WO2021103300A1 - 光电二极管及其制备方法 - Google Patents

光电二极管及其制备方法 Download PDF

Info

Publication number
WO2021103300A1
WO2021103300A1 PCT/CN2020/072018 CN2020072018W WO2021103300A1 WO 2021103300 A1 WO2021103300 A1 WO 2021103300A1 CN 2020072018 W CN2020072018 W CN 2020072018W WO 2021103300 A1 WO2021103300 A1 WO 2021103300A1
Authority
WO
WIPO (PCT)
Prior art keywords
conductive channel
pattern
electrode
area
channel pattern
Prior art date
Application number
PCT/CN2020/072018
Other languages
English (en)
French (fr)
Inventor
肖军城
艾飞
宋继越
Original Assignee
武汉华星光电技术有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 武汉华星光电技术有限公司 filed Critical 武汉华星光电技术有限公司
Priority to US16/763,374 priority Critical patent/US20210167233A1/en
Publication of WO2021103300A1 publication Critical patent/WO2021103300A1/zh

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/08Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof in which radiation controls flow of current through the device, e.g. photoresistors
    • H01L31/10Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof in which radiation controls flow of current through the device, e.g. photoresistors characterised by potential barriers, e.g. phototransistors
    • H01L31/101Devices sensitive to infrared, visible or ultraviolet radiation
    • H01L31/102Devices sensitive to infrared, visible or ultraviolet radiation characterised by only one potential barrier
    • H01L31/105Devices sensitive to infrared, visible or ultraviolet radiation characterised by only one potential barrier the potential barrier being of the PIN type
    • H01L31/1055Devices sensitive to infrared, visible or ultraviolet radiation characterised by only one potential barrier the potential barrier being of the PIN type the devices comprising amorphous materials of Group IV of the Periodic Table
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06VIMAGE OR VIDEO RECOGNITION OR UNDERSTANDING
    • G06V40/00Recognition of biometric, human-related or animal-related patterns in image or video data
    • G06V40/10Human or animal bodies, e.g. vehicle occupants or pedestrians; Body parts, e.g. hands
    • G06V40/12Fingerprints or palmprints
    • G06V40/13Sensors therefor
    • G06V40/1318Sensors therefor using electro-optical elements or layers, e.g. electroluminescent sensing
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/02Details
    • H01L31/0216Coatings
    • H01L31/02161Coatings for devices characterised by at least one potential jump barrier or surface barrier
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/0248Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by their semiconductor bodies
    • H01L31/0352Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by their semiconductor bodies characterised by their shape or by the shapes, relative sizes or disposition of the semiconductor regions
    • H01L31/035272Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by their semiconductor bodies characterised by their shape or by the shapes, relative sizes or disposition of the semiconductor regions characterised by at least one potential jump barrier or surface barrier
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/18Processes or apparatus specially adapted for the manufacture or treatment of these devices or of parts thereof
    • H01L31/1804Processes or apparatus specially adapted for the manufacture or treatment of these devices or of parts thereof comprising only elements of Group IV of the Periodic Table

