with the third bearing structure, the rotation axis of the first rotating component is perpendicular to the rotation axis of the second rotating component.
  • the second bearing structure and the third bearing structure can be rotated by the rotating shaft of the first rotating component, and the third bearing structure can be rotated by the rotating shaft of the second rotating component, when the lens component shakes, the second bearing structure and The rotation of the third bearing structure makes the lens component move in one direction, or the rotation of the third bearing structure makes the lens component move in another direction, and the two directions are perpendicular, that is, the lens component can not only be perpendicular to the lens component Move in the direction of the optical axis of the lens, or in the direction parallel to the optical axis of the lens component, so as to compensate for the offset caused by the jitter of the lens component in various directions, thereby improving the protection of the lens in the electronic device. Shake effect.
  • FIG. 1 is one of the schematic structural diagrams of a lens module provided by an embodiment of the application
  • FIG. 2 is the second schematic diagram of the structure of a lens module provided by an embodiment of the application.
  • FIG. 3 is the third structural diagram of a lens module provided by an embodiment of the application.
  • FIG. 4 is a fourth structural diagram of a lens module provided by an embodiment of the application.
  • FIG. 5 is a fifth structural diagram of a lens module provided by an embodiment of the application.
  • FIG. 6 is a sixth structural diagram of a lens module provided by an embodiment of the application.
  • FIG. 7 is a seventh structural diagram of a lens module provided by an embodiment of the application.
  • FIG. 8 is the eighth structural diagram of a lens module provided by an embodiment of the application.
  • FIG. 9 is a ninth structural diagram of a lens module provided by an embodiment of the application.
  • FIG. 10 is a tenth structural diagram of a lens module provided by an embodiment of the application.
  • FIG. 11A is the eleventh of a schematic structural diagram of a lens module provided by an embodiment of this application.
  • FIG. 11B is a twelfth structural diagram of a lens module provided by an embodiment of the application.
  • FIG. 12 is a thirteenth structural diagram of a lens module provided by an embodiment of this application.
  • FIG. 13 is a fourteenth structural diagram of a lens module provided by an embodiment of this application.
  • FIG. 14 is a fifteenth structural diagram of a lens module provided by an embodiment of this application.
  • 15 is a sixteenth structural diagram of a lens module provided by an embodiment of this application.
  • FIG. 16 is a seventeenth structural diagram of a lens module provided by an embodiment of this application.
  • FIG. 17 is an eighteenth structural diagram of a lens module provided by an embodiment of this application.
  • FIG. 18 is a nineteenth structural diagram of a lens module provided by an embodiment of this application.
  • FIG. 19 is a schematic structural diagram of an electronic device provided by an embodiment of this application.
  • FIG. 20 is a schematic diagram of an electronic device control method provided by an embodiment of the application.
  • first and second in the description and claims of the embodiments of the present application are used to distinguish different objects, rather than to describe a specific order of objects.
  • first coil and the second coil are used to distinguish different coils, rather than to describe the specific order of the coils.
  • plural means two or more.
  • a plurality of elements refers to two elements or more than two elements.
  • words such as “exemplary” or “for example” are used as examples, illustrations, or illustrations. Any embodiment or design solution described as “exemplary” or “for example” in the embodiments of the present application should not be construed as being more preferable or advantageous than other embodiments or design solutions. To be precise, words such as “exemplary” or “for example” are used to present related concepts in a specific manner.
  • the embodiments of the present application provide a lens module, an electronic device, and an electronic device control method. Because the second bearing structure and the third bearing structure can be rotated by the shaft of the first rotating member, and the third bearing structure can be rotated by the second rotating member The shaft of the lens rotates, so when the lens component shakes, the lens component can be moved in one direction by the rotation of the second bearing structure and the third bearing structure, or the lens component can be moved in the other direction by the rotation of the third bearing structure , And these two directions are perpendicular, that is, the lens component can not only move in the direction perpendicular to the optical axis of the lens component, but also in the direction parallel to the optical axis of the lens component, so as to compensate for the lens components in each direction. The offset caused by the jitter in the direction can in turn improve the anti-shake effect of the lens in the electronic device.
  • the lens module, electronic equipment, and electronic equipment control method provided in the embodiments of the present application can be applied to electronic equipment. Specifically, it can be applied to the anti-shake process of the electronic device through the lens module.
  • FIG. 1 shows a schematic diagram of a possible structure of a lens module provided by an embodiment of the present application.
  • the lens module 10 includes a first supporting structure 11, and a second supporting structure 11 disposed in the first supporting structure 11; The second supporting structure 12, the third supporting structure 13 arranged in the second supporting structure 12, and the lens component 14 connected to the third supporting structure.
  • first supporting structure 11 and the second supporting structure 12 are connected by a first rotating member 15, and the second supporting structure 12 and the third supporting structure 13 are connected by a second rotating member 16.
  • the rotation axis of the first rotation component 15 and the rotation axis of the second rotation component 16 are perpendicular to each other.
  • the second bearing structure 12 and the third bearing structure 13 can be rotated by the rotating shaft of the first rotating component 15, and the third bearing structure 13 can be rotated by the rotating shaft of the second rotating component 16.
  • FIG. 2 shows each supporting structure (ie, exploded view) of the lens module 10 provided in an embodiment of the present application.
  • the lens The module 10 includes a first supporting structure 11, a second supporting structure 12, a third supporting structure 13 and a lens component 14.
  • first supporting structure 11 can be understood as the outer frame of the lens module 10
  • second supporting structure 12 can be understood as the middle frame of the lens module 10
  • third supporting structure 13 can be understood as the lens module 10 The inner box.
  • the first bearing structure 11, the second bearing structure 12, and the third bearing structure 13 are all frame structures; the first bearing structure 11, the second bearing structure 12, and the third bearing structure are all frame structures. 13 are all made of metal materials.
  • the first supporting structure 11 may be a polygonal frame, a circular frame, an oval frame or a trapezoidal frame, etc.
  • the second supporting structure 12 may be a polygonal frame, a circular frame, or an elliptical frame.
  • the above-mentioned third bearing structure 13 may be a polygonal frame, a circular frame, an oval frame or a trapezoidal frame, etc.
  • it can be set according to actual usage requirements, and there is no limitation in the embodiment of the present application.
  • the aforementioned lens module 10 may further include a lower cover that forms a closed space with the first supporting structure 11, so that the lower cover and the first supporting structure 11 protect the interior of the lens module 10 Parts.
  • the above-mentioned third bearing structure 13 may be connected to the lens component 14 (which may include a lens mount and a lens), and the second bearing structure 12 and the third bearing structure may be rotated by the shaft of the first rotating component 15
  • the structure 13 is used to drive the lens component 14 to move; alternatively, the third supporting structure 13 can be rotated through the shaft of the second rotating component 16 to drive the lens component 14 to move.
  • rotating the second bearing structure 12 and the third bearing structure 13 can drive the lens component 14 to move in one direction, and rotating the third bearing structure 13 can drive the lens to move in another direction, and this one direction Perpendicular to the other direction.
  • the movement of the lens component 14 can be understood as: the rotation of the rotatable bearing structure (for example, the second bearing structure 12 and the third bearing structure 13) of the lens module 10 can drive the lens component 14 to rotate, so that the lens component 14 Move from one position to another by turning.
  • the rotation of the rotatable bearing structure for example, the second bearing structure 12 and the third bearing structure 13
  • An embodiment of the present application provides a lens module that includes a first bearing structure, a second bearing structure connected to the first bearing structure through a first rotating component, and a second bearing structure connected to the second bearing structure through a second rotating component.
  • the third supporting structure and the lens component connected with the third supporting structure, the rotation axis of the first rotating component and the rotation axis of the second rotating component are perpendicular.
  • the second bearing structure and the third bearing structure can be rotated by the rotating shaft of the first rotating component, and the third bearing structure can be rotated by the rotating shaft of the second rotating component, when the lens component shakes, the second bearing structure and The rotation of the third bearing structure makes the lens component move in one direction, or the rotation of the third bearing structure makes the lens component move in another direction, and the two directions are perpendicular, that is, the lens component can not only be perpendicular to the lens component Move in the direction of the optical axis of the lens, or in the direction parallel to the optical axis of the lens component, so as to compensate for the offset caused by the jitter of the lens component in various directions, thereby improving the protection of the lens in the electronic device. Shake effect.
  • the second bearing structure and the third bearing structure can be rotated within any angle range, or the third bearing structure can be rotated within any angle range to drive the lens component in a direction perpendicular to the optical axis of the lens component Move upward, or move in the direction parallel to the optical axis of the lens component, so that the anti-shake angle of the lens in the electronic device is large (the anti-shake angle reaches ⁇ 3° or more), and the structure is simple, and the assembly process is simple. Improve the overall yield of the lens module.
  • the first rotating component 15 includes at least one first bearing
  • the second rotating component 16 includes at least one second bearing
  • each of the above-mentioned at least one first bearing may include two stators (that is, two bearing stators) and one rotor (that is, one bearing rotor).
  • one first bearing may include two stators (for example, stator 17 and stator 18) and one rotor (for example, rotor 19), one end of which is connected to one stator 17 The other end of the one rotor 19 is connected with the other stator 18, and the rotor 19 can rotate relative to the two stators.
  • each second bearing in the above at least one second bearing may be the same as the structure of each first bearing.
  • one end of each first bearing described above is fixedly connected to an inner side wall of the first bearing structure 11, and the other end of each first bearing is connected to an outer side of the second bearing structure 12 The wall is fixedly connected.
  • one stator of each first bearing described above is fixedly connected to an inner side wall of the first bearing structure 11, and the other stator of each first bearing may be connected to the second bearing structure 12 One of the outer side walls is fixedly connected.
  • a stator of each second bearing is fixedly connected to an inner side wall of the second bearing structure 12, and each The other stator of the second bearing may be fixedly connected to an outer side wall of the third bearing structure 13.
  • one stator of each second bearing described above is fixedly connected to an inner side wall of the second bearing structure 12, and the other stator of each second bearing may be connected to the third bearing structure 13 One of the outer side walls is fixedly connected.
  • the at least one first bearing may include one first bearing or two first bearings; the at least one second bearing may include one second bearing or two second bearings.
  • At least one first bearing includes two first bearings (for example, bearing 20 and bearing 21), and the two first bearings are symmetrically arranged at On both sides of the central axis 22 of the first bearing structure 11, and the two rotating shafts of the two first bearings (that is, one first bearing corresponds to one rotating shaft) are located perpendicular to the central axis 22 of the first bearing structure 11.
  • the at least one second bearing includes two second bearings, such as (bearing 23 and bearing 24), and the two second bearings are symmetrically arranged on the second bearing structure On both sides of the central axis 25 of the two second bearings, and the two shafts of the two second bearings (that is, one second bearing corresponds to one shaft) are perpendicular to the central axis 25 of the second bearing structure 12, that is, two second bearings
  • the line where the two shafts of the two first bearings are located is perpendicular to the line where the two shafts of the two first bearings are located.
  • the above-mentioned first rotating component 15 may also include at least one first rotating pin, one end of the first rotating pin is connected to an inner side wall of the first supporting structure 11, and the first rotating The other end of the pin is connected with an outer side wall of the second supporting structure 12.
  • the above-mentioned second rotating member 16 may also include at least one second rotating pin, one end of the second rotating pin is connected to an inner side wall of the second supporting structure 12, and the second rotating member The other end of the pin is connected with an outer side wall of the third supporting structure 13.
  • first bearing structure and the second bearing structure may be connected through at least one first bearing
  • second bearing structure and the third bearing structure may be connected through at least one second bearing, so as to realize the relationship between the various bearing structures. Rotate flexibly.
  • bearings for example, at least one first bearing and at least one second bearing
  • bearings can be used as fulcrums, so that the second bearing structure, the third bearing structure, and the third bearing structure can rotate through the shaft of the bearing, thereby driving the lens
  • the parts move to realize the anti-shake function.
  • At least one inner side wall of the first bearing structure 11 and at least one outer side wall of the second bearing structure 12 are provided with opposite first groove structures, and the stator of the at least one first bearing Located in the first groove structure.
  • At least one inner side wall of the first supporting structure 11 is provided with a first groove structure
  • at least one outer side wall of the second supporting structure 12 is provided with a first groove structure
  • the first supporting structure 11 is provided with a first groove structure.
  • a groove structure is arranged opposite to the first groove structure on the second supporting structure 12.
  • the first groove structure on the first supporting structure 11 is arranged opposite to the first groove structure on the second supporting structure 12” can be understood as: the first groove on the first supporting structure 11
