WO2021104077A1 - 一种开关电源接入弱电网的振荡处理方法及相关组件 - Google Patents

一种开关电源接入弱电网的振荡处理方法及相关组件 Download PDF

Info

Publication number
WO2021104077A1
WO2021104077A1 PCT/CN2020/129027 CN2020129027W WO2021104077A1 WO 2021104077 A1 WO2021104077 A1 WO 2021104077A1 CN 2020129027 W CN2020129027 W CN 2020129027W WO 2021104077 A1 WO2021104077 A1 WO 2021104077A1
Authority
WO
WIPO (PCT)
Prior art keywords
oscillation
power supply
switching power
signal
weak
Prior art date
Application number
PCT/CN2020/129027
Other languages
English (en)
French (fr)
Inventor
徐敏
王定富
高丽红
张堡森
石学雷
Original Assignee
漳州科华技术有限责任公司
科华恒盛股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 漳州科华技术有限责任公司, 科华恒盛股份有限公司 filed Critical 漳州科华技术有限责任公司
Publication of WO2021104077A1 publication Critical patent/WO2021104077A1/zh

Links

Images

Classifications

    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J3/00Circuit arrangements for ac mains or ac distribution networks
    • H02J3/01Arrangements for reducing harmonics or ripples
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E40/00Technologies for an efficient electrical power generation, transmission or distribution
    • Y02E40/40Arrangements for reducing harmonics

