WO2021104036A1 - 一种中继配置方法、装置、设备及存储介质 - Google Patents

一种中继配置方法、装置、设备及存储介质 Download PDF

Info

Publication number
WO2021104036A1
WO2021104036A1 PCT/CN2020/128439 CN2020128439W WO2021104036A1 WO 2021104036 A1 WO2021104036 A1 WO 2021104036A1 CN 2020128439 W CN2020128439 W CN 2020128439W WO 2021104036 A1 WO2021104036 A1 WO 2021104036A1
Authority
WO
WIPO (PCT)
Prior art keywords
noise ratio
route
signal
temporary route
sub
Prior art date
Application number
PCT/CN2020/128439
Other languages
English (en)
French (fr)
Inventor
马治民
Original Assignee
中兴通讯股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 中兴通讯股份有限公司 filed Critical 中兴通讯股份有限公司
Priority to EP20892074.4A priority Critical patent/EP4060907A4/en
Publication of WO2021104036A1 publication Critical patent/WO2021104036A1/zh

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B10/00Transmission systems employing electromagnetic waves other than radio-waves, e.g. infrared, visible or ultraviolet light, or employing corpuscular radiation, e.g. quantum communication
    • H04B10/29Repeaters
    • H04B10/291Repeaters in which processing or amplification is carried out without conversion of the main signal from optical form
    • H04B10/293Signal power control
    • H04B10/2933Signal power control considering the whole optical path
    • H04B10/2939Network aspects
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B10/00Transmission systems employing electromagnetic waves other than radio-waves, e.g. infrared, visible or ultraviolet light, or employing corpuscular radiation, e.g. quantum communication
    • H04B10/29Repeaters
    • H04B10/291Repeaters in which processing or amplification is carried out without conversion of the main signal from optical form
    • H04B10/293Signal power control
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B10/00Transmission systems employing electromagnetic waves other than radio-waves, e.g. infrared, visible or ultraviolet light, or employing corpuscular radiation, e.g. quantum communication
    • H04B10/07Arrangements for monitoring or testing transmission systems; Arrangements for fault measurement of transmission systems
    • H04B10/075Arrangements for monitoring or testing transmission systems; Arrangements for fault measurement of transmission systems using an in-service signal
    • H04B10/079Arrangements for monitoring or testing transmission systems; Arrangements for fault measurement of transmission systems using an in-service signal using measurements of the data signal
    • H04B10/0795Performance monitoring; Measurement of transmission parameters
    • H04B10/07953Monitoring or measuring OSNR, BER or Q
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B10/00Transmission systems employing electromagnetic waves other than radio-waves, e.g. infrared, visible or ultraviolet light, or employing corpuscular radiation, e.g. quantum communication
    • H04B10/25Arrangements specific to fibre transmission
    • H04B10/2507Arrangements specific to fibre transmission for the reduction or elimination of distortion or dispersion
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04JMULTIPLEX COMMUNICATION
    • H04J14/00Optical multiplex systems
    • H04J14/02Wavelength-division multiplex systems
    • H04J14/0227Operation, administration, maintenance or provisioning [OAMP] of WDM networks, e.g. media access, routing or wavelength allocation
    • H04J14/0254Optical medium access
    • H04J14/0267Optical signaling or routing
    • H04J14/0271Impairment aware routing
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04QSELECTING
    • H04Q11/00Selecting arrangements for multiplex systems
    • H04Q11/0001Selecting arrangements for multiplex systems using optical switching
    • H04Q11/0005Switch and router aspects
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04QSELECTING
    • H04Q11/00Selecting arrangements for multiplex systems
    • H04Q11/0001Selecting arrangements for multiplex systems using optical switching
    • H04Q11/0062Network aspects
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04QSELECTING
    • H04Q11/00Selecting arrangements for multiplex systems
    • H04Q11/0001Selecting arrangements for multiplex systems using optical switching
    • H04Q11/0062Network aspects
    • H04Q2011/0079Operation or maintenance aspects
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04QSELECTING
    • H04Q11/00Selecting arrangements for multiplex systems
    • H04Q11/0001Selecting arrangements for multiplex systems using optical switching
    • H04Q11/0062Network aspects
    • H04Q2011/0086Network resource allocation, dimensioning or optimisation