Definitions

  • This application relates to the field of display, in particular to a photodiode and a preparation method thereof.
  • fingerprint recognition technology has been widely used in small and medium-sized panels, which mainly include capacitive, ultrasonic and optical methods. Compared with capacitive and ultrasonic fingerprint recognition technology, optical fingerprint recognition technology has good stability, strong antistatic ability, good penetrating ability and lower cost.
  • the optical fingerprint recognition technology uses the principle of light refraction and reflection. When the light is irradiated on the finger, it is received by the photosensitive sensor after being reflected by the finger. After the photosensitive sensor receives it, the light signal can be converted into an electrical signal for reading; due to fingerprints Valleys and ridges reflect different light, and the reflected light intensity of the valleys and ridges received by the photosensitive sensor is different, and the converted current or voltage is also different. Therefore, special points in the fingerprint can be captured to provide unique confirmation information.
  • the commonly used photosensitive sensor is a vertical PIN diode made of amorphous silicon.
  • the greater the photocurrent, the higher the sensitivity of fingerprint recognition, and the main factors affecting the photogenerated current of the diode are the width of the depletion layer, the diode junction area and the reflectivity of the diode surface.
  • the present application provides a photodiode and a preparation method thereof, which can solve the technical problem of improving the sensitivity of fingerprint recognition by increasing the photo-generated current of the photosensitive sensor on the premise of meeting the response speed of the device.
  • This application provides a photodiode, including: a P electrode, an N electrode, a conductive channel for connecting the P electrode and the N electrode, and a light-absorbing layer pattern; wherein the light-absorbing layer pattern is disposed on the conductive channel, and the light-absorbing The layer pattern exposes the conductive channel part to the outside;
  • the conductive channel includes a first conductive channel pattern, a second conductive channel pattern, and a third conductive channel pattern
  • the second conductive channel pattern is located between the first conductive channel pattern and the first conductive channel pattern.
  • the first conductive channel pattern and the third conductive channel pattern are both comb-shaped structures, and the first conductive channel pattern, the second conductive channel pattern, and the The third conductive channel patterns cooperate with each other to form an occlusal shape;
  • the first conductive channel pattern includes a first main body part and a plurality of first branch parts, the plurality of first branch parts are arranged at intervals on the first side of the first main body part;
  • the third conductive channel The pattern includes a second main body part and a plurality of second branch parts, the plurality of second branch parts are arranged at intervals on the second side of the second main body part; the first side and the second side are arranged oppositely, the The plurality of first branches and the plurality of second branches are arranged in a staggered manner.
  • At least one second branch is provided between adjacent first branches.
  • the plurality of first branches are arranged on the first body part at equal intervals, and the multiple The two second branches are arranged at equal intervals on the second main body.
  • the width of the plurality of first branch parts is greater than the width of the second branch part.
  • the first body portion includes a first area and a second area that are connected, and the second body portion includes a third area and a fourth area that are connected to each other, wherein the The first area and the third area are arranged opposite to each other, and the second area and the fourth area are arranged opposite to each other;
  • a plurality of the first branches are arranged on the first area at intervals, and a plurality of the second branches are arranged on the third area at intervals.
  • the P electrode is disposed on the conductive channel and extends along one side of the conductive channel
  • the N electrode is disposed on the conductive channel and extends along the conductive channel.
  • the conductive channel extends on the other side.
  • an insulating layer is provided on the conductive channel and the light-absorbing layer pattern, and a first via hole and a second via hole are provided on the insulating layer; wherein, the N The electrode is connected to the conductive channel through the first via hole, and the P electrode is connected to the conductive channel through the second via hole.
  • the present application also provides a photodiode, including: a P electrode, an N electrode, and a conductive channel for connecting the P electrode and the N electrode; wherein, the conductive channel includes a first conductive channel pattern and a second conductive channel Pattern and a third conductive channel pattern, the second conductive channel pattern is located between the first conductive channel pattern and the third conductive channel pattern, and the first conductive channel pattern is connected to the first conductive channel pattern.
  • the three conductive channel patterns are all comb-shaped structures, and the first conductive channel pattern, the second conductive channel pattern, and the third conductive channel pattern cooperate with each other to form a snap-like shape.
  • the first conductive channel pattern includes a first main body portion and a plurality of first branch portions, and the plurality of first branch portions are arranged at intervals on a first side of the first main body portion
  • the third conductive channel pattern includes a second main body portion and a plurality of second branch portions, the plurality of second branch portions are arranged at intervals on the second side of the second main body portion; the first side and the The second side is arranged oppositely, and the plurality of first branches and the plurality of second branches are arranged in a staggered manner.
  • At least one second branch is provided between adjacent first branches.
  • the plurality of first branches are arranged on the first body part at equal intervals, and the multiple The two second branches are arranged at equal intervals on the second main body.
  • the width of the plurality of first branch parts is greater than the width of the second branch part.
  • the first body portion includes a first area and a second area that are connected, and the second body portion includes a third area and a fourth area that are connected to each other, wherein the The first area and the third area are arranged opposite to each other, and the second area and the fourth area are arranged opposite to each other;
  • a plurality of the first branches are arranged on the first area at intervals, and a plurality of the second branches are arranged on the third area at intervals.
  • a light-absorbing layer pattern is provided on the conductive channel, and the light-absorbing layer pattern exposes a part of the conductive channel.
  • the P electrode is disposed on the conductive channel and extends along one side of the conductive channel
  • the N electrode is disposed on the conductive channel and extends along the conductive channel.
  • the conductive channel extends on the other side.
  • an insulating layer is provided on the conductive channel and the light-absorbing layer pattern, and a first via hole and a second via hole are provided on the insulating layer; wherein, the N The electrode is connected to the conductive channel through the first via hole, and the P electrode is connected to the conductive channel through the second via hole.
  • the present application also provides a method for manufacturing a photodiode, and the manufacturing method includes:
  • a conductive channel is formed on the buffer layer, and ion doping is performed on the conductive channel to form a first conductive channel pattern, a second conductive channel pattern, and a third conductive channel pattern.
  • Two conductive channel patterns are located between the first conductive channel pattern and the third conductive channel pattern, the first conductive channel pattern and the third conductive channel pattern are both comb-shaped structures, and The first conductive channel pattern, the second conductive channel pattern, and the third conductive channel pattern cooperate with each other to form an occluding shape;
  • a P electrode and an N electrode are formed on the conductive channel, and the P electrode and the N electrode are used to connect with the conductive channel.
  • the conductive channel of the photodiode is arranged in a comb-like structure and can cooperate with each other to form a bite shape, thereby increasing the junction area of the diode and thereby increasing the photo-generated current.
  • a light-absorbing layer is added to the conductive channel, which can fully absorb the reflected light of the fingerprint and generate more electron-hole pairs, thereby further increasing the photo-generated current, thereby solving the problem of improving the photo-generation of the photosensitive sensor under the premise of meeting the response speed of the device. Electric current to improve the technical problem of fingerprint recognition sensitivity.
  • FIG. 1 is a schematic diagram of a first structure of a photodiode provided by an embodiment of the application
  • FIG. 2 is a schematic diagram of a first structure of a conductive channel provided by an embodiment of the application
  • FIG. 3 is a schematic diagram of a second structure of a conductive channel provided by an embodiment of the application.
  • FIG. 4 is a schematic diagram of a third structure of a conductive channel provided by an embodiment of the application.
  • FIG. 5 is a schematic diagram of a fourth structure of a conductive channel provided by an embodiment of the application.
  • FIG. 6 is a schematic diagram of a second structure of a photodiode provided by an embodiment of the application.
  • FIG. 7 is a schematic diagram of a third structure of a photodiode provided by an embodiment of the application.
  • FIG. 8 is a schematic flowchart of a method for manufacturing a photodiode provided by an embodiment of the application.
  • FIG. 9 is a schematic diagram of a sub-process of a method for manufacturing a photodiode provided by an embodiment of the application.
  • FIG. 1 is a schematic diagram of a first structure of a photodiode provided by an embodiment of the application.
  • the photodiode provided by the embodiment of the present application includes: a P electrode 101, an N electrode 102, and a conductive channel 103 for connecting the P electrode 101 and the N electrode 102; wherein, the conductive channel 103 includes The first conductive channel pattern 1031, the second conductive channel pattern 1032, and the third conductive channel pattern 1033.
  • the second conductive channel pattern 1032 is located between the first conductive channel pattern 1031 and the third conductive channel pattern 1033, and the first conductive channel pattern 1031 is connected to the third conductive channel
  • the track patterns 1033 are all comb-like structures, and the first conductive channel pattern 1031, the second conductive channel pattern 1032, and the third conductive channel pattern 1033 cooperate with each other to form an occlusal shape.
  • the conductive channel patterns of the existing photodiodes are all rectangular in design, and the conductive channels of the photodiodes provided in the present application adopt a comb-shaped design and cooperate with each other in a snap-like shape, compared to the original one.
  • the straight contact surface a lot of broken line contact surfaces are now added, thereby increasing the junction area of the PN junction of the photodiode, thereby increasing the photo-generated current, and achieving the technical effect of improving the sensitivity of the fingerprint recognition of the photosensitive sensor.
  • the material of the first conductive channel pattern 1031 is boron ion-doped polysilicon
  • the material of the second conductive channel pattern 1032 is amorphous silicon
  • the material of the pattern 1033 is phosphorous ion-doped polysilicon.
  • FIG. 2 is a schematic diagram of a first structure of a conductive channel provided by an embodiment of the application.