  • the plane of the structure is parallel to the plane of the first groove structure on the second supporting structure 12, and the center point of the first groove structure on the first supporting structure 11 is the same as that of the first groove structure on the second supporting structure 12
  • the line of the center point is parallel to the axis of rotation of the first rotating component, so that one stator of a first bearing can be placed in the first groove structure on the first bearing structure 11, and the other of the first bearing can be placed in the first groove structure.
  • the stator is placed in the first groove structure on the second supporting structure 12.
  • At least one inner side wall of the first supporting structure 11 includes one inner side wall or two inner side walls; at least one outer side wall of the above-mentioned second supporting structure 12 includes one outer side wall or two outer sides wall.
  • At least one inner side wall of the first supporting structure 11 includes an inner side wall, and the one inner side wall is provided with a first groove structure
  • at least one outer side wall of the second supporting structure 12 includes an outer side wall
  • the One outer side wall is provided with a first groove structure, and the first groove structure on the one inner side wall is opposite to the first groove structure on the one outer side wall.
  • At least one inner side wall of the first supporting structure 11 includes two inner side walls, and each inner side wall is respectively provided with a first groove structure
  • at least one outer side wall of the second supporting structure 12 includes two outer side walls, and each Each outer side wall is provided with a first groove structure, then one first groove structure in each inner side wall is opposite to one first groove structure in each outer side wall, and the other one in each inner side wall The first groove structure is opposite to another first groove structure in each outer side wall.
  • the at least one inner side wall of the first supporting structure 11 includes an inner side wall, and a first groove structure is provided on the one inner side wall
  • the at least one first bearing includes a first Bearing
  • the stator of the one first bearing is located in the first groove structure on the one inner side wall.
  • At least one inner side wall of the first supporting structure 11 includes two inner side walls, and one inner side wall of the first supporting structure 11 is provided with a first groove structure (For example, groove 26), and a first groove structure (for example, groove 27) is provided on the other inner side wall of the first bearing structure 11; at least one first bearing includes two first bearings (for example, bearing 20 and Bearing 21), a stator of the bearing 20 is located in the groove 26, and a stator of the bearing 21 is located in the groove 27.
  • At least one outer side wall of the second supporting structure 12 includes two outer side walls, and one outer side wall of the second supporting structure 12 is provided with a first groove structure (For example, groove 28), and a first groove structure (for example, groove 29) is provided on the other outer side wall of the second bearing structure 12; at least one first bearing includes two first bearings (for example, bearing 20 and Bearing 21), a stator of the bearing 20 is located in the groove 28, and a stator of the bearing 21 is located in the groove 29.
  • At least one inner side wall of the second supporting structure 12 and at least one outer side wall of the third supporting structure 13 are provided with opposite second groove structures, and the stator of the at least one second bearing Located in the second groove structure.
  • At least one inner side wall of the second supporting structure 12 is provided with a second groove structure
  • at least one outer side wall of the third supporting structure 13 is provided with a second groove structure
  • a second groove structure is provided on the second supporting structure 12
  • the two groove structures are arranged opposite to the second groove structure on the third supporting structure 13.
  • the second groove structure on the second supporting structure 12 is arranged opposite to the second groove structure on the third supporting structure 13” can be understood as: the second groove on the second supporting structure 12
  • the plane of the structure is parallel to the plane of the second groove structure on the third supporting structure 13, and the center point of the second groove structure on the second supporting structure 12 is the same as that of the second groove structure on the third supporting structure 13
  • the line of the center point is parallel to the axis of rotation of the second rotating component, so that one stator of a second bearing can be placed in the second groove structure on the second bearing structure 12, and the other of the second bearing can be placed in the second groove structure.
  • the stator is placed in the second groove structure on the third supporting structure 13.
  • At least one inner side wall of the second supporting structure 12 includes one inner side wall or two inner side walls; at least one outer side wall of the above-mentioned third supporting structure 13 includes one outer side wall or two outer sides wall.
  • At least one inner side wall of the second supporting structure 12 includes an inner side wall and a second groove structure is provided on the one inner side wall
  • at least one outer side wall of the third supporting structure 13 includes an outer side wall
  • the One outer side wall is provided with a second groove structure
  • the second groove structure on the one inner side wall is opposite to the second groove structure on the one outer side wall.
  • At least one inner side wall of the second supporting structure 12 includes two inner side walls, and each inner side wall is respectively provided with a second groove structure
  • at least one outer side wall of the third supporting structure 13 includes two outer side walls, and each Each outer side wall is provided with a second groove structure, and then one second groove structure in each inner side wall is opposite to one second groove structure in each outer side wall, and the other in each inner side wall The second groove structure is opposite to another second groove structure in each outer side wall.
  • the at least one inner side wall of the second bearing structure 12 includes an inner side wall, and a second groove structure is provided on the one inner side wall
  • the at least one second bearing includes a second Bearing
  • the stator of the one second bearing is located in the second groove structure on the one inner side wall.
  • At least one inner side wall of the second supporting structure 12 includes two inner side walls, and one inner side wall of the second supporting structure 12 is provided with a second groove structure (For example, groove 30), and a second groove structure (for example, groove 31) is provided on the other inner side wall of the second bearing structure 12; at least one second bearing includes two second bearings (for example, bearing 23 and Bearing 24), a stator of the bearing 23 is located in the groove 30, and a stator of the bearing 24 is located in the groove 31.
  • a second groove structure for example, groove 30
  • a second groove structure for example, groove 31
  • at least one second bearing includes two second bearings (for example, bearing 23 and Bearing 24), a stator of the bearing 23 is located in the groove 30, and a stator of the bearing 24 is located in the groove 31.
  • At least one outer side wall of the third supporting structure 13 includes two outer side walls, and one outer side wall of the third supporting structure 13 is provided with a second groove structure (For example, groove 32), and a second groove structure (for example, groove 33) is provided on the other outer side wall of the third bearing structure 13; at least one second bearing includes two second bearings (for example, bearing 23 and Bearing 24), a stator of the bearing 23 is located in the groove 32, and a stator of the bearing 24 is located in the groove 33.
  • a second groove structure for example, groove 32
  • a second groove structure for example, groove 33
  • At least one inner side wall of the first supporting structure 11 and at least one outer side wall of the second supporting structure 12 are provided with opposite first groove structures, and at least one of the second supporting structures 12
  • the inner side wall and at least one outer side wall of the third supporting structure 13 are provided with an opposite second groove structure.
  • two first groove structures for example, groove 30 and groove 31
  • the Two first groove structures are respectively provided on the two outer side walls of the second bearing structure 12, so that the bearing 20 as shown in FIG. 4 is placed in the groove 28,
  • the bearing 21 is placed in the groove 29
  • the bearing 23 is placed in the groove 30
  • the bearing 24 is placed in the groove 31.
  • the first groove structure on the first carrying structure 11, the first groove structure on the second carrying structure 12, the second groove structure on the second carrying structure 12, and the first groove structure may be the same or different. Specifically, it can be set according to actual usage requirements, and there is no limitation in the embodiment of the present application.
  • the groove structure (for example, the first groove structure and/or the second groove structure) may also be provided with a baffle, and the baffle is used to fix the stator in the groove structure.
  • the baffle is used to fix the stator in the groove structure.
  • the number of baffles in the embodiment of the present application is the same as the number of groove structures.
  • the above-mentioned baffle plate may be connected to the groove structure by laser welding, or by glue bonding. Specifically, it can be set according to actual usage requirements, and there is no limitation in the embodiment of the present application.
  • At least one inner side wall of the first supporting structure and at least one outer side wall of the second supporting structure may be provided with opposite first groove structures, so that at least one first groove structure can be connected through the first groove structure.
  • the bearings are respectively fixed to the first bearing structure and the second bearing structure, thereby improving the reliability of the connection between the first bearing structure and the second bearing structure.
  • At least one inner side wall of the second supporting structure and at least one outer side wall of the third supporting structure may be provided with a second opposite groove structure, so that at least one second groove structure can be connected through the second groove structure.
  • the bearing is fixed to the second bearing structure, and the second bearing and the third bearing structure are fixed to improve the reliability of the connection between the second bearing structure and the third bearing structure.
  • the first inner side wall of the first supporting structure 11 is provided with at least one first magnet (in FIG. 10 Two first magnets are shown, such as a magnet 32 and a magnet 33), and the third inner side wall of the second supporting structure 12 is provided with at least one second magnet (shown as two second magnets in FIG. 10, such as a magnet 34 and a magnet 35), the plane where the first inner side wall is located is perpendicular to the plane where the third inner side wall is located.
  • FIG. 11 shows the magnet on the first supporting structure 11 and the magnet on the second supporting structure 12.
  • the first inner side wall of the first supporting structure 11 is provided with at least one first magnet (for example, the magnet 32 and the magnet 33); as shown in FIG. 11B, the third inner side wall of the second supporting structure 12 is provided There is at least one second magnet (for example, magnet 34 and magnet 35).
  • At least one first bump is provided on the first inner side wall of the first supporting structure 11; each first magnet of the at least one first magnet passes through a first bump and The first inner side wall is fixedly connected.
  • each first magnet may be connected to a first bump by glue bonding.
  • At least one first baffle is provided on the third inner side wall of the second supporting structure 12; for each of the at least one second magnet, each second magnet passes through a first baffle. It is fixedly connected with the third inner side wall.
  • each first magnet may be connected to a first bump by glue bonding; each second magnet may be connected to a first baffle by glue bonding.
  • the first end of one first magnet is fixedly connected to the first inner side wall by a first bump, and the first magnet is fixedly connected to the first inner side wall by a first bump.
  • the first end of the magnet is the end of the first magnet where the south pole is located.
  • the second end of one second magnet is fixedly connected to the third inner side wall through a first baffle, and one second magnet The second end of is the end where the south pole of a second magnet is located.
  • the magnet (for example, at least one first magnet and/or at least one second magnet) is used to provide a magnetic field for the lens module.
  • the first inner side wall of the first supporting structure 11 is provided with at least one first magnet
  • the second inner side wall of the first supporting structure 11 is provided with There is at least one second magnet
  • the plane of the first inner side wall is perpendicular to the plane of the second inner side.
  • At least one first bump is provided on the first inner side wall of the first supporting structure 11; each first magnet of the at least one first magnet passes through a first bump and The first inner side wall is fixedly connected.
  • At least one first bump is provided on the first inner side wall of the first supporting structure 11; for each first magnet in the at least one first magnet, each first magnet The magnets are respectively fixedly connected with the first inner side wall through a first bump.
  • each first magnet may be connected to a first bump by glue bonding.
  • the second end of one second magnet is fixedly connected to the second inner side wall by a second bump, and the second magnet is fixedly connected to the second inner side wall by a second bump.
  • the second end of the magnet is the end of the second magnet where the south pole is located.
  • multiple magnets that is, at least one first magnet and at least one second magnet
  • first bearing structure or multiple magnets can be arranged on the first bearing structure and the second bearing structure ( That is, at least one first magnet and at least one second magnet) to provide a magnetic field to the lens module, so that the lens component is moved by the action of the magnetic field.
  • the aforementioned lens component 14 includes a lens mount 141 and a lens 142.
  • FIG. 12 shows a schematic diagram of the connection structure between the lens component 14 of the lens module 10 and the third supporting structure 13 provided in an embodiment of the present application.
  • the lens component 14 includes a lens holder 141 and a lens 142 carried by the lens holder, and the lens holder 141 is fixedly connected to the third carrying structure 13.
  • the inner surface area (for example, the inner bottom area) of the third bearing structure 13 is fixedly connected to the first area (ie, the sky area) of the lens mount 141, and the first area is the lens mount 141 on which the lens is arranged.
  • One side of 142, and the lens 142 can be penetrated by the central area of the inner surface area of the third supporting structure 13.
  • FIG. 13 shows a schematic diagram of the structure of the lens mount 141 and the lens 142 provided in an embodiment of the present application.
  • the lens mount 141 is a cavity structure
  • the lens 142 is disposed in the lens mount 141
  • part of the structure of the lens 142 is located outside the lens mount 141.
  • the inner surface area of the third supporting structure 13 and the first area of the lens mount 141 may be connected by laser welding, or by glue bonding.
  • FIG. 14 shows a schematic diagram of the connection structure of the lens mount 141, the lens 142, and the third bearing structure 13 provided by an embodiment of the present application.
  • the bottom area of the inner surface of the third supporting structure 13 is connected (for example, fixedly connected) to the structure of the lens 142 outside the lens mount 141 to fix the lens mount 141 and the lens 142 Inside the third bearing structure 13.