Definitions

  • This application relates to the field of switching power supplies, and in particular to an oscillation processing method and related components for switching power supplies connected to a weak power grid.
  • UPS Uninterrupted Power Supply, uninterrupted power supply
  • UPS Uninterrupted Power Supply, uninterrupted power supply
  • the grid side of the UPS is prone to oscillation, which makes the front-end access of the UPS complicated and increases The latter stage is difficult to control, thereby reducing the efficiency of the UPS.
  • the oscillation elimination operation is performed on the grid-side of the UPS.
  • the oscillation cancellation operation will increase the harmonic current connected to the UPS, if the oscillation cancellation operation is performed on the grid side of the UPS grid side when there is no oscillation on the grid side, it will cause the UPS input THDI (Total Harmonic Current Distortion, current (Total harmonic distortion rate) indicators deteriorate, affecting the normal and stable operation of UPS.
  • THDI Total Harmonic Current Distortion, current (Total harmonic distortion rate) indicators
  • the purpose of this application is to provide an oscillation processing method, device and electronic equipment for switching power supply connected to a weak power grid, which can reduce the deterioration of the THDI indicator of the switching power supply, reduce the impact on the stable operation of the switching power supply, and can also reduce the switching power supply
  • the complexity of the front-end access reduces the difficulty of the switching power supply's subsequent control and improves the efficiency of the switching power supply.
  • this application provides an oscillation processing method for switching power supplies connected to a weak power grid, including:
  • the process of obtaining an oscillating signal from the actual input signal specifically includes:
  • An oscillating signal is obtained through the filtered signal and the actual input signal.
  • the process of obtaining the oscillating signal from the filtered signal and the actual input signal is specifically:
  • the oscillating signal is obtained by making the difference between the actual input signal and the filtered signal.
  • the process of judging whether an oscillation occurs on the weak power grid side of the switching power supply according to the oscillation signal is specifically:
  • the oscillation period and the oscillation amplitude it is determined whether the weak power grid side of the switching power supply oscillates.
  • the process of obtaining the oscillation period and the oscillation amplitude of the oscillation signal is specifically:
  • the oscillation amplitude is obtained according to the maximum value and the minimum value.
  • the oscillation processing method for the switching power supply connected to the weak grid further includes:
  • the process of judging whether the oscillation is eliminated specifically includes:
  • the oscillation elimination operation includes:
  • this application also provides an oscillation processing device for switching power supply connected to a weak power grid, including:
  • the acquisition module is used to acquire the actual input signal on the weak grid side of the switching power supply
  • An extraction module for obtaining an oscillating signal from the actual input signal
  • the processing module is used for judging whether an oscillation occurs on the weak power grid side of the switching power supply according to the oscillation signal, if it is, execute an oscillation elimination operation to eliminate the oscillation, if not, do not execute the oscillation elimination operation.
  • this application also provides an electronic device, including:
  • Memory used to store computer programs
  • the processor is configured to implement the steps of the oscillation processing method for the switching power supply connected to the weak power grid as described in any one of the above when the computer program is executed.
  • This application provides an oscillation processing method for a switching power supply connected to a weak power grid.
  • the oscillation elimination operation is not performed to reduce the switching power supply.
  • the deterioration of the THDI index reduces the impact on the stable operation of the switching power supply.
  • oscillation occurs, perform the oscillation elimination operation to reduce the complexity of the front-end access of the switching power supply, thereby reducing the difficulty of the switching power supply's subsequent control and improving the switching power supply s efficiency.
  • the present application also provides an oscillation processing device and electronic equipment for the switching power supply connected to the weak power grid, which has the same beneficial effects as the above-mentioned oscillation processing method for the switching power supply connected to the weak power grid.
  • FIG. 1 is a flow chart of the steps of a method for processing oscillation when a switching power supply is connected to a weak power grid provided by this application;
  • FIG. 2 is a schematic diagram of a PFC control loop provided by this application.
  • FIG. 3 is a flow chart of the steps of a method for obtaining an oscillation signal provided by this application;
  • Figure 4a is a waveform diagram of an actual input current signal provided by this application.
  • Fig. 4b is a waveform diagram of a filtered current signal provided by this application.
  • Figure 4c is a waveform diagram of an oscillating current signal provided by this application.
  • Figure 4d is a waveform diagram of another oscillating current signal provided by this application.
  • FIG. 5 is a flowchart of steps of an oscillation judgment method provided by this application.
  • FIG. 6 is a flow chart of the steps of a method for determining oscillation elimination provided by this application.
  • FIG. 7 is a schematic structural diagram of an oscillation processing device with a switching power supply connected to a weak power grid provided by this application;
  • FIG. 8 is a schematic structural diagram of an electronic device provided by this application.
  • the core of this application is to provide an oscillation processing method, device and electronic equipment for switching power supply connected to a weak power grid, which can reduce the deterioration of the THDI indicator of the switching power supply, reduce the impact on the stable operation of the switching power supply, and can also reduce the switching power supply
  • the complexity of the front-end access reduces the difficulty of the switching power supply's subsequent control and improves the efficiency of the switching power supply.
  • the grid side of the UPS is prone to oscillation.
  • the oscillation elimination operation is performed on the grid side. Considering that the oscillation cancellation operation will increase the harmonic current connected to the UPS, if the oscillation cancellation operation is performed on the grid side of the UPS grid side when there is no oscillation, the input THDI index of the UPS will deteriorate and the normal and stable operation of the UPS will be affected. .
  • the present application provides a new oscillation processing solution for switching power supply connected to a weak power grid through the following embodiments, which can eliminate the oscillation without sacrificing the THDI indicator of the switching power supply.
  • the following describes the oscillation processing method provided by the present application for the switching power supply connected to the weak power grid.
  • FIG. 1 is a flowchart of a method for processing oscillation when a switching power supply is connected to a weak power grid provided by this application.
  • the oscillation processing method when the switching power supply is connected to a weak power grid includes:
  • the switching power supply when the switching power supply is connected to the weak grid, if the weak grid side oscillates, its input current will oscillate accordingly, and when the weak grid side of the switching power supply oscillates, the energy of the weak grid is not close to infinite. Large, it will be affected by the output current of the power grid. When the output current of the power grid (ie, the input current of the switching power supply) oscillates severely, it will cause the output voltage of the weak power grid to oscillate. Therefore, this application can pass the actual input of the weak power grid side of the switching power supply. The voltage signal and/or the actual input current signal is used to determine whether the weak power grid side of the switching power supply oscillates.
  • the purpose of this step is to collect the actual input signal on the weak grid side of the switching power supply, and the actual input signal includes the actual input voltage signal and/or the actual input current signal.
  • the actual input voltage signal and/or the actual input current signal can be obtained according to the preset collection period, and the actual input voltage signal and/or the actual input current signal can be obtained after the collection instruction is received.
  • the actual input is not limited here. Trigger condition of voltage signal and/or actual input current signal.
  • the switching power supply may specifically be UPS, AC/DC, DC/AC, DC/DC, etc.
  • S103 Determine whether oscillation occurs on the weak power grid side of the switching power supply according to the oscillation signal, if yes, perform an oscillation elimination operation to eliminate the oscillation, if not, do not perform an oscillation elimination operation.
  • the actual input signal may have a certain ripple component, which makes the actual input signal waveform and the preset waveform There are deviations. In actual applications, certain deviations are allowed. Therefore, it is necessary to extract the ripple component in the actual input signal to obtain the oscillation signal, analyze the oscillation signal, and determine whether the oscillation signal meets the conditions of the weak grid side oscillation. Avoid misoperation.
  • FIG. 2 is a schematic diagram of a PFC (Power Factor Correction) control loop provided by this embodiment.
  • This application provides an oscillation processing method for a switching power supply connected to a weak power grid.
  • a switching power supply connected to a weak power grid.
  • the oscillation elimination operation is not performed to reduce the switching power supply.
  • the deterioration of the THDI index reduces the impact on the stable operation of the switching power supply.
  • oscillation occurs, perform the oscillation elimination operation to reduce the complexity of the front-end access of the switching power supply, thereby reducing the difficulty of the switching power supply's subsequent control and improving the switching power supply s efficiency.
  • FIG. 3 shows a flow chart of the steps of a method for obtaining an oscillating signal provided by an embodiment of the present application.
  • This embodiment is a further introduction to the related operations of S102 in the embodiment corresponding to FIG.
