WO2021103935A1 - 一种带参烧气注入和热值调节功能的燃气轮机燃料气进气调节系统及方法 - Google Patents

一种带参烧气注入和热值调节功能的燃气轮机燃料气进气调节系统及方法 Download PDF

Info

Publication number
WO2021103935A1
WO2021103935A1 PCT/CN2020/125516 CN2020125516W WO2021103935A1 WO 2021103935 A1 WO2021103935 A1 WO 2021103935A1 CN 2020125516 W CN2020125516 W CN 2020125516W WO 2021103935 A1 WO2021103935 A1 WO 2021103935A1
Authority
WO
WIPO (PCT)
Prior art keywords
gas
pipeline
steam
main
synthesis gas
Prior art date
Application number
PCT/CN2020/125516
Other languages
English (en)
French (fr)
Inventor
陈新明
张波
史绍平
闫姝
穆延非
郭雨桐
曾崇济
Original Assignee
中国华能集团有限公司
中国华能集团清洁能源技术研究院有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 中国华能集团有限公司, 中国华能集团清洁能源技术研究院有限公司 filed Critical 中国华能集团有限公司
Publication of WO2021103935A1 publication Critical patent/WO2021103935A1/zh

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02CGAS-TURBINE PLANTS; AIR INTAKES FOR JET-PROPULSION PLANTS; CONTROLLING FUEL SUPPLY IN AIR-BREATHING JET-PROPULSION PLANTS
    • F02C3/00Gas-turbine plants characterised by the use of combustion products as the working fluid
    • F02C3/20Gas-turbine plants characterised by the use of combustion products as the working fluid using a special fuel, oxidant, or dilution fluid to generate the combustion products
    • F02C3/22Gas-turbine plants characterised by the use of combustion products as the working fluid using a special fuel, oxidant, or dilution fluid to generate the combustion products the fuel or oxidant being gaseous at standard temperature and pressure
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02CGAS-TURBINE PLANTS; AIR INTAKES FOR JET-PROPULSION PLANTS; CONTROLLING FUEL SUPPLY IN AIR-BREATHING JET-PROPULSION PLANTS
    • F02C3/00Gas-turbine plants characterised by the use of combustion products as the working fluid
    • F02C3/20Gas-turbine plants characterised by the use of combustion products as the working fluid using a special fuel, oxidant, or dilution fluid to generate the combustion products
    • F02C3/30Adding water, steam or other fluids for influencing combustion, e.g. to obtain cleaner exhaust gases
    • F02C3/305Increasing the power, speed, torque or efficiency of a gas turbine or the thrust of a turbojet engine by injecting or adding water, steam or other fluids
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02CGAS-TURBINE PLANTS; AIR INTAKES FOR JET-PROPULSION PLANTS; CONTROLLING FUEL SUPPLY IN AIR-BREATHING JET-PROPULSION PLANTS
    • F02C7/00Features, components parts, details or accessories, not provided for in, or of interest apart form groups F02C1/00 - F02C6/00; Air intakes for jet-propulsion plants
    • F02C7/22Fuel supply systems
    • F02C7/222Fuel flow conduits, e.g. manifolds
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02CGAS-TURBINE PLANTS; AIR INTAKES FOR JET-PROPULSION PLANTS; CONTROLLING FUEL SUPPLY IN AIR-BREATHING JET-PROPULSION PLANTS
    • F02C9/00Controlling gas-turbine plants; Controlling fuel supply in air- breathing jet-propulsion plants
    • F02C9/26Control of fuel supply
    • F02C9/28Regulating systems responsive to plant or ambient parameters, e.g. temperature, pressure, rotor speed
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02CGAS-TURBINE PLANTS; AIR INTAKES FOR JET-PROPULSION PLANTS; CONTROLLING FUEL SUPPLY IN AIR-BREATHING JET-PROPULSION PLANTS
    • F02C9/00Controlling gas-turbine plants; Controlling fuel supply in air- breathing jet-propulsion plants
    • F02C9/26Control of fuel supply
    • F02C9/32Control of fuel supply characterised by throttling of fuel
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02CGAS-TURBINE PLANTS; AIR INTAKES FOR JET-PROPULSION PLANTS; CONTROLLING FUEL SUPPLY IN AIR-BREATHING JET-PROPULSION PLANTS
    • F02C9/00Controlling gas-turbine plants; Controlling fuel supply in air- breathing jet-propulsion plants
    • F02C9/26Control of fuel supply
    • F02C9/40Control of fuel supply specially adapted to the use of a special fuel or a plurality of fuels