  • FIG. 15 shows a schematic diagram of the connection structure of the lens mount 141, the lens 142, and the third bearing structure 13 provided by an embodiment of the present application from another perspective.
  • the third bearing structure The bottom area of the inner surface of the structure 13 is connected (for example, fixedly connected) to the structure of the lens 142 outside the lens mount 141 to fix the lens mount 141 and the lens 142 in the third supporting structure 13.
  • the lens holder 141 and the lens 142 may be compact camera module (CCM) components in the electronic device, and the CCM component may implement the focusing and photographing function of the electronic device.
  • CCM compact camera module
  • the first outer wall of the lens holder 141 is provided with at least one first coil
  • the second outer wall of the lens holder 141 is provided with at least one second coil
  • the first outer wall is located
  • the plane is perpendicular to the plane where the second outer side wall is located.
  • the at least one first coil is disposed opposite to at least one first magnet in the lens module, and the at least one second coil is disposed opposite to at least one second magnet in the lens module; or, the at least one first coil is It is arranged opposite to the at least one second magnet, and the above-mentioned at least one second coil is arranged opposite to the at least one first magnet.
  • each first coil in at least one first coil one first coil and one magnet (for example, one first magnet in at least one first magnet or one second magnet in at least one second magnet) The magnets) are arranged oppositely, so that the magnetic field of the one magnet is perpendicular to the current direction of the one first coil, so that the Lorentz force is generated after the one first coil is energized to drive the lens component 14 to move; for at least one second coil
  • one second coil and one magnet are arranged opposite to each other, so that the one magnet The magnetic field is perpendicular to the current direction of the second coil, so that Lorentz force is generated after the second coil is energized to drive the lens component 14 to move.
  • each first coil in the at least one first coil when each first coil in the at least one first coil is energized, the current direction of each first coil is the same (that is, the current direction of all the first coils are the same);
  • the current direction of each second coil is the same (that is, the current direction of all the second coils is the same).
  • each first coil when each first coil is energized, each first coil can generate a Lorentz force in a magnetic field (ie, the magnetic field of at least one first magnet or the magnetic field of at least one second magnet) to The second supporting structure 12 and the third supporting structure 13 can be rotated around the axis of the first rotating component 15, thereby driving the lens component 14 to move; when each second coil is energized, each second coil can be Lorentz force is generated in the magnetic field (ie the magnetic field of one first magnet in the at least one first magnet or the magnetic field of one second magnet in the at least one second magnet), so that the third bearing structure 13 can rotate around the second magnet
  • the rotating shaft of the component 16 rotates, thereby driving the lens component 14 to move.
  • each of the at least one first coil is electrically connected to the electronic device where the lens module is located; the at least one second coil is all connected to the electronic device where the lens module is located.
  • the equipment is electrically connected.
  • a plurality of coils (that is, at least one first coil and at least one second coil) may be arranged on the outer side wall of the lens holder, so that after the coils of the plurality of coils are energized, the coils produce Lorenz Therefore, it can drive the lens components to move to compensate for the offset caused by the shaking of the lens components.
  • a first circuit board for example, the circuit board 36
  • the at least one first coil for example, The coil 37 and the coil 38 are located on the circuit board 36
  • the second outer side wall of the lens holder 141 is provided with a second circuit board (for example, the circuit board 39)
  • the at least one second coil for example, the coil 40 and the coil 41
  • the above-mentioned first circuit board and the second circuit board may be printed circuit boards (printed circuit boards, PCBs).
  • the first circuit board and the first outer side wall of the lens mount 141 are connected by glue bonding; the second circuit board and the second outer wall of the lens mount 141 are bonded by glue. connection.
  • both the above-mentioned first circuit board and the second circuit board are electrically connected to the lens holder 141, and the lens holder 141 is electrically connected to the electronic device where the lens module 10 is located.
  • the first circuit board includes a terminal through which the first circuit board is electrically connected to the lens holder 141; the second circuit board is electrically connected to the first circuit board.
  • FIG. 17 shows a schematic structural diagram of two circuit boards (that is, a first circuit board and a second circuit board) provided by an embodiment of the present application.
  • the first circuit board 36 is electrically connected to the second circuit board 39, and the first circuit board 36 includes a terminal 42 for the first circuit board 36 and the lens
  • the base 141 is electrically connected.
  • FIG. 18 shows possible structures (ie, exploded view) of a lens module provided by an embodiment of the present application.
  • the lens module 10 includes a first supporting structure 11 and a second The second supporting structure 12, the third supporting structure 13, the lens mount 141, the lens 142, the first circuit board (such as the circuit board 36), the second circuit board (such as the circuit board 39), at least one first coil (such as the coil 37 and Coil 38), and at least one second coil (for example, coil 40 and coil 41).
  • FIG. 19 shows a schematic diagram of a possible structure of an electronic device involved in an embodiment of the present application.
  • the electronic device 50 may include: the lens module 10 in the above-mentioned embodiment, and the first supporting structure in the lens module 10 is connected to the housing of the electronic device.
  • the above-mentioned electronic device may be a mobile terminal device or a non-mobile terminal device.
  • the mobile terminal device may be a mobile phone, a tablet computer, a notebook computer, a handheld computer, a vehicle-mounted terminal device, a wearable device, an ultra-mobile personal computer (UMPC), a netbook, a personal game console, and a smart watch.
  • UMPC ultra-mobile personal computer
  • UMPC ultra-mobile personal computer
  • non-mobile terminal equipment can be a personal computer (PC), television (television, TV), teller machine or self-service machine, etc.
  • PC personal computer
  • TV television
  • teller machine or self-service machine etc.
  • An embodiment of the present application provides an electronic device.
  • the electronic device may include a lens module, and the lens module is connected to the electronic device. Since the electronic device includes a lens module, when the lens component shakes, the lens component can be moved in one direction through the rotation of the second bearing structure and the third bearing structure in the lens module, or the lens component can be moved through the lens module.
  • the rotation of the third supporting structure makes the lens component move in another direction, and the two directions are perpendicular, that is, the lens component can move not only in the direction perpendicular to the optical axis of the lens component, but also in parallel to the optical axis of the lens component. Move in the direction of, so as to compensate for the offset caused by the shaking of the lens components in various directions, and further improve the anti-shake effect of the lens in the electronic device.
  • FIG. 20 shows a flowchart of an electronic device control method provided by an embodiment of the present application, and the electronic device control method can be applied to the electronic device described in the foregoing embodiment.
  • the electronic device control method provided by the embodiment of the present application may include the following steps 201 and 202.
  • Step 201 When shooting through the lens module of the electronic device, the electronic device detects the first magnetic flux of the at least one first magnet and the second magnetic flux of the at least one second magnet.
  • the at least one first magnet is a magnet with a first bearing structure
  • the at least one second magnet is a magnet with a second bearing structure
  • the lens module of the electronic device further includes a detection module, and the detection module is used to detect the magnetic flux of the magnet.
  • the electronic device may detect the magnetic flux of at least one first magnet and the magnetic flux of at least one second magnet through the detection module, and send the detected magnetic flux to the electronic device.
  • the above-mentioned detection module may include at least one Hall switch device (hall Ic), and each of the at least one Hall switch device is electrically connected to the lens holder 141, respectively.
  • the above-mentioned at least one Hall switch device is disposed on the first outer side wall and the second outer side wall of the lens holder 141, that is, a part of the Hall switch device in the at least one Hall switch device is disposed on On the first outer side wall of the lens holder 141, another part of the at least one Hall switch device is disposed on the second outer side wall of the lens holder 141.
  • the above-mentioned at least one Hall switch device is respectively disposed on the first circuit board and the second circuit board (that is, a part of the Hall switch devices in the at least one Hall switch device are disposed on the first circuit On the board, another part of the at least one Hall switch device is disposed on the second circuit board), and the part of the Hall switch device disposed on the first circuit board passes through the first circuit board and the lens mount 141 is electrically connected, and the part of the Hall switch device provided on the second circuit board is electrically connected to the lens mount 141 through the second circuit board.
  • the position of the at least one Hall switch device relative to the at least one first magnet (or at least one second magnet) will change, so that the at least one Hall switch device will change.
  • the switching device detects that the magnetic flux of at least one first magnet (or the magnetic flux of at least one second magnet) changes (that is, the magnetic field of the corresponding magnet changes).
  • the aforementioned detection module can detect the magnetic flux of at least one first magnet and the magnetic flux of at least one second magnet in real time.
  • Step 202 The electronic device controls the movement of the lens component in the lens module of the electronic device according to the first magnetic flux and the second magnetic flux.
  • step 202 may be specifically implemented by the following step 202a and step 202b.
  • Step 202a The electronic device determines the offset of the lens component according to the first magnetic flux and the second magnetic flux.
  • the electronic device may determine the offset of the lens component 14 by using a preset algorithm according to the detected first magnetic flux and the second magnetic flux.
  • the detection module can detect the current magnetic flux (that is, the changed magnetic flux (that is, the first magnetic flux and the second magnetic flux)). ), so that the electronic device can determine the offset of the lens component 14 according to the first magnetic flux and the second magnetic flux.
  • Step 202b The electronic device controls the lens component to move for a first displacement according to the offset.
  • the direction of the first displacement is opposite to the direction of the lens displacement, and the displacement amount of the first displacement is the same as the displacement amount.
  • the electronic device may determine the offset of the lens component 14 according to the detected first magnetic flux and the second magnetic flux, so as to control the movement of the lens component 14 by a displacement corresponding to the offset to compensate for the offset caused by the lens shake. Shift.
  • offset direction of the lens can be understood as the direction of the offset of the current position of the lens component relative to the initial position of the lens component when shaking occurs.
  • the electronic device when shooting through a lens module, can detect the magnetic flux (that is, the first magnetic flux of at least one first magnet and the second magnetic flux of at least one second magnet), And according to the magnetic flux, the movement of the lens part is controlled. Since the electronic device can determine the offset of the lens component according to the detected first magnetic flux and the second magnetic flux, the lens component can be moved in one direction through the rotation of the second bearing structure and the third bearing structure, or the lens component can be moved in one direction through the third bearing structure.
  • the magnetic flux that is, the first magnetic flux of at least one first magnet and the second magnetic flux of at least one second magnet
  • the rotation of the carrying structure makes the lens part move in another direction, and the two directions are perpendicular, that is, the lens part can move not only in the direction perpendicular to the optical axis of the lens part, but also in the direction parallel to the optical axis of the lens part. In this way, the offset caused by the shaking of the lens in various directions can be compensated, and the anti-shake effect of the lens in the electronic device can be improved.
  • the electronic device control method provided in the embodiment of the present application may include the following step 301.
  • Step 301 The electronic device energizes the coil corresponding to at least one first magnet in the lens module of the electronic device and the coil corresponding to at least one second magnet in the lens module of the electronic device.
  • the electronic device may determine the current parameter when the coil (that is, the coil corresponding to the at least one first magnet and the coil corresponding to the at least one second magnet) is energized according to the offset of the lens component 14 , And the Lorentz force is generated by the current of the current parameter to drive the bearing structure (for example, the second bearing structure 12 and the third bearing structure 13, or the third bearing structure 13) in the lens module 10 to rotate, thereby controlling (Drive) the lens component 14 moves by a first displacement.
  • the coil that is, the coil corresponding to the at least one first magnet and the coil corresponding to the at least one second magnet
  • the foregoing current parameter may include at least one of the following: a current value and a current direction.
  • the electronic device determines the offset of the lens component 14, it can be determined as a coil (ie at least one coil corresponding to the first magnet and at least one coil corresponding to the second magnet according to the direction of the offset of the lens component 14). ) The direction of the current when it is energized, and the current passing through this direction causes the coil to generate the Lorentz force in the corresponding direction in the magnetic field, so that the direction of the Lorentz force is opposite to the direction of the offset of the lens component 14, thereby The lens part 14 is controlled to move by the first displacement.
  • the electronic device may stop energizing the coil in the lens module 10.
  • the electronic device can determine the offset of the lens component according to the acquired magnetic flux, so that the coil corresponding to the at least one first magnet and the coil corresponding to the at least one second magnet can be energized to control the movement of the lens component and the The displacement corresponding to the offset to compensate for the offset caused by the lens shake.
  • the computer software product is stored in a storage medium (such as ROM/RAM, magnetic disk, optical disk). ) Includes several instructions to enable an electronic device (which can be a mobile phone, a computer, a server, an air conditioner, or a network device, etc.) to execute the method described in each embodiment of the present application.