  • the embodiment is combined with the embodiment corresponding to FIG. 1 to obtain a more preferred implementation mode.
  • the specific process may include the following steps:
  • the oscillating signal acquisition scheme is the same for the actual input voltage signal and the actual input current signal. Taking the oscillating signal obtained from the actual input current signal as an example, this embodiment will be described:
  • the waveform of the actual input current signal is shown in Figure 4a, and then the actual input current signal is filtered to obtain the filtered current signal.
  • the waveform of the filtered current signal is shown in Figure 4b.
  • the difference between the actual input current signal and the filtered current signal can be used to obtain the oscillating current signal.
  • Figure 4c for the waveform of the oscillating current signal. It can be understood that the oscillating current signal can also be regarded as a weak current of the switching power supply.
  • the scheme of obtaining the oscillating voltage signal through the actual input voltage signal is composed of the difference between the instantaneous value of the input current on the grid side and the filtered value, and the same is true.
  • the actual input signal can be filtered through, but not limited to, first-order filtering or average filtering.
  • FIG. 5 shows a flow chart of the steps of an oscillation judgment method provided by an embodiment of the present application.
  • This embodiment is a further introduction to the related operations of S103 in the embodiment corresponding to FIG.
  • the example is combined with the embodiment corresponding to FIG. 1 to obtain a more preferred implementation mode.
  • the specific process may include the following steps:
  • S302 Determine whether an oscillation occurs on the weak power grid side of the switching power supply according to the oscillation period and the oscillation amplitude.
  • this embodiment analyzes the acquired oscillation current signal.
  • the oscillation period and oscillation amplitude of the oscillation current signal are obtained.
  • the oscillation amplitude and oscillation frequency are both at their respective presets Within the range, it is determined that the actual input current is oscillating, so that the grid side of the switching power supply is oscillating.
  • the oscillation amplitude and frequency are not within their respective preset ranges, it means that the actual input current is not oscillating.
  • the oscillation amplitude and the oscillation frequency both reach their respective preset ranges, which may specifically mean that the oscillation amplitude is greater than the preset amplitude, and the oscillation frequency is between the preset frequency and the switching frequency.
  • this application performs AD sampling on the actual input current signal. Since AD sampling is not continuous sampling, it is discrete and is sampled once at a preset time interval. As shown in Fig. 4d, any two adjacent positive zero crossing points (O 1 The product of the number of points (ie, the number of samples) between and O 2) and the sampling period can be approximated as the oscillation period.
  • the solution of this embodiment can eliminate the offset voltage.
  • the oscillation amplitude is greater than the preset amplitude and the derivative of the oscillation period is within the preset range, it can be determined that the weak power grid side of the switching power supply has a specific frequency range of oscillation.
  • the preset range here needs to be based on the switching frequency of the switching power supply and the grid frequency It is set according to specific circumstances, and this embodiment does not specifically limit this.
  • FIG. 6 shows a step flow chart of an oscillation elimination judgment method provided by an embodiment of the present application.
  • This embodiment is a further introduction to the related operations of S103 in the embodiment corresponding to FIG.
  • the embodiment is combined with the embodiment corresponding to FIG. 1 to obtain a more preferred implementation mode.
  • the specific process may include the following steps:
  • S402 Determine whether the load amount is less than the preset load amount and whether the oscillation amplitude corresponding to the voltage input signal is smaller than the target amplitude, if yes, determine that the oscillation is eliminated, if not, determine that the oscillation is not eliminated.
  • this embodiment also judges whether the weak grid side oscillation of the switching power supply is eliminated after the oscillation elimination operation is performed, so that after the oscillation is eliminated, the oscillation elimination operation on the weak grid side of the switching power supply is no longer performed, thereby further reducing the damage.
  • the input THDI index of the switching power supply is sacrificed. It is understandable that the degree of oscillation is related to the amount of load. The larger the load, the more severe the oscillation.
  • the load of the switching power supply is reduced to light load (preset load)
  • the voltage oscillation amplitude of the weak grid side of the switching power supply If it is less than the target amplitude, it can be determined that the oscillation is eliminated, and there is no need to perform the oscillation elimination operation on the weak grid side of the switching power supply.
  • the load capacity of the switching power supply can be determined by detecting the output current and output power.
  • FIG. 7 is a schematic structural diagram of an oscillation processing device for switching power supply connected to a weak power grid provided by this application.
  • the oscillation processing device for switching power supply connected to a weak power grid includes:
  • the extraction module 2 is used to obtain the oscillating signal through the actual input signal
  • the processing module 3 is used to determine whether an oscillation occurs on the weak power grid side of the switching power supply according to the oscillation signal, if it is, execute an oscillation elimination operation to eliminate the oscillation, if not, do not execute an oscillation elimination operation.
  • this embodiment first detects whether oscillations occur on the weak grid side of the switching power supply. If oscillations do not occur, the oscillation elimination operation is not performed to reduce the deterioration of the THDI indicator of the switching power supply and reduce the impact on the switching power supply. In the case of stable operation, if oscillation occurs, perform the oscillation elimination operation to reduce the complexity of the front-end access of the switching power supply, thereby reducing the difficulty of the subsequent control of the switching power supply and improving the efficiency of the switching power supply.
  • the extraction module 2 specifically includes:
  • the filtering unit is used to filter the actual input signal to obtain the filtered signal
  • the extraction unit is used to obtain the oscillating signal from the filtered signal and the actual input signal.
  • the extraction unit is specifically used for:
  • the process of judging whether oscillation occurs on the weak grid side of the switching power supply according to the oscillation signal is specifically as follows:
  • the oscillation period and the oscillation amplitude it is judged whether the weak power grid side of the switching power supply oscillates.
  • the process of obtaining the oscillation period and the oscillation amplitude of the oscillation signal is specifically as follows:
  • the oscillation processing device for the switching power supply connected to the weak grid further includes:
  • the oscillation elimination monitoring module is used to determine whether the oscillation is eliminated, and if so, the control processing module 3 stops performing the oscillation elimination operation.
  • the process of judging whether the oscillation is eliminated specifically includes:
  • the oscillation elimination operation includes:
  • the present application also provides an electronic device.
  • FIG. 8 shows a schematic diagram of a composition structure of an electronic device according to an embodiment of the present application.
  • the electronic device 2100 of this embodiment may include: a processor 2101 and memory 2102.
  • the electronic device may further include a communication interface 2103, an input unit 2104, a display 2105, and a communication bus 2106.
  • the processor 2101, the memory 2102, the communication interface 2103, the input unit 2104, and the display 2105 all communicate with each other through the communication bus 2106.
  • the processor 2101 may be a central processing unit (Central Processing Unit, CPU), an application-specific integrated circuit, a digital signal processor, an off-the-shelf programmable gate array, or other programmable logic devices.
  • CPU Central Processing Unit
  • the processor can call programs stored in the memory 2102. Specifically, the processor may execute the operations performed on the electronic device side in the embodiment of the oscillation processing method in which the switching power supply is connected to the weak power grid as follows.
  • the memory 2102 is used to store one or more programs, and the programs may include program codes, and the program codes include computer operation instructions.
  • the memory stores at least programs for realizing the following functions:
  • this embodiment first detects whether oscillations occur on the weak grid side of the switching power supply. If oscillations do not occur, the oscillation elimination operation is not performed to reduce the deterioration of the THDI indicator of the switching power supply and reduce the impact on the switching power supply. In the case of stable operation, if oscillation occurs, perform the oscillation elimination operation to reduce the complexity of the front-end access of the switching power supply, thereby reducing the difficulty of the subsequent control of the switching power supply and improving the efficiency of the switching power supply.
  • the memory 2102 may include a program storage area and a data storage area, where the program storage area may store an operating system, an application program required by at least one function (such as a filtering function, etc.); storage
  • the data area can store the data created during the use of the computer.
  • the memory 2102 may include a high-speed random access memory, and may also include a non-volatile memory, such as at least one magnetic disk storage device or other volatile solid-state storage device.
  • the communication interface 2103 may be an interface of a communication module, such as an interface of a GSM module.
  • This application may also include a display 2104, an input unit 2105, and so on.
  • the structure of the Internet of Things device shown in FIG. 8 does not constitute a limitation on the Internet of Things device in the embodiment of the present application.
  • the electronic device may include more or less components than those shown in FIG. Certain parts.