Definitions

  • the invention relates to the technical field of integrated coal gasification combined cycle power generation, in particular to a gas turbine fuel gas intake adjustment system and method with the functions of burning gas injection and calorific value adjustment.
  • Integrated gasification combined cycle (IGCC) power generation is a clean and efficient coal-based power generation technology.
  • a gasifier is used to convert coal into synthesis gas.
  • the synthesis gas is purified by desulfurization, it is used as a gas turbine fuel for gas- Steam combined cycle power generation.
  • the integrated coal gasification combined cycle power generation uses a gas turbine that can adapt to low-calorific value syngas with high hydrogen content. This is because the composition and combustion characteristics of the synthesis gas produced by the gasifier in the IGCC system are very different from those of natural gas.
  • the main effective components in syngas are CO and H 2 , and it also contains a small amount of CH 4 , C 2 H 6, etc., as well as non-combustible gas components such as N 2 , CO 2 , and its calorific value is lower than that of natural gas. Higher, so it is a hydrogen-rich gas. Compared with natural gas whose main component is CH 4 , the combustion flame of syngas spreads faster. In order to prevent the occurrence of backfire, the burner design of its gas turbine cannot adopt the premixed combustion method that can reduce the generation of NO x, but adopts Non-premixed combustion design. The non-premixed combustion method has to limit the heating value of the fuel gas in order to prevent local overheating due to uneven combustion mixing.
  • the calorific value of the synthesis gas produced by the gasifier is usually higher than that of the burner. Therefore, before the synthesis gas is sent to the gas turbine burner, it needs to be adjusted by the calorific value adjustment system to adjust the calorific value of the synthesis gas to the required range.
  • the power grid has increasingly higher requirements for the flexibility of traditional power sources such as thermal power and peak shaving.
  • Traditional IGCC has a slower adjustment rate due to gasifier gas production. It is difficult for the overall power generation load change rate of the power plant to meet the requirements of flexible peak shaving, especially when the load needs to be increased quickly, because the gasification furnace cannot keep up with the increase in gas production, the load ramp rate is slow. Injecting a certain amount of natural gas into the synthesis gas to improve the flexibility of power generation load is an important means to improve the peak shaving capacity of IGCC.
  • the invention provides a syngas gas turbine fuel gas intake system with a calorific value adjustment function and a calorific value adjustment method. Natural gas can be injected into the syngas as a supplement to rapid load adjustment, and the calorific value of the syngas entering the gas turbine can be accurately controlled , And improve the flexibility of combined cycle power generation.
  • the purpose of the present invention is to provide a gas turbine fuel gas intake adjustment system and method with the functions of burning gas injection and calorific value adjustment, which solves the problem that the traditional IGCC gasifier has a slow adjustment rate and the overall power generation load of the power plant changes.
  • the speed is difficult to meet the requirements of flexible peak shaving.
  • the traditional IGCC cannot meet the process requirements.
  • the invention provides a gas turbine fuel gas intake adjustment system with the functions of burning gas injection and calorific value adjustment. It includes a natural gas injection pipeline, a main synthesis gas main pipeline, and a steam injection pipeline. From upstream to downstream, a natural gas injection pipeline, a synthesis gas heater, a main synthesis gas counterflow valve, a Raphael nozzle, a synthesis gas diffusion pipeline, a main synthesis gas regulating valve and a burner are arranged in sequence;
  • the outlet of the steam injection pipeline is divided into two branches, one branch is connected with the steam inlet of the syngas heater; the other branch is connected with the steam inlet of the Raphael nozzle;
  • the natural gas injection pipeline, the synthesis gas venting pipeline and the steam injection pipeline are all provided with flow control devices for realizing flow control.
  • a natural gas reverse valve, a natural gas stop valve and a natural gas regulating valve are arranged in sequence from the upstream to the downstream of the natural gas injection pipeline.
  • the natural gas flow control device on the natural gas injection pipeline includes a natural gas regulating valve, a natural gas injection regulating controller and a synthesis gas pressure measuring point, wherein the synthesis gas pressure measuring point is arranged on the main synthesis gas main line and placed on the main synthesis gas Upstream of the regulating valve, the synthesis gas pressure measuring point is used to collect the pressure of the synthesis gas injected into the gas turbine nozzle, and transmit the collected pressure to the natural gas injection adjustment controller.
  • the natural gas injection adjustment controller is used to compare the received pressure with the forecast Set a threshold for comparison, and control the opening of the natural gas regulating valve according to the comparison result.
  • the connecting pipe between the branch of the steam injection pipeline and the steam inlet of the syngas heater is provided with a heating steam flow control device, and the heating steam flow control device includes a heating steam regulating valve and a heating steam controller.
  • the heating steam flow control device includes a heating steam regulating valve and a heating steam controller.
  • a temperature measuring point arranged on the main synthesis gas main line the temperature measuring point is placed downstream of the synthesis gas heater, used to collect the temperature value of the synthesis gas outlet of the synthesis gas heater, and transmit the collected temperature value
  • the heating steam controller is used to compare the received temperature value with the preset threshold value, and then control the opening degree of the heating steam regulating valve.
  • the connecting pipe between the other branch of the steam injection pipeline and the steam inlet of the Raphael nozzle is provided with a steam flow control device.
  • the steam flow control device includes a steam regulating valve, a flow regulating valve, and a heat Value adjustment controller, synthesis gas flow measurement points, synthesis gas component measurement points and combustible gas component measurement points, among which the synthesis gas flow measurement points, synthesis gas component measurement points and combustible gas component measurement points are all arranged
  • the flow measurement points of the synthesis gas and the synthesis gas composition measurement points are arranged at the entrance of the synthesis gas heater, which are used to collect the flow rate of combustible gas and the volume fraction of gas components, and the collected
  • the data is transmitted to the calorific value adjustment controller; the combustible gas component measuring point is arranged at the exit of the Rafal nozzle, used to collect the volume fraction of the combustible gas component in the syngas after the steam is injected, and the collected data Transmitted
  • the main syngas main line is further provided with a dirty nitrogen gas injection pipeline, and a dirty nitrogen reverse flow valve, a dirty nitrogen shut-off valve, and a dirty nitrogen regulating valve are sequentially arranged from upstream to downstream of the dirty nitrogen injection pipeline.
  • the synthesis gas venting pipe is composed of two parallel pipelines, both of which are connected to the deflaring;
  • the flow control device on the synthesis gas venting pipeline includes a venting controller and a first venting pipeline regulating valve ,
  • the second discharge pipeline regulating valve and the synthesis gas pressure measuring point placed at the inlet of the main synthesis gas regulating valve, wherein the first discharge pipeline regulating valve and the second discharge pipeline regulating valve are respectively arranged in two branches On the road;
  • the synthesis gas pressure measuring point is used to collect the pressure of the synthesis gas injected into the gas turbine nozzle, and transmit the collected pressure to the discharge controller, which is used to compare the received pressure value with a preset threshold , And then control the opening degree of the first discharge pipeline regulating valve and the second discharge pipeline regulating valve.
  • a fuel gas intake adjustment method for a gas turbine with combustion gas injection and calorific value adjustment functions is based on the described fuel gas intake adjustment system for a gas turbine with combustion gas injection and calorific value adjustment functions, including the following steps:
  • the amount of natural gas injected is controlled, and the natural gas is injected into the main synthesis gas main pipeline through the natural gas injection pipeline to meet the synthesis gas of the main synthesis gas pipeline. demand;
  • the target value of the injected steam flow rate is obtained, and then the steam injection volume is controlled, and the steam is injected into the main synthesis gas through the steam injection pipeline Supervisor road.
  • the natural gas injection adjustment controller compares the received pressure with the preset threshold and based on the comparison result Control the opening of the natural gas regulating valve, and then inject natural gas into the main synthesis gas main pipeline through the natural gas injection pipeline to meet the synthesis gas demand of the main synthesis gas main pipeline;
  • the pressure of the syngas injected into the gas turbine nozzle is collected through the syngas pressure measurement point, and the collected pressure is transmitted to the venting controller; the venting controller compares the received pressure value with the preset threshold, and then controls the first venting The opening degree of the discharge pipeline regulating valve and the second discharge pipeline regulating valve.
  • the invention provides a gas turbine fuel gas intake adjustment system with the functions of burning gas injection and calorific value adjustment.
  • the pressure of the main synthesis gas pipeline in front of the gas turbine burner can be adjusted flexibly, and it can be discharged through the discharge pipeline when the pressure is high Reduce pressure, when the pressure is low, you can increase the main syngas supply and increase the natural gas injection to increase the pressure to ensure that the main syngas pipeline pressure in front of the gas turbine burner is stable in a safe range; use natural gas injection pipelines to realize natural gas fuel faster Flexible injection solves the problem of gasifier syngas production increase slowly when the power generation load rises rapidly, and the gas turbine lacks gas, which greatly improves the flexibility of IGCC power plants to meet the requirements of rapid load transfer of the power grid; use steam injection to reduce the cost of syngas The calorific value, and to ensure that no matter how the fuel gas composition changes, the calorific value of the fuel gas entering the gas turbine is stabilized in a relatively fixed range, and the gas turbine working condition is stable; the present invention solves the problem of
  • the present invention provides a gas turbine fuel gas intake adjustment method with the functions of burning gas injection and calorific value adjustment.
  • the gas turbine is quickly deducted from the load or the syngas supply is insufficient: first close the syngas release pipeline;