  • the conductive channel provided in the present application includes: a first conductive channel pattern 201, a second conductive channel pattern 202, and a third conductive channel pattern 203, wherein the first conductive channel pattern 201 includes a first body Part 2011 and a plurality of first branch parts 2012, the plurality of first branch parts 2012 are arranged at intervals on the first side 2013 of the first body part 2011; the third conductive channel pattern 203 includes a second body part 2031 and A plurality of second branches 2032, the plurality of second branches 2032 are arranged at intervals on the second side 2033 of the second main body part 2031; the first side 2013 and the second side 2033 are arranged oppositely, and the multiple The first branches 2012 and the plurality of second branches 2032 are arranged in a staggered manner.
  • first conductive channel pattern 201 and the third conductive channel pattern 203 are both comb-shaped structures, and the first conductive channel pattern 201, the second conductive channel pattern 202, and the The third conductive channel patterns 203 cooperate with each other in a snap-like shape.
  • the shape of the first branch 2012 and the second branch 2032 includes one of a semi-ellipse, a rectangle, and a triangle; wherein, when the first branch 2012 and the second branch When the shape of the two branches 2032 is rectangular, the junction area of the PN junction in the photodiode is the largest, so as to achieve the best technical effect of improving the sensitivity of fingerprint recognition of the photosensitive sensor. Because the process difficulty of forming different shapes is different, and the technical effects achieved are also different, the specific shape of the first branch portion 2012 and the second branch portion 2032 is determined according to the specific process flow.
  • FIG. 3 is a schematic diagram of a second structure of a conductive channel provided by an embodiment of the application.
  • the conductive channel provided in this application includes: a first conductive channel pattern 301, a second conductive channel The pattern 302 and the third conductive channel pattern 303, wherein the first conductive channel pattern 301 includes a first main body portion 3011 and a plurality of first branch portions 3012, and the plurality of first branch portions 3012 are arranged at intervals in the first A first side 3013 of a main body portion 3011; the third conductive channel pattern 303 includes a second main body portion 3031 and a plurality of second branch portions 3032, the plurality of second branch portions 3032 are arranged at intervals on the second main body portion The second side 3033 of 3031; the first side 3013 and the second side 3033 are arranged oppositely, and the plurality of first branches 3012 and the plurality of second branches 3032 are arranged in a staggered manner.
  • first conductive channel pattern 301 and the third conductive channel pattern 303 are both comb-shaped structures, and the first conductive channel pattern 301, the second conductive channel pattern 302, and the The third conductive channel patterns 303 cooperate with each other in a snap-in shape.
  • one second branch 3032 is arranged between adjacent first branches 3012, the plurality of first branches 3012 are arranged at equal intervals on the first main body part 3011, the plurality of second branches 3032, etc. Intervals are provided in the second main body portion 3031.
  • FIG. 4 is a third structural schematic diagram of a conductive channel provided by an embodiment of the application.
  • the thickness of the first branch portion 3012 in the conductive channel shown in FIG. 4 is too large, so the process is simpler when preparing the first branch portion 3012.
  • the junction area of the PN junction in the photodiode is not as large as that shown in Figure 3. Therefore, the technical effect of improving the sensitivity of the photosensitive sensor fingerprint recognition is not as good as the conductive channel shown in Figure 3; but the one shown in Figure 4 The preparation process of the conductive channel is simpler, and it is not prone to failure, thereby reducing the cost.
  • FIG. 5 is a fourth structural diagram of the conductive channel provided by the embodiment of the application.
  • the difference between the conductive channel shown in FIG. 5 and the conductive channel shown in FIG. 3 is that the first A body portion 3011 includes a first area 30111 and a second area 30112 that are connected to each other.
  • the second body portion 3031 includes a third area 30311 and a fourth area 30312 that are connected to each other.
  • the first area 30111 and the The third area 30311 is arranged oppositely, the second area 30112 and the fourth area 30312 are arranged oppositely, a plurality of the first branches 3012 are arranged on the first area 30111 at intervals, and a plurality of the second branches 3032 is arranged on the third area 30311 at intervals.
  • first branch 3012 and the second branch 3032 shown in FIG. 5 are arranged in different regions.
  • first branch 3012 and the second branch 3032 can be prepared in different regions, and there is no need to prepare the first branch 3012 and the second branch 3032.
  • the second branch 3032 is then prepared in the interval between the adjacent first branch 3012, thereby reducing the difficulty of the preparation process, increasing the yield, and reducing the consumption of costs.
  • the conductive channel of the photodiode is arranged in a comb-like structure and can cooperate with each other to form a bite shape, thereby increasing the junction area of the diode, thereby increasing the photo-generated current, thereby solving On the premise of satisfying the response speed of the device, the technical problem of improving the sensitivity of fingerprint recognition by increasing the photo-generated current of the photosensitive sensor.
  • FIG. 6 is a schematic diagram of the second structure of the photodiode provided by the embodiment of the application.
  • the photodiode provided by the embodiment of the application includes: a P electrode 401, an N electrode 402, The conductive channel 403 for connecting the P electrode 401 and the N electrode 402, the light absorption layer pattern 404, and the insulating layer 405.
  • the conductive channel 403 includes a first conductive channel pattern 4031, a second conductive channel pattern 4032, and a third conductive channel pattern 4033, and the light absorption layer pattern 404 is disposed on the conductive channel 403, and
  • the light-absorbing layer pattern 404 exposes part of the conductive channel 403, the insulating layer 405 is disposed on the conductive channel 403 and the light-absorbing layer pattern 404, and the insulating layer 405 is provided with a first via hole 4051 and a second via 4052; wherein, the P electrode 401 is connected to the conductive channel 403 through the first via 4051, and the N electrode 402 is connected to the conductive channel through the second via 4052.
  • Road 403 is connected.
  • the material of the light-absorbing layer pattern 404 is amorphous silicon, and the light-absorbing layer pattern 404 is to ensure sufficient light absorption, so the thickness of the light-absorbing layer pattern 404 is at least 1000 angstroms. .
  • FIG. 7 is a schematic diagram of the third structure of the photodiode provided by the embodiment of the application.
  • the photodiode provided by the embodiment of the application includes: P electrode 501, N electrode 502, The conductive channel 503 and the light absorption layer pattern 404 for connecting the P electrode 501 and the N electrode 502.
  • the conductive channel 503 includes a first conductive channel pattern 5031, a second conductive channel pattern 5032, and a third conductive channel pattern 5033
  • the light absorption layer pattern 504 is disposed on the conductive channel 503
  • the light-absorbing layer pattern 504 exposes part of the conductive channel 503
  • the P electrode 501 is arranged on the conductive channel 503 and extends along one side of the conductive channel 503
  • the N electrode 502 is arranged on the conductive channel 503.
  • the conductive channel 503 extends on and along the other side of the conductive channel 503.
  • the photodiode and its preparation method provided by the present application by adding a light-absorbing layer on the conductive channel, the reflected light from the fingerprint can be fully absorbed, and more electron-hole pairs can be generated, thereby increasing the photo-generated current, thereby solving the problem of satisfying the device. Under the premise of response speed, the technical problem of improving the sensitivity of fingerprint recognition by increasing the photo-generated current of the photosensitive sensor.
  • FIG. 8 is a schematic flow chart of a photodiode manufacturing method provided by an embodiment of the application.
  • the manufacturing method includes the following steps: 601. A substrate is provided, and a light-shielding layer is sequentially formed on the substrate.
  • Pattern and buffer layer 602, forming a conductive channel on the buffer layer, and performing ion doping treatment on the conductive channel to form a first conductive channel pattern, a second conductive channel pattern, and a third conductive channel A channel pattern, the second conductive channel pattern is located between the first conductive channel pattern and the third conductive channel pattern, the first conductive channel pattern and the third conductive channel pattern All are comb-shaped structures, and the first conductive channel pattern, the second conductive channel pattern, and the third conductive channel pattern cooperate with each other to form a snap-like shape; 603.
  • a P electrode is formed on the conductive channel And an N electrode, the P electrode and the N electrode are used to connect with the conductive channel.
  • FIG. 9 is a schematic diagram of a sub-process of a method for manufacturing a photodiode according to an embodiment of the application.
  • step 602 specifically includes: 6021, forming a conductive channel on the buffer layer; 6022, performing boron ion doping treatment on one side of the conductive channel to form a first conductive channel.
  • a channel pattern, the first conductive channel pattern is a comb-like structure; 6023.
  • Phosphorus ion doping is performed on the other side of the conductive channel to form a third conductive channel pattern, the third conductive channel
  • the track pattern is a comb-like structure; 6024.
  • the conductive channel is etched away from the polysilicon where the ion treatment is not performed by etching, and the conductive channel is filled with amorphous silicon to form a second conductive channel pattern, and the first
  • the conductive channel pattern, the second conductive channel pattern, and the third conductive channel pattern cooperate with each other to form a snap-like shape; 6025.
  • rapid thermal annealing is performed on the first conductive channel pattern and the third conductive channel pattern, so that the first conductive channel pattern and the third conductive channel pattern are The ions are activated, so that the contact resistance between the first conductive channel pattern and the third conductive channel pattern and the P electrode and the N electrode can be reduced, thereby further increasing the photo-generated current of the photodiode.
  • the formation of the P electrode on the conductive channel needs to extend to the buffer layer along one side of the conductive channel, and cover one side of the conductive channel, on the conductive channel
  • the formation of the N electrode needs to extend along the other side of the conductive channel to the buffer layer and cover the other side of the conductive channel.
  • a light-absorbing layer pattern is formed, and an insulating layer is arranged on the P electrode, the N electrode, the conductive channel, and the light-absorbing layer pattern.
  • the P electrode and the N electrode on the conductive channel before forming the P electrode and the N electrode on the conductive channel, it is also necessary to first form a light-absorbing layer pattern on the conductive channel, and provide an insulating layer on the conductive channel and the light-absorbing layer pattern, and then A first via hole and a second via hole are arranged on the insulating layer, a P electrode is arranged at the first via hole to be connected to the conductive channel, and an N electrode is arranged at the second via hole to be connected to the conductive channel.
  • the conductive channel of the photodiode is arranged in a comb-like structure and can cooperate with each other to form a bite shape, thereby increasing the junction area of the diode, thereby increasing the photo-generated current, and A light-absorbing layer is also added to the conductive channel, which can fully absorb the reflected light of the fingerprint and generate more electron-hole pairs, thereby further increasing the photocurrent, thereby solving the problem of improving the photogenerated current of the photosensitive sensor under the premise of meeting the response speed of the device To improve the technical problem of fingerprint recognition sensitivity.