Landscapes

  • Engineering & Computer Science (AREA)
  • Multimedia (AREA)
  • Signal Processing (AREA)
  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Studio Devices (AREA)

Abstract

本申请实施例公开了一种镜头模组、电子设备及电子设备控制方法,该镜头模组包括:第一承载结构、设置于第一承载结构中的第二承载结构、设置于第二承载结构中的第三承载结构,以及与第三承载结构连接的镜头部件。其中,第一承载结构与第二承载结构之间通过第一转动部件连接,该第二承载结构与第三承载结构之间通过第二转动部件连接,该第一转动部件的转轴和该第二转动部件的转轴垂直。本申请实施例应用于电子设备通过镜头模组防抖的过程中。

Description

镜头模组、电子设备及电子设备控制方法
本申请要求于2019年11月28日提交国家知识产权局、申请号为201911195338.6、申请名称为“一种镜头模组、电子设备及电子设备控制方法”的中国专利申请的优先权,其全部内容通过引用结合在本申请中。
技术领域
本申请实施例涉及终端技术领域,尤其涉及一种镜头模组、电子设备及电子设备控制方法。
背景技术
通常,用户在使用电子设备进行拍摄的过程中,可能会出现手抖的情况,从而导致电子设备的镜头发生抖动,影响拍摄效果。
目前,电子设备可以根据镜头的抖动方向及抖动位移量,驱动镜头在垂直于镜头光轴的方向上移动,以补偿镜头抖动产生的偏移量。具体的,可以在电子设备中设置光学防抖系统,且镜头的底座通过悬丝与该光学防抖系统连接。在镜头发生抖动的情况下,光学防抖系统可以根据镜头的抖动方向及抖动位移量,在垂直于镜头光轴的方向上驱动悬丝发生形变,以使得悬丝带动镜头向与抖动方向相反的方向移动,从而补偿镜头抖动产生的偏移量。
但是,由于上述通过驱动悬丝发生形变补偿镜头抖动产生的偏移量的方法,只能补偿镜头在垂直于镜头光轴的方向抖动产生的偏移量,无法补偿镜头在其他方向抖动产生的偏移量,因此,导致电子设备中的镜头的防抖效果较差。
发明内容
本申请实施例提供一种镜头模组、电子设备及电子设备控制方法,可以解决电子设备中的镜头的防抖效果较差的问题。
为了解决上述技术问题,本申请实施例采用如下技术方案:
本申请实施例的第一方面,提供一种镜头模组,该镜头模组包括:第一承载结构、设置于第一承载结构中的第二承载结构、设置于第二承载结构中的第三承载结构,以及与第三承载结构连接的镜头部件。其中,第一承载结构与第二承载结构之间通过第一转动部件连接,该第二承载结构与第三承载结构之间通过第二转动部件连接,该第一转动部件的转轴和该第二转动部件的转轴垂直。
本申请实施例的第二方面,提供一种电子设备,该电子设备包括如第一方面所述的镜头模组,该镜头模组中的第一承载结构与电子设备的壳体连接。
本申请实施例的第三方面,提供一种电子设备控制方法,应用于如第二方面所述的电子设备,该电子设备控制方法包括:在通过电子设备的镜头模组进行拍摄时,检测至少一个第一磁石的第一磁通量和至少一个第二磁石的第二磁通量,其中至少一个第一磁石为第一承载结构的磁石,该至少一个第二磁石为第二承载结构的磁石;根据第一磁通量和第二磁通量,控制镜头部件移动。
在本申请实施例中,该镜头模组包括第一承载结构、通过第一转动部件与第一承 载结构连接的第二承载结构、通过第二转动部件与第二承载结构连接的第三承载结构以及与第三承载结构连接的镜头部件,该第一转动部件的转轴和该第二转动部件的转轴垂直。由于第二承载结构和第三承载结构可以通过第一转动部件的转轴转动,且第三承载结构可以通过第二转动部件的转轴转动,因此在镜头部件发生抖动时,可以通过第二承载结构和第三承载结构的转动使得镜头部件沿一个方向移动,或者可以通过第三承载结构的转动使得镜头部件沿另一个方向移动,且这两个方向垂直,即镜头部件不仅可以在垂直于该镜头部件的光轴的方向上移动,也可以在平行于该镜头部件的光轴的方向上移动,从而可以补偿镜头部件在各个方向上抖动产生的偏移量,进而可以提升电子设备中的镜头的防抖效果。
附图说明
图1为本申请实施例提供的一种镜头模组的结构示意图之一;
图2为本申请实施例提供的一种镜头模组的结构示意图之二;
图3为本申请实施例提供的一种镜头模组的结构示意图之三;
图4为本申请实施例提供的一种镜头模组的结构示意图之四;
图5为本申请实施例提供的一种镜头模组的结构示意图之五;
图6为本申请实施例提供的一种镜头模组的结构示意图之六;
图7为本申请实施例提供的一种镜头模组的结构示意图之七;
图8为本申请实施例提供的一种镜头模组的结构示意图之八;
图9为本申请实施例提供的一种镜头模组的结构示意图之九;
图10为本申请实施例提供的一种镜头模组的结构示意图之十;
图11A为本申请实施例提供的一种镜头模组的结构示意图之十一;
图11B为本申请实施例提供的一种镜头模组的结构示意图之十二;
图12为本申请实施例提供的一种镜头模组的结构示意图之十三;
图13为本申请实施例提供的一种镜头模组的结构示意图之十四;
图14为本申请实施例提供的一种镜头模组的结构示意图之十五;
图15为本申请实施例提供的一种镜头模组的结构示意图之十六;
图16为本申请实施例提供的一种镜头模组的结构示意图之十七;
图17为本申请实施例提供的一种镜头模组的结构示意图之十八;
图18为本申请实施例提供的一种镜头模组的结构示意图之十九;
图19为本申请实施例提供的一种电子设备的结构示意图;
图20为本申请实施例提供的一种电子设备控制方法的示意图。
具体实施方式
下面将结合本申请实施例中的附图,对本申请实施例中的技术方案进行清楚、完整地描述,显然,所描述的实施例是本申请一部分实施例,而不是全部的实施例。基于本申请中的实施例,本领域普通技术人员在没有作出创造性劳动前提下所获得的所有其他实施例,都属于本申请保护的范围。
本申请实施例的说明书和权利要求书中的术语“第一”和“第二”等是用于区别不同的对象,而不是用于描述对象的特定顺序。例如,第一线圈和第二线圈等是用于区别不同的线圈,而不是用于描述线圈的特定顺序。
在本申请实施例的描述中,除非另有说明,“多个”的含义是指两个或两个以上。例如,多个元件是指两个元件或两个以上元件。
本文中术语“和/或”,是一种描述关联对象的关联关系,表示可以存在三种关系,例如,显示面板和/或背光,可以表示:单独存在显示面板,同时存在显示面板和背光,单独存在背光这三种情况。本文中符号“/”表示关联对象是或者的关系,例如输入/输出表示输入或者输出。
在本申请实施例中,“示例性的”或者“例如”等词用于表示作例子、例证或说明。本申请实施例中被描述为“示例性的”或者“例如”的任何实施例或设计方案不应被解释为比其它实施例或设计方案更优选或更具优势。确切而言,使用“示例性的”或者“例如”等词旨在以具体方式呈现相关概念。
本申请实施例提供一种镜头模组、电子设备及电子设备控制方法,由于第二承载结构和第三承载结构可以通过第一转动部件的转轴转动,且第三承载结构可以通过第二转动部件的转轴转动,因此在镜头部件发生抖动时,可以通过第二承载结构和第三承载结构的转动使得镜头部件沿一个方向移动,或者可以通过第三承载结构的转动使得镜头部件沿另一个方向移动,且这两个方向垂直,即镜头部件不仅可以在垂直于该镜头部件的光轴的方向上移动,也可以在平行于该镜头部件的光轴的方向上移动,从而可以补偿镜头部件在各个方向上抖动产生的偏移量,进而可以提升电子设备中的镜头的防抖效果。
本申请实施例提供的镜头模组、电子设备及电子设备控制方法,可以应用于电子设备中。具体的,可以应用于电子设备通过镜头模组防抖的过程中。
下面结合附图,通过具体的实施例及其应用场景对本申请实施例提供的一种镜头模组、电子设备及电子设备控制方法进行详细地说明。
图1示出了本申请实施例提供的一种镜头模组的可能的结构示意图,如图1所示,该镜头模组10包括第一承载结构11、设置于第一承载结构11中的第二承载结构12、设置于第二承载结构12中的第三承载结构13,以及与第三承载结构连接的镜头部件14。
本申请实施例中,上述第一承载结构11与第二承载结构12之间通过第一转动部件15连接,上述第二承载结构12与第三承载结构13之间通过第二转动部件16连接,该第一转动部件15的转轴和第二转动部件16的转轴垂直。
可以理解,通过第一转动部件15的转轴可以转动第二承载结构12和第三承载结构13,通过第二转动部件16的转轴可以转动第三承载结构13。
需要说明的是,为了更清楚地示意镜头模组10的结构,图2示出了本申请实施例提供的镜头模组10的各个承载结构(即爆炸图),如图2所示,该镜头模组10包括第一承载结构11、第二承载结构12、第三承载结构13以及镜头部件14。
可以理解,上述第一承载结构11可以理解为镜头模组10的外框;上述第二承载结构12可以理解为镜头模组10的中框;上述第三承载结构13可以理解为镜头模组10的内框。
可选地,本申请实施例中,上述第一承载结构11、第二承载结构12以及第三承载结构13均为框架结构;上述第一承载结构11、第二承载结构12以及第三承载结构 13均由金属材料制成。
可选地,本申请实施例中,上述第一承载结构11可以为多边形框架、圆形框架、椭圆形框架或梯形框架等;上述第二承载结构12可以为多边形框架、圆形框架、椭圆形框架或梯形框架等;上述第三承载结构13可以为多边形框架、圆形框架、椭圆形框架或梯形框架等。具体的,可以根据实际使用需求设定,本申请实施例中不作限制。
可选地,本申请实施例中,上述镜头模组10还可以包括下盖,该下盖与第一承载结构11形成闭合空间,从而该下盖与第一承载结构11保护镜头模组10内部的部件。
可选地,本申请实施例中,上述第三承载结构13可以与镜头部件14(可以包括镜头座和镜头)连接,可以通过第一转动部件15的转轴转动第二承载结构12和第三承载结构13,以带动镜头部件14移动;或者,可以通过第二转动部件16的转轴转动第三承载结构13,以带动镜头部件14移动。
