WO2021102730A1 - 可移动平台的控制方法、设备及存储介质 - Google Patents

可移动平台的控制方法、设备及存储介质 Download PDF

Info

Publication number
WO2021102730A1
WO2021102730A1 PCT/CN2019/121223 CN2019121223W WO2021102730A1 WO 2021102730 A1 WO2021102730 A1 WO 2021102730A1 CN 2019121223 W CN2019121223 W CN 2019121223W WO 2021102730 A1 WO2021102730 A1 WO 2021102730A1
Authority
WO
WIPO (PCT)
Prior art keywords
antenna
signal
received power
antennas
movable platform
Prior art date
Application number
PCT/CN2019/121223
Other languages
English (en)
French (fr)
Inventor
饶雄斌
李栋
赵亮
Original Assignee
深圳市大疆创新科技有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 深圳市大疆创新科技有限公司 filed Critical 深圳市大疆创新科技有限公司
Priority to CN201980033246.XA priority Critical patent/CN112154612A/zh
Priority to PCT/CN2019/121223 priority patent/WO2021102730A1/zh
Publication of WO2021102730A1 publication Critical patent/WO2021102730A1/zh

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B7/00Radio transmission systems, i.e. using radiation field
    • H04B7/02Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas
    • H04B7/04Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas
    • H04B7/06Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas at the transmitting station
    • H04B7/0602Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas at the transmitting station using antenna switching
    • H04B7/0608Antenna selection according to transmission parameters
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B17/00Monitoring; Testing
    • H04B17/10Monitoring; Testing of transmitters
    • H04B17/15Performance testing
    • H04B17/17Detection of non-compliance or faulty performance, e.g. response deviations
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B17/00Monitoring; Testing
    • H04B17/20Monitoring; Testing of receivers
    • H04B17/29Performance testing
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B17/00Monitoring; Testing
    • H04B17/30Monitoring; Testing of propagation channels
    • H04B17/309Measuring or estimating channel quality parameters
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B17/00Monitoring; Testing
    • H04B17/30Monitoring; Testing of propagation channels
    • H04B17/382Monitoring; Testing of propagation channels for resource allocation, admission control or handover
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B7/00Radio transmission systems, i.e. using radiation field
    • H04B7/02Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas
    • H04B7/04Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas
    • H04B7/08Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas at the receiving station
    • H04B7/0802Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas at the receiving station using antenna selection

Definitions

  • This application relates to the technical field of unmanned aerial vehicles, and in particular to a control method, equipment and storage medium of a movable platform.
  • the user uses the remote control to control the drone flight in manual mode.
  • the probability of the drone falling is high, and the possibility of antenna damage is greatly increased.
  • the internal damage of the antenna cannot be easily seen from the appearance. It can be seen that after the antenna is damaged, the user may continue to use it, and the wireless signal is weak, which affects the performance of the entire wireless communication system.
  • Various aspects of the present application provide a control method, equipment and storage medium for a movable platform, which are used to detect whether the antenna of the movable platform is damaged, and take necessary measures against antenna damage in time to improve the overall performance of the movable platform and reduce Incident rate.
  • An embodiment of the present application provides a method for controlling a movable platform, the movable platform is provided with an antenna, the number of the antenna is multiple, and the method includes:
  • the signal sending strategy and/or the signal receiving strategy of the movable platform are adjusted.
  • An embodiment of the present application also provides a movable platform, including: an antenna, the number of the antenna is multiple, one or more processors, and one or more memories storing computer programs;
  • the one or more processors are used to execute the computer program for:
  • the signal sending strategy and/or the signal receiving strategy of the movable platform are adjusted.
  • the embodiment of the present application also provides a computer-readable storage medium storing a computer program.
  • the computer program is executed by one or more processors, the one or more processors are caused to execute the above-mentioned mobile platform. Control Method.
  • the movable platform obtains the received signal of the antenna; then, according to the received signal of the antenna, performs fault detection on the antenna, and obtains the fault detection result; finally, based on the obtained antenna fault
  • the detection result automatically adjusts the signal sending strategy and/or signal receiving strategy of the mobile platform, optimizes the overall system performance of the mobile platform, and reduces the incidence of accidents.
