WO2021063107A1 - 5g nsa的上行通信控制方法、装置、终端及计算机可读存储介质 - Google Patents

5g nsa的上行通信控制方法、装置、终端及计算机可读存储介质 Download PDF

Info

Publication number
WO2021063107A1
WO2021063107A1 PCT/CN2020/107851 CN2020107851W WO2021063107A1 WO 2021063107 A1 WO2021063107 A1 WO 2021063107A1 CN 2020107851 W CN2020107851 W CN 2020107851W WO 2021063107 A1 WO2021063107 A1 WO 2021063107A1
Authority
WO
WIPO (PCT)
Prior art keywords
standard network
wireless standard
uplink communication
nsa
network
Prior art date
Application number
PCT/CN2020/107851
Other languages
English (en)
French (fr)
Inventor
高明刚
倪庆瑜
丁雪梅
徐莹
Original Assignee
中兴通讯股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 中兴通讯股份有限公司 filed Critical 中兴通讯股份有限公司
Publication of WO2021063107A1 publication Critical patent/WO2021063107A1/zh

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W36/00Hand-off or reselection arrangements
    • H04W36/0005Control or signalling for completing the hand-off
    • H04W36/0011Control or signalling for completing the hand-off for data sessions of end-to-end connection
    • H04W36/0022Control or signalling for completing the hand-off for data sessions of end-to-end connection for transferring data sessions between adjacent core network technologies
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W36/00Hand-off or reselection arrangements
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W36/00Hand-off or reselection arrangements
    • H04W36/0005Control or signalling for completing the hand-off
    • H04W36/0055Transmission or use of information for re-establishing the radio link
    • H04W36/0058Transmission of hand-off measurement information, e.g. measurement reports
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W76/00Connection management
    • H04W76/10Connection setup
    • H04W76/15Setup of multiple wireless link connections
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W88/00Devices specially adapted for wireless communication networks, e.g. terminals, base stations or access point devices
    • H04W88/02Terminal devices
    • H04W88/06Terminal devices adapted for operation in multiple networks or having at least two operational modes, e.g. multi-mode terminals