可以理解,通过转动第二承载结构12和第三承载结构13可以带动镜头部件14沿着一个方向上移动,通过转动第三承载结构13可以带动镜头沿着另一个方向上移动,且该一个方向和该另一个方向垂直。
需要说明的是,镜头部件14移动可以理解为:镜头模组10的可转动的承载结构(例如第二承载结构12和第三承载结构13)的转动可以带动镜头部件14转动,以使得镜头部件14通过转动从一个位置移动至另一个位置。
本申请实施例提供一种镜头模组,该镜头模组包括第一承载结构、通过第一转动部件与第一承载结构连接的第二承载结构、通过第二转动部件与第二承载结构连接的第三承载结构以及与第三承载结构连接的镜头部件,该第一转动部件的转轴和该第二转动部件的转轴垂直。由于第二承载结构和第三承载结构可以通过第一转动部件的转轴转动,且第三承载结构可以通过第二转动部件的转轴转动,因此在镜头部件发生抖动时,可以通过第二承载结构和第三承载结构的转动使得镜头部件沿一个方向移动,或者可以通过第三承载结构的转动使得镜头部件沿另一个方向移动,且这两个方向垂直,即镜头部件不仅可以在垂直于该镜头部件的光轴的方向上移动,也可以在平行于该镜头部件的光轴的方向上移动,从而可以补偿镜头部件在各个方向上抖动产生的偏移量,进而可以提升电子设备中的镜头的防抖效果。
可以理解,可以通过第二承载结构和第三承载结构在任意角度范围内转动,或者可以通过第三承载结构在任意角度范围内转动,以带动镜头部件在垂直于该镜头部件的光轴的方向上移动,或者在平行于该镜头部件的光轴的方向上移动,从而使得电子设备中的镜头的防抖角度大(防抖角度达到±3°以上),同时结构简单,组装工艺简单,可以提升镜头模组的整体良率。
可选地,本申请实施例中,上述第一转动部件15包括至少一个第一轴承,上述第二转动部件16包括至少一个第二轴承。
可选地,本申请实施例中,上述至少一个第一轴承中的每个第一轴承可以包括两个定子(即两个轴承定子)和一个转子(即一个轴承转子)。针对每个第一轴承,如图3所示,一个第一轴承可以包括两个定子(例如定子17和定子18)和一个转子(例如转子19),该一个转子19的一端与一个定子17连接,该一个转子19另一端与另一个定子18连接,且该转子19可相对于该两个定子转动。
可选地,本申请实施例中,上述至少一个第二轴承中每个第二轴承的结构可以与每个第一轴承的结构相同。
可选地,本申请实施例中,上述每个第一轴承的一端与第一承载结构11的一个内侧壁固定连接,且该每个第一轴承的另一端与第二承载结构12的一个外侧壁固定连接。
可选地,本申请实施例中,上述每个第一轴承的一个定子与第一承载结构11的一个内侧壁固定连接,且该每个第一轴承的另一个定子可以与第二承载结构12的一个外侧壁固定连接。
可选地,本申请实施例中,针对至少一个第二轴承中的每个第二轴承,该每个第二轴承的一个定子与第二承载结构12的一个内侧壁固定连接,且该每个第二轴承的另一个定子可以与第三承载结构13的一个外侧壁固定连接。
可选地,本申请实施例中,上述每个第二轴承的一个定子与第二承载结构12的一个内侧壁固定连接,且该每个第二轴承的另一个定子可以与第三承载结构13的一个外侧壁固定连接。
可选地,本申请实施例中,上述至少一个第一轴承可以包括一个第一轴承或者两个第一轴承;上述至少一个第二轴承可以包括一个第二轴承或者两个第二轴承。
可选地,本申请实施例中,结合图1,如图4所示,至少一个第一轴承包括两个第一轴承(例如轴承20和轴承21),该两个第一轴承对称地设置于第一承载结构11的中轴线22的两侧,且该两个第一轴承的两个转轴(即一个第一轴承对应一个转轴)所在直线与第一承载结构11的中轴线22垂直。
可选地,本申请实施例中,如图4所示,至少一个第二轴承包括两个第二轴承例如(轴承23和轴承24),该两个第二轴承对称地设置于第二承载结构12的中轴线25的两侧,且该两个第二轴承的两个转轴(即一个第二轴承对应一个转轴)所在直线与第二承载结构12的中轴线25垂直,即两个第二轴承的两个转轴所在直线与两个第一轴承的两个转轴所在直线垂直。
可选地,本申请实施例中,上述第一转动部件15也可以包括至少一个第一转动销,一个第一转动销的一端与第一承载结构11的一个内侧壁连接,该一个第一转动销的另一端与第二承载结构12的一个外侧壁连接。
可选地,本申请实施例中,上述第二转动部件16也可以包括至少一个第二转动销,一个第二转动销的一端与第二承载结构12的一个内侧壁连接,该一个第二转动销的另一端与第三承载结构13的一个外侧壁连接。
本申请实施例中,可以将第一承载结构与第二承载结构通过至少一个第一轴承连接、将第二承载结构与第三承载结构通过至少一个第二轴承连接,以实现各个承载结构之间灵活地转动。
可以理解,可以通过采用轴承(例如至少一个第一轴承和至少一个第二轴承)作为支点,以使得第二承载结构和第三承载结构、第三承载结构可以通过轴承的转轴转动,从而带动镜头部件移动,以实现防抖功能。
可选地,本申请实施例中,上述第一承载结构11的至少一个内侧壁和第二承载结构12的至少一个外侧壁设置有相对的第一凹槽结构,上述至少一个第一轴承的定子位于第一凹槽结构内。
可以理解,第一承载结构11的至少一个内侧壁上设置有第一凹槽结构,第二承载结构12的至少一个外侧壁上设置有第一凹槽结构,且第一承载结构11上的第一凹槽结构与第二承载结构12上的第一凹槽结构相对设置。
需要说明的是,上述“第一承载结构11上的第一凹槽结构与第二承载结构12上的第一凹槽结构相对设置”可以理解为:第一承载结构11上的第一凹槽结构所在平面与第二承载结构12上的第一凹槽结构所在平面平行,且第一承载结构11上的第一凹槽结构的中心点与第二承载结构12上的第一凹槽结构的中心点的连线与第一转动部件的转轴平行,以便于将一个第一轴承的一个定子放置于第一承载结构11上的第一凹槽结构内,且将该一个第一轴承的另一个定子放置于第二承载结构12上的第一凹槽结构内。
可选地,本申请实施例中,上述第一承载结构11的至少一个内侧壁包括一个内侧壁或两个内侧壁;上述第二承载结构12的至少一个外侧壁包括一个外侧壁或两个外侧壁。
可以理解,若第一承载结构11的至少一个内侧壁包括一个内侧壁,且该一个内侧壁上设置有第一凹槽结构,第二承载结构12的至少一个外侧壁包括一个外侧壁,且该一个外侧壁上设置有第一凹槽结构,则该一个内侧壁上的第一凹槽结构与该一个外侧壁上的第一凹槽结构相对。若第一承载结构11的至少一个内侧壁包括两个内侧壁,且每个内侧壁上分别设置有第一凹槽结构,第二承载结构12的至少一个外侧壁包括两个外侧壁,且每个外侧壁上分别设置有第一凹槽结构,则每个内侧壁中的一个第一凹槽结构与每个外侧壁中的一个第一凹槽结构相对,且每个内侧壁中的另一个第一凹槽结构与每个外侧壁中的另一个第一凹槽结构相对。
可选地,本申请实施例中,若第一承载结构11的至少一个内侧壁包括一个内侧壁,且该一个内侧壁上设置有第一凹槽结构,则至少一个第一轴承包括一个第一轴承,且该一个第一轴承的定子位于该一个内侧壁上的第一凹槽结构内。
可选地,本申请实施例中,如图5所示,第一承载结构11的至少一个内侧壁包括两个内侧壁,该第一承载结构11的一个内侧壁上设置有第一凹槽结构(例如凹槽26),且该第一承载结构11的另一个内侧壁上设置有第一凹槽结构(例如凹槽27);至少一个第一轴承包括两个第一轴承(例如轴承20和轴承21),该轴承20的一个定子位于凹槽26内,该轴承21的一个定子位于凹槽27内。
可选地,本申请实施例中,如图6所示,第二承载结构12的至少一个外侧壁包括两个外侧壁,该第二承载结构12的一个外侧壁上设置有第一凹槽结构(例如凹槽28),且该第二承载结构12的另一个外侧壁上设置有第一凹槽结构(例如凹槽29);至少一个第一轴承包括两个第一轴承(例如轴承20和轴承21),该轴承20的一个定子位于凹槽28内,该轴承21的一个定子位于凹槽29内。
可选地,本申请实施例中,上述第二承载结构12的至少一个内侧壁和第三承载结构13的至少一个外侧壁设置有相对的第二凹槽结构,上述至少一个第二轴承的定子位于第二凹槽结构内。
可以理解,第二承载结构12的至少一个内侧壁上设置有第二凹槽结构,第三承载结构13的至少一个外侧壁上设置有第二凹槽结构,且第二承载结构12上的第二凹槽 结构与第三承载结构13上的第二凹槽结构相对设置。
需要说明的是,上述“第二承载结构12上的第二凹槽结构与第三承载结构13上的第二凹槽结构相对设置”可以理解为:第二承载结构12上的第二凹槽结构所在平面与第三承载结构13上的第二凹槽结构所在平面平行,且第二承载结构12上的第二凹槽结构的中心点与第三承载结构13上的第二凹槽结构的中心点的连线与第二转动部件的转轴平行,以便于将一个第二轴承的一个定子放置于第二承载结构12上的第二凹槽结构内,且将该一个第二轴承的另一个定子放置于第三承载结构13上的第二凹槽结构内。
可选地,本申请实施例中,上述第二承载结构12的至少一个内侧壁包括一个内侧壁或两个内侧壁;上述第三承载结构13的至少一个外侧壁包括一个外侧壁或两个外侧壁。
可以理解,若第二承载结构12的至少一个内侧壁包括一个内侧壁,且该一个内侧壁上设置有第二凹槽结构,第三承载结构13的至少一个外侧壁包括一个外侧壁,且该一个外侧壁上设置有第二凹槽结构,则该一个内侧壁上的第二凹槽结构与该一个外侧壁上的第二凹槽结构相对。若第二承载结构12的至少一个内侧壁包括两个内侧壁,且每个内侧壁上分别设置有第二凹槽结构,第三承载结构13的至少一个外侧壁包括两个外侧壁,且每个外侧壁上分别设置有第二凹槽结构,则每个内侧壁中的一个第二凹槽结构与每个外侧壁中的一个第二凹槽结构相对,且每个内侧壁中的另一个第二凹槽结构与每个外侧壁中的另一个第二凹槽结构相对。
可选地,本申请实施例中,若第二承载结构12的至少一个内侧壁包括一个内侧壁,且该一个内侧壁上设置有第二凹槽结构,则至少一个第二轴承包括一个第二轴承,且该一个第二轴承的定子位于该一个内侧壁上的第二凹槽结构内。
可选地,本申请实施例中,如图7所示,第二承载结构12的至少一个内侧壁包括两个内侧壁,该第二承载结构12的一个内侧壁上设置有第二凹槽结构(例如凹槽30),且该第二承载结构12的另一个内侧壁上设置有第二凹槽结构(例如凹槽31);至少一个第二轴承包括两个第二轴承(例如轴承23和轴承24),该轴承23的一个定子位于凹槽30内,该轴承24的一个定子位于凹槽31内。