Definitions

  • the embodiments of the present application relate to the field of optical communication technology, and in particular, to a relay configuration method, device, device, and storage medium.
  • WDM Widelength Division Multiplexing
  • the transmission performance between various service sites of the WDM network has an important impact on the planning and construction of the network.
  • OSNR Optical Signal Noise Ratio, Optical Signal Noise Ratio
  • the optical module selected for a certain service in the WDM system has an OSNR tolerance limit, that is, the lowest OSNR value of the service signal that can be successfully analyzed at the service receiving end, when the OSNR value of the received service signal is lower than the OSNR tolerance limit At this time, the receiving end cannot parse the service signal correctly, so that the service cannot be transmitted normally.
  • the solution to this problem can be to set up a relay on the service site, so that the OSNR value of the service receiving end is raised above the OSNR tolerance limit.
  • the traditional relay configuration method can ensure that the OSNR value of the service receiving end is greater than the OSNR tolerance limit, the number of configured relays increases, which increases the network cost.
  • the embodiments of the present application provide a relay configuration method, device, equipment, and storage medium to reduce the number of relay configurations and save network costs.
  • an embodiment of the present application provides a relay configuration method, including:
  • an embodiment of the present application also provides a relay configuration device, including:
  • the sub-route signal-to-noise ratio determining module is configured to determine the signal-to-noise ratio of the group optical amplifier corresponding to the sub-route in the network topology diagram according to the obtained network topology diagram;
  • a temporary route signal-to-noise ratio determining module configured to determine the group-path optical amplifier signal-to-noise ratio corresponding to the temporary route according to the group-path optical amplifier signal-to-noise ratio corresponding to the sub-route, and the temporary route is determined according to the sub-route;
  • the target service site determination module is configured to determine the configuration range of the relay according to the signal-to-noise ratio of the group optical amplifier corresponding to the temporary route, so as to determine the signal-to-noise of the hybrid optical amplifier corresponding to the temporary route within the configuration range Than determine the target business site used to configure the relay.
  • an embodiment of the present application also provides a device, including:
  • One or more processors are One or more processors;
  • Memory set to store one or more programs
  • the one or more processors When the one or more programs are executed by the one or more processors, the one or more processors are caused to implement the relay configuration method as described in the first aspect.
  • an embodiment of the present application also provides a storage medium on which a computer program is stored, and when the program is executed by a processor, the relay configuration method as described in the first aspect is implemented.
  • FIG. 1 shows a flowchart of a relay configuration method in an embodiment of this application
  • FIG. 2 is a schematic diagram of a network topology diagram provided by an embodiment of this application.
  • FIG. 3 shows a flowchart of another relay configuration method in an embodiment of this application
  • FIG. 4 shows a flowchart of another relay configuration method in an embodiment of the application
  • FIG. 5 is a structural diagram of a relay configuration device in an embodiment of the application.
  • Fig. 6 is a structural diagram of a device in an embodiment of the application.
  • Figure 1 shows a flowchart of a relay configuration method in an embodiment of this application. This embodiment is applicable to the situation where the normal transmission of services is ensured by configuring the relay.
  • the method can be executed by the relay configuration device.
  • the device can be implemented in software and/or hardware, and can be configured in a notebook computer, a palmtop computer, and other devices.
  • the method can include the following steps:
  • S110 Determine the signal-to-noise ratio of the group optical amplifier corresponding to the sub-route in the network topology according to the acquired network topology.
  • the network topology diagram on which this embodiment is based is shown in Figure 2.
  • the network topology diagram shows that the working paths of a service are from 001 to 009, where 001, 003, 004, 005, 006, 008, and 009 are Business sites, 001 and 009 are the sending and receiving sites of the service, 002 and 007 are OLA (Optical Line Amplifier) sites, that is, non-business sites, and business sites 003, 004, 005, 006, and 008 are Configurable relay stations, non-business stations 002 and 007 are non-configurable relay stations.
  • the service route in the network topology diagram is 001-(002)-003-004-005-006-(007)-008-009.
  • the sub-routes are formed by connecting adjacent or closest service sites as endpoints in the network topology. Refer to Figure 2.
  • the sub-routes are 001-(002)-003, 003-004, 004-005, 005-006, 006. -(007)-008 and 008-009.
  • 001-(002)-003 since 002 is a non-business site, the business site closest to the business site 001 is 003, so 001, 002, and 003 are connected to form a sub-route.
  • the sub-route 006-(007)-008 is similar.
  • Optical amplifiers are used to increase the power of service signals during optical transmission. According to the position of the optical amplifiers in the transmission structure, optical amplifiers can be divided into group optical amplifiers and add/drop optical amplifiers. Group optical amplifiers are used for subsequent optical fiber transmission at a certain site. The optical amplifiers that all pass through, and the add/drop optical amplifiers are the amplifiers passed by the add/drop service of a certain site.
  • the signal-to-noise ratio is the ratio of the service signal to the noise, where the noise is generated by the optical amplifier.
  • the signal-to-noise ratio of the group optical amplifier is the ratio of the service signal to the noise generated by the group optical amplifier.
  • S120 Determine the signal-to-noise ratio of the group optical amplifier corresponding to the temporary route according to the signal-to-noise ratio of the group optical amplifier corresponding to the sub-route.
  • the temporary route is determined according to the sub-route.
  • the temporary route takes the first site of the service route as the start site and includes at least one sub-route.
  • the temporary route can be 001-(002)-003, 001-(002)-003-004, 001-(002)-003-004-005, 01-(002)-003-004-005- 006 and 001-(002)-003-004-005-006-(007)-008.
  • the signal-to-noise ratio of the group optical amplifier corresponding to the temporary route may be determined according to the signal-to-noise ratio of the group optical amplifier corresponding to the sub-route.
  • the signal-to-noise ratio of the group optical amplifier corresponding to the temporary route is the same as the signal-to-noise ratio of the group optical amplifier corresponding to the sub-route, for example, the temporary route 001-(002)-003
  • the signal-to-noise ratio of the corresponding group optical amplifier is the same as the signal-to-noise ratio of the group optical amplifier corresponding to the sub-route 001-(002)-003.
  • the SNR of the group optical amplifier corresponding to the previous temporary route can be combined with the newly introduced sub-route to determine the signal-to-noise ratio of the group optical amplifier corresponding to the current temporary route, such as temporary
  • the signal-to-noise ratio of the group optical amplifier corresponding to route 001-(002)-003-004 can be determined on the basis of temporary route 001-(002)-003 in combination with sub-route 003-004.
  • the specific determination process can be set according to actual needs. set.
  • the embodiment determines the configuration range of the relay according to the signal-to-noise ratio of the group optical amplifier of the temporary route, and then further according to the mixed-path optical amplifier within the configuration range.
  • the amplifier signal-to-noise ratio determines the target business site.
  • the hybrid optical amplifier includes the group optical amplifier and the add/drop optical amplifier.
  • the signal-to-noise ratio of the hybrid optical amplifier is the ratio of the service signal to the noise generated by the group optical amplifier and the add/drop optical amplifier.
  • the configuration range for the relay according to the signal-to-noise ratio of the hybrid optical amplifier, and then further determine the target service site according to the signal-to-noise ratio of the hybrid optical amplifier within the configuration range. It is also possible to determine the target service site only based on the signal-to-noise ratio of the add-and-drop optical amplifiers or the signal-to-noise ratio of the group optical amplifiers.
  • the signal-to-noise ratio of the group amplifier of the temporary route can be determined in a certain order. If there is a group amplifier of the temporary route whose signal-to-noise ratio is less than the corresponding signal-to-noise ratio tolerance limit of the service transmission, the signal-to-noise ratio The business sites included in the temporary route serve as the configuration scope of the relay. Then delete the last sub-route in the temporary route to obtain a new temporary route. If the signal-to-noise ratio of the hybrid optical amplifier of the new temporary route is greater than the signal-to-noise ratio tolerance limit, the new temporary route will end Determined as the target business site. Among them, the new temporary route has one less sub-route than the temporary route.
  • the temporary routes 001-(002)-003, 001-(002)-003-004, 001-(002)-003-004-005 and 01-(002)-003 are determined respectively.
  • the signal-to-noise ratio of the group optical amplifier of -004-005-006 is greater than the SNR tolerance limit, but the signal of the group optical amplifier of 001-(002)-003-004-005-006-(007)-008 is temporarily routed. If the noise ratio is less than the signal-to-noise ratio tolerance limit, the configuration range of the relay is determined to be service sites 003, 004, 005, 006, and 008.
  • the service site 006 is the target service site.
  • the signal-to-noise ratio tolerance limit can be set according to actual needs.
  • the embodiment of the application provides a relay configuration method.
  • the signal-to-noise ratio of the group optical amplifier corresponding to the sub-route in the network topology is determined, and according to the signal-to-noise ratio of the group optical amplifier corresponding to the sub-route, Determine the signal-to-noise ratio of the group optical amplifier corresponding to the temporary route, and determine the configuration range of the relay according to the signal-to-noise ratio of the group optical amplifier corresponding to the temporary route.
