WO2021102950A1 - 光探测器、探测模组和探测装置 - Google Patents

光探测器、探测模组和探测装置 Download PDF

Info

Publication number
WO2021102950A1
WO2021102950A1 PCT/CN2019/122092 CN2019122092W WO2021102950A1 WO 2021102950 A1 WO2021102950 A1 WO 2021102950A1 CN 2019122092 W CN2019122092 W CN 2019122092W WO 2021102950 A1 WO2021102950 A1 WO 2021102950A1
Authority
WO
WIPO (PCT)
Prior art keywords
light
area
photodetector
photosensitive area
absorbing material
Prior art date
Application number
PCT/CN2019/122092
Other languages
English (en)
French (fr)
Inventor
王栗
Original Assignee
深圳市大疆创新科技有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 深圳市大疆创新科技有限公司 filed Critical 深圳市大疆创新科技有限公司
Priority to CN201990000880.9U priority Critical patent/CN215867092U/zh
Priority to PCT/CN2019/122092 priority patent/WO2021102950A1/zh
Publication of WO2021102950A1 publication Critical patent/WO2021102950A1/zh

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S1/00Beacons or beacon systems transmitting signals having a characteristic or characteristics capable of being detected by non-directional receivers and defining directions, positions, or position lines fixed relatively to the beacon transmitters; Receivers co-operating therewith
    • G01S1/02Beacons or beacon systems transmitting signals having a characteristic or characteristics capable of being detected by non-directional receivers and defining directions, positions, or position lines fixed relatively to the beacon transmitters; Receivers co-operating therewith using radio waves
    • G01S1/04Details
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01VGEOPHYSICS; GRAVITATIONAL MEASUREMENTS; DETECTING MASSES OR OBJECTS; TAGS
    • G01V8/00Prospecting or detecting by optical means