  • Fig. 1a is a schematic structural diagram of a movable platform control system provided by an exemplary embodiment of this application;
  • FIG. 1b is a schematic structural diagram of another movable platform control system 20 provided by an exemplary embodiment of this application;
  • FIG. 2 is a schematic flowchart of a method for controlling a movable platform provided by an exemplary embodiment of this application;
  • FIG. 3 is a schematic flowchart of a method for controlling a movable platform provided by an exemplary embodiment of this application;
  • Fig. 4 is a schematic structural diagram of a movable platform provided by an exemplary embodiment of this application.
  • the movable platform obtains the received signal of the antenna; then, according to the received signal of the antenna, the antenna is performed Fault detection, and obtain fault detection results; finally, based on the acquired antenna fault detection results, automatically adjust the signal transmission strategy and/or signal reception strategy of the movable platform, optimize the overall system performance of the movable platform, and reduce the incidence of accidents .
  • FIG. 1a is a schematic structural diagram of a movable platform control system 10 provided by an exemplary embodiment of this application.
  • the movable platform control system 10 includes a first movable platform 10a and a second movable platform 10b communicatively connected with the first movable platform 10a.
  • the first movable platform 10a and the second movable platform 10b are respectively provided with a plurality of antennas, and a communication connection is realized through the antenna transmission signal between the two.
  • the first movable platform 10a and the second movable platform 10b can judge whether their respective antennas are faulty based on the signals received by their own antennas; and when the antennas of the first movable platform 10a and the second movable platform 10b are faulty, Automatically adjust the respective signal sending strategy and/or signal receiving strategy to ensure the stable operation of the system.
  • the specific implementation form of the first movable platform 10a and the second movable platform 10b is not limited.
  • the first movable platform 10a and the second movable platform 10b may be wireless communication devices such as an unmanned aerial vehicle and a remote control device, a remote control racing car and a remote control handle that have a communication relationship.
  • multiple antennas are respectively provided on the first movable platform 10a and the second movable platform 10b.
  • the antennas may be dipole antennas, and the first movable platform 10a and the second movable platform 10b Establish a communication connection via wireless.
  • the first movable platform 10a may use WIFI, Lightbridge, OcuSync, and the second movable platform 10b to establish a communication connection, or the first movable platform 10a may establish a communication connection with the second movable platform 10b through a mobile network .
  • the network standard of the mobile network can be any of 2G (GSM), 2.5G (GPRS), 3G (WCDMA, TD-SCDMA, CDMA2000, UTMS), 4G (LTE), 4G+ (LTE+), WiMax and 5G, etc.
  • GSM 2G
  • GPRS 2.5G
  • 3G WCDMA, TD-SCDMA, CDMA2000, UTMS
  • 4G LTE
  • 4G+ Long Term Evolution+
  • WiMax 5G
  • the first movable platform 10 performs fault detection on the antenna as an example.
  • the first movable platform 10a obtains the reception signal of the antenna; the first movable platform 10a performs fault detection on the antenna according to the reception signal of the antenna of the first movable platform 10a; if the first movable platform 10a detects the existence of its own antenna
  • the signal sending strategy and/or signal receiving strategy are automatically adjusted to ensure the stable operation of the communication system.
  • the first movable platform 10a performs fault detection on the antenna according to the received signal of the antenna.
  • An alternative embodiment is to obtain the actual signal received power of the antenna according to the received signal of the antenna; Obtain the reference signal receiving power of the antenna, and perform fault detection on the antenna according to the actual signal receiving power of the antenna and the reference signal receiving power.
  • the first movable platform 10a is provided with an actual signal received power measurement module and a round trip delay measurement module.
  • the first mobile platform 10a uses the actual signal received power measurement module to obtain the actual signal received power of the antenna; uses the round-trip delay measurement module to obtain the round-trip time of the antenna signal; and calculates the antenna reference signal based on the round-trip time of the antenna signal Receive power.
  • the reference signal received power of the antenna is calculated based on the round-trip time of the antenna signal.
  • An alternative embodiment is to calculate the distance between the antenna and the signal source according to the round-trip time of the antenna signal; The distance from the signal source to obtain the reference signal received power of the antenna.