  • the amplifier signal-to-noise ratio determines the target service site used to configure the relay.
  • this embodiment uses the signal-to-noise ratio of the group optical amplifier to determine the configuration range of the relay, and further determines the target service site according to the signal-to-noise ratio of the hybrid optical amplifier within the configuration range. While ensuring normal service transmission, Reduce the number of relays and reduce network costs.
  • Fig. 3 shows a flowchart of another relay configuration method in an embodiment of the application.
  • the service stations are 001, 003, 004, 005, 006, 008, and 009, and relays can be configured for these service stations.
  • S320 Using adjacent service sites as endpoints, divide the service routes in the network topology graph to obtain a set of sub-routes.
  • the embodiment uses adjacent service sites as endpoints to divide the service route 001-(002)-003-004-005-006-(007)-008-009 to obtain the sub-route 001-(002)- 003, 003-004, 004-005, 005-006, 006-(007)-008 and 008-009, these sub-routes form a sub-route set [001-(002)-003, 003-004, 004-005, 005-006, 006-(007)-008, 008-009].
  • the neighbors described in the embodiment include direct neighbors, such as business site 003 and business site 004, and indirect neighbors, such as business site 001 and business site 003.
  • the signal-to-noise ratio of group optical amplifiers can be divided into forward signal-to-noise ratio and reverse signal-to-noise ratio according to the order of service routing. For example, the order of service routing from start to end is forward, and the order from end to start is reverse. For the determination process of the forward signal-to-noise ratio and the reverse signal-to-noise ratio of the sub-routes, reference may be made to related technologies, which will not be repeated here.
  • S340 Determine the forward signal-to-noise ratio of the temporary route according to the calculation formula for the forward signal-to-noise ratio of the temporary route and the forward signal-to-noise ratio of the sub-route.
  • the process of determining the temporary route is as follows:
  • a temporary route is obtained.
  • the first site of the business route is business site 001
  • this business site is used as the starting site of the temporary route
  • the subsequent sub-routes are added to the temporary route set of the temporary route in order to obtain the temporary route.
  • the first temporary route is 001-(002)-003, and the corresponding temporary route set is [001-(002)-003].
  • the forward and reverse signal-to-noise ratios of each temporary route are obtained according to the forward and reverse signal-to-noise ratios of the sub-routes, combined with the calculation formula for the forward signal-to-noise ratio of the temporary route and the reverse signal-to-noise ratio of the temporary route.
  • the formula for calculating the forward signal-to-noise ratio of the temporary route is:
  • OSNR A is the forward signal-to-noise ratio of the current temporary route
  • ⁇ and ⁇ are constants
  • M is the wavelength of the service route in the network topology diagram
  • OSNR Ai is the forward signal-to- noise ratio of the sub-route
  • OSNR A-1 It is the forward signal-to-noise ratio of the previous temporary route.
  • the embodiment records the forward signal-to-noise ratio of the temporary route as OSNRA, the reverse signal-to-noise ratio as OSNRB, the forward signal-to-noise ratio of the sub-route as OSNRAi, and the reverse signal-to-noise ratio as OSNRBi,i Represents the i-th sub-route.
  • OSNRA2 represents the forward signal-to-noise ratio of the second sub-route 003-004.
  • S350 Determine the reverse signal-to-noise ratio of the temporary route according to the calculation formula for the reverse signal-to-noise ratio of the temporary route and the reverse signal-to-noise ratio of the sub-route.
  • the formula for calculating the reverse signal-to-noise ratio of the temporary route is:
  • OSNR B is the reverse signal-to-noise ratio of the current temporary route
  • OSNR Bi is the reverse signal-to- noise ratio of the sub-route
  • OSNR B-1 is the reverse signal-to-noise ratio of the previous temporary route. Similar to the process of the forward signal-to-noise ratio, the reverse signal-to-noise ratio of the current temporary route can be quickly determined through the above formula, which improves the calculation efficiency.
  • the embodiment of this application divides the service route on the basis of the above embodiment to obtain at least one sub-route, according to the forward signal-to-noise ratio and the reverse signal-to-noise ratio of the sub-route, combined with the temporary route forward signal-to-noise ratio calculation formula And the temporary route reverse signal-to-noise ratio calculation formula to obtain the forward signal-to-noise ratio and reverse signal-to-noise ratio of the temporary route, which reduces the network cost while taking into account the calculation efficiency.
  • Fig. 4 shows a flowchart of another relay configuration method in an embodiment of the application.
  • S420 Determine the signal-to-noise ratio of the group optical amplifier corresponding to the temporary route according to the signal-to-noise ratio of the group optical amplifier corresponding to the sub-route.
  • the first preset condition is that the forward signal-to-noise ratio of the current temporary route is smaller than the forward signal-to-noise ratio threshold and/or the reverse signal-to-noise ratio of the current temporary route is smaller than the reverse signal-to-noise ratio threshold.
  • the forward signal-to-noise ratio threshold and the reverse signal-to-noise ratio threshold in the embodiment are both 24 dB.
  • the order of service routing determine the forward signal-to-noise ratio and reverse signal-to-noise ratio of the temporary route. If the forward signal-to-noise ratio of a temporary route is less than the forward signal-to-noise ratio threshold, or the reverse signal-to-noise ratio If it is less than the reverse signal-to-noise ratio threshold, or the forward signal-to-noise ratio is less than the forward signal-to-noise ratio threshold, and the reverse signal-to-noise ratio is less than the reverse signal-to-noise ratio threshold, the end of the temporary route is used as the configuration range of the relay.
  • forward signal-to-noise ratio and reverse signal-to-noise ratio of the temporary route included in the network topology diagram are both greater than the corresponding forward signal-to-noise ratio threshold and reverse signal-to-noise ratio threshold, then the end of the service route is regarded as the middle Following the configuration range.
  • the first preset condition is that the forward signal-to-noise ratio of the current temporary route is smaller than the forward signal-to-noise ratio threshold, or the reverse signal-to-noise ratio of the current temporary route is smaller than the reverse signal-to-noise ratio threshold.
  • the second preset condition is that the number of sub-routes in the current temporary route set is two or more.
  • the forward signal-to-noise ratio threshold and the reverse signal-to-noise ratio threshold are the same, both being 24 dB. It should be noted that the current temporary route in S440 is a temporary route that determines the configuration range.
  • the forward signal-to-noise ratio of the temporary route 001-(002)-003-004-005-006 is less than the forward signal-to-noise ratio threshold, then Record this temporary route as the current temporary route.
  • the signal-to-noise ratio of the group optical amplifier of the current temporary route satisfies the first preset condition, and the temporary route set corresponding to the current temporary route satisfies the second preset condition, then the last child in the current temporary route The route is deleted and a new temporary route is obtained.
  • the forward signal-to-noise ratio is 22.02dB
  • the reverse signal-to-noise ratio is 22.02dB
  • the forward signal-to-noise ratio of the temporary route is 22.02dB.
  • the ratio and the reverse signal-to-noise ratio are both smaller than the corresponding threshold, and the temporary route contains four sub-routes. Therefore, delete the last sub-route 005-006 to obtain a new temporary route 001-(002)-003-004- 005.
  • the third preset condition is that the forward signal-to-noise ratio of the new temporary route is greater than the forward signal-to-noise ratio threshold when calculating the noise introduced by the group optical amplifiers and the add/drop optical amplifiers, and the reverse of the new temporary routes
  • the forward signal-to-noise ratio is greater than the reverse signal-to-noise ratio threshold.
  • the embodiment takes into account other OSNR costs in the forward and reverse directions, and sets the forward and reverse signal-to-noise ratios as OSNRA' and OSNRB' according to the directions, where the other OSNR costs include system margin and power fluctuations.
  • the calculated values of OSNRA' and OSNRB' are both 24.05dB, which is greater than the corresponding threshold, assuming that the new temporary route has other transmission restrictions If all the conditions are met, the business site 005 is determined as the target business site, where other transmission restriction conditions include, but are not limited to, the restriction conditions of PMD (Polarization Mode Dispersion), residual chromatic dispersion and other parameters.
  • the process and business routing are determined.
  • the process of determining the first site as the starting site is similar.
  • the target business site is 005, with this site as the starting site, the sub-routes 005-006, 006-(007)-008, and 008-009 are obtained backward along the route, and the temporary routes 005-006, 005- 006-(007)-008 and 005-006-(007)-008-009, to further determine whether there are other target business sites, and the determination process is similar to that of the target business site 005.
  • the signal-to-noise ratio of the group optical amplifier is used to first determine the configuration range of the relay, and then within the configuration range, the target service site is further determined according to the signal-to-noise ratio of the hybrid optical amplifier to ensure normal service transmission. At the same time, it reduces the number of relays and reduces network costs.
  • the forward SNR threshold and the reverse SNR threshold are assumed to be 24dB.
  • business site 001 and business site 009 are respectively used as the forward starting point and end point of the business route, and the business route is divided to obtain the sub-route set [001-(002)-003, 003-004, 004-005, 005-006, 006-(007)-008, 008-009], when only considering the noise introduced by the group optical amplifier, calculate the signal-to-noise ratio of each sub-route in the forward and reverse directions, namely OSNRAi and OSNRBi,