可选地,本申请实施例中,如图8所示,第三承载结构13的至少一个外侧壁包括两个外侧壁,该第三承载结构13的一个外侧壁上设置有第二凹槽结构(例如凹槽32),且该第三承载结构13的另一个外侧壁上设置有第二凹槽结构(例如凹槽33);至少一个第二轴承包括两个第二轴承(例如轴承23和轴承24),该轴承23的一个定子位于凹槽32内,该轴承24的一个定子位于凹槽33内。
可选地,本申请实施例中,第一承载结构11的至少一个内侧壁和第二承载结构12的至少一个外侧壁设置有相对的第一凹槽结构,且第二承载结构12的至少一个内侧壁和第三承载结构13的至少一个外侧壁设置有相对的第二凹槽结构。
可选地,本申请实施例中,如图9所示,第二承载结构12的两个内侧壁上分别设置有两个第一凹槽结构(例如凹槽30和凹槽31),且该第二承载结构12的两个外侧壁上分别设置有两个第一凹槽结构(例如凹槽28和凹槽29),以将如图4所示的轴承20放置在凹槽28内,将轴承21放置在凹槽29内,将轴承23放置在凹槽30内, 将轴承24放置在凹槽31内。
可选地,本申请实施例中,第一承载结构11上的第一凹槽结构、第二承载结构12上的第一凹槽结构、第二承载结构12上的第二凹槽结构以及第三承载结构13上的第二凹槽结构的尺寸可以相同,也可以不同。具体的,可以根据实际使用需求设定,本申请实施例中不作限制。
可选地,本申请实施例中,凹槽结构(例如第一凹槽结构和/或第二凹槽结构)内还可以设置有挡板,该挡板用于将定子固定在该凹槽结构内。可以理解,本申请实施例中的挡板的数量与凹槽结构的数量相同。
可选地,本申请实施例中,上述挡板可以与凹槽结构通过激光焊接方式连接,或通过胶水粘接方式连接。具体的,可以根据实际使用需求设定,本申请实施例中不作限制。
本申请实施例中,可以通过在第一承载结构的至少一个内侧壁和第二承载结构的至少一个外侧壁设置相对的第一凹槽结构,以通过该第一凹槽结构将至少一个第一轴承分别与第一承载结构和第二承载结构固定,从而提升第一承载结构与第二承载结构之间连接的可靠性。
本申请实施例中,可以通过在第二承载结构的至少一个内侧壁和第三承载结构的至少一个外侧壁设置相对的第二凹槽结构,以通过该第二凹槽结构将至少一个第二轴承与第二承载结构、第二轴承与第三承载结构固定,以提升第二承载结构与第三承载结构之间连接的可靠性。
可选地,在本申请实施例的一种可能的实现方式中,结合图4,如图10所示,第一承载结构11的第一内侧壁设置有至少一个第一磁石(图10中以两个第一磁石示意,例如磁石32和磁石33),且第二承载结构12的第三内侧壁设置有至少一个第二磁石(图10中以两个第二磁石示意,例如磁石34和磁石35),第一内侧壁所在平面与第三内侧壁所在平面垂直。
示例性的,图11示出了第一承载结构11上的磁石和第二承载结构12上的磁石。如图11A所示,第一承载结构11的第一内侧壁上设置有至少一个第一磁石(例如磁石32和磁石33);如图11B所示,第二承载机构12的第三内侧壁设置有至少一个第二磁石(例如磁石34和磁石35)。
可选地,本申请实施例中,上述第一承载结构11的第一内侧壁上设置有至少一个第一凸块;至少一个第一磁石中每个第一磁石分别通过一个第一凸块与第一内侧壁固定连接。
可选地,本申请实施例中,每个第一磁石可以分别与一个第一凸块通过胶水粘接方式连接。
可选地,本申请实施例中,上述第二承载结构12的第三内侧壁上设置有至少一个第一挡板;针对至少一个第二磁石中每个第二磁石分别通过一个第一挡板与第三内侧壁固定连接。
可选地,本申请实施例中,每个第一磁石可以分别与一个第一凸块通过胶水粘接方式连接;每个第二磁石可以分别与一个第一挡板通过胶水粘接方式连接。
可选地,本申请实施例中,针对至少一个第一磁石中的每个第一磁石,一个第一 磁石的第一端通过一个第一凸块与第一内侧壁固定连接,该一个第一磁石第一端为该一个第一磁石中南极所在的一端。
可选地,本申请实施例中,针对至少一个第二磁石中的每个第二磁石,一个第二磁石的第二端通过一个第一挡板与第三内侧壁固定连接,一个第二磁石的第二端为一个第二磁石中南极所在的一端。
本申请实施例中,磁石(例如至少一个第一磁石和/或至少一个第二磁石)用于为镜头模组提供磁场。
可选地,在本申请实施例的另一种可能的实现方式中,上述第一承载结构11的第一内侧壁设置有至少一个第一磁石,该第一承载结构11的第二内侧壁设置有至少一个第二磁石,且第一内侧壁所在平面和第二内侧所在平面垂直。
可选地,本申请实施例中,上述第一承载结构11的第一内侧壁上设置有至少一个第一凸块;至少一个第一磁石中每个第一磁石分别通过一个第一凸块与第一内侧壁固定连接。
可选地,本申请实施例中,上述第一承载结构11的第一内侧壁上设置有至少一个第一凸块;针对至少一个第一磁石中的每个第一磁石,该每个第一磁石分别通过一个第一凸块与第一内侧壁固定连接。
可选地,本申请实施例中,每个第一磁石可以分别与一个第一凸块通过胶水粘接方式连接。
需要说明的是,针对每个第一磁石通过第一凸块与第一内侧壁的连接方式的说明,可以参考上述实施例中的描述,本申请实施例在此不予赘述。
可选地,本申请实施例中,针对至少一个第二磁石中的每个第二磁石,一个第二磁石的第二端通过一个第二凸块与第二内侧壁固定连接,该一个第二磁石的第二端为一个第二磁石中南极所在的一端。
本申请实施例中,可以通过在第一承载结构上设置多个磁石(即至少一个第一磁石和至少一个第二磁石),或者在第一承载结构和第二承载结构上设置多个磁石(即至少一个第一磁石和至少一个第二磁石),以向镜头模组提供磁场,从而通过磁场的作用使得镜头部件发生移动。
可选地,本申请实施例中,上述镜头部件14包括镜头座141和镜头142。
需要说明的是,为了更清楚地示意镜头模组10的结构,图12出了本申请实施例提供的镜头模组10的镜头部件14与第三承载结构13的连接结构示意图。如图12所示,该镜头部件14包括:镜头座141、镜头座承载的镜头142,该镜头座141与第三承载结构13固定连接。
本申请实施例中,上述第三承载结构13的内面区域(例如内面底部区域)与镜头座141的第一区域(即天面区域)固定连接,该第一区域为镜头座141上设置有镜头142的一面,且该镜头142可以由第三承载结构13的内面区域中的中心区域贯穿。
示例性的,为了更清楚地示意镜头座141和镜头142的结构,图13示出了本申请实施例提供的镜头座141和镜头142的结构示意图。如图13所示,镜头座141为一个空腔结构,镜头142设置于镜头座141内,且镜头142的部分结构位于镜头座141外。
可选地,本申请实施例中,上述第三承载结构13的内面区域可以与镜头座141的 第一区域通过激光焊接方式连接,或者,通过胶水粘接方式连接。
示例性的,图14示出了本申请实施例提供的镜头座141、镜头142和第三承载结构13的连接结构示意图。结合图8和图13,如图14所示,第三承载结构13的内面底部区域与镜头142的位于镜头座141外的结构连接(例如固定连接),以将镜头座141和镜头142固定在第三承载结构13内。
又示例性的,图15示出了本申请实施例提供的镜头座141、镜头142和第三承载结构13的另一个视角的连接结构示意图,结合图12,如图15所示,第三承载结构13的内面底部区域与镜头142的位于镜头座141外的结构连接(例如固定连接),以将镜头座141和镜头142固定在第三承载结构13内。
可选地,本申请实施例中,镜头座141和镜头142可以为电子设备中的紧凑型相机模块(compact camera module,CCM)组件,该CCM组件可以实现电子设备的对焦拍照功能。
可选地,本申请实施例中,上述镜头座141的第一外侧壁设置有至少一个第一线圈,该镜头座141的第二外侧壁设置有至少一个第二线圈,且第一外侧壁所在平面和第二外侧壁所在平面垂直。
其中,上述至少一个第一线圈与镜头模组中的至少一个第一磁石相对设置,上述至少一个第二线圈与镜头模组中的至少一个第二磁石相对设置;或者,上述至少一个第一线圈与至少一个第二磁石相对设置,上述至少一个第二线圈与至少一个第一磁石相对设置。
需要说明的是,针对至少一个第一线圈中的每个第一线圈,一个第一线圈与一个磁石(例如至少一个第一磁石中的一个第一磁石或至少一个第二磁石中的一个第二磁石)相对设置,可以使得该一个磁石的磁场垂直于该一个第一线圈的电流方向,从而在该一个第一线圈通电后产生洛伦兹力,以带动镜头部件14移动;针对至少一个第二线圈中的每个第二线圈,一个第二线圈与一个磁石(例如至少一个第一磁石中的一个第一磁石或至少一个第二磁石中的一个第二磁石)相对设置,可以使得该一个磁石的磁场垂直于该一个第二线圈的电流方向,从而在该一个第二线圈通电后产生洛伦兹力,以带动镜头部件14移动。
本申请实施例中,在至少一个第一线圈中的每个第一线圈通电的情况下,该每个第一线圈的电流方向均相同(即所有第一线圈的电流方向均相同);上述至少一个第二线圈中的每个第二线圈在通电的情况下,该每个第二线圈的电流方向均相同(即所有第二线圈的电流方向均相同)。
可以理解,在每个第一线圈通电的情况下,该每个第一线圈均可以在磁场(即至少一个第一磁石的磁场或至少一个第二磁石的磁场)中产生洛伦兹力,以使得第二承载结构12和第三承载结构13可以绕第一转动部件15的转轴转动,从而带动镜头部件14移动;在每个第二线圈通电的情况下,该每个第二线圈均可以在磁场(即至少一个第一磁石中的一个第一磁石的磁场或至少一个第二磁石中的一个第二磁石的磁场)中产生洛伦兹力,以使得第三承载结构13可以绕第二转动部件16的转轴转动,从而带动镜头部件14移动。
可选地,本申请实施例中,上述至少一个第一线圈中的每个第一线圈均与镜头模 组所在的电子设备电性连接;上述至少一个第二线圈均与镜头模组所在的电子设备电性连接。
本申请实施例中,可以通过在镜头座的外侧壁上设置多个线圈(即至少一个第一线圈和至少一个第二线圈),以在该多个线圈中的线圈通电后该线圈产生洛伦兹力,从而可以带动镜头部件移动,以补偿镜头部件抖动产生的偏移量。