Landscapes

  • Engineering & Computer Science (AREA)
  • General Physics & Mathematics (AREA)
  • Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • Electromagnetism (AREA)
  • Computer Hardware Design (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)
  • Multimedia (AREA)
  • Theoretical Computer Science (AREA)
  • Human Computer Interaction (AREA)
  • Manufacturing & Machinery (AREA)
  • Light Receiving Elements (AREA)

Abstract

在本申请提供的光电二极管及其制备方法中,包括P电极、N电极以及用于连接P电极和N电极的导电沟道;导电沟道包括第一导电沟道图案、第二导电沟道图案和第三导电沟道图案,第二导电沟道图案位于第一导电沟道图案与第三导电沟道图案之间,第一导电沟道图案与第三导电沟道图案均为梳子状结构。

Description

光电二极管及其制备方法 技术领域
本申请涉及显示领域,具体涉及一种光电二极管及其制备方法。
背景技术
目前,指纹识别技术已经广泛应用于中小尺寸的面板中,其中主要有电容式、超声波式和光学式等几种方式。相比于电容式和超声波式指纹识别技术,光学指纹识别技术稳定性好、抗静电能力强、穿透能力好且成本较低。光学指纹识别技术利用的是光的折射和反射原理,当光照射到手指上,经手指反射后由感光传感器接收,感光传感器接收后可将光信号转换为电学信号,从而进行读取;由于指纹谷和脊对光的反射不同,感光传感器所接收到谷和脊的反射光强不同,所转换的电流或者电压的大小也就不同,因此可以抓取指纹中的特殊点,提供唯一性的确认信息。
近年来,普遍采用的感光传感器为非晶硅材料的垂直型PIN二极管。对于感光传感器来说,光生电流越大,指纹识别的灵敏度就越高,而影响二极管的光生电流的因素主要有耗尽层宽度、二极管结面积和二极管表面的反射率。耗尽层宽度越宽,本征层能够吸收更多的光能,电子-空穴对可以被内建电场分离,光电流更大,响应度更好;但是耗尽层过大,载流子渡越时间会很长,从而降低器件的响应速度。
因此,怎样在满足器件的响应速度的前提下通过提高感光传感器的光生电流来提升指纹识别灵敏度是全世界面板厂家正在努力攻克的难关。
技术问题
本申请提供一种光电二极管及其制备方法,可以解决在满足器件的响应速度的前提下通过提高感光传感器的光生电流来提升指纹识别灵敏度的技术问题。
技术解决方案
本申请提供一种光电二极管,包括:P电极、N电极、用于连接P电极和N电极的导电沟道以及吸光层图案;其中,所述吸光层图案设置在导电沟道上,且所述吸光层图案将所述导电沟道部分裸露在外;
其中,所述导电沟道包括第一导电沟道图案、第二导电沟道图案和第三导电沟道图案,所述第二导电沟道图案位于所述第一导电沟道图案与所述第三导电沟道图案之间,所述第一导电沟道图案与所述第三导电沟道图案均为梳子状结构,且所述第一导电沟道图案、所述第二导电沟道图案以及所述第三导电沟道图案相互配合呈咬合状;
其中,所述第一导电沟道图案包括第一主体部和多个第一支部,所述多个第一支部间隔设置在所述第一主体部的第一侧;所述第三导电沟道图案包括第二主体部和多个第二支部,所述多个第二支部间隔设置在所述第二主体部的第二侧;所述第一侧和所述第二侧相对设置,所述多个第一支部与所述多个第二支部错位设置。
在本申请所提供的光电二极管中,相邻所述第一支部之间设置有至少一个所述第二支部。
在本申请所提供的光电二极管中,当相邻所述第一支部之间设置一个所述第二支部时,所述多个第一支部等间隔设置在所述第一主体部,所述多个第二支部等间隔设置在所述第二主体部。
在本申请所提供的光电二极管中,当相邻所述第一支部之间设置至少两个所述第二支部时,所述多个第一支部的宽度大于所述第二支部的宽度。
在本申请所提供的光电二极管中,所述第一主体部包括相连接的第一区域和第二区域,所述第二主体部包括相互连接的第三区域和第四区域,其中,所述第一区域和所述第三区域分相对设置,所述第二区域和所述第四区域相对设置;
多个所述第一支部间隔设置在所述第一区域上,多个所述第二支部间隔设置在所述第三区域上。
在本申请所提供的光电二极管中,所述P电极设置在所述导电沟道上并沿着所述导电沟道的一侧延伸,所述N电极设置在所述导电沟道上并沿着所述导电沟道的另一侧延伸。
在本申请所提供的光电二极管中,所述导电沟道以及所述吸光层图案上设置有绝缘层,且所述绝缘层上设置有第一过孔和第二过孔;其中,所述N电极通过所述第一过孔与所述导电沟道连接,所述P电极通过所述第二过孔与所述导电沟道连接。
本申请还提供一种光电二极管,包括:P电极、N电极以及用于连接P电极和N电极的导电沟道;其中,所述导电沟道包括第一导电沟道图案、第二导电沟道图案和第三导电沟道图案,所述第二导电沟道图案位于所述第一导电沟道图案与所述第三导电沟道图案之间,所述第一导电沟道图案与所述第三导电沟道图案均为梳子状结构,且所述第一导电沟道图案、所述第二导电沟道图案以及所述第三导电沟道图案相互配合呈咬合状。
在本申请所提供的光电二极管中,所述第一导电沟道图案包括第一主体部和多个第一支部,所述多个第一支部间隔设置在所述第一主体部的第一侧;所述第三导电沟道图案包括第二主体部和多个第二支部,所述多个第二支部间隔设置在所述第二主体部的第二侧;所述第一侧和所述第二侧相对设置,所述多个第一支部与所述多个第二支部错位设置。
在本申请所提供的光电二极管中,相邻所述第一支部之间设置有至少一个所述第二支部。
在本申请所提供的光电二极管中,当相邻所述第一支部之间设置一个所述第二支部时,所述多个第一支部等间隔设置在所述第一主体部,所述多个第二支部等间隔设置在所述第二主体部。
在本申请所提供的光电二极管中,当相邻所述第一支部之间设置至少两个所述第二支部时,所述多个第一支部的宽度大于所述第二支部的宽度。
在本申请所提供的光电二极管中,所述第一主体部包括相连接的第一区域和第二区域,所述第二主体部包括相互连接的第三区域和第四区域,其中,所述第一区域和所述第三区域分相对设置,所述第二区域和所述第四区域相对设置;
多个所述第一支部间隔设置在所述第一区域上,多个所述第二支部间隔设置在所述第三区域上。
在本申请所提供的光电二极管中,所述导电沟道上设置有吸光层图案,且所述吸光层图案将部分导电沟道裸露在外。