  • the control sub-routing set OSNRAi/OSNRBi is [30.18/30.18dB, 30.98/30.98dB, 30.98/30.16dB, 30.16/30.98dB, 30.18/30.18dB, 30.98/30.98dB] respectively.
  • the temporary route set contains only one sub-route. From this, the forward and reverse signal-to-noise ratios OSNRA/OSNRB of the temporary route can be obtained as 30.18dB/30.18dB respectively.
  • the second sub-route 003-004 is added to the temporary route set [001-(002)-003, 003-004] in order to obtain the second temporary route 001-(002)-003- 004.
  • the temporary route includes two sub-routes.
  • the forward and reverse signal-to-noise ratio OSNRA/OSNRB of the temporary route are respectively 27.55dB/27.55dB.
  • the third temporary route 001-(002)-003-004-005 and the forward and reverse signal-to-noise ratio OSNRA/OSNRB of this temporary route are 25.92dB/25.65dB respectively
  • the fourth temporary route 001- (002) -003-004-005-006 and the forward and reverse signal-to-noise ratio OSNRA/OSNRB of the temporary route are 24.54dB/24.53dB respectively
  • the fifth temporary route 001-(002)-003-004-005 -006-(007)-008 and the forward and reverse signal-to-noise ratio OSNRA/OSNRB of the temporary route are 23.49dB/23.49dB respectively.
  • the forward and reverse signal-to-noise ratios of the fifth temporary route 001-(002)-003-004-005-006-(007)-008 are both less than 24dB, and the temporary route contains five sub-routes, delete the last A sub-route 006-(007)-008, a new temporary route 001-(002)-003-004-005-006 is obtained.
  • the OSNRA'/OSNRB' of the temporary route are 22.02dB/22.02dB, which is less than 24dB, Delete the last sub-route 005-006, and get a new temporary route 001-(002)-003-004-005.
  • the OSNRA'/OSNRB' of the new temporary route are 24.05dB/24.05dB, which is greater than 24dB, assuming this If all other transmission restriction conditions of the temporary route are met, the business site 005 is determined as the target business site for configuring the relay.
  • the reverse signal-to-noise ratio OSNRA/OSNRB is 30.16dB/30.98dB, 27.16dB/27.55dB and 25.65dB/25.92dB, which are both greater than 24dB.
  • the temporary route 005-006-(007)-008-009 has reached the original service route.
  • the end point 009 of the temporary route, and the OSNRA'/OSNRB' of the temporary route 005-006-(007)-008-009 are 24.62dB/24.05dB respectively, which are both greater than 24dB, then the process of searching for the relay is exited.
  • the target service site used to configure the relay in the network topology is 005.
  • the target service site is determined according to the signal-to-noise ratio of the hybrid optical amplifier.
  • the forward and reverse signal-to-noise ratios of the temporary route 001-(002)-003 are respectively 25.42dB/26.51dB, and the temporary route 001-( 002)
  • the forward and reverse signal-to-noise ratios of -003-004 are 23.65dB/23.65dB, 23.65 ⁇ 24, so configure the relay at the service site 003, and then continue the configuration with the 003 site as the starting site, and temporarily route 003
  • the forward and reverse signal-to-noise ratios of -004, 003-004-005, and 003-004-005-006 are 25.66dB/25.66dB, 26.51dB/26.2dB and 23.49dB/23.49dB, 23.49 ⁇ 24, so in Configure the relay at station 005, and continue to configure the relay with station 005 as the starting station
  • Fig. 5 is a structural diagram of a relay configuration device in an embodiment of the application.
  • the device can execute the relay configuration method provided in the foregoing embodiment.
  • the device includes:
  • the sub-route signal-to-noise ratio determining module 510 is configured to determine the signal-to-noise ratio of the group optical amplifier corresponding to the sub-route in the network topology diagram according to the obtained network topology diagram;
  • the temporary route signal-to-noise ratio determining module 520 is configured to determine the group-path optical amplifier signal-to-noise ratio corresponding to the temporary route according to the group-path optical amplifier signal-to-noise ratio corresponding to the sub-route, and the temporary route is determined according to the sub-route;
  • the target service site determination module 530 is configured to determine the configuration range of the relay according to the signal-to-noise ratio of the group optical amplifier corresponding to the temporary route, so as to determine the configuration range of the relay according to the signal of the hybrid optical amplifier corresponding to the temporary route within the configuration range.
  • the noise ratio determines the target service site used to configure the relay.
  • the embodiment of the application provides a relay configuration device, which determines the signal-to-noise ratio of the group optical amplifier corresponding to the sub-route in the network topology according to the obtained network topology diagram, and according to the signal-to-noise ratio of the group optical amplifier corresponding to the sub-route, Determine the signal-to-noise ratio of the group optical amplifier corresponding to the temporary route, and determine the configuration range of the relay according to the signal-to-noise ratio of the group optical amplifier corresponding to the temporary route.
  • the amplifier signal-to-noise ratio determines the target service site used to configure the relay.
  • the embodiment of the present application uses the signal-to-noise ratio of the group optical amplifier to determine the configuration range of the relay, and further determines the target service site according to the signal-to-noise ratio of the hybrid optical amplifier within the configuration range, while ensuring normal service transmission. , Reducing the number of relays and reducing network costs.
  • the sub-route signal-to-noise ratio determining module 510 is specifically set as follows:
  • the forward signal-to-noise ratio and the reverse signal-to-noise ratio of the sub-routes in the sub-route set are determined as the group-path optical amplifier signal-to-noise ratio corresponding to the sub-route.
  • the temporary route is determined according to the sub-route, including:
  • a temporary route is obtained.
  • the temporary routing signal-to-noise ratio determining module 520 is specifically set as follows:
  • OSNR A is the forward signal-to-noise ratio of the current temporary route
  • ⁇ and ⁇ are constants
  • M is the wavelength of the service route in the network topology diagram
  • OSNR Ai is the forward signal-to- noise ratio of the sub-route
  • OSNR A-1 Is the forward signal-to-noise ratio of the previous temporary route
  • OSNR B is the reverse signal-to-noise ratio of the current temporary route
  • OSNR Bi is the reverse signal-to- noise ratio of the sub-route
  • OSNR B-1 is the reverse signal-to-noise ratio of the previous temporary route.
  • the target service site determination module 530 is specifically set as follows:
  • the configuration range of the relay determines the configuration range of the relay according to the service stations included in the current temporary route; otherwise, the The configuration range of the business site as a relay;
  • the first preset condition is that the forward signal-to-noise ratio of the current temporary route is smaller than the forward signal-to-noise ratio threshold and/or the reverse signal-to-noise ratio of the current temporary route is smaller than the reverse signal-to-noise ratio threshold.
  • the determining the target service site for configuring the relay according to the signal-to-noise ratio of the hybrid optical amplifier corresponding to the temporary route within the configuration range includes:
  • the process of determining the temporary route and the target service station is repeated until the end of the service route in the network topology diagram is reached.
  • the relay configuration device provided in the embodiment of the present application can execute the relay configuration method provided in the foregoing embodiment of the present application, and has functional modules and beneficial effects corresponding to the execution method.
  • Fig. 6 is a structural diagram of a device in an embodiment of the application.
  • the device includes a processor 610, a memory 620, an input device 630, and an output device 640.
  • the number of processors 610 in the device may be one or more. In FIG. 6, one processor 610 is taken as an example.
  • the processor 610, the memory 620, the input device 630, and the output device 640 may be connected by a bus or other methods. In FIG. 6, the connection by a bus is taken as an example.
  • the memory 620 can be configured to store software programs, computer-executable programs, and modules, such as program instructions/modules corresponding to the relay configuration method in the embodiment of the present application.
  • the processor 610 executes various functional applications and data processing of the device by running software programs, instructions, and modules stored in the memory 620, that is, implements the relay configuration method of the foregoing embodiment.
  • the memory 620 mainly includes a program storage area and a data storage area.
  • the program storage area can store an operating system and an application program required by at least one function; the data storage area can store data created according to the use of the terminal, and the like.
  • the memory 620 may include a high-speed random access memory, and may also include a non-volatile memory, such as at least one magnetic disk storage device, a flash memory device, or other non-volatile solid-state storage devices.
  • the memory 620 may further include a memory remotely provided with respect to the processor 610, and these remote memories may be connected to the device through a network. Examples of the aforementioned networks include, but are not limited to, the Internet, corporate intranets, local area networks, mobile communication networks, and combinations thereof.
  • the input device 630 may be configured to receive input digital or character information, and generate key signal input related to user settings and function control of the device.
  • the output device 640 may include a display device such as a display screen, a speaker, and an audio device such as a buzzer.
  • An embodiment of the present application further provides a storage medium on which a computer program is stored, and when the program is executed by a processor, the relay configuration method as described in the foregoing embodiment of the present application is implemented.
  • the storage medium containing computer-executable instructions provided by the embodiments of the present application is not limited to the operations in the relay configuration method described above, and can also execute the operations provided in any embodiment of the present application.
  • Related operations in the relay configuration method and have corresponding functions and beneficial effects.
  • ROM Read-Only Memory
  • RAM Random Access Memory
  • FLASH Flash memory
  • hard disk or optical disk etc.
  • a computer device which can be a robot, A personal computer, a server, or a network device, etc.