Definitions

  • the present disclosure relates to, but is not limited to, the field of communication technology.
  • 5G Fifth Generation Mobile Networks, fifth generation mobile communication technology
  • NSA Non-Stand Alone, non-independent networking
  • LTE Long Term Evolution
  • NR New Radio
  • the performance will be significantly deteriorated when the uplink communication is performed through one of the wireless networks.
  • 5G NSA terminals conduct high-definition voice and video calls, they use the LTE wireless standard network for uplink communication, but because part of the power is given to the 5G NR wireless standard network side at this time, they are in the same place and 5G at the same time.
  • the LTE wireless standard network power of the terminal can only transmit up to 20dBm.
  • the traditional terminal of the same pure LTE wireless network can transmit to 23dBm, and the difference of 3dBm is converted into the actual line communication data transmission efficiency value is 2 times the relationship. That is to say, the uplink communication transmission efficiency value of the maximum transmission power of the LTE side of the relevant 5G NSA terminal can only reach half of that of the pure 4G (4th Generation Mobile Communication Technology) terminal, while the NR of the 5G NSA terminal The wireless network is idle.
  • An aspect of the embodiments of the present disclosure provides a 5G NSA uplink communication control method, including: currently simultaneously accessing a first wireless standard network and a second wireless standard network, and the first wireless standard network is used for uplink communication , Monitor the current uplink communication; and, in response to determining that the monitoring result meets the preset switching condition, switch to at least the second wireless standard network for uplink communication.
  • a 5G NSA uplink communication control device including: a monitoring module configured to access the first wireless standard network and the second wireless standard network at the same time, and adopt the first wireless standard During the uplink communication of the network, the current uplink communication is monitored; and the switching module is configured to switch to at least the second wireless standard network for uplink communication in response to determining that the monitoring result meets the preset switching condition.
  • a 5G NSA terminal accesses a first wireless standard network and a second wireless standard network, and includes a processor, a memory, and a communication bus; wherein: the communication bus is configured as A communication connection between the processor and the memory is implemented; and the processor is configured to execute one or more programs stored in the memory to implement at least one step of the above-mentioned 5G NSA uplink communication control method.
  • Another aspect of the disclosed embodiments provides a computer-readable storage medium having one or more programs stored thereon, and the one or more programs can be executed by one or more processors to implement the above-mentioned 5G NSA uplink At least one step of the communication control method.
  • FIG. 1 is a schematic flowchart of a 5G NSA uplink communication control method provided by an embodiment of the disclosure.
  • FIG. 2 is a schematic diagram of uplink data sent by a first wireless standard network and a second wireless standard network provided by an embodiment of the disclosure.
  • Fig. 3 is a schematic diagram of another flow chart of a 5G NSA uplink communication control method provided by an embodiment of the disclosure.
  • FIG. 4 is a schematic structural diagram of a 5G NSA uplink communication control device provided by an embodiment of the disclosure.
  • FIG. 5 is a schematic structural diagram of a 5G NSA terminal provided by an embodiment of the disclosure.
  • Embodiments of the present disclosure provide a 5G NSA uplink communication control method. See Figure 1,
  • FIG. 1 is a schematic flowchart of a 5G NSA uplink communication control method provided by an embodiment of the present disclosure.
  • the 5G NSA uplink communication control method may include step S101 and step S102.
  • step S101 during the current simultaneous access to the first wireless standard network and the second wireless standard network, and the first wireless standard network is used for uplink communication, the current uplink communication is monitored.
  • the first wireless standard network and the second wireless standard network are respectively different networks
  • the 5G NSA terminal respectively accesses the cells corresponding to the first wireless standard network and the second wireless standard network. It is understandable that in related technologies, 5G NSA can access the cells corresponding to the first wireless standard network and the second wireless standard network through different methods. How to access the cells corresponding to the first wireless standard network and the second wireless standard network are not The key points of this disclosure will not be repeated here.
  • the process of using the first wireless standard network for uplink communication can be specifically as follows: currently accessing the first wireless standard network and the second wireless standard network at the same time, and there are services that only use the first wireless standard network for uplink
  • the process of communication For example, when a terminal performs a high-definition voice call service, only the LTE wireless network is used for the uplink communication of the high-definition voice call service, that is, the second wireless standard network is not used for the high-definition voice call service, and the first wireless standard is used in this process.
  • the network performs upstream communication.
  • the current uplink communication is monitored, and the monitoring objects include but are not limited to the following content: the service carried by the current uplink communication and/or the communication index of the current uplink communication.
  • step S102 when the monitoring result satisfies the preset switching condition, switch to at least use the second wireless standard network for uplink communication.
  • the preset switching condition includes but is not limited to at least one of the following conditions: the service carried by the current uplink communication is a preset type of service; the communication index of the current uplink communication reaches the preset threshold.
  • the foregoing preset type services include but are not limited to multimedia services; multimedia services include but are not limited to at least one of the following services: high-definition voice call services, high-definition video call services, game services, download services, and the like.
  • multimedia services include but are not limited to at least one of the following services: high-definition voice call services, high-definition video call services, game services, download services, and the like.
  • high-definition voice call services high-definition video call services
  • game services high-definition video call services
  • download services and the like.
  • the embodiment of the present disclosure does not limit the preset type of service as a multimedia service, and relevant designers can flexibly set the preset type of service according to requirements.
  • the aforementioned communication indicators include but are not limited to at least one of the following indicators: Block Error Rate (BLER), transmission delay value Delay, throughput rate, and the like. For example, when it is monitored that the throughput rate of the current uplink communication reaches a preset threshold, it is determined that the monitoring result meets the preset handover condition. It is understandable that the embodiments of the present disclosure do not limit the communication indicators to the above indicators, and relevant designers can flexibly set the communication indicators according to requirements.
  • the preset handover condition may also include: the service carried by the current uplink communication is a preset type of service, and the communication index of the current uplink communication is lower than the preset threshold. For example, when it is monitored that the service carried by the current uplink communication is a high-definition video call service, and the block error rate of the current uplink communication reaches a preset threshold, it is determined that the monitoring result meets the preset handover condition; if it is detected that the current uplink communication carried When the service is a high-definition video call service, and the block error rate of the current uplink communication does not reach the preset threshold, it is determined that the monitoring result does not meet the preset switching condition.
  • the preset threshold of the block error rate of the high-definition voice call service can be set to 7%.
  • the communication indicators of different services can correspond to different preset thresholds; for example, the preset threshold of the block error rate of the high-definition voice call service can be set to 7%, and the block error rate of the high-definition video call service can be set to 7%.
  • the preset threshold can be set to 5%.
  • the communication indicators of different services may also use the same preset threshold.
  • the handover condition includes that the communication index of the current uplink communication reaches a preset threshold.
  • the method It may also include: judging whether the uplink transmission power of the first wireless standard network can be increased; if not, switching to at least use the second wireless standard network for uplink communication; if so, increasing the uplink transmission power of the first wireless standard network.
  • the first wireless standard network and the second wireless standard network share the total uplink transmission power of the terminal; for example, the total uplink transmission power of the terminal is 23dbm, and the uplink transmission power of the first wireless standard network is 20dbm.
  • the inability to increase the uplink transmit power of the first wireless standard network includes but is not limited to any of the following two scenarios.
  • the uplink transmission power of the first wireless standard network reaches the preset maximum threshold, it is determined that the uplink transmission power of the first wireless standard network cannot be increased.
  • the current uplink transmission power of the first antenna system network is 20 dbm
  • the preset maximum threshold is 20 dbm. At this time, it is determined that the uplink transmission power of the first wireless system network cannot be increased.
  • the uplink transmission power adjustment dp of the first wireless network standard is determined
  • the uplink transmit power cannot be adjusted upwards.
  • the maximum uplink transmission power threshold of the first wireless network is 20dbm
  • the preset dp 2dbm
  • the current uplink transmission power of the first antenna network is 15dbm.
  • switching to at least the second wireless standard network for uplink communication may include any one of the following methods 1 and 2.
  • the data carried by the first wireless standard network is split, and the split data is sent through the first wireless standard network and the second wireless standard network.
  • the second method described above may include: splitting the data carried by the first wireless standard network, and simultaneously sending the same split data through the first wireless standard network and the second wireless standard network.
  • FIG. 2 it is a schematic diagram of sending uplink data between a first wireless standard network and a second wireless standard network provided by an embodiment of the present disclosure.