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Dc-Dc Converters (AREA)

Abstract

一种开关电源接入弱电网的振荡处理方法、装置及电子设备,包括:获取开关电源弱电网侧的实际输入信号(S101);通过实际输入信号得到振荡信号;根据振荡信号判断开关电源弱电网侧是否发生振荡(S102);若是,执行振荡消除操作,以消除振荡;若否,则不执行振荡消除操作(S103)。为避免误操作,首先对开关电源弱电网侧是否发生振荡进行检测,若未发生振荡则不执行振荡消除操作,以降低开关电源的THDI指标的恶化,减小对开关电源的稳定运行的影响,若发生振荡,再执行振荡消除操作,以降低开关电源前端接入的复杂性,从而降低开关电源后级控制难度,提高开关电源的效率。

Description

一种开关电源接入弱电网的振荡处理方法及相关组件 技术领域
本申请涉及开关电源领域,特别是涉及一种开关电源接入弱电网的振荡处理方法及相关组件。
背景技术
UPS(Uninterrupted Power Supply,不间断电源)的接入源为弱电网时,由于弱电网的等效串联电感、分布电容较大,UPS的电网侧容易发生振荡,使得UPS的前端接入复杂,增加其后级控制难度,从而降低UPS的效率。基于此,为避免电网侧的振荡对UPS产生影响,当UPS接入弱电网后,无论UPS电网侧是否发生振荡,均对其电网侧执行振荡消除操作。考虑到振荡消除操作会导致接入UPS的谐波电流增大,因此,若在UPS电网侧未发生振荡时对其电网侧执行振荡消除操作,会使得UPS的输入THDI(Total Harmonic Current Distortion,电流谐波总畸变率)指标恶化,影响UPS的正常稳定运行。
因此,如何提供一种解决上述技术问题的方案是本领域技术人员目前需要解决的问题。
发明内容
本申请的目的是提供一种开关电源接入弱电网的振荡处理方法、装置及电子设备,可以降低开关电源的THDI指标的恶化,减小对开关电源的稳定运行的影响,还可以降低开关电源前端接入的复杂性,从而降低开关电源后级控制难度,提高开关电源的效率。
为解决上述技术问题,本申请提供了一种开关电源接入弱电网的振荡处理方法,包括:
获取开关电源弱电网侧的实际输入信号;
通过所述实际输入信号得到振荡信号;
根据所述振荡信号判断所述开关电源弱电网侧是否发生振荡;
若是,执行振荡消除操作,以消除振荡;
若否,则不执行所述振荡消除操作。
优选的,所述通过所述实际输入信号得到振荡信号的过程具体包括:
对所述实际输入信号滤波,得到滤波后的信号;
通过所述滤波后的信号和所述实际输入信号得到振荡信号。
优选的,所述通过所述滤波后的信号和所述实际输入信号得到振荡信号的过程具体为:
将所述实际输入信号和所述滤波后的信号作差得到所述振荡信号。
优选的,所述根据所述振荡信号判断所述开关电源弱电网侧是否发生振荡的过程具体为:
获取所述振荡信号的振荡周期和振荡幅值;
根据所述振荡周期和所述振荡幅值判断所述开关电源弱电网侧是否发生振荡。
优选的,所述获取所述振荡信号的振荡周期和振荡幅值的过程具体为:
获取所述振荡信号中的极大值和极小值;
获取所述振荡信号中任意两个相邻的正过零点之间的点数;
根据所述点数获取所述振荡周期;
根据所述极大值和所述极小值获取所述振荡幅值。
优选的,所述执行振荡消除操作之后,该开关电源接入弱电网的振荡处理方法还包括:
判断振荡是否消除;
若是,停止执行所述振荡消除操作。
优选的,所述判断振荡是否消除的过程具体包括:
获取开关电源的负载量及所述开关电源弱电网侧的电压输入信号对应的振荡幅值;
判断所述负载量是否小于预设负载量、且所述电压输入信号对应的振荡幅值是否小于目标幅值;
若是,判定振荡消除;
若否,判定振荡未消除。
优选的,所述振荡消除操作包括:
减小PFC电流环参数和/或对电压前馈滤波和/或将市电电压有效值作为所述电压前馈参数和/或对所述电压前馈增加虚拟阻抗和/或对电流采样值加深滤波。
为解决上述技术问题,本申请还提供了一种开关电源接入弱电网的振荡处理装置,包括:
获取模块,用于获取开关电源弱电网侧的实际输入信号;
提取模块,用于通过所述实际输入信号得到振荡信号;
处理模块,用于据所述振荡信号判断所述开关电源弱电网侧是否发生振荡,若是,执行振荡消除操作,以消除振荡,若否,则不执行所述振荡消除操作。
为解决上述技术问题,本申请还提供了一种电子设备,包括:
存储器,用于存储计算机程序;
处理器,用于执行所述计算机程序时实现如上文任意一项所述开关电源接入弱电网的振荡处理方法的步骤。
本申请提供了一种开关电源接入弱电网的振荡处理方法,为避免误操作,首先对开关电源弱电网侧是否发生振荡进行检测,若未发生振荡则不执行振荡消除操作,以降低开关电源的THDI指标的恶化,减小对开关电源的稳定运行的影响,若发生振荡,再执行振荡消除操作,以降低开关电源前端接入的复杂性,从而降低开关电源后级控制难度,提高开关电源的效率。本申请还提供了一种开关电源接入弱电网的振荡处理装置及电子设备,具有和上述开关电源接入弱电网的振荡处理方法相同有益效果。
附图说明
为了更清楚地说明本申请实施例中的技术方案,下面将对现有技术和实施例中所需要使用的附图作简单地介绍,显而易见地,下面描述中的附图仅仅是本申请的一些实施例,对于本领域普通技术人员来讲,在不付出创造性劳动的前提下,还可以根据这些附图获得其他的附图。
图1为本申请所提供的一种开关电源接入弱电网的振荡处理方法的步骤流程图;
图2为本申请所提供的一种PFC控制环路示意图;
图3为本申请所提供的一种振荡信号获取方法的步骤流程图;
图4a为本申请所提供的一种实际输入电流信号的波形图;
图4b为本申请所提供的一种滤波后的电流信号的波形图;
图4c为本申请所提供的一种振荡电流信号的波形图;
图4d为本申请所提供的另一种振荡电流信号的波形图;
图5为本申请所提供的一种振荡判断方法的步骤流程图;
图6为本申请所提供的一种振荡消除判断方法的步骤流程图;
图7为本申请所提供的一种开关电源接入弱电网的振荡处理装置的结构示意图;
图8为本申请所提供的一种电子设备的结构示意图。
具体实施方式
本申请的核心是提供一种开关电源接入弱电网的振荡处理方法、装置及电子设备,可以降低开关电源的THDI指标的恶化,减小对开关电源的稳定运行的影响,还可以降低开关电源前端接入的复杂性,从而降低开关电源后级控制难度,提高开关电源的效率。
