WO2021104176A1 - 一种节能方法、装置,通信节点及计算机可读存储介质 - Google Patents

一种节能方法、装置,通信节点及计算机可读存储介质 Download PDF

Info

Publication number
WO2021104176A1
WO2021104176A1 PCT/CN2020/130573 CN2020130573W WO2021104176A1 WO 2021104176 A1 WO2021104176 A1 WO 2021104176A1 CN 2020130573 W CN2020130573 W CN 2020130573W WO 2021104176 A1 WO2021104176 A1 WO 2021104176A1
Authority
WO
WIPO (PCT)
Prior art keywords
communication node
power
output gear
power supply
power output
Prior art date
Application number
PCT/CN2020/130573
Other languages
English (en)
French (fr)
Inventor
刘绍龙
Original Assignee
中兴通讯股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 中兴通讯股份有限公司 filed Critical 中兴通讯股份有限公司
Publication of WO2021104176A1 publication Critical patent/WO2021104176A1/zh

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W52/00Power management, e.g. TPC [Transmission Power Control], power saving or power classes
    • H04W52/02Power saving arrangements
    • H04W52/0203Power saving arrangements in the radio access network or backbone network of wireless communication networks
    • H04W52/0206Power saving arrangements in the radio access network or backbone network of wireless communication networks in access points, e.g. base stations
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W52/00Power management, e.g. TPC [Transmission Power Control], power saving or power classes
    • H04W52/02Power saving arrangements
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W52/00Power management, e.g. TPC [Transmission Power Control], power saving or power classes
    • H04W52/04TPC
    • H04W52/30TPC using constraints in the total amount of available transmission power
    • H04W52/34TPC management, i.e. sharing limited amount of power among users or channels or data types, e.g. cell loading
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W52/00Power management, e.g. TPC [Transmission Power Control], power saving or power classes
    • H04W52/04TPC
    • H04W52/30TPC using constraints in the total amount of available transmission power
    • H04W52/34TPC management, i.e. sharing limited amount of power among users or channels or data types, e.g. cell loading
    • H04W52/343TPC management, i.e. sharing limited amount of power among users or channels or data types, e.g. cell loading taking into account loading or congestion level
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W52/00Power management, e.g. TPC [Transmission Power Control], power saving or power classes
    • H04W52/04TPC
    • H04W52/30TPC using constraints in the total amount of available transmission power
    • H04W52/36TPC using constraints in the total amount of available transmission power with a discrete range or set of values, e.g. step size, ramping or offsets
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W52/00Power management, e.g. TPC [Transmission Power Control], power saving or power classes
    • H04W52/04TPC
    • H04W52/30TPC using constraints in the total amount of available transmission power
    • H04W52/36TPC using constraints in the total amount of available transmission power with a discrete range or set of values, e.g. step size, ramping or offsets
    • H04W52/365Power headroom reporting
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02DCLIMATE CHANGE MITIGATION TECHNOLOGIES IN INFORMATION AND COMMUNICATION TECHNOLOGIES [ICT], I.E. INFORMATION AND COMMUNICATION TECHNOLOGIES AIMING AT THE REDUCTION OF THEIR OWN ENERGY USE
    • Y02D30/00Reducing energy consumption in communication networks
    • Y02D30/70Reducing energy consumption in communication networks in wireless communication networks