在本申请所提供的光电二极管中,所述P电极设置在所述导电沟道上并沿着所述导电沟道的一侧延伸,所述N电极设置在所述导电沟道上并沿着所述导电沟道的另一侧延伸。
在本申请所提供的光电二极管中,所述导电沟道以及所述吸光层图案上设置有绝缘层,且所述绝缘层上设置有第一过孔和第二过孔;其中,所述N电极通过所述第一过孔与所述导电沟道连接,所述P电极通过所述第二过孔与所述导电沟道连接。
本申请还提供一种光电二极管的制备方法,所述制备方法包括:
提供一基板,在所述基板上依次形成遮光层图案以及缓冲层;
在所述缓冲层上形成导电沟道,并对所述导电沟道进行离子掺杂处理,以形成第一导电沟道图案、第二导电沟道图案以及第三导电沟道图案,所述第二导电沟道图案位于所述第一导电沟道图案与所述第三导电沟道图案之间,所述第一导电沟道图案与所述第三导电沟道图案均为梳子状结构,且所述第一导电沟道图案、所述第二导电沟道图案以及所述第三导电沟道图案相互配合呈咬合状;
在所述导电沟道上形成P电极和N电极,所述P电极和所述N电极用于与所述导电沟道连接。
有益效果
在本申请提供的光电二极管及其制备方法中,通过把光电二极管的导电沟道设置成梳子状结构,且能相互配合呈咬合状,从而增大了二极管的结面积,进而提高了光生电流,另外还在导电沟道上增加了吸光层,可以充分吸收指纹反射光,产生更多电子-空穴对,从而进一步提高光生电流,从而解决在满足器件的响应速度的前提下通过提高感光传感器的光生电流来提升指纹识别灵敏度的技术问题。
附图说明
为了更清楚地说明本申请中的技术方案,下面将对实施方式描述中所需要使用的附图作简单地介绍,显而易见地,下面描述中的附图仅仅是本申请的一些实施方式,对于本领域技术人员来讲,在不付出创造性劳动的前提下,还可以根据这些附图获得其他的附图。
图1为本申请实施例提供的光电二极管的第一结构示意图;
图2为本申请实施例提供的导电沟道的第一结构示意图;
图3为本申请实施例提供的导电沟道的第二结构示意图;
图4为本申请实施例提供的导电沟道的第三结构示意图;
图5为本申请实施例提供的导电沟道的第四结构示意图;
图6为本申请实施例提供的光电二极管的第二结构示意图;
图7为本申请实施例提供的光电二极管的第三结构示意图;
图8为本申请实施例提供的光电二极管的制备方法的流程示意图;
图9为本申请实施例提供的光电二极管的制备方法的子流程示意图。
本发明的实施方式
下面将结合本申请实施方式中的附图,对本申请中的技术方案进行清楚、完整地描述。显然,所描述的实施方式仅仅是本申请一部分实施方式,而不是全部的实施方式。基于本申请中的实施方式,本领域技术人员在没有做出创造性劳动前提下所获得的所有其他实施方式,都属于本申请保护的范围。
请参阅图1,图1为本申请实施例提供的光电二极管的第一结构示意图。如图1所示,本申请实施例提供的光电二极管,包括:P电极101 、N电极102以及用于连接P电极101和N电极102的导电沟道103;其中,所述导电沟道103包括第一导电沟道图案1031、第二导电沟道图案1032和第三导电沟道图案1033。
其中,所述第二导电沟道图案1032位于所述第一导电沟道图案1031与所述第三导电沟道图案1033之间,所述第一导电沟道图案1031与所述第三导电沟道图案1033均为梳子状结构,且所述第一导电沟道图案1031、所述第二导电沟道图案1032以及所述第三导电沟道图案1033相互配合呈咬合状。
其中,可以理解的,现有的光电二极管的导电沟道图案都是矩形状设计,本申请所提供的光电二极管的导电沟道采用梳子状设计,且相互配合呈咬合状,相比着原本一条直线的接触面,现在增加了很多折线的接触面,从而提高了光电二极管的PN结的结面积,进而提高了光生电流,达到了提升感光传感器指纹识别的灵敏度的技术效果。
其中,在一种实施方式中,所述第一导电沟道图案1031的材质为硼离子掺杂多晶硅,所述第二导电沟道图案1032的材质为非晶硅,所述第三导电沟道图案1033的材质为磷离子掺杂多晶硅。
具体地,请参阅图2,图2为本申请实施例提供的导电沟道的第一结构示意图。本申请所提供的导电沟道,包括:第一导电沟道图案201、第二导电沟道图案202和第三导电沟道图案203,其中,所述第一导电沟道图案201包括第一主体部2011和多个第一支部2012,所述多个第一支部2012间隔设置在所述第一主体部2011的第一侧2013;所述第三导电沟道图案203包括第二主体部2031和多个第二支部2032,所述多个第二支部2032间隔设置在所述第二主体部2031的第二侧2033;所述第一侧2013和所述第二侧2033相对设置,所述多个第一支部2012与所述多个第二支部2032错位设置。
其中,所述第一导电沟道图案201与所述第三导电沟道图案203均为梳子状结构,且所述第一导电沟道图案201、所述第二导电沟道图案202以及所述第三导电沟道图案203相互配合呈咬合状。
其中,在一种实施方式中,所述第一支部2012与所述第二支部2032的形状包括半椭圆形、矩形、三角形中的一种;其中,当所述第一支部2012与所述第二支部2032的形状为矩形时,此时光电二极管中PN结的结面积最大,从而达到最好的提升感光传感器指纹识别的灵敏度的技术效果。因为形成不同形状的工艺难度不同,所达到的技术效果也不同,所以所述第一支部2012与所述第二支部2032具体采用什么形状还是根据具体的工艺流程决定。
具体地,请参阅图3,图3为本申请实施例提供的导电沟道的第二结构示意图,本申请所提供的导电沟道,包括:第一导电沟道图案301、第二导电沟道图案302和第三导电沟道图案303,其中,所述第一导电沟道图案301包括第一主体部3011和多个第一支部3012,所述多个第一支部3012间隔设置在所述第一主体部3011的第一侧3013;所述第三导电沟道图案303包括第二主体部3031和多个第二支部3032,所述多个第二支部3032间隔设置在所述第二主体部3031的第二侧3033;所述第一侧3013和所述第二侧3033相对设置,所述多个第一支部3012与所述多个第二支部3032错位设置。
其中,所述第一导电沟道图案301与所述第三导电沟道图案303均为梳子状结构,且所述第一导电沟道图案301、所述第二导电沟道图案302以及所述第三导电沟道图案303相互配合呈咬合状。
其中,相邻所述第一支部3012之间设置一个所述第二支部3032,所述多个第一支部3012等间隔设置在所述第一主体部3011,所述多个第二支部3032等间隔设置在所述第二主体部3031。
进一步地,请参阅图4,图4为本申请实施例提供的导电沟道的第三结构示意图,图4所示的导电沟道与图3所示的导电沟道的区别在于,图4所示的导电沟道中,相邻所述第一支部3012之间设置两个所述第二支部3032,其中,第一支部3012的厚度大于第二支部3032的厚度。