Definitions

  • This application relates to the field of radar detection technology, and in particular to a light detector, a detection module and a detection device.
  • the optical components inside the lidar detection system have reflection and scattering characteristics for the laser beam, so disordered stray light will be generated inside the lidar; and the receiving detector of the lidar is extremely sensitive, and it is very sensitive to these stray light. In response, a false trigger crosstalk signal is generated, which affects the accuracy of the detection data of the lidar detection system.
  • the embodiments of the present application provide a light detector, a detection module, and a detection device.
  • the embodiment of the present application provides a light detector, the light detector includes a light receiver, the light receiver includes a photosensitive area and a non-sensitive area, the photosensitive area is used to receive the light reflected by the target object, so The light detector reduces the reflectivity of light through the non-photosensitive area.
  • the embodiment of the present application also provides a photodetector, the photodetector includes a photoreceiver, an insulating substrate, a base and a sleeve, the photoreceiver is arranged on the insulating substrate, and the photoreceiver includes The photosensitive area and the non-sensitive area, the photosensitive area is used to receive the light reflected by the target object; the insulating substrate is arranged on the base; the sleeve includes opposite upper and lower parts, and the lower part is arranged at On the base, the upper part is at least partially covered with the non-photosensitive area, and the photodetector reduces the reflectance of light through the upper part.
  • the embodiment of the present application also provides a detection module, which includes a light source, a light path changing element, a collimating element, and a light detector.
  • the light beam emitted by the light source reaches the collimation after being transmitted by the light path changing element.
  • the collimating element is collimated by the collimating element and then emitted to the target object, and the light beam reflected by the target object is condensed by the collimating element to the optical path changing element, and then reflected by the optical path changing element
  • the light detector includes a light receiver, the light receiver includes a photosensitive area and a non-sensitive area, the photosensitive area is used to receive the light reflected by the target object, the light detector Reduce the reflectance of light through the non-photosensitive area; or, the light detector includes a light receiver, an insulating substrate, a base and a sleeve, the light receiver is arranged on the insulating substrate, and the light The receiver includes a photosensitive area and a non-sensitive area, the photosensitive area is used to receive the light reflected by the target object; the insulating substrate is arranged on the base; the sleeve includes opposite upper and lower parts, the The lower part is arranged on the base, the upper part is at least partially covered with the non-photosensitive
  • the embodiment of the present application also provides a detection device.
  • the detection device includes a housing, a scanning module, and a detection module.
  • the detection module and the scanning module are respectively combined with the housing, and the detection module
  • the group is used to emit a light beam to the scanning module, the scanning module is used to change the transmission direction of the light beam and then exit, the light beam reflected by the target object passes through the scanning module and then enters the detection module
  • the detection module is used to determine the distance and/or direction of the target object relative to the detection device according to the reflected light beam;
  • the detection module includes a light source, a light path changing element, a collimating element, and a light detector ,
  • the light beam emitted by the light source reaches the collimating element after being transmitted by the optical path changing element, and is collimated by the collimating element and then exits to the target object, and the light beam reflected by the target object is The collimating element is converged to the light path changing element, and then reflected
  • the photodetector, detection module and detection device of the present application reduce the reflectivity of the stray light in the non-photosensitive area of the photoreceiver, and the stray light is not easily received by the photodetector to generate crosstalk signals, thereby improving the detection data of the detection system.
  • Accuracy alternatively, the photodetector, detection module and detection device of the present application reduce the reflectivity of light reflected by the upper part of the sleeve by sheathing the sleeve on the photodetector, and the generated stray light is not easy to be detected by light
  • the crosstalk signal is generated by the receiver, which improves the accuracy of the detection data of the detection device.
  • the sleeve can make the height of the plane of the light incident on the upper part of the sleeve (that is, the light that generates stray light) more different from the height of the plane of the light received by the light receiver, so that the stray light is not easily detected by the light.
  • the crosstalk signal is generated by the receiver, thereby improving the accuracy of the detection data of the detection device.
  • FIG. 1 is a schematic diagram of modules of a detection device according to some embodiments of the present application.
  • FIG. 2 is a schematic diagram of the structure of a detection module according to some embodiments of the present application.
  • FIG. 3 is a schematic diagram of the structure of a detection module according to some embodiments of the present application.
  • FIG. 4 is a schematic structural diagram of a detection module according to some embodiments of the present application.
  • FIG. 5 is a schematic structural diagram of a detection module according to some embodiments of the present application.
  • FIG. 6 is a schematic diagram of the structure of a detection module according to some embodiments of the present application.
  • FIG. 7 is a schematic diagram of the structure of a detection module according to some embodiments of the present application.
  • FIG. 8 is a schematic diagram of the structure of a cemented lens group according to some embodiments of the present application.
  • FIG. 9 is a schematic diagram of the structure of a cemented lens group according to some embodiments of the present application.
  • Fig. 10 is an exploded schematic diagram of a cemented lens according to some embodiments of the present application.
  • FIG. 11 is a schematic diagram of the structure of a photodetector according to some embodiments of the present application.
  • FIG. 12 is a schematic diagram of the structure of a photodetector according to some embodiments of the present application.
  • FIG. 13 is a schematic diagram of the structure of a photodetector according to some embodiments of the present application.
  • FIG. 14 is a schematic diagram of the structure of a photodetector according to some embodiments of the present application.
  • 15 is a schematic diagram of the detection principle of the detection device according to some embodiments of the present application.
  • FIG. 16 is a schematic diagram of the detection principle of the detection device according to some embodiments of the present application.
  • an embodiment of the present application provides a detection device 1000, and the detection device 1000 can be used to determine the distance and/or direction of a detection object relative to the detection device 1000.
  • the detection device 1000 may be electronic equipment such as laser radar and laser ranging equipment.
  • the detection device 1000 can be used to sense external environmental information, for example, distance information, orientation information, reflection intensity information, speed information, etc. of environmental targets.
  • the detection device 1000 can detect the distance between the detection device 1000 and the detection device 1000 by measuring the time of light propagation between the detection device 1000 and the target object, that is, the time-of-flight (TOF).
  • TOF time-of-flight
  • the detection device 1000 may also use other technologies to detect the distance from the target object to the detection device 1000, such as a ranging method based on phase shift measurement or a ranging method based on frequency shift measurement. This is not limited.
  • the distance and azimuth detected by the detection device 1000 can be used for remote sensing, obstacle avoidance, surveying and mapping, modeling, navigation, and the like.
  • the detection device 1000 of the embodiment of the present invention can be applied to a mobile platform, and the detection device 1000 can be installed on the platform body of the mobile platform.
  • the mobile platform with the detection device 1000 can measure the external environment, for example, to measure the distance between the mobile platform and obstacles for obstacle avoidance and other purposes, and to conduct two-dimensional or three-dimensional mapping of the external environment.
  • the mobile platform includes at least one of an unmanned aerial vehicle, a car, a remote control car, a robot, and a camera.
  • the platform body is the fuselage of the unmanned aerial vehicle.
  • the platform body is the body of the car.
  • the car can be a self-driving car or a semi-self-driving car, and there is no restriction here.
  • the detection device 1000 is applied to a remote control car, the platform body is the body of the remote control car.
  • the platform body is a robot.
  • the detection device 1000 is applied to a camera, the platform body is the camera itself.
  • the detection device 1000 includes a housing 200, a scanning module 300, and a detection module 100.
  • the detection module 100 and the scanning module 300 are respectively combined with the housing 200.
  • the detection module 100 is used to emit a light beam to the scanning module 300.
  • the group 300 is used to change the transmission direction of the light beam and then exit.
  • the light beam reflected by the target object enters the detection module 100 after passing through the scanning module 300.
  • the detection module 100 is used to determine the target object relative to the detection device 1000 according to the reflected light beam.
  • Distance and/or direction can be understood as the detection module 100 can be used to determine one of the distance or direction of the target object relative to the detection device 1000, or both the distance and the direction according to the reflected beam. Can be determined.
  • the detection module 100 includes a light source 110, a light path changing element 120, a collimating element 130 a, and a light detector 140.
  • the light beam emitted by the light source 110 passes through the light path changing element 120 to reach the collimating element 130a, and is collimated by the collimating element 130a and then exits to the target object.
  • the light beam reflected by the target object is condensed by the collimating element 130a to change the light path.
  • the element 120 is then reflected by the optical path changing element 120 to the photodetector 140.
  • the light source 110 is used to emit a light beam (ie, a light pulse sequence).
  • the light beam emitted by the light source 110 is a narrow-bandwidth light beam with a wavelength outside the visible light range, for example, the wavelength of the light beam emitted by the light source 110 is 905 nm.
  • the light source 110 may include a laser diode, and the laser diode emits a light beam of nanosecond level.
  • the optical path changing element 120 is located on the output optical path of the light source 110 and is used to combine the output optical path of the light source 110 and the receiving optical path of the photodetector 140. Specifically, the light path changing element 120 is disposed on one side of the collimating element 130a and located between the light source 110 and the collimating element 130a. The outgoing optical path of the light source 110 and the receiving optical path of the photodetector 140 adopt a coaxial optical path. Please refer to FIG. 2. In the detection module 100, the central axis 111 of the light beam emitted by the light source 110 and the central axis of the light beam reflected by the optical path changing element 120 112 can be coincident.
  • FIGS. 2 to 7 show schematic diagrams of various embodiments in which the detection module 100 of the present application adopts a coaxial optical path.
  • the optical path changing element 120 combines the transmitting optical path and the receiving optical path in the detection module 100 before the photodetector 140, so that the transmitting optical path and the receiving optical path can share the same collimating element 130a, the optical path is more compact, and the detection module 100 can be reduced.
  • the size of the system reduces the complexity and cost of the system.
  • the light path changing element 120 may use a small-area reflector to combine the emitting light path and the receiving light path, or the light path changing element 120 may also use a reflector with a through hole, where the through hole is used to transmit the emitted light of the light source 110, The reflector is used to reflect the returned light to the detector 140.
  • the optical path changing element 120 can also be a reflector with a light-transmitting part and a reflecting part.
  • the light-transmitting part can be made of a material that can transmit light for transmitting light.
  • the reflective part can reflect light.
  • the specific structure and constituent materials of the optical path changing element 120 are not limited in the present application.
  • the light path changing element 120 adopts a small-area reflector, and the small-area reflector refers to a reflector with a small area. Specifically, since the beam aperture of the light beam emitted by the light source 110 is small, the light beam emitted by the light source 110 can be received by a small-area mirror and reflect the light beam to the outside. In addition, the beam aperture of the return light received by the distance measuring device 1000 is relatively large, and the small-area reflector can block the return light very little, so that the photodetector 140 can receive almost all the return light, so that the detection device 1000 The detection data is more accurate. In this embodiment, the light path changing element 120 adopts a small-area reflector, which can reduce the weight of the detection device 1000 while achieving the detection effect, which is beneficial to the lightness of the detection device 1000.
  • the light path changing element 120 may use a reflector with a through hole (as shown in FIG. 2), wherein the through hole is used to transmit the light beam emitted by the light source 110, and the reflector is used to reflect the return light to the detection In this way, the shielding of the back light from the support of the small reflector in the case of using the small reflector can be reduced.
  • the light path changing element 120 includes a light-transmitting part 121 and a reflective part 122, and the light beam emitted by the light source 110 can directly pass through the light-transmitting part 121.
  • the reflective part 122 includes a base 123, and the base 123 may be made of a metal with low light transmittance such as copper or aluminum.
  • the base 123 further includes a first surface 1231 and a second surface 1232 opposite to each other. The first surface 1231 is opposite to the light source 110, and the second surface 1232 is opposite to the collimating element 130a.
  • the reflective part 122 may also include a reflective film 124 provided on the base 123.
  • the reflective film 124 may be disposed on the side of the base 123 facing away from the light source 110, that is, on the second surface 1232. In other examples, the reflective film 124 may also be disposed on the first surface 1231.
  • the reflective film 124 may be made of metal materials such as aluminum, gold, silver, palladium, or titanium.
  • the detection module 100 of the embodiment of the present application when the light emitted by the light source 110 passes through the light path changing element 120, part of the light emitted by the light source 110 can pass through the light transmitting portion 121 of the light path changing element 120, and the light source 110 is emitted toward the light path
  • the light from the edge of the changing element 120 is blocked by the reflective film 124 on the reflective part 122 of the light path changing element 120, and the reflective film 124 can also reflect most or almost all of the light (return light) incident from the outside of the detection device 1000 to detect
  • the received signal of the module 100 is relatively strong, which is beneficial to the accuracy of the detection data of the detection module 100.
  • the light path changing element 120 includes a substrate 125 and a reflective film 126 (for example, a high reflective film) formed on the substrate 125.
  • a reflective film 126 for example, a high reflective film
  • the base material 125 is in the shape of a flat plate, and the base material 125 includes a light-transmitting area 1251.
  • the light-transmitting area 1251 is used for the light beam emitted by the light source 110 to pass through.
  • the light-transmitting area 1251 is an area made of light-transmitting materials.
  • the light-transmitting area 1251 may be made of materials with high light transmittance such as plastic, resin, and glass.
  • the area of the base material 125 except for the light-transmitting area 1251 is the peripheral area, and the peripheral area can be made of copper, aluminum and other metals with low light transmittance; or, the peripheral area is also made of the above-mentioned light-transmitting materials.
  • the peripheral area is made of the same material as the light-transmitting area 1251 and is integrally formed.
  • the substrate 125 further includes a first surface 1252 and a second surface 1253 opposite to each other.
  • the first surface 1252 is opposite to the light source 110, and the second surface 1253 is opposite to the collimating element 130a.
  • the reflective film 126 is arranged on the side of the substrate 125 facing away from the light source 110, that is, on the second surface 1253. In some examples, the reflective film 126 may also be disposed on the first surface 1252.
  • the reflective film 126 is provided with a light through hole 1261.
  • the aforementioned light-transmitting area 1251 is the area of the substrate 125 corresponding to the light-passing hole 1261.
  • the light pulse sequence emitted by the light source 110 passes through the light-transmitting area 1251 and the light-passing hole 1261 and then exits.
  • the reflective film 126 can be made of metal materials such as aluminum, gold, silver, palladium or titanium.
  • the light emitted by the light source 110 can be blocked by the reflective film 126, and the reflective film 126 can also Most or almost all of the light (return light) incident from the outside of the detection device 1000 is reflected, and the received signal of the detection module 100 is relatively strong, which is beneficial to the accuracy of the detection data of the detection module 100.
  • the light path changing element 120 further includes an anti-reflection film 1254 (ie, an anti-reflection film) formed on the light-transmitting area 1251. ).
  • the anti-reflection film 1254 is disposed on the side of the light-transmitting area 1251 facing the light source 110 (as shown in FIG. 4), that is, on the first surface 1252; or, the anti-reflection film 1254 is disposed on a side of the light-transmitting area 1251 facing away from the light source 110. Side (as shown in Figure 5), that is, set on the second surface 1253.
  • the anti-reflective film 1254 can be located in the light-passing hole 1261; or, the anti-reflective film 1254 is simultaneously set in the light-transmitting area 1251 facing the light source 110.
  • the side and the light-transmitting area 1251 are on the side facing away from the light source 110 (as shown in FIG. 6), that is, they are arranged on the first surface 1252 and the second surface 1253 at the same time.
  • the anti-reflection film 1254 provided on the second surface 1253 can be Located in the light hole 1261.
  • the material of the anti-reflection film 1254 may be one or a combination of SiO2, SiN, ZnO, SiON, TiO2, Al2O3, MgF or ZnS.
  • the light pulse sequence emitted by the light source 110 will be reflected on the first surface 1252 and the second surface 1253 of the substrate 125, reducing the emitted light energy.
  • the anti-reflection coating 1254 is coated on the side of the light-transmitting area 1251 facing away from the light source 110, which can reduce the reflection from the substrate 125 to the air interface (specifically, the reflection from the second surface 1253 to the air interface), and improve the light path after passing through the light path changing element 120. Outgoing light energy.
  • the anti-reflection film 1254 is coated on the side of the light-transmitting area 1251 facing the light source 110, which can reduce the reflection from the air interface to the substrate 125 (specifically, the reflection from the air interface to the first surface 1252), and further improve the change of the light path.
  • the output light energy behind the element 120 can reduce the reflection from the air interface to the substrate 125 (specifically, the reflection from the air interface to the first surface 1252), and further improve the change of the light path.
  • a polarizing transmission film 127 is provided on the light transmitting area 1251.
  • the polarization transmission film 127 may be specifically arranged on the side of the light transmission area 1251 facing the light source 110 or the side of the light transmission area 1251 facing away from the light source 110 (as shown in FIG. 7, at this time, the polarization transmission film 127 may be located at the light transmission area).
  • the light source 110 is used to emit a light pulse sequence having a predetermined polarization direction
  • the polarization transmission film 127 is used to transmit the light pulse sequence having the predetermined polarization direction.
  • the material of the polarization transmission film 127 may be resin, glass, or the like. It can be understood that when the polarization transmission film 127 for transmitting the light pulse sequence in the predetermined polarization direction is plated on the light transmission area 1251, the polarization of the light pulse sequence reflected by the detection device 1000 after hitting the detected object The direction will change to a certain extent. When it hits the polarizing transparent film 127 again, the transmittance will decrease, and part of the energy will be reflected to the photodetector 140, thereby increasing the echo (return light) receiving ratio.
  • the anti-reflection film 1254 and the polarizing transmission film 127 can also be used together at the same time.
  • the anti-reflection film 1254 is disposed on the side of the light-transmitting area 1251 facing the light source 110, and the polarizing transmission film 127 is disposed on the side of the light-transmitting area 1251 facing away from the light source 110; or the polarizing transmission film 127 is disposed on the light-transmitting area 1251.
  • the anti-reflection film 1254 is disposed on the side of the light-transmitting area 1251 facing away from the light source 110.
  • the base material 125 of the light path changing element 120 does not have holes, but the reflective film 126 formed on the base material 125 has light through holes 1261, which is compared with the base material 125 with holes.
  • the intensity of the light pulse sequence reflected by the probe is many orders of magnitude lower, so the stray light caused by the internal structure of the detection module 100 will interfere with the echo measurement.
  • the thickness of the substrate 125 is at least on the order of millimeters. If a hole is opened on the substrate 125, the scattering cross-section (the cross section in the thickness direction of the substrate 125) is very large, and the light pulse sequence reflected by the probe will be at the opening. Very strong light scattering phenomenon, and the thickness of the reflective film 126 is on the order of micrometers or even thinner, and the scattering cross section (the cross section in the thickness direction of the reflective film 126) is much smaller than the way the substrate 125 has holes. The opening of the light through hole 1261 on the 126 can greatly reduce the light scattering phenomenon at the opening.
  • the collimating element 130a is located on the exit light path of the light source 110. Specifically, the collimating element 130a is disposed on the side of the light path changing element 120 facing away from the light source 110.
  • the collimating element 130a is used for collimating the light beam emitted by the light source 110, that is, collimating the light beam emitted by the light source 110 into parallel light.
  • the collimating element 130a is also used to converge the light reflected back by the probe to the optical path changing element 120.
  • the collimating element 130a may be a lens group, and further, may be a cemented lens group 130 (as shown in FIG. 2).
  • the collimating element 130a may not be a cemented lens group, that is, the collimating element 130a includes one or more lenses spaced apart from each other.
  • the embodiment of the present application is described by taking the collimating element 130a being the cemented lens group 130 as an example.
  • the diameter range of the cemented lens group 130 is greater than or equal to 45 mm, that is, the diameter of the cemented lens group 130 is any value of 45 mm or more.
  • the diameter of the cemented lens group 130 may be 45mm, 46mm, 48mm, 50mm, 52mm, 55mm, 58mm, 60mm, 70mm, 80mm, etc.
  • the caliber range of the cemented lens group 130 is greater than or equal to 45 mm, which can make the detection device 1000 receive stronger signals, facilitate processing and mass production, and is particularly suitable for some large-aperture lidar ranging systems.
  • the cemented lens group 130 includes at least a plurality of lenses 131 that are sequentially bonded together.
  • the cemented lens group 130 includes a plurality of lenses 131 that are sequentially bonded.
  • the cemented lens group 130 includes two lenses 131 that are sequentially bonded.
  • the cemented lens group 130 may also include three or more lenses 131 that are sequentially attached.
  • the plurality of lenses 131 that are sequentially attached are arranged coaxially, and there is no gap between the plurality of lenses 131. This makes the cemented lens group 130 more compact and small in size, which is beneficial to the miniaturization of the detection module 100.
  • the cemented lens group 130 includes a plurality of cemented lenses, and each cemented lens is composed of a plurality of lenses 131 bonded together.
  • the plurality of cemented lenses are arranged coaxially, and the plurality of cemented lenses are spaced apart from each other, for example, adjacent cemented lenses may be spaced apart by a predetermined distance.
  • the coaxial arrangement of multiple cemented lenses facilitates a more reasonable spatial arrangement of the detection module 100 and facilitates the miniaturization of the detection module 100.
  • the multiple cemented lenses are spaced apart so that when the light beam passes through the cemented lens group 130, the light is more uniform, avoiding mutual interference between the lights, which is beneficial to the accuracy of the detection data of the detection module 100.
  • the cemented lens group 130 includes a plurality of lenses 131 that are sequentially bonded, and one or more discrete lenses.
  • the cemented lens group 130 includes two lenses 131 that are sequentially bonded, and one Discrete lens.
  • the cemented lens group 130 may also include three or more lenses 131 that are sequentially attached, and two or more discrete lenses.
  • a plurality of lenses 131 and one or more discrete lenses are arranged coaxially.
  • the coaxial arrangement of the multiple lenses 131 and one or more discrete lenses that are sequentially attached is beneficial to the more reasonable spatial arrangement of the detection module 100 and is beneficial to the miniaturization design of the detection module 100.
  • the provision of three or more lenses 131 that are sequentially attached and two or more discrete lenses can effectively avoid the phenomenon of mutual interference between light rays, and improve the accuracy of the detection data of the detection module 100.
  • the cemented lens group 130 includes a plurality of lenses 131 that are sequentially bonded.
  • the plurality of lenses 131 of the cemented lens group 130 are cemented by a cementing material.
  • the glue material may be a high refractive index photosensitive glue, for example a photosensitive glue with a refractive index greater than 1.6, that is to say, the refractive index of the glue material is any value of 1.6 and above.
  • the refractive index may be 1.62, 1.65, 1.70, 1.75, 1.80, 1.85, 1.90, 1.95, 2.00, 2.05, etc.
  • the refractive index of the photosensitive glue greater than 1.6 can effectively reduce the reflectivity of the light beam at the bonding interface between the lenses 131. It is understandable that the multiple lenses 131 of the cemented lens group 130 all have a high refractive index.
  • the glue material adopts high refractive index photosensitive glue, which reduces the reflection of light beams at the glue interface.
  • the cemented lens group 130 has the advantages of large tolerance, compact size, and controllable cost, and the materials constituting the cemented lens group 130 are easily available, the processing scheme is mature, and it is convenient for mass production. It is especially suitable for some large-aperture lidar ranging systems .
  • the plurality of lenses 131 in the cemented lens group 130 includes a positive lens 134 and a negative lens 135.
  • the refractive index of the positive lens 134 is smaller than the refractive index of the negative lens 135, so that the light rays at the edges of the positive lens 134 and the negative lens 135 are better corrected, and the spherical aberration generated during imaging is smaller, which is beneficial to improve the imaging quality.
  • the refractive index of the positive lens 134 may be 1.80 to 1.87, that is, the refractive index of the positive lens 134 is any value in the range of 1.80 to 1.87.
  • the refractive index of the positive lens 134 may be 1.80, 1.81, 1.82, 1.83, 1.84, 1.85, 1.855, 1.86, 1.865, 1.87, and so on.
  • the refractive index of the negative lens 135 may be 1.98 to 2.30, that is, the refractive index of the negative lens 135 is any value in the range of 198 to 2.30.