为使本申请实施例的目的、技术方案和优点更加清楚,下面将结合本申请实施例中的附图,对本申请实施例中的技术方案进行清楚、完整地描述,显然,所描述的实施例是本申请一部分实施例,而不是全部的实施例。基于本申请中的实施例,本领域普通技术人员在没有做出创造性劳动前提下所获得的所有其他实施例,都属于本申请保护的范围。
UPS的接入源为弱电网时,由于弱电网的等效串联电感、分布电容较大,UPS的电网侧容易发生振荡,为避免电网侧的振荡对UPS产生影响,当UPS接入弱电网后,无论UPS电网侧是否发生振荡,均对其电网侧执行振荡消除操作。考虑到振荡消除操作会导致接入UPS的谐波电流增大,若在UPS电网侧未发生振荡时对其电网侧执行振荡消除操作,会使得UPS的输入THDI指标恶化,影响UPS的正常稳定运行。基于上述相关技术的种种问题,本申请 通过以下几个实施例提供的一种新的开关电源接入弱电网的振荡处理方案,能够达到消除振荡同时,不牺牲开关电源的THDI指标的目的。
下面对本申请所提供的一种开关电源接入弱电网的振荡处理方法进行介绍。
请参照图1,图1为本申请所提供的一种开关电源接入弱电网的振荡处理方法的步骤流程图,该开关电源接入弱电网的振荡处理方法包括:
S101:获取开关电源弱电网侧的实际输入信号;
首先需要说明的是,开关电源接入弱电网时,如果其弱电网侧发生振荡,其输入电流会相应发生振荡,且当开关电源的弱电网侧发生振荡时,由于弱电网的能量不是接近无限大,会受到电网输出电流的影响,当电网的输出电流(即开关电源的输入电流)振荡严重时,会引起弱电网的输出电压振荡,因此,本申请可以通过开关电源弱电网侧的实际输入电压信号和/或实际输入电流信号来判断开关电源的弱电网侧是否发生振荡。
本步骤的目的在于采集开关电源的弱电网侧的实际输入信号,实际输入信号包括实际输入电压信号和/或实际输入电流信号。本实施例可以按照预设采集周期获取实际输入电压信号和/或实际输入电流信号,还可以在接收到采集指令后再获取实际输入电压信号和/或实际输入电流信号,在此不限定实际输入电压信号和/或实际输入电流信号的触发条件。
其中,开关电源具体可以为UPS、AC/DC、DC/AC、DC/DC等。
S102:通过实际输入信号得到振荡信号;
S103:根据振荡信号判断开关电源弱电网侧是否发生振荡,若是,执行振荡消除操作,以消除振荡,若否,则不执行振荡消除操作。
可以理解的是,开关电源的弱电网侧发生振荡或弱电网侧未发生振荡但受到外接因素影响时,其实际输入信号均可能存在一定的纹波成分,使得实际输入信号的波形和预设波形存在偏差,在实际应用中,允许存在一定偏差,因此,需要将实际输入信号中的纹波成分提取出来得到振荡信号,对振荡信号进行分析,判断振荡信号是否满足弱电网侧振荡的条件,以避免误操作。
具体的,本实施例中若判定开关电源弱电网侧未发生振荡,则不对开关电源弱电网侧执行振荡消除操作,以降低开关电源的THDI指标的恶化,减小对 开关电源的稳定运行的影响,若判定开关电源弱电网侧发生振荡,则对开关电源弱电网侧执行振荡消除操作,以消除振荡。进一步的,请参照图2,图2为本实施例所提供的一种PFC(Power Factor Correction,功率因数校正)控制环路示意图,振荡消除操作可以包括但不限于减小PFC电流环参数P,对电压前馈参数Ugrid增加滤波或者使用市电电压有效值*sin,电压前馈参数Ugrid增加虚拟阻抗Z,即Ugrid=Ugrid+Z*iL,电流采样值iL加深滤波等方案。
本申请提供了一种开关电源接入弱电网的振荡处理方法,为避免误操作,首先对开关电源弱电网侧是否发生振荡进行检测,若未发生振荡则不执行振荡消除操作,以降低开关电源的THDI指标的恶化,减小对开关电源的稳定运行的影响,若发生振荡,再执行振荡消除操作,以降低开关电源前端接入的复杂性,从而降低开关电源后级控制难度,提高开关电源的效率。
请参照图3,其示出了本申请实施例提供的一种振荡信号获取方法的步骤流程图,本实施例是对图1对应的实施例中的S102的相关操作的进一步介绍,可以将本实施例与图1对应的实施例相结合得到更为优选的实施方式,具体过程可以包括以下步骤:
S201:对实际输入信号滤波,得到滤波后的信号;
S202:将实际输入信号和滤波后的信号作差得到振荡信号。
具体的,振荡信号的获取方案对于实际输入电压信号和实际输入电流信号是相同的,以通过实际输入电流信号获取振荡信号为例,对本实施例进行说明:
首先对开关电源的实际输入电流信号进行采样,实际输入电流信号的波形参照图4a所示,然后对实际输入电流信号进行滤波,得到滤波后的电流信号,滤波后的电流信号的波形参照图4b所示,将实际输入电流信号和滤波后的电流信号作差,可以得到振荡电流信号,振荡电流信号的波形参照图4c所示,可以理解的是,振荡电流信号也可以看作是开关电源弱电网侧输入电流的瞬时值和滤波值的差值构成的,通过实际输入电压信号获取振荡电压信号的方案,同理。
具体的,本实施例中可以但不限于通过一阶滤波或平均值滤波对实际输入信号滤波。
请参照图5,其示出了本申请实施例提供的一种振荡判断方法的步骤流程图,本实施例是对图1对应的实施例中的S103的相关操作的进一步介绍,可以将本实施例与图1对应的实施例相结合得到更为优选的实施方式,具体过程可以包括以下步骤:
S301:获取振荡信号的振荡周期和振荡幅值;
S302:根据振荡周期和振荡幅值判断开关电源弱电网侧是否发生振荡。
具体的,在上述实施例的基础上,仍以实际输入电流信号对本实施例的方案进行说明:
为避免振荡消除操作的误触发,本实施例对获取到的振荡电流信号进行分析,首先获取振荡电流信号的振荡周期和振荡幅值,当振荡幅值和振荡频率均处于其各自对应的预设范围内,则判定实际输入电流振荡,从而判定开关电源的电网侧发生振荡,反之,若振荡幅值和振荡频率未处于其各自对应的预设范围内,则说明实际输入电流未振荡,从而判定开关电源的电网侧未发生振荡。其中,振荡幅值和振荡频率均达到其各自对应的预设范围具体可以指振荡幅值大于预设幅值,振荡频率处于预设频率和开关频率之间。
进一步的,本申请对实际输入电流信号进行AD采样,由于AD采样并非连续采样,是离散的,间隔预设时间采样一次,参照图4d所示,任意两个相邻的正过零点(O 1和O 2)之间的点数(即采样次数)和采样周期的乘积即可近似为振荡周期。本实施例中,振荡幅值通过幅值计算关系式得到,幅值计算关系式为:A=(α+β)/2,其中,A为振荡幅值,α为振荡信号的极大值,β为振荡信号的极小值。可以理解的是,滤波会造成相位延时,导致振荡波形存在偏置电压,采用本实施例的方案可以消除偏置电压。当振荡幅值大于预设幅值、振荡周期的导数处于预设范围内时,可判定开关电源弱电网侧出现特定频率段的振荡,这里的预设范围需要根据开关电源的开关频率及电网频率等具体情况来设定,本实施例对此不做具体的限定。