Landscapes

  • Engineering & Computer Science (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Signal Processing (AREA)
  • Physics & Mathematics (AREA)
  • Electromagnetism (AREA)
  • Optical Communication System (AREA)
  • Data Exchanges In Wide-Area Networks (AREA)

Abstract

本申请公开了一种中继配置方法、装置、设备及存储介质。该方法包括:根据所获取的网络拓扑图,确定所述网络拓扑图中子路由对应的群路光放大器信噪比,根据所述子路由对应的群路光放大器信噪比,确定临时路由对应的群路光放大器信噪比,根据所述临时路由对应的群路光放大器信噪比,确定中继的配置范围,以在所述配置范围内根据所述临时路由对应的混合路光放大器信噪比确定用于配置中继的目标业务站点。与相关技术相比,本申请实施例利用群路光放大器信噪比确定中继的配置范围,在配置范围内进一步根据混合路光放大器信噪比确定目标业务站点,在保证业务正常传输的同时,减少了中继的数量,降低了网络成本。

Description

一种中继配置方法、装置、设备及存储介质 技术领域
本申请实施例涉及光通讯技术领域,尤其涉及一种中继配置方法、装置、设备及存储介质。
背景技术
在光通讯领域中,随着WDM(波分复用,Wavelength Division Multiplexing)光网络的发展,WDM网络承载的业务越来越多,越来越多的业务站点存在多个方向业务上下的需求。为了实现多个方向业务在本站点的上下和调配,引入了大量的带有选路或合分波功能的单板和光放大器,光放大器用于补偿单板的插损,但也因此引入了噪声。
WDM网络各业务站点之间的传输性能对于网络的规划建设具有重要影响,特定的传输性能限制下,OSNR(光信噪比,Optical Signal Noise Ratio)是衡量传输性能的重要指标。WDM系统中针对某一条业务所选用的光模块都有一个OSNR容限值,即在业务接收端可以成功解析业务信号的最低OSNR值,当接收到的业务信号的OSNR值低于OSNR容限值时,接收端无法正确解析业务信号,以致业务无法正常传输。解决此问题的方法可以是在业务站点上设置中继,使得业务接收端的OSNR值提升至OSNR容限值之上。
传统的中继配置方式虽然可以保证业务接收端的OSNR值大于OSNR容限值,但配置的中继数量较多,增加了网络成本。
发明内容
本申请实施例提供一种中继配置方法、装置、设备及存储介质,以减少中继的配置数量,节约网络成本。
第一方面,本申请实施例提供了一种中继配置方法,包括:
根据所获取的网络拓扑图,确定所述网络拓扑图中子路由对应的群路 光放大器信噪比;
根据所述子路由对应的群路光放大器信噪比,确定临时路由对应的群路光放大器信噪比,所述临时路由根据所述子路由确定;
根据所述临时路由对应的群路光放大器信噪比,确定中继的配置范围,以在所述配置范围内根据所述临时路由对应的混合路光放大器信噪比确定用于配置中继的目标业务站点。
第二方面,本申请实施例还提供了一种中继配置装置,包括:
子路由信噪比确定模块,设置为根据所获取的网络拓扑图,确定所述网络拓扑图中子路由对应的群路光放大器信噪比;
临时路由信噪比确定模块,设置为根据所述子路由对应的群路光放大器信噪比,确定临时路由对应的群路光放大器信噪比,所述临时路由根据所述子路由确定;
目标业务站点确定模块,设置为根据所述临时路由对应的群路光放大器信噪比,确定中继的配置范围,以在所述配置范围内根据所述临时路由对应的混合路光放大器信噪比确定用于配置中继的目标业务站点。
第三方面,本申请实施例还提供了一种设备,包括:
一个或多个处理器;
存储器,设置为存储一个或多个程序;
当所述一个或多个程序被所述一个或多个处理器执行时,使得所述一个或多个处理器实现如第一方面所述的中继配置方法。
第四方面,本申请实施例还提供了一种存储介质,其上存储有计算机程序,该程序被处理器执行时实现如第一方面所述的中继配置方法。
附图说明
图1所示为本申请实施例中一种中继配置方法的流程图;
图2所示为本申请实施例提供的一种网络拓扑图的示意图;
图3所示为本申请实施例中另一种中继配置方法的流程图;
图4所示为本申请实施例中另一种中继配置方法的流程图;
图5所示为本申请实施例中一种中继配置装置的结构图;
图6所示为本申请实施例中一种设备的结构图。
具体实施方式
下面结合附图和实施例对本申请作进一步的详细说明。可以理解的是,此处所描述的具体实施例仅仅用于解释本申请,而非对本申请的限定。另外还需要说明的是,为了便于描述,附图中仅示出了与本申请相关的部分而非全部结构。此外,在不冲突的情况下,本申请中的实施例及实施例中的特征可以相互组合。
图1所示为本申请实施例中一种中继配置方法的流程图,本实施例可适用于通过配置中继,保证业务正常传输的情况,该方法可以由中继配置装置来执行,该装置可以采用软件和/或硬件的方式实现,并可配置在笔记本电脑、掌上电脑等设备中,参考图1,该方法可以包括如下步骤:
S110、根据所获取的网络拓扑图,确定所述网络拓扑图中子路由对应的群路光放大器信噪比。
可选的,本实施例所依据的网络拓扑图如图2所示,该网络拓扑图表示一条业务的工作路径为001到009,其中,001、003、004、005、006、008和009为业务站点,001和009分别为该业务的发送站点和接收站点,002和007为OLA(光线路放大,Optical Line Amplifier)站点,即非业务站点,业务站点003、004、005、006和008为可配置中继的站点,非业务站点002和007为不可配置中继的站点。该网络拓扑图中业务路由为001-(002)-003-004-005-006-(007)-008-009。
子路由为网络拓扑图中以相邻或距离最近业务站点为端点连接而成,参考图2,子路由分别为001-(002)-003、003-004、004-005、005-006、006-(007)-008和008-009。以子路由001-(002)-003为例,由于002为非业 务站点,与业务站点001距离最近的业务站点为003,因此001、002和003连接形成子路由。子路由006-(007)-008也是类似。
光放大器用于提高光传输过程中业务信号的功率,根据光放大器在传输结构中的位置,可以将光放大器划分为群路光放大器和上下路光放大器,群路光放大器为某站点后续光纤传输都经过的光放大器,上下路光放大器为某站点上下路业务经过的放大器。信噪比为业务信号与噪声的比值,其中,噪声由光放大器产生。群路光放大器信噪比为业务信号与群路光放大器所产生噪声的比值。
S120、根据所述子路由对应的群路光放大器信噪比,确定临时路由对应的群路光放大器信噪比。
其中,所述临时路由根据所述子路由确定。临时路由以业务路由的首站点为起始站点,包含至少一个子路由。参考图2,临时路由可以是001-(002)-003、001-(002)-003-004、001-(002)-003-004-005、01-(002)-003-004-005-006和001-(002)-003-004-005-006-(007)-008。临时路由对应的群路光放大器信噪比可以根据子路由对应的群路光放大器信噪比确定。
具体的,如果临时路由中仅包含一个子路由,该临时路由对应的群路光放大器信噪比与该子路由对应的群路光放大器信噪比相同,例如临时路由001-(002)-003对应的群路光放大器信噪比与子路由001-(002)-003对应的群路光放大器信噪比相同。如果临时路由中包含至少两个子路由,可以在前一个临时路由对应的群路光放大器信噪比的基础上结合最新引入的子路由确定当前临时路由对应的群路光放大器信噪比,例如临时路由001-(002)-003-004对应的群路光放大器信噪比可以在临时路由001-(002)-003的基础上结合子路由003-004确定,具体的确定过程可以根据实际需要设定。
S130、根据所述临时路由对应的群路光放大器信噪比,确定中继的配置范围,以在所述配置范围内根据所述临时路由对应的混合路光放大器信 噪比确定用于配置中继的目标业务站点。
为了提高中继配置的准确度,减少中继的数量,可选的,实施例根据临时路由的群路光放大器信噪比确定中继的配置范围,然后在配置范围之内进一步根据混合路光放大器信噪比确定目标业务站点。其中,混合路光放大器包括群路光放大器和上下路光放大器,混合路光放大器信噪比为业务信号与群路光放大器和上下路光放大器所产生噪声的比值。当然也可以直接根据混合路光放大器信噪比确定用于中继的配置范围,然后在配置范围之内进一步根据混合路光放大器信噪比确定目标业务站点。还可以仅根据上下路光放大器信噪比或群路光放大器信噪比确定目标业务站点。
可选的,可以按照一定的顺序分别确定临时路由的群路放大器信噪比,如果存在一个临时路由的群路放大器信噪比小于该业务传输对应的信噪比容限值比较,则将该临时路由中包含的业务站点作为中继的配置范围。然后将该临时路由中的最后一个子路由删掉,得到新的临时路由,如果新的临时路由的混合路光放大器信噪比大于信噪比容限值,则将该新的临时路由的终点确定为目标业务站点。其中,该新的临时路由比该临时路由少一个子路由。
示例性的,参考图2,如果分别确定临时路由001-(002)-003、001-(002)-003-004、001-(002)-003-004-005和01-(002)-003-004-005-006的群路光放大器信噪比大于信噪比容限值,但临时路由001-(002)-003-004-005-006-(007)-008的群路光放大器信噪比小于信噪比容限值,则确定中继的配置范围为业务站点003、004、005、006和008。如果新的临时路由01-(002)-003-004-005-006对应的混合路光放大器信噪比大于信噪比容限值,则业务站点006为目标业务站点。其中,信噪比容限值可以根据实际需要设定。
本申请实施例提供一种中继配置方法,根据所获取的网络拓扑图,确定网络拓扑图中子路由对应的群路光放大器信噪比,根据子路由对应的群路光放大器信噪比,确定临时路由对应的群路光放大器信噪比,根据临时 路由对应的群路光放大器信噪比,确定中继的配置范围,以在所述配置范围内根据所述临时路由对应的混合路光放大器信噪比确定用于配置中继的目标业务站点。与相关技术相比,本实施例利用群路光放大器信噪比确定中继的配置范围,在配置范围内进一步根据混合路光放大器信噪比确定目标业务站点,在保证业务正常传输的同时,减少了中继的数量,降低了网络成本。