  • the refractive index of the negative lens 135 may be 1.98, 1.99, 2.00, 2.01, 2.02, 2.03, 2.04, 2.05, 2.10, 2.20, etc. The higher the refractive index of the positive lens 134 and the negative lens 135 as a whole, the better.
  • the convex lens in the positive lens 134 is convex.
  • the large degree of output and the large concave degree of the concave lens surface of the negative lens 135 cause the thickness and volume of the cemented lens group 130 to increase, which increases the volume of the detection module 100 and increases the manufacturing cost.
  • the overall refractive index of the positive lens 134 and the negative lens 135 is relatively high, which can effectively reduce the spherical aberration and improve the detection module 100 optical performance.
  • the center thickness of the positive lens 134 is 10 ⁇ 0.03 mm to 15 ⁇ 0.03 mm, that is, the center thickness of the positive lens 134 is any value in the range of 9.97 mm to 15.03 mm.
  • the center thickness of the positive lens 134 may be 9.97mm, 10mm, 10.03mm, 11.03mm, 12.03mm, 13.03mm, 14.03mm, 14.97mm, 15mm, 15.03mm, etc.
  • the center thickness of the negative lens 135 is 1.5 ⁇ 0.03 mm to 5 ⁇ 0.03 mm, that is, the center thickness of the negative lens 135 is any value in the range of 1.47 mm to 5.03 mm.
  • the central thickness of the negative lens 135 may be 1.47mm, 1.5mm, 2mm, 2.5mm, 3mm, 3.5mm, 4mm, 4.5mm, 5mm, 5.03mm, etc.
  • the central thickness of the positive lens 134 and the negative lens 135 meeting the above values can reduce the cost and the volume of the cemented lens group 130 on the premise of meeting the optical requirements, thereby reducing the manufacturing cost of the detection module 100 and the detection module The volume of 100.
  • the positive lens 134 includes a first surface 1341 and a second surface 1342 opposite to each other, and the negative lens 135 includes a third surface 1351 and a fourth surface 1352 opposite to each other.
  • the light beam emitted by the light source 110 sequentially passes through the first surface 1341, the second surface 1342, the third surface 1351, and the fourth surface 1352.
  • the second surface 1342 and the third surface 1351 may be glued by a glue material.
  • the curvature of the first surface 1341 is 58 mm to 62 mm, that is, the curvature of the first surface 1341 is any value in the range of 58 mm to 62 mm.
  • the curvature of the first surface 1341 may be 58mm, 58.50mm, 59mm, 59.50mm, 60mm, 60.50mm, 61mm, 61.50mm, 61.90mm, 62mm, etc.
  • the curvature of the second surface 1342 is 60 mm to 64 mm, that is, the curvature of the second surface 1342 is any value in the range of 60 mm to 64 mm.
  • the curvature of the second surface 1342 may be 60mm, 60.25mm, 60.50mm, 61mm, 61.50mm, 62mm, 62.50mm, 63mm, 63.50mm, 64mm, etc.
  • the curvature of the fourth surface 1352 is 950 mm to 1150 mm, that is, the curvature of the fourth surface 1352 is any value in the range of 950 mm to 1150 mm.
  • the curvature of the fourth surface 1352 may be 950mm, 960mm, 970mm, 980mm, 990mm, 1000mm, 1010mm, 1020mm, 1030mm, 1040mm, 1050mm, etc.
  • the curvature of the third surface 1351 can be the same as the curvature of the second surface 1342, that is, the curvature of the third surface 1351 is also in the range of 60mm to 64mm, so as to effectively ensure that there is no air gap when the second surface 1342 and the third surface 1351 are glued. , So that the positive lens 134 and the negative lens 135 are tightly cemented together, so that the cemented lens group 130 has a more compact structure and a smaller volume.
  • the positive lens 134 may be a biconvex lens
  • the negative lens 135 may be a meniscus lens, that is, the first surface 1341 and the second surface 1342 of the positive lens 134 are both convex surfaces, and the third surface 1351 of the negative lens 135 is Concave surface, the fourth surface 1352 is convex surface.
  • the positive lens 134 has a positive refractive power
  • the negative lens 135 has a negative refractive power, which is beneficial to reduce the spherical aberration of the diffuse spot produced by the positive lens 134 and the negative lens 135 due to the condensing light.
  • the light beam passes through the positive lens 134 and the negative lens at this time.
  • the condensing point of the lens 135 is the smallest. It is understandable that the light beams emitted by the light source 110 have different light-gathering capabilities on the spherical surface of the positive lens 134 and the spherical surface of the negative lens 135. The light beam cannot be collected as a single point on the imaging surface, but forms a center with the optical axis as the center. This kind of aberration is called spherical aberration.
  • the positive lens 134 in the cemented lens group 130 in the embodiment of the present application is a biconvex lens, and the negative lens 135 is a meniscus lens, that is, the positive lens 134 has positive refractive power, and the negative lens 135 has negative refractive power to reduce spherical aberration, so that the cemented lens group 130 The emitted beam has the smallest spherical aberration on the target detection object.
  • the positive lens 134 may also be a convex-concave lens
  • the negative lens 135 is a double-concave lens, that is, the first surface 1341 of the positive lens 134 is convex, the second surface 1342 is concave, and the third surface 1351 of the negative lens 135 is The fourth surface 1352 is all concave.
  • the positive lens 134 still has a positive refractive power
  • the negative lens 135 still has a negative refractive power, which can reduce spherical aberration, so that both the transmitted signal and the received signal of the detection device 1000 are more accurate, and the reliability of the detection data of the detection device 1000 is increased.
  • the permissible wavelength range of the antireflection dielectric film 160 is 880 nm ⁇ 950 nm, that is, the permissible wavelength range of the antireflection dielectric film 160 is any value in the range of 880 mm to 950 mm.
  • the permissible wavelength of the antireflection dielectric film 160 may be 880 nm, 890 nm, 900 nm, 910 nm, 920 nm, 930 nm, 935 nm, 940 nm, 945 nm, 950 nm, etc.
  • At least one of the first surface 1341, the second surface 1342, the third surface 1351, and the fourth surface 1352 is provided with an antireflection dielectric film 160, including: one surface is provided with an antireflection dielectric film 160, or two surfaces are provided There is an anti-reflection medium film 160, or three sides are provided with an anti-reflection medium film 160, or all four sides are provided with an anti-reflection medium film 160.
  • the first surface 1341 is provided with an antireflection dielectric film 160, or the first surface 1341 and the second surface 1342 are both provided with an antireflection dielectric film 160, or the first surface 1341, the second surface 1342 and the third surface 1351 are both provided There is an antireflection dielectric film 160, or the first surface 1341, the second surface 1342, the third surface 1351, and the fourth surface 1352 are provided with an antireflection dielectric film 160, etc., which are not listed here.
  • the more anti-reflection dielectric films 160 are provided on the surfaces of the positive lens 134 and the negative lens 135, the light beam emitted by the light source 110 and the return light reflected by the detector will be on the positive lens 134 and the negative lens 135.
  • the wavelength of the light beam emitted by the light source 110 is 905 nm
  • the wavelength range allowed by the antireflection dielectric film 160 is 880 nm to 950 nm, which can ensure that the light beam emitted by the light source 110 almost completely passes through the positive lens 134 and the negative lens 135, so that The transmission of light beams outside the wavelength range of 880 nm to 950 nm cannot be transmitted, which is beneficial for the detection device 1000 to transmit and receive signals stronger, and further improves the detection accuracy of the detection device 1000.
  • the cemented lens group 130 has an optical axis 136.
  • the cemented lens group 130 includes a central area close to the optical axis 136 and an edge area 1361 far from the optical axis 136.
  • the edge area 1361 is provided with ink, or an edge area 1361 can also be provided with special optical inks with low reflectivity and high absorptivity when the wavelength is in the range of 880nm to 950nm. Placing ink or special optical ink on the edge area 1361 of the cemented lens group 130 can make the light beam emitted by the light source 110 have a low reflectivity in the edge area 1361, and the light beam will not diverge in the edge area 1361, thereby ensuring that the light beam passes through the cemented lens group 130.
  • the transmittance of the light beam (including the light beam incident on the cemented lens group 130 and the return light received by the cemented lens group 130) is close to 100%, so that the transmitted signal and the received signal of the detection device 1000 are relatively strong, which increases the detection data of the detection device 1000 accuracy.
  • the provision of ink or special optical ink in the edge area 1361 can make the light beam emitted to the cemented lens group 130 not be interfered by external light, which is beneficial to improve the accuracy of the signal transmitted and received by the detection module 100.
  • providing ink or special optical ink on the edge area 1361 of the cemented lens group 130 can also make the appearance of the cemented lens group 130 more beautiful, and the ink or special optical ink also has a protective effect on the cemented lens group 130.
  • the light detector 140 is located on the side of the light path changing element 120 facing away from the light source 110 and on the same side as the cemented lens group 130, and is located between the light path changing element 120 and the cemented lens group 130.
  • the light beam reflected by the detection object is reflected by the reflective film 124 and then received by the light detector 140.
  • the light detector 140 is used to determine the distance and/or direction of the detection object relative to the detection module 100 according to the received light beam, that is, the light detector 140
  • the distance of the probe relative to the detection module 100 can be determined, or the direction of the probe relative to the detection module 100 can be determined, or the distance and direction of the probe relative to the detection module 100 can be determined.
  • the light source 110 emits a light beam, which passes through the light-transmitting portion 121 (as shown in FIG. 2) or the light-transmitting area 1251 (as shown in FIG. 3 to FIG. 7) of the light path changing element 120 and is then passed through the cemented lens group 130 Collimation, the collimated beam is projected onto the probe, the beam reflected by the probe passes through the cemented lens group 130 and then is condensed by the cemented lens group 130 to the reflective part 122 of the optical path changing element 120, and is reflected by the reflective part 122
  • the film 124 (as shown in FIG. 2) or the reflective film 126 (as shown in FIG. 3 to FIG.
  • the detection module 100 determines the beam pulse receiving time based on the rising edge time and/or falling edge time of the electrical signal pulse. In this way, the detection module 100 can use the pulse receiving time information and the pulse sending time information to calculate the flight time to determine the distance between the detected object and the detection device 1000. In addition, according to the light pulse sequence in different directions, it can also determine that the detection object is relative to the detection device. The direction of 1000.
  • the light detector 140 includes a light receiver 141.
  • the light receiver 141 includes a photosensitive area 1411 and a non-photosensitive area 1412.
  • the photosensitive area 1411 is used to receive the light reflected by the target object to calculate the aforementioned flight time, and the light detector 140 reduces the reflectivity of the light through the non-photosensitive area 1412.
  • the "light” in reducing the reflectivity of light in the embodiment of the present application may refer to the laser emitted by one detection device 1000 (hereinafter referred to as detection device A) entering another detection device 1000 (hereinafter referred to as In order to detect the device B), the inside of the device is reflected to the non-photosensitive area 1412 of the light receiver 141 after passing through the working surface of the optical device (such as the optical element 310 below), forming stray light, and after one or more reflections, it is reflected by the light receiver 141 receives and generates falsely triggered crosstalk signals, which affect the accuracy of the detection data of the detection device B.
  • the “light” in reducing the reflectivity of light in the embodiments of the present application may also mean that part of the light inside the detection device 1000 is reflected to the non-photosensitive area 1412 of the light receiver 141 after passing through the working surface of the optical device, forming stray light, and then passing through After one or more reflections, it is received by the optical receiver 141 to form an echo inside the detection device 1000.
  • the "light” in reducing the reflectance of light in the embodiments of the present application may also include the "light” in the above two situations. Understandably, the echo will cause interference when the detection device 1000 detects an object, thereby affecting the overall performance of the detection device 1000 and the accuracy of the detection data of the detection device 1000.
  • the photodetector 140 of the present application reduces the reflectivity of the non-photosensitive area 1412 of the photoreceiver 141 to stray light.
  • the stray light is not easily received by the photodetector 140 and generates crosstalk signals, which improves the accuracy of the detection data of the detection device 1000. .
  • the photodetector 140 when the photodetector 140 is used in conjunction with the collimating element 130a, at least part of the photosensitive area 1411 is located on the focal plane of the collimating element 130a, and the area outside the photosensitive area 1411 is located away from the focal plane. Specifically, the photodetector 140 is used in conjunction with the collimating element 130a.
  • the light beam emitted by the light source 110 passes through the light path changing element 120 to reach the collimating element 130a, and is collimated by the collimating element 130a and then emitted to the target object.
  • the light beam reflected by the target object is condensed by the collimating element 130 a to the light path changing element 120, and then reflected by the light path changing element 120 to the light detector 140.
  • at least part of the photosensitive area 1411 is located on the focal plane of the collimating element 130a, for example, 1/2 of the photosensitive area 1411 is located on the focal plane of the collimating element 130a, or 2/3 of the photosensitive area 1411 is located on the collimating element 130a.
  • the focal plane of, or the photosensitive area 1411 is located on the focal plane of the collimating element 130a.
  • the focal plane referred to here can be either a focal plane or a focal surface, which is not limited here.
  • the photodetector 140 can receive the light reflected from the outside, thereby making the detection data of the detection device 1000 more accurate.
  • the area outside the photosensitive area 1411 is set far away from the focal plane, that is, the area outside the photosensitive area 1411 and the focal plane are not on the same plane. It can be a certain height difference or a certain distance between the area outside the photosensitive area 1411 and the photosensitive area 1411 to ensure the incident The light that reaches the area other than the photosensitive area 1411 will not be reflected to the focal plane again after being reflected, so that the light receiver 141 cannot easily receive the stray light generated in the area other than the photosensitive area 1411.
  • the area other than the photosensitive area 1411 referred to here may be one or more of the non-photosensitive area 1412, the second area 1424, the fourth area 1434, and the upper portion 1471 of the sleeve 147 referred to below. .
  • the light reflection plane of the non-photosensitive area 1412 and the light reflection plane of the photosensitive area 1411 are not on the same plane (in this embodiment, the area other than the photosensitive area 1411 is the non-photosensitive area 1412.
  • the photosensitive area 1412 is located away from the focal plane).
  • the light reflection plane of the non-photosensitive area 1412 may refer to the surface of the non-photosensitive area 1412 facing the light path changing element 120 or the surface of the photodetector 140 that receives the light (the other light reflection planes below and so on).
  • the top surface of the light receiver 141 can be taken as an example as a reference plane, and the light reflection plane of the non-photosensitive area 1412 may be higher or lower than the light reflection plane of the photosensitive area 1411 that is not on the same plane. More specifically, when the surface where the photosensitive area 1411 is located is higher than the surface where the non-photosensitive area 1412 is located, the distance between the surface where the photosensitive area 1411 is located and the top surface of the light receiver 141 is greater than that from the non-photosensitive area 1412 to the light receiver The distance between the top surfaces of 141.
  • the distance between the surface where the photosensitive area 1411 is located and the top surface of the light receiver 141 is smaller than the surface where the non-photosensitive area 1412 is located to the light receiver 141 The distance between the top surfaces.
  • the plane reflected by the light in the non-photosensitive area 1412 (that is, stray light) is not on the same plane as the plane reflected by the light in the photosensitive area 1411, so that even if the stray light is repeatedly reflected by the light reflection plane of the non-photosensitive area 1412, it is not easy to be exposed to light.
  • the area 1411 receives and generates a crosstalk signal, which is beneficial to the accuracy of the detection data of the detection device 1000.
  • the photodetector 140 further includes a light-absorbing material 1413 disposed in the non-photosensitive area 1412, and the photodetector 140 reduces the reflectance of light through the light-absorbing material 1413.
  • the light-absorbing material 1413 may be a polymer organic material or black silicone rubber made of resin.
  • the light-absorbing material 1413 has a relatively high absorption rate of visible light and infrared, so the non-photosensitive area 1412 has a low reflectivity to light.
  • the non-photosensitive area 1412 of the photodetector 140 is made of a light-absorbing material 1413, and the photodetector 140 uses the light-absorbing material 1413 to reduce the reflectivity of light. Since the non-photosensitive area 1412 is directly made of light-absorbing material 1413, there is no need to provide additional light-absorbing material in the non-photosensitive area 1412, so the height of the photodetector 140 is small, which is beneficial to the miniaturization of the photodetector 140. At the same time, the photodetector The 140 manufacturing process is relatively simple. Similarly, the light-absorbing material 1413 can be a polymer organic material or black silicone rubber made of resin, etc. The light-absorbing material 1413 has a relatively high absorption rate of visible light and infrared light, so the non-photosensitive area 1412 has a low reflectivity to light. .
  • the surface of the non-photosensitive area 1412 is rough, and the photodetector 140 can increase the roughness of the non-photosensitive area 1412 to reduce the light reflected to the photosensitive area 1411, thereby reducing the reflection of light. rate.
  • the surface of the non-photosensitive area 1412 may be frosted, that is, by increasing the friction coefficient of the surface of the non-photosensitive area 1412, the roughness of the non-photosensitive area 1412 can be increased. It is understandable that increasing the roughness of the non-photosensitive area 1412 can reduce the specular reflection of the light from the non-photosensitive area 1412, thereby reducing the light reflected to the photosensitive area 1411 and reducing the reflectivity of the light.
  • the photodetector 140 of the present application can coat the non-photosensitive area 1412 of the light receiver 141 with a light-absorbing material 1413 by setting the light reflecting plane of the non-photosensitive area 1412 and the light reflecting plane of the photosensitive area 1411 on different planes.
  • the non-photosensitive area 1412 is made of light-absorbing material 1413 or the surface of the non-photosensitive area 1412 is rough to reduce the reflectivity of stray light, so that the stray light is not easily received by the photodetector 140 to generate crosstalk signals, which improves the detection of the detection device 1000 The accuracy of the data.
  • the photodetector 140 may further include an insulating substrate 142, and the insulating substrate 142 can reduce interference of other signals to the optical receiver 141.
  • the insulating substrate 142 includes a top surface 1421 and a bottom surface 1422 opposite to each other.
  • the top surface 1421 includes a first area 1423 and a second area 1424 connected to the first area 1423.
  • the light receiver 141 is disposed in the first area 1423, and the light detector 140 reduces the reflectance of light through the non-photosensitive area 1412 and the second area 1424.
  • the insulating substrate 142 may be a ceramic substrate, which has the advantages of strong mechanical stress, stable shape, high strength, high thermal conductivity, high insulation, strong bonding force, corrosion resistance, and small expansion coefficient.
  • the photodetector 140 is arranged on a ceramic substrate with good thermal conductivity, which is conducive to the heat dissipation of the photodetector 140 and increases the service life of the photodetector 140.
  • the expansion coefficient of the ceramic substrate is small, and its length, area, or volume vary with temperature. The change amount of the rise is small, which avoids huge deformation due to overheating and improves the stability of the system.
  • the light reflection plane of the non-photosensitive area 1412 and the second area 1424 and the light reflection plane of the photosensitive area 1411 are not on the same plane (in this embodiment, the area other than the photosensitive area 1411 is non-photosensitive area 1411).
  • the photosensitive area 1412 and the second area 1424, and the non-photosensitive area 1412 and the second area 1424 are located away from the focal plane).
  • the bottom surface 1422 of the insulating substrate 142 can be taken as an example as a reference plane, and the surface where the photosensitive area 1411 is not on the same plane is higher or lower than the surface where the non-photosensitive area 1412 and the second area 1424 are located.
  • the distance between the surface where the photosensitive area 1411 is located and the bottom surface 1422 is greater than the distance between the non-photosensitive area 1412 and the bottom surface 1422.
  • the distance between the surface and the bottom surface 1422 where the photosensitive area 1411 is located is greater than the distance between the surface and the bottom surface 1422 where the second region 1424 is located.
  • the distance between the surface where the photosensitive area 1411 is located and the bottom surface 1422 is smaller than the distance between the surface where the non-photosensitive area 1412 is located and the bottom surface 1422 At the same time, the distance between the surface where the photosensitive area 1411 is located and the bottom surface 1422 is smaller than the distance between the surface where the second region 1424 is located and the bottom surface 1422.
  • the plane reflected by the light (ie, stray light) of the non-photosensitive area 1412 and the second area 1424 and the plane reflected by the light of the photosensitive area 1411 are not on the same plane, so that the stray light is not easily received by the photosensitive area 1411 of the photodetector 140.
  • the crosstalk signal is beneficial to the accuracy of the detection data of the detection device 1000.
  • the photodetector 140 further includes a light-absorbing material 1413 arranged in the non-photosensitive area 1412 and the second area 1424.
  • the photodetector 140 reduces the reflectance of light through the light-absorbing material 1413.
  • the light-absorbing material 1413 can be a polymer organic material or black silicone rubber made of resin.
  • the light-absorbing material 1413 has a relatively high absorption rate for visible light and infrared, so that the non-photosensitive area 1412 and the second area 1424 are resistant to light. The reflectivity is low.
  • the non-photosensitive area 1412 and the second area 1424 are made of a light-absorbing material 1413, and the photodetector 140 uses the light-absorbing material 1413 to reduce the reflectivity of light. Since the non-photosensitive area 1412 and the second area 1424 are directly made of the light-absorbing material 1413, there is no need to provide additional light-absorbing material in the non-photosensitive area 1412 and the second area 1424, so the height of the photodetector 140 is small, which is beneficial to realize the photodetector. The miniaturization of the 140, and at the same time, the manufacturing process of the photodetector 140 is relatively simple.
  • the light-absorbing material 1413 may be a polymer organic material or black silicone rubber made of resin, etc. The light-absorbing material 1413 has a relatively high absorption rate for visible light and infrared rays.
  • the surface of the non-photosensitive area 1412 and the second area 1424 is rough to reduce the light reflected to the photosensitive area 1411.
  • the surface of the non-photosensitive area 1412 and the second area 1424 can be frosted.
  • the processing is to increase the roughness of the non-photosensitive area 1412 and the second area 1424 by increasing the friction coefficient of the surface of the non-photosensitive area 1412 and the second area 1424. Understandably, increasing the roughness of the non-photosensitive area 1412 and the second area 1424 can reduce the specular reflection of the light in the non-photosensitive area and the second area 1424, reduce the light reflected to the photosensitive area 1411, thereby reducing the reflection of the light. rate.
  • the photodetector 140 of the present application can set the light reflection plane of the non-photosensitive area 1412 and the photosensitive area 1411 on different planes, and the light reflection plane of the second area 1424 and the light reflection plane of the photosensitive area 1411 may be set on different planes.
  • the non-photosensitive area 1412 and the second area 1424 of the light receiver 141 are coated with a light-absorbing material 1413, or the non-photosensitive area 1412 and the second area 1424 are made of a light-absorbing material 1413, or the non-photosensitive area 1412 and the second
  • the surface of the region 1424 is rough to reduce the reflectivity of the stray light, so that the stray light is not easily received by the photodetector 140 to generate crosstalk signals, which improves the accuracy of the detection data of the detection device 1000.
  • the photodetector 140 further includes a base 143.
  • the base 143 includes an upper surface 1431 and a lower surface 1432 opposite to each other.
  • the upper surface 1431 includes a third area 1432 and a fourth area 1434 connected to the third area 1432.
  • the insulating substrate 142 is provided in the third region 1432. The photodetector 140 reduces the reflectance of light through the non-photosensitive area 1412, the second area 1424, and the fourth area 1434.
  • the light reflection plane of the non-photosensitive area 1412, the second area 1424, and the fourth area 1434 and the light reflection plane of the photosensitive area 1411 are not on the same plane (in this embodiment, the photosensitive area 1411
  • the other areas are the non-photosensitive area 1412, the second area 1424, and the fourth area 1434.
  • the non-photosensitive area 1412, the second area 1424, and the fourth area 1434 are located away from the focal plane).
  • the lower surface 1432 of the base 143 can be taken as an example, and the surface where the photosensitive area 1411 is not on the same plane is higher or higher than the surface where the non-photosensitive area 1412, the second area 1424, and the fourth area 1434 are located. Lower.
  • the distance between the surface where the photosensitive area 1411 is located and the lower surface 1432 is greater than that of the non-photosensitive area 1411. The distance between the area 1412 and the lower surface 1432. At the same time, the distance between the surface where the photosensitive area 1411 is located and the lower surface 1432 is greater than the distance between the surface where the second area 1424 is located and the lower surface 1432, and the photosensitive area 1411 is located The distance between the surface of the fourth area 1434 and the lower surface 1432 is greater than the distance between the surface where the fourth region 1434 is located and the lower surface 1432.
  • the distance between the surface where the photosensitive area 1411 is located and the lower surface 1432 is smaller than the surface where the non-photosensitive area 1412 is located.
  • the distance between the surface where the photosensitive area 1411 is located and the lower surface 1432 is smaller than the distance between the surface where the second area 1424 is located and the lower surface 1432, and the surface where the photosensitive area 1411 is located.
  • the distance to the lower surface 1432 is smaller than the distance between the surface where the fourth area 1434 is located and the lower surface 1432.
  • the plane reflected by the light (stray light) in the non-photosensitive area 1412, the second area 1424, and the fourth area 1434 and the plane reflected by the light in the photosensitive area 1411 are not on the same plane, so that the stray light is not easily exposed to the photodetector 140.
  • the area 1411 receives and generates a crosstalk signal, which is beneficial to the accuracy of the detection data of the detection device 1000.
  • the photodetector 140 further includes a light-absorbing material 1413 disposed in the non-photosensitive area 1412, the second area 1424, and the fourth area 1434.
  • the photodetector 140 reduces the reflectance of light through the light-absorbing material 1413.
  • the light-absorbing material 1413 can be a polymer organic material or black silicone rubber made of resin.