  • the pressure adjustment of the synthesis gas pipeline is flexible, and the natural gas injection pipeline is used to realize the quick and flexible injection of natural gas fuel, which solves the problem of the gasifier syngas production increase and the gas turbine lack of gas when the power generation load rises rapidly, making the IGCC power plant more flexible Upgrade to meet the requirements of rapid load transfer of the power grid; use steam injection to reduce the heating value of the syngas, and ensure that the heating value of the fuel gas entering the gas turbine is stabilized in a relatively fixed range regardless of the change in the fuel gas composition, ensuring the gas turbine The working condition is stable; when the gas turbine reduces the load or the syngas supply is sufficient, the natural gas injection pipeline is first closed; the pressure reduction is performed through the discharge pipeline to ensure that the pressure of the main synthesis gas pipeline in front of the gas turbine burner is stable
  • FIG. 1 is a schematic diagram of the structure of the air intake adjustment system related to the present invention.
  • the present invention provides a gas turbine fuel gas intake adjustment system with the functions of burning gas injection and calorific value adjustment. It includes a natural gas injection pipeline 1, a main synthesis gas main pipeline 2, and a polluted nitrogen injection pipeline. 3. Steam injection pipeline 4, natural gas reverse valve 5, natural gas stop valve 6, natural gas regulating valve 7, natural gas injection regulating controller 8, dirty nitrogen reverse valve 10, dirty nitrogen stop valve 11, dirty nitrogen regulating valve 12, heated steam Regulating valve 13, heating steam controller 14, syngas heater 15, drain system 16, steam reverse valve 17, steam stop valve 18, steam regulator 19, flow control valve 20, main syngas reverse valve 21, Raphael Nozzle 22, main synthesis gas shut-off valve 23, main synthesis gas regulating valve 24, burner 25, synthesis gas venting pipeline 26, first venting pipeline regulating valve 27, second venting pipeline regulating valve 28, second A discharge pipeline stop valve 29, a second discharge pipeline stop valve 30, a torch 31, a discharge controller 32, and a calorific value adjustment controller 33, where the main synthesis gas main pipeline 2 runs from upstream to downstream
  • the natural gas injection pipeline 1, the sewage nitrogen injection pipeline 3 and the steam injection pipeline 4 have flow measurement points to measure the flow of various gases in real time for flow control.
  • the heat source of the syngas preheater 15 is heated by medium-pressure saturated steam.
  • a natural gas reverse valve 5 From the upstream to the downstream of the natural gas injection pipeline 1, a natural gas reverse valve 5, a natural gas stop valve 6 and a natural gas regulating valve 7 are arranged in sequence.
  • the natural gas regulating valve 7 is connected with a natural gas injection regulating controller 8, which is connected to a pressure measuring point arranged on the main syngas main line 2, and the pressure measuring point is arranged on the main syngas regulating valve 24
  • the upstream of is used to collect the pressure of the syngas injected into the gas turbine nozzle 25 and transmit the collected pressure to the natural gas injection adjustment controller 8.
  • the natural gas injection adjustment controller 8 is used to compare the received pressure with a preset threshold value, And according to the comparison result, the opening degree of the natural gas regulating valve 7 is controlled.
  • a dirty nitrogen reverse flow valve 10 From upstream to downstream of the dirty nitrogen injection pipeline 3, a dirty nitrogen reverse flow valve 10, a dirty nitrogen shut-off valve 11 and a dirty nitrogen regulating valve 12 are arranged in sequence.
  • the steam injection pipeline 4 is divided into two routes, one route is connected to the syngas heater 15 through the heating steam regulating valve 13 for heat exchange; the other route is connected to the Raphael nozzle 22.
  • the connecting pipe between the branch of the steam injection pipe 4 and the Raphael nozzle 22 is provided with a steam reverse valve 17, a steam stop valve 18, and a steam regulating valve 19 in sequence.
  • the heating steam regulating valve 13 is connected with a heating steam controller 14; the steam regulating valve 19 is connected with a flow regulating valve 20.
  • the synthesis gas release pipeline 26 is composed of two parallel pipelines, both of which are connected to the deflaring 31. At the same time, a first discharge pipeline regulating valve 27 and a first discharge pipeline are arranged in sequence from upstream to downstream. Shut-off valve 29; on the other road from upstream to downstream, a second discharge pipeline regulating valve 28 and a second discharge pipeline stop valve 30 are arranged in sequence.
  • the two pipelines are used to ensure the stability of the syngas pressure in the main syngas pipeline before the gas turbine burner control valve.
  • the first discharge pipeline regulating valve 27 and the second writing room pipeline regulating valve 28 are both connected to the discharge controller 32.
  • the dirty nitrogen gas passes through the dirty nitrogen gas injection pipeline 3, and is injected into the main syngas main line 2 through the dirty nitrogen reverse valve 10, the dirty nitrogen shut-off valve 11 and the dirty nitrogen regulating valve 12; among them, the dirty nitrogen shut-off valve 11 is used in the main synthesis gas line
  • the dirty nitrogen shut-off valve 11 is used in the main synthesis gas line
  • the dirty nitrogen regulating valve 12 is used to inject the dirty nitrogen during normal injection Flow control.
  • the natural gas injection pipeline 1 is used for the injection of natural gas.
  • the main synthesis gas regulating valve 24 of the gas turbine burner 25 intake is opened rapidly, and the pressure in front of the valve drops rapidly, because the synthesis gas production cannot be increased quickly Therefore, the synthesis gas in the main synthesis gas main pipeline is insufficient to meet the demand, and the fuel gas gap is satisfied by the natural gas injection pipeline 1 by injecting natural gas.
  • the natural gas is injected into the main synthesis gas main line 2 through the natural gas reverse valve 5, natural gas stop valve 6 and natural gas regulating valve 7.
  • the natural gas check valve 5 is used to prevent synthesis gas when the pressure of the main synthesis gas main line 2 is higher than the pressure of natural gas. Reverse flow into the natural gas pipeline.
  • the natural gas stop valve 6 When natural gas is not injected, the natural gas stop valve 6 is closed; the natural gas regulating valve 7 is used to control the flow of injected natural gas during normal injection.
  • the natural gas regulating valve 7 uses a natural gas injection regulating controller 8 for flow control.
  • the valve front pressure in front of the gas turbine burner 25 is used as the target value of the natural gas injection regulating controller 8, and the natural gas flow injection is determined according to the deviation of the pressure in front of the valve from the normal value.
  • the natural gas injection regulating controller 8 gives the opening degree of the regulating valve.
  • the syngas preheater 15 is used to preheat the syngas to a specific temperature; the heat source of the syngas preheater 15 comes from the medium pressure saturated steam, which uses the latent heat of condensation of the medium pressure saturated steam to heat the syngas.
  • the medium-pressure saturated steam becomes condensed water after the heat is released from the syngas preheater 15 and is sent to the drainage system 16.
  • the steam inlet of the syngas preheater 15 is in communication with the branch of the steam injection pipe 4.
  • the branch pipe is equipped with a heating steam regulating valve 13 which is controlled by a heating steam controller 14.
  • the synthesis gas outlet of the preheater 15 has a temperature measuring point, and the measured value is used as a feedback value of the heating steam controller 14 for controlling the opening degree of the heating steam regulating valve 13.
  • a Raphael nozzle 22 is installed on the main syngas main line 2, and the other branch of the steam injection line 4 is used to extract steam from the Raphael nozzle 22.
  • a main synthesis gas check valve 21 is installed on the main synthesis gas main line 2 in front of the Rafar nozzle 22 to prevent the steam from flowing back to the main synthesis gas main line due to overpressure of steam.
  • the steam passes through the steam injection pipeline 4, and is injected into the Rafar nozzle 22 through the steam check valve 17, the steam stop valve 18 and the steam control valve 19.
  • the steam check valve 17 is used when the pressure in the main syngas line is higher than that of the steam When the pipeline pressure, prevent the synthesis gas from flowing back into the steam pipeline.
  • the steam regulating valve 19 is used to control the injection steam flow rate during normal injection.
  • the synthesis gas heater 15 inlet is equipped with a synthesis gas component measuring point and a synthesis gas flow measuring point, and the volume fraction of the combustible gas component (Vol 1 %, CO, H 2 , CH 4 , C 2 H 6) is measured in real time. ) And the flow rate F 1 , and transmit the measured data to the calorific value adjustment controller 30.
  • a gas composition measuring point is installed behind the Raphael nozzle 22, and the volume fraction of the combustible gas component (Vol 2 %, CO, H 2 , CH 4 , C 2 H) in the syngas after the steam injection is measured in real time. 6 ) Calculate the whiteness value (volume heating value) of the synthesis gas, and transmit the result to the heating value adjustment controller 33 as a feedback quantity.
  • the calorific value adjustment controller 33 is used to calculate the flow target value of the injected steam according to the two measured values of the flow measuring point and the gas composition measuring point, and transmit the flow target value to the flow regulating valve on the steam injection pipe 4 20.
  • the flow control valve 20 is used to collect the steam flow measurement feedback value of the flow measurement point set at the outlet of the steam control valve 19, and adjust the opening of the steam control valve 19 in real time according to the received steam flow measurement feedback value and the flow target value.
  • the synthesis gas release pipeline 26 is composed of two parallel pipelines. Each pipeline is connected in series with a first discharge pipeline regulating valve 27, a first discharge pipeline stop valve 29, and a second discharge pipeline regulating valve 28. And the second discharge pipeline shut-off valve 30.
  • the pressure in front of the inlet valve of the gas turbine burner 25 is divided into six intervals: low two-value, low one value, median, high one value, high two-value, and high three-value; under normal working conditions, the pressure before the inlet valve of the gas turbine burner 25 is at In the normal range, that is, the median value, the discharge controller 32 on the syngas discharge pipeline 26 controls the first discharge pipeline stop valve 29 and the second discharge pipeline stop valve 30 to be all closed.
  • the discharge controller 32 on the synthesis gas discharge pipeline 26 controls the second discharge pipeline shut-off valve When 30 is opened, the second discharge pipeline regulating valve 28 is gradually opened to discharge the main synthetic gas main pipeline pressure.
  • the discharge controller 32 on the synthesis gas discharge pipeline 26 controls the second discharge pipeline regulating valve 28 to rapidly open to an opening degree of more than 50%, and at the same time, The first vent line stop valve 29 is opened, and the first vent line regulating valve 27 is gradually opened to release the main synthetic gas main line pressure.