Definitions

  • This application relates to a wireless communication network, for example, to an energy-saving method, device, communication node, and computer-readable storage medium.
  • the power distribution of the base station is designed according to the maximum capacity of the base station. Now that the output power of the base station is continuously increasing, this power distribution method has high requirements on the power supply equipment, which is likely to cause a waste of resources.
  • the present application provides an energy-saving method, device, communication node, and computer-readable storage medium, which can dynamically adjust the power output of the communication node, greatly reduce the demand for power supply equipment, and realize energy-saving and emission-reduction.
  • An embodiment of the present application provides an energy saving method, including: a first communication node obtains power supply capability information of a second communication node, where the first communication node and the second communication node belong to an energy-saving cluster, and the energy-saving cluster corresponds to one power supply device; A communication node controls the power output of the first communication node according to its own power supply capability information, the power supply capability information of the second communication node, and the rated power of the power supply device.
  • An embodiment of the present application provides an energy-saving device, which includes: an acquisition module and a control module; the acquisition module is used to acquire power supply capability information of a second communication node, where the first communication node and the second communication node belong to an energy-saving cluster, which saves energy
  • the cluster corresponds to a power supply device;
  • the control module is used to control the power output of the first communication node according to its own power supply capability information, the power supply capability information of the second communication node, and the rated power of the power supply device.
  • An embodiment of the present application provides a communication node, including a processor and a memory communicatively connected with the processor, wherein the memory stores a computer program, and the computer program implements the method of any of the foregoing embodiments when being executed by the processor.
  • the embodiments of the present application also provide a computer-readable storage medium that stores a computer program, and when the computer program is executed by a processor, the method of any of the foregoing embodiments is implemented.
  • FIG. 1 is an architecture diagram of a mobile communication network provided by an embodiment of this application.
  • FIG. 2 is a schematic flowchart of an energy-saving method provided by an embodiment of this application.
  • FIG. 3 is a schematic flowchart of another energy-saving method provided by an embodiment of the application.
  • FIG. 4 is a schematic structural diagram of an energy-saving device provided by an embodiment of the application.
  • FIG. 5 is a schematic structural diagram of another energy-saving device provided by an embodiment of the application.
  • FIG. 6 is a schematic structural diagram of a communication node provided by an embodiment of this application.
  • the base station has become a key target for energy saving and emission reduction, and a large number of energy saving and emission reduction technologies have been applied to the base station.
  • the second-generation mobile communication technology (2nd-Generation, 2G) has gradually developed to the fifth-generation mobile communication technology (5th-Generation, 5G), and the base station bandwidth has changed from kilohertz.
  • the (K) level has increased to above the 100 megahertz (MHz) level.
  • the output power of the base station has also increased (the power consumption of the base station is also increasing).
  • W 1500 watt
  • the base stations are distributed according to the maximum power, and considering factors such as the increase in power consumption of the base station due to high temperature, a certain margin is reserved for the base station, then the requirements on the power supply equipment are very high, and it is easy to cause a waste of resources.
  • the main component of base station energy consumption is the power amplifier (Power Amplier, PA), and its actual power consumption is strongly related to the output power, and the output power is related to the service load.
  • PA Power Amplier
  • the output power of the base station can be adjusted by controlling the traffic load of the base station, thereby controlling the energy consumption of the base station.
  • the embodiments of the present application provide a mobile communication network (including but not limited to the fifth-generation mobile communication network (5th-Generation, 5G)).
  • the network architecture of the network may include network-side devices (for example, one or more types of Base station, transmission node, access node (Access Point, AP), relay, Node B (Node B, NB), Terrestrial Radio Access (Universal Terrestrial Radio Access, UTRA), Evolved Universal Terrestrial Radio Access (Evolved Universal Terrestrial) Radio Access, EUTRA, etc.) and terminal equipment (User Equipment (UE), user equipment data card, relay, mobile equipment, etc.).
  • network-side devices for example, one or more types of Base station, transmission node, access node (Access Point, AP), relay, Node B (Node B, NB), Terrestrial Radio Access (Universal Terrestrial Radio Access, UTRA), Evolved Universal Terrestrial Radio Access (Evolved Universal Terrestrial) Radio Access, EUTRA, etc.
  • UE User
  • Fig. 1 is an architecture diagram of a mobile communication network provided by an embodiment of the application.
  • the mobile communication network includes M base stations (M ⁇ 2) (in Fig. 1, base stations 1, base stations 2, ... Marked separately), M base stations belong to an energy-saving cluster, and the energy-saving cluster corresponds to one power supply device (that is, one power supply device supplies power for M base stations at the same time), each base station includes several cells, and the UE can access by accessing a certain cell The purpose of a certain base station.
  • an energy-saving method, device, communication node, and computer-readable storage medium that can run on the above-mentioned network architecture are provided, which can dynamically adjust the power output of the communication node, greatly reduce the demand for power supply equipment, and realize energy saving Reduce emissions.
  • the operating environment of the foregoing energy-saving method provided in the embodiments of the present application is not limited to the foregoing network architecture.
  • system and “network” in this application are often used interchangeably in this application.
  • first”, “second”, “third”, etc. in the specification, claims, and drawings of this application are used to distinguish different objects, rather than to limit a specific order.
  • the following embodiments of the present application can be implemented individually, and the various embodiments can also be implemented in combination with each other, which is not specifically limited by the embodiments of the present application.
  • FIG. 2 is a schematic flow chart of an energy saving method provided by an embodiment of the application. As shown in FIG. 2, the method provided in this embodiment is applicable to a first communication node (such as any one of the mobile communication network shown in FIG. 1).
  • a first communication node such as any one of the mobile communication network shown in FIG. 1.
  • the second communication node mentioned in this application is a base station other than base station 1, and the method includes the following steps.
  • the first communication node obtains power supply capability information of the second communication node, where the first communication node and the second communication node belong to an energy-saving cluster, and the energy-saving cluster corresponds to one power supply device.
  • the power supply capability information includes a power output gear, and the sum of the power output gear of the first communication node and the power output gear of the second communication node is less than or equal to the rated power of the power supply device.
  • the first communication node may map the cell power factor of the first communication node cell according to the power output gear, and the cell power factor is related to the traffic load capacity of the cell.
  • the first communication node controls the power output of the first communication node according to its own power supply capability information, the power supply capability information of the second communication node, and the rated power of the power supply device.
  • the first communication node may control service access according to the service load capability of the cell, thereby achieving control of the power output of the first communication node (ie, cell load control).
  • the first communication node may control the uplink and downlink radio resource load, the number of users, the uplink and downlink throughput, etc. (for example: load balancing strategy, load control, congestion strategy, etc.) to control the power output of the first communication node.
  • the first communication node may periodically compare the relationship between the actual output power at the current moment (that is, the power load demand of the first communication node at the current moment) and the power output gear of the first communication node, and The power output of the first communication node is controlled by at least one of a cell load control method and a power output gear adjustment strategy.
  • the cell load control method and power output gear adjustment strategy are respectively introduced. It is understandable that the first communication node can use the cell load control method alone to control its own power output, or it can use the power output gear adjustment strategy alone. To control its own power output, it is also possible to simultaneously use cell load control methods and power output gear adjustment strategies to control its own power output.
  • the method for the first communication node to control its own power output through the power output gear adjustment strategy may include: if the power output gear of the first communication node is higher than the power load demand of the first communication node at the current moment, it means that the first communication node at the current moment When the node is in the idle state, the first communication node can lower the power output gear of the first communication node by itself or at the request of other communication nodes (such as the second communication node); or, if the power output gear of the first communication node Lower than the power load demand of the first communication node at the current moment, indicating that the first communication node is busy at the current moment, the first communication node can increase the first communication by itself or after negotiating with other communication nodes (such as the second communication node) The power output gear of the node.
  • the sum of the adjusted power output gear of the first communication node and the power output gear of the second communication node still needs to be less than or equal to the rated power of the power supply device.
  • the first communication node A communication node allows a third communication node to preferentially access to increase the power load demand of the first communication node at the current moment; or, if the power output gear of the first communication node is lower than the power load demand of the first communication node at the current moment, And the priority of the first communication node is higher than the priority of the second communication node (that is, the third communication node (such as UE) preferentially accesses the first communication node). Since the first communication node is in a busy state at the current moment, the first communication node is busy.
  • a communication node adjusts the priority of the first communication node to be lower than the priority of the second communication node, so that the third communication node preferentially accesses the second communication node, reduces the power load demand of the first communication node at the current moment, and improves the first communication node at the current moment.
  • the power load demand of the communication node ensures that the power consumption of each communication node in the energy-saving cluster is balanced; or, if the power output gear of the first communication node is higher than the power load demand of the first communication node at the current moment, the second communication node The power output gear is lower than the power load demand of the second communication node at the current moment, and the priority of the first communication node is lower than the priority of the second communication node (that is, the fourth communication node (such as UE) preferentially accesses the second communication) Node), since the first communication node is in the idle state and the second communication node is in the busy state at the current moment, the first communication node adjusts the priority of the first communication node to be higher than the priority of the second communication node to allow the fourth communication node
  • the communication node has priority access, which increases the power load demand of the first communication node at the current moment, reduces the power load demand of the second communication node at the current moment, and ensures that the power consumption of each communication node in
  • the power output gear of the communication node is associated with the cell power factor of the cell of the communication node, and the cell power factor is used to indicate the traffic load capability.
  • the power output gear of the first communication node is associated with the cell power factor of the cell of the first communication node (hereinafter referred to as cell A), and the power output gear of the second communication node It is associated with the cell power factor of the cell of the second communication node (hereinafter referred to as cell B).
  • cell A the cell power factor of the cell of the first communication node
  • cell B cell power factor of the cell of the second communication node
  • Table 1 shows the power output gears of a first communication node and a second communication node and their Corresponding cell power factor association table.
  • the power output gear of the first communication node is 300W
  • the power output gear of the second communication node is 650W
  • the power output gear of the first communication node is the same as that of the second communication node.
  • the sum of the power output gears of the nodes is less than the rated power of the power supply equipment, which is 1000W
  • the cell power factor of cell A of the first communication node is 30%, that is, the traffic load threshold of cell A (also called traffic channel load utilization threshold) ) Is 30%.
  • the service load of the cell A reaches 30%, it means that the power load demand of the first communication node at the current moment is approximately equal to 300W of the power output gear.
  • the cell power factor of cell B of the second communication node is 60%, that is, the traffic load threshold of cell B is 60%.
  • the traffic load of the cell B reaches 60%, it means that the power load demand of the second communication node at the current moment is approximately equal to 650W of the power output gear.
  • the power output gear of the first communication node is 500W
  • the power output gear of the second communication node is 500W
  • the power output gear of the first communication node is different from the power output gear of the second communication node.
  • the sum is equal to the rated power of the power supply equipment is 1000W
  • the cell power factor of cell A of the first communication node is 50%.
  • the traffic load of cell A reaches 50%
  • the current power load demand of the first communication node is approximately equal to
  • the power output gear is 500W