  • the light-absorbing material 1413 has a relatively high absorption rate of visible light and infrared, so that the non-photosensitive area 1412, the second area 1424 and the first The four regions 1434 have low reflectivity to light.
  • the non-photosensitive area 1412, the second area 1424, and the fourth area 1434 in the photodetector 140 are made of a light-absorbing material 1413.
  • the photodetector 140 reduces the reflectance of light through the light-absorbing material 1413. Since the non-photosensitive area 1412, the second area 1424, and the fourth area 1434 are directly made of light-absorbing material 1413, there is no need to provide additional light-absorbing material in the non-photosensitive area 1412, the second area 1424, and the fourth area 1434, so the photodetector 140 The small height is beneficial to the miniaturization of the photodetector 140, and at the same time, the manufacturing process of the photodetector 140 is relatively simple.
  • the light-absorbing material 1413 can be a polymer organic material or black silicone rubber made of resin.
  • the light-absorbing material 1413 has a relatively high absorption rate of visible light and infrared, so that the non-photosensitive area 1412, the second area 1424 and the first The four regions 1434 have low reflectivity to light.
  • the surface of the non-photosensitive area 1412, the second area 1424, and the fourth area 1434 is rough to reduce the light reflected to the photosensitive area 1411, thereby reducing the reflectivity of the light.
  • the surface of the non-photosensitive area 1412, the second area 1424, and the fourth area 1434 can be frosted, that is, by increasing the friction coefficient of the non-photosensitive area 1412, the second area 1424, and the fourth area 1434 to improve the non-photosensitive area 1412, the second area 1424, and the fourth area 1434.
  • the roughness of the photosensitive area 1412, the second area 1424, and the fourth area 1434 is rough to reduce the light reflected to the photosensitive area 1411, thereby reducing the reflectivity of the light.
  • non-photosensitive area 1412, the second area 1424, and the fourth area 1434 in the embodiment of the present application are not limited to a flat surface, and may be a curved surface with a curvature, a curved surface, or other forms, and the application is not limited herein.
  • the photodetector 140 of the present application can set the light reflection planes of the non-photosensitive area 1412 and the photosensitive area 1411 on different planes, and set the light reflection planes of the second area 1424 and the photosensitive area 1411 on different planes and
  • the light reflection plane of the fourth area 1434 and the light reflection plane of the photosensitive area 1411 are set on different planes, or the non-photosensitive area 1412, the second area 1424 and the fourth area 1434 of the light receiver 141 are coated with a light-absorbing material 1413, or
  • the non-photosensitive area 1412, the second area 1424, and the fourth area 1434 are made of light-absorbing material 1413, or the surface of the non-photosensitive area 1412, the second area 1424 and the fourth area 1434 is rough, which reduces the reflectivity of stray light, thereby causing The astigmatism is not easily received by the photodetector 140 to generate crosstalk signals, which improves the accuracy of the detection data of the detection device 1000.
  • the photodetector 140 may further include a spacer 144 and a light-transmitting top cover 145.
  • the spacer 144 includes a top portion 1441 and a bottom portion 1442 opposite to each other.
  • the bottom portion 1441 is disposed on the base 143 and the top portion 1441 is combined with the top cover 145 to form a receiving cavity 146 for receiving the light receiver 141.
  • the spacer 144 may be a tube shell or other column type element, and the spacer 144 and the base 143 may be connected by glue or by a hinged element.
  • the spacer 144 and the top cover 145 can be fixedly combined with glue, or the top cover 145 can be engaged with the side wall of the spacer 144.
  • the top cover 145 is made of glass material, so that light can pass through the top cover 145 and be received by the light receiver 141.
  • the photodetector 140 may further include a sleeve 147, and the sleeve 147 includes an upper portion 1471 and a lower portion 1472 opposite to each other.
  • the lower part 1472 is arranged on the base 143 and the upper part 1471 is arranged on the top 1441.
  • the photodetector 140 reduces the reflectance of light through the non-photosensitive area 1412, the second area 1424, the fourth area 1434, and the upper portion 1471.
  • the sleeve 147 is made of plastic material, and the weight of the plastic is relatively light, so that the weight of the light detector 140 after the sleeve 147 is sleeved is almost the same as the weight of the light detector 140 before the sleeve 147 is sleeved, that is, the weight of the sleeve 147 is almost the same.
  • the sleeve 147 does not increase the overall weight of the photodetector 140.
  • the plastic material is easy to obtain, and the manufacturing process of the sleeve 147 is simpler.
  • the sleeve 147 can be made of dark plastic material, such as black plastic material, blue plastic material or other dark plastic material.
  • the dark plastic material has good light absorption and can more effectively reduce the light being absorbed by the sleeve 147.
  • the reflectivity of the upper part 1471 reflected by the stray light is not easy to be received by the photodetector 140 to generate crosstalk signals, which improves the accuracy of the detection data of the detection device 1000.
  • the sleeve 147 can make the height of the plane of the light incident on the upper part 1471 (that is, the light that generates stray light) different from the height of the plane of the light received by the light receiver 141, so that the stray light is not It is easy to be received by the light detector 140 to generate a crosstalk signal, which improves the accuracy of the detection data of the detection device 1000.
  • the upper part 1471 includes a side wall 1473 and an extension part 1474 extending inward from the side wall 1473, the side wall 1473 is attached to the spacer 144, and the extension part 1474 is disposed on the top part 1441 and at least partially covers the top cover 145 .
  • the extension 1474 at least partially covers the top cover 145, so that the photosensitive area 1411 of the corresponding light receiver 141 under the top cover 145 can receive the light reflected from the outside of the detection device 1000 through the light-transmitting area of the top cover 145, and the sleeve 147
  • the non-photosensitive area 1412, the second area 1424, and the fourth area 1434 of the corresponding light receiver 141 under the top cover 145 can be shielded, and the probability of stray light being received by the light receiver 141 can be effectively reduced.
  • the sleeve 147 is sleeved on the photodetector 140 to achieve a certain waterproof and dustproof effect, so that the photodetector 140 is not easily damaged, and the service life of the photodetector 140 is increased.
  • the lower part 1472 is provided with a notch 1475.
  • the notch 1475 is engaged with the edge of the base 143.
  • the lower part 1472 is provided with a notch 1475, and the notch 1475 fits exactly with the edge of the base 143, so that the sleeve 147 can be better locked on the base 143, the sleeve 147 is not easy to fall off, and the structure is relatively stable.
  • the lower part 1472 can also be glued and arranged on the base 143. Specifically, the lower part 1472 is fixedly arranged on the edge of the base 143 by glue. Since the lower part 1472 is glued to the base 143 by glue, the sleeve 147 covers the photodetector 140, so that the sleeve 147 effectively protects the stray light from being received by the light receiver 141 while playing a good waterproof and dustproof role.
  • the photodetector 140 further includes a light-absorbing material 1413 disposed in the non-photosensitive area 1412, the second area 1424, the fourth area 1434, and the upper portion 1471.
  • the photodetector 140 passes through the light-absorbing material 1413. Reduce the reflectivity of light.
  • the light-absorbing material 1413 can be a polymer organic material or black silicone rubber made of resin.
  • the light-absorbing material 1413 has a relatively high absorption rate of visible light and infrared, so that the non-photosensitive area 1412, the second area 1424, and the second area 1424 have relatively high absorption rates.
  • the four areas 1434 and the upper part 1471 have low reflectivity to light.
  • the non-photosensitive area 1412, the second area 1424, the fourth area 1434, and the upper part 1471 of the photodetector 140 are made of light-absorbing material 1413, and the light-absorbing material 1413 is used for the photodetector 140 to reduce the reflectivity of light. . Since the non-photosensitive area 1412, the second area 1424, the fourth area 1434 and the upper part 1471 are directly made of the light-absorbing material 1413, there is no need to provide additional light-absorbing material in the non-photosensitive area 1412, the second area 1424, the fourth area 1434 and the upper part 1471, Therefore, the height of the photodetector 140 is small, which facilitates the miniaturization of the photodetector 140.
  • the manufacturing process of the photodetector 140 is relatively simple.
  • the light-absorbing material 1413 may be a polymer organic material or black silicone rubber made of resin.
  • the light-absorbing material 1413 has a relatively high absorption rate of visible light and infrared light, so that the non-photosensitive area 1412, the second area 1424, the fourth area 1434, and the upper portion 1471 have low reflectance of light.
  • the photodetector 140 improves the surface roughness of the non-photosensitive area 1412, the second area 1424, the fourth area 1434, and the upper portion 1471 to reduce the light reflected to the photosensitive area 1411, thereby reducing the light exposure. ⁇ Reflectivity.
  • the surface of the non-photosensitive area 1412, the second area 1424, the fourth area 1434, and the upper part 1471 can be frosted, that is, by improving the non-photosensitive area 1412, the second area 1424, the fourth area 1434, and the upper 1471 surface.
  • the coefficient of friction is increased to increase the roughness of the non-photosensitive area 1412, the second area 1424, the fourth area 1434, and the upper portion 1471.
  • the surface roughness of the non-photosensitive area 1412, the second area 1424, the fourth area 1434, and the upper portion 1471 can reduce the specular reflection of light in the non-photosensitive area 1412, reduce the light reflected to the photosensitive area 1411, and reduce the impact on the surface.
  • the reflectivity of light can reduce the specular reflection of light in the non-photosensitive area 1412, reduce the light reflected to the photosensitive area 1411, and reduce the impact on the surface.
  • the photodetector 140 of the present application can coat the non-photosensitive area 1412, the second area 1424, the fourth area 1434, and the upper portion 1471 of the light receiver 141 with a light-absorbing material 1413, or the non-photosensitive area 1412, the second area 1424, the fourth area 1434 and the upper part 1471 are made of light-absorbing material 1413, and the surface of the non-photosensitive area 1412, the second area 1424, the fourth area 1434 and the upper part 1471 is rough, reducing the reflectivity of stray light, so that stray light is not It is easy to be received by the optical receiver 141 to generate a crosstalk signal, which improves the accuracy of the detection data of the detection device 1000.
  • non-photosensitive area 1412, second area 1424, fourth area 1434 and upper part 1471 are coated with light-absorbing material 1413, made of light-absorbing material 1413, and the solutions of roughening the surface of the corresponding area can be combined arbitrarily, for example,
  • the non-photosensitive area 1412 is coated with light-absorbing material 1413
  • the second area 1424 is made of light-absorbing material
  • the surface of the fourth area 1434 is rough
  • the upper part 1471 is coated with light-absorbing material 1413; it can also be the non-photosensitive area 1412 made of light-absorbing material.
  • the area 1424 is coated with a light-absorbing material 1413
  • the fourth area 1434 is coated with a light-absorbing material 1413
  • the surface of the upper part 1471 is rough, and other combinations, which are not listed here.
  • the photodetector 140 includes a photoreceiver 141, an insulating substrate 142, a base 143, and a sleeve 147.
  • the light receiver 141 is disposed on the insulating substrate 142, and the light receiver 141 includes a photosensitive area 1411 and a non-photosensitive area 1412.
  • the photosensitive area 1411 is used to receive the light reflected by the target object.
  • the insulating substrate 142 is provided on the base 143.
  • the sleeve 147 includes an upper portion 1471 and a lower portion 1472 opposite to each other.
  • the lower part 1472 is arranged on the base 143, and the upper part 1471 is at least partially covered with the non-photosensitive area 1412.
  • the photodetector 140 reduces the reflectivity of light through the upper part 1471.
  • the upper portion 1471 includes a side wall 1473 and an extension portion 1474 extending inward from the side wall 1473, and the extension portion 1474 at least partially covers the non-photosensitive area 1412.
  • the lower part 1472 is provided with a notch 1475. When the lower part 1472 is disposed on the base 143, the notch 1475 is engaged with the edge of the base 143.
  • the extension portion 1474 at least partially covers the non-photosensitive area 1412, so that the photosensitive area 1411 of the light receiver 141 under the sleeve 147 can receive the light reflected from the outside of the detection device 1000 through the light-transmitting area of the sleeve 147, and the sleeve 147 can block the non-photosensitive area 1412 of the light receiver 141, and can effectively reduce the probability of stray light being received by the light receiver 141.
  • the sleeve 147 is sleeved on the photodetector 140 to achieve a certain waterproof and dustproof effect, so that the photodetector 140 is not easily damaged, and the service life of the photodetector 140 is increased.
  • the sleeve 147 is sleeved on the photodetector 140, which reduces the reflectivity of light reflected by the upper part 1471, and the generated stray light is not easily received by the photodetector 140 to generate crosstalk signals, which improves
  • the detection device 1000 detects the accuracy of the data.
  • the sleeve 147 can make the height of the light incident on the upper part 1471 (that is, the light that generates stray light) different from the height of the light received by the light receiver 141, so that the stray light is not easily detected by light.
  • the detector 140 receives and generates a crosstalk signal, thereby improving the accuracy of the detection data of the detection device 1000.
  • the photodetector 140 further includes a light-absorbing material 1413 provided on the upper part 1471, and the light-absorbing material 1413 reduces the reflectance of light by the photodetector 140.
  • the light-absorbing material 1413 may be a polymer organic material or black silicone rubber made of resin. The absorption rate of the light-absorbing material 1413 for both visible light and infrared light is relatively high, so that the reflectance of the upper part 1471 for light is relatively low.
  • the upper part 1471 is made of a light-absorbing material 1413, and the photodetector 140 uses the light-absorbing material 1413 to reduce the reflectivity of light. Since the upper part 1471 is directly made of light-absorbing material 1413, there is no need to provide additional light-absorbing material on the upper part 1471, so the height of the photodetector 140 is small, which is conducive to the miniaturization of the photodetector 140. At the same time, the manufacture of the photodetector 140 The process is relatively simple.
  • the light-absorbing material 1413 may be a polymer organic material or black silicone rubber made of resin. The absorption rate of the light-absorbing material 1413 for both visible light and infrared light is relatively high, so that the reflectance of the upper part 1471 for light is relatively low.
  • the surface of the upper part 1471 is rough to reduce the light reflected to the photosensitive area 1411, thereby reducing the reflectivity of the light.
  • the surface of the upper part 1471 can be frosted, that is, by increasing the friction coefficient of the upper part 1471 surface, the roughness of the upper part 1471 can be increased. It is understandable that the surface of the upper part 1471 is rough, which can reduce the specular reflection of the light from the upper part 1471 and reduce the light reflected to the photosensitive area 1411, thereby reducing the reflectivity of the light.
  • the sleeve 147 is made of plastic material, and the weight of the plastic is relatively light, so that the weight of the light detector 140 after the sleeve 147 is sleeved is almost the same as the weight of the light detector 140 before the sleeve 147 is sleeved, that is, the weight of the sleeve 147 is almost the same.
  • the sleeve 147 does not increase the overall weight of the photodetector 140.
  • the plastic material is easy to obtain, and the manufacturing process of the sleeve 147 is simpler.
  • the sleeve 147 can be made of dark plastic material, such as black plastic material, blue plastic material or other dark plastic material.
  • the dark plastic material has good light absorption and can more effectively reduce the light reflected by the upper part 1471.
  • the stray light generated is not easily received by the photodetector 140 to generate a crosstalk signal, which improves the accuracy of the detection data of the detection device 1000.
  • the sleeve 147 can make the height of the light incident on the upper part 1471 (that is, the light that generates stray light) different from the height of the light received by the light receiver 141, so that the stray light is not easily detected by the photodetector.
  • the 140 receives and generates a crosstalk signal, thereby improving the accuracy of the detection data of the detection device 1000.
  • the photodetector 140 may further include a spacer 144 and a light-transmitting top cover 145.
  • the spacer 144 includes a top portion 1441 and a bottom portion 1442 opposite to each other.
  • the upper part 1471 is disposed on the top part 1441
  • the bottom part 1442 is disposed on the base 143
  • the top part 1441 is combined with the top cover 145 to form a receiving cavity 146 for accommodating the light receiver 141.
  • the top cover 145 is made of glass. The light can pass through the top cover 145 and be received by the light receiver 141.
  • the insulating substrate 142 may be a ceramic insulating substrate.
  • the ceramic insulating substrate has the advantages of strong mechanical stress, stable shape, high strength, high thermal conductivity, high insulation, strong bonding force, corrosion resistance, and the like.
  • the photodetector 140 is arranged on an insulating substrate 142 with good thermal conductivity, which facilitates the heat dissipation of the photodetector 140 and increases the service life of the photodetector 140.
  • the scanning module 300 and the detection module 100 are arranged oppositely with a gap between them, so that the detection module 100 and the scanning module 300 are independent.
  • the scanning module 300 can move relative to the detection module 100.
  • the scanning module 300 includes a moving optical element 310, a driving element 320 and a controller 330.
  • the optical element 310 is used to change the propagation direction of the light beam from the detection module 100 and then emit it. Wherein, the optical element 310 can change the propagation path of the light beam by reflecting, refracting, or diffracting the light beam, and the moving optical element 310 can reflect, refract or diffract the light beam to different directions at different times.
  • the optical element 310 may be a lens, a mirror, a prism, a grating, an optical phased array (Optical Phased Array), or any combination of the foregoing optical elements 310.
  • the driving element 320 can drive the optical element 310 to rotate, vibrate, cyclically move along a predetermined trajectory, or move back and forth along a predetermined trajectory, which is not limited herein.
  • the controller 330 can control the rotation parameters of the driving element 320 to drive the optical element 310 to rotate, such as the direction of rotation (ie, the direction of rotation), the speed (ie, the speed of rotation), the angle of rotation, the duration of rotation, and so on.
  • the optical element 310 includes a prism as an example for description. The prism is located on the exit light path of the light pulse sequence. When the prism rotates, the transmission direction of the light beam passing through the prism can be changed.
  • the optical element 310 includes at least one light refraction element.
  • the optical element 310 includes a first light refraction element 311 and a second light refraction element 312 that are arranged opposite to each other.
  • the first light refraction element 311 and the second light refraction element 312 each include a pair of opposite non-parallel surfaces.
  • the first light refraction element 311 is formed with a first inclined surface 3111 and a first vertical surface 3112 that are opposite to each other.
  • the first inclined surface 3111 is inclined relative to the rotation axis 314, that is, the angle between the first inclined surface 3111 and the rotation axis 314 is not 0 degrees or 90 degrees; the first vertical surface 3112 is perpendicular to the rotation axis 314, that is, the first vertical surface 3112 The included angle with the rotating shaft 314 is 90 degrees.
  • the light pulse sequence passes through the first vertical surface 3112 and the first inclined surface 3111. Since the first inclined surface 3111 and the first vertical surface 3112 are not parallel, the thickness of the first light refraction element 311 is not uniform, that is, the thickness of the first light refraction element 311 is not the same everywhere, and there are locations with larger thicknesses and larger thicknesses. Small location.
  • the thickness of the first light refraction element 311 gradually increases in one direction.
  • the second light refraction element 312 is formed with a second inclined surface 3121 and a second vertical surface 3122 opposite to each other.
  • the second inclined surface 3121 is inclined with respect to the rotation axis 314, that is, the angle between the second inclined surface 3121 and the rotation axis 314 is not 0 degrees or 90 degrees;
  • the second vertical surface 3122 is perpendicular to the rotation axis 314, that is, the second vertical surface 3122
  • the included angle with the rotating shaft 314 is 90 degrees.
  • the light pulse sequence passes through the second inclined surface 3121 and the second vertical surface 3122.
  • the thickness of the second light refraction element 312 is not uniform, that is, the thickness of the second light refraction element 312 is not the same everywhere, and there are places with greater thickness and greater thickness. Small location. In an example, the thickness of the second light refraction element 312 gradually increases in one direction.
  • the optical element 310 may also include a third light refraction element 313 arranged in parallel with the first light refraction element 311 and the second light refraction element 312. .
  • the third light refraction element 313 includes a pair of opposite non-parallel surfaces. Specifically, the third light refraction element 313 is formed with a third inclined surface 3131 and a third vertical surface 3132 opposite to each other.
  • the third inclined surface 3131 is inclined with respect to the rotation axis 314, that is, the angle between the third inclined surface 3131 and the rotation axis 314 is not 0 degrees or 90 degrees; the third vertical surface 3132 is perpendicular to the rotation axis 314, that is, the third vertical surface 3132 The included angle with the rotating shaft 314 is 90 degrees.
  • the light pulse sequence passes through the third inclined surface 3131 and the third vertical surface 3132. Since the third inclined surface 3131 and the third vertical surface 3132 are not parallel, the thickness of the third light refraction element 313 is not uniform, that is, the thickness of the third light refraction element 313 is not the same everywhere, and there are locations with greater thickness and greater thickness. Small location. In an example, the thickness of the third light refraction element 313 gradually increases in one direction.
  • the optical element 310 includes the first light refraction element 311 and the second light refraction element 312, the first inclined surface 3111 may not be parallel to the second inclined surface 3121, and the first vertical surface 3112 may be opposite to the second vertical surface 3122. parallel.
  • the rotation axis 314 of the first light refraction element 311 and the second light refraction element 312 may be the same, and both the first light refraction element 311 and the second light refraction element 312 rotate around the same rotation axis 314; the first light refraction element 311 and The rotation axis 314 of the second light refraction element 312 may also be different, and the first light refraction element 311 and the second light refraction element 312 rotate around different rotation axes 314 (respective rotation axes 314).
  • the first inclined surface 3111 may not be parallel to the second inclined surface 3121, and the second inclined surface 3121 may be aligned with the second inclined surface 3121.
  • the three inclined surfaces 3131 are parallel, and the first vertical surface 3112, the second vertical surface 3122, and the third vertical surface 3132 are parallel to each other.
  • the rotation axis 314 of the first light refraction element 311, the second light refraction element 312, and the third light refraction element 313 may be the same, and the first light refraction element 311, the second light refraction element 312, and the third light refraction element 313 are all around the same.
  • the same rotation axis 314 rotates; the rotation axes 314 of the first light refraction element 311, the second light refraction element 312, and the third light refraction element 313 may also be different.
  • the first light refraction element 311, the second light refraction element 312, and the The third light refraction element 313 rotates around different rotation axes 314 (respective rotation axes 314).
  • the first light refraction element 311, the second light refraction element 312, and the third light refraction element 313 may all be wedge prisms.
  • the first light refraction element 311, the second light refraction element 312, and the third light refraction element 313 can rotate with respect to the corresponding rotation axis 314 at different speeds but the same direction; the first light refraction element 311, the second light refraction element 312 and the third light refraction element 313 can also be rotated in different directions but at the same speed relative to the corresponding rotation axis 314; the first light refraction element 311, the second light refraction element 312, and the third light refraction element 313 can also be rotated at the same speed Different speeds and different directions rotate relative to the corresponding rotating shaft 314.
  • the first light refraction element 311 and the second light refraction element 312 rotate forward relative to the rotation axis 314, and the third light refraction element 313 reverses relative to the rotation axis 314; for another example, the first light refraction element 311 rotates at a first speed Rotating relative to the corresponding rotation axis 314, the second light refraction element 312 rotates at a second speed relative to the corresponding rotation axis 314, and the third light refraction element 313 rotates at a third speed relative to the corresponding rotation axis 314, and the first speed ,
  • the second speed and the third speed can be all the same, or all different, or partly the same, partly different.
  • the rotation speed of the first light refraction element 311 and the second light refraction element 312 can be determined according to the expected scanning area and pattern in actual applications.
  • the driving element 320 is used to drive the first light refraction element 311, the second light refraction element 312, and the third light refraction element 313 to rotate at different speeds and/or directions.
  • the driving element 320 may include a first driver 321, a second driver 322, and a third driver 323.
  • the first driver 321 is used to drive the first light refraction element 311 to rotate around the rotation axis 314, and the second driver 322 is used to drive the The second light refraction element 312 rotates around the rotation axis 314, and the third driver 323 is used to drive the third light refraction element 313 to rotate around the rotation axis 314.
  • the direction can be changed again by another prism or two other prisms to increase the ability of the scanning module 300 to change the beam propagation direction as a whole to scan a larger spatial range.
  • the first driver 321, the second driver 322, and the third driver 323 may all be motors or other drivers. It can be understood that, in other embodiments, the first light refraction element 311, the second light refraction element 312, and the third light refraction element 313 may also be driven by a common driver.
  • the controller 330 is connected to the driving element 320. Specifically, the controller 330 is respectively connected to the first driver 321, the second driver 322, and the third driver 323. The controller 330 is used to control the first driver 321 and the second driver according to the control instruction. 322 and the third driver 323 respectively drive the first light refraction element 311, the second light refraction element 312, and the third light refraction element 313 to rotate.
  • the controller 330 may control the rotation parameters (rotation direction, rotation speed, rotation angle, rotation duration, etc., the same below) for the first driver 321 to drive the first light refraction element 311 to rotate, and control the second driver 322 to drive the second The rotation parameter of the light refraction element 312, and the third driver 323 drives the rotation parameter of the third light refraction element 313.
  • first and second are only used for descriptive purposes, and cannot be understood as indicating or implying relative importance or implicitly indicating the number of indicated technical features. Therefore, the features defined with “first” and “second” may explicitly or implicitly include at least one of the features. In the description of the present application, "a plurality of” means at least two, for example two, three, unless otherwise specifically defined.