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Engine Equipment That Uses Special Cycles (AREA)

Abstract

一种带参烧气注入和热值调节功能的燃气轮机燃料气进气调节系统,包括天然气注入管路(1)、主合成气主管路(2)和蒸汽注入管路(4),其中,主合成气主管路上自其上游至下游依次设置有天然气注入管路、合成气加热器(15)、主合成气逆流阀(21)、拉法尔喷管(22)、合成气放散管路(26)、主合成气调节阀(24)和烧嘴(25);蒸汽注入管路的出口分为两支路,一支路与合成气加热器的蒸汽入口连接;另一支路与拉法尔喷管的蒸汽入口连接;同时,天然气注入管路、合成气放散管路和蒸汽注入管路均设置有用于实现流量控制的流量控制装置。该方案解决了传统IGCC由于气化炉产气量的调节速率较慢,电厂整体发电负荷变动速率很难达到灵活性调峰的要求,导致风电等不稳定的可再生能源的大规模并网时,传统的IGCC不能满足其工艺要求的缺陷。

Description

一种带参烧气注入和热值调节功能的燃气轮机燃料气进气调节系统及方法 技术领域
本发明涉及整体煤气化联合循环发电技术领域,特别涉及一种带参烧气注入和热值调节功能的燃气轮机燃料气进气调节系统及方法。
背景技术
整体煤气化联合循环(IGCC)发电是一种清洁高效的煤基发电技术,首先利用气化炉将煤转化成合成气,将合成气进行脱硫等的净化以后,作为燃气轮机的燃料,进行燃气-蒸汽联合循环发电。与常规的燃用天然气的燃气-蒸汽联合循环发电不同,整体煤气化联合循环发电采用的是一种能适应低热值的含氢量较高的合成气的燃气轮机。这是因为IGCC系统中的气化炉产生的合成气成分和燃烧特点与天然气有很大不同。合成气中的主要有效成分是CO和H 2,还含有少量的CH 4、C 2H 6等,以及N 2、CO 2等不燃烧气体组分,其热值比天然气低,并且由于氢气含量较高,所以是一种富氢气体。相比于主要成分为CH 4的天然气,合成气的燃烧火焰传播速度更快,为了防止回火的发生,其燃气轮机的烧嘴设计不能采用能够减少NO x生成的预混燃烧方式,而是采用非预混燃烧设计。非预混燃烧方式为了防止由于燃烧混合不均匀产生的局部过高温,对于燃料气的热值要做出限制。气化炉产生的合成气的热值通常高于烧嘴的要求,因而,在将合成气送入燃气轮机烧嘴之前,需要通过热值调节系统进行调节,将合成气热值调整到要求范围。
近年来,由于风电等不稳定的可再生能源的大规模并网,电网对于火电等的传统电源的灵活性调峰的要求越来越高,传统IGCC由于气化炉产气量的调节速率较慢,电厂整体发电负荷变动速率很难达到灵活性调峰的要求,尤其是需要快速提升负荷的时候,由于气化炉产气量提升跟不上,负荷爬坡速率较慢。向合成气中注入一定的天然气,提升发电负荷灵活性,是改善IGCC调峰能力的重要手段。本发明提供了一种带热值调节功能的合成气燃气轮机燃料气进气 系统及热值调节方法,可将天然气作为快速负荷调节的补充注入合成气,并精准控制进入燃气轮机的合成气的热值,并提高联合循环发电的灵活性。
发明内容
本发明的目的在于提供一种带参烧气注入和热值调节功能的燃气轮机燃料气进气调节系统及方法,解决了传统IGCC由于气化炉产气量的调节速率较慢,电厂整体发电负荷变动速率很难达到灵活性调峰的要求,导致风电等不稳定的可再生能源的大规模并网时,传统的IGCC不能满足其工艺要求的问题。
为了达到上述目的,本发明采用的技术方案是:
本发明提供的一种带参烧气注入和热值调节功能的燃气轮机燃料气进气调节系统,包括天然气注入管路、主合成气主管路和蒸汽注入管路,其中,主合成气主管路上自其上游至下游依次设置有天然气注入管路、合成气加热器、主合成气逆流阀、拉法尔喷管、合成气放散管路、主合成气调节阀和烧嘴;
所述蒸汽注入管路的出口分为两支路,一支路与合成气加热器的蒸汽入口连接;另一支路与拉法尔喷管的蒸汽入口连接;
同时,天然气注入管路、合成气放散管路和蒸汽注入管路均设置有用于实现流量控制的流量控制装置。
优选地,天然气注入管路的上游至下游依次设置有天然气逆流阀、天然气截止阀和天然气调节阀。
优选地,天然气注入管路上的天然气流量控制装置包括天然气调节阀、天然气注入调节控制器和合成气压力测点,其中,合成气压力测点布置在主合成气主管路上,且置于主合成气调节阀的上游,所述合成气压力测点用于采集注入燃气轮机喷嘴的合成气压力,并将采集的压力传输到天然气注入调节控制器,天然气注入调节控制器用于根据将接收到的压力与预设阈值进 行对比,并根据比对结果控制天然气调节阀的开度。
优选地,蒸汽注入管路的一支路与合成气加热器的蒸汽入口之间的连接管道上设置有加热蒸汽流量控制装置,所述加热蒸汽流量控制装置包括加热蒸汽调节阀、加热蒸汽控制器和布置在主合成气主管路上的温度测点,所述温度测点置于合成气加热器的下游,用于采集合成气加热器的合成气出口的温度值,并将采集到的温度值传输到加热蒸汽控制器,加热蒸汽控制器用于根据接收到的温度值与预设阈值进行比对,进而控制加热蒸汽调节阀的开度。
优选地,蒸汽注入管路的另一支路与拉法尔喷管的蒸汽入口之间的连接管道上设置有蒸汽流量控制装置,所述蒸汽流量控制装置包括蒸汽调节阀、流量调节阀、热值调节控制器、合成气的流量测点、合成气组分测点和可燃气体组分测点,其中,合成气的流量测点、合成气组分测点和可燃气体组分测点均布置在主合成气主管路上;合成气的流量测点和合成气组分测点均布置在合成气加热器的入口,用于采集可燃气的流量和气体组分的体积分数,并将采集到的数据传输到热值调节控制器;可燃气体组分测点布置在拉法尔喷管的出口,用于采集注入蒸汽之后的合成气中的可燃气体组分的体积分数,并将采集到的数据传输到热值调节控制器;热值调节控制器用于根据接收到的数据计算得到注入蒸汽的流量目标值,并将该流量目标值传送给流量调节阀;流量调节阀用于采集蒸汽调节阀出口处的蒸汽流量,并将采集到的蒸汽流量与接收到的流量目标值进行比对,进而控制蒸汽调节阀的开度。
优选地,所述主合成气主管路上还设有污氮气注入管路,所述污氮气注入管路的上游至下游依次设置有污氮气逆流阀、污氮气截止阀和污氮气调节阀。