  • the first movable platform 10a is an unmanned aerial vehicle
  • the second movable platform 10b (that is, the signal source) is a remote control device that communicates with the unmanned aerial vehicle.
  • the unmanned aerial vehicle is equipped with a round-trip delay measurement module and a round-trip delay measurement module. It can measure the time of the drone-remote control device-unmanned aerial vehicle wireless loop. If the round-trip delay measurement module measures the round-trip time of the detected antenna signal as t w , then the distance between the drone and the remote control device is Where c is the speed of light.
  • the reference signal received power of the antenna is obtained according to the distance between the antenna and the signal source.
  • An alternative embodiment is to obtain the antenna's reference signal receiving power according to the distance between the antenna and the signal source and a preset distance threshold. Reference signal received power.
  • the preset distance threshold is obtained according to a test, the embodiment of the present application does not limit the preset distance threshold, and the preset distance threshold can be adjusted according to actual conditions.
  • the reference signal received power RSRP f of the drone's antenna is:
  • P t is the transmit power on the remote control device side
  • G t is the transmit antenna gain on the remote control device side
  • G r is the receive antenna gain on the drone side
  • f MHz is the current uplink operating frequency (in MHz)
  • D m is the preset distance threshold
  • S is the shading effect loss.
  • the first mobile platform 10a obtains the actual signal received power of the antenna and the reference signal received power, it performs fault detection on the antenna.
  • An alternative embodiment is to calculate the actual signal received power of the first antenna for the first antenna. The difference between the received power of the reference signal and the received power of the reference signal; according to the difference between the received power of the actual signal received by the first antenna and the received power of the reference signal, determine whether the first antenna is damaged; where the first antenna is any one of the antennas .
  • an optional embodiment is to filter the difference between the actual signal received power of the first antenna and the reference signal received power to obtain the first filter value; if the first filter value is greater than the set threshold, then It is determined that the first antenna is damaged; if the first filter value is less than the set threshold, the difference between the actual signal received power of other antennas and the reference signal received power is combined to continue to determine whether the first antenna is damaged; where, Other antennas refer to the antennas other than the first antenna; then, filter the difference between the actual signal received power of the other antennas and the reference signal received power to obtain the second antenna corresponding to any one of the other antennas.
  • the Filter value if the first filter value is greater than the sum of the second filter value corresponding to any one of the other antennas and the set threshold, it is determined that the first antenna is damaged; if there is no first filter value greater than the other antenna The sum of the second filter value corresponding to any antenna and the set threshold value, it is determined that the first antenna is not damaged. It should be noted that this application does not limit the set threshold value, and the set threshold value can be adjusted according to actual conditions. Generally, the set threshold value is 20 dB.
  • the first movable platform 10a as a drone
  • the first movable platform 10a adjusts the signal transmission strategy and/or the signal reception strategy according to the antenna failure detection result.
  • An optional embodiment is that if the receiving antenna of the first movable platform 10a is damaged, at least the signal receiving strategy is adjusted; if the transmitting antenna of the first movable platform 10a is damaged, at least the signal sending strategy is adjusted; If both the receiving antenna and the transmitting antenna of a movable platform 10a are damaged, the signal receiving strategy and signal sending strategy are adjusted.
  • the first mobile platform of the embodiment of the present application detects that the antenna is damaged, it adjusts the signal transmission strategy and/or the signal reception strategy, optimizes the overall system performance of the mobile platform, and reduces the incidence of accidents.
  • the receiving antenna of the first movable platform 10a is damaged, at least the receiving strategy of the antenna is adjusted. Including but not limited to the following implementation methods:
  • An alternative embodiment is to use the received signal of the undamaged receiving antenna as the received signal for signal processing.
  • the signal receiving strategy and the signal sending strategy are adjusted. If there is a transmitting antenna that has the function of transmitting signals in the damaged receiving antenna, adjust the signal receiving strategy and signal sending strategy.
  • the first movable platform 10a is an unmanned aerial vehicle. If the receiving antenna of the drone is damaged, a control signal for controlling the drone can be generated based on the received signal of the undamaged receiving antenna of the drone. If the first movable platform 10a is a remote control device that communicates with an unmanned aerial vehicle, it can generate a real-time image signal based on the received signal of the undamaged receiving antenna of the remote control device.