  • the first wireless standard network and the second wireless standard network send the first data packet at the same time.
  • the receiving end confirms to receive the first data packet sent by either the first wireless standard network or the second wireless standard network
  • the first wireless standard network and the second wireless standard network send the second data packet at the same time.
  • the receiving end confirms to receive the second data packet sent by either the first wireless standard network or the second wireless standard network
  • the first wireless standard network and the second wireless standard network repeat the above steps and successfully send the third data packet.
  • the first wireless standard network and the second wireless standard network send the fourth data packet at the same time, and the receiving end confirms that it has not received it.
  • the fourth data packet is sent by any one of the first wireless standard network and the second wireless standard network
  • the first wireless standard network and the second wireless standard network retransmit the fourth data packet at the same time, and the receiving end confirms that the first data packet is received.
  • the first wireless standard network and the second wireless standard network continue to send the remaining data packets.
  • the first wireless standard network may be an LTE wireless standard network
  • the second wireless standard network may be an NR wireless standard network.
  • the embodiment of the present disclosure does not limit the first wireless standard network to be an LTE wireless standard network, nor does it limit the second wireless standard network to an NR wireless standard network. That is, the first wireless standard network can be a wireless standard network such as an LTE wireless standard network or an NR wireless standard network, and the second wireless standard network can also be a wireless standard network such as an LTE wireless standard network or an NR wireless standard network. It is understandable that, The first-standard network and the second-standard network are different standard networks.
  • the 5G NSA uplink communication control method by currently simultaneously accessing the first wireless standard network and the second wireless standard network, and the first wireless standard network is used for uplink communication, the current The uplink communication is monitored, and when the monitoring result meets the preset switching conditions, the switch is switched to at least the second wireless standard network for uplink communication, which solves the problem that 5G NSA terminals cannot automatically perform uplink communication through any wireless standard network. Switching to another wireless standard network affects the user experience.
  • the wireless network on either side When performing uplink communication through the wireless network on either side, if the wireless network on either side has poor transmission performance, low reliability and stability, and cannot meet user needs, then it can automatically switch to at least use that side
  • the wireless standard network on the other side of the different wireless standard network performs uplink communication, which improves the network transmission performance, reliability and stability of the uplink communication, and improves the user experience.
  • the embodiments of the present disclosure provide a more specific example to illustrate the 5G NSA uplink communication control method, as shown in FIG. 3, which is the 5G NSA uplink communication control provided by the embodiment of the present disclosure.
  • FIG. 3 is the 5G NSA uplink communication control provided by the embodiment of the present disclosure.
  • Another schematic flow chart of the method, the 5G NSA uplink communication control method may include step S301, and step S302 or step S303.
  • step S301 a high-definition voice call (Voice over Long-Term Evolution, VOLTE) is initiated.
  • VOLTE Voice over Long-Term Evolution
  • the user uses a terminal with 5G NSA function, and the terminal has been registered on the 5G NSA architecture network, that is, registered on the LTE and NR networks.
  • the block error rate in the uplink data packet can be monitored using existing technologies (such as monitoring the NDI rollover and retransmission scheduling in DCI, calculate the number of error packets, and divide by the total number of packets to get the error block rate).
  • the monitoring method adopts the existing technology, and various methods can be used to monitor the block error rate of the uplink data or other parameters that can reflect the transmission of the uplink data. How to monitor the parameters of the transmission of the uplink data is not the focus of this disclosure. , I won’t repeat them here.
  • step S302 when the block error rate of the high-definition voice call data packet reaches a preset threshold, the transmission power of the LTE wireless standard network is increased.
  • the preset threshold for setting the block error rate may be 7%. It is understandable that the embodiment of the present disclosure does not limit the preset threshold of the block error rate, and the preset threshold of the block error rate may be set according to the actual use environment and specific services.
  • the terminal is located near the center of the cell at the beginning, and the uplink and downlink channel quality are relatively good.
  • the measured 5dt time block error rate value that is, the 5s block error rate value is 0.5% and 1.3%, respectively , 0.9%, 1.4%, and 2%.
  • the value of the block error rate all satisfies the condition that the block error rate is less than the preset threshold of 7%, so no additional operations are required at this time.
  • the terminal gradually moves from the center of the cell to the edge of the cell, that is, the terminal's LTE network transmission efficiency gradually weakens.
  • the measured 5dt time block error rate that is, the 5s block error rate
  • the rate values are respectively 2%, 5%, 7.1%, 8.5%, and 9.2%, that is, if the block error rate in the next three seconds is greater than the preset threshold of 7%, the LTE transmission power needs to be adjusted.
  • the power headroom threshold PH_TH 2dBm
  • the PH is greater than the power margin threshold PH_TH, and the transmit power P can be increased at this time.
  • step S303 when the block error rate of the high-definition voice call data packet reaches a preset threshold and the transmission power of the LTE network cannot be increased, the high-definition voice call data packet is sent in parallel through the NR network.
  • the terminal sends a specific identification bit to request the NR network side to perform uplink offloading on the data radio bearer DRB where the current high-definition voice call is located.
  • the NR network side sends a confirmation consent request message.
  • the terminal grants the terminal uplink resource allocation authorization for both the LTE network side and the NR network side.
  • the terminal detects that both the LTE and NR sides have uplink resource authorization, it will send the nth data packet through the uplink resources of the LTE network side and the NR network side at the same time.
  • the server side decodes the Nth data packet on the LTE network side and the NR network side at the same time. As long as one of the Nth data packets on either network side is successfully decoded, the server side indicates to the terminal If the transmission is successful, the terminal continues to send the N+1th data packet.
  • the server does not receive or successfully decode the Nth data packet on both the LTE and NR sides, the server indicates the unsuccessful transmission identifier to the terminal, and instructs the terminal to retransmit the uplink resource authorization on the LTE and NR sides. , The terminal retransmits the Nth packet of data according to the re-instructed uplink resource grant until it receives the transmission success indicator.
  • the transmission efficiency of the uplink data transmitted in the first wireless network standard is acquired, and when the transmission efficiency reaches a preset threshold, the transmission power of the first wireless network standard is increased;
  • the transmission efficiency reaches the preset threshold and the transmit power of the first wireless network standard cannot be increased switch to the second wireless network standard for uplink communication; significantly improve the call-through rate of 5G NSA terminals at the edge of LTE coverage, and Significantly reduce the voice jam and single-pass phenomenon of 5G NSA terminals caused by insufficient uplink power; at the same time, the implementation complexity is low, and the power consumption and implementation cost of the mobile phone will not be greatly increased. While making full use of existing resources, it improves Improve the user experience.
  • the embodiment of the present disclosure also provides a 5G NSA uplink communication control device.
  • FIG. 4 is a schematic structural diagram of the 5G NSA uplink communication control device provided by the embodiment of the disclosure.
  • the device may include a monitoring module 41 and a switching module 42.
  • the monitoring module 41 may be configured to monitor the current uplink communication during the current simultaneous access to the first wireless standard network and the second wireless standard network, and the first wireless standard network is used for uplink communication.
  • the switching module 42 may be configured to switch to use at least the second wireless standard network for uplink communication when the monitoring result meets the preset switching condition.
  • the embodiment of the present disclosure also provides a 5G NSA terminal, as shown in FIG. 5, which is a schematic structural diagram of the 5G NSA terminal provided by the embodiment of the present disclosure.
  • the terminal may include a processor 51, a memory 52, and a communication bus 53.
  • the communication bus 53 may be configured to realize connection and communication between the processor 51 and the memory 52.
  • the processor 51 may be configured to execute one or more computer programs stored in the memory 52 to implement at least one step in the 5G NSA uplink communication control method provided by the embodiment of the present disclosure.
  • the embodiments of the present disclosure also provide a storage medium, which includes volatile or non-volatile memory implemented in any method or technology for storing information (such as instructions, data structures, computer program modules, or other data).
  • Storage media include but are not limited to RAM (Random Access Memory), ROM (Read-Only Memory), EEPROM (Electrically Erasable Programmable Read Only Memory), flash memory Or other memory technologies, CD-ROM (Compact Disc Read-Only Memory), digital versatile disk (DVD) or other optical disk storage, magnetic cassettes, magnetic tapes, magnetic disk storage or other magnetic storage devices, or can be used Any other medium that can store desired information and can be accessed by a computer.
  • the storage medium in the embodiments of the present disclosure may be configured to store one or more computer programs, and the one or more computer programs may be executed by a processor to implement all of the 5G NSA uplink communication control methods provided by the embodiments of the present disclosure Or part of the steps.
  • communication media usually contain computer-readable instructions, data structures, computer program modules, or other data in a modulated data signal such as carrier waves or other transmission mechanisms, and may include any information delivery medium. Therefore, the present disclosure is not limited to any specific combination of hardware and software.