优选地,合成气放散管路由两支并列的管路组成,两支管路均与去火炬连接;所述合成气放散管路上的流量控制装置包括泻放控制器、第一泻放管路调节阀、第二泻放管路调节阀和置于主合成气调节阀入口处的合成气压力测点,其中,第一泻放管路调节阀和第二泻放管路调节阀分别布置在两支管路上;所述合成气压力测点用于采集注入燃气轮机喷嘴的合成气压力,并 将采集的压力传输到泻放控制器,泻放控制器用于根据接收到的压力值与预设阈值进行比对,进而控制第一泻放管路调节阀和第二泻放管路调节阀的开度。
一种带参烧气注入和热值调节功能的燃气轮机燃料气进气调节方法,基于所述的一种带参烧气注入和热值调节功能的燃气轮机燃料气进气调节系统,包括以下步骤:
当燃气轮机快速提升负荷或合成气供应不足时:
首先关闭合成气放散管路;
接着根据主合成气调节阀入口处的压力测点测量的合成气压力值,控制天然气的注入量,将天然气经天然气注入管路注入主合成气主管路,以满足主合成气主管路的合成气需求;
此时,根据合成气加热器入口处的测点和拉法尔喷管出口处的测点,得到注入蒸汽的流量目标值,进而控制蒸汽的注入量,将蒸汽经蒸汽注入管路注入主合成气主管路;
当燃气轮机降低负荷或合成气供应充足时:
首先关闭天然气注入管路;
接着根据主合成气调节阀入口处的压力测点测量的合成气压力值,当合成气压力值大于预设阈值时,打开合成气放散管路,并控制合成气放散管路的开度;
同时,根据合成气加热器入口处的测点和拉法尔喷管出口处的测点,得到注入蒸汽的流量目标值,进而控制蒸汽的注入量,将蒸汽经蒸汽注入管路注入主合成气主管路。
优选地,当燃气轮机快速提升负荷或合成气供应不足时:
首先关闭合成气放散管路;
通过合成气压力测点采集注入燃气轮机喷嘴的合成气压力,并将采集的压力传输到天然气注入调节控制器,天然气注入调节控制器将接收到的压力与预设阈值进行对比,并根据比对结果控制天然气调节阀的开度,进而将天然气经天然气注入管路注入主合成气主管路,以满足主合成气主管路的合成气需求;
当燃气轮机降低负荷或合成气供应充足时:
首先关闭天然气注入管路;
通过合成气压力测点采集注入燃气轮机喷嘴的合成气压力,并将采集的压力传输到泻放控制器;泻放控制器将接收到的压力值与预设阈值进行比对,进而控制第一泻放管路调节阀和第二泻放管路调节阀的开度。
与现有技术相比,本发明的有益效果是:
本发明提供的一种带参烧气注入和热值调节功能的燃气轮机燃料气进气调节系统,燃气轮机烧嘴前主合成气管道压力调节灵活,当压力偏高时可以通过泻放管道进行泻放降压,当压力偏低时,可以通过加大主合成气供给和加大天然气注入提升压力,确保燃气轮机烧嘴前主合成气管道压力稳定在安全范围;利用天然气注入管路实现天然气燃料的快捷灵活的注入,解决了发电负荷快速上升时气化炉合成气产量提升慢燃气轮机缺气的问题,使IGCC发电厂的灵活性大大提升,适应电网快速负荷调动的要求;利用蒸汽注入降低合成气的热值,并且确保不管燃料气成分怎么变化,都使进入燃气轮机的燃料气的热值稳定在一个相对固定的范围,确保了燃气轮机工况平稳;本发明解决了传统IGCC由于气化炉产气量的调节速率较慢,电厂整体发电负荷变动速率很难达到灵活性调峰的要求,导致风电等不稳定的可再生能源的大规模并网时,传统的IGCC不能满足其工艺要求的缺陷。
进一步的,能够实现IGCC电厂高压污氮气的回收,注入燃气轮机用于发电,提高全厂整体的发电效率。
本发明提供的一种带参烧气注入和热值调节功能的燃气轮机燃料气进气调节方法,当燃气轮机快速提成负荷或合成气供应不足时:首先关闭合成气放散管路;燃气轮机烧嘴前主合成气管道压力调节灵活,利用天然气注入管路实现天然气燃料的快捷灵活的注入,解决了发电负荷快速上升时气化炉合成气产量提升慢燃气轮机缺气的问题,使IGCC发电厂的灵活性大大提升, 适应电网快速负荷调动的要求;利用蒸汽注入降低合成气的热值,并且确保不管燃料气成分怎么变化,都使进入燃气轮机的燃料气的热值稳定在一个相对固定的范围,确保了燃气轮机工况平稳;当燃气轮机降低负荷或合成气供应充足时,首先关闭天然气注入管路;通过泻放管道进行泻放降压,确保燃气轮机烧嘴前主合成气管道压力稳定在安全范围;本发明解决了传统IGCC由于气化炉产气量的调节速率较慢,电厂整体发电负荷变动速率很难达到灵活性调峰的要求,导致风电等不稳定的可再生能源的大规模并网时,传统的IGCC不能满足其工艺要求的缺陷。
附图说明
图1是本发明涉及的进气调节系统的结构示意图。
具体实施方式
下面结合附图,对本发明进一步详细说明。
如图1所示,本发明提供的一种带参烧气注入和热值调节功能的燃气轮机燃料气进气调节系统,包括天然气注入管路1、主合成气主管路2、污氮气注入管路3、蒸汽注入管路4、天然气逆流阀5、天然气截止阀6、天然气调节阀7、天然气注入调节控制器8、污氮气逆流阀10、污氮气截止阀11、污氮气调节阀12、加热蒸汽调节阀13、加热蒸汽控制器14、合成气加热器15、疏水系统16、蒸汽逆流阀17、蒸汽截止阀18、蒸汽调节器19、流量调节阀20、主合成气逆流阀21、拉法尔喷管22、主合成气截止阀23、主合成气调节阀24、烧嘴25、合成气放散管路26、第一泻放管路调节阀27、第二泻放管路调节阀28、第一泻放管路截止阀29、第二泻放管路截止阀30、去火炬31、泻放控制器32和热值调节控制器33,其中,主合成气主管路2上自其上游至下游依次设置有天然气注入管路1、污氮气注入管路3、合成气加热器15、主合成气逆流阀21、拉法尔喷管22、合成气放散管路26、主合成气截止阀23、主合成气调节阀24和烧嘴25。
天然气注入管路1、污氮气注入管路3和蒸汽注入管路4上都有流量测点,实时测量各种 气体的流量,用于流量控制。
合成气预热器15的热源采用中压饱和蒸汽进行加热。
天然气注入管路1的上游至下游依次设置有天然气逆流阀5、天然气截止阀6和天然气调节阀7。
天然气调节阀7连接有天然气注入调节控制器8,所述天然气注入调节控制器8与布置在主合成气主管路2上的压力测点连接,所述压力测点布置在主合成气调节阀24的上游,用于采集注入燃气轮机喷嘴25的合成气压力,并将采集的压力传输到天然气注入调节控制器8,天然气注入调节控制器8用于根据将接收到的压力与预设阈值进行对比,并根据比对结果控制天然气调节阀7的开度。