其中可以理解的,图4所示的导电沟道中第一支部3012的厚度偏大,所以在制备第一支部3012时,工艺更加简单。与图3相比,光电二极管中PN结的结面积没有图3的大,因此提升感光传感器指纹识别的灵敏度的技术效果也没有图3中所示的导电沟道好;但是图4所示的导电沟道制备的工艺更加简单,不容易产生失败,从而降低了成本。
进一步地,请参阅图5,图5为本申请实施例提供的导电沟道的第四结构示意图,图5所示的导电沟道与图3所示的导电沟道的区别在于,所述第一主体部3011包括相连接的第一区域30111和第二区域30112,所述第二主体部3031包括相互连接的第三区域30311和第四区域30312,其中,所述第一区域30111和所述第三区域30311分相对设置,所述第二区域30112和所述第四区域30312相对设置,多个所述第一支部3012间隔设置在所述第一区域30111上,多个所述第二支部3032间隔设置在所述第三区域30311上。
其中,可以理解的,图5所示的第一支部3012和第二支部3032都是分区域设置的,这样的话可以分区域制备第一支部3012和第二支部3032,不需要在制得第一支部3012后,然后在相邻第一支部3012的间隔中制备第二支部3032,从而减少了制备工艺的难度,增加了成品率,减少了成本的消耗。
在本申请的所提供的光电二极管中,通过把光电二极管的导电沟道设置成梳子状结构,且能相互配合呈咬合状,从而增大了二极管的结面积,进而提高了光生电流,从而解决在满足器件的响应速度的前提下通过提高感光传感器的光生电流来提升指纹识别灵敏度的技术问题。
具体地,请参阅图6,图6为本申请实施例提供的光电二极管的第二结构示意图,如图6所示,本申请实施例提供的光电二极管,包括:P电极401 、N电极402、用于连接P电极401和N电极402的导电沟道403、吸光层图案404以及绝缘层405。
其中,所述导电沟道403包括第一导电沟道图案4031、第二导电沟道图案4032和第三导电沟道图案4033,所述吸光层图案404设置在所述导电沟道403上,且所述吸光层图案404将部分导电沟道403裸露在外,所述绝缘层405设置在所述导电沟道403以及所述吸光层图案404上,且所述绝缘层405上设置有第一过孔4051和第二过孔4052;其中,所述P电极401通过所述第一过孔4051与所述导电沟道403连接,所述N电极402通过所述第二过孔4052与所述导电沟道403连接。
其中,可以理解的,所述吸光层图案404的材质为非晶硅,且所述吸光层图案404为了保证对光线的充分吸收,所以制得的所述吸光层图案404的厚度至少为1000埃。
进一步地,请参阅图7,图7为本申请实施例提供的光电二极管的第三结构示意图,如图7所示,本申请实施例提供的光电二极管,包括:P电极501 、N电极502、用于连接P电极501和N电极502的导电沟道503以及吸光层图案404。
其中,所述导电沟道503包括第一导电沟道图案5031、第二导电沟道图案5032和第三导电沟道图案5033,所述吸光层图504设置在所述导电沟道503上,且所述吸光层图案504将部分导电沟道503裸露在外,所述P电极501设置在所述导电沟道503上并沿着所述导电沟道503的一侧延伸,所述N电极502设置在所述导电沟道503上并沿着所述导电沟道503的另一侧延伸。
在本申请提供的光电二极管及其制备方法中,通过在导电沟道上增加了吸光层,可以充分吸收指纹反射光,产生更多电子-空穴对,从而提高光生电流,从而解决在满足器件的响应速度的前提下通过提高感光传感器的光生电流来提升指纹识别灵敏度的技术问题。
具体地,请参阅图8,图8为本申请实施例提供的光电二极管的制备方法的流程示意图,所述制备方法,包括以下步骤:601、提供一基板,在所述基板上依次形成遮光层图案以及缓冲层;602、在所述缓冲层上形成导电沟道,并对所述导电沟道进行离子掺杂处理,以形成第一导电沟道图案、第二导电沟道图案以及第三导电沟道图案,所述第二导电沟道图案位于所述第一导电沟道图案与所述第三导电沟道图案之间,所述第一导电沟道图案与所述第三导电沟道图案均为梳子状结构,且所述第一导电沟道图案、所述第二导电沟道图案以及所述第三导电沟道图案相互配合呈咬合状;603、在所述导电沟道上形成P电极和N电极,所述P电极和所述N电极用于与所述导电沟道连接。
进一步地,请参阅图8、图9,图9为本申请实施例提供的光电二极管的制备方法的子流程示意图。结合图8,图9所示,步骤602具体包括:6021、在所述缓冲层上形成导电沟道;6022、对所述导电沟道的一侧进行硼离子掺杂处理,以形成第一导电沟道图案,所述第一导电沟道图案为梳子状结构;6023、对所述导电沟道的另一侧进行磷离子掺杂,以形成第三导电沟道图案,所述第三导电沟道图案为梳子状结构;6024、通过蚀刻的方式将所述导电沟道未被离子处理处的多晶硅蚀刻掉,并采用非晶硅填充,以形成第二导电沟道图案,且所述第一导电沟道图案、所述第二导电沟道图案以及所述第三导电沟道图案相互配合呈咬合状;6025、对所述第一导电沟道图案和所述第三导电沟道图案进行快速热退火处理,以使所述第一导电沟道图案和所述第三导电沟道图案中的离子活化。
其中,可以理解的,对所述第一导电沟道图案和所述第三导电沟道图案进行快速热退火处理,以使所述第一导电沟道图案和所述第三导电沟道图案中的离子活化,从而可以使所述第一导电沟道图案和所述第三导电沟道图案与P电极和N电极的接触阻抗降低,从而进一步提高光电二极管的光生电流。
其中,在一种实施方式中,在导电沟道上的形成P电极需要沿着所述导电沟道的一侧延伸至所述缓冲层上,并覆盖所述导电沟道一侧,在导电沟道上的形成N电极需要沿着所述导电沟道的另一侧延伸至所述缓冲层上,并覆盖所述导电沟道另一侧,在形成P电极和N电极之后,还需要在导电沟道上形成吸光层图案,并在P电极、N电极、导电沟道以及吸光层图案上设置绝缘层。
其中,在一种实施方式中,在导电沟道上的形成P电极和N电极之前,还需要先在导电沟道上形成吸光层图案,并在导电沟道以及吸光层图案上设置绝缘层,然后在绝缘层上设置第一过孔和第二过孔,并在第一过孔处设置P电极与导电沟道连接,在第二过孔处设置N电极与导电沟道连接。
在本申请提供的光电二极管的制备方法中,通过把光电二极管的导电沟道设置成梳子状结构,且能相互配合呈咬合状,从而增大了二极管的结面积,进而提高了光生电流,另外还在导电沟道上增加了吸光层,可以充分吸收指纹反射光,产生更多电子-空穴对,从而进一步提高光生电流,从而解决在满足器件的响应速度的前提下通过提高感光传感器的光生电流来提升指纹识别灵敏度的技术问题。
以上对本申请实施方式提供了详细介绍,本文中应用了具体个例对本申请的原理及实施方式进行了阐述,以上实施方式的说明只是用于帮助理解本申请。同时,对于本领域的技术人员,依据本申请的思想,在具体实施方式及应用范围上均会有改变之处,综上,本说明书内容不应理解为对本申请的限制。