请参照图6,其示出了本申请实施例提供的一种振荡消除判断方法的步骤流程图,本实施例是对图1对应的实施例中的S103的相关操作的进一步介绍, 可以将本实施例与图1对应的实施例相结合得到更为优选的实施方式,具体过程可以包括以下步骤:
S401:获取开关电源的负载量及开关电源弱电网侧的电压输入信号对应的振荡幅值;
S402:判断负载量是否小于预设负载量、且电压输入信号对应的振荡幅值是否小于目标幅值,若是,判定振荡消除,若否,判定振荡未消除。
具体的,本实施例还对执行振荡消除操作后,开关电源的弱电网侧振荡是否消除进行判断,以便当振荡消除后,不再对开关电源的弱电网侧执行振荡消除操作,从而进一步降低对开关电源的输入THDI指标的牺牲。可以理解的是,振荡程度与负载量相关,负载量越大振荡越严重,因此,当开关电源的负载量降低至轻载(预设负载量)、且开关电源弱电网侧的电压振荡幅值小于目标幅值,可判定振荡消除,此时不需要再对开关电源的弱电网侧执行振荡消除操作。具体的,可以通过检测输出电流和输出功率来确定开关电源的负载量。
请参照图7,图7为本申请所提供的一种开关电源接入弱电网的振荡处理装置的结构示意图,该开关电源接入弱电网的振荡处理装置包括:
获取模块1,用于获取开关电源弱电网侧的实际输入信号;
提取模块2,用于通过实际输入信号得到振荡信号;
处理模块3,用于据振荡信号判断开关电源弱电网侧是否发生振荡,若是,执行振荡消除操作,以消除振荡,若否,则不执行振荡消除操作。
可见,本实施例为避免误操作,首先对开关电源弱电网侧是否发生振荡进行检测,若未发生振荡则不执行振荡消除操作,以降低开关电源的THDI指标的恶化,减小对开关电源的稳定运行的影响,若发生振荡,再执行振荡消除操作,以降低开关电源前端接入的复杂性,从而降低开关电源后级控制难度,提高开关电源的效率。
作为一种优选的实施例,提取模块2具体包括:
滤波单元,用于对实际输入信号滤波,得到滤波后的信号;
提取单元,用于通过滤波后的信号和实际输入信号得到振荡信号。
作为一种优选的实施例,提取单元具体用于:
将实际输入信号和滤波后的信号作差得到振荡信号。
作为一种优选的实施例,根据振荡信号判断开关电源弱电网侧是否发生振荡的过程具体为:
获取振荡信号的振荡周期和振荡幅值;
根据振荡周期和振荡幅值判断开关电源弱电网侧是否发生振荡。
作为一种优选的实施例,获取振荡信号的振荡周期和振荡幅值的过程具体为:
获取振荡信号中的极大值和极小值;
获取振荡信号中任意两个相邻的正过零点之间的点数;
根据点数获取振荡周期;
根据极大值和极小值获取振荡幅值。
作为一种优选的实施例,该开关电源接入弱电网的振荡处理装置还包括:
振荡消除监控模块,用于判断振荡是否消除,若是,则控制处理模块3停止执行振荡消除操作。
作为一种优选的实施例,判断振荡是否消除的过程具体包括:
获取开关电源的负载量及开关电源弱电网侧的电压输入信号对应的振荡幅值;
判断负载量是否小于预设负载量、且电压输入信号对应的振荡幅值是否小于目标幅值;
若是,判定振荡消除;
若否,判定振荡未消除。
作为一种优选的实施例,振荡消除操作包括:
减小PFC电流环参数和/或对电压前馈滤波和/或将市电电压有效值作为电压前馈参数和/或对电压前馈增加虚拟阻抗和/或对电流采样值加深滤波。
另一方面,本申请还提供了一种电子设备,如参见图8,其示出了本申请实施例一种电子设备的一种组成结构示意图,本实施例的电子设备2100可以包括:处理器2101和存储器2102。
可选的,该电子设备还可以包括通信接口2103、输入单元2104和显示器2105和通信总线2106。
处理器2101、存储器2102、通信接口2103、输入单元2104、显示器2105、均通过通信总线2106完成相互间的通信。
在本申请实施例中,该处理器2101,可以为中央处理器(Central Processing Unit,CPU),特定应用集成电路,数字信号处理器、现成可编程门阵列或者其他可编程逻辑器件等。
该处理器可以调用存储器2102中存储的程序。具体的,处理器可以执行以下开关电源接入弱电网的振荡处理方法的实施例中电子设备侧所执行的操作。
存储器2102中用于存放一个或者一个以上程序,程序可以包括程序代码,所述程序代码包括计算机操作指令,在本申请实施例中,该存储器中至少存储有用于实现以下功能的程序:
获取开关电源弱电网侧的实际输入信号;
通过实际输入信号得到振荡信号;
根据振荡信号判断开关电源弱电网侧是否发生振荡;
若是,执行振荡消除操作,以消除振荡;
若否,则不执行振荡消除操作。
可见,本实施例为避免误操作,首先对开关电源弱电网侧是否发生振荡进行检测,若未发生振荡则不执行振荡消除操作,以降低开关电源的THDI指标的恶化,减小对开关电源的稳定运行的影响,若发生振荡,再执行振荡消除操作,以降低开关电源前端接入的复杂性,从而降低开关电源后级控制难度,提高开关电源的效率。
在一种可能的实现方式中,该存储器2102可包括存储程序区和存储数据区,其中,存储程序区可存储操作系统、以及至少一个功能(比如滤波功能等)所需的应用程序等;存储数据区可存储根据计算机的使用过程中所创建的数据。
此外,存储器2102可以包括高速随机存取存储器,还可以包括非易失性 存储器,例如至少一个磁盘存储器件或其他易失性固态存储器件。
该通信接口2103可以为通信模块的接口,如GSM模块的接口。
本申请还可以包括显示器2104和输入单元2105等等。
当然,图8所示的物联网设备的结构并不构成对本申请实施例中物联网设备的限定,在实际应用中电子设备可以包括比图8所示的更多或更少的部件,或者组合某些部件。
还需要说明的是,在本说明书中,诸如第一和第二等之类的关系术语仅仅用来将一个实体或者操作与另一个实体或操作区分开来,而不一定要求或者暗示这些实体或操作之间存在任何这种实际的关系或者顺序。而且,术语“包括”、“包含”或者其任何其他变体意在涵盖非排他性的包含,从而使得包括一系列要素的过程、方法、物品或者设备不仅包括那些要素,而且还包括没有明确列出的其他要素,或者是还包括为这种过程、方法、物品或者设备所固有的要素。在没有更多限制的情况下,由语句“包括一个……”限定的要素,并不排除在包括所述要素的过程、方法、物品或者设备中还存在另外的相同要素。
对所公开的实施例的上述说明,使本领域专业技术人员能够实现或使用本申请。对这些实施例的多种修改对本领域的专业技术人员来说将是显而易见的,本文中所定义的一般原理可以在不脱离本申请的精神或范围的情况下,在其他实施例中实现。因此,本申请将不会被限制于本文所示的这些实施例,而是要符合与本文所公开的原理和新颖特点相一致的最宽的范围。