污氮气注入管路3的上游至下游依次设置有污氮气逆流阀10、污氮气截止阀11和污氮气调节阀12。
蒸汽注入管路4分为两路,一路通过加热蒸汽调节阀13与合成气加热器15连接进行热交换;另一路与拉法尔喷管22连接。
蒸汽注入管路4的支路与拉法尔喷管22之间的连接管路上依次设置有蒸汽逆流阀17、蒸汽截止阀18和蒸汽调节阀19。
加热蒸汽调节阀13连接有加热蒸汽控制器14;蒸汽调节阀19连接有流量调节阀20。
合成气放散管路26由两支并列的管路组成,两路均与去火炬31连接,同时,一路自上游至下游依次设置有第一泻放管路调节阀27和第一泻放管路截止阀29;另一路自上游至下游依次设置有第二泻放管路调节阀28和第二泻放管路截止阀30。
两支管路用于确保燃气轮机烧嘴调节阀前合成气主管路内的合成气压力稳定。
第一泻放管路调节阀27和第二写房管路调节阀28均与泻放控制器32连接。
一种带热值调节功能的合成气燃气轮机燃料气进气调节方法:
污氮气通过污氮气注入管路3,经污氮气逆流阀10、污氮气截止阀11和污氮气调节阀12注入主合成气主管路2;其中,污氮气截止阀11用于在合成气主管路压力高于污氮气压力时,防止合成气倒流进入污氮气注入管路3内;当不进行污氮气注入的时候,污氮气截止阀11关闭;污氮气调节阀12用于正常注入时注入污氮气流量的控制。
天然气注入管路1用于天然气的注入,当燃气轮机需要快速提升负荷的时候,燃气轮机烧嘴25进气的主合成气调节阀24迅速开大,阀前压力迅速降低,由于合成气产量不能迅速提升,因此,主合成气主管路的合成气不足以满足需求,燃料气缺口由天然气注入管路1通过注入天然气进行满足。
天然气经天然气逆流阀5、天然气截止阀6和天然气调节阀7注入主合成气主管路2;其中,天然气逆止阀5用于在主合成气主管路2压力高于天然气压力时,防止合成气倒流进入天然气管路.
当不进行天然气注入的时候,天然气截止阀6关闭;天然气调节阀7用于正常注入时注入天然气流量的控制。
天然气调节阀7采用天然气注入调节控制器8进行流量控制,以燃气轮机烧嘴25前的阀前压力作为天然气注入调节控制器8的目标值,根据阀前压力与正常值的偏离程度确定天然气流量注入的目标值,天然气注入调节控制器8根据阀门参数和天然气流量测量的反馈,给出调节阀的开度。
当燃气轮机降低负荷,或由于气化炉负荷上升,合成气供应充足,燃气轮机烧嘴25进气阀前压力升高时,逐渐减少天然气注入量直至天然气注入管路完全关闭。
合成气预热器15用于将合成气预热至特定的温度;合成气预热器15的热源来自于中压饱和蒸汽,利用中压饱和蒸汽的凝结潜热加热合成气。
中压饱和蒸汽在合成气预热器15放热后变成凝结水送去疏水系统16。
合成气预热器15蒸汽入口与蒸汽注入管路4的支路连通,该支路管路上装有加热蒸汽调节阀13,所述加热蒸汽调节阀13通过加热蒸汽控制器14进行控制,合成气预热器15的合成气出口有温度测点,测量值作为加热蒸汽控制器14的反馈量,用于加热蒸汽调节阀13开度的控制。
蒸汽注入是调节合成气热值的关键手段,在主合成气主管路2上安装有一个拉法尔喷管22,蒸汽注入管路4的另一支路与拉法尔喷管22的抽汽口相连,在拉法尔喷管22前面的主合成气主管路2上装有一个主合成气逆止阀21,防止蒸汽超压导致蒸汽向主合成气主管路倒流。
蒸汽通过蒸汽注入管路4,经蒸汽逆止阀17、蒸汽截止阀18和蒸汽调节阀19注入拉法尔喷管22,其中,蒸汽逆止阀17用于在合成气主管路压力高于蒸汽管路压力时,防止合成气倒流进入蒸汽管路。
当不进行蒸汽注入的时候,蒸汽截止阀18关闭。
蒸汽调节阀19用于正常注入时注入蒸汽流量的控制。
在合成气加热器15入口装有合成气组分测点和合成气的流量测点,实时测量得到可燃气体组分的体积分数(Vol 1%,CO、H 2、CH 4、C 2H 6)和流量F 1,并将测得的数据传输至热值调节控制器30。
在拉法尔喷管22后装有气体组分测点,实时测量得到注入蒸汽之后的合成气中的可燃气体组分的体积分数(Vol 2%,CO、H 2、CH 4、C 2H 6)并计算合成气的华白值(体积热值),并将结果作为一个反馈量传递给热值调节控制器33。
热值调节控制器33用于根据流量测点和气体组分测点的两个测量值计算得到注入蒸汽的流量目标值,并将该流量目标值传送给蒸汽注入管路4上的流量调节阀20。
流量调节阀20用于采集蒸汽调节阀19出口处设置的流量测量点的蒸汽流量测量反馈值,并根据接收到的蒸汽流量测量反馈值和流量目标值,实时调节蒸汽调节阀19的开度。
合成气放散管路26由两支并列的管路组成,每支管路上分别串有第一泻放管路调节阀27和第一泻放管路截止阀29,第二泻放管路调节阀28和第二泻放管路截止阀30。
燃气轮机烧嘴25入口阀前压力分为低二值、低一值、中值、高一值、高二值、高三值共六个区间;一般工况下,燃气轮机烧嘴25的入口阀前压力处于正常范围,即中值,合成气放散管路26上的泻放控制器32控制第一泻放管路截止阀29和第二泻放管路截止阀30全部关闭。
当燃气轮机负荷突然下降,合成气需求量降低时,燃气轮机烧嘴25的入口阀前压力上升至高一值时,合成气放散管路26上的泻放控制器32控制第二泻放管路截止阀30打开,第二泻放管路调节阀28逐渐打开,泻放主合成气主管路压力。
当主合成气主管路2的压力进一步上升至高二值时,合成气放散管路26上的泻放控制器32控制第二泻放管路调节阀28迅速开大至50%以上开度,同时,第一泻放管路截止阀29打开,第一泻放管路调节阀27逐渐打开,泻放主合成气主管路压力。
若主合成气主管路2的压力进一步上升至高三值,则合成气放散管路26的两支管路上的阀门全开。
当主合成气主管路2的压力恢复至低一值时,合成气放散管路26上的另一支管路的各阀门关闭。
应用于本示例的系统参数如下表所示:
序号 参数 数值
1 燃气轮机烧嘴阀前压力MPa 2.5
2 合成气热值MJ/Nm 3 10.7
3 进燃气轮机烧嘴前燃料气热值MJ/Nm 3 7
4 满负荷主合成气流量Nm 3/h 170000
5 污氮气最大流量Nm 3/h 5000
6 满负荷蒸汽注入量t/h 85
7 加热蒸汽压力MPa 4.5
8 合成气加热器出口温度℃ 247
9 燃气轮机满负荷输出功率MW 170