Landscapes

  • Engineering & Computer Science (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Signal Processing (AREA)
  • Mobile Radio Communication Systems (AREA)

Abstract

本公开提供一种5G NSA的上行通信控制方法、装置、终端及计算机可读存储介质,该方法包括:在当前同时接入第一无线制式网络和第二无线制式网络,且采用第一无线制式网络进行上行通信的过程中,对当前的上行通信进行监测;以及,响应于确定监测结果满足预设切换条件时,切换为至少采用第二无线制式网络进行上行通信。

Description

5G NSA的上行通信控制方法、装置、终端及计算机可读存储介质 技术领域
本公开涉及但不限于通信技术领域。
背景技术
在运营商组织的5G(5th Generation Mobile Networks,第五代移动通信技术)NSA(Non-Stand Alone,非独立组网)大规模外场试验中,发现终端在采用了NSA技术时,由于终端上行发射总功率被LTE(Long Term Evolution,长期演进)无线制式网络和NR(New Radio,新空口)无线制式网络共享了,导致在通过其中一个无线制式网络进行上行通信时会出现性能明显变差的现象。例如,5G NSA的终端在进行高清语音和视频通话的时候通过LTE无线制式网络进行上行通信,但是由于此时一部分功率给了5G NR无线制式网络侧,导致在同一个地点,且同一时间下5G终端的LTE无线制式网络功率最大只能发射到20dBm。而相同的纯LTE无线制式网络传统的终端则可以发射到23dBm,相差的3dBm转换成实际上行通信数据传输效率值就是2倍的关系。也就是说相关的5G NSA终端的LTE侧的最大发射功率的上行通信传输效率值只能达到纯4G(4th Generation Mobile Communication Technology,第四代移动通信技术)终端的一半,而5G NSA终端的NR无线制式网络则被闲置。
同时,实际测试表明,在相同LTE信号较差的地点,纯4G终端在使用LTE无线制式网络进行通话时没有出现掉话或者无法呼通的情况时,采用NSA技术的5G NSA终端在使用LTE无线制式网络进行通话时就会出现无法呼通或者掉话现象,但此时NR无线制式网络信号较好,可以支持良好的通话,此时无法自动切换到NR无线制式网络,导致系统资源浪费,同时影响用户体验。亟需一种通信控制方法来保证5G NSA终端在通过一侧网络进行上行通信时,可以根据需求自动切换到另一侧网络。
发明内容
本公开实施例的一个方面提供一种5G NSA的上行通信控制方法,包括:在当前同时接入第一无线制式网络和第二无线制式网络,且采用第一无线制式网络进行上行通信的过程中,对当前的上行通信进行监测;以及,响应于确定监测结果满足预设切换条件,切换为至少采用第二无线制式网络进行上行通信。
本公开实施例的另一方面提供一种5G NSA的上行通信控制装置,包括:监测模块,被配置为在当前同时接入第一无线制式网络和第二无线制式网络,且采用第一无线制式网络进行上行通信的过程中,对当前的上行通信进行监测;以及,切换模块,被配置为响应于确定监测结果满足预设切换条件,切换为至少采用第二无线制式网络进行上行通信。
本公开实施例的又一方面提供一种5G NSA终端,该5G NSA终端接入第一无线制式网络和第二无线制式网络,并包括处理器、存储器及通信总线;其中:通信总线被配置为实现处理器和存储器之间的通信连接;以及,处理器被配置为执行存储器中存储的一个或者多个程序,以实现上述的5G NSA的上行通信控制方法的至少一个步骤。
公开实施例的再一方面提供一种计算机可读存储介质,其上存储有一个或者多个程序,该一个或者多个程序可被一个或者多个处理器执行,以实现上述的5G NSA的上行通信控制方法的至少一个步骤。
本公开其他特征和相应的有益效果在说明书的后面部分进行阐述说明,且应当理解,至少部分有益效果从本公开说明书中的记载变的显而易见。
附图说明
图1为本公开实施例提供的5G NSA的上行通信控制方法的一种流程示意图。
图2为本公开实施例提供的第一无线制式网络与第二无线制式网络发送上行数据的示意图。
图3为本公开实施例提供的5G NSA的上行通信控制方法的另一 种流程示意图。
图4为本公开实施例提供的5G NSA的上行通信控制装置的一种结构示意图。
图5为本公开实施例提供的5G NSA终端的一种结构示意图。
具体实施方式
为了使本公开的目的、技术方案及优点更加清楚明白,下面通过具体实施方式结合附图对本公开实施例作进一步详细说明。应当理解,此处所描述的具体实施例仅仅用以解释本公开,并不用于限定本公开。
为了解决5G NSA终端在通过任一无线制式网络进行上行通信时,无法根据需求自动切换到另一无线制式网络,影响用户体验的问题,本公开实施例提供一种5G NSA的上行通信控制方法,请参见图1,
图1是本公开实施例提供的5G NSA的上行通信控制方法的一种流程示意图,该5G NSA的上行通信控制方法可包括步骤S101和步骤S102。
在步骤S101中,在当前同时接入第一无线制式网络和第二无线制式网络,且采用第一无线制式网络进行上行通信的过程中,对当前的上行通信进行监测。
根据本公开提供的实施例,第一无线制式网络和第二无线制式网络分别为不同的网络,5G NSA终端分别接入到了第一无线制式网络和第二无线制式网络对应的小区。可以理解的是,相关技术中5G NSA能够通过不同方法接入第一无线制式网络和第二无线制式网络对应的小区,如何接入第一无线制式网络和第二无线制式网络分别对应的小区不是本公开的重点,在此不再一一赘述。
可以理解的是,采用第一无线制式网络进行上行通信的过程,具体可以为,在当前同时接入第一无线制式网络和第二无线制式网络,且存在业务仅采用第一无线制式网络进行上行通信的过程。例如,终端进行高清语音通话业务时仅采用LTE无线制式网络进行高清语音通话业务的上行通信,也即该高清语音通话业务并没有用到第二无线制式网络,此过程则为采用第一无线制式网络进行上行通信。
根据本公开提供的实施例,对当前的上行通信进行监测,监测对象包括但不限于以下内容:当前上行通信所承载的业务和/或当前上行通信的通信指标。
在步骤S102中,当监测结果满足预设切换条件时,切换为至少采用第二无线制式网络进行上行通信。
根据本公开提供的实施例,预设切换条件包括但不限于以下条件至少之一:当前上行通信所承载的业务为预设类型业务;当前上行通信的通信指标达到预设阈值。
根据本公开提供的实施例,上述预设类型业务包括但不限于多媒体业务;多媒体业务包括但不限于以下至少一种业务:高清语音通话业务、高清视频通话业务、游戏业务、下载业务等。例如,监测到当前上行通信所承载的业务为高清语音通话业务时,则判定监测结果满足预设切换条件。可以理解的是,本公开实施例并不限定预设类型业务为多媒体业务,相关设计人员可以根据需求灵活的设置预设类型业务。