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Radar, Positioning & Navigation (AREA)
  • Remote Sensing (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • General Life Sciences & Earth Sciences (AREA)
  • Geophysics (AREA)
  • Optical Radar Systems And Details Thereof (AREA)

Abstract

一种光探测器(140)、探测模组(100)和探测装置(1000)。光探测器(140)包括光接收器(141)。光接收器(141)包括感光区(1411)和非感光区(1412)。感光区(1411)用于接收经目标物体反射回的光线,光探测器(140)通过非感光区(1412)降低对光线的反射率。

Description

光探测器、探测模组和探测装置 技术领域
本申请涉及雷达探测技术领域,特别涉及一种光探测器、探测模组和探测装置。
背景技术
激光雷达探测系统内部的光学器件自身对激光光束具有反射特性和散射特性,因此会在激光雷达的内部产生无序的杂散光;而激光雷达的接收探测器敏感度极高,对这些杂散光产生响应,产生误触发的串扰信号,影响激光雷达探测系统探测数据的准确性。
发明内容
本申请实施方式提供一种光探测器、探测模组和探测装置。
本申请实施方式提供一种光探测器,所述光探测器包括光接收器,所述光接收器包括感光区和非感光区,所述感光区用于接收经目标物体反射回的光线,所述光探测器通过所述非感光区降低对光线的反射率。
本申请实施方式还提供一种光探测器,所述光探测器包括光接收器、绝缘基板、基座和套筒,所述光接收器设置在所述绝缘基板上,所述光接收器包括感光区和非感光区,所述感光区用于接收经目标物体反射回的光线;所述绝缘基板设置在所述基座上;所述套筒包括相对的上部和下部,所述下部设置在所述基座上,所述上部至少部分罩设所述非感光区,所述光探测器通过所述上部降低对光线的反射率。
本申请实施方式还提供一种探测模组,所述探测模组包括光源、光路改变元件、准直元件和光探测器,所述光源发射的光束经过所述光路改变元件的透射后到达所述准直元件、再由所述准直元件准直后出射至目标物体上,由所述目标物体反射回的光束被所述准直元件汇聚至所述光路改变元件、再由所述光路改变元件反射至所述光探测器;所述光探测器包括光接收器,所述光接收器包括感光区和非感光区,所述感光区用于接收经目标物体反射回的光线,所述光探测器通过所述非感光区降低对光线的反射率;或者,所述光探测器包括光接收器、绝缘基板、基座和套筒,所述光接收器设置在所述绝缘基板上,所述光接收器包括感光区和非感光区,所述感光区用于接收经目标物体反射回的光线;所述绝缘基板设置在所述基座上;所述套筒包括相对的上部和下部,所述下部设置在所述基座上,所述上部至少部分罩设所述非感光区,所述光探测器通过所述上部降低对光线的反射率。
本申请实施方式还提供一种探测装置,所述探测装置包括壳体、扫描模组和探测模组,所述探测模组和所述扫描模组分别与所述壳体结合,所述探测模组用于向所述扫描模组发射光束,所述扫描模组用于改变所述光束的传输方向后出射,经目标物体反射回的光束经过所述扫描模组后入射至所述探测模组,所述探测模组用于根据所述反射回的光束确定所述目标物体相对所述探测装置的距离和/或方向;所述探测模组包括光源、光路改变元件、准直元件和光探测器,所述光源发射的光束经过所述光路改变元件的透射后到达所述准直元件、再由所述准直元件准直后出射至目标物体上,由所述目标物体反射回的光束被所述准直元件汇聚至所述光路改变元件、再由所述光路改变元件反射至所述光探测器;所述光探测器包括光接收器,所述光接收器包括感光区和非感光区,所述感光区用于接收经目标物体反射回的光线,所述光探测器通过所述非感光区降低对光线的反射率;或者,所述光探测器包括光接收器、绝缘基板、基座和套筒,所述光接收器设置在所述绝缘基板上,所述光接收器包括感光区和非感光区,所述感光区用于接收经目标物体反射回的光线;所述绝缘基板设置在所述基座上;所述套筒包括相对的上部和下部,所述下部设置在所述基座上,所述上部至少部分罩设所述非感光区,所述光探测器通过所述上部降低对光线的反射率。
本申请的光探测器、探测模组和探测装置通过降低光接收器的非感光区对杂散光的反射率,杂散光不容易被光探测器接收而产生串扰信号,提高了探测系统探测数据的准确性;或者,本申请的光探测器、探测模组和探测装置通过在光探测器上套设套筒,减少了光线被套筒上部反射的 反射率,产生的杂散光不容易被光探测器接收而产生串扰信号,提高了探测装置探测数据的准确性。此外,套筒能够使得入射至套筒上部的光线(即为产生杂散光的光线)的平面的高度与光接收器接收的光线的平面的高度相差更大,从而使得杂散光不容易被光探测器接收而产生串扰信号,从而提高了探测装置探测数据的准确性。
本申请实施方式的附加方面和优点将在下面的描述中部分给出,部分将从下面的描述中变得明显,或通过本申请的实践了解到。
附图说明
本申请的上述和/或附加的方面和优点可以从结合下面附图对实施方式的描述中将变得明显和容易理解,其中:
图1是本申请某些实施方式的探测装置的模块示意图;
图2是本申请某些实施方式的探测模组的结构示意图;
图3是本申请某些实施方式的探测模组的结构示意图;
图4是本申请某些实施方式的探测模组的结构示意图;
图5是本申请某些实施方式的探测模组的结构示意图;
图6是本申请某些实施方式的探测模组的结构示意图;
图7是本申请某些实施方式的探测模组的结构示意图;
图8是本申请某些实施方式的胶合透镜组的结构示意图;
图9是本申请某些实施方式的胶合透镜组的结构示意图;
图10是本申请某些实施方式的胶合透镜的分解示意图;
图11是本申请某些实施方式的光探测器的结构示意图;
图12是本申请某些实施方式的光探测器的结构示意图;
图13是本申请某些实施方式的光探测器的结构示意图;
图14是本申请某些实施方式的光探测器的结构示意图;
图15是本申请某些实施方式的探测装置的探测原理示意图;
图16是本申请某些实施方式的探测装置的探测原理示意图。
具体实施方式
下面详细描述本申请的实施方式,所述实施方式的示例在附图中示出,其中,相同或类似的标号自始至终表示相同或类似的元件或具有相同或类似功能的元件。下面通过参考附图描述的实施方式是示例性的,仅用于解释本申请的实施方式,而不能理解为对本申请的实施方式的限制。
请参阅图1,本申请实施方式提供一种探测装置1000,该探测装置1000可以用来确定探测物相对探测装置1000的距离和/或方向。该探测装置1000可以是激光雷达、激光测距设备等电子设备。在一种实施方式中,探测装置1000可用于感测外部环境信息,例如,环境目标的距离信息、方位信息、反射强度信息、速度信息等。一种实现方式中,探测装置1000可以通过测量探测装置1000和目标物体之间光传播的时间,即光飞行时间(Time-of-Flight,TOF),来探测目标物体到探测装置1000的距离。或者,探测装置1000也可以通过其他技术来探测目标物体到探测装置1000的距离,例如基于相位移动(phase shift)测量的测距方法,或者基于频率移动(frequency shift)测量的测距方法,在此不做限制。探测装置1000探测到距离和方位可以用于遥感、避障、测绘、建模、导航等。在一种实施方式中,本发明实施方式的探测装置1000可应用于移动平台,探测装置1000可安装在移动平台的平台本体。具有探测装置1000的移动平台可对外部环境进行测量,例如,测量移动平台与障碍物的距离用于避障等用途,和对外部环境进行二维或三维的测绘。在某些实施方式中,移动平台包括无人飞行器、汽车、遥控车、机器人、相机中的至少一种。当探测装置1000应用于无人飞行器时,平台本体为无人飞行器的机身。当探测装置1000应用于汽车时,平台本体为汽车的车身。该汽车可以是自动驾驶汽车或者半自动驾驶汽车,在此不做限制。当探测装置1000应用于遥控车时,平台本体为遥控车的车身。当探测装置1000应用于机器人时,平台本体为机器人。当探测装置1000应用于相机时,平台本体为相 机本身。
探测装置1000包括壳体200、扫描模组300和探测模组100,探测模组100和扫描模组300分别与壳体200结合,探测模组100用于向扫描模组300发射光束,扫描模组300用于改变光束的传输方向后出射,经目标物体反射回的光束经过扫描模组300后入射至探测模组100,探测模组100用于根据反射回的光束确定目标物体相对探测装置1000的距离和/或方向。此处“确定距离和/或方向”可以理解为探测模组100可以用于根据反射回的光束确定目标物体相对探测装置1000的距离或方向的两个中的一个,或者距离和方向两个都可以确定。
请参阅图2,探测模组100包括光源110、光路改变元件120、准直元件130a和光探测器140。光源110发射的光束经过光路改变元件120的透射后到达准直元件130a、再由准直元件130a准直后出射至目标物体上,由目标物体反射回的光束被准直元件130a汇聚至光路改变元件120、再由光路改变元件120反射至光探测器140。
光源110用于发射光束(即光脉冲序列),可选地,光源110发射出的光束为波长在可见光范围之外的窄带宽光束,例如光源110发射出的光束波长为905nm。在一些实施例中,光源110可以包括激光二极管(Laser diode),通过激光二极管发射纳秒级别的光束。
光路改变元件120位于光源110的出射光路上并用于将光源110的出射光路和光探测器140的接收光路合并。具体地,光路改变元件120设置在准直元件130a的一侧,且位于光源110与准直元件130a之间。光源110的出射光路和光探测器140的接收光路采用同轴光路,请参阅图2,探测模组100中光源110出射的光束的中心轴111和经光路改变元件120反射回来的光束的中心轴112可以是重合的。图2至图7示出了本申请的探测模组100采用同轴光路的各个实施例的示意图。光路改变元件120将探测模组100内的发射光路和接收光路在光探测器140之前合并,使得发射光路和接收光路可以共用同一个准直元件130a,光路更加紧凑,可以减小探测模组100的尺寸,降低系统复杂度和成本。
光路改变元件120可以采用小面积的反射镜来将发射光路和接收光路合并,或者,光路改变元件120也可以采用带通孔的反射镜,其中,该通孔用于透射光源110的出射光,反射镜用于将回光反射至探测器140,该光路改变元件120也可以采用具备透光部分和反射部分的反射镜,透光部分可以由能够透光的物质制成,用于透射光线,反射部分能够将光线反射,对于该光路改变元件120的具体结构及构成材料,本申请在此不做限制。
在一个实施方式中,光路改变元件120采用小面积的反射镜,该小面积的反射镜是指面积较小的反射镜。具体地,由于光源110出射的光束的光束孔径较小,光源110出射的光束能够被小面积的反射镜接收并将光束反射至外界。此外,测距装置1000所接收到的回光的光束孔径较大,小面积的反射镜对于回光产生的遮挡很小,从而使得光探测器140几乎能够接收所有的回光,使得探测装置1000的探测数据更加准确。在该实施例中,光路改变元件120采用小面积的反射镜可以在达到探测效果的同时减轻探测装置1000的重量,有利于探测装置1000的轻型化。
在另一个实施方式中,光路改变元件120可以采用带通孔的反射镜(如图2所示),其中该通孔用于透射光源110发出的光束,反射镜用于将回光反射至探测器140,这样可以减小采用小反射镜的情况中小反射镜的支架对回光的遮挡。
请参阅图2,在另一个实施方式中,光路改变元件120包括透光部分121和反射部分122,光源110发出的光束能够直接穿过透光部分121。反射部分122包括基体123,基体123可由铜、铝等透光率较低的金属制成。基体123还包括相背的第一面1231和第二面1232,第一面1231与光源110相对,第二面1232与准直元件130a相对。
进一步地,反射部分122还可以包括设置在基体123上的反射膜124。在一些示例中,反射膜124可以设置在基体123背向光源110的一侧,即设置在第二面1232。在另一些示例中,反射膜124也可以设置在第一面1231上。上述反射膜124可由铝、金、银、钯或钛等金属材质制成。
本申请实施方式的探测模组100中,光源110发出的光线穿过光路改变元件120时,光源110发出的部分光线能够从光路改变元件120的透光部分121透过,且光源110发向光路改变元件120的边缘的光线被光路改变元件120的反射部分122上的反射膜124阻挡,而且反射膜124还能够将从探测装置1000外部入射的光线(回光)大部分或几乎全部反射,探测模组100的接收信号 较强,有利于探测模组100的探测数据的准确性。
请参阅图3,在另一个实施方式中,光路改变元件120包括基材125和形成在基材125上的反射膜126(例如高反膜)。
基材125呈平板状,基材125包括透光区1251。透光区1251用于供光源110发射的光束穿过。透光区1251为由透光的材料制成的区域,例如透光区1251可由塑料、树脂、玻璃等透光率较高的材料制成。基材125除透光区1251之外的区域为外围区,外围区可由铜、铝等透光率较低的金属制成;或者,外围区也同样由上述透光的材料制成,此时外围区与透光区1251材料相同、一体成型。基材125还包括相背的第一面1252和第二面1253,第一面1252与光源110相对,第二面1253与准直元件130a相对。
反射膜126设置在基材125背向光源110的一侧,即设置在第二面1253。一些示例中,反射膜126也可以设置在第一面1252上。反射膜126上开设有通光孔1261。前述透光区1251即为基材125对应通光孔1261处的区域。光源110发射的光脉冲序列穿过透光区1251及通光孔1261后出射。反射膜126可由铝、金、银、钯或钛等金属材质制成,在外围区与透光区1251材料相同时,光源110发出的光线能够被反射膜126阻挡,而且反射膜126还能够将从探测装置1000外部入射的光线(回光)大部分或几乎全部反射,探测模组100的接收信号较强,有利于探测模组100的探测数据的准确性。
请参阅图4至图6,当反射膜126上开设有通光孔1261时,在一个实施例中,光路改变元件120还包括形成在透光区1251上的减反膜1254(即增透膜)。减反膜1254设置在透光区1251面向光源110的一侧(如图4所示),即设置在第一面1252;或者,减反膜1254设置在透光区1251背向光源110的一侧(如图5所示),即设置在第二面1253,此时,减反膜1254可位于通光孔1261内;或者,减反膜1254同时设置在透光区1251面向光源110的一侧和透光区1251背向光源110的一侧(如图6所示),即同时设置在第一面1252和第二面1253,此时,设置在第二面1253的减反膜1254可位于通光孔1261内。减反膜1254的材质可以为SiO2、SiN、ZnO、SiON、TiO2、Al2O3、MgF或ZnS中的一种或多种的组合。可以理解,由于基材125的存在,光源110出射的光脉冲序列会在基材125的第一面1252和第二面1253发生反射,减少了出射光能量。在透光区1251背向光源110的一侧镀减反膜1254,可以减少基材125到空气界面的反射(具体为第二面1253到空气界面的反射),提高经过光路改变元件120后的出射光能量。同样地,在透光区1251面向光源110的一侧镀上减反膜1254,可减少空气界面到基材125的反射(具体为空气界面到第一面1252的反射),进一步提高经过光路改变元件120后的出射光能量。
请参阅图7,当反射膜126上开设有通光孔1261时,在一个实施例中,透光区1251上设置有偏振透过膜127。偏振透过膜127具体可设置在透光区1251面向光源110的一侧或者透光区1251背向光源110的一侧(如图7所示,此时,偏振透过膜127可位于通光孔1261内)。本实施例中,光源110用于发射具有预定偏振方向的光脉冲序列,偏振透过膜127用于透射具有该预定偏振方向的光脉冲序列。偏振透过膜127的材质可以为树脂或玻璃等。可以理解,在透光区1251上镀用于透过预定偏振方向的光脉冲序列的偏振透过膜127时,探测装置1000出射的光脉冲序列打到被探测物后反射的光脉冲序列的偏振方向会发生一定改变,再次打到偏振透过膜127上时,透过率会降低,部分能量将会被反射到光探测器140,从而提高了回波(回光)接收比例。
需要指出是,上述减反膜1254和偏振透过膜127还可以同时搭配使用。例如,减反膜1254设置在透光区1251面向光源110的一侧,偏振透过膜127设置在透光区1251背向光源110的一侧;或者偏振透过膜127设置在透光区1251面向光源110的一侧,减反膜1254设置在透光区1251背向光源110的一侧。
本申请实施方式的探测模组100中,光路改变元件120的基材125不开孔而是形成在基材125上的反射膜126开设通光孔1261,相较于基材125开孔而言,可以极大地减小开孔处的光散射现象,避免散射光打到光探测器140上而干扰光探测器140对于回波(即,回光)的检测,因而可以较大程度提高测距精度。可以理解,相较于光源110发射的光脉冲序列,经探测物反射回的光脉冲序列的强度要低很多个数量级,因而探测模组100内部结构导致的杂散光会对回波测量产生干扰。基材125的厚度至少在毫米量级,如果在基材125上开孔,散射截面(基材125的厚度方 向上的截面)很大,探测物反射回的光脉冲序列在开孔处会有很强的光散射现象,而反射膜126的厚度在微米量级,甚至更薄,散射截面(反射膜126的厚度方向上的截面)远远小于基材125开孔的方式,因而在反射膜126上开设通光孔1261可以极大地减小开孔处的光散射现象。
准直元件130a位于光源110的出射光路上。具体地,准直元件130a设置在光路改变元件120背向光源110的一侧。准直元件130a用于准直光源110发射的光束,即将光源110发出的光束准直为平行光。准直元件130a还用于将经探测物反射回的光线汇聚至光路改变元件120。准直元件130a可以为透镜组,进一步地,可以为胶合透镜组130(如图2所示)。当然,在其他实施方式中,准直元件130a也可以不为胶合透镜组,即准直元件130a包括一个或多个相互间隔的透镜。本申请实施方式以准直元件130a是胶合透镜组130为例进行说明。胶合透镜组130的口径范围大于或等于45mm,也即是说,胶合透镜组130的口径为45mm及以上的任意值。例如,胶合透镜组130的口径可以为45mm、46mm、48mm、50mm、52mm、55mm、58mm、60mm、70mm、80mm等。胶合透镜组130的口径范围大于或等于45mm可以使得探测装置1000的接收信号更强、便于加工以及批量化生产,特别适合于某些大口径激光雷达测距系统。
胶合透镜组130至少包括多个依次贴合的透镜131。
在一个实施例中,胶合透镜组130包括多个依次贴合的透镜131,例如图8中,胶合透镜组130包括两个依次贴合的透镜131。当然,在其他实施例中,胶合透镜组130也可以包括三个或更多个依次贴合的透镜131。多个依次贴合的透镜131共轴设置,且多个透镜131之间无间隙。这使得胶合透镜组130结构更加紧凑,体积小,有利于探测模组100的小型化。
在另一个实施例中,胶合透镜组130包括多个胶合透镜,每个胶合透镜由多个透镜131贴合在一起构成。多个胶合透镜共轴设置,且多个胶合透镜相互间隔,例如相邻的胶合透镜之间可间隔预定距离。多个胶合透镜共轴设置有利于探测模组100的空间布置更加合理,有利于探测模组100的小型化设计。另外,多个胶合透镜相互间隔使得光束在透过胶合透镜组130时,光线更加均匀,避免光线之间相互干扰,有利于探测模组100的探测数据的准确性。
在又一个实施例中,胶合透镜组130包括多个依次贴合的透镜131、以及一个或多个分立透镜,例如图9中,胶合透镜组130包括两个依次贴合的透镜131、以及一个分立透镜。当然,在其他实施例中,胶合透镜组130还可以包括三个或更多个依次贴合的透镜131、以及两个或更多个分立透镜。多个依次贴合的透镜131、以及一个或多个分立透镜共轴设置。多个依次贴合的透镜131、以及一个或多个分立透镜共轴设置有利于探测模组100的空间布置更加合理,有利于探测模组100的小型化设计。设置三个或更多个依次贴合的透镜131、以及两个或更多个分立透镜可以有效避免光线间相互干扰的现象,提高探测模组100的探测数据的准确性。
本申请实施方式以胶合透镜组130包括多个依次贴合的透镜131为例进行说明。
胶合透镜组130的多个透镜131通过胶合材料胶合。胶合材料可以为高折射率光敏胶,例如折射率大于1.6的光敏胶,也即是说,胶合材料的折射率为1.6及以上的任意值。例如,折射率可以为1.62、1.65、1.70、1.75、1.80、1.85、1.90、1.95、2.00、2.05等。光敏胶的折射率大于1.6可以有效减小光束在透镜131之间的胶合界面的反射率。可以理解地,胶合透镜组130的多个透镜131均具有高折射率,若胶合材料的折射率较低,由于光束在高折射率和低折射率物质之间穿过会在分界面产生反射(玻璃到空气的反射率约为4%),光束在透镜131之间穿过时,光束会受到胶合材料的影响在透镜131与胶合材料的胶合界面产生反射,不利于光线透过胶合透镜组130。因此,胶合材料采用高折射率的光敏胶,减少了光束在胶合界面发生反射,探测模组100测距时出射信号和接收信号都较强,有利于探测模组100探测数据的准确度。
胶合透镜组130具有容差大、体积紧凑、成本可控的优势,且构成胶合透镜组130的材料易得、加工方案成熟,便于批量化生产,特别适合于某些大口径激光雷达测距系统。