Claims (9)

  1. 一种带参烧气注入和热值调节功能的燃气轮机燃料气进气调节系统,其特征在于,包括天然气注入管路(1)、主合成气主管路(2)和蒸汽注入管路(4),其中,主合成气主管路(2)上自其上游至下游依次设置有天然气注入管路(1)、合成气加热器(15)、主合成气逆流阀(21)、拉法尔喷管(22)、合成气放散管路(26)、主合成气调节阀(24)和烧嘴(25);
    所述蒸汽注入管路(4)的出口分为两支路,一支路与合成气加热器(15)的蒸汽入口连接;另一支路与拉法尔喷管(22)的蒸汽入口连接;
    同时,天然气注入管路(1)、合成气放散管路(26)和蒸汽注入管路(4)均设置有用于实现流量控制的流量控制装置。
  2. 根据权利要求1所述的一种带参烧气注入和热值调节功能的燃气轮机燃料气进气调节系统,其特征在于,天然气注入管路(1)的上游至下游依次设置有天然气逆流阀(5)、天然气截止阀(6)和天然气调节阀(7)。
  3. 根据权利要求1所述的一种带参烧气注入和热值调节功能的燃气轮机燃料气进气调节系统,其特征在于,天然气注入管路(1)上的天然气流量控制装置包括天然气调节阀(7)、天然气注入调节控制器(8)和合成气压力测点,其中,合成气压力测点布置在主合成气主管路(2)上,且置于主合成气调节阀(24)的上游,所述合成气压力测点用于采集注入燃气轮机喷嘴(25)的合成气压力,并将采集的压力传输到天然气注入调节控制器(8),天然气注入调节控制器(8)用于将接收到的压力与预设阈值进行对比,并根据比对结果控制天然气调节阀(7)的开度。
  4. 根据权利要求1所述的一种带参烧气注入和热值调节功能的燃气轮机燃料气进气调节系统,其特征在于,蒸汽注入管路(4)的一支路与合成气加热器(15)的蒸汽入口之间的连接管道上设置有加热蒸汽流量控制装置,所述加热蒸汽流量控制装置包括加热蒸汽调节阀(13)、加热蒸汽控制器(14)和布置在主合成气主管路(2)上的温度测点,所述温度测点置于合成 气加热器(15)的下游,用于采集合成气加热器(15)的合成气出口的温度值,并将采集到的温度值传输到加热蒸汽控制器(14),加热蒸汽控制器(14)用于根据接收到的温度值与预设阈值进行比对,进而控制加热蒸汽调节阀(13)的开度。
  5. 根据权利要求1所述的一种带参烧气注入和热值调节功能的燃气轮机燃料气进气调节系统,其特征在于,蒸汽注入管路(4)的另一支路与拉法尔喷管(22)的蒸汽入口之间的连接管道上设置有蒸汽流量控制装置,所述蒸汽流量控制装置包括蒸汽调节阀(19)、流量调节阀(20)、热值调节控制器(33)、合成气的流量测点、合成气组分测点和可燃气体组分测点,其中,合成气的流量测点、合成气组分测点和可燃气体组分测点均布置在主合成气主管路(2)上;合成气的流量测点和合成气组分测点均布置在合成气加热器(15)的入口,用于采集可燃气的流量和气体组分的体积分数,并将采集到的数据传输到热值调节控制器(33);可燃气体组分测点布置在拉法尔喷管(22)的出口,用于采集注入蒸汽之后的合成气中的可燃气体组分的体积分数,并将采集到的数据传输到热值调节控制器(33);热值调节控制器(33)用于根据接收到的数据计算得到注入蒸汽的流量目标值,并将该流量目标值传送给流量调节阀(20);流量调节阀(20)用于采集蒸汽调节阀(19)出口处的蒸汽流量,并将采集到的蒸汽流量与接收到的流量目标值进行比对,进而控制蒸汽调节阀(19)的开度。
  6. 根据权利要求1所述的一种带参烧气注入和热值调节功能的燃气轮机燃料气进气调节系统,其特征在于,所述主合成气主管路(2)上还设有污氮气注入管路(3),所述污氮气注入管路(3)的上游至下游依次设置有污氮气逆流阀(10)、污氮气截止阀(11)和污氮气调节阀(12)。
  7. 根据权利要求1所述的一种带参烧气注入和热值调节功能的燃气轮机燃料气进气调节系统,其特征在于,合成气放散管路(26)由两支并列的管路组成,两支管路均与去火炬(31)连接;所述合成气放散管路(26)上的流量控制装置包括泻放控制器(32)、第一泻放管路调 节阀(27)、第二泻放管路调节阀(28)和置于主合成气调节阀(24)入口处的合成气压力测点,其中,第一泻放管路调节阀(27)和第二泻放管路调节阀(28)分别布置在两支管路上;所述合成气压力测点用于采集注入燃气轮机喷嘴(25)的合成气压力,并将采集的压力传输到泻放控制器(32),泻放控制器(32)用于根据接收到的压力值与预设阈值进行比对,进而控制第一泻放管路调节阀(27)和第二泻放管路调节阀(28)的开度。
  8. 一种带参烧气注入和热值调节功能的燃气轮机燃料气进气调节方法,其特征在于,基于权利要求1-7中任一项所述的一种带参烧气注入和热值调节功能的燃气轮机燃料气进气调节系统,包括以下步骤:
    当燃气轮机快速提升负荷或合成气供应不足时:
    首先关闭合成气放散管路(26);
    接着根据主合成气调节阀(24)入口处的压力测点测量的合成气压力值,控制天然气的注入量,将天然气经天然气注入管路(1)注入主合成气主管路(2),以满足主合成气主管路(2)的合成气需求;
    此时,根据合成气加热器(15)入口处的测点和拉法尔喷管(22)出口处的测点,得到注入蒸汽的流量目标值,进而控制蒸汽的注入量,将蒸汽经蒸汽注入管路(4)注入主合成气主管路(2);
    当燃气轮机降低负荷或合成气供应充足时:
    首先关闭天然气注入管路(1);
    接着根据主合成气调节阀(24)入口处的压力测点测量的合成气压力值,当合成气压力值大于预设阈值时,打开合成气放散管路(26),并控制合成气放散管路(26)的开度;
    同时,根据合成气加热器(15)入口处的测点和拉法尔喷管(22)出口处的测点,得到注入蒸汽的流量目标值,进而控制蒸汽的注入量,将蒸汽经蒸汽注入管路(4)注入主合成气主 管路(2)。
  9. 根据权利要求8所述的一种带参烧气注入和热值调节功能的燃气轮机燃料气进气调节方法,其特征在于,
    当燃气轮机快速提升负荷或合成气供应不足时:
    首先关闭合成气放散管路(26);
    通过合成气压力测点采集注入燃气轮机喷嘴(25)的合成气压力,并将采集的压力传输到天然气注入调节控制器(8),天然气注入调节控制器(8)将接收到的压力与预设阈值进行对比,并根据比对结果控制天然气调节阀(7)的开度,进而将天然气经天然气注入管路(1)注入主合成气主管路(2),以满足主合成气主管路(2)的合成气需求;
    当燃气轮机降低负荷或合成气供应充足时:
    首先关闭天然气注入管路(1);
    通过合成气压力测点采集注入燃气轮机喷嘴(25)的合成气压力,并将采集的压力传输到泻放控制器(32);泻放控制器(32)将接收到的压力值与预设阈值进行比对,进而控制第一泻放管路调节阀(27)和第二泻放管路调节阀(28)的开度。
PCT/CN2020/125516 2019-11-28 2020-10-30 一种带参烧气注入和热值调节功能的燃气轮机燃料气进气调节系统及方法 WO2021103935A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201911191838.2A CN110700945B (zh) 2019-11-28 2019-11-28 一种带参烧气注入和热值调节功能的燃气轮机燃料气进气调节系统及方法
CN201911191838.2 2019-11-28