  • the cell power factor of cell B of the second communication node is 50%.
  • the traffic load of cell B reaches 50%
  • FIG. 3 is a schematic flowchart of another energy saving method provided by an embodiment of the application. As shown in FIG. 3, the method further includes the following steps.
  • the first communication node broadcasts its own power supply capability information.
  • the first communication node may periodically broadcast its own power supply capability information, or when at least one of the power output gear and priority included in its own power supply capability information changes, the first communication node broadcasts Information about its own power supply capability.
  • An embodiment of the present application provides an energy-saving method, including a first communication node acquiring power supply capability information of a second communication node, where the first communication node and the second communication node belong to an energy-saving cluster, and the energy-saving cluster corresponds to one power supply device; first The communication node controls the power output of the first communication node according to its own power supply capability information, the power supply capability information of the second communication node, and the rated power of the power supply device.
  • the present application can dynamically adjust the power output of the communication node, greatly reduce the demand for power supply equipment, and realize energy saving and emission reduction.
  • the first communication node and the second communication node are different base stations in an energy-saving cluster
  • the third communication node and the fourth communication node are UEs that can access the base station as examples. of.
  • an energy-saving cluster includes base station X and base station Y, base station X and base station Y share power distribution capabilities, and base station X and base station Y exchange power supply capability information.
  • the base station X and the base station Y can control their own power output through cell load control or power output gear adjustment strategies according to the rated power of the power supply equipment.
  • base station X As an example, the description of base station X controlling its own power output through cell load control and power output gear adjustment strategies is as follows.
  • base station X adds EnergySavingCellInfo indication priority to the 3rd Generation Partnership Project (3rd Generation Partnership Project, 3GPP) Technical Specification (Technical Specification, TS) 38.331 broadcast message SystemInformationBlockType4, that is, the UE preferentially selects a higher priority cell to connect to it.
  • 3rd Generation Partnership Project 3rd Generation Partnership Project, 3GPP
  • Technical Specification Technical Specification, TS
  • SystemInformationBlockType4 broadcast message SystemInformationBlockType4
  • base station X adds the energy-saving access hysteresis detection factor EnergySavingClusterCellInfoUpdateHyst to SystemInformationBlockType3 of 3GPP TS 38.423 to instruct the UE to update energy-saving information.
  • Step 2) Base station X is powered on and initializes energy-saving cluster information.
  • Cell 1 has a low priority and energy-saving cluster information includes cells 1 and 2.
  • Base station Y is powered on and initializes energy-saving cluster information, where cell 2 has a high priority and energy-saving cluster.
  • the information includes cells 1 and 2.
  • Cell 1 and Cell 2 broadcast energy-saving cluster information and energy-saving access hysteresis detection factors through broadcast messages.
  • Step 3 In the network, UE1, UE2, ..., UE10 enter the overlapping coverage area of cells 1, 2. Assuming that the received signal strength of cells 1 and 2 meet the conditions, UE1, UE2, ..., UE10 preferentially select cell 2 for access, and cell 2’s The traffic channel load increases by more than 20%, and the power consumption of base station Y increases.
  • Base station X and base station Y negotiate according to the current equipment power consumption information (service load and power consumption curve) and service load information. According to the rated power of the total power supply equipment, adjust base station X and base station Y to use 40% of the rated power, and cell use 60% of the rated power, the service load limit of cell 1 in the energy-saving cluster is adjusted to 40%, and the service load limit of cell 2 is adjusted to 60%. The priority of cell 1 is adjusted to be high, and the access capability of cell 1 is restricted.
  • Step 4 According to the energy-saving access hysteresis detection factor of the broadcast message, UE1, UE2, ..., UE10 set priority update timers to periodically read and update the priority of energy-saving cluster cells.
  • Step 5 In the network, UE11, UE12,..., UE20 enter the overlapping coverage area of cells 1, 2, assuming that the received signal strength of cells 1 and 2 meet the conditions, compare the priorities of cells 1, 2, UE11, UE12,..., UE20 have priority When cell 1 is selected for access, the traffic channel load of cell 1 increases by more than 30%, and the power consumption of base station X increases.
  • Base station X and base station Y estimate power supply demand based on current service load information (service load and power consumption curve), exchange current power supply capacity information, and adjust base station X and base station Y to use 55% of the rated power according to the rated power of the total power supply equipment.
  • the cell uses 45% of the rated power.
  • the priority of cell 1 is adjusted to be high, the service load limit of cell 1 is adjusted to 55%, and the service load limit of cell 2 is adjusted to 45%.
  • Step 6 In the network, UE11, UE12, ..., UE20 leave the coverage areas of cells 1 and 2, the load of cell 1 is lower than 10%, and the priority is adjusted to low. UE1, UE2, ..., UE10 leave the coverage areas of cells 1, 2, and the load of cell 2 is lower than 15%.
  • Base station X and base station Y estimate power supply demand based on current service load information (service load and power consumption curve), exchange current power supply capacity information, and adjust base station X and base station Y to use 50% of the rated power according to the rated power of the total power supply equipment. Adjust the priority of cell 1 to high, adjust the service load limit of cell 1 to 50%, and adjust the service load limit of cell 2 to 50%.
  • an energy-saving cluster includes base station X and base station Y, base station X and base station Y share power distribution capabilities, and base station X and base station Y exchange power supply capability information.
  • the base station X and the base station Y can control their own power output through cell load control or power output gear adjustment strategies according to the rated power of the power supply equipment.
  • base station X As an example, the description of base station X controlling its own power output through cell load control and power output gear adjustment strategies is as follows.
  • base station X adds EnergySavingClusterCellInfo to the 3GPP TS 36.331/TS 38.331 broadcast message SystemInformationBlockType4 to indicate priority and energy-saving cluster information.
  • the priority may include an access priority and a power consumption priority, and a cell with a lower access level is preferentially selected for access under the same power consumption priority.
  • the co-site information indicates the co-site situation of each cell. Any co-site cell has a high service load and low energy saving probability. At this time, a co-site cell needs to be selected for access.
  • base station X adds the energy-saving access hysteresis detection factor EnergySavingClusterCellInfoUpdateHyst to the 3GPP TS 36.331 broadcast message SystemInformationBlockType3 to instruct the UE to update energy-saving information, energy-saving cluster information, and energy-saving access hysteresis detection factor of the cell.
  • Step 2) Base station X is powered on to initialize the energy-saving cluster information, where the access priority of cell 1 is high, the energy-saving cluster information includes cells 1, 2, 3, and cells 2 and 3 share base stations; base station Y is powered on, Initialize energy-saving cluster information, where the access priority of cells 2 and 3 is low, and the power consumption priority is low based on load.
  • the energy-saving cluster information includes cells 1, 2, 3, and cells 2 and 3 share base stations .
  • Step 3 Cells 1, 2, and 3 broadcast energy-saving cluster information and energy-saving access hysteresis detection factors through broadcast messages.
  • Step 4 In the network, UE1, UE2,..., UE20 enter the overlapping coverage area of cells 1, 2, and 3. Assuming that the received signal strength of cells 1, 2, and 3 all meet the conditions, UE1, UE2,..., UE20 preferentially select cell 1 to access , The traffic channel load of cell 1 increases by more than 30%, and the power consumption of base station X increases.
  • Base station X and base station Y estimate the power supply demand based on the current equipment power consumption information (service load and power consumption curve) and the service load information of each cell. According to the rated power of the total power supply equipment, adjust base station X and base station Y to use 40% of the rated power And 60%, the service load limit of cell 1 in the energy-saving cluster is adjusted to 70%, the service load limit of cell 2 is adjusted to 40%, the service load limit of cell 3 is adjusted to 40%, and the access priority of cell 1 is adjusted to low, and cell 2 The access priority of, 3 is high.
  • Step 5 In the network, UE21, UE22,..., UE30 enter the overlapping coverage areas of cells 1, 2, and 3, and obtain information through broadcast messages. Assuming that the received signal strengths of cells 1, 2, and 3 all meet the conditions, compare cells 1, 2, and 3. The access priority of cell 2 and cell 3 are shared, and cell 2 is preferentially selected for access. The traffic channel load of cell 2 increases by more than 30%, and the power consumption of base station Y increases.
  • Base station X and base station Y estimate the power supply demand based on the current equipment power consumption information (service load and power consumption curve) and the service load information of each cell. According to the rated power of the total power supply equipment, adjust base station X and base Y to use 25% of the rated power And 75%, the service load limit of cell 1 in the energy-saving cluster is adjusted to 60%, the service load limit of cell 2 is adjusted to 50%, the service load limit of cell 3 is adjusted to 40%, and the access priority of cells 1 and 2 is adjusted to be low. The access priority of cell 3 is high.
  • Step 6 In the network, UE1, UE2, ..., UE20 leave the coverage areas of cells 1, 2, and 3, and the load of cell 1 is lower than 5%.
  • Base station X and base station Y estimate the power supply demand based on the current equipment power consumption information (service load and power consumption curve) and the service load information of each cell. According to the rated power of the total power supply equipment, adjust base station X and base Y to use 30% of the rated power And 70%. In the energy-saving cluster, the service load limit of cell 1 is adjusted to 30%, the service load limit of cell 2 is adjusted to 60%, the service load limit of cell 3 is adjusted to 80%, and the access priority of cell 2 is adjusted to low, and cell 1 3.
  • the access priority of 3 is high; or, base station X and base station Y estimate the power supply demand based on the current equipment power consumption information (service load and power consumption curve) and the service load information of each cell, and according to the total rated power of the power supply equipment, Adjust base station X and base station Y to use 20% and 80% of the rated power.
  • the service load limit of cell 1 is adjusted to 30%
  • the service load limit of cell 2 is adjusted to 60%
  • the service load limit of cell 3 is adjusted to 60%.
  • the access priority of cell 2 is low, and the access priority of cells 1 and 3 is high.
  • an energy-saving cluster includes base station X and base station Y, base station X and base station Y share power distribution capabilities, and base station X and base station Y exchange power supply capability information.
  • the base station X and the base station Y can control their own power output through cell load control or power output gear adjustment strategies according to the rated power of the power supply equipment.
  • base station X As an example, the description of base station X controlling its own power output through cell load control and power output gear adjustment strategies is as follows.
  • base station X adds EnergySavingClusterCellInfo to the 3GPP TS 38.331 broadcast message SystemInformationBlockType4 to indicate priority and energy-saving cluster information.
  • the priority may include an access priority and a power consumption priority, and a cell with a lower access level is preferentially selected for access under the same power consumption priority.
  • the base station X adds the energy-saving access hysteresis detection factor EnergySavingClusterCellInfoUpdateHyst to the 3GPP TS 38.331 broadcast message SystemInformationBlockType3 to instruct the UE to update the energy-saving information.
  • base station X adds EnergySavingClusterCellInfoUpdate to the paging message of 3GPP TS 36.331 to indicate the priority change of the cell.
  • Step 2) Base station X is powered on and initializes energy-saving cluster information.
  • Cell 1 has a low priority and energy-saving cluster information includes cells 1 and 2.
  • Base station Y is powered on and initializes energy-saving cluster information, where cell 2 has a high priority and energy-saving cluster.
  • the information includes cells 1 and 2.
  • Cell 1 and Cell 2 broadcast energy-saving cluster information and energy-saving access hysteresis detection factors through broadcast messages.
  • Step 3 In the network, UE1, UE2, ..., UE10 enter the overlapping coverage area of cells 1, 2. Assuming that the received signal strength of cells 1 and 2 meet the conditions, UE1, UE2, ..., UE10 preferentially select cell 2 for access, and cell 2’s The traffic channel load increases by more than 30%, and the power consumption of base station Y increases.
  • Base station X and base station Y estimate power supply demand based on current equipment power consumption information (service load and power consumption curve) and service load information of each cell, and adjust base station X and base station Y to use 70% of the rated power according to the total rated power of power supply equipment And 30%, the service load limit of cell 1 in the energy-saving cluster is adjusted to 70%, the service load limit of cell 2 is adjusted to 30%, the access priority of cell 2 is adjusted to low, and the access priority of cell 1 is adjusted to high.
  • service load limit of cell 1 in the energy-saving cluster is adjusted to 70%
  • the service load limit of cell 2 is adjusted to 30%
  • the access priority of cell 2 is adjusted to low
  • the access priority of cell 1 is adjusted to high.
  • Step 4) UE1, UE2, ..., UE10 update the priority parameters according to the broadcast message received by the paging message.
  • Step 5 UE1 goes offline in the network. Before the hysteresis detection factor update system message period arrives, UE1 requests access again. Assuming that the received signal strengths of cells 1 and 2 meet the conditions, compare the access priority information of cells 1 and 2. Preference is given to cell 1 for access.
  • an energy-saving cluster includes base station X and base station Y, base station X and base station Y share power distribution capabilities, and base station X and base station Y exchange power supply capability information.
  • the base station X and the base station Y can control their own power output through cell load control or power output gear adjustment strategies according to the rated power of the power supply equipment.
  • base station X As an example, the description of base station X controlling its own power output through cell load control and power output gear adjustment strategies is as follows.