请参阅图8和图10,胶合透镜组130中的多个透镜131包括正透镜134和负透镜135。其中,正透镜134的折射率小于负透镜135的折射率,以使得正透镜134和负透镜135的边缘的光线得到更好地矫正,成像时产生的球差更小,有利于提高成像质量。更具体地,正透镜134的折射率可以为1.80~1.87,也即是说,正透镜134的折射率为1.80至1.87范围内的任意值。例如,正透镜134的折射率可以为1.80、1.81、1.82、1.83、1.84、1.85、1.855、1.86、1.865、1.87等。负透 镜135的折射率可以为1.98~2.30,也即是说,负透镜135的折射率为198至2.30范围内的任意值。例如,负透镜135的折射率可以为1.98、1.99、2.00、2.01、2.02、2.03、2.04、2.05、2.10、2.20等。正透镜134和负透镜135整体的折射率越高越好。可以理解地,正透镜134和负透镜135整体的折射率越高,则正透镜134和负透镜135的光束透过率越大,即探测装置1000的发射信号与接收信号越强,有利于提高探测准确性。若正透镜134和负透镜135整体的折射率较低,则正透镜134中的凸透镜镜面的凸出程度需更大和负透镜135中的凹透镜镜面的凹陷程度需更大,才能使得光束通过正透镜134和负透镜135后的聚光作用产生的点更大,减小球差,使得探测装置1000的发射信号和接收信号都比较强,提高探测准确性,但正透镜134中的凸透镜镜面的凸出程度大和负透镜135中的凹透镜镜面的凹陷程度大会导致胶合透镜组130的厚度和体积都增大,使得探测模组100的体积增大,制造成本增加。本申请实施方式中,正透镜134的折射率和负透镜135的折射率满足上述取值时,正透镜134和负透镜135整体的折射率较高,可以有效减小球差,提高探测模组100的光学性能。
正透镜134的中心厚度为10±0.03mm~15±0.03mm,也即是说,正透镜134的中心厚度为9.97mm至15.03mm范围内的任意值。例如,正透镜134的中心厚度可以为9.97mm、10mm、10.03mm、11.03mm、12.03mm、13.03mm、14.03mm、14.97mm、15mm、15.03mm等。负透镜135的中心厚度为1.5±0.03mm~5±0.03mm,也即是说,负透镜135的中心厚度为1.47mm至5.03mm范围内的任意值。例如,负透镜135的中心厚度可以为1.47mm、1.5mm、2mm、2.5mm、3mm、3.5mm、4mm、4.5mm、5mm、5.03mm等。正透镜134和负透镜135的中心厚度满足上述取值能够在满足光学要求的前提下,降低成本和减小胶合透镜组130的体积,从而降低探测模组100的制造成本和减小探测模组100的体积。
正透镜134包括相背的第一面1341和第二面1342,负透镜135包括相背的第三面1351和第四面1352。光源110发射的光束依次穿过第一面1341、第二面1342、第三面1351和第四面1352。第二面1342和第三面1351可通过胶合材料胶合。第一面1341的曲率为58mm~62mm,也即是说,第一面1341的曲率为58mm至62mm范围内的任意值。例如,第一面1341的曲率可以为58mm、58.50mm、59mm、59.50mm、60mm、60.50mm、61mm、61.50mm、61.90mm、62mm等。第二面1342的曲率为60mm~64mm,也即是说,第二面1342的曲率为60mm至64mm范围内的任意值。例如,第二面1342的曲率可以为60mm、60.25mm、60.50mm、61mm、61.50mm、62mm、62.50mm、63mm、63.50mm、64mm等。第四面1352的曲率为950mm~1150mm,也即是说,第四面1352的曲率为950mm至1150mm范围内的任意值。例如,第四面1352的曲率可以为950mm、960mm、970mm、980mm、990mm、1000mm、1010mm、1020mm、1030mm、1040mm、1050mm等。其中,第三面1351的曲率可与第二面1342的曲率相同,即第三面1351的曲率也在60mm~64mm范围内,以有效保证第二面1342和第三面1351胶合时无空气间隔,使得正透镜134和负透镜135紧密胶合在一块,使得胶合透镜组130结构更加紧凑、体积减小。
在本申请实施例中,正透镜134可为双凸透镜,负透镜135可为凹凸透镜,即正透镜134的第一面1341和第二面1342均为凸面,负透镜135的第三面1351为凹面,第四面1352为凸面。正透镜134具有正屈光度,负透镜135具有负屈光度,有利于减小正透镜134和负透镜135由于聚光产生的弥散斑的球差,也即是说,此时光束经过正透镜134和负透镜135的聚光的点最小。可以理解地,光源110发出的光束在正透镜134的球面和负透镜135球面上的各点聚光能力不同,光束聚到成像面上不能聚集为一个点,而是形成一个以光轴为中心的对称的弥散斑,这种像差称为球差。本申请实施方式的胶合透镜组130中的正透镜134为双凸透镜、负透镜135为凹凸透镜,即正透镜134具有正屈光度,负透镜135具有负屈光度可以减小球差,使得胶合透镜组130出射的光束在目标探测物上的球差最小。
在其他实施例中,正透镜134也可以为凸凹透镜,负透镜135为双凹透镜,即正透镜134的第一面1341为凸面,第二面1342为凹面,负透镜135的第三面1351和第四面1352均为凹面。此时,正透镜134仍具有正屈光度、负透镜135仍具有负屈光度,能够减小球差,使得探测装置1000的发射信号和接收信号都比较准确,增加探测装置1000探测数据的可信度。
请参阅图10,第一面1341、第二面1342、第三面1351以及第四面1352中的至少一个设置 有增透介质膜160。增透介质膜160允许透过的波长范围为880nm~950nm,也即是说,增透介质膜160允许透过的波长为880mm至950mm范围内的任意值。例如,增透介质膜160允许透过的波长可以为880nm、890nm、900nm、910nm、920nm、930nm、935nm、940nm、945nm、950nm等。
具体地,第一面1341、第二面1342、第三面1351以及第四面1352中的至少一个设置有增透介质膜160包括:一个面设置有增透介质膜160、或者两个面设置有增透介质膜160、或者三个面设置有增透介质膜160、或者四个面均设置有增透介质膜160。例如,第一面1341设置有增透介质膜160,或者第一面1341和第二面1342均设置有增透介质膜160,或者第一面1341、第二面1342和第三面1351均设置有增透介质膜160,或者第一面1341、第二面1342、第三面1351和第四面1352均设置有增透介质膜160等,在此不一一列举。
本申请实施方式中,在正透镜134和负透镜135的表面上设置的增透介质膜160越多,则光源110发出的光束以及经探测物反射的回光在正透镜134和负透镜135的透过率越高,使得探测模组100发射信号及接收信号都较强,提高探测模组100的探测准确度。另外,光源110发射的光束的波长为905nm,而增透介质膜160允许透过的波长范围为880nm~950nm,可以保证光源110发出的光束几乎全部透过正透镜134和负透镜135,而使得透过880nm至950nm波长范围之外的光束无法透过,有利于探测装置1000发射信号及接收信号都较强,进一步提高探测装置1000的探测准确度。
请参阅图8和图9,胶合透镜组130具有一光轴136,胶合透镜组130包括靠近光轴136的中心区域和远离光轴136的边缘区域1361,边缘区域1361设置有油墨,或者边缘区域1361也可以设置有在波长为880nm~950nm范围内时具有低反射率、高吸收率的光学专用墨。在胶合透镜组130的边缘区域1361设置油墨或光学专用墨能够使得光源110发出的光束在边缘区域1361反射率较低,光束在边缘区域1361不会发生发散作用,从而保证经过胶合透镜组130的光束(包括入射至胶合透镜组130的光束和胶合透镜组130接收的回光)透过率接近100%,使得探测装置1000的发射信号和接收信号都比较强,增加探测装置1000的探测数据的准确性。此外,在边缘区域1361设置油墨或光学专用墨可以使得射至胶合透镜组130的光束不受外界的光线干扰,有利于提高探测模组100发射信号和接收信号的精确度。再有,在胶合透镜组130的边缘区域1361设置油墨或光学专用墨还可以使得胶合透镜组130的外形更加美观,且油墨或光学专用墨对胶合透镜组130还具有防护作用。
请参阅图2,光探测器140位于光路改变元件120背向光源110的一侧且与胶合透镜组130同侧,并位于光路改变元件120和胶合透镜组130之间。经探测物反射回的光束被反射膜124反射后由光探测器140接收,光探测器140用于根据接收的光束确定探测物相对探测模组100的距离和/或方向,即光探测器140可以确定探测物相对探测模组100的距离,或者确定探测物相对探测模组100的方向,或者确定探测物相对探测模组100的距离和方向。
探测模组100工作时,光源110发射出光束,该光束从光路改变元件120的透光部分121(如图2)或透光区1251(如图3至图7)穿过后被胶合透镜组130准直,准直后的光束投射到探测物上,经探测物反射回的光束经过胶合透镜组130后被胶合透镜组130汇聚到光路改变元件120的反射部分122,通过反射部分122上的反射膜124(如图2)或反射膜126(如图3至图7)将至少一部分的回光反射至光探测器140上,光探测器140将该被反射的至少部分回光转换为电信号脉冲,探测模组100再通过该电信号脉冲的上升沿时间和/或下降沿时间确定光束脉冲接收时间。如此,探测模组100可以利用脉冲接收时间信息和脉冲发出时间信息计算飞行时间,从而确定探测物到探测装置1000的距离,另外,根据不同方向的光脉冲序列还可以确定探测物相对于探测装置1000的方向。
请参阅图11和图12,本申请的某些实施例提供一种光探测器140。光探测器140包括光接收器141。光接收器141包括感光区1411和非感光区1412。感光区1411用于接收经目标物体反射回的光线以计算前述飞行时间,光探测器140通过非感光区1412降低对光线的反射率。
需要指出的是,本申请实施例的降低光线的反射率中的“光线”可以是指一个探测装置1000(以下称之为探测装置A)发射的激光射入另一个探测装置1000(以下称之为探测装置B)内部 经过光学器件(如后文的光学元件310)工作面后反射到光接收器141的非感光区1412,形成杂散光,再经过一次或多次反射后,被光接收器141接收,产生误触发的串扰信号,影响探测装置B的探测数据的准确性。本申请实施例的降低光线的反射率中的“光线”也可以是指探测装置1000内部的部分光线经过光学器件工作面后反射到光接收器141的非感光区1412,形成杂散光,再经过一次或多次反射后,被光接收器141接收,形成探测装置1000内部的回波。本申请实施例的降低光线的反射率中的“光线”也可以包括以上两种情况的“光线”。可以理解地,回波会对探测装置1000探测物体时产生干扰,从而影响探测装置1000的整体性能,影响探测装置1000探测数据的准确性。
本申请的光探测器140通过降低光接收器141的非感光区1412对杂散光的反射率,杂散光不容易被光探测器140接收而产生串扰信号,提高了探测装置1000探测数据的准确性。
在本申请的某些实施例中,当光探测器140与准直元件130a配合使用时,至少部分感光区1411位于准直元件130a的焦面上,感光区1411以外的区域远离焦面设置。具体地,光探测器140与准直元件130a配合使用,光源110发射的光束经过光路改变元件120的透射后到达准直元件130a,再由准直元件130a准直后出射至目标物体上,由目标物体反射回的光束被准直元件130a汇聚至光路改变元件120,再由光路改变元件120反射至光探测器140。此外,至少部分感光区1411位于准直元件130a的焦面上,例如可以是1/2的感光区1411位于准直元件130a的焦面上,或2/3的感光区1411位于准直元件130a的焦面上,或是感光区1411位于准直元件130a的焦面上。此处所指的焦面可以是焦平面也可以是焦曲面,在此不作限制。当感光区1411位于准直元件130a的焦面上时,光探测器140能够接收从外界反射回来的光线,进而使得探测装置1000的探测数据更加准确。感光区1411以外的区域远离焦面设置,即感光区1411以外的区域与焦面不在同一平面上,可以是感光区1411以外的区域与感光区1411相距一定的高度差或者相隔一定距离,保证入射至感光区1411以外的区域的光线反射后不会再次反射至焦面,从而使得光接收器141不容易接收到感光区1411以外的区域产生的杂光。
需要指出的是,此处所指的感光区1411以外的区域可以是下文中所指的非感光区1412、第二区域1424、第四区域1434和套筒147的上部1471中的一个或多个。
请参阅图11,在一个实施例中,非感光区1412的光线反射平面与感光区1411的光线反射平面不在同一平面上(本实施例中,感光区1411以外的区域为非感光区1412,非感光区1412远离焦面设置)。非感光区1412的光线反射平面可以是指非感光区1412朝向光路改变元件120的表面或朝向光探测器140接收光线一侧的表面(下文其他的光线反射平面依此类推)。
具体地,可以以光接收器141的顶面作为参考平面为例,不在同一平面上可以为非感光区1412的光线反射平面相对于感光区1411的光线反射平面更高或更低。更具体地,当感光区1411所在的表面比非感光区1412所在的表面更高时,感光区1411所在的表面到光接收器141的顶面之间的距离大于非感光区1412到光接收器141的顶面之间的距离。当感光区1411所在的表面比非感光区1412所在的表面更低时,感光区1411所在的表面到光接收器141的顶面之间的距离小于非感光区1412所在的表面到光接收器141的顶面之间的距离。非感光区1412光线(即为杂散光)反射的平面与感光区1411光线反射的平面不在同一平面上,使得杂散光即便被非感光区1412的光线反射平面多次反射后,也不容易被感光区1411接收而产生串扰信号,有利于探测装置1000探测数据的准确性。
在另一个实施例中,光探测器140还包括设置在非感光区1412的吸光材料1413,光探测器140通过吸光材料1413降低对光线的反射率。具体地,吸光材料1413可以是高分子有机材料或者是树脂制成的黑色硅橡胶等,吸光材料1413对可见光和红外线的吸收率都比较高,从而非感光区1412对光线的反射率较低。
在又一个实施例中,光探测器140的非感光区1412采用吸光材料1413制成,光探测器140通过吸光材料1413降低对光线的反射率。由于非感光区1412直接采用吸光材料1413制成,无需在非感光区1412另外设置吸光材料,因而光探测器140的高度较小,有利于实现光探测器140的小型化,同时,光探测器140的制造工艺较为简单。同样地,吸光材料1413可以是高分子有机材料或者是由树脂制成的黑色硅橡胶等,吸光材料1413对可见光和红外线的吸收率都比较高, 从而非感光区1412对光线的反射率较低。
在再一个实施例中,所述非感光区1412的表面粗糙,光探测器140可以通过提高非感光区1412的粗糙度,以减少反射到所述感光区1411的光线,进而降低对光线的反射率。具体地,可以通过对非感光区1412的表面进行磨砂处理,即通过提高非感光区1412表面的摩擦系数来提高非感光区1412的粗糙度。可以理解地,提高非感光区1412的粗糙度可以减少非感光区1412对光线发生镜面反射,从而减少反射到所述感光区1411的光线,降低对光线的反射率。
综上,本申请的光探测器140可以通过将非感光区1412的光线反射平面与感光区域1411的光线反射平面设置在不同平面上、对光接收器141的非感光区1412涂覆吸光材料1413、非感光区1412采用吸光材料1413制成或非感光区1412的表面粗糙来降低对杂散光的反射率,从而杂散光不容易被光探测器140接收而产生串扰信号,提高了探测装置1000探测数据的准确性。
请参阅图11和图12,在本申请的实施例中,光探测器140还可以包括绝缘基板142,绝缘基板142可以减少其他信号对光接收器141的干扰,例如,当光探测器140设置在PCB板上,通过设置绝缘基板142,可以减少光接收器141和PCB板之间的信号干扰,提高系统稳定性。绝缘基板142包括相背的顶面1421和底面1422。顶面1421包括第一区域1423和与第一区域1423相接的第二区域1424。光接收器141设置在第一区域1423,光探测器140通过非感光区1412和第二区域1424降低对光线的反射率。
绝缘基板142可以为陶瓷基板,陶瓷基板具有机械应力强、形状稳定、高强度、高导热率、高绝缘性、结合力强、防腐蚀、膨胀系数小等优点。光探测器140设置在导热性较好的陶瓷基板上,有利于光探测器140的散热,增加光探测器140的使用寿命,且陶瓷基板的膨胀系数小,其长度、面积、或体积随温度升高的改变量小,避免了因过热产生巨大形变,提高了系统的稳定性。
请参阅图11,在一个实施例中,非感光区1412和第二区域1424的光线反射平面与感光区1411的光线反射平面不在同一平面上(本实施例中,感光区1411以外的区域为非感光区1412和第二区域1424,非感光区1412和第二区域1424远离焦面设置)。具体地,可以以绝缘基板142的底面1422作为参考平面为例,不在同一平面上包括感光区1411所在的表面比非感光区1412和第二区域1424所在的表面更高或更低。更具体地,当感光区1411所在的表面比非感光区1412和第二区域1424所在的表面更高时,感光区1411所在的表面到底面1422之间的距离大于非感光区1412到底面1422之间的距离,同时感光区1411所在的表面到底面1422之间的距离大于第二区域1424所在的表面到底面1422之间的距离。当感光区1411所在的表面比非感光区1412和第二区域1424所在的表面更低时,感光区1411所在的表面到底面1422之间的距离小于非感光区1412所在的表面到底面1422之间的距离,同时感光区1411所在的表面到底面1422之间的距离小于第二区域1424所在的表面到底面1422之间的距离。非感光区1412和第二区域1424的光线(即为杂散光)反射的平面与感光区1411光线反射的平面不在同一平面上,使得杂散光不容易被光探测器140的感光区1411接收而产生串扰信号,有利于探测装置1000探测数据的准确性。
在另一个实施例中,光探测器140还包括设置在非感光区1412和第二区域1424的吸光材料1413。光探测器140通过吸光材料1413降低对光线的反射率。同样地,吸光材料1413可以是高分子有机材料或者是由树脂制成的黑色硅橡胶等,吸光材料1413对可见光和红外线的吸收率都比较高,从而非感光区1412和第二区域1424对光线的反射率较低。
在又一个实施例中,非感光区1412和第二区域1424采用吸光材料1413制成,光探测器140通过吸光材料1413降低对光线的反射率。由于非感光区1412和第二区域1424直接采用吸光材料1413制成,无需在非感光区1412和第二区域1424另外设置吸光材料,因而光探测器140的高度较小,有利于实现光探测器140的小型化,同时,光探测器140的制造工艺较为简单。同样地,吸光材料1413可以是高分子有机材料或者是由树脂制成的黑色硅橡胶等,吸光材料1413对可见光和红外线的吸收率都比较高。
在再一个实施例中,非感光区1412和第二区域1424的表面粗糙,减少反射到所述感光区1411的光线,具体地,可以通过对非感光区1412和第二区域1424的表面进行磨砂处理,通过提高非感光区1412和第二区域1424表面的摩擦系数来提高非感光区1412和第二区域1424的粗糙度。可以理解地,提高非感光区1412和第二区域1424的粗糙度可以减少非感光区和第二区域1424 的光线发生镜面反射,减少反射到所述感光区1411的光线,从而降低对光线的反射率。
综上,本申请的光探测器140可以通过将非感光区1412与感光区1411的光线反射平面设置在不同平面上和第二区域1424的光线反射平面与感光区1411的光线反射平面设置在不同平面上,或对光接收器141的非感光区1412和第二区域1424涂覆吸光材料1413,或非感光区1412和第二区域1424采用吸光材料1413制成,或非感光区1412和第二区域1424的表面粗糙,以降低对杂散光的反射率,从而杂散光不容易被光探测器140接收而产生串扰信号,提高了探测装置1000探测数据的准确性。
请参阅图11和图12,在本申请的实施例中,光探测器140还包括基座143。基座143包括相背的上表面1431和下表面1432。上表面1431包括第三区域1432和与第三区域1432相接的第四区域1434。绝缘基板142设置在第三区域1432。光探测器140通过非感光区1412、第二区域1424和第四区域1434降低对光线的反射率。
请参阅图11,在一个实施例中,非感光区1412、第二区域1424和第四区域1434的光线反射平面与感光区1411的光线反射平面不在同一平面上(本实施例中,感光区1411以外的区域为非感光区1412、第二区域1424和第四区域1434,非感光区1412、第二区域1424和第四区域1434远离焦面设置)。具体地,可以以基座143的下表面1432作为参考平面为例,不在同一平面上包括感光区1411所在的表面比非感光区1412、第二区域1424和第四区域1434所在的表面更高或更低。更具体地,当感光区1411所在的表面比非感光区1412、第二区域1424和第四区域1434所在的表面更高时,感光区1411所在的表面到下表面1432之间的距离大于非感光区1412到下表面1432之间的距离,同时,感光区1411所在的表面到下表面1432之间的距离大于第二区域1424所在的表面到下表面1432之间的距离,并且,感光区1411所在的表面到下表面1432之间的距离大于第四区域1434所在的表面到下表面1432之间的距离。当感光区1411所在的表面比非感光区1412、第二区域1424第四区域1434所在的表面更低时,感光区1411所在的表面到下表面1432之间的距离小于非感光区1412所在的表面到下表面1432之间的距离,同时,感光区1411所在的表面到下表面1432之间的距离小于第二区域1424所在的表面到下表面1432之间的距离,并且,感光区1411所在的表面到下表面1432之间的距离小于第四区域1434所在的表面到下表面1432之间的距离。非感光区1412、第二区域1424和第四区域1434的光线(即为杂散光)反射的平面与感光区1411光线反射的平面不在同一平面上,使得杂散光不容易被光探测器140的感光区1411接收而产生串扰信号,有利于探测装置1000探测数据的准确性。