图3所示为本申请实施例中另一种中继配置方法的流程图。
S310、确定所述网络拓扑图中的业务站点。
参考图2,业务站点为001、003、004、005、006、008和009,这些业务站点均可配置中继。
S320、以相邻的业务站点为端点,对所述网络拓扑图中的业务路由进行划分,得到子路由集合。
可选的,实施例以相邻业务站点为端点,对业务路由001-(002)-003-004-005-006-(007)-008-009进行划分,得到子路由001-(002)-003、003-004、004-005、005-006、006-(007)-008和008-009,这些子路由形成子路由集合[001-(002)-003,003-004,004-005,005-006,006-(007)-008,008-009]。需要说明的是,实施例所述的相邻包括直接相邻如业务站点003和业务站点004,以及间接相邻如业务站点001和业务站点003。
S330、确定所述子路由集合中子路由的正向信噪比和反向信噪比,作为子路由对应的群路光放大器信噪比。
群路光放大器信噪比按照业务路由的顺序可以分为正向信噪比和反向信噪比,例如业务路由起点到终点的顺序为正向,终点到起点的顺序为反向。子路由的正向信噪比和反向信噪比的确定过程可以参考相关技术,此处不再赘述。
S340、根据临时路由正向信噪比计算公式和所述子路由的正向信噪 比,确定所述临时路由的正向信噪比。
可选的,临时路由的确定过程如下:
确定所述网络拓扑图中业务路由的首站点为所述临时路由的起始站点;
将所述子路由按照在所述网络拓扑图的顺序依次加入所述临时路由的临时路由集合;
根据所述临时路由集合,得到临时路由。
参考图2,业务路由的首站点为业务站点001,将该业务站点作为临时路由的起始站点,沿首站点向后,将后续的子路由按顺序加入临时路由的临时路由集合,得到临时路由。第一个临时路由为001-(002)-003,对应的临时路由集合为[001-(002)-003],在此基础上,将子路由003-004按顺序加入该临时路由集合,得到[001-(002)-003,003-004],从而得到第二个临时路由001-(002)-003-004,其他临时路由的确定过程类似。临时路由确定后,根据子路由的正、反向信噪比结合临时路由正向信噪比计算公式和临时路由反向信噪比计算公式,得到各临时路由的正、反向信噪比。
可选的,临时路由正向信噪比计算公式为:
Figure PCTCN2020128439-appb-000001
其中,OSNR A为当前临时路由的正向信噪比,α和β为常量,M为所述网络拓扑图中业务路由的波长,OSNR Ai为子路由的正向信噪比,OSNR A-1为前一个临时路由的正向信噪比。为了便于描述,实施例将临时路由的正向信噪比记为OSNRA,反向信噪比记为OSNRB,子路由的正向信噪比记为OSNRAi,反向信噪比记为OSNRBi,i表示第i个子路由,参考图2,OSNRA2表示第二个子路由003-004的正向信噪比。可选的,上述公式中的α=58,β=10。
通过上述公式可以看出在前一个临时路由正向信噪比的基础上结合最新加入的子路由的正向信噪比,即可得到当前临时路由的正向信噪比, 提高了计算效率。
S350、根据临时路由反向信噪比计算公式和所述子路由的反向信噪比,确定所述临时路由的反向信噪比。
可选的,临时路由反向信噪比计算公式为:
Figure PCTCN2020128439-appb-000002
其中,OSNR B为当前临时路由的反向信噪比,OSNR Bi为子路由的反向信噪比,OSNR B-1为前一个临时路由的反向信噪比。与正向信噪比的过程类似,通过上述公式可以快速确定当前临时路由的反向信噪比,提高了计算效率。可选的,上述公式中的α=58,β=10。
S360、根据所述临时路由对应的群路光放大器信噪比,确定中继的配置范围,以在所述配置范围内根据所述临时路由对应的混合路光放大器信噪比确定用于配置中继的目标业务站点。
本申请实施例在上述实施例的基础上,对业务路由进行划分,得到至少一个子路由,根据子路由的正向信噪比和反向信噪比,结合临时路由正向信噪比计算公式和临时路由反向信噪比计算公式得到临时路由的正向信噪比和反向信噪比,降低网络成本的同时兼顾了计算效率。
图4所示为本申请实施例中另一种中继配置方法的流程图。
S410、根据所获取的网络拓扑图,确定所述网络拓扑图中子路由对应的群路光放大器信噪比。
S420、根据所述子路由对应的群路光放大器信噪比,确定临时路由对应的群路光放大器信噪比。
S430、如果当前临时路由的群路光放大器信噪比满足第一预设条件,根据所述当前临时路由中所包含的业务站点,确定中继的配置范围;否则,将所述网络拓扑图中包含的业务站点作为中继的配置范围。
其中,所述第一预设条件为当前临时路由的正向信噪比小于正向信噪 比阈值和/或当前临时路由的反向信噪比小于反向信噪比阈值。临时路由的正向信噪比和反向信噪比的确定过程可以参考上述实施例,此处不再赘述。可选的,实施例中的正向信噪比阈值和反向信噪比阈值均为24dB。具体的,按照业务路由的顺序,依次确定临时路由的正向信噪比和反向信噪比,如果某临时路由的正向信噪比小于正向信噪比阈值,或者反向信噪比小于反向信噪比阈值,或者正向信噪比小于正向信噪比阈值,且反向信噪比小于反向信噪比阈值,则将该临时路由的终点作为中继的配置范围。如果该网络拓扑图中所包含的临时路由的正向信噪比和反向信噪比均大于对应的正向信噪比阈值和反向信噪比阈值,则将该业务路由的终点作为中继的配置范围。
S440、如果所述配置范围内当前临时路由的群路光放大器信噪比满足第一预设条件,且所述当前临时路由对应的临时路由集合满足第二预设条件,删除所述当前临时路由集合中的最后一个子路由,得到新的临时路由。
可选的,第一预设条件为当前临时路由的正向信噪比小于正向信噪比阈值,或者当前临时路由的反向信噪比小于反向信噪比阈值。第二预设条件为当前临时路由集合中子路由的数量为两个或两个以上。可选的,正向信噪比阈值与反向信噪比阈值相同,均为24dB。需要说明的是,S440中的当前临时路由为确定配置范围的临时路由,例如临时路由001-(002)-003-004-005-006的正向信噪比小于正向信噪比阈值,则将该临时路由记为当前临时路由。具体的,如果当前临时路由的群路光放大器信噪比满足第一预设条件,且该当前临时路由对应的临时路由集合满足第二预设条件,则将该当前临时路由中的最后一个子路由删除,得到新的临时路由。
示例性的,对于临时路由001-(002)-003-004-005-006,经计算其正向信噪比为22.02dB,反向信噪比为22.02dB,该临时路由的正向信噪比和反向信噪比均小于对应的阈值,且该临时路由中包含四个子路由,因此,将最后一个子路由005-006删除,得到新的临时路由001-(002)-003-004-005。
S450、如果所述新的临时路由的混合路光放大器信噪比满足第三预设条件,将所述新的临时路由的终点确定为目标业务站点。
可选的,第三预设条件为在计算群路光放大器和上下路光放大器引入的噪声的新的临时路由的正向信噪比大于正向信噪比阈值,且新的临时路由的反向信噪比大于反向信噪比阈值。为了便于描述,实施例在考虑正反方向的其他OSNR代价的情况下,按照方向将正、反向信噪比分别设为OSNRA’和OSNRB’,其中,其他OSNR代价包括系统余量、功率波动代价、EDFA(掺铒光纤放大器,Erbium-doped Optical Fiber Amplifier)增益不平坦代价、非线性代价、滤波代价等。示例性的,对于新的临时路由001-(002)-003-004-005,经计算OSNRA’和OSNRB’的值均为24.05dB,大于对应的阈值,假定该新的临时路由其他的传输限制条件均已经满足,则将业务站点005确定为目标业务站点,其中,其他的传输限制条件包括但不限于PMD(偏振模色散,Polarization Mode Dispersion)、残余色散等参数的限制条件。
S460、以所述目标业务站点作为起始站点,重复执行临时路由和目标业务站点的确定过程,直至到达所述网络拓扑图中业务路由的终点。
目标业务站点确定之后,以目标业务站点为起始站点,沿路由向后,依次确定子路由,然后根据子路由确定临时路由,直至到达网络拓扑图中业务路由的终点,确定过程与以业务路由首站点为起始站点的确定过程类似。示例性的,目标业务站点为005,以该站点为起始站点,沿路由向后得到子路由005-006、006-(007)-008和008-009,以及临时路由005-006、005-006-(007)-008和005-006-(007)-008-009,进一步确定是否存在其他的目标业务站点,确定过程与目标业务站点005的确定过程类似。
本申请实施例在配置中继时通过群路光放大器信噪比先确定中继的配置范围,然后在该配置范围内进一步根据混合路光放大器信噪比确定目标业务站点,在保证业务正常传输的同时,减少了中继的数量,降低了网络成本。
下面通过一个具体的示例说明中继配置的具体过程。
正向信噪比阈值和反向信噪比阈值假设均为24dB。参考图2,以业务站点001和业务站点009分别作为业务路由的正向起点和终点,对业务路由进行划分,得到子路由集合[001-(002)-003,003-004,004-005,005-006,006-(007)-008,008-009],在只考虑群路光放大器引入噪声的情况下,计算各子路由正、反两个方向的信噪比,即OSNRAi和OSNRBi,对照子路由集合OSNRAi/OSNRBi分别为[30.18/30.18dB,30.98/30.98dB,30.98/30.16dB,30.16/30.98dB、30.18/30.18dB,30.98/30.98dB]。