  • base station X adds EnergySavingClusterCellInfo to indicate priority and energy-saving cluster information in the broadcast message SystemInformationBlockType4 of 3GPP TS 38.331 and 3GPP TS 36.331.
  • the priority may include an access priority and a power consumption priority, and a cell with a lower access level is preferentially selected for access under the same power consumption priority.
  • the power consumption priority reflects the current power consumption information of the base station. In order not to affect the key performance indicator (KPI) of the network, when the power consumption priority is the same, the access to the cell with a lower priority is given priority.
  • KPI key performance indicator
  • the base station X adds the energy-saving access hysteresis detection factor EnergySavingClusterCellInfoUpdateHyst to the broadcast messages SystemInformationBlockType3 of 3GPP TS 36.331 and 3GPP TS 38.331 to instruct the UE to update energy-saving information.
  • base station X adds EnergySavingClusterCellInfoUpdate to the paging messages of 3GPP TS 36.331 and 3GPP TS 38.331 to indicate the priority change of the cell.
  • base station X is a Long Term Evolution (LTE) base station
  • base station Y is a 5G base station.
  • LTE Long Term Evolution
  • Step 2) Base station X is powered on and initializes energy-saving cluster information.
  • Cell 1 has a low priority and energy-saving cluster information includes cells 1 and 2.
  • Base station Y is powered on and initializes energy-saving cluster information, where cell 2 has a high priority and energy-saving cluster.
  • the information includes cells 1 and 2.
  • Cell 1 and Cell 2 broadcast energy-saving cluster information and energy-saving access hysteresis detection factors through broadcast messages.
  • Step 3 In the network, UE1, UE2, ..., UE10 enter the overlapping coverage area of cells 1, 2. Assuming that the received signal strength of cells 1 and 2 meet the conditions, UE1, UE2, ..., UE10 preferentially select cell 2 for access, and cell 2’s The traffic channel load increases by more than 40%, and the power consumption of base station Y increases.
  • Base station X and base station Y estimate the power supply demand based on the current equipment power consumption information (service load and power consumption curve) and the service load information of each cell. According to the rated power of the total power supply equipment, adjust base station X and base station Y to use 40% of the rated power And 60%, the service load limit of cell 1 in the energy-saving cluster is adjusted to 30%, the service load limit of cell 2 is adjusted to 70%, the access priority of cell 2 is adjusted to low, and the access priority of cell 1 is adjusted to high.
  • Step 4 According to the broadcast message energy-saving access hysteresis detection factor, UE1, UE2, ..., UE10 set priority update timers to periodically read and update the priority of cells in the energy-saving cluster.
  • Step 5 In the network, UE11, UE12,..., UE20 enter the overlapping coverage area of cells 1 and 2. Assuming that the received signal strength of cells 1 and 2 meet the conditions, compare the access priority and power consumption priority of cells 1 and 2. When cell 1 is selected for access, the traffic channel load of cell 1 increases by more than 20%, and the power consumption of base station X increases.
  • Base station X and base station Y estimate the power supply demand based on the current equipment power consumption information (service load and power consumption curve) and the service load information of each cell. According to the rated power of the total power supply equipment, adjust base station X and base Y to use 30% of the rated power And 70%, the service load limit of cell 1 in the energy-saving cluster is adjusted to 30%, the service load limit of cell 2 is adjusted to 70%, the access priority of cell 1 is adjusted to low, and the access priority of cell 2 is adjusted to high.
  • Step 6 In the network, UE11, UE12, ..., UE20 leave the coverage areas of cells 1 and 2, and the load of cell 1 is lower than 10%. In the network, UE1, UE2, ..., UE10 leave the coverage areas of cells 1, 2, and the load of cell 2 is less than 10%.
  • Base station X and base station Y estimate the power supply demand based on the current equipment power consumption information (service load and power consumption curve) and the service load information of each cell. According to the rated power of the total power supply equipment, adjust base station X and base station Y to use 40% of the rated power And 60%, the service load limit of cell 1 in the energy-saving cluster is adjusted to 30%, the service load limit of cell 2 is adjusted to 70%, the access priority of cell 1 is adjusted to low, and the access priority of cell 2 is adjusted to high.
  • FIG. 4 is a schematic structural diagram of an energy-saving device provided by an embodiment of the application.
  • the energy-saving device may be configured in a first communication node. As shown in FIG. 4, it includes: an acquisition module 10 and a control module 11.
  • the obtaining module 10 is used to obtain the power supply capability information of the second communication node, where the first communication node and the second communication node belong to an energy-saving cluster, and the energy-saving cluster corresponds to one power supply device;
  • the control module 11 is used to obtain power supply capability according to its own The information, the power supply capability information of the second communication node, and the rated power of the power supply device control the power output of the first communication node.
  • the energy-saving device provided in this embodiment implements the energy-saving method of the foregoing embodiment.
  • the implementation principle and technical effect of the energy-saving device provided in this embodiment are similar, and will not be repeated here.
  • the power supply capability information includes a power output gear, and the sum of the power output gear of the first communication node and the power output gear of the second communication node is less than or equal to the rated power of the power supply device.
  • control module 11 is specifically configured to reduce the power output gear of the first communication node if the power output gear of the first communication node is higher than the power load demand of the first communication node at the current moment; or, If the power output gear of the first communication node is lower than the power load demand of the first communication node at the current moment, the power output gear of the first communication node is increased; wherein the adjusted power output gear of the first communication node is the same as The sum of the power output gears of the second communication node is less than or equal to the rated power of the power supply device.
  • the power supply capability information further includes a priority; the control module 11 is specifically configured to if the power output gear of the first communication node is higher than the power load demand of the first communication node at the current moment, and the power output of the first communication node The priority is higher than the priority of the second communication node, then the third communication node is allowed to access first; or, if the power output gear of the first communication node is lower than the power load demand of the first communication node at the current moment, and the first communication node The priority of the communication node is higher than the priority of the second communication node, adjust the priority of the first communication node to be lower than the priority of the second communication node; or, if the power output gear of the first communication node is higher than the current time The power load demand of the first communication node, the power output gear of the second communication node is lower than the power load demand of the second communication node at the current moment, and the priority of the first communication node is lower than the priority of the second communication node, then The priority of the first communication
  • the power output gear of the first communication node is associated with the cell power factor of the cell of the first communication node, and the cell power factor is used to indicate the traffic load capability.
  • FIG. 5 is a schematic structural diagram of another energy-saving device provided by an embodiment of the application, and further includes: a broadcasting module 12.
  • the broadcasting module 12 is used for broadcasting its own power supply capability information.
  • FIG. 6 is a schematic structural diagram of a communication node provided by an embodiment of the application.
  • the communication node includes a processor 60, a memory 61, and a communication interface 62; the number of processors 60 in the communication node may be one or more.
  • a processor 60 is taken as an example in FIG. 6; the processor 60, the memory 61, and the communication interface 62 in the communication node may be connected through a bus or in other ways.
  • connection through a bus is taken as an example.
  • the bus represents one or more of several types of bus structures, including a memory bus or a memory controller, a peripheral bus, a graphics acceleration port, a processor, or a local bus using any bus structure among multiple bus structures.
  • the memory 61 can be configured to store software programs, computer-executable programs, and modules, such as program instructions/modules corresponding to the methods in the embodiments of the present application.
  • the processor 60 executes at least one functional application and data processing of the communication node by running the software programs, instructions, and modules stored in the memory 61, that is, realizes the above-mentioned energy-saving method.
  • the memory 61 may include a program storage area and a data storage area.
  • the program storage area may store an operating system and application programs required by functions; the data storage area may store data created according to the use of the communication node.
  • the memory 61 may include a high-speed random access memory, and may also include a non-volatile memory, such as a magnetic disk storage device, a flash memory device, or other non-volatile solid-state storage devices.
  • the memory 61 may include a memory remotely provided with respect to the processor 60, and these remote memories may be connected to a communication node through a network. Examples of the aforementioned networks include, but are not limited to, the Internet, intranets, local area networks, mobile communication networks, and combinations thereof.
  • the communication interface 62 can be configured to receive and send data.
  • the embodiment of the present application also provides a computer-readable storage medium, and a computer program is stored on the computer-readable storage medium.
  • a computer program is stored on the computer-readable storage medium.
  • the computer storage medium of the embodiment of the present application may adopt any combination of one or more computer-readable media.
  • the computer-readable medium may be a computer-readable signal medium or a computer-readable storage medium.
  • the computer-readable storage medium may be, for example, but not limited to, an electrical, magnetic, optical, electromagnetic, infrared, or semiconductor system, device, or device, or a combination of any of the above.
  • Computer-readable storage media include (non-exhaustive list): electrical connections with one or more wires, portable computer disks, hard disks, random access memory (RAM), read-only memory (Read-Only Memory) , ROM), Erasable Programmable Read-Only Memory (EPROM), flash memory, optical fiber, portable compact disk read-only memory (Compact Disc Read-Only Memory, CD-ROM), optical storage devices, Magnetic storage device, or any suitable combination of the above.
  • the computer-readable storage medium may be any tangible medium that contains or stores a program, and the program may be used by or in combination with an instruction execution system, apparatus, or device.
  • the computer-readable signal medium may include a data signal propagated in baseband or as a part of a carrier wave, and the computer-readable program code is carried in the data signal. This propagated data signal can take many forms, including but not limited to electromagnetic signals, optical signals, or any suitable combination of the foregoing.
  • the computer-readable signal medium may also be any computer-readable medium other than the computer-readable storage medium, and the computer-readable medium may send, propagate, or transmit the program for use by or in combination with the instruction execution system, apparatus, or device .
  • the program code contained on the computer-readable medium can be transmitted by any suitable medium, including but not limited to wireless, wire, optical cable, radio frequency (RF), etc., or any suitable combination of the foregoing.
  • suitable medium including but not limited to wireless, wire, optical cable, radio frequency (RF), etc., or any suitable combination of the foregoing.
  • the computer program code used to perform the operations of the present disclosure can be written in one or more programming languages or a combination of multiple programming languages.
  • the programming languages include object-oriented programming languages-such as Java, Smalltalk, C++, Ruby, Go also includes conventional procedural programming languages-such as "C" language or similar programming languages.
  • the program code can be executed entirely on the user's computer, partly on the user's computer, executed as an independent software package, partly on the user's computer and partly executed on a remote computer, or entirely executed on the remote computer or server.
  • the remote computer can be connected to the user's computer through any kind of network-including Local Area Network (LAN) or Wide Area Network (WAN)-or it can be connected to an external computer (for example, use an Internet service provider to connect via the Internet).
  • LAN Local Area Network
  • WAN Wide Area Network
  • user terminal encompasses any suitable type of wireless user equipment, such as a mobile phone, a portable data processing device, a portable web browser, or a vehicle-mounted mobile station.
  • the various embodiments of the present application can be implemented in hardware or dedicated circuits, software, logic or any combination thereof.
  • some aspects may be implemented in hardware, while other aspects may be implemented in firmware or software that may be executed by a controller, microprocessor, or other computing device, although the present application is not limited thereto.
  • Computer program instructions can be assembly instructions, Instruction Set Architecture (ISA) instructions, machine instructions, machine-related instructions, microcode, firmware instructions, state setting data, or written in any combination of one or more programming languages Source code or object code.
  • ISA Instruction Set Architecture
  • the block diagram of any logic flow in the drawings of the present application may represent program steps, or may represent interconnected logic circuits, modules, and functions, or may represent a combination of program steps and logic circuits, modules, and functions.
  • the computer program can be stored on the memory.
  • the memory can be of any type suitable for the local technical environment and can be implemented using any suitable data storage technology, such as but not limited to read-only memory (ROM), random access memory (RAM), optical storage devices and systems (digital multi-function optical discs) DVD or CD) etc.
  • Computer-readable media may include non-transitory storage media.
  • the data processor can be any type suitable for the local technical environment, such as but not limited to general-purpose computers, special-purpose computers, microprocessors, digital signal processors (Digital Signal Processing, DSP), application specific integrated circuits (ASICs) ), programmable logic devices (Field Programmable Gate Array, FGPA), and processors based on multi-core processor architecture.
  • DSP Digital Signal Processing
  • ASICs application specific integrated circuits
  • FGPA programmable logic devices