在另一个实施例中,光探测器140还包括设置在非感光区1412、第二区域1424和第四区域1434的吸光材料1413。光探测器140通过吸光材料1413降低对光线的反射率。同样地,吸光材料1413可以是高分子有机材料或者是由树脂制成的黑色硅橡胶等,吸光材料1413对可见光和红外线的吸收率都比较高,从而非感光区1412、第二区域1424和第四区域1434对光线的反射率较低。
在又一个实施例中,光探测器140中的非感光区1412、第二区域1424和第四区域1434采用吸光材料1413制成。光探测器140通过吸光材料1413降低对光线的反射率。由于非感光区1412、第二区域1424和第四区域1434直接采用吸光材料1413制成,无需在非感光区1412、第二区域1424和第四区域1434另外设置吸光材料,因而光探测器140的高度较小,有利于实现光探测器140的小型化,同时,光探测器140的制造工艺较为简单。同样地,吸光材料1413可以是高分子有机材料或者是由树脂制成的黑色硅橡胶等,吸光材料1413对可见光和红外线的吸收率都比较高,从而非感光区1412、第二区域1424和第四区域1434对光线的反射率较低。
在再一个实施例中,非感光区1412、第二区域1424和第四区域1434的表面粗糙,以减少反射到所述感光区1411的光线,从而降低对光线的反射率。具体地,可以通过对非感光区1412、第二区域1424和第四区域1434的表面进行磨砂处理,即通过提高非感光区1412、第二区域1424和第四区域1434表面的摩擦系数来提高非感光区1412、第二区域1424和第四区域1434的粗糙度。可以理解地,提高非感光区1412、第二区域1424和第四区域1434的粗糙度可以减少非感光区1412、第二区域1424和第四区域1434的光线发生镜面反射,减少反射到所述感光区1411的光线,从而降低对光线的反射率。
另外,本申请实施例中的非感光区1412、第二区域1424和第四区域1434并不局限于平面,可以为有弧度的弧面,曲面,或其他形式,本申请在此不做限制。
综上,本申请的光探测器140可以通过将非感光区1412与感光区域1411的光线反射平面设置在不同平面上,及第二区域1424与感光区域1411的光线反射平面设置在不同平面上和第四区域1434的光线反射平面与感光区域1411的光线反射平面设置在不同平面上,或对光接收器141的非感光区1412、第二区域1424和第四区域1434涂覆吸光材料1413,或非感光区1412、第二区域1424和第四区域1434采用吸光材料1413制成,或非感光区1412、第二区域1424和第四区域1434的表面粗糙,降低对杂散光的反射率,从而杂散光不容易被光探测器140接收而产生串扰信号,提高了探测装置1000探测数据的准确性。
请参阅图11,在本申请的实施例中,光探测器140还可以包括间隔物144和透光的顶盖145。间隔物144包括相对的顶部1441和底部1442,底部1441设置在基座143上且顶部1441与顶盖145结合,以形成用于收容光接收器141的收容腔146。间隔物144可以是管壳或其他柱类元件,间隔物144与基座143可以是胶水胶合连接,也可以是通过铰接元件连接。间隔物144与顶盖145可以是用胶水固定结合,也可以是顶盖145与间隔物144的侧壁相卡合。顶盖145采用玻璃材质制成,使得光线能够透过顶盖145被光接收器141接收。
在本申请的实施例中,光探测器140还可以包括套筒147,套筒147包括相对的上部1471和下部1472。下部1472设置在基座143上,上部1471设置在顶部1441上。光探测器140通过非感光区1412、第二区域1424、第四区域1434和上部1471降低对光线的反射率。
套筒147采用塑料材质制成,塑料的重量较轻,使得套设套筒147后的光探测器140的重量和未套设套筒147前的光探测器140的重量几乎一样,即套设套筒147不会增加光探测器140的整体重量。并且塑料材质容易获取,套筒147的制作工艺更加简单。进一步地,套筒147可以采用深色塑料材质制成,如黑色塑料材质、蓝色塑料材质或其他深色塑料材质,深色的塑料材质吸光性好,能够更加有效地减少光线被套筒147的上部1471反射的反射率,产生的杂散光不容易被光探测器140接收而产生串扰信号,提高了探测装置1000探测数据的准确性。此外,套筒147的套设能够使得射至上部1471的光线(即为产生杂散光的光线)的平面的高度与光接收器141接收的光线的平面的高度相差更大,从而使得杂散光不容易被光探测器140接收而产生串扰信号,提高了探测装置1000探测数据的准确性。
在一个实施例中,上部1471包括侧壁1473和自侧壁1473向内延伸的延伸部1474,侧壁1473与间隔物144贴合,延伸部1474设置在顶部1441上且至少部分覆盖顶盖145。延伸部1474至少部分覆盖顶盖145,使得顶盖145下方对应的光接收器141的感光区1411能够透过顶盖145的透光区接收从探测装置1000外界反射回的光线,且套筒147能够对顶盖145下方对应的光接收器141的非感光区1412、第二区域1424、第四区域1434产生遮挡作用,可以有效降低杂散光被光接收器141接收的概率。此外,通过在光探测器140上套设套筒147可以起到一定的防水防尘作用,使得光探测器140不容易损坏,增加光探测器140的使用寿命。
请参阅图11,下部1472开设有缺口1475,当下部1472设置在基座143上,缺口1475与基座143的边缘卡合。下部1472开设有缺口1475,且缺口1475恰好与基座143的边缘卡合,使得套筒147能够较好地卡合在基座143上,套筒147不容易脱落,结构较为稳定。
请参阅图13,下部1472还可以胶合设置在基座143上,具体地,下部1472通过胶水固定设置在基座143的边缘。由于下部1472通过胶水胶合在基座143上,套筒147覆盖光探测器140,使得套筒147在有效防护杂散光被光接收器141接收的同时起到良好的防水、防尘的作用。
请再次参阅图11,在一个实施例中,光探测器140还包括设置在非感光区1412、第二区域1424、第四区域1434和上部1471的吸光材料1413,光探测器140通过吸光材料1413降低对光线的反射率。同样地,吸光材料1413可以是高分子有机材料或者是由树脂制成的黑色硅橡胶等,吸光材料1413对可见光和红外线的吸收率都比较高,从而非感光区1412、第二区域1424、第四区域1434和上部1471对光线的反射率较低。
在另一个实施例中,光探测器140的非感光区1412、第二区域1424、第四区域1434和上部1471采用吸光材料1413制成,光探测器140通过吸光材料1413降低对光线的反射率。由于非感 光区1412、第二区域1424、第四区域1434和上部1471直接采用吸光材料1413制成,无需在非感光区1412、第二区域1424、第四区域1434和上部1471另外设置吸光材料,因而光探测器140的高度较小,有利于实现光探测器140的小型化,同时,光探测器140的制造工艺较为简单。同样地,吸光材料1413可以是高分子有机材料或者是由树脂制成的黑色硅橡胶等。吸光材料1413对可见光和红外线的吸收率都比较高,从而非感光区1412、第二区域1424、第四区域1434和上部1471对光线的反射率较低。
在又一个实施例中,光探测器140通过提高非感光区1412、第二区域1424、第四区域1434和上部1471的表面粗糙,以减少反射到所述感光区1411的光线,从而降低对光线的反射率。具体地,可以通过将非感光区1412、第二区域1424、第四区域1434和上部1471的表面进行磨砂处理,即通过提高非感光区1412、第二区域1424、第四区域1434和上部1471表面的摩擦系数来提高非感光区1412、第二区域1424、第四区域1434和上部1471的粗糙度。可以理解地,非感光区1412、第二区域1424、第四区域1434和上部1471的表面粗糙可以减少非感光区1412的光线发生镜面反射,减少反射到所述感光区1411的光线,从而降低对光线的反射率。
综上,本申请的光探测器140可以通过对光接收器141的非感光区1412、第二区域1424、第四区域1434和上部1471涂覆吸光材料1413,或非感光区1412、第二区域1424、第四区域1434和上部1471采用吸光材料1413制成,以及非感光区1412、第二区域1424、第四区域1434和上部1471的表面粗糙,降低对杂散光的反射率,从而杂散光不容易被光接收器141接收而产生串扰信号,提高了探测装置1000探测数据的准确性。
需要指出的是,上述对非感光区1412、第二区域1424、第四区域1434和上部1471涂覆吸光材料1413、采用吸光材料1413制成以及使相应区域表面粗糙的方案可以任意组合,例如可以是非感光区1412涂覆吸光材料1413,第二区域1424采用吸光材料制成,第四区域1434的表面粗糙,上部1471涂覆吸光材料1413;还可以是非感光区1412采用吸光材料制成,第二区域1424涂覆吸光材料1413,第四区域1434涂覆吸光材料1413,上部1471的表面粗糙等组合方案,在此不一一列举。
请参阅图14,本申请的某些实施例还提供另一种光探测器140。光探测器140包括光接收器141、绝缘基板142、基座143和套筒147。光接收器141设置在绝缘基板142上,光接收器141包括感光区1411和非感光区1412。感光区1411用于接收经目标物体反射回的光线。绝缘基板142设置在基座143上。套筒147包括相对的上部1471和下部1472。下部1472设置在基座143上,上部1471至少部分罩设非感光区1412。光探测器140通过上部1471降低对光线的反射率。上部1471包括侧壁1473和自侧壁1473向内延伸的延伸部1474,延伸部1474至少部分覆盖非感光区1412。下部1472开设有缺口1475,当下部1472设置在基座143上,缺口1475与基座143的边缘卡合。
延伸部1474至少部分罩设非感光区1412,使得套筒147下方的光接收器141的感光区1411能够透过套筒147的透光区接收从探测装置1000外界反射回的光线,且套筒147能够对光接收器141的非感光区1412产生遮挡作用,可以有效降低杂散光被光接收器141接收的概率。此外,通过在光探测器140上套设套筒147可以起到一定的防水防尘作用,使得光探测器140不容易损坏,增加光探测器140的使用寿命。
本申请的光探测器140通过在光探测器140上套设套筒147,减少了光线被上部1471反射的反射率,产生的杂散光不容易被光探测器140接收而产生串扰信号,提高了探测装置1000探测数据的准确性。此外,套筒147的套设能够使得入射至上部1471的光线(即为产生杂散光的光线)的高度与光接收器141接收的光线的高度相差更大,从而使得杂散光不容易被光探测器140接收而产生串扰信号,从而提高了探测装置1000探测数据的准确性。
请参阅图14,在一个实施例中,光探测器140还包括设置在上部1471的吸光材料1413,光探测器140通过吸光材料1413降低对光线的反射率。同样地,吸光材料1413可以是高分子有机材料或者是由树脂制成的黑色硅橡胶等。吸光材料1413对可见光和红外线的吸收率都比较高,从而上部1471对光线的反射率较低。
在另一个实施例中,上部1471采用吸光材料1413制成,光探测器140通过吸光材料1413 降低对光线的反射率。由于上部1471直接采用吸光材料1413制成,无需在上部1471无需另外设置吸光材料,因而光探测器140的高度较小,有利于实现光探测器140的小型化,同时,光探测器140的制造工艺较为简单。同样地,吸光材料1413可以是高分子有机材料或者是由树脂制成的黑色硅橡胶等。吸光材料1413对可见光和红外线的吸收率都比较高,从而上部1471对光线的反射率较低。
在又一个实施例中,上部1471的表面粗糙,以减少反射到所述感光区1411的光线,进而降低对光线的反射率。具体地,可以通过将上部1471的表面进行磨砂处理,即通过提高上部1471表面的摩擦系数来提高上部1471的粗糙度。可以理解地,上部1471的表面粗糙,可以减少上部1471的光线发生镜面反射,减少反射到所述感光区1411的光线,从而降低对光线的反射率。
套筒147采用塑料材质制成,塑料的重量较轻,使得套设套筒147后的光探测器140的重量和未套设套筒147前的光探测器140的重量几乎一样,即套设套筒147不会增加光探测器140的整体重量。并且塑料材质容易获取,套筒147的制作工艺更加简单。进一步地,套筒147可以采用深色塑料材质制成,如黑色塑料材质、蓝色塑料材质或其他深色塑料材质,深色的塑料材质吸光性好,能够更加有效地减少光线被上部1471反射的反射率,产生的杂散光不容易被光探测器140接收而产生串扰信号,提高了探测装置1000探测数据的准确性。此外,套筒147的套设能够使得入射至上部1471的光线(即为产生杂散光的光线)的高度与光接收器141接收的光线的高度相差更大,使得杂散光不容易被光探测器140接收而产生串扰信号,从而提高了探测装置1000探测数据的准确性。
请参阅图14,光探测器140还可以包括间隔物144和透光的顶盖145。间隔物144包括相对的顶部1441和底部1442。上部1471设置在顶部1441上,底部1442设置在基座143上且顶部1441与顶盖145结合,以形成用于收容光接收器141的收容腔146。顶盖145采用玻璃材质制成。使得光线能够透过顶盖145被光接收器141接收。
绝缘基板142可以为陶瓷绝缘基板,陶瓷绝缘基板具有机械应力强、形状稳定、高强度、高导热率、高绝缘性、结合力强、防腐蚀等优点。光探测器140设置在导热性较好的绝缘基板142上,有利于光探测器140的散热,增加光探测器140的使用寿命。
请参阅图15和图16,扫描模组300与探测模组100相对设置且二者之间具有间隙,使得探测模组100和扫描模组300独立开来,探测装置1000工作时,扫描模组300能够相对探测模组100运动。
扫描模组300包括运动的光学元件310、驱动元件320和控制器330。光学元件310用于改变来自探测模组100的光束的传播方向后出射。其中,该光学元件310可以通过对光束进行反射、折射、衍射等等方式来改变光束传播路径,而运动的光学元件310可以在不同时刻将光束反射、折射或衍射至不同的方向。光学元件310可以是透镜、反射镜、棱镜、光栅、光学相控阵(Optical Phased Array)或上述光学元件310的任意组合。驱动元件320可以驱动光学元件310旋转、振动、沿预定轨迹循环移动或者沿预定轨迹来回移动,在此不做限制。控制器330可以控制驱动元件320驱动光学元件310转动的转动参数,例如转动方向(即旋转方向)、转动速度(即旋转速度)、转动角度、转动持续时间等。下面以光学元件310包括棱镜为例,进行举例描述。棱镜位于光脉冲序列的出射光路上。棱镜转动时可以改变经过棱镜的光束的传输方向。
光学元件310包括至少一个光折射元件,请参阅图15,光学元件310包括相对设置的第一光折射元件311和第二光折射元件312。第一光折射元件311和第二光折射元件312均包括相背的非平行的一对表面。具体地,第一光折射元件311形成有相背的第一倾斜面3111和第一垂直面3112。第一倾斜面3111相对于转动轴314倾斜,即第一倾斜面3111与转动轴314的夹角不呈0度或90度;第一垂直面3112与转动轴314垂直,即第一垂直面3112与转动轴314的夹角呈90度。光脉冲序列穿过第一垂直面3112和第一倾斜面3111。由于第一倾斜面3111与第一垂直面3112不平行,第一光折射元件311的厚度不均匀,即第一光折射元件311的厚度并不是处处相等的,存在厚度较大的位置及厚度较小的位置。在一个例子中,第一光折射元件311的厚度沿一个方向逐渐增大。同理,第二光折射元件312形成有相背的第二倾斜面3121和第二垂直面3122。第二倾斜面3121相对于转动轴314倾斜,即第二倾斜面3121与转动轴314的夹角不呈0度或90 度;第二垂直面3122与转动轴314垂直,即第二垂直面3122与转动轴314的夹角呈90度。光脉冲序列穿过第二倾斜面3121与第二垂直面3122。由于第二倾斜面3121与第二垂直面3122不平行,第二光折射元件312的厚度不均匀,即第二光折射元件312的厚度并不是处处相等的,存在厚度较大的位置及厚度较小的位置。在一个例子中,第二光折射元件312的厚度沿一个方向逐渐增大。
请参阅图16,除了第一光折射元件311和第二光折射元件312外,光学元件310还可包括与第一光折射元件311以及第二光折射元件312并列设置的第三光折射元件313。第三光折射元件313包括相背的非平行的一对表面。具体地,第三光折射元件313形成有相背的第三倾斜面3131和第三垂直面3132。第三倾斜面3131相对于转动轴314倾斜,即第三倾斜面3131与转动轴314的夹角不呈0度或90度;第三垂直面3132与转动轴314垂直,即第三垂直面3132与转动轴314的夹角呈90度。光脉冲序列穿过第三倾斜面3131与第三垂直面3132。由于第三倾斜面3131与第三垂直面3132不平行,第三光折射元件313的厚度不均匀,即第三光折射元件313的厚度并不是处处相等的,存在厚度较大的位置及厚度较小的位置。在一个例子中,第三光折射元件313的厚度沿一个方向逐渐增大。
进一步地,当光学元件310包括第一光折射元件311和第二光折射元件312时,第一倾斜面3111可与第二倾斜面3121不平行,第一垂直面3112可与第二垂直面3122平行。第一光折射元件311和第二光折射元件312的转动轴314可以相同,第一光折射元件311和第二光折射元件312均绕该相同的转动轴314转动;第一光折射元件311和第二光折射元件312的转动轴314也可以不相同,第一光折射元件311和第二光折射元件312绕不同的转动轴314(各自的转动轴314)转动。
当光学元件310包括第一光折射元件311、第二光折射元件312和第三光折射元件313时,第一倾斜面3111可与第二倾斜面3121不平行,第二倾斜面3121可与第三倾斜面3131平行,第一垂直面3112、第二垂直面3122和第三垂直面3132三者相互平行。第一光折射元件311、第二光折射元件312和第三光折射元件313的转动轴314可以相同,第一光折射元件311、第二光折射元件312和第三光折射元件313均绕该相同的转动轴314转动;第一光折射元件311、第二光折射元件312和第三光折射元件313的转动轴314也可以不相同,第一光折射元件311、第二光折射元件312和第三光折射元件313绕不同的转动轴314(各自的转动轴314)转动。
上述第一光折射元件311、第二光折射元件312和第三光折射元件313均可以为楔角棱镜。第一光折射元件311、第二光折射元件312和第三光折射元件313能够以不同的速度但相同的方向相对于对应的转动轴314转动;第一光折射元件311、第二光折射元件312和第三光折射元件313也可以以不同的方向但相同的速度相对于对应的转动轴314转动;第一光折射元件311、第二光折射元件312和第三光折射元件313还可以以不同的速度和不同的方向相对于对应的转动轴314转动。例如,第一光折射元件311和第二光折射元件312相对于转动轴314正转,第三光折射元件313相对于转动轴314反转;又例如,第一光折射元件311以第一速度相对于对应的转动轴314转动,第二光折射元件312以第二速度相对于对应的转动轴314转动,第三光折射元件313以第三速度相对于对应的转动轴314转动,第一速度、第二速度及第三速度可以全部相同,或者全部不同,或者部分相同、部分不同。在一个例子中,第一光折射元件311、第二光折射元件312的转动速度可以根据实际应用中预期扫描的区域和样式确定。
驱动元件320用于驱动第一光折射元件311、第二光折射元件312和第三光折射元件313以不同的速度和/或方向旋转。具体地,驱动元件320可包括第一驱动器321和第二驱动器322和第三驱动器323,第一驱动器321用于驱动第一光折射元件311绕转动轴314转动,第二驱动器322用于驱动第二光折射元件312绕转动轴314转动,第三驱动器323用于驱动第三光折射元件313绕转动轴314转动。光脉冲序列经一个棱镜改变方向后,还可以由另一个棱镜或者另外两个棱镜再次改变方向,以增加扫描模组300整体改变光束传播方向的能力,以扫描较大的空间范围,并且,可以通过设置不同的转动速度和/或转动方向,使得光脉冲序列扫描出预定的扫描形状。第一驱动器321、第二驱动器322和第三驱动器323可以均为电机或其他驱动器。可以理解,在其他实施方式中,第一光折射元件311、第二光折射元件312和第三光折射元件313也可以由共同的 一个驱动器驱动。
控制器330与驱动元件320连接,具体地,控制器330分别与第一驱动器321、第二驱动器322、第三驱动器323连接,控制器330用于依据控制指令控制第一驱动器321、第二驱动器322和第三驱动器323分别驱动第一光折射元件311、第二光折射元件312和第三光折射元件313转动。具体地,控制器330可以控制第一驱动器321驱动第一光折射元件311转动的转动参数(转动方向、转动速度、转动角度、转动持续时间等,下同),控制第二驱动器322驱动第二光折射元件312转动的转动参数,第三驱动器323驱动第三光折射元件313转动的转动参数。
在本说明书的描述中,参考术语“某些实施方式”、“一个实施方式”、“一些实施方式”、“示意性实施方式”、“示例”、“具体示例”、或“一些示例”的描述意指结合所述实施方式或示例描述的具体特征、结构、材料或者特点包含于本申请的至少一个实施方式或示例中。在本说明书中,对上述术语的示意性表述不一定指的是相同的实施方式或示例。而且,描述的具体特征、结构、材料或者特点可以在任何的一个或多个实施方式或示例中以合适的方式结合。
此外,术语“第一”、“第二”仅用于描述目的,而不能理解为指示或暗示相对重要性或者隐含指明所指示的技术特征的数量。由此,限定有“第一”、“第二”的特征可以明示或者隐含地包括至少一个所述特征。在本申请的描述中,“多个”的含义是至少两个,例如两个,三个,除非另有明确具体的限定。
尽管上面已经示出和描述了本申请的实施例,可以理解的是,上述实施例是示例性的,不能理解为对本申请的限制,本领域的普通技术人员在本申请的范围内可以对上述实施例进行变化、修改、替换和变型,本申请的范围由权利要求及其等同物限定。