以业务路由的首站点001作为临时路由的起始站点,沿路由向后,将第一个子路由001-(002)-003加入临时路由集合[001-(002)-003],得到第一个临时路由001-(002)-003,该临时路由集合中仅包含一个子路由,由此可以得到该临时路由的正、反向信噪比OSNRA/OSNRB分别为30.18dB/30.18dB。在此基础上,将第二个子路由003-004按顺序加入到临时路由集合[001-(002)-003,003-004],由此得到第二个临时路由001-(002)-003-004,该临时路由包含两个子路由,按照上述公式(1)和公式(2),得到该临时路由的正、反向信噪比OSNRA/OSNRB分别为27.55dB/27.55dB。依次类推,得到第三个临时路由001-(002)-003-004-005以及该临时路由的正、反向信噪比OSNRA/OSNRB分别为25.92dB/25.65dB,第四个临时路由001-(002)-003-004-005-006以及该临时路由的正、反向信噪比OSNRA/OSNRB分别为24.54dB/24.53dB,第五个临时路由001-(002)-003-004-005-006-(007)-008以及该临时路由的正、反向信噪比OSNRA/OSNRB分别为23.49dB/23.49dB。
由于第五个临时路由001-(002)-003-004-005-006-(007)-008的正、反向信噪比均小于24dB,且该临时路由中包含五个子路由,则删除最后一个子路由006-(007)-008,得到新的临时路由001-(002)-003-004-005-006,该临时路由的OSNRA’/OSNRB’分别为22.02dB/22.02dB,小于24dB,删除 最后一个子路由005-006,得到新的临时路由001-(002)-003-004-005,该新的临时路由的OSNRA’/OSNRB’分别为24.05dB/24.05dB,大于24dB,假设该临时路由其他传输限制条件均满足,则将业务站点005确定为目标业务站点,用于配置中继。
将业务站点005作为起始站点,沿路由向后,分别得到新的临时路由005-006、005-006-(007)-008和005-006-(007)-008-009以及对应的正、反向信噪比OSNRA/OSNRB分别为30.16dB/30.98dB、27.16dB/27.55dB和25.65dB/25.92dB,均大于24dB,临时路由005-006-(007)-008-009已经到达原始业务路由的终点009,且临时路由005-006-(007)-008-009的OSNRA’/OSNRB’分别为24.62dB/24.05dB,均大于24dB,则退出中继的寻找过程。综上,可以确定该网络拓扑图中用于配置中继的目标业务站点为005。
按照传统的方式,根据混合路光放大器信噪比确定目标业务站点,例如得到临时路由001-(002)-003的正、反向信噪比分别为25.42dB/26.51dB,临时路由001-(002)-003-004的正、反向信噪比分别为23.65dB/23.65dB,23.65<24,所以在业务站点003处配置中继,然后以003站点为起始站点继续配置,临时路由003-004、003-004-005、003-004-005-006的正、反向信噪比分别为25.66dB/25.66dB、26.51dB/26.2dB和23.49dB/23.49dB,23.49<24,所以在005站点配置中继,并以005站点为起始站点继续配置中继,临时路由005-006、005-006-(007)-008、005-006-(007)-008-009的正、反向信噪比分别为26.5dB/26.83dB、24.95dB/25.18dB和24.61dB/24.05dB,均大于24,不必继续配置中继。因此得出的需要配置中继的站点为003和005。可见,本实施例相较于传统方式,需要配置的中继的数量更少,降低了网络成本。
图5所示为本申请实施例中一种中继配置装置的结构图。该装置可以执行上述实施例提供的中继配置方法,具体的,该装置包括:
子路由信噪比确定模块510,设置为根据所获取的网络拓扑图,确定所述网络拓扑图中子路由对应的群路光放大器信噪比;
临时路由信噪比确定模块520,设置为根据所述子路由对应的群路光放大器信噪比,确定临时路由对应的群路光放大器信噪比,所述临时路由根据所述子路由确定;
目标业务站点确定模块530,设置为根据所述临时路由对应的群路光放大器信噪比,确定中继的配置范围,以在所述配置范围内根据所述临时路由对应的混合路光放大器信噪比确定用于配置中继的目标业务站点。
本申请实施例提供一种中继配置装置,根据所获取的网络拓扑图,确定网络拓扑图中子路由对应的群路光放大器信噪比,根据子路由对应的群路光放大器信噪比,确定临时路由对应的群路光放大器信噪比,根据临时路由对应的群路光放大器信噪比,确定中继的配置范围,以在所述配置范围内根据所述临时路由对应的混合路光放大器信噪比确定用于配置中继的目标业务站点。与相关技术相比,本申请实施例利用群路光放大器信噪比确定中继的配置范围,在配置范围内进一步根据混合路光放大器信噪比确定目标业务站点,在保证业务正常传输的同时,减少了中继的数量,降低了网络成本。
在上述实施例的基础上,子路由信噪比确定模块510,具体设置为:
确定所述网络拓扑图中的业务站点;
以相邻的业务站点为端点,对所述网络拓扑图中的业务路由进行划分,得到子路由集合;
确定所述子路由集合中子路由的正向信噪比和反向信噪比,作为子路由对应的群路光放大器信噪比。
在上述实施例的基础上,所述临时路由根据所述子路由确定,包括:
确定所述网络拓扑图中业务路由的首站点为所述临时路由的起始站点;
将所述子路由按照在所述网络拓扑图的顺序依次加入所述临时路由的临时路由集合;
根据所述临时路由集合,得到临时路由。
在上述实施例的基础上,临时路由信噪比确定模块520,具体设置为:
根据临时路由正向信噪比计算公式和所述子路由的正向信噪比,确定所述临时路由的正向信噪比;
根据临时路由反向信噪比计算公式和所述子路由的反向信噪比,确定所述临时路由的反向信噪比。
在上述实施例的基础上,所述临时路由正向信噪比计算公式为:
Figure PCTCN2020128439-appb-000003
其中,OSNR A为当前临时路由的正向信噪比,α和β为常量,M为所述网络拓扑图中业务路由的波长,OSNR Ai为子路由的正向信噪比,OSNR A-1为前一个临时路由的正向信噪比;
所述临时路由反向信噪比计算公式为:
Figure PCTCN2020128439-appb-000004
其中,OSNR B为当前临时路由的反向信噪比,OSNR Bi为子路由的反向信噪比,OSNR B-1为前一个临时路由的反向信噪比。
在上述实施例的基础上,目标业务站点确定模块530,具体设置为:
如果当前临时路由的群路光放大器信噪比满足第一预设条件,根据所述当前临时路由中所包含的业务站点,确定中继的配置范围;否则,将所述网络拓扑图中包含的业务站点作为中继的配置范围;
其中,所述第一预设条件为当前临时路由的正向信噪比小于正向信噪比阈值和/或当前临时路由的反向信噪比小于反向信噪比阈值。
在上述实施例的基础上,所述在所述配置范围内根据所述临时路由对应的混合路光放大器信噪比确定用于配置中继的目标业务站点,包括:
如果所述配置范围内当前临时路由的群路光放大器信噪比满足第一预设条件,且所述当前临时路由对应的临时路由集合满足第二预设条件,删除所述当前临时路由集合中的最后一个子路由,得到新的临时路由;
如果所述新的临时路由的混合路光放大器信噪比满足第三预设条件,将所述新的临时路由的终点确定为目标业务站点;
以所述目标业务站点作为起始站点,重复执行临时路由和目标业务站点的确定过程,直至到达所述网络拓扑图中业务路由的终点。
本申请实施例提供的中继配置装置可执行本申请上述实施例所提供的中继配置方法,具备执行方法相应的功能模块和有益效果。
图6所示为本申请实施例中一种设备的结构图。
参考图6,该设备包括:处理器610、存储器620、输入装置630和输出装置640,设备中处理器610的数量可以是一个或多个,图6中以一个处理器610为例,设备中的处理器610、存储器620、输入装置630和输出装置640可以通过总线或其他方式连接,图6中以通过总线连接为例。
存储器620作为一种计算机可读存储介质,可设置为存储软件程序、计算机可执行程序以及模块,如本申请实施例中的中继配置方法对应的程序指令/模块。处理器610通过运行存储在存储器620中的软件程序、指令以及模块,从而执行设备的各种功能应用以及数据处理,即实现上述实施例的中继配置方法。
存储器620主要包括存储程序区和存储数据区,其中,存储程序区可存储操作系统、至少一个功能所需的应用程序;存储数据区可存储根据终端的使用所创建的数据等。此外,存储器620可以包括高速随机存取存储器,还可以包括非易失性存储器,例如至少一个磁盘存储器件、闪存器件、或其他非易失性固态存储器件。在一些实例中,存储器620可进一步包括相对于处理器610远程设置的存储器,这些远程存储器可以通过网络连接至设备。上述网络的实例包括但不限于互联网、企业内部网、局域网、移 动通信网及其组合。
输入装置630可设置为接收输入的数字或字符信息,以及产生与设备的用户设置以及功能控制有关的键信号输入。输出装置640可包括显示屏等显示设备、扬声器以及蜂鸣器等音频设备。
本申请实施例提供的设备与上述实施例提供的中继配置方法属于同一构思,未在本实施例中详尽描述的技术细节可参见上述实施例,并且本实施例具备执行中继配置方法相同的有益效果。
本申请实施例还提供一种存储介质,其上存储有计算机程序,该程序被处理器执行时实现如本申请上述实施例所述的中继配置方法。
当然,本申请实施例所提供的一种包含计算机可执行指令的存储介质,其计算机可执行指令不限于如上所述的中继配置方法中的操作,还可以执行本申请任意实施例所提供的中继配置方法中的相关操作,且具备相应的功能和有益效果。
通过以上关于实施方式的描述,所属领域的技术人员可以清楚地了解到,本申请可借助软件及必需的通用硬件来实现,当然也可以通过硬件实现,但很多情况下前者是更佳的实施方式。基于这样的理解,本申请的技术方案本质上或者说对现有技术做出贡献的部分可以以软件产品的形式体现出来,该计算机软件产品可以存储在计算机可读存储介质中,如计算机的软盘、只读存储器(Read-Only Memory,ROM)、随机存取存储器(Random Access Memory,RAM)、闪存(FLASH)、硬盘或光盘等,包括若干指令用以使得一台计算机设备(可以是机器人,个人计算机,服务器,或者网络设备等)执行本申请上述实施例所述的中继配置方法。
注意,上述仅为本申请的较佳实施例及所运用技术原理。本领域技术人员会理解,本申请不限于这里所述的特定实施例,对本领域技术人员来说能够进行各种明显的变化、重新调整和替代而不会脱离本申请的保护范 围。因此,虽然通过以上实施例对本申请进行了较为详细的说明,但是本申请不仅仅限于以上实施例,在不脱离本申请构思的情况下,还可以包括更多其他等效实施例,而本申请的范围由所附的权利要求范围决定。