Abstract

本申请公开了一种节能方法、装置,通信节点及计算机可读存储介质。该方法包括:第一通信节点获取第二通信节点的供电能力信息,其中,第一通信节点和第二通信节点属于一个节能簇,节能簇对应一个供电设备;第一通信节点根据自身的供电能力信息、第二通信节点的供电能力信息以及供电设备的额定功率,控制第一通信节点的功率输出。

Description

一种节能方法、装置,通信节点及计算机可读存储介质
相关申请的交叉引用
本申请基于申请号为201911166445.6、申请日为2019年11月25日的中国专利申请提出,并要求该中国专利申请的优先权,该中国专利申请的全部内容在此以引入方式并入本申请。
技术领域
本申请涉及无线通信网络,例如涉及一种节能方法、装置,通信节点及计算机可读存储介质。
背景技术
随着通信系统对流量需求的不断增长,基站带宽越来越大。为了保证基站的稳定覆盖,基站的输出功率也随之增大,因此基站对于配电的需求也越来越高。在一些情形下,基站配电均是按照基站的最大能力设计的,在基站输出功率不断增大的现在,该配电方法对供电设备的要求很高,容易造成资源的浪费。
发明内容
本申请提供一种节能方法、装置,通信节点及计算机可读存储介质,能够动态调节通信节点的功率输出,大大降低对供电设备的需求,实现节能减排。
本申请实施例提供一种节能方法,包括:第一通信节点获取第二通信节点的供电能力信息,其中,第一通信节点和第二通信节点属于一个节能簇,节能簇对应一个供电设备;第一通信节点根据自身的供电能力信息、第二通信节点的供电能力信息以及供电设备的额定功率,控制第一通信节点的功率输出。
本申请实施例提供一种节能装置,包括:获取模块和控制模块;获取模块,用于获取第二通信节点的供电能力信息,其中,第一通信节点和第二通信节点属于一个节能簇,节能簇对应一个供电设备;控制模块,用于根据自身的供电能力信息、第二通信节点的供电能力信 息以及供电设备的额定功率,控制第一通信节点的功率输出。
本申请实施例提供一种通信节点,包括:处理器和与处理器通信连接的存储器,其中,存储器存储有计算机程序,该计算机程序在被处理器执行时实现上述任一实施例的方法。
本申请实施例还提供了一种计算机可读存储介质,存储有计算机程序,计算机程序被处理器执行时实现上述任一实施例的方法。
关于本申请的以上实施例和其他方面以及其实现方式,在附图说明、具体实施方式和权利要求中提供更多说明。
附图说明
图1为本申请实施例提供的一种移动通信网络的架构图;
图2为本申请实施例提供的一种节能方法的流程示意图;
图3为本申请实施例提供的另一种节能方法的流程示意图;
图4为本申请实施例提供的一种节能装置的结构示意图;
图5为本申请实施例提供的另一种节能装置的结构示意图;
图6为本申请实施例提供的一种通信节点的结构示意图。
具体实施方式
下文中将结合附图对本申请的实施例进行详细说明。
随着全球能源和环境问题的日益突出,全球标准组织、运营商、设备商都已经投入到节能减排的活动中来。在一些无线通信网络中,电能的消耗主体是无线基站,因此,基站成为节能减排的重点对象,大量的节能减排技术被应用到基站中。
目前,随着通信系统对流量需求的不断增长,从第二代移动通信技术(2nd-Generation,2G)逐渐发展到第五代移动通信技术(5th-Generation,5G),基站带宽已经从千赫兹(K)级别增长到100兆赫兹(MHz)级别以上。为了保证基站的稳定覆盖,基站的输出功率也随之增大(基站的功耗也越来越大),对于5G基站来说甚至已经达到了1500瓦(W)级别,如果按照传统的每个基站都按照最大功率配电,并且考虑高温导致基站功耗上升等因素,为基站保留一定的余量,那么对供电设备的要求很高,容易造成资源的浪费。
基站能耗的主要器件是功率放大器(Power Amplier,PA),其实际功耗与输出功率强相关,输出功率又与业务负荷有关。由于业务负荷是波动的,很难在较长时间内持续保持峰值 (会在某一个瞬间达到最大值),尤其是多个基站同时出现峰值的概率比较低,绝大部分时间段基站的平均输出功率都在30%以下。因此,可以通过控制基站的业务负荷调整基站的输出功率,进而控制基站的能耗。
本申请实施例提供了一种移动通信网络(包括但不限于第五代移动通信网络(5th-Generation,5G)),该网络的网络架构可以包括网络侧设备(例如一种或多种类型的基站,传输节点,接入节点(Access Point,AP),中继,节点B(Node B,NB),陆地无线电接入(Universal Terrestrial Radio Access,UTRA),演进型陆地无线电接入(Evolved Universal Terrestrial Radio Access,EUTRA)等)和终端设备(用户设备(User Equipment,UE),用户设备数据卡,中继(relay),移动设备等)。
图1为本申请实施例提供的一种移动通信网络的架构图,如图1所示,移动通信网络包括M个基站(M≥2)(图1中以基站1、基站2、…基站M分别标示),M个基站属于一个节能簇,节能簇对应一个供电设备(即一个供电设备同时为M个基站供电),每个基站包括若干个小区,UE可以通过接入某个小区达到接入某个基站的目的。在本申请实施例中,提供一种可运行于上述网络架构的节能方法、装置,通信节点及计算机可读存储介质,能够动态调节通信节点的功率输出,大大降低对供电设备的需求,实现节能减排。本申请实施例中提供的上述节能方法的运行环境并不限于上述网络架构。
本申请中术语“系统”和“网络”在本申请中常被可互换使用。本申请的说明书和权利要求书及附图中的术语“第一”、“第二”、“第三”等是用于区别不同对象,而不是用于限定特定顺序。本申请下述各个实施例可以单独执行,各个实施例之间也可以相互结合执行,本申请实施例对此不作具体限制。
下面,对节能方法、装置及其技术效果进行描述。
图2为本申请实施例提供的一种节能方法的流程示意图,如图2所示,本实施例提供的方法适用于第一通信节点(如上述图1所示的移动通信网络中的任一基站,以基站1为例,本申请中提到的第二通信节点除了基站1以外的其他基站),该方法包括如下步骤。
S110、第一通信节点获取第二通信节点的供电能力信息,其中,第一通信节点和第二通信节点属于一个节能簇,节能簇对应一个供电设备。
在一实施例中,供电能力信息包括功率输出档位,第一通信节点的功率输出档位与第二通信节点的功率输出档位之和小于或者等于供电设备的额定功率。
在一实施例中,第一通信节点可以依据功率输出档位映射第一通信节点小区的小区功率 因子,小区功率因子与小区的业务负荷能力相关。
S120、第一通信节点根据自身的供电能力信息、第二通信节点的供电能力信息以及供电设备的额定功率,控制第一通信节点的功率输出。
在一实施例中,第一通信节点可以根据小区的业务负荷能力控制业务接入,进而实现控制第一通信节点的功率输出(即小区负荷控制)。可选的,第一通信节点可以控制上下行无线资源负荷、用户数、上下行吞吐量等(例如:负荷均衡策略,负荷控制,拥塞策略等)控制第一通信节点的功率输出。
在一实施例中,第一通信节点可以周期性地比较当前时刻的实际输出功率(即当前时刻第一通信节点的功率负荷需求)与第一通信节点的功率输出档位之间的关系,并通过小区负荷控制方法和功率输出档位调节策略中的至少一项来控制第一通信节点的功率输出。
下面,分别对小区负荷控制方法和功率输出档位调节策略进行介绍,可以理解的是,第一通信节点可以单独采用小区负荷控制方法控制自身的功率输出,也可以单独采用功率输出档位调节策略控制自身的功率输出,还可以同时采用小区负荷控制方法和功率输出档位调节策略控制自身的功率输出。
第一通信节点通过功率输出档位调节策略控制自身的功率输出的方法可以包括:若第一通信节点的功率输出档位高于当前时刻第一通信节点的功率负荷需求,表示当前时刻第一通信节点处于空闲态,第一通信节点可以自行或者在其他通信节点(如第二通信节点)的请求下,降低第一通信节点的功率输出档位;或者,若第一通信节点的功率输出档位低于当前时刻第一通信节点的功率负荷需求,表示当前时刻第一通信节点处于忙碌态,第一通信节点可以自行或者在与其他通信节点(如第二通信节点)协商后,提高第一通信节点的功率输出档位。
当然,调整后的第一通信节点的功率输出档位与第二通信节点的功率输出档位之和仍旧需要小于或者等于供电设备的额定功率。
供电能力信息还包括优先级;第一通信节点通过小区负荷控制来控制自身的功率输出的方法可以包括:若第一通信节点的功率输出档位高于当前时刻第一通信节点的功率负荷需求,且第一通信节点的优先级高于第二通信节点的优先级(即第三通信节点(如UE)优先接入第一通信节点),由于当前时刻第一通信节点处于空闲态,因此,第一通信节点允许第三通信节点优先接入,以提高当前时刻第一通信节点的功率负荷需求;或者,若第一通信节点的功率输出档位低于当前时刻第一通信节点的功率负荷需求,且第一通信节点的优先级高 于第二通信节点的优先级(即第三通信节点(如UE)优先接入第一通信节点),由于当前时刻第一通信节点处于忙碌态,因此,第一通信节点调节第一通信节点的优先级低于第二通信节点的优先级,使得第三通信节点优先接入第二通信节点,降低当前时刻第一通信节点的功率负荷需求,提升当前时刻第二通信节点的功率负荷需求,保证了节能簇中各通信节点功耗均衡;或者,若第一通信节点的功率输出档位高于当前时刻第一通信节点的功率负荷需求,第二通信节点的功率输出档位低于当前时刻第二通信节点的功率负荷需求,且第一通信节点的优先级低于第二通信节点的优先级(即第四通信节点(如UE)优先接入第二通信节点),由于当前时刻第一通信节点处于空闲态,第二通信节点处于忙碌态,因此,第一通信节点调节第一通信节点的优先级高于第二通信节点的优先级,以允许第四通信节点优先接入,提升当前时刻第一通信节点的功率负荷需求,降低当前时刻第二通信节点的功率负荷需求,保证了节能簇中各通信节点功耗均衡。
在一实施例中,通信节点的功率输出档位与通信节点的小区的小区功率因子关联,小区功率因子用于指示业务负荷能力。以第一通信节点和第二通信节点为例,第一通信节点的功率输出档位与第一通信节点的小区(以下简称小区A)的小区功率因子关联,第二通信节点的功率输出档位与第二通信节点的小区(以下简称小区B)的小区功率因子关联,假设供电设备的额定功率为1000W,表1示出了一种第一通信节点和第二通信节点的功率输出档位与其对应的小区功率因子的关联表。
表1
Figure PCTCN2020130573-appb-000001
从表1可以看出,在第一组中,第一通信节点的功率输出档位为300W,第二通信节点的功率输出档位为650W,第一通信节点的功率输出档位与第二通信节点的功率输出档位之和小于供电设备的额定功率为1000W,并且第一通信节点的小区A的小区功率因子为30%,即小区A的业务负荷门限(也称为业务信道负荷利用率门限)为30%。当小区A的业务负荷达到30%时,表示第一通信节点当前时刻的功率负荷需求近似等于功率输出档位的300W。 同理,第二通信节点的小区B的小区功率因子为60%,即小区B的业务负荷门限为60%。当小区B的业务负荷达到60%时,表示第二通信节点当前时刻的功率负荷需求近似等于功率输出档位的650W。
在第二组中,第一通信节点的功率输出档位为500W,第二通信节点的功率输出档位为500W,第一通信节点的功率输出档位与第二通信节点的功率输出档位之和等于供电设备的额定功率为1000W,并且第一通信节点的小区A的小区功率因子为50%,当小区A的业务负荷达到50%时,表示第一通信节点当前时刻的功率负荷需求近似等于功率输出档位的500W。同理,第二通信节点的小区B的小区功率因子为50%,当小区B的业务负荷达到50%时,表示第二通信节点当前时刻的功率负荷需求近似等于功率输出档位的500W。
在上述实施例的基础上,图3为本申请实施例提供的另一种节能方法的流程示意图,如图3所示,该方法还包括如下步骤。
S130、第一通信节点广播自身的供电能力信息。
需要说明的是,第一通信节点可以周期性地广播自身的供电能力信息,或者当自身的供电能力信息包括的功率输出档位和优先级中的至少一项发生变化时,第一通信节点广播自身的供电能力信息。