Claims (40)

  1. 一种光探测器,其特征在于,所述光探测器包括光接收器,所述光接收器包括感光区和非感光区,所述感光区用于接收经目标物体反射回的光线,所述光探测器通过所述非感光区降低对光线的反射率。
  2. 根据权利要求1所述的光探测器,其特征在干,当所述光探测器与准直元件配合使用时,至少部分所述感光区位干所述准直元件的焦面上,所述感光区以外的区域远离所述焦面设置。
  3. 根据权利要求1所述的光探测器,其特征在于,所述非感光区的光线反射平面与所述感光区的光线反射平面不在同一平面上。
  4. 根据权利要求1所述的光探测器,其特征在于,所述光探测器还包括设置在所述非感光区的吸光材料,所述光探测器通过所述吸光材料降低对光线的反射率。
  5. 根据权利要求1所述的光探测器,其特征在于,所述非感光区采用吸光材料制成,所述光探测器通过所述吸光材料降低对光线的反射率。
  6. 根据权利要求1所述的光探测器,其特征在于,所述非感光区的表面粗糙,以减少反射到所述感光区的光线。
  7. 根据权利要求1所述的光探测器,其特征在于,所述光探测器还包括绝缘基板,所述绝缘基板包括相背的顶面和底面,所述顶面包括第一区域和与所述第一区域相接的第二区域,所述光接收器设置在所述第一区域,所述光探测器通过所述非感光区和所述第二区域降低对光线的反射率。
  8. 根据权利要求7所述的光探测器,其特征在于,所述非感光区和所述第二区域的光线反射平面与所述感光区的光线反射平面不在同一平面上。
  9. 根据权利要求7所述的光探测器,其特征在于,所述光探测器还包括设置在所述非感光区和所述第二区域的吸光材料,所述光探测器通过所述吸光材料降低对光线的反射率。
  10. 根据权利要求7所述的光探测器,其特征在于,所述非感光区和所述第二区域采用吸光材料制成,所述光探测器通过所述吸光材料降低对光线的反射率。
  11. 根据权利要求7所述的光探测器,其特征在于,所述非感光区和所述第二区域的表面粗糙,以减少反射到所述感光区的光线。
  12. 根据权利要求7所述的光探测器,其特征在于,所述绝缘基板为陶瓷基板。
  13. 根据权利要求7所述的光探测器,其特征在于,所述光探测器还包括基座,所述基座包括相背的上表面和下表面,所述上表面包括第三区域和与所述第三区域相接的第四区域,所述绝缘基板设置在所述第三区域,所述光探测器通过所述非感光区、所述第二区域和所述第四区域降低对光线的反射率。
  14. 根据权利要求13所述的光探测器,其特征在于,所述非感光区、所述第二区域和所述第四区域的光线反射平面与所述感光区的光线反射平面不在同一平面上。
  15. 根据权利要求13所述的光探测器,其特征在于,所述光探测器还包括设置在所述非感光区、所述第二区域和所述第四区域的吸光材料,所述光探测器通过所述吸光材料降低对光线的反射率。
  16. 根据权利要求13所述的光探测器,其特征在于,所述非感光区、所述第二区域和所述第四区域采用吸光材料制成,所述光探测器通过所述吸光材料降低对光线的反射率。
  17. 根据权利要求13所述的光探测器,其特征在于,所述非感光区、所述第二区域和所述第四区域的表面粗糙,以减少反射到所述感光区的光线。
  18. 根据权利要求13所述的光探测器,其特征在于,所述光探测器还包括间隔物和透光的顶盖,所述间隔物包括相对的顶部和底部,所述底部设置在所述基座上且所述顶部与所述顶盖结合,以形成用于收容所述光接收器的收容腔。
  19. 根据权利要求18所述的光探测器,其特征在于,所述顶盖采用玻璃材质制成。
  20. 根据权利要求13所述的光探测器,其特征在于,所述光探测器还包括套筒,所述套筒包括相对的上部和下部,所述下部设置在所述基座上,所述上部设置在所述顶部上,所述光探测器通过所述非感光区、所述第二区域、所述第四区域和所述上部降低对光线的反射率。
  21. 根据权利要求20所述的光探测器,其特征在于,所述光探测器还包括设置在所述非感光区、所述第二区域、所述第四区域和所述上部的吸光材料,所述光探测器通过所述吸光材料降低对光线的反射率。
  22. 根据权利要求20所述的光探测器,其特征在于,所述非感光区、所述第二区域、所述第四区域和所述上部采用吸光材料制成,所述光探测器通过所述吸光材料降低对光线的反射率。
  23. 根据权利要求20所述的光探测器,其特征在于,所述非感光区、所述第二区域、所述第四区域和所述上部的表面粗糙,以减少反射到所述感光区的光线。
  24. 根据权利要求20所述的光探测器,其特征在于,所述套筒采用塑料材质制成。
  25. 根据权利要求20所述的光探测器,其特征在于,所述上部包括侧壁和自所述侧壁向内延伸的延伸部,所述侧壁与所述间隔物贴合,所述延伸部设置在所述顶部上且至少部分覆盖所述顶盖。
  26. 根据权利要求20所述的光探测器,其特征在于,所述下部开设有缺口,当所述下部设置在所述基座上,所述缺口与所述基座的边缘卡合。
  27. 一种光探测器,其特征在于,所述光探测器包括光接收器、绝缘基板、基座和套筒,所述光接收器设置在所述绝缘基板上,所述光接收器包括感光区和非感光区,所述感光区用于接收经目标物体反射回的光线;所述绝缘基板设置在所述基座上;所述套筒包括相对的上部和下部,所述下部设置在所述基座上,所述上部至少部分罩设所述非感光区,所述光探测器通过所述上部降低对光线的反射率。
  28. 根据权利要求27所述的光探测器,其特征在于,所述光探测器还包括设置在所述上部的 吸光材料,所述光探测器通过所述吸光材料降低对光线的反射率。
  29. 根据权利要求27所述的光探测器,其特征在于,所述上部采用吸光材料制成,所述光探测器通过所述吸光材料降低对光线的反射率。
  30. 根据权利要求27所述的光探测器,其特征在于,所述上部的表面粗糙,以减少反射到所述感光区的光线。
  31. 根据权利要求27所述的光探测器,其特征在于,所述套筒采用塑料材质制成。
  32. 根据权利要求27所述的光探测器,其特征在于,所述上部包括侧壁和自所述侧壁向内延伸的延伸部,所述延伸部至少部分覆盖所述非感光区。
  33. 根据权利要求27所述的光探测器,其特征在于,所述下部开设有缺口,当所述下部设置在所述基座上,所述缺口与所述基座的边缘卡合。
  34. 根据权利要求27所述的光探测器,其特征在于,所述光探测器还包括间隔物和透光的顶盖,所述间隔物包括相对的顶部和底部,所述上部设置在所述顶部上,所述底部设置在所述基座上且所述顶部与所述顶盖结合,以形成用于收容所述光接收器的收容腔。
  35. 根据权利要求34所述的光探测器,其特征在于,所述顶盖采用玻璃材质制成。
  36. 根据权利要求27所述的光探测器,其特征在于,所述绝缘基板为陶瓷绝缘基板。
  37. 一种探测模组,其特征在于,所述探测模组包括光源、光路改变元件、准直元件和权利要求1至36任意一项所述的光探测器,所述光源发射的光束经过所述光路改变元件的透射后到达所述准直元件、再由所述准直元件准直后出射至目标物体上,由所述目标物体反射回的光束被所述准直元件汇聚至所述光路改变元件、再由所述光路改变元件反射至所述光探测器。
  38. 一种探测装置,其特征在于,包括:
    壳体;
    扫描模组;和
    权利要求37所述的探测模组,所述探测模组和所述扫描模组分别与所述壳体结合,所述探测模组用于向所述扫描模组发射光束,所述扫描模组用于改变所述光束的传输方向后出射,经目标物体反射回的光束经过所述扫描模组后入射至所述探测模组,所述探测模组用于根据所述反射回的光束确定所述目标物体相对所述探测装置的距离和/或方向。
  39. 根据权利要求38所述的探测装置,其特征在于,所述扫描模组包括运动的光学元件,用于改变来自所述探测模组的光束的传播方向后出射。
  40. 根据权利要求39所述的探测装置,其特征在于,所述扫描模组还包括用于驱动所述光学元件运动的驱动元件。
PCT/CN2019/122092 2019-11-29 2019-11-29 光探测器、探测模组和探测装置 WO2021102950A1 (zh)

Priority Applications (2)

Application Number Priority Date Filing Date Title
CN201990000880.9U CN215867092U (zh) 2019-11-29 2019-11-29 光探测器、探测模组和探测装置
PCT/CN2019/122092 WO2021102950A1 (zh) 2019-11-29 2019-11-29 光探测器、探测模组和探测装置

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/CN2019/122092 WO2021102950A1 (zh) 2019-11-29 2019-11-29 光探测器、探测模组和探测装置

Publications (1)

Publication Number Publication Date
WO2021102950A1 true WO2021102950A1 (zh) 2021-06-03

Family

ID=76129044

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2019/122092 WO2021102950A1 (zh) 2019-11-29 2019-11-29 光探测器、探测模组和探测装置

Country Status (2)

Country Link
CN (1) CN215867092U (zh)
WO (1) WO2021102950A1 (zh)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114023473A (zh) * 2021-11-03 2022-02-08 哈尔滨工程大学 基于凹凸透镜补偿法的测量装置
CN115825916A (zh) * 2021-12-03 2023-03-21 深圳市速腾聚创科技有限公司 一种光学接收装置及光学传感装置

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN116406106A (zh) * 2023-02-22 2023-07-07 华为技术有限公司 壳体结构、壳体、电子设备及壳体结构的制备方法

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2015132729A (ja) * 2014-01-14 2015-07-23 パナソニックIpマネジメント株式会社 情報取得装置および物体検出装置
CN106066495A (zh) * 2015-04-20 2016-11-02 日月光半导体制造股份有限公司 光学传感器模块及用于制造该光学传感器模块的方法
CN106605130A (zh) * 2014-05-19 2017-04-26 Idt欧洲有限责任公司 杂散光抑制式紫外光传感器及紫外光检测方法
CN206223977U (zh) * 2016-10-08 2017-06-06 深圳市金立通信设备有限公司 激光测距装置、摄像装置以及终端
CN108061884A (zh) * 2017-11-10 2018-05-22 无锡英菲感知技术有限公司 一种基于微镜的共享窗口激光雷达系统
CN208060019U (zh) * 2018-02-09 2018-11-06 中山市慧谱仪器有限公司 测光探测器
CN109901184A (zh) * 2019-03-25 2019-06-18 Oppo广东移动通信有限公司 飞行时间组件、终端及飞行时间组件的控制方法
CN109923372A (zh) * 2016-10-25 2019-06-21 特里纳米克斯股份有限公司 采用集成滤波器的红外光学检测器

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2015132729A (ja) * 2014-01-14 2015-07-23 パナソニックIpマネジメント株式会社 情報取得装置および物体検出装置
CN106605130A (zh) * 2014-05-19 2017-04-26 Idt欧洲有限责任公司 杂散光抑制式紫外光传感器及紫外光检测方法
CN106066495A (zh) * 2015-04-20 2016-11-02 日月光半导体制造股份有限公司 光学传感器模块及用于制造该光学传感器模块的方法
CN206223977U (zh) * 2016-10-08 2017-06-06 深圳市金立通信设备有限公司 激光测距装置、摄像装置以及终端
CN109923372A (zh) * 2016-10-25 2019-06-21 特里纳米克斯股份有限公司 采用集成滤波器的红外光学检测器
CN108061884A (zh) * 2017-11-10 2018-05-22 无锡英菲感知技术有限公司 一种基于微镜的共享窗口激光雷达系统
CN208060019U (zh) * 2018-02-09 2018-11-06 中山市慧谱仪器有限公司 测光探测器
CN109901184A (zh) * 2019-03-25 2019-06-18 Oppo广东移动通信有限公司 飞行时间组件、终端及飞行时间组件的控制方法

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114023473A (zh) * 2021-11-03 2022-02-08 哈尔滨工程大学 基于凹凸透镜补偿法的测量装置
CN114023473B (zh) * 2021-11-03 2024-06-11 哈尔滨工程大学 基于凹凸透镜补偿法的测量装置
CN115825916A (zh) * 2021-12-03 2023-03-21 深圳市速腾聚创科技有限公司 一种光学接收装置及光学传感装置
CN115825916B (zh) * 2021-12-03 2024-02-06 深圳市速腾聚创科技有限公司 一种光学接收装置及光学传感装置

Also Published As

Publication number Publication date
CN215867092U (zh) 2022-02-18

Similar Documents

Publication Publication Date Title
WO2020151539A1 (zh) 一种激光雷达系统
WO2021102950A1 (zh) 光探测器、探测模组和探测装置
WO2022000575A1 (zh) 一种用于广角飞行时间光学测距的红外发射模块及其模组
CN210015229U (zh) 一种距离探测装置
TW201818096A (zh) 光學裝置
WO2020142870A1 (zh) 一种测距装置
US20210041560A1 (en) Distance detection apparatuses
WO2019080345A1 (zh) 一种基于双胶合透镜的传输光器件
CN209979845U (zh) 一种测距装置及移动平台
WO2020142941A1 (zh) 一种光发射方法、装置及扫描系统
WO2022110062A1 (zh) 光学测距装置及其光学窗口、可移动设备
JPH10325872A (ja) 光レーダ装置
CN211426786U (zh) 探测模组和探测装置
CN110531369A (zh) 一种固态激光雷达
WO2020223879A1 (zh) 一种测距装置及移动平台
WO2020062256A1 (zh) 一种光束扫描系统、距离探测装置及电子设备
WO2024092424A1 (zh) 光学窗口、激光雷达及可移动平台
US11796385B2 (en) Optical receiving device and optical sensing device comprising a reflecting surface having a second portion arranged along an outer boundary of a first portion with different reflectivity
WO2020142919A1 (zh) 一种测距装置及移动平台
US20210341588A1 (en) Ranging device and mobile platform
CN210894690U (zh) 一种激光发射装置以及激光雷达系统
CN209417294U (zh) 一种光电转换模块和光学测距模组
CN116338702A (zh) 一种激光雷达同轴收发系统及激光雷达
WO2021134689A1 (zh) 测距装置和测距系统
WO2020118514A1 (zh) 测距模组和测距装置

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 19953859

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 19953859

Country of ref document: EP

Kind code of ref document: A1