Claims (10)

  1. 一种开关电源接入弱电网的振荡处理方法,其特征在于,包括:
    获取开关电源弱电网侧的实际输入信号;
    通过所述实际输入信号得到振荡信号;
    根据所述振荡信号判断所述开关电源弱电网侧是否发生振荡;
    若是,执行振荡消除操作,以消除振荡;
    若否,则不执行所述振荡消除操作。
  2. 根据权利要求1所述的开关电源接入弱电网的振荡处理方法,其特征在于,所述通过所述实际输入信号得到振荡信号的过程具体包括:
    对所述实际输入信号滤波,得到滤波后的信号;
    通过所述滤波后的信号和所述实际输入信号得到振荡信号。
  3. 根据权利要求2所述的开关电源接入弱电网的振荡处理方法,其特征在于,所述通过所述滤波后的信号和所述实际输入信号得到振荡信号的过程具体为:
    将所述实际输入信号和所述滤波后的信号作差得到所述振荡信号。
  4. 根据权利要求1所述的开关电源接入弱电网的振荡处理方法,其特征在于,所述根据所述振荡信号判断所述开关电源弱电网侧是否发生振荡的过程具体为:
    获取所述振荡信号的振荡周期和振荡幅值;
    根据所述振荡周期和所述振荡幅值判断所述开关电源弱电网侧是否发生振荡。
  5. 根据权利要求4所述的开关电源接入弱电网的振荡处理方法,其特征在于,所述获取所述振荡信号的振荡周期和振荡幅值的过程具体为:
    获取所述振荡信号中的极大值和极小值;
    获取所述振荡信号中任意两个相邻的正过零点之间的点数;
    根据所述点数获取所述振荡周期;
    根据所述极大值和所述极小值获取所述振荡幅值。
  6. 根据权利要求1所述的开关电源接入弱电网的振荡处理方法,其特征在于,所述执行振荡消除操作之后,该开关电源接入弱电网的振荡处理方法还包括:
    判断振荡是否消除;
    若是,停止执行所述振荡消除操作。
  7. 根据权利要求6所述的开关电源接入弱电网的振荡处理方法,其特征在于,所述判断振荡是否消除的过程具体包括:
    获取开关电源的负载量及所述开关电源弱电网侧的电压输入信号对应的振荡幅值;
    判断所述负载量是否小于预设负载量、且所述电压输入信号对应的振荡幅值是否小于目标幅值;
    若是,判定振荡消除;
    若否,判定振荡未消除。
  8. 根据权利要求1-7任意一项所述的开关电源接入弱电网的振荡处理方法,其特征在于,所述振荡消除操作包括:
    减小PFC电流环参数和/或对电压前馈滤波和/或将市电电压有效值作为所述电压前馈参数和/或对所述电压前馈增加虚拟阻抗和/或对电流采样值加深滤波。
  9. 一种开关电源接入弱电网的振荡处理装置,其特征在于,包括:
    获取模块,用于获取开关电源弱电网侧的实际输入信号;
    提取模块,用于通过所述实际输入信号得到振荡信号;
    处理模块,用于据所述振荡信号判断所述开关电源弱电网侧是否发生振荡,若是,执行振荡消除操作,以消除振荡,若否,则不执行所述振荡消除操作。
  10. 一种电子设备,其特征在于,包括:
    存储器,用于存储计算机程序;
    处理器,用于执行所述计算机程序时实现如权利要求1-8任意一项所述开关电源接入弱电网的振荡处理方法的步骤。
PCT/CN2020/129027 2019-11-28 2020-11-16 一种开关电源接入弱电网的振荡处理方法及相关组件 WO2021104077A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201911193333.X 2019-11-28
CN201911193333.XA CN110867865B (zh) 2019-11-28 2019-11-28 一种开关电源接入弱电网的振荡处理方法及相关组件