Claims (17)

  1. 一种光电二极管,其特征在于,包括:P电极、N电极、用于连接P电极和N电极的导电沟道以及吸光层图案;
    其中,所述吸光层图案设置在导电沟道上,且所述吸光层图案将所述导电沟道部分裸露在外;
    其中,所述导电沟道包括第一导电沟道图案、第二导电沟道图案和第三导电沟道图案,所述第二导电沟道图案位于所述第一导电沟道图案与所述第三导电沟道图案之间,所述第一导电沟道图案与所述第三导电沟道图案均为梳子状结构,且所述第一导电沟道图案、所述第二导电沟道图案以及所述第三导电沟道图案相互配合呈咬合状;
    其中,所述第一导电沟道图案包括第一主体部和多个第一支部,所述多个第一支部间隔设置在所述第一主体部的第一侧;所述第三导电沟道图案包括第二主体部和多个第二支部,所述多个第二支部间隔设置在所述第二主体部的第二侧;所述第一侧和所述第二侧相对设置,所述多个第一支部与所述多个第二支部错位设置。
  2. 根据权利要求1所述的光电二极管,其特征在于,相邻所述第一支部之间设置有至少一个所述第二支部。
  3. 根据权利要求2所述的光电二极管,其特征在于,当相邻所述第一支部之间设置一个所述第二支部时,所述多个第一支部等间隔设置在所述第一主体部,所述多个第二支部等间隔设置在所述第二主体部。
  4. 根据权利要求2所述的光电二极管,其特征在于,当相邻所述第一支部之间设置至少两个所述第二支部时,所述多个第一支部的宽度大于所述第二支部的宽度。
  5. 根据权利要求1所述的光电二极管,其特征在于,所述第一主体部包括相连接的第一区域和第二区域,所述第二主体部包括相互连接的第三区域和第四区域,其中,所述第一区域和所述第三区域分相对设置,所述第二区域和所述第四区域相对设置;多个所述第一支部间隔设置在所述第一区域上,多个所述第二支部间隔设置在所述第三区域上。
  6. 根据权利要求1所述的光电二极管,其特征在于,所述P电极设置在所述导电沟道上并沿着所述导电沟道的一侧延伸,所述N电极设置在所述导电沟道上并沿着所述导电沟道的另一侧延伸。
  7. 根据权利要求1所述的光电二极管,其特征在于,所述导电沟道以及所述吸光层图案上设置有绝缘层,且所述绝缘层上设置有第一过孔和第二过孔;其中,所述P电极通过所述第一过孔与所述导电沟道连接,所述N电极通过所述第二过孔与所述导电沟道连接。
  8. 一种光电二极管,其特征在于,包括:P电极、N电极以及用于连接P电极和N电极的导电沟道;
    其中,所述导电沟道包括第一导电沟道图案、第二导电沟道图案和第三导电沟道图案,所述第二导电沟道图案位于所述第一导电沟道图案与所述第三导电沟道图案之间,所述第一导电沟道图案与所述第三导电沟道图案均为梳子状结构,且所述第一导电沟道图案、所述第二导电沟道图案以及所述第三导电沟道图案相互配合呈咬合状。
  9. 根据权利要求8所述的光电二极管,其特征在于,所述第一导电沟道图案包括第一主体部和多个第一支部,所述多个第一支部间隔设置在所述第一主体部的第一侧;所述第三导电沟道图案包括第二主体部和多个第二支部,所述多个第二支部间隔设置在所述第二主体部的第二侧;所述第一侧和所述第二侧相对设置,所述多个第一支部与所述多个第二支部错位设置。
  10. 根据权利要求9所述的光电二极管,其特征在于,相邻所述第一支部之间设置有至少一个所述第二支部。
  11. 根据权利要求10所述的光电二极管,其特征在于,当相邻所述第一支部之间设置一个所述第二支部时,所述多个第一支部等间隔设置在所述第一主体部,所述多个第二支部等间隔设置在所述第二主体部。
  12. 根据权利要求10所述的光电二极管,其特征在于,当相邻所述第一支部之间设置至少两个所述第二支部时,所述多个第一支部的宽度大于所述第二支部的宽度。
  13. 根据权利要求9所述的光电二极管,其特征在于,所述第一主体部包括相连接的第一区域和第二区域,所述第二主体部包括相互连接的第三区域和第四区域,其中,所述第一区域和所述第三区域分相对设置,所述第二区域和所述第四区域相对设置;多个所述第一支部间隔设置在所述第一区域上,多个所述第二支部间隔设置在所述第三区域上。
  14. 根据权利要求8所述的光电二极管,其特征在于,所述导电沟道上设置有吸光层图案,且所述吸光层图案将部分导电沟道裸露在外。
  15. 根据权利要求14所述的光电二极管,其特征在于,所述P电极设置在所述导电沟道上并沿着所述导电沟道的一侧延伸,所述N电极设置在所述导电沟道上并沿着所述导电沟道的另一侧延伸。
  16. 根据权利要求14所述的光电二极管,其特征在于,所述导电沟道以及所述吸光层图案上设置有绝缘层,且所述绝缘层上设置有第一过孔和第二过孔;其中,所述P电极通过所述第一过孔与所述导电沟道连接,所述N电极通过所述第二过孔与所述导电沟道连接。
  17. 一种光电二极管的制备方法,其特征在于,所述制备方法包括:
    提供一基板,在所述基板上依次形成遮光层图案以及缓冲层;
    在所述缓冲层上形成导电沟道,并对所述导电沟道进行离子掺杂处理,以形成第一导电沟道图案、第二导电沟道图案以及第三导电沟道图案,所述第二导电沟道图案位于所述第一导电沟道图案与所述第三导电沟道图案之间,所述第一导电沟道图案与所述第三导电沟道图案均为梳子状结构,且所述第一导电沟道图案、所述第二导电沟道图案以及所述第三导电沟道图案相互配合呈咬合状;
    在所述导电沟道上形成P电极和N电极,所述P电极和所述N电极用于与所述导电沟道连接。
PCT/CN2020/072018 2019-11-29 2020-01-14 光电二极管及其制备方法 WO2021103300A1 (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
US16/763,374 US20210167233A1 (en) 2019-11-29 2020-01-14 Photodiode and manufacturing method thereof