Claims (10)

  1. 一种中继配置方法,包括:
    根据所获取的网络拓扑图,确定所述网络拓扑图中子路由对应的群路光放大器信噪比;
    根据所述子路由对应的群路光放大器信噪比,确定临时路由对应的群路光放大器信噪比,所述临时路由根据所述子路由确定;
    根据所述临时路由对应的群路光放大器信噪比,确定中继的配置范围,以在所述配置范围内根据所述临时路由对应的混合路光放大器信噪比确定用于配置中继的目标业务站点。
  2. 根据权利要求1所述的方法,其中,所述根据所获取的网络拓扑图,确定所述网络拓扑图中子路由对应的群路光放大器信噪比,包括:
    确定所述网络拓扑图中的业务站点;
    以相邻的业务站点为端点,对所述网络拓扑图中的业务路由进行划分,得到子路由集合;
    确定所述子路由集合中子路由的正向信噪比和反向信噪比,作为子路由对应的群路光放大器信噪比。
  3. 根据权利要求1所述的方法,其中,所述临时路由根据所述子路由确定,包括:
    确定所述网络拓扑图中业务路由的首站点为所述临时路由的起始站点;
    将所述子路由按照在所述网络拓扑图的顺序依次加入所述临时路由的临时路由集合;
    根据所述临时路由集合,得到临时路由。
  4. 根据权利要求1所述的方法,特征在于,所述根据所述子路由对应的群路光放大器信噪比,确定临时路由对应的群路光放大器信噪比,包括:
    根据临时路由正向信噪比计算公式和所述子路由的正向信噪比,确定所述临时路由的正向信噪比;
    根据临时路由反向信噪比计算公式和所述子路由的反向信噪比,确定所述临时路由的反向信噪比。
  5. 根据权利要求4所述的方法,其中,所述临时路由正向信噪比计算公式为:
    Figure PCTCN2020128439-appb-100001
    其中,OSNR A为当前临时路由的正向信噪比,α和β为常量,M为所述网络拓扑图中业务路由的波长,OSNR Ai为子路由的正向信噪比,OSNR A-1为前一个临时路由的正向信噪比;
    所述临时路由反向信噪比计算公式为:
    Figure PCTCN2020128439-appb-100002
    其中,OSNR B为当前临时路由的反向信噪比,OSNR Bi为子路由的反向信噪比,OSNR B-1为前一个临时路由的反向信噪比。
  6. 根据权利要求1所述的方法,其中,所述根据所述临时路由对应的群路光放大器信噪比,确定中继的配置范围,包括:
    如果当前临时路由的群路光放大器信噪比满足第一预设条件,根据所述当前临时路由中所包含的业务站点,确定中继的配置范围;否则,将所述网络拓扑图中包含的业务站点作为中继的配置范围;
    其中,所述第一预设条件为当前临时路由的正向信噪比小于正向信噪比阈值和/或当前临时路由的反向信噪比小于反向信噪比阈值。
  7. 根据权利要求1所述的方法,其中,所述在所述配置范围内根据所述临时路由对应的混合路光放大器信噪比确定用于配置中继的目标业务站点,包括:
    如果所述配置范围内当前临时路由的群路光放大器信噪比满足第一预设条件,且所述当前临时路由对应的临时路由集合满足第二预设 条件,删除所述当前临时路由集合中的最后一个子路由,得到新的临时路由;
    如果所述新的临时路由的混合路光放大器信噪比满足第三预设条件,将所述新的临时路由的终点确定为目标业务站点;
    以所述目标业务站点作为起始站点,重复执行临时路由和目标业务站点的确定过程,直至到达所述网络拓扑图中业务路由的终点。
  8. 一种中继配置装置,包括:
    子路由信噪比确定模块,设置为根据所获取的网络拓扑图,确定所述网络拓扑图中子路由对应的群路光放大器信噪比;
    临时路由信噪比确定模块,设置为根据所述子路由对应的群路光放大器信噪比,确定临时路由对应的群路光放大器信噪比,所述临时路由根据所述子路由确定;
    目标业务站点确定模块,设置为根据所述临时路由对应的群路光放大器信噪比,确定中继的配置范围,以在所述配置范围内根据所述临时路由对应的混合路光放大器信噪比确定用于配置中继的目标业务站点。
  9. 一种设备,包括:
    一个或多个处理器;
    存储器,设置为存储一个或多个程序;
    当所述一个或多个程序被所述一个或多个处理器执行时,使得所述一个或多个处理器实现如权利要求1-7中任一项所述的中继配置方法。
  10. 一种存储介质,其上存储有计算机程序,该程序被处理器执行时实现如权利要求1-7中任一项所述的中继配置方法。
PCT/CN2020/128439 2019-11-25 2020-11-12 一种中继配置方法、装置、设备及存储介质 WO2021104036A1 (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
EP20892074.4A EP4060907A4 (en) 2019-11-25 2020-11-12 METHOD, APPARATUS AND DEVICE FOR CONFIGURING RELAYS, AND STORAGE MEDIUM

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201911167207.7A CN112838895B (zh) 2019-11-25 2019-11-25 一种中继配置方法、装置、设备及存储介质
CN201911167207.7 2019-11-25

Publications (1)

Publication Number Publication Date
WO2021104036A1 true WO2021104036A1 (zh) 2021-06-03

Family

ID=75922316

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2020/128439 WO2021104036A1 (zh) 2019-11-25 2020-11-12 一种中继配置方法、装置、设备及存储介质

Country Status (3)

Country Link
EP (1) EP4060907A4 (zh)
CN (1) CN112838895B (zh)
WO (1) WO2021104036A1 (zh)

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1998166A (zh) * 2004-07-22 2007-07-11 爱立信股份有限公司 对波分复用光通信链路中再生式中继器或非再生式中继器的数量及位置的优化
CN101064568A (zh) * 2007-04-18 2007-10-31 华为技术有限公司 电中继配置方法及系统
US20100129081A1 (en) * 2008-11-21 2010-05-27 Fujitsu Limited Distributed raman amplifier and optical communication system
CN108631862A (zh) * 2017-03-15 2018-10-09 中兴通讯股份有限公司 中继配置方法、装置及网络管理系统
CN109660298A (zh) * 2017-10-11 2019-04-19 中兴通讯股份有限公司 一种中继配置方法、服务器及计算机可读存储介质
CN109889360A (zh) * 2018-12-07 2019-06-14 中国南方电网有限责任公司 确定再生器放置位置的方法及装置

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6907197B2 (en) * 2001-03-12 2005-06-14 Nortel Networks Limited Method and apparatus for measuring and estimating optical signal to noise ratio in photonic networks
US8873956B2 (en) * 2008-08-15 2014-10-28 Tellabs Operations, Inc. Method and apparatus for planning network configuration in an optical network
JP5353525B2 (ja) * 2009-07-24 2013-11-27 富士通株式会社 ネットワーク設計装置およびネットワーク設計方法
CN107332609B (zh) * 2017-06-15 2019-08-27 烽火通信科技股份有限公司 基于wson网络控制平面实时计算光通道osnr的方法
CN107566926B (zh) * 2017-09-21 2019-08-13 烽火通信科技股份有限公司 一种光传输网络规划中分配中继资源的计算方法

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1998166A (zh) * 2004-07-22 2007-07-11 爱立信股份有限公司 对波分复用光通信链路中再生式中继器或非再生式中继器的数量及位置的优化
CN101064568A (zh) * 2007-04-18 2007-10-31 华为技术有限公司 电中继配置方法及系统
US20100129081A1 (en) * 2008-11-21 2010-05-27 Fujitsu Limited Distributed raman amplifier and optical communication system
CN108631862A (zh) * 2017-03-15 2018-10-09 中兴通讯股份有限公司 中继配置方法、装置及网络管理系统
CN109660298A (zh) * 2017-10-11 2019-04-19 中兴通讯股份有限公司 一种中继配置方法、服务器及计算机可读存储介质
CN109889360A (zh) * 2018-12-07 2019-06-14 中国南方电网有限责任公司 确定再生器放置位置的方法及装置

Also Published As

Publication number Publication date
EP4060907A1 (en) 2022-09-21
CN112838895A (zh) 2021-05-25
EP4060907A4 (en) 2023-05-10
CN112838895B (zh) 2023-09-12

Similar Documents

Publication Publication Date Title
WO2019041682A1 (zh) 一种分布式拉曼光纤放大器的增益瞬态控制系统和方法
US10476587B2 (en) System and method for enhancing reliability in a transport network
CN115296732B (zh) 光传输系统和光传输系统的配置参数优化方法
EP1248391A1 (en) Bi-directional amplifier
USRE40425E1 (en) Optical interface devices having balanced amplification
CN107948766B (zh) 路由选择优化方法和装置
CN108631862B (zh) 中继配置方法、装置及网络管理系统
WO2021104036A1 (zh) 一种中继配置方法、装置、设备及存储介质
EP3696996B1 (en) Relay configuration method, server and computer-readable storage medium
US20060044645A1 (en) Method of operating an optical amplifier and optical amplifier
JP4709764B2 (ja) 光挿入分岐装置
CN113805270B (zh) 一种高集成度的硅光芯片
CN110912821A (zh) 一种路由分配方法及装置
US11677489B2 (en) Wavelength cross connect device, branch ratio variable method, and program
US20080050114A1 (en) Method of determining an optimum path in an optical telecommunications network
CN116155332A (zh) 波束训练方法、第一节点、第二节点、通信系统及介质
CN114745048B (zh) 业务实现方法和装置、计算机可读存储介质、电子设备
KR102271082B1 (ko) 광학 네트워크의 전력할당 방법
CN114070421B (zh) 光信号传输方法、装置及存储介质
US20140023377A1 (en) Free space optical communications link node, network and method of transmitting traffic
CN118612581A (zh) 业务路由规划方法、装置、电子设备、存储介质及产品
CN113806270B (zh) RapidIO网络的路径规划方法、装置、电子设备及存储介质
CN113050289B (zh) 全光整形器、全光整形器的参数确定方法及装置
CN109104648B (zh) 一种路由与频谱分配方法、系统及终端设备
CN116054992A (zh) 一种波分复用的自动高信噪比配置系统及方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 20892074

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2020892074

Country of ref document: EP

Effective date: 20220615

NENP Non-entry into the national phase

Ref country code: DE