根据本公开提供的实施例,上述通信指标包括但不限于以下指标中的至少一个:误块率(Block Error Rate,BLER)、传输时延值Delay、吞吐率等。例如,监测到当前上行通信的吞吐率达到预设阈值时,则判定监测结果满足预设切换条件。可以理解的是,本公开实施例并不限定通信指标为以上指标,相关设计人员可以根据需求灵活的设置通信指标。
可以理解的是,预设切换条件还可以包括:当前上行通信所承载的业务为预设类型业务,且当前上行通信的通信指标低于预设阈值。例如,监测到当前上行通信所承载的业务为高清视频通话业务,且当前上行通信的误块率达到预设阈值时,则判定监测结果满足预设切换条件;若监测到当前上行通信所承载的业务为高清视频通话业务,且当前上行通信的误块率未达到预设阈值时,则判定监测结果未满足预设切换条件。例如,高清语音通话业务的误块率预设阈值可以设置为7%,当第一无线制式网络进行上行通信承载高清语音通话业务时,且第一无线制式网络的上行通信的误块率高于7%七时,则判定监测结 果满足预设切换条件。可以理解的是,在一些实施实例中,不同业务的通信指标可以对应不同的预设阈值;如高清语音通话业务的误块率预设阈值可以设置为7%,高清视频通话业务的误块率预设阈值可以设置为5%。在一些实施例中,不同业务的通信指标也可使用相同的预设阈值。
根据本公开提供的实施例,切换条件包括当前上行通信的通信指标达到预设阈值,当检测结果为满足预设切换条件时,在切换为至少采用第二无线制式网络进行上行通信之前,该方法还可包括:判断第一无线制式网络的上行发射功率是否能够上调;若否,切换为至少采用第二无线制式网络进行上行通信;若是,则上调第一无线制式网络的上行发射功率。
可以理解的是,第一无线制式网络与第二无线制式网络共享终端的上行发射总功率;例如终端的上行发射总功率为23dbm,第一无线制式网络的上行发射功率为20dbm,则此时第二无线制式网络的上行发射功率为23dbm-20dbm=3dbm。可以理解的是,判断第一无线制式网络的上行发射功率是否能够上调,若否,切换为至少采用采用第二无线制式网络进行上行通信;也即当第一无线制式网路的上行发射功率不能够上调时,则切换为至少采用第二无线制式网络进行上行通信。不能够上调第一无线制式网路的上行发射功率包括但不限于以下两种场景中的任一种场景。
在第一种场景中,当第一无线制式网络的上行发射功率达到预设最大阈值时,则判定第一无线制式网络的上行发射功率不能够上调。例如,当前第一天线制式网络的上行发射功率为20dbm,预设最大阈值为20dbm,则此时判定第一无线制式网络的上行发射功率不能够上调。
在第二种场景中,当第一无线制式网络的上行发射功率可调余量小于单次第一无线网络制式上行发射功率调整量dp上行发射功率调整量dp时,则判定一无线制式网络的上行发射功率不能够上调。例如,第一无线制式网络的上行发射功率最大阈值为20dbm,预设dp=2dbm,当前第一天线制式网络的上行发射功率为15dbm,此时 第一无线制式网络的上行发射功率可调余量PH_TH=20-15=5dbm,此时PH_TH大于dp,则判定第一无线制式网络的上行发射功率能够上调;当PH_TH小于dp时,则判定第一无线制式网络的上行发射功率不能够上调。
根据本公开提供的本实施例,切换为至少采用第二无线制式网络进行上行通信可包括以下方式一和方式二中的任一个。
在方式一中,切换到第二无线制式网络,采用第二无线制式网络进行上行通信。
在方式二中,对第一无线制式网络承载的数据进行分裂,通过第一无线制式网络和第二无线制式网络发送分裂后的数据。
可以理解的是,上述方式二可包括:对第一无线制式网络承载的数据进行分裂,通过第一无线制式网络和第二无线制式网络同时发送相同的分裂后的数据。如图2所示,其为本公开实施例提供的第一无线制式网络与第二无线制式网络发送上行数据的示意图。第一无线制式网络和第二无线制式网络同时发送第1个数据包,当接收端确认接收到第一无线制式网络或第二无线制式网络任一无线制式网络发送的第1个数据包后,第一无线制式网络和第二无线制式网络同时发送第2个数据包,当接收端确认接收到第一无线制式网络或第二无线制式网络任一无线制式网络发送的第2个数据包后,第一无线制式网络和第二无线制式网络重复上述步骤成功发送了第3个数据包,此时第一无线制式网络和第二无线制式网络同时发送第4个数据包,接收端确认未接收到第一无线制式网络和第二无线制式网络任一网络发送的第4个数据包时,第一无线制式网络和第二无线制式网络同时重新发送第4个数据包,接收端确认接收到第一无线制式网络发送的第4个数据包后,第一无线制式网络和第二无线制式网络继续发送剩下的数据包。
根据本公开提供的本实施例,第一无线制式网络可为LTE无线制式网络,第二无线制式网络可为NR无线制式网络。本公开实施例并不限定第一无线制式网络为LTE无线制式网络,也不限定第二无线制式网络为NR无线制式网络。也即第一无线制式网络可以为LTE无 线制式网络或NR无线制式网络等无线制式网络,第二无线制式网络也可以为LTE无线制式网络或NR无线制式网络等无线制式网络,可以理解的是,第一制式网络与第二制式网络为不同制式网络。
根据本公开实施例提供的5G NSA的上行通信控制方法,通过在当前同时接入第一无线制式网络和第二无线制式网络,且采用第一无线制式网络进行上行通信的过程中,对当前的上行通信进行监测,且当监测结果满足预设切换条件时,切换为至少采用第二无线制式网络进行上行通信,解决了5G NSA终端在通过任一无线制式网络进行上行通信时,无法根据需求自动切换到另一无线制式网络,影响用户体验的问题。在通过任一侧无线制式网络进行上行通信时,若该任一侧无线制式网络传输性能差,可靠性、稳定性低,无法满足用户需求,此时可以自动切换到至少采用与该任一侧无线制式网络不同的另一侧无线制式网络进行上行通信,提高了上行通信的网络传输性能、可靠性及稳定性,提升了用户体验。
为了更好地理解本公开,本公开实施例提供一个较为具体的例子以对5G NSA的上行通信控制方法进行说明,如图3所示,其为本公开实施例提供的5G NSA的上行通信控制方法的另一种流程示意图,该5G NSA的上行通信控制方法可包括步骤S301,以及步骤S302或步骤S303。
在步骤S301中,发起高清语音通话(Voice over Long-Term Evolution,VOLTE)。
此时用户使用具有5G NSA功能的终端,且该终端已经注册了到了5G NSA架构的网络上,也即注册到了LTE与NR网络之中。
根据本公开提供的实施例,当检测到终端通过LTE无线制式网络发起了高清语音通话时,终端开始以监测统计时间dt=1秒为颗粒度来监测上行数据包的传输效率,具体可以为监测上行数据包中的误块率,监测方法可以采用已有的技术(例如监控DCI里面NDI翻转情况和重传调度情况,计算得到错误的包数,除以总的包数之后就可以得到误块率)。需要说明的是,监控方法采用现有技术,可以采用各种方法监控上行数据的误块率或其他可以反映传输上行数据的参数, 具体的如何监测传输上行数据的参数并不是本公开关注的重点,在此则不在赘述。