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201911203586.0A CN111048617B (zh) 2019-11-29 2019-11-29 光电二极管及其制备方法
CN201911203586.0 2019-11-29

Publications (1)

Publication Number Publication Date
WO2021103300A1 true WO2021103300A1 (zh) 2021-06-03

Family

ID=70233209

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2020/072018 WO2021103300A1 (zh) 2019-11-29 2020-01-14 光电二极管及其制备方法

Country Status (2)

Country Link
CN (1) CN111048617B (zh)
WO (1) WO2021103300A1 (zh)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111584530B (zh) * 2020-05-19 2023-09-05 上海集成电路研发中心有限公司 一种混合成像探测器结构
CN111785807B (zh) * 2020-08-11 2022-10-18 今上半导体(信阳)有限公司 一种pin光电器件及其制造方法
CN113671748B (zh) * 2021-08-30 2023-05-02 深圳市华星光电半导体显示技术有限公司 液晶显示装置
CN116779695A (zh) * 2022-03-10 2023-09-19 苏州湃矽科技有限公司 光电探测结构及光电集成芯片

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS63287077A (ja) * 1987-05-20 1988-11-24 Hitachi Ltd 光電変換デバイス
JP3912024B2 (ja) * 2001-04-09 2007-05-09 セイコーエプソン株式会社 Pin構造のラテラル型半導体受光素子
CN101183693A (zh) * 2006-11-14 2008-05-21 冲电气工业株式会社 光电二极管以及具有该光电二极管的光电ic
CN102427093A (zh) * 2011-12-08 2012-04-25 福州大学 横向PIN结构Ge量子点近红外探测器及其制作方法

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005167291A (ja) * 1996-12-20 2005-06-23 Mitsubishi Electric Corp 太陽電池の製造方法及び半導体装置の製造方法
US6950540B2 (en) * 2000-01-31 2005-09-27 Nec Corporation Fingerprint apparatus and method
JP2004319703A (ja) * 2003-04-15 2004-11-11 Shin Etsu Polymer Co Ltd リジット基板とフレキシブル基板との電極接続構造
CN107195723B (zh) * 2017-06-30 2020-05-15 上海集成电路研发中心有限公司 一种雪崩光敏器件及其制备方法
CN110212053B (zh) * 2019-05-29 2021-06-15 哈尔滨工业大学(深圳) 一种硅基叉指型光电探测器

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS63287077A (ja) * 1987-05-20 1988-11-24 Hitachi Ltd 光電変換デバイス
JP3912024B2 (ja) * 2001-04-09 2007-05-09 セイコーエプソン株式会社 Pin構造のラテラル型半導体受光素子
CN101183693A (zh) * 2006-11-14 2008-05-21 冲电气工业株式会社 光电二极管以及具有该光电二极管的光电ic
CN102427093A (zh) * 2011-12-08 2012-04-25 福州大学 横向PIN结构Ge量子点近红外探测器及其制作方法

Also Published As

Publication number Publication date
CN111048617B (zh) 2021-06-01
CN111048617A (zh) 2020-04-21

Similar Documents

Publication Publication Date Title
WO2021103300A1 (zh) 光电二极管及其制备方法
CN105405916B (zh) 硅基宽光谱探测器及制备方法
US8384179B2 (en) Black silicon based metal-semiconductor-metal photodetector
EP2180526A2 (en) Photovoltaic device and method for manufacturing the same
CN105977314B (zh) 一种感光元件、指纹识别面板及制备方法、指纹识别装置
US11183610B2 (en) Photoelectric detector, preparation method thereof, display panel and display device
CN109858443A (zh) 显示面板、显示装置和显示面板的制作方法
CN109004039A (zh) 一种太阳能电池芯片及其制备方法
TW201503385A (zh) 光電池以及製造該光電池的方法
TW201104822A (en) Aligning method of patterned electrode in a selective emitter structure
CN109817731B (zh) 一种光电二极管及其制作方法、电子设备
KR101897722B1 (ko) 광전소자
AU2023233149A1 (en) Photovoltaic cell, method for forming same, and photovoltaic module
US11557145B2 (en) Photo sensor having a photosensitive layer made of intrinsic amorphous silicon, manufacturing method thereof, and display panel having the same
US20210167233A1 (en) Photodiode and manufacturing method thereof
CN114784033B (zh) 基于半导体工艺的混合成像芯片及其制备方法
US11189740B2 (en) Photoelectric sensor and manufacturing method thereof
CN107123694B (zh) 一种透光薄膜太阳能电池组件及其制造方法
CN204216062U (zh) 一种具有反光结构的太阳能电池组件
CN208655661U (zh) 一种太阳能电池芯片
KR101092469B1 (ko) 태양 전지 및 그 제조 방법
CN107039538B (zh) 一种高光电转换效率太阳能电池及其制备方法
TWI577034B (zh) 太陽能電池
US8628991B2 (en) Solar cell and method for manufacturing the same
JPS61228679A (ja) 光発電装置

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 20892070

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 20892070

Country of ref document: EP

Kind code of ref document: A1