本申请实施例提供一种节能方法,包括第一通信节点获取第二通信节点的供电能力信息,其中,第一通信节点和第二通信节点属于一个节能簇,节能簇对应一个供电设备;第一通信节点根据自身的供电能力信息、第二通信节点的供电能力信息以及供电设备的额定功率,控制第一通信节点的功率输出。本申请能够动态调节通信节点的功率输出,大大降低对供电设备的需求,实现节能减排。
下面罗列一些示例性实施方式,用于说明本申请实施例提供的节能方法。在下述示例性实施方式可以单独执行,也可以相互结合执行,本申请实施例对此不作具体限制。示例性的,下述实施例中分别是以第一通信节点和第二通信节点为一个节能簇下的不同基站,第三通信节点和第四通信节点为可接入基站的UE为例进行说明的。
在一个示例性的实施例中,假设一个节能簇中包括基站X和基站Y,基站X和基站Y共享配电能力,基站X和基站Y之间交互供电能力信息。基站X和基站Y可以根据供电设备的额定功率,通过小区负荷控制或功率输出档位调节策略来控制自身的功率输出。
以基站X为例,基站X通过小区负荷控制和功率输出档位调节策略来控制自身的功率输出的说明如下。
首先,基站X在第三代合作伙伴计划(3rd Generation Partnership Project,3GPP)技术规范(Technical Specification,TS)38.331的广播消息SystemInformationBlockType4中增加EnergySavingCellInfo指示优先级,即UE优先选择优先级较高的小区接入。
Figure PCTCN2020130573-appb-000002
其次,基站X在3GPP TS 38.423的SystemInformationBlockType3中增加节能接入迟滞检测因子EnergySavingClusterCellInfoUpdateHyst,指示UE更新节能信息。
Figure PCTCN2020130573-appb-000003
步骤1)由于基站X、基站Y共享配电能力,配置基站X下的小区1、基站Y的小区2属于一个节能簇,其中,小区1的优先级低,小区2的优先级高,根据供电设备的额定功率,估算每个基站只能满足50%的负荷功耗,设置小区1和小区2的业务信道负荷利用率门限均为50%。
步骤2)基站X上电启动,初始化节能簇信息,其中小区1优先级低,节能簇信息包含小区1、2;基站Y上电启动,初始化节能簇信息,其中小区2优先级高,节能簇信息包含小区1、2。小区1、小区2通过广播消息广播节能簇信息和节能接入迟滞检测因子。
步骤3)网络中UE1、UE2、…、UE10进入小区1、2重叠覆盖区域,假设小区1、2接收信号强度均满足条件,UE1、UE2、…、UE10优先选择小区2接入,小区2的业务信道负荷上升超过20%,基站Y功耗上升。
基站X、基站Y根据当前设备功耗信息(业务负荷和功耗曲线)、业务负荷信息进行协 商,根据总的供电设备的额定功率,调整基站X、基站Y使用额定功率的40%,小区使用额定功率的60%,节能簇中小区1业务负荷限制调整为40%,小区2业务负荷限制调整为60%,调整小区1的优先级为高,限制小区1的接入能力。
步骤4)根据广播消息节能接入迟滞检测因子,UE1、UE2、…、UE10设置优先级更新定时器,周期性读取节能簇小区的优先级进行更新。
步骤5)网络中UE11、UE12、…、UE20进入小区1、2重叠覆盖区域,假设小区1、2接收信号强度均满足条件,比较小区1、2的优先级,UE11、UE12、…、UE20优先选择小区1接入,小区1的业务信道负荷上升超过30%,基站X功耗上升。
基站X、基站Y根据当前业务负荷信息(业务负荷和功耗曲线)估算供电需求,交互当前供电能力信息,根据总的供电设备的额定功率,调整基站X、基站Y使用额定功率的55%,小区使用额定功率的45%,调整小区1的优先级为高,小区1业务负荷限制调整为55%,小区2业务负荷限制调整为45%。
步骤6)网络中UE11、UE12、…、UE20离开小区1、2覆盖区域,小区1负荷低于10%,优先级调整为低。UE1、UE2、…、UE10离开小区1、2覆盖区域,小区2负荷低于15%。
基站X、基站Y根据当前业务负荷信息(业务负荷和功耗曲线)估算供电需求,交互当前供电能力信息,根据总的供电设备的额定功率,调整基站X、基站Y使用额定功率的50%,调整小区1的优先级为高,小区1业务负荷限制调整为50%,小区2业务负荷限制调整为50%。
在另一个示例性的实施例中,假设一个节能簇中包括基站X和基站Y,基站X和基站Y共享配电能力,基站X和基站Y之间交互供电能力信息。基站X和基站Y可以根据供电设备的额定功率,通过小区负荷控制或功率输出档位调节策略来控制自身的功率输出。
以基站X为例,基站X通过小区负荷控制和功率输出档位调节策略来控制自身的功率输出的说明如下。
首先,基站X在3GPP TS 36.331/TS 38.331的广播消息SystemInformationBlockType4中增加EnergySavingClusterCellInfo指示优先级和节能簇信息。优先级可以包括接入优先级和功耗优先级,在相同功耗优先级下优先选择接入等级较低的小区接入。共站信息指示各小区共站情况,任何一个共站小区业务负荷较高,节能概率较低,此时需要选择共站小区接入。
Figure PCTCN2020130573-appb-000004
Figure PCTCN2020130573-appb-000005
其次,基站X在3GPP TS 36.331的广播消息SystemInformationBlockType3中增加节能接入迟滞检测因子EnergySavingClusterCellInfoUpdateHyst,指示UE更新节能信息、节能簇信息和本小区节能接入迟滞检测因子。
Figure PCTCN2020130573-appb-000006
步骤1)由于基站X、基站Y共享配电能力,配置基站X下的小区1、基站Y的小区2、3属于一个节能簇,其中,小区1的接入优先级为高,小区2、3的接入优先级为低,根据供电设备的额定功率、基站业务负荷和功耗曲线,配置基站X、基站Y使用额定功率的30%和70%,小区1、2、3的业务信道负荷利用率门限均为50%。
步骤2)基站X上电启动,初始化节能簇信息,其中小区1的接入优先级为高,节能簇信息包含小区1、2、3,且小区2、3共基站;基站Y上电启动,初始化节能簇信息,其中小区2、3的接入优先级为低,功耗优先级基于负荷的接入优先级为低,节能簇信息包含小区1、2、3,且小区2、3共基站。
步骤3)小区1、2、3通过广播消息广播节能簇信息和节能接入迟滞检测因子。
步骤4)网络中UE1、UE2、…、UE20进入小区1、2、3重叠覆盖区域,假设小区1、2、3接收信号强度均满足条件,UE1、UE2、…、UE20优先选择小区1接入,小区1的业务信道负荷上升超过30%,基站X功耗上升。
基站X、基站Y根据当前设备功耗信息(业务负荷和功耗曲线)、各小区业务负荷信息估算供电需求,根据总的供电设备的额定功率,调整基站X、基站Y使用额定功率的40%和60%,节能簇中小区1业务负荷限制调整为70%,小区2业务负荷限制调整为40%,小区 3业务负荷限制调整为40%,调整小区1的接入优先级为低,小区2、3的接入优先级为高。
步骤5)网络中UE21、UE22、…、UE30进入小区1、2、3重叠覆盖区域,通过广播消息获取信息,假设小区1、2、3接收信号强度均满足条件,比较小区1、2、3的接入优先级,且小区2与小区3共站,优先选择小区2接入,小区2的业务信道负荷上升超过30%,基站Y功耗上升。
基站X、基站Y根据当前设备功耗信息(业务负荷和功耗曲线)、各小区业务负荷信息估算供电需求,根据总的供电设备的额定功率,调整基站X、基站Y使用额定功率的25%和75%,节能簇中小区1业务负荷限制调整为60%,小区2业务负荷限制调整为50%,小区3业务负荷限制调整为40%,调整小区1、2的接入优先级为低,小区3的接入优先级为高。
步骤6)网络中UE1、UE2、…、UE20离开小区1、2、3覆盖区域,小区1负荷低于5%。
基站X、基站Y根据当前设备功耗信息(业务负荷和功耗曲线)、各小区业务负荷信息估算供电需求,根据总的供电设备的额定功率,调整基站X、基站Y使用额定功率的30%和70%,节能簇中小区1业务负荷限制调整为30%,小区2业务负荷限制调整为60%,小区3业务负荷限制调整为80%,调整小区2的接入优先级为低,小区1、3的接入优先级为高;或者,基站X、基站Y根据当前设备功耗信息(业务负荷和功耗曲线)、各小区业务负荷信息估算供电需求,根据总的供电设备的额定功率,调整基站X、基站Y使用额定功率的20%和80%,节能簇中小区1业务负荷限制调整为30%,小区2业务负荷限制调整为60%,小区3业务负荷限制调整为60%,调整小区2的接入优先级为低,小区1、3的接入优先级为高。
在又一个示例性的实施例中,假设一个节能簇中包括基站X和基站Y,基站X和基站Y共享配电能力,基站X和基站Y之间交互供电能力信息。基站X和基站Y可以根据供电设备的额定功率,通过小区负荷控制或功率输出档位调节策略来控制自身的功率输出。
以基站X为例,基站X通过小区负荷控制和功率输出档位调节策略来控制自身的功率输出的说明如下。
首先,基站X在3GPP TS 38.331的广播消息SystemInformationBlockType4中增加EnergySavingClusterCellInfo指示优先级和节能簇信息。优先级可以包括接入优先级和功耗优先级,在相同功耗优先级下优先选择接入等级较低的小区接入。
Figure PCTCN2020130573-appb-000007
Figure PCTCN2020130573-appb-000008
其次,基站X在3GPP TS 38.331的广播消息SystemInformationBlockType3中增加节能接入迟滞检测因子EnergySavingClusterCellInfoUpdateHyst,指示UE更新节能信息。
Figure PCTCN2020130573-appb-000009
最后,基站X在3GPP TS 36.331的寻呼消息中增加EnergySavingClusterCellInfoUpdate指示本小区优先级变更。
Figure PCTCN2020130573-appb-000010
步骤1)由于基站X、基站Y共享配电能力,配置基站X下的小区1、基站Y的小区2属于一个节能簇,其中,小区1的优先级低,小区2的优先级高,根据供电设备的额定功率、基站业务负荷和功耗曲线,配置基站X、基站Y使用额定功率的30%和70%,小区1、2的业务信道负荷利用率门限均为50%。
步骤2)基站X上电启动,初始化节能簇信息,其中小区1优先级低,节能簇信息包含小区1、2;基站Y上电启动,初始化节能簇信息,其中小区2优先级高,节能簇信息包含小区1、2。小区1、小区2通过广播消息广播节能簇信息和节能接入迟滞检测因子。
步骤3)网络中UE1、UE2、…、UE10进入小区1、2重叠覆盖区域,假设小区1、2接收信号强度均满足条件,UE1、UE2、…、UE10优先选择小区2接入,小区2的业务信道负荷上升超过30%,基站Y功耗上升。
基站X、基站Y根据当前设备功耗信息(业务负荷和功耗曲线)、各小区业务负荷信息估算供电需求,根据总的供电设备的额定功率,调整基站X、基站Y使用额定功率的70%和30%,节能簇中小区1业务负荷限制调整为70%,小区2业务负荷限制调整为30%,调整小区2的接入优先级为低,小区1的接入优先级为高。
步骤4)UE1、UE2、…、UE10根据寻呼消息接收广播消息更新优先级参数。
步骤5)网络中UE1下线,在迟滞检测因子更新系统消息周期到来前,UE1重新请求接入,假设小区1、2接收信号强度均满足条件,比较小区1、2的接入优先级信息,优先选择小区1接入。
在再一个示例性的实施例中,假设一个节能簇中包括基站X和基站Y,基站X和基站Y共享配电能力,基站X和基站Y之间交互供电能力信息。基站X和基站Y可以根据供电设备的额定功率,通过小区负荷控制或功率输出档位调节策略来控制自身的功率输出。
以基站X为例,基站X通过小区负荷控制和功率输出档位调节策略来控制自身的功率输出的说明如下。