在步骤S302中,当高清语音通话数据包的误块率达到预设阈值时,上调LTE无线制式网络的发射功率。
根据本公开提供的实施例,为了便于理解,设定误块率的预设阈值可为7%。可以理解的是,本公开实施例并不限定误块率的预设阈值,可以根据实际使用环境,以及具体业务设置误块率的预设阈值。
可以理解的是,最开始终端处于小区中心附近,上行和下行信道质量比较好,此时测量到的5dt时间误块率的值,也即5s的误块率的值分别是0.5%、1.3%、0.9%、1.4%,以及2%,此时误块率的值均满足误块率小于预设阈值7%的条件,所以此时无需进行任何额外操作。随着外部环境的改变,如用户的移动,使得终端从小区中心逐步来到小区边缘,也即终端LTE网络发射效率逐渐减弱,此时测量到的5dt时间误块率,也即5s的误块率值分别是2%、5%、7.1%、8.5%,以及9.2%,即后三秒的误块率大于预设阈值7%,则需要上调LTE的发射功率。
根据本公开提供的实施例,若此时终端的LTE网络侧发射功率值P=12dBm,而LTE网络侧最大允许发射的功率值是Pmax=20dBm,功率余量阈值PH_TH=2dBm,那么此时功率余量PH=Pmax-P=8dBm,此时PH大于功率余量阈值PH_TH,则此时可以提升发射功率P。可以理解的是,预设发射功率调整量dP的值不受限定,在本实例中,预设发射功率调整量dP=2dBm,调整发射功率后LTE网络侧的发射功率达到P=12dBm+dP=14dBm;若此时监测到误块率的5s值到达7.4%、8.5%、8.3%,以及9.66%,此时5dt时间内的误块率大于预设阈值7%,则继续提升dP的功率,P=14dBm+dP=16dBm;若此时监测到误块率的5s值到达1%、2%、1%,以及1.5%,则此时误块率小于预设阈值7%,误块率相对足够低,停止上行功率的调整;但是随着用户继续往小区边缘走,过了一段时间后,误块率的监测到的值为7%、12%、15%,以及14%,此时误块率大于预设阈值7%,假设此时终端的上行功率P=19dBm,PH=20dBm-19dBm=1dBm,PH<PH_TH,则说明无法提升LTE 网络侧的发射功率。
在步骤S303中,当高清语音通话数据包的误块率达到预设阈值且无法上调LTE网络的发射功率时,通过NR网络并行发送高清语音通话数据包。
根据本公开提供的实施例,终端发送特定的标识位,请求NR网络侧对于当前高清语音通话所在的数据无线承载DRB进行上行分流。NR网络侧发送确认同意请求消息,此时终端针对LTE网络侧和NR网络侧都给予终端上行资源分配授权。终端监测到LTE和NR侧都有上行资源授权的时候,将同时通过LTE网络侧和NR网络侧的上行资源发送第n个数据包。可以理解的是,服务器端同时针对在LTE网络侧和NR网络侧上的第N个数据包进行解码,只要有任一网络侧的其中一个第N个数据包解码成功,则服务器端向终端指示传送成功标识,则终端继续发送第N+1个数据包。
可以理解的是,若服务器在LTE和NR侧都没有收到或成功解码第N个数据包,则服务器端向终端指示未成功传送标识,并且指示终端重传时LTE和NR侧的上行资源授权,终端根据重新指示的上行资源授权,重新传输第N包数据,直到接到到传送成功标识。
根据本公开实施例提供的5G NSA的上行通信控制方法,获取第一无线网络制式中传输上行数据的传输效率,当传输效率达到到预设阈值时,上调第一无线网络制式的发射功率;当传输效率达到预设阈值且无法上调第一无线网络制式的发射功率时,切换到采用第二无线网络制式进行上行通信;显著的提升了处于LTE覆盖边缘的5G NSA终端的电话呼通率,以及显著降低由于上行功率不足导致的5G NSA终端出现的语音卡顿和单通现象;同时实现复杂度低,不会大幅度增加手机的功耗和实现成本,在充分利用现有资源的同时,提升了用户体验。
本公开实施例还提供一种5G NSA的上行通信控制装置,参见图4所示,其为本公开实施例提供的5G NSA的上行通信控制装置的一种结构示意图。该装置可包括监测模块41和切换模块42。
监测模块41,可被配置为在当前同时接入第一无线制式网络和 第二无线制式网络,且采用第一无线制式网络进行上行通信的过程中,对当前的上行通信进行监测。
切换模块42,可被配置为当监测结果满足预设切换条件时,切换为至少采用第二无线制式网络进行上行通信。
本公开实施例还提供一种5G NSA终端,参见图5所示,其为本公开实施例提供的5G NSA终端的一种结构示意图。该终端可包括处理器51、存储器52及通信总线53。
通信总线53可被配置为实现处理器51和存储器52之间的连接通信。
处理器51可被配置为执行存储器52中存储的一个或者多个计算机程序,以实现本公开实施例提供的5G NSA的上行通信控制方法中的至少一个步骤。
本公开实施例还提供一种存储介质,该存储介质包括在用于存储信息(诸如指令、数据结构、计算机程序模块或其他数据)的任何方法或技术中实施的易失性或非易失性、可移除或不可移除的介质。存储介质包括但不限于RAM(Random Access Memory,随机存取存储器),ROM(Read-Only Memory,只读存储器),EEPROM(Electrically Erasable Programmable Read Only Memory,带电可擦可编程只读存储器)、闪存或其他存储器技术、CD-ROM(Compact Disc Read-Only Memory,光盘只读存储器),数字多功能盘(DVD)或其他光盘存储、磁盒、磁带、磁盘存储或其他磁存储装置、或者可以用于存储期望的信息并且可以被计算机访问的任何其他的介质。
本公开实施例中的存储介质可被配置为存储一个或者多个计算机程序,该一个或者多个计算机程序可被处理器执行,以实现本公开实施例提供的5G NSA的上行通信控制方法的全部或部分步骤。
可见,本领域的技术人员应该明白,上文中所公开方法中的全部或某些步骤、系统、装置中的功能模块/单元可以被实施为软件(可以用计算装置可执行的计算机程序代码来实现)、固件、硬件及其适当的组合。在硬件实施方式中,在以上描述中提及的功能模块/单元之间的划分不一定对应于物理组件的划分;例如,一个物理组件可以 具有多个功能,或者一个功能或步骤可以由若干物理组件合作执行。某些物理组件或所有物理组件可以被实施为由处理器,如中央处理器、数字信号处理器或微处理器执行的软件,或者被实施为硬件,或者被实施为集成电路,如专用集成电路。
此外,本领域普通技术人员公知的是,通信介质通常包含计算机可读指令、数据结构、计算机程序模块或者诸如载波或其他传输机制之类的调制数据信号中的其他数据,并且可包括任何信息递送介质。所以,本公开不限制于任何特定的硬件和软件结合。
以上内容是结合具体的实施方式对本公开实施例所作的进一步详细说明,不能认定本公开的具体实施只局限于这些说明。对于本公开所属技术领域的普通技术人员来说,在不脱离本公开构思的前提下,还可以做出若干简单推演或替换,都应当视为属于本公开的保护范围。