Publications (1)

Publication Number Publication Date
WO2021104077A1 true WO2021104077A1 (zh) 2021-06-03

Family

ID=69657482

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2020/129027 WO2021104077A1 (zh) 2019-11-28 2020-11-16 一种开关电源接入弱电网的振荡处理方法及相关组件

Country Status (2)

Country Link
CN (1) CN110867865B (zh)
WO (1) WO2021104077A1 (zh)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110867865B (zh) * 2019-11-28 2021-08-06 漳州科华技术有限责任公司 一种开关电源接入弱电网的振荡处理方法及相关组件

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN201146389Y (zh) * 2007-11-09 2008-11-05 河南索凌电气有限公司 变电站用电力系统稳定器
CN104393606A (zh) * 2014-11-07 2015-03-04 贵州电力试验研究院 一种功率振荡判断器
US20180128243A1 (en) * 2016-11-08 2018-05-10 Siemens Aktiengesellschaft Damping mechanical oscillations of a wind turbine
CN108390394A (zh) * 2017-11-17 2018-08-10 重庆大学 消除并网逆变器-弱电网振荡的控制方法
CN110867865A (zh) * 2019-11-28 2020-03-06 漳州科华技术有限责任公司 一种开关电源接入弱电网的振荡处理方法及相关组件

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105606895B (zh) * 2016-01-07 2019-04-23 国家电网公司 电力系统次同步振荡成份的在线检测及滤除方法
CN110380432B (zh) * 2019-07-30 2020-11-06 华北电力大学 一种直驱风电场次同步振荡抑制方法及其系统

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN201146389Y (zh) * 2007-11-09 2008-11-05 河南索凌电气有限公司 变电站用电力系统稳定器
CN104393606A (zh) * 2014-11-07 2015-03-04 贵州电力试验研究院 一种功率振荡判断器
US20180128243A1 (en) * 2016-11-08 2018-05-10 Siemens Aktiengesellschaft Damping mechanical oscillations of a wind turbine
CN108390394A (zh) * 2017-11-17 2018-08-10 重庆大学 消除并网逆变器-弱电网振荡的控制方法
CN110867865A (zh) * 2019-11-28 2020-03-06 漳州科华技术有限责任公司 一种开关电源接入弱电网的振荡处理方法及相关组件

Also Published As

Publication number Publication date
CN110867865A (zh) 2020-03-06
CN110867865B (zh) 2021-08-06

Similar Documents

Publication Publication Date Title
EP3800763B1 (en) Multi-mode uninterruptible power supply control method, control apparatus and control terminal
WO2018201708A1 (zh) 桥臂电流过流保护方法、控制系统及存储介质
WO2021104077A1 (zh) 一种开关电源接入弱电网的振荡处理方法及相关组件
EP3952046A1 (en) Photovoltaic inverter and corresponding switch frequency control method
CN101900751A (zh) 能量回馈单元中实时电压矢量的检测方法
CN109633283B (zh) 母线电容容值监测方法、装置及终端设备
AU2018396277B2 (en) Power factor correction circuit control method and device
CN104730336A (zh) 频率检测装置及频率检测方法
CN111245367B (zh) 一种iv曲线获取方法、装置及相关组件
CN103926477A (zh) 一种电网电压同步信号处理方法
CN111579877A (zh) 寄生电容检测电路及检测方法
CN113258760B (zh) 一种电路控制方法、装置、电子设备及存储介质
CN110649801B (zh) 一种对母线电压的采样方法及pfc控制电路、电源转换电路
CN114389446A (zh) 一种电磁干扰抑制电路、方法及用电设备
US11916468B2 (en) Paralleled DC-DC converters with circulating current suppression circuit
CN110855164B (zh) 控制方法、系统及终端设备
CN110768275B (zh) 一种开关电源的输入振荡管理方法、装置及相关组件
CN112491291B (zh) 一种并网逆变电路的开关控制方法、装置、设备及介质
CN116047175A (zh) 电容的监测方法、电子设备和计算机可读存储介质
CN110716448B (zh) 一种中频电炉有源电力滤波器仿真性能测试方法,设备及可读存储介质
CN108539746A (zh) 用于三电平滤波器的lcl滤波参数选择方法
CN109991471A (zh) 一种电能表的有功电能的测量方法
WO2023131300A1 (zh) 模块化多电平换流器桥臂电流方向的判断方法及控制系统
CN117521366A (zh) 基于谐波电流源治理的滤波器阻抗优化方法、装置及设备
CN105846432A (zh) 一种apf并联运行的控制系统

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 20892527

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 20892527

Country of ref document: EP

Kind code of ref document: A1