首先,基站X在3GPP TS 38.331、3GPP TS 36.331的广播消息SystemInformationBlockType4中增加EnergySavingClusterCellInfo指示优先级和节能簇信息。优先级可以包括接入优先级和功耗优先级,在相同功耗优先级下优先选择接入等级较低的小区接入。具体的,功耗优先级体现当前基站功耗信息,为了不影响网络关键绩效指标(Key Performance Indicator,KPI),功耗优先级相同时,优先接入优先级较低小区接入。
Figure PCTCN2020130573-appb-000011
其次,基站X在3GPP TS 36.331、3GPP TS 38.331的广播消息SystemInformationBlockType3中增加节能接入迟滞检测因子EnergySavingClusterCellInfoUpdateHyst,指示UE更新节能信息。
Figure PCTCN2020130573-appb-000012
Figure PCTCN2020130573-appb-000013
最后,基站X在3GPP TS 36.331、3GPP TS 38.331的寻呼消息中增加EnergySavingClusterCellInfoUpdate指示本小区优先级变更。
Figure PCTCN2020130573-appb-000014
步骤1)由于基站X、基站Y共享配电能力,配置基站X下的小区1、基站Y的小区2属于一个节能簇,其中,小区1的优先级低,小区2的优先级高,根据供电设备的额定功率、基站业务负荷和功耗曲线,配置基站X、基站Y使用额定功率的40%和60%,小区1、2的业务信道负荷利用率门限为40%和60%。其中,基站X为长期演进(Long Term Evolution,LTE)基站,基站Y为5G基站。
步骤2)基站X上电启动,初始化节能簇信息,其中小区1优先级低,节能簇信息包含小区1、2;基站Y上电启动,初始化节能簇信息,其中小区2优先级高,节能簇信息包含小区1、2。小区1、小区2通过广播消息广播节能簇信息和节能接入迟滞检测因子。
步骤3)网络中UE1、UE2、…、UE10进入小区1、2重叠覆盖区域,假设小区1、2接收信号强度均满足条件,UE1、UE2、…、UE10优先选择小区2接入,小区2的业务信道负荷上升超过40%,基站Y功耗上升。
基站X、基站Y根据当前设备功耗信息(业务负荷和功耗曲线)、各小区业务负荷信息估算供电需求,根据总的供电设备的额定功率,调整基站X、基站Y使用额定功率的40%和60%,节能簇中小区1业务负荷限制调整为30%,小区2业务负荷限制调整为70%,调整小区2的接入优先级为低,小区1的接入优先级为高。
步骤4)根据广播消息节能接入迟滞检测因子,UE1、UE2、…、UE10设置优先级更新定时器,周期性读取节能簇中小区的优先级进行更新。
步骤5)网络中UE11、UE12、…、UE20进入小区1、2重叠覆盖区域,假设小区1、2 接收信号强度均满足条件,比较小区1、2的接入优先级和功耗优先级,优先选择小区1接入,小区1的业务信道负荷上升超过20%,基站X功耗上升。
基站X、基站Y根据当前设备功耗信息(业务负荷和功耗曲线)、各小区业务负荷信息估算供电需求,根据总的供电设备的额定功率,调整基站X、基站Y使用额定功率的30%和70%,节能簇中小区1业务负荷限制调整为30%,小区2业务负荷限制调整为70%,调整小区1的接入优先级为低,小区2的接入优先级为高。
步骤6)网络中UE11、UE12、…、UE20离开小区1、2覆盖区域,小区1负荷低于10%。网络中UE1、UE2、…、UE10离开小区1、2覆盖区域,小区2负荷低于10%。
基站X、基站Y根据当前设备功耗信息(业务负荷和功耗曲线)、各小区业务负荷信息估算供电需求,根据总的供电设备的额定功率,调整基站X、基站Y使用额定功率的40%和60%,节能簇中小区1业务负荷限制调整为30%,小区2业务负荷限制调整为70%,调整小区1的接入优先级为低,小区2的接入优先级为高。
图4为本申请实施例提供的一种节能装置的结构示意图,该节能装置可以配置于第一通信节点中,如图4所示,包括:获取模块10和控制模块11。
获取模块10,用于获取第二通信节点的供电能力信息,其中,第一通信节点和第二通信节点属于一个节能簇,节能簇对应一个供电设备;控制模块11,用于根据自身的供电能力信息、第二通信节点的供电能力信息以及供电设备的额定功率,控制第一通信节点的功率输出。
本实施例提供的节能装置为实现上述实施例的节能方法,本实施例提供的节能装置实现原理和技术效果类似,此处不再赘述。
在一实施例中,供电能力信息包括功率输出档位,第一通信节点的功率输出档位与第二通信节点的功率输出档位之和小于或者等于供电设备的额定功率。
在一实施例中,控制模块11,具体用于若第一通信节点的功率输出档位高于当前时刻第一通信节点的功率负荷需求,则降低第一通信节点的功率输出档位;或者,若第一通信节点的功率输出档位低于当前时刻第一通信节点的功率负荷需求,则提高第一通信节点的功率输出档位;其中,调整后的第一通信节点的功率输出档位与第二通信节点的功率输出档位之和小于或者等于供电设备的额定功率。
在一实施例中,供电能力信息还包括优先级;控制模块11,具体用于若第一通信节点的功率输出档位高于当前时刻第一通信节点的功率负荷需求,且第一通信节点的优先级高于第二通信节点的优先级,则允许第三通信节点优先接入;或者,若第一通信节点的功率输出档 位低于当前时刻第一通信节点的功率负荷需求,且第一通信节点的优先级高于第二通信节点的优先级,则调节第一通信节点的优先级低于第二通信节点的优先级;或者,若第一通信节点的功率输出档位高于当前时刻第一通信节点的功率负荷需求,第二通信节点的功率输出档位低于当前时刻第二通信节点的功率负荷需求,且第一通信节点的优先级低于第二通信节点的优先级,则调节第一通信节点的优先级高于第二通信节点的优先级,以允许第四通信节点优先接入;其中,第一通信节点的功率输出档位与第二通信节点的功率输出档位之和小于或者等于供电设备的额定功率。
在一实施例中,第一通信节点的功率输出档位与第一通信节点的小区的小区功率因子关联,小区功率因子用于指示业务负荷能力。
在一实施例中,结合图4,图5为本申请实施例提供的另一种节能装置的结构示意图,还包括:广播模块12。
广播模块12,用于广播自身的供电能力信息。
本申请实施例还提供了一种通信节点,包括:处理器和与处理器通信连接的存储器,其中,存储器存储有计算机程序,该计算机程序在被处理器执行时实现如本申请任意实施例所提供的方法。图6为本申请实施例提供的一种通信节点的结构示意图,如图6所示,通信节点包括处理器60、存储器61和通信接口62;通信节点中处理器60的数量可以是一个或多个,图6中以一个处理器60为例;通信节点中的处理器60、存储器61、通信接口62可以通过总线或其他方式连接,图6中以通过总线连接为例。总线表示几类总线结构中的一种或多种,包括存储器总线或者存储器控制器,外围总线,图形加速端口,处理器或者使用多种总线结构中的任意总线结构的局域总线。
存储器61作为一种计算机可读存储介质,可设置为存储软件程序、计算机可执行程序以及模块,如本申请实施例中的方法对应的程序指令/模块。处理器60通过运行存储在存储器61中的软件程序、指令以及模块,从而执行通信节点的至少一种功能应用以及数据处理,即实现上述的节能方法。
存储器61可包括存储程序区和存储数据区,其中,存储程序区可存储操作系统、功能所需的应用程序;存储数据区可存储根据通信节点的使用所创建的数据等。此外,存储器61可以包括高速随机存取存储器,还可以包括非易失性存储器,例如磁盘存储器件、闪存器件、或其他非易失性固态存储器件。在一些实例中,存储器61可包括相对于处理器60远程设置的存储器,这些远程存储器可以通过网络连接至通信节点。上述网络的实例包括但不限于互 联网、企业内部网、局域网、移动通信网及其组合。
通信接口62可设置为数据的接收与发送。
本申请实施例还提供了一种计算机可读存储介质,计算机可读存储介质上存储有计算机程序,该计算机程序被处理器执行时实现如本申请任意实施例所提供的方法。
本申请实施例的计算机存储介质,可以采用一个或多个计算机可读的介质的任意组合。计算机可读介质可以是计算机可读信号介质或者计算机可读存储介质。计算机可读存储介质例如可以是——但不限于——电、磁、光、电磁、红外线、或半导体的系统、装置或器件,或者任意以上的组合。计算机可读存储介质包括(非穷举的列表):具有一个或多个导线的电连接、便携式计算机磁盘、硬盘、随机存取存储器(Random Access Memory,RAM)、只读存储器(Read-Only Memory,ROM)、可擦式可编程只读存储器(Erasable Programmable Read-Only Memory,EPROM)、闪存、光纤、便携式紧凑磁盘只读存储器(Compact Disc Read-Only Memory,CD-ROM)、光存储器件、磁存储器件、或者上述的任意合适的组合。在本申请中,计算机可读存储介质可以是任何包含或存储程序的有形介质,该程序可以被指令执行系统、装置或者器件使用或者与其结合使用。
计算机可读的信号介质可以包括在基带中或者作为载波一部分传播的数据信号,数据信号中承载了计算机可读的程序代码。这种传播的数据信号可以采用多种形式,包括但不限于电磁信号、光信号或上述的任意合适的组合。计算机可读的信号介质还可以是计算机可读存储介质以外的任何计算机可读介质,该计算机可读介质可以发送、传播或者传输用于由指令执行系统、装置或者器件使用或者与其结合使用的程序。
计算机可读介质上包含的程序代码可以用任何适当的介质传输,包括——但不限于无线、电线、光缆、射频(Radio Frequency,RF)等等,或者上述的任意合适的组合。
可以以一种或多种程序设计语言或多种程序设计语言组合来编写用于执行本公开操作的计算机程序代码,程序设计语言包括面向对象的程序设计语言—诸如Java、Smalltalk、C++、Ruby、Go,还包括常规的过程式程序设计语言—诸如“C”语言或类似的程序设计语言。程序代码可以完全地在用户计算机上执行、部分地在用户计算机上执行、作为一个独立的软件包执行、部分在用户计算机上部分在远程计算机上执行、或者完全在远程计算机或服务器上执行。在涉及远程计算机的情形中,远程计算机可以通过任意种类的网络——包括局域网(Local Area Network,LAN)或广域网(Wide Area Network,WAN)—连接到用户计算机,或者,可以连接到外部计算机(例如利用因特网服务提供商来通过因特网连接)。
本领域内的技术人员应明白,术语用户终端涵盖任何适合类型的无线用户设备,例如移动电话、便携数据处理装置、便携网络浏览器或车载移动台。
一般来说,本申请的多种实施例可以在硬件或专用电路、软件、逻辑或其任何组合中实现。例如,一些方面可以被实现在硬件中,而其它方面可以被实现在可以被控制器、微处理器或其它计算装置执行的固件或软件中,尽管本申请不限于此。
本申请的实施例可以通过移动装置的数据处理器执行计算机程序指令来实现,例如在处理器实体中,或者通过硬件,或者通过软件和硬件的组合。计算机程序指令可以是汇编指令、指令集架构(Instruction Set Architecture,ISA)指令、机器指令、机器相关指令、微代码、固件指令、状态设置数据、或者以一种或多种编程语言的任意组合编写的源代码或目标代码。
本申请附图中的任何逻辑流程的框图可以表示程序步骤,或者可以表示相互连接的逻辑电路、模块和功能,或者可以表示程序步骤与逻辑电路、模块和功能的组合。计算机程序可以存储在存储器上。存储器可以具有任何适合于本地技术环境的类型并且可以使用任何适合的数据存储技术实现,例如但不限于只读存储器(ROM)、随机访问存储器(RAM)、光存储器装置和系统(数码多功能光碟DVD或CD光盘)等。计算机可读介质可以包括非瞬时性存储介质。数据处理器可以是任何适合于本地技术环境的类型,例如但不限于通用计算机、专用计算机、微处理器、数字信号处理器(Digital Signal Processing,DSP)、专用集成电路(Application Specific Integrated Circuit,ASIC)、可编程逻辑器件((Field Programmable Gate Array,FGPA)以及基于多核处理器架构的处理器。