Claims (12)

  1. 一种5G非独立组网NSA的上行通信控制方法,包括:
    在当前同时接入第一无线制式网络和第二无线制式网络,且采用所述第一无线制式网络进行上行通信的过程中,对当前的上行通信进行监测;以及
    响应于确定监测结果满足预设切换条件,切换为至少采用所述第二无线制式网络进行上行通信。
  2. 如权利要求1所述的5G NSA的上行通信控制方法,其中,所述预设切换条件包括以下至少之一:
    当前上行通信所承载的业务为预设类型业务;
    当前上行通信的通信指标达到预设阈值。
  3. 如权利要求2所述的5G NSA的上行通信控制方法,其中,所述预设类型业务包括:多媒体业务。
  4. 如权利要求2所述的5G NSA的上行通信控制方法,其中,所述预设切换条件包括当前上行通信的通信指标达到预设阈值;以及
    在响应于确定监测结果满足所述预设切换条件,切换为至少采用所述第二无线制式网络进行上行通信之前,该方法还包括:
    判断所述第一无线制式网络的上行发射功率是否能够上调;
    如否,切换为至少采用所述第二无线制式网络进行上行通信。
  5. 如权利要求4所述的5G NSA的上行通信控制方法,其中,响应于确定所述第一无线制式网络的上行发送功率能够上调,上调所述第一无线制式网络的上行发射功率。
  6. 如权利要求5所述的5G NSA的上行通信控制方法,其中,所述传输质量指标包括以下至少一个:误块率、传输时延值、吞吐率。
  7. 如权利要求1-6任一项所述的5G NSA的上行通信控制方法,其中,切换为至少采用所述第二无线制式网络进行上行通信包括:
    切换到所述第二无线制式网络,采用所述第二无线制式网络进行上行通信;或
    对所述第一无线制式网络承载的数据进行分裂,通过所述第一无线制式网络和所述第二无线制式网络发送分裂后的数据。
  8. 如权利要求7所述的5G NSA的上行通信控制方法,其中,对所述第一无线制式网络承载的数据进行分裂,通过所述第一无线制式网络和所述第二无线制式网络发送分裂后的数据,包括:
    对所述第一无线制式网络承载的数据进行分裂,通过所述第一无线制式网络和所述第二无线制式网络同时发送相同的分裂后的数据。
  9. 如权利要求1-8任一项所述的5G NSA的上行通信控制方法,其中,所述第一无线制式网络为长期演进LTE无线制式网络;以及所述第二无线制式网络为新空口NR无线制式网络。
  10. 一种5G非独立组网NSA的上行通信控制装置,包括:
    监测模块,被配置为在当前同时接入第一无线制式网络和第二无线制式网络,且采用所述第一无线制式网络进行上行通信的过程中,对当前的上行通信进行监测;以及
    切换模块,被配置为响应于确定监测结果满足预设切换条件,切换为至少采用所述第二无线制式网络进行上行通信。
  11. 一种5G NSA终端,接入第一无线制式网络和第二无线制式网络,包括处理器、存储器及通信总线;其中:
    所述通信总线被配置为实现所述处理器和所述存储器之间的通信连接;以及
    所述处理器被配置为执行所述存储器中存储的一个或者多个程 序,以实现如权利要求1至9中任一项所述的5G NSA的上行通信控制方法的至少一个步骤。
  12. 一种计算机可读存储介质,其上存储有一个或者多个计算机程序,所述一个或者多个计算机程序可被一个或者多个处理器执行,以实现如权利要求1至9中任一项所述的5G NSA的上行通信控制方法的至少一个步骤。
PCT/CN2020/107851 2019-09-30 2020-08-07 5g nsa的上行通信控制方法、装置、终端及计算机可读存储介质 WO2021063107A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201910945889.3 2019-09-30
CN201910945889.3A CN112584452A (zh) 2019-09-30 2019-09-30 5g nsa的上行通信控制方法、装置及终端