  • the transmitting antenna is damaged, at least the signal transmission strategy is adjusted. Adjust the signal transmission strategy, including but not limited to the following implementation methods:
  • the current transmission mode adjusts the current transmission mode to a transmission mode that is adapted to the number of undamaged transmitting antennas, where different transmission modes correspond to different numbers of transmitting antennas .
  • the number of undamaged transmitting antennas of the UAV is one
  • the current transmitting mode of the UAV is 2T mode
  • the minimum number of transmitting antennas required by the 2T mode is 2, then the current UAV’s
  • the transmission mode is adjusted to 1T mode, which is a mode supported by one antenna.
  • different transmission modes also correspond to different transmission powers. When the current transmission mode of the UAV is adjusted from 2T mode to 1T mode, the transmission power of a single transmitting antenna can be increased to Ensure the performance of the wireless communication system.
  • the transmitting antennas include multiple groups of transmitting antennas, and if at least one of the multiple groups of transmitting antennas is damaged, at least one group of transmitting antennas is selected from the remaining groups of transmitting antennas to send signals to the outside.
  • the transmitting antennas of UAVs include group A, group B, group C, and group D, which can transmit signals individually. If one of the antennas of group A is damaged, the antennas from group B, group C, Select any group in group D to send the current signal.
  • the signal receiving strategy and signal sending strategy of the movable platform are adjusted.
  • the specific manner of adjusting the receiving strategy and the sending strategy refer to the description of the corresponding part of the foregoing embodiment.
  • the first mobile platform 10a needs to adjust the antenna reception strategy and/or transmission strategy, and can send a reception strategy change message and/or a transmission strategy change message to the second mobile platform 10b, so that the second mobile platform 10a can
  • the mobile platform 10b updates its own signal transmission strategy and/or signal reception strategy. If the first movable platform 10a is a drone and the second movable platform 10b is a remote control device, the drone will send and receive policy change messages and/or send policy change messages to the remote control device communicating with the drone, so that The remote control device updates the signal transmission strategy and/or signal reception strategy of the remote control device.
  • the remote control device can also send a receiving strategy change message and/or a sending strategy change message to the drone, so that the drone updates the signal sending strategy and/or signal receiving strategy of the drone. Further, the receiving strategy change message and/or the sending strategy change message carry time information, so that the drone and the remote control device can be adjusted synchronously.
  • the drone sends a receiving strategy change message to the remote control device; After the man-machine receives the policy change message, it sends a received notification message to the drone; the drone receives the received notification message sent by the remote control device; the drone and the remote control device change their signal receiving strategies together.
  • the receiving strategy change message carries time information for adjusting the strategy, and the UAV and the remote control device change their receiving strategies at the same time according to the time information.
  • FIG. 1b is a schematic structural diagram of another movable platform control system 20 provided by an exemplary embodiment of this application.
  • the movable platform control system 20 includes a first movable platform 20a, a second movable platform 20b communicatively connected with the first movable platform 20a, and a mobile terminal communicatively connected with the first movable platform 20a 20c.
  • the first movable platform 20a and the second movable platform 20b are respectively provided with multiple antennas, and the communication connection is realized through the antenna transmission signal.
  • the first movable platform 20a and the second movable platform 20b can be Determine whether the respective antennas are faulty based on the signals received by their own antennas; and automatically adjust the respective signal transmission strategies and/or signal reception strategies when the first movable platform 20a and the second movable platform 20b antennas are faulty. Ensure the stable operation of the system. In addition, after detecting the failure of its own antenna, the first movable platform 20a sends the information of the damaged antenna to the mobile terminal 20c for the user to view, and the user can take further countermeasures.
  • connection mode and implementation form of the first movable platform 20a and the second movable platform 20b reference may be made to the description of the foregoing embodiments, which will not be repeated in this embodiment.
  • the mobile terminal 20c is a user-side device that can interact with the user and has a computer device with functions such as computing, Internet access, and communication required by the user.