可选地,本申请实施例中,结合图13,如图16所示,上述镜头座141的第一外侧壁设置有第一电路板(例如电路板36),上述至少一个第一线圈(例如线圈37和线圈38)位于电路板36上;上述镜头座141的第二外侧壁设置有第二电路板(例如电路板39),上述至少一个第二线圈(例如线圈40和线圈41)位于电路板39上。
可选地,本申请实施例中,上述第一电路板和第二电路板可以为印刷电路板(printed circuit board,PCB)。
可选地,本申请实施例中,上述第一电路板与镜头座141的第一外侧壁通过胶水粘接方式连接;上述第二电路板与镜头座141的第二外侧壁通过胶水粘接方式连接。
可选地,本申请实施例中,上述第一电路板和第二电路板均与镜头座141电性连接,该镜头座141与镜头模组10所在的电子设备电性连接。
可选地,本申请实施例中,上述第一电路板包括一个端子,该第一电路板通过该一个端子与镜头座141电性连接;上述第二电路板与第一电路板电性连接。
示例性的,图17示出了本申请实施例提供的两个电路板(即第一电路板和第二电路板)的结构示意图。结合图16,如图17所示,第一电路板36与第二电路板39电性连接,且该第一电路板36包括一个端子42,该端子42用于该第一电路板36与镜头座141电性连接。
示例性的,图18示出了本申请实施例提供的一种镜头模组的可能的各个结构(即爆炸图),如图18所示,该镜头模组10包括第一承载结构11、第二承载结构12、第三承载结构13,镜头座141、镜头142、第一电路板(例如电路板36)、第二电路板(例如电路板39)、至少一个第一线圈(例如线圈37和线圈38),以及至少一个第二线圈(例如线圈40和线圈41)。
图19示出了本申请实施例中涉及的电子设备的一种可能的结构示意图。如图19所示,电子设备50可以包括:上述实施例中的镜头模组10,该镜头模组10中的第一承载结构与电子设备的壳体连接。
可选地,本申请实施例中,上述电子设备可以为移动终端设备,也可以为非移动终端设备。示例性的,移动终端设备可以为手机、平板电脑、笔记本电脑、掌上电脑、车载终端设备、可穿戴设备、超级移动个人计算机(ultra-mobile personal computer,UMPC)、上网本、个人游戏机、智能手表、电子摄像设备或者个人数字助理(personal digital assistant,PDA)等,非移动终端设备可以为个人计算机(personal computer,PC)、电视机(television,TV)、柜员机或者自助机等,本申请实施例不作具体限定。
本申请实施例提供一种电子设备,电子设备可以包括镜头模组,该镜头模组与电子设备连接。由于电子设备包括镜头模组,因此在镜头部件发生抖动时,可以通过镜头模组中的第二承载结构和第三承载结构的转动使得镜头部件沿一个方向移动,或者可以通过镜头模组中的第三承载结构的转动使得镜头部件沿另一个方向移动,且这两 个方向垂直,即镜头部件不仅可以在垂直于镜头部件的光轴的方向上移动,也可以在平行于镜头部件的光轴的方向上移动,从而可以补偿镜头部件在各个方向上抖动产生的偏移量,进而可以提升电子设备中的镜头的防抖效果。
图20示出了本申请实施例提供的一种电子设备控制方法的流程图,该电子设备控制方法可以应用于上述实施例所述的电子设备。如图20所示,本申请实施例提供的电子设备控制方法可以包括下述的步骤201和步骤202。
步骤201、在通过电子设备的镜头模组进行拍摄时,电子设备检测至少一个第一磁石的第一磁通量和至少一个第二磁石的第二磁通量。
本申请实施例中,上述至少一个第一磁石为第一承载结构的磁石,上述至少一个第二磁石为第二承载结构的磁石。
可选地,本申请实施例中,电子设备的镜头模组还包括检测模块,该检测模块用于检测磁石的磁通量。
可选地,本申请实施例中,电子设备可以通过检测模块检测至少一个第一磁石的磁通量和至少一个第二磁石的磁通量,并将检测到的磁通量发送给电子设备。
可选地,本申请实施例中,上述检测模块可以包括至少一个霍尔开关器件(hall Ic),该至少一个霍尔开关器件中的每个霍尔开关器件分别与镜头座141电性连接。
可选地,本申请实施例中,上述至少一个霍尔开关器件设置于镜头座141的第一外侧壁和第二外侧壁上,即至少一个霍尔开关器件中的一部分霍尔开关器件设置于镜头座141的第一外侧壁上,该至少一个霍尔开关器件中的另一部分霍尔开关器件设置于镜头座141的第二外侧壁上。
可选地,本申请实施例中,上述至少一个霍尔开关器件分别设置于第一电路板和第二电路板上(即至少一个霍尔开关器件中的一部分霍尔开关器件设置于第一电路板上,该至少一个霍尔开关器件中的另一部分霍尔开关器件设置于第二电路板上),且设置于第一电路板上的这部分霍尔开关器件通过第一电路板与镜头座141电性连接,设置于第二电路板上的这部分霍尔开关器件通过第二电路板与镜头座141电性连接。
可以理解,在镜头模组中的镜头部件发生抖动的情况下,至少一个霍尔开关器件相对于至少一个第一磁石(或至少一个第二磁石)的位置会发生变化,从而该至少一个霍尔开关器件检测到至少一个第一磁石的磁通量(或至少一个第二磁石的磁通量)发生变化(即相应的磁石的磁场发生变化)。
可选地,本申请实施例中,上述检测模块可以实时检测至少一个第一磁石的磁通量和至少一个第二磁石的磁通量。
步骤202、电子设备根据第一磁通量和第二磁通量,控制电子设备中镜头模组中的镜头部件移动。
可选地,本申请实施例中,上述步骤202具体可以通过下述的步骤202a和步骤202b实现。
步骤202a、电子设备根据第一磁通量和第二磁通量,确定镜头部件的偏移量。
可选地,本申请实施例中,电子设备可以根据检测到的第一磁通量和第二磁通量,通过采用预设算法,以确定镜头部件14的偏移量。
可以理解,在镜头部件14发生抖动的情况下,镜头模组10中的磁石的磁通量会 发生变化,检测模块可以检测当前的磁通量(即发生变化后的磁通量(即第一磁通量和第二磁通量)),以使得电子设备可以根据该第一磁通量和第二磁通量,确定镜头部件14的偏移量。
步骤202b、电子设备根据偏移量,控制镜头部件移动第一位移。
本申请实施例中,上述第一位移的方向与镜头的偏移方向相反,且第一位移的位移量与偏移量相同。
本申请实施例中,电子设备可以根据检测的第一磁通量和第二磁通量确定镜头部件14的偏移量,以控制镜头部件14移动与该偏移量对应的位移,以补偿镜头抖动产生的偏移量。
需要说明的是,上述“镜头的偏移方向”可以理解为:在发生抖动时,镜头部件的当前位置相对于该镜头部件的初始位置的偏移的方向。
本申请实施例提供的一种电子设备控制方法,在通过镜头模组进行拍摄时,电子设备可以检测磁通量(即至少一个第一磁石的第一磁通量和至少一个第二磁石的第二磁通量),并根据该磁通量,控制镜头部件移动。由于电子设备可以根据检测的第一磁通量和第二磁通量,确定镜头部件的偏移量,从而可以通过第二承载结构和第三承载结构的转动使得镜头部件沿一个方向移动,或者可以通过第三承载结构的转动使得镜头部件沿另一个方向移动,且这两个方向垂直,即镜头部件不仅可以在垂直于镜头部件光轴的方向上移动,也可以在平行于镜头部件光轴的方向上移动,从而可以补偿镜头在各个方向上抖动产生的偏移量,进而可以提升电子设备中的镜头的防抖效果。
可选地,本申请实施例中,在上述步骤202b之前,本申请实施例提供的电子设备控制方法可以包括下述的步骤301。
步骤301、电子设备为电子设备中镜头模组中的至少一个第一磁石对应的线圈和电子设备中镜头模组中的至少一个第二磁石对应的线圈通电。
可选地,本申请实施例中,电子设备可以根据镜头部件14的偏移量,确定为线圈(即至少一个第一磁石对应的线圈和至少一个第二磁石对应的线圈)通电时的电流参数,并通过该电流参数的电流产生洛伦兹力,以驱动镜头模组10中的承载结构(例如第二承载结构12和第三承载结构13,或者,第三承载结构13)转动,从而控制(带动)镜头部件14移动第一位移。
可选地,本申请实施例中,上述电流参数可以包括以下至少一项:电流值和电流方向。
可以理解,在电子设备确定镜头部件14的偏移量之后,可以根据镜头部件14的偏移量的方向,确定为线圈(即至少一个第一磁石对应的线圈和至少一个第二磁石对应的线圈)通电时的电流的方向,并通过该方向的电流使得该线圈在磁场中产生对应方向的洛伦兹力,以使得洛伦兹力的方向与镜头部件14的偏移量的方向相反,从而控制镜头部件14移动第一位移。
可选地,本申请实施例中,在电子设备控制镜头部件14移动第一位移之后,电子设备可以停止向镜头模组10中的线圈通电。
本申请实施例中,电子设备可以根据获取的磁通量确定镜头部件的偏移量,从而可以为至少一个第一磁石对应的线圈和至少一个第二磁石对应的线圈通电,以控制镜 头部件移动与该偏移量对应的位移,以补偿镜头抖动产生的偏移量。
需要说明的是,在本文中,术语“包括”、“包含”或者其任何其他变体意在涵盖非排他性的包含,从而使得包括一系列要素的过程、方法、物品或者装置不仅包括那些要素,而且还包括没有明确列出的其他要素,或者是还包括为这种过程、方法、物品或者装置所固有的要素。在没有更多限制的情况下,由语句“包括一个……”限定的要素,并不排除在包括该要素的过程、方法、物品或者装置中还存在另外的相同要素。
通过以上的实施方式的描述,本领域的技术人员可以清楚地了解到上述实施例方法可借助软件加必需的通用硬件平台的方式来实现,当然也可以通过硬件,但很多情况下前者是更佳的实施方式。基于这样的理解,本申请的技术方案本质上或者说对相关技术做出贡献的部分可以以软件产品的形式体现出来,该计算机软件产品存储在一个存储介质(如ROM/RAM、磁碟、光盘)中,包括若干指令用以使得一台电子设备(可以是手机,计算机,服务器,空调器,或者网络设备等)执行本申请各个实施例所述的方法。
上面结合附图对本申请的实施例进行了描述,但是本申请并不局限于上述的具体实施方式,上述的具体实施方式仅仅是示意性的,而不是限制性的,本领域的普通技术人员在本申请的启示下,在不脱离本申请宗旨和权利要求所保护的范围情况下,还可做出很多形式,均属于本申请的保护之内。