Publications (1)

Publication Number Publication Date
WO2021063107A1 true WO2021063107A1 (zh) 2021-04-08

Family

ID=75117117

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2020/107851 WO2021063107A1 (zh) 2019-09-30 2020-08-07 5g nsa的上行通信控制方法、装置、终端及计算机可读存储介质

Country Status (2)

Country Link
CN (1) CN112584452A (zh)
WO (1) WO2021063107A1 (zh)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114362893A (zh) * 2020-09-29 2022-04-15 中兴通讯股份有限公司 数据发送方法、数据接收方法、终端及计算机存储介质

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20170094563A1 (en) * 2015-09-25 2017-03-30 Qualcomm Incorporated Cell transition threshold adjustment during high speed reselection or handover
CN109874412A (zh) * 2017-10-02 2019-06-11 Lg电子株式会社 在lte和nr之间的双连接中发送上行链路的方法和用户设备
CN109982402A (zh) * 2019-04-09 2019-07-05 努比亚技术有限公司 终端语音呼叫方法、移动终端以及计算机可读存储介质
CN110099417A (zh) * 2018-01-30 2019-08-06 中国移动通信有限公司研究院 切换方法、信息交互方法、设备及计算机可读存储介质
CN110235511A (zh) * 2017-02-01 2019-09-13 高通股份有限公司 用于管理上行链路中的双连接的技术

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106060870B (zh) * 2016-06-02 2018-08-14 爱立信(中国)通信有限公司 一种无线网络接入节点、用户设备以及调整用户设备上行传输和切换上行数据链路的方法

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20170094563A1 (en) * 2015-09-25 2017-03-30 Qualcomm Incorporated Cell transition threshold adjustment during high speed reselection or handover
CN110235511A (zh) * 2017-02-01 2019-09-13 高通股份有限公司 用于管理上行链路中的双连接的技术
CN109874412A (zh) * 2017-10-02 2019-06-11 Lg电子株式会社 在lte和nr之间的双连接中发送上行链路的方法和用户设备
CN110099417A (zh) * 2018-01-30 2019-08-06 中国移动通信有限公司研究院 切换方法、信息交互方法、设备及计算机可读存储介质
CN109982402A (zh) * 2019-04-09 2019-07-05 努比亚技术有限公司 终端语音呼叫方法、移动终端以及计算机可读存储介质

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
HUAWEI ET AL.: "Summary of Rel-17 email discussion on MR-DC enhancements", 3GPP TSG RAN MEETING #85 RP-192340, 20 September 2019 (2019-09-20), XP051782782 *

Also Published As

Publication number Publication date
CN112584452A (zh) 2021-03-30

Similar Documents

Publication Publication Date Title
US11743832B2 (en) Uplink power control for power limited terminals
US10687382B2 (en) Method for transitioning radio resource control state of user equipment to idle state, system therefor, and the same user equipment
US9094942B2 (en) Methods and arrangements for contention-based uplink transmission in a wireless communications system
US10779161B2 (en) Delivery of cellular network insights to subscriber devices through SSID via cellular system information block
US20210160791A1 (en) Information reporting method and device
WO2013139302A1 (zh) 上行功率控制方法、网络节点及系统
EP3278602B1 (en) Determining inactivity timeout using distributed coordination function
WO2009100668A1 (zh) 一种触发资源配置的方法、装置及系统
KR20100006110A (ko) 이동 통신망에서의 전력 소모 방지 방법
WO2013097796A1 (zh) 一种调整cqi反馈周期的方法、设备和系统
US9949208B2 (en) Method and apparatus for selecting power preference information in a wireless communication system network
WO2011060713A1 (zh) 资源分配方法、接入网设备及通信系统
CN105722193A (zh) 语音通信中减少功耗的方法和利用该方法的通信装置
WO2015062024A1 (zh) 功率控制方法、用户设备和基站
WO2012055341A1 (zh) 一种数据重传调整方法、装置和基站
WO2021063107A1 (zh) 5g nsa的上行通信控制方法、装置、终端及计算机可读存储介质
CN100455060C (zh) 小区下行准入方法、系统及网络侧设备
WO2013026408A1 (zh) 随机接入方法和设备
CN116056143A (zh) 网络拥塞处理方法、装置、电子设备和存储介质
US9313685B2 (en) Enhancement of access control for CDMA2000
WO2021063109A1 (zh) 上行授权请求控制方法、装置、终端及存储介质
WO2017197591A1 (zh) 终端的通信方法、终端和无线网络控制器
WO2023109331A1 (zh) 提升语音业务下行质量的方法、芯片、设备及存储介质
WO2023131291A1 (zh) 一种随机接入的方法、终端、装置及存储介质
EP4412260A1 (en) Information feedback method and apparatus, and terminal and network device

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 20871742

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 20871742

Country of ref document: EP

Kind code of ref document: A1

122 Ep: pct application non-entry in european phase

Ref document number: 20871742

Country of ref document: EP

Kind code of ref document: A1

32PN Ep: public notification in the ep bulletin as address of the adressee cannot be established

Free format text: NOTING OF LOSS OF RIGHTS PURSUANT TO RULE 112(1) EPC (EPO FORM 1205A DATED 28/09/2022)

122 Ep: pct application non-entry in european phase

Ref document number: 20871742

Country of ref document: EP

Kind code of ref document: A1