Publications (1)

Publication Number Publication Date
WO2021103935A1 true WO2021103935A1 (zh) 2021-06-03

Family

ID=69207978

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2020/125516 WO2021103935A1 (zh) 2019-11-28 2020-10-30 一种带参烧气注入和热值调节功能的燃气轮机燃料气进气调节系统及方法

Country Status (2)

Country Link
CN (1) CN110700945B (zh)
WO (1) WO2021103935A1 (zh)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110700945B (zh) * 2019-11-28 2023-09-26 中国华能集团有限公司 一种带参烧气注入和热值调节功能的燃气轮机燃料气进气调节系统及方法
CN111237058A (zh) * 2020-02-27 2020-06-05 中国华能集团清洁能源技术研究院有限公司 一种利用烟气低温余热加湿燃料气的igcc发电系统及方法
CN112648081A (zh) * 2020-12-23 2021-04-13 华能(天津)煤气化发电有限公司 一种基于igcc联合循环发电燃料热值调控方法
CN112994118B (zh) * 2021-02-05 2022-11-15 中国华能集团清洁能源技术研究院有限公司 一种igcc电站气化炉加氢系统及其工作方法

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5724805A (en) * 1995-08-21 1998-03-10 University Of Massachusetts-Lowell Power plant with carbon dioxide capture and zero pollutant emissions
CN1551946A (zh) * 2001-09-05 2004-12-01 ��ʿ�ŷ�չ��˾ 用于获得最大功率输出的燃气轮机燃料进口温度控制方法
CN101993730A (zh) * 2009-08-12 2011-03-30 中国科学院工程热物理研究所 基于化石燃料化学能适度转化的多功能能源系统
US20130255272A1 (en) * 2012-03-30 2013-10-03 Alstom Technology Ltd. Method for carbon capture in a gas turbine based power plant using chemical looping reactor system
CN109251769A (zh) * 2018-10-30 2019-01-22 中国华能集团清洁能源技术研究院有限公司 一种联产合成天然气的干煤粉气化igcc发电装置与方法
CN110700945A (zh) * 2019-11-28 2020-01-17 中国华能集团有限公司 一种带参烧气注入和热值调节功能的燃气轮机燃料气进气调节系统及方法
CN211038839U (zh) * 2019-11-28 2020-07-17 中国华能集团有限公司 一种用于燃气轮机燃料气进气的调节系统

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5161366A (en) * 1990-04-16 1992-11-10 General Electric Company Gas turbine catalytic combustor with preburner and low nox emissions
CN101144430B (zh) * 2007-10-19 2010-06-02 北京航空航天大学 转子发动机用塔台式火焰稳定器
EP2282017A1 (de) * 2009-01-26 2011-02-09 Siemens Aktiengesellschaft Synthesegasbrennstoffsystem mit Zweitbrennstoffbeimischung sowie Verfahren zum Betrieb eines Synthesegasbrennstoffsystems
WO2013095772A1 (en) * 2011-12-21 2013-06-27 Rentech, Inc. System and method for production of fischer-tropsch synthesis products and power
CN103265980B (zh) * 2013-04-28 2015-07-01 中国电力工程顾问集团西北电力设计院有限公司 一种用于igcc电站合成气热值调节系统及其调节方法

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5724805A (en) * 1995-08-21 1998-03-10 University Of Massachusetts-Lowell Power plant with carbon dioxide capture and zero pollutant emissions
CN1551946A (zh) * 2001-09-05 2004-12-01 ��ʿ�ŷ�չ��˾ 用于获得最大功率输出的燃气轮机燃料进口温度控制方法
CN101993730A (zh) * 2009-08-12 2011-03-30 中国科学院工程热物理研究所 基于化石燃料化学能适度转化的多功能能源系统
US20130255272A1 (en) * 2012-03-30 2013-10-03 Alstom Technology Ltd. Method for carbon capture in a gas turbine based power plant using chemical looping reactor system
CN109251769A (zh) * 2018-10-30 2019-01-22 中国华能集团清洁能源技术研究院有限公司 一种联产合成天然气的干煤粉气化igcc发电装置与方法
CN110700945A (zh) * 2019-11-28 2020-01-17 中国华能集团有限公司 一种带参烧气注入和热值调节功能的燃气轮机燃料气进气调节系统及方法
CN211038839U (zh) * 2019-11-28 2020-07-17 中国华能集团有限公司 一种用于燃气轮机燃料气进气的调节系统

Also Published As

Publication number Publication date
CN110700945A (zh) 2020-01-17
CN110700945B (zh) 2023-09-26

Similar Documents

Publication Publication Date Title
WO2021103935A1 (zh) 一种带参烧气注入和热值调节功能的燃气轮机燃料气进气调节系统及方法
US5845481A (en) Combustion turbine with fuel heating system
CN204005243U (zh) 一种燃气轮机氮气吹扫稳定装置
CN211038839U (zh) 一种用于燃气轮机燃料气进气的调节系统
WO2021083237A1 (zh) 一种igcc电站燃气轮机合成气燃料的混合加热系统及方法
CN201218519Y (zh) 煤、气混烧锅炉再热减温辅助调节装置
CN110700909B (zh) 采暖季热电联产机组上网电负荷调节系统及调节方法
CN111442257A (zh) 一种利用汽轮机加热一次风温的系统及方法
CN211174242U (zh) 采暖季热电联产机组上网电负荷调节系统
CN104074561B (zh) 一种热电联产汽轮机组节流调整系统及其以热定电的方法
WO2022252414A1 (zh) 一种燃煤机组煤风同步动态协控方法
CN210891764U (zh) 一种igcc电站燃气轮机合成气燃料的混合加热系统
CN212430825U (zh) 一种利用汽轮机加热一次风温的系统
CN212511103U (zh) 一种燃气-蒸汽联合循环机组停机余热利用装置
NL2028849B1 (en) Method for comprehensive utilization of waste heat of carbon calciner
Ye et al. Research on optimal operation strategy with ancillary services of flexible thermal power units
KR102397484B1 (ko) 하이브리드 발전설비
CN220379715U (zh) 一种应用于孤网燃机自备电厂的补燃装置及蒸汽供应系统
CN220505189U (zh) 一种串联布置的天然气加热系统
CN213803630U (zh) 一种实现干熄焦蒸汽稳产高产的系统
CN220169437U (zh) 一种提高二次再热机组带负荷性能的系统
Ji Study on the technology of SCR flue gas temperature adjustment during low load in coal-fired boilers
CN217818025U (zh) 一种蒸汽与天然气共用的供热装置
Liu et al. Application of Ejector Afflux Technology in Peak Load Unit
US20220136412A1 (en) Hybrid power generation equipment

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 20893533

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

32PN Ep: public notification in the ep bulletin as address of the adressee cannot be established

Free format text: NOTING OF LOSS OF RIGHTS PURSUANT TO RULE 112(1) EPC (EPO FORM 1205N DATED 19.07.2022)

122 Ep: pct application non-entry in european phase

Ref document number: 20893533

Country of ref document: EP

Kind code of ref document: A1