Claims (14)

  1. 一种节能方法,包括:
    第一通信节点获取第二通信节点的供电能力信息,其中,所述第一通信节点和所述第二通信节点属于一个节能簇,所述节能簇对应一个供电设备;
    所述第一通信节点根据自身的供电能力信息、所述第二通信节点的供电能力信息以及所述供电设备的额定功率,控制所述第一通信节点的功率输出。
  2. 根据权利要求1所述的方法,其中,所述供电能力信息包括功率输出档位,所述第一通信节点的功率输出档位与所述第二通信节点的功率输出档位之和小于或者等于所述供电设备的额定功率。
  3. 根据权利要求2所述的方法,其中,所述第一通信节点根据自身的供电能力信息、所述第二通信节点的供电能力信息以及所述供电设备的额定功率,控制所述第一通信节点的功率输出,包括:
    若所述第一通信节点的功率输出档位高于当前时刻所述第一通信节点的功率负荷需求,则所述第一通信节点降低所述第一通信节点的功率输出档位;或者,
    若所述第一通信节点的功率输出档位低于当前时刻所述第一通信节点的功率负荷需求,则所述第一通信节点提高所述第一通信节点的功率输出档位;
    其中,调整后的所述第一通信节点的功率输出档位与所述第二通信节点的功率输出档位之和小于或者等于所述供电设备的额定功率。
  4. 根据权利要求2所述的方法,其中,所述供电能力信息还包括优先级;所述第一通信节点根据自身的供电能力信息、所述第二通信节点的供电能力信息以及所述供电设备的额定功率,控制所述第一通信节点的功率输出,包括:
    若所述第一通信节点的功率输出档位高于当前时刻所述第一通信节点的功率负荷需求,且所述第一通信节点的优先级高于所述第二通信节点的优先级,则所述第一通信节点允许第三通信节点优先接入;或者,
    若所述第一通信节点的功率输出档位低于当前时刻所述第一通信节点的功率负荷需求,且所述第一通信节点的优先级高于所述第二通信节点的优先级,则所述第一通信节点调节所述第一通信节点的优先级低于所述第二通信节点的优先级;或者,
    若所述第一通信节点的功率输出档位高于当前时刻所述第一通信节点的功率负荷需 求,所述第二通信节点的功率输出档位低于当前时刻所述第二通信节点的功率负荷需求,且所述第一通信节点的优先级低于所述第二通信节点的优先级,则所述第一通信节点调节所述第一通信节点的优先级高于所述第二通信节点的优先级,以允许第四通信节点优先接入;
    其中,所述第一通信节点的功率输出档位与所述第二通信节点的功率输出档位之和小于或者等于所述供电设备的额定功率。
  5. 根据权利要求4所述的方法,其中,所述第一通信节点的功率输出档位与所述第一通信节点的小区的小区功率因子关联,所述小区功率因子用于指示业务负荷能力。
  6. 根据权利要求1所述的方法,还包括:
    所述第一通信节点广播自身的供电能力信息。
  7. 一种节能装置,包括:获取模块和控制模块;
    所述获取模块,用于获取第二通信节点的供电能力信息,其中,所述第一通信节点和第二通信节点属于一个节能簇,所述节能簇对应一个供电设备;
    所述控制模块,用于根据自身的供电能力信息、所述第二通信节点的供电能力信息以及所述供电设备的额定功率,控制所述第一通信节点的功率输出。
  8. 根据权利要求7所述的装置,其中,所述供电能力信息包括功率输出档位,所述第一通信节点的功率输出档位与所述第二通信节点的功率输出档位之和小于或者等于所述供电设备的额定功率。
  9. 根据权利要求8所述的装置,其中,
    所述控制模块,具体用于若所述第一通信节点的功率输出档位高于当前时刻所述第一通信节点的功率负荷需求,则降低所述第一通信节点的功率输出档位;或者,若所述第一通信节点的功率输出档位低于当前时刻所述第一通信节点的功率负荷需求,则提高所述第一通信节点的功率输出档位;其中,调整后的所述第一通信节点的功率输出档位与所述第二通信节点的功率输出档位之和小于或者等于所述供电设备的额定功率。
  10. 根据权利要求8所述的装置,其中,所述供电能力信息还包括优先级;
    所述控制模块,具体用于若所述第一通信节点的功率输出档位高于当前时刻所述第一通信节点的功率负荷需求,且所述第一通信节点的优先级高于所述第二通信节点的优先级,则允许第三通信节点优先接入;或者,若所述第一通信节点的功率输出档位低于当前时刻所述第一通信节点的功率负荷需求,且所述第一通信节点的优先级高于所述第二通信节点的优先级,则调节所述第一通信节点的优先级低于所述第二通信节点的优先级;或者,若所述第 一通信节点的功率输出档位高于当前时刻所述第一通信节点的功率负荷需求,所述第二通信节点的功率输出档位低于当前时刻所述第二通信节点的功率负荷需求,且所述第一通信节点的优先级低于所述第二通信节点的优先级,则调节所述第一通信节点的优先级高于所述第二通信节点的优先级,以允许第四通信节点优先接入;其中,所述第一通信节点的功率输出档位与所述第二通信节点的功率输出档位之和小于或者等于所述供电设备的额定功率。
  11. 根据权利要求10所述的装置,其中,所述第一通信节点的功率输出档位与所述第一通信节点的小区的小区功率因子关联,所述小区功率因子用于指示业务负荷能力。
  12. 根据权利要求7所述的装置,其中,所述装置还包括广播模块;
    所述广播模块,用于广播自身的供电能力信息。
  13. 一种通信节点,包括:处理器和与处理器通信连接的存储器,其中,存储器存储有计算机程序,该计算机程序在被所述处理器执行时实现如权利要求1-6中任一所述的节能方法。
  14. 一种计算机可读存储介质,存储有计算机程序,所述计算机程序被处理器执行时实现如权利要求1-6中任一所述的节能方法。
PCT/CN2020/130573 2019-11-25 2020-11-20 一种节能方法、装置,通信节点及计算机可读存储介质 WO2021104176A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201911166445.6A CN112839373A (zh) 2019-11-25 2019-11-25 一种节能方法、装置,通信节点及计算机可读存储介质
CN201911166445.6 2019-11-25

Publications (1)

Publication Number Publication Date
WO2021104176A1 true WO2021104176A1 (zh) 2021-06-03

Family

ID=75922233

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2020/130573 WO2021104176A1 (zh) 2019-11-25 2020-11-20 一种节能方法、装置,通信节点及计算机可读存储介质

Country Status (2)

Country Link
CN (1) CN112839373A (zh)
WO (1) WO2021104176A1 (zh)

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101400125A (zh) * 2008-10-15 2009-04-01 中兴通讯股份有限公司 一种基站控制器控制基站节能的方法和装置
WO2011137714A2 (zh) * 2011-04-15 2011-11-10 华为技术有限公司 基站设备的供电管理方法和装置
CN102695251A (zh) * 2011-03-21 2012-09-26 上海贝尔股份有限公司 移动通信系统中的节能方法
CN108513369A (zh) * 2018-02-01 2018-09-07 广西师范大学 一种分布式基站系统及组网方法
CN109713658A (zh) * 2019-01-16 2019-05-03 中国科学院声学研究所 一种基于恒流供电的海底观测网主基站

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101400125A (zh) * 2008-10-15 2009-04-01 中兴通讯股份有限公司 一种基站控制器控制基站节能的方法和装置
CN102695251A (zh) * 2011-03-21 2012-09-26 上海贝尔股份有限公司 移动通信系统中的节能方法
WO2011137714A2 (zh) * 2011-04-15 2011-11-10 华为技术有限公司 基站设备的供电管理方法和装置
CN108513369A (zh) * 2018-02-01 2018-09-07 广西师范大学 一种分布式基站系统及组网方法
CN109713658A (zh) * 2019-01-16 2019-05-03 中国科学院声学研究所 一种基于恒流供电的海底观测网主基站

Also Published As

Publication number Publication date
CN112839373A (zh) 2021-05-25

Similar Documents

Publication Publication Date Title
US10743286B2 (en) Paging processing method and device
WO2018228294A1 (zh) 小区重选方法及相关设备
KR101955778B1 (ko) 단말기가 요청하는 기지국 제어 단말기 전송 스로틀링
WO2020030051A1 (zh) 一种资源配置方法及装置
WO2021057990A1 (zh) 数据传输方法和装置、信息确定方法和装置以及存储介质
WO2021243655A1 (zh) 信息配置方法、装置、设备及可读存储介质
KR20130014449A (ko) 기지국 및 기지국의 단말 연결 방법
JP2015510337A (ja) アップリンク時間整合外のユーザ装置のための無線リソース制御接続解放
WO2017032203A1 (zh) 控制载波聚合ca下载速率的方法及基站
WO2020248579A1 (en) Method and apparatus for allocating pdu session id for terminal device
US20150105081A1 (en) Method And Apparatus For Triggering Cell Reselection Based On A Resource Suspension
WO2016082228A1 (zh) 一种调节空口容量密度的方法及装置
US8792355B2 (en) Adjustment of radio resource control state timers in a radio access network
WO2018028636A1 (zh) Rrc连接控制方法及装置、系统
WO2020019752A1 (zh) 信息指示方法及设备、网元设备、终端及计算机存储介质
US11330518B2 (en) Radio network node sleep operation
WO2023246101A1 (zh) 节能方法、基站及终端设备
WO2021104176A1 (zh) 一种节能方法、装置,通信节点及计算机可读存储介质
US20150139081A1 (en) Smartphones backgroung uplink small data packet optimization
US20230371118A1 (en) Communication method and device
WO2022147725A1 (zh) 通信方法及装置
CN107613562B (zh) 一种寻呼方法及装置
WO2021063107A1 (zh) 5g nsa的上行通信控制方法、装置、终端及计算机可读存储介质
WO2020220366A1 (zh) 信息确定方法及相关设备
CN109391924B (zh) 用于设备到设备(d2d)通信的方法、设备及计算机可读介质

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 20894645

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 20894645

Country of ref document: EP

Kind code of ref document: A1

32PN Ep: public notification in the ep bulletin as address of the adressee cannot be established

Free format text: NOTING OF LOSS OF RIGHTS PURSUANT TO RULE 112(1) EPC (EPO FORM 1205A DATED 23/02/2023)

122 Ep: pct application non-entry in european phase

Ref document number: 20894645

Country of ref document: EP

Kind code of ref document: A1