  • the implementation form of the mobile terminal 20c can be various, for example, These are smart phones, wearable devices (such as virtual reality head-mounted display devices), tablet computers, desktop computers, and smart TVs.
  • the first movable platform 20a and the mobile terminal 20c establish a wireless communication connection.
  • the first movable platform 20a may use WIFI, Lightbridge, OcuSync, and the second movable platform 20b to establish a communication connection, or the first movable platform 20a may establish a communication connection with the second movable platform 20b through a mobile network .
  • the network standard of the mobile network can be any of 2G (GSM), 2.5G (GPRS), 3G (WCDMA, TD-SCDMA, CDMA2000, UTMS), 4G (LTE), 4G+ (LTE+), WiMax and 5G, etc.
  • GSM 2G
  • GPRS 2.5G
  • 3G WCDMA
  • TD-SCDMA Time Division Multiple Access
  • CDMA2000 Code Division Multiple Access 2000
  • UTMS Universal Mobile communications
  • 4G Long Term Evolution
  • LTE Long Term Evolution
  • LTE+ Long Term Evolution+
  • WiMax Fifth Generation
  • 5G 5G
  • the mobile terminal 20c includes an electronic display screen, and the user can interact with the mobile terminal 20c through the electronic display screen; the electronic display screen can display information that the antenna is damaged for the user to view.
  • the first movable platform 20a and the second movable platform 20b can refer to the description of the corresponding part of the foregoing embodiments for the detection of the failure of the respective antennas, which will not be repeated here.
  • the information of the damaged antenna is sent to the mobile terminal 20c for the user to view.
  • the embodiment of the present application does not limit the display form of the information of the damaged antenna of the mobile terminal 20c, and the information of the damaged antenna is displayed.
  • the forms include but are not limited to the following display forms:
  • the mobile terminal 20c displays a short message containing information that the antenna is damaged.
  • the content of the short message can be text information containing the damaged antenna, or text information containing the code of the damaged antenna.
  • the display interface of the mobile terminal 20c displays information indicating that the antenna is damaged.
  • the display interface may display text information about the damaged antenna, or text information containing the code of the damaged antenna, or it may be the graphical information marked with the damaged antenna on the schematic diagram of the first movable platform 20a.
  • the mobile platform obtains the received signal of the antenna; then, according to the received signal of the antenna, performs fault detection on the antenna, and obtains the fault detection result; finally, based on the obtained antenna Fault detection results, automatically adjust the signal transmission strategy and/or signal reception strategy of the movable platform, optimize the overall system performance of the movable platform, and reduce the incidence of accidents.
  • FIG. 2 is a schematic flowchart of a method for controlling a movable platform provided by an exemplary embodiment of the application. As shown in Figure 2, the method includes:
  • S202 Perform fault detection on the antenna according to the received signal of the antenna
  • S203 Adjust the signal sending strategy and/or signal receiving strategy of the movable platform according to the result of the failure detection of the antenna.
  • the execution subject of the above method may be a drone, a remote control device paired to communicate with the drone, a remote control racing car, a remote control handle paired with a remote control racing car, and other devices that communicate through multiple antennas.
  • the mobile platform first obtains the received signal of the antenna; then, according to the received signal of the antenna, performs fault detection on the antenna; if it detects that its own antenna is faulty, it automatically adjusts its own signal transmission strategy and/ Or signal receiving strategy to ensure the stable operation of its own communication system.
  • the movable platform performs fault detection on the antenna based on the signal received by the antenna.
  • An alternative embodiment is to obtain the actual signal received power of the antenna according to the signal received by the antenna; according to the round-trip time of the antenna signal , Obtain the reference signal receiving power of the antenna; Perform fault detection on the antenna according to the actual signal receiving power of the antenna and the reference signal receiving power.
  • the movable platform is provided with an actual signal received power measurement module and a round-trip delay measurement module.
  • the mobile platform uses the actual signal received power measurement module to obtain the actual signal received power of the antenna; uses the round-trip time delay measurement module to obtain the round-trip time of the antenna signal; and calculates the antenna's reference signal received power based on the round-trip time of the antenna signal.
  • the reference signal received power of the antenna is calculated based on the round-trip time of the antenna signal.
  • An alternative embodiment is to calculate the distance between the antenna and the signal source according to the round-trip time of the antenna signal; The distance from the signal source to obtain the reference signal received power of the antenna.
  • the movable platform is a drone
  • the signal source is a remote control device that communicates with the drone.
  • the drone is equipped with a round-trip delay measurement module.
  • the round-trip delay measurement module can measure the drone-remote control device-drone. If the round-trip time measurement module measures the round-trip time of the detected antenna signal as t w , the distance between the drone and the remote control device is Where c is the speed of light.
  • the reference signal received power of the antenna is obtained according to the distance between the antenna and the signal source.
  • An alternative embodiment is to obtain the antenna's reference signal receiving power according to the distance between the antenna and the signal source and a preset distance threshold. Reference signal received power.
  • the embodiment of the present application does not limit the preset distance threshold, and the preset distance threshold can be adjusted according to actual conditions.
  • the reference signal received power RSRP f of the drone's antenna is:
  • P t is the transmit power on the remote control device side
  • G t is the transmit antenna gain on the remote control device side
  • G r is the receive antenna gain on the drone side
  • f MHz is the current uplink operating frequency (in MHz)
  • D m is the preset distance threshold
  • S is the shading effect loss.
  • the mobile platform based on the difference between the actual signal received power of the antenna of the movable platform and the reference signal, it can be determined whether the antenna is damaged.
  • the mobile platform obtains the actual signal received power and reference signal received power of the antenna, it performs fault detection on the antenna.
  • An alternative embodiment is to calculate the actual signal received power and reference signal of the first antenna for the first antenna. The difference between the received power; according to the difference between the actual signal received power of the first antenna and the reference signal received power, determine whether the first antenna is damaged; wherein, the first antenna is any one of the antennas.
  • an optional embodiment is to filter the difference between the actual signal received power of the first antenna and the reference signal received power to obtain the first filter value; if the first filter value is greater than the set threshold, then It is determined that the first antenna is damaged; if the first filter value is less than the set threshold, the difference between the actual signal received power of other antennas and the reference signal received power is combined to continue to determine whether the first antenna is damaged; where, Other antennas refer to the antennas other than the first antenna; then, filter the difference between the actual signal received power of the other antennas and the reference signal received power to obtain the second antenna corresponding to any one of the other antennas.
  • the Filter value if the first filter value is greater than the sum of the second filter value corresponding to any one of the other antennas and the set threshold, it is determined that the first antenna is damaged; if there is no first filter value greater than the other antenna The sum of the second filter value corresponding to any antenna and the set threshold value, it is determined that the first antenna is not damaged. It should be noted that this application does not limit the set threshold value, and the set threshold value can be adjusted according to actual conditions. Generally, the set threshold value is 20 dB.
  • the first movable platform 10a as a drone
  • the movable platform adjusts the signal transmission strategy and/or the signal reception strategy according to the antenna failure detection result.
  • An optional embodiment is that if the receiving antenna of the movable platform is damaged, at least the signal receiving strategy is adjusted; if the transmitting antenna of the movable platform is damaged, at least the signal sending strategy is adjusted; if the receiving antenna of the movable platform is If all the transmitting antennas are damaged, adjust the signal receiving strategy and sending strategy.
  • the first mobile platform of the embodiment of the present application detects that the antenna is damaged, it adjusts the signal transmission strategy and/or the signal reception strategy, optimizes the overall system performance of the mobile platform, and reduces the incidence of accidents.
  • the receiving antenna of the movable platform is damaged, at least the receiving strategy of the antenna is adjusted. Including but not limited to the following implementation methods:
  • An optional embodiment is to use the received signal of the undamaged receiving antenna as the received signal for signal processing.
  • the receiving antenna of the movable platform is damaged, adjust the signal receiving strategy and signal sending strategy. If there is a transmitting antenna with the function of transmitting signals in the damaged receiving antenna, adjust the signal receiving strategy and signal sending strategy.
  • the movable platform is a drone. If the receiving antenna of the drone is damaged, a control signal for controlling the drone can be generated based on the received signal of the undamaged receiving antenna of the drone. If the movable platform