Claims (14)

  1. 一种镜头模组,所述镜头模组包括第一承载结构、设置于所述第一承载结构中的第二承载结构、设置于所述第二承载结构中的第三承载结构,以及与所述第三承载结构连接的镜头部件;
    其中,所述第一承载结构与所述第二承载结构之间通过第一转动部件连接,所述第二承载结构与所述第三承载结构之间通过第二转动部件连接,所述第一转动部件的转轴和所述第二转动部件的转轴垂直。
  2. 根据权利要求1所述的镜头模组,其中,所述第一承载结构的第一内侧壁设置有至少一个第一磁石,所述第一承载结构的第二内侧壁设置有至少一个第二磁石,且所述第一内侧壁所在平面和所述第二内侧壁所在平面垂直。
  3. 根据权利要求1所述的镜头模组,其中,所述第一承载结构的第一内侧壁设置有至少一个第一磁石,所述第二承载结构的第三内侧壁设置有至少一个第二磁石,且所述第一内侧壁所在平面与所述第三内侧壁所在平面垂直。
  4. 根据权利要求2或3所述的镜头模组,其中,所述镜头部件包括镜头座和所述镜头座承载的镜头;
    所述镜头座的第一外侧壁设置有至少一个第一线圈,所述镜头座的第二外侧壁设置有至少一个第二线圈,且所述第一外侧壁所在平面和所述第二外侧壁所在平面垂直;
    其中,所述至少一个第一线圈与所述至少一个第一磁石相对设置,所述至少一个第二线圈与所述至少一个第二磁石相对设置;或者,所述至少一个第一线圈与所述至少一个第二磁石相对设置,所述至少一个第二线圈与所述至少一个第一磁石相对设置。
  5. 根据权利要求4所述的镜头模组,其中,所述第一外侧壁设置有第一电路板,所述至少一个第一线圈位于所述第一电路板上;
    所述第二外侧壁设置有第二电路板,所述至少一个第二线圈位于所述第二电路板上。
  6. 根据权利要求5所述的镜头模组,其中,所述第一电路板和所述第二电路板均与所述镜头座电性连接,所述镜头座与所述镜头模组所在的电子设备电性连接。
  7. 根据权利要求1所述的镜头模组,其中,所述第一转动部件包括至少一个第一轴承,所述第一承载结构的至少一个内侧壁和所述第二承载结构的至少一个外侧壁设置有相对的第一凹槽结构,所述至少一个第一轴承的定子位于所述第一凹槽结构内。
  8. 根据权利要求1所述的镜头模组,其中,所述第二转动部件包括至少一个第二轴承,所述第二承载结构的至少一个内侧壁和所述第三承载结构的至少一个外侧壁设置有相对的第二凹槽结构,所述至少一个第二轴承的定子位于所述第二凹槽结构内。
  9. 一种电子设备,所述电子设备包括如权利要求1至8中任一项所述的镜头模组,所述镜头模组中的第一承载结构与所述电子设备的壳体连接。
  10. 一种电子设备控制方法,应用于如权利要求9所述的电子设备,所述方法包括:
    在通过所述电子设备的镜头模组进行拍摄时,检测至少一个第一磁石的第一磁通量和至少一个第二磁石的第二磁通量,其中所述至少一个第一磁石为所述第一承载结构的磁石,所述至少一个第二磁石为所述第二承载结构的磁石;
    根据所述第一磁通量和所述第二磁通量,控制所述电子设备中镜头模组中的镜头部件移动。
  11. 根据权利要求10所述的方法,其中,所述根据所述第一磁通量和所述第二磁通量,控制所述镜头部件移动,包括:
    根据所述第一磁通量和所述第二磁通量,确定所述镜头部件的偏移量;
    根据所述偏移量,控制所述镜头部件移动第一位移,其中所述第一位移的方向与所述镜头的偏移方向相反,且所述第一位移的位移量与所述偏移量相同。
  12. 根据权利要求11所述的方法,其中,所述根据所述偏移量,控制所述镜头部件移动第一位移之前,所述方法还包括:
    为所述电子设备中镜头模组中的至少一个第一磁石对应的线圈和所述电子设备中镜头模组中的至少一个第二磁石对应的线圈通电。
  13. 一种电子设备,包括处理器、存储器及存储在所述存储器上并可在所述处理器上运行的计算机程序,所述计算机程序被所述处理器执行时实现如权利要求10至12中任一项所述的电子设备控制方法的步骤。
  14. 一种计算机可读存储介质,所述计算机可读存储介质上存储计算机程序,所述计算机程序被处理器执行时实现如权利要求10至12中任一项所述的电子设备控制方法的步骤。
PCT/CN2020/131535 2019-11-28 2020-11-25 镜头模组、电子设备及电子设备控制方法 WO2021104318A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201911195338.6 2019-11-28
CN201911195338.6A CN110879502A (zh) 2019-11-28 2019-11-28 一种镜头模组、电子设备及电子设备控制方法

Publications (1)

Publication Number Publication Date
WO2021104318A1 true WO2021104318A1 (zh) 2021-06-03

Family

ID=69730254

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2020/131535 WO2021104318A1 (zh) 2019-11-28 2020-11-25 镜头模组、电子设备及电子设备控制方法

Country Status (2)

Country Link
CN (1) CN110879502A (zh)
WO (1) WO2021104318A1 (zh)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110879502A (zh) * 2019-11-28 2020-03-13 维沃移动通信有限公司 一种镜头模组、电子设备及电子设备控制方法
CN214011594U (zh) * 2020-06-30 2021-08-20 诚瑞光学(常州)股份有限公司 镜头驱动装置
CN113660401A (zh) * 2021-08-17 2021-11-16 维沃移动通信有限公司 镜头组件、摄像头模组及电子设备

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20100106010A (ko) * 2009-03-23 2010-10-01 엘지이노텍 주식회사 변위센서를 이용한 휴대폰 카메라의 틸트 및 성능 측정시스템
CN104698722A (zh) * 2015-03-27 2015-06-10 中山联合光电科技股份有限公司 一种镜头防抖装置
CN209002076U (zh) * 2018-12-05 2019-06-18 东莞佩斯讯光电技术有限公司 一种驱动结构及光学防抖摄像头
CN110475056A (zh) * 2019-08-27 2019-11-19 Oppo广东移动通信有限公司 移动终端及其图像采集结构
CN110879502A (zh) * 2019-11-28 2020-03-13 维沃移动通信有限公司 一种镜头模组、电子设备及电子设备控制方法

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100754730B1 (ko) * 2005-05-26 2007-09-03 삼성전자주식회사 카메라 렌즈 어셈블리의 손떨림 보정 장치
CN203465497U (zh) * 2013-08-05 2014-03-05 佛山华永科技有限公司 手机镜头的防抖装置
JP6811588B2 (ja) * 2016-11-10 2021-01-13 日本電産サンキョー株式会社 振れ補正機能付き光学ユニット
CN109413316A (zh) * 2018-12-05 2019-03-01 东莞佩斯讯光电技术有限公司 一种驱动结构及光学防抖摄像头

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20100106010A (ko) * 2009-03-23 2010-10-01 엘지이노텍 주식회사 변위센서를 이용한 휴대폰 카메라의 틸트 및 성능 측정시스템
CN104698722A (zh) * 2015-03-27 2015-06-10 中山联合光电科技股份有限公司 一种镜头防抖装置
CN209002076U (zh) * 2018-12-05 2019-06-18 东莞佩斯讯光电技术有限公司 一种驱动结构及光学防抖摄像头
CN110475056A (zh) * 2019-08-27 2019-11-19 Oppo广东移动通信有限公司 移动终端及其图像采集结构
CN110879502A (zh) * 2019-11-28 2020-03-13 维沃移动通信有限公司 一种镜头模组、电子设备及电子设备控制方法

Also Published As

Publication number Publication date
CN110879502A (zh) 2020-03-13

Similar Documents

Publication Publication Date Title
WO2021104318A1 (zh) 镜头模组、电子设备及电子设备控制方法
WO2021208898A1 (zh) 摄像模组及电子设备
CN105824165B (zh) 带抖动校正功能光学单元
TWI544233B (zh) 相機鏡頭模組
KR101651458B1 (ko) 카메라 렌즈 모듈
JP6444748B2 (ja) 振れ補正機能付き光学ユニット
KR20160035244A (ko) 카메라 렌즈 모듈
JP6592625B1 (ja) 光学装置、カメラ及び携帯電子機器
CN104698722A (zh) 一种镜头防抖装置
US11622173B2 (en) Lens driving device
WO2018107725A1 (zh) 摄像单元、摄像头模组及移动终端
US9743067B2 (en) Methods and devices for generating a stereoscopic image
EP3573324B1 (en) Camera assembly and electronic apparatus
JP2008122531A (ja) 像ぶれ補正装置、レンズ鏡筒及び撮像装置
US20240048846A1 (en) Camera Structure and Electronic Device
JP6846533B2 (ja) 像ぶれ補正装置及び撮像装置
JP7228609B2 (ja) 可動支援装置、像ぶれ補正装置、及び撮像装置
JPWO2019065825A1 (ja) 像ぶれ補正装置及び撮像装置
WO2022127757A1 (zh) 电子设备和控制方法
JP6846532B2 (ja) 像ぶれ補正装置及び撮像装置
CN102375286B (zh) 成像装置
KR101571037B1 (ko) 카메라 렌즈 모듈
CN102116994B (zh) 相机模组
US11808949B2 (en) Lens driving device for camera, camera and electronic apparatus
JP6857741B2 (ja) 像ぶれ補正装置及び撮像装置

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 20891766

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 20891766

Country of ref document: EP

Kind code of ref document: A1

122 Ep: pct application non-entry in european phase

Ref document number: 20891766

Country of ref document: EP

Kind code of ref document: A1

32PN Ep: public notification in the ep bulletin as address of the adressee cannot be established

Free format text: NOTING OF LOSS OF RIGHTS PURSUANT TO RULE 112(1) EPC (EPO FORM 1205A DATED 22/02/2023)

122 Ep: pct application non-entry in european phase

Ref document number: 20891766

Country of ref document: EP

Kind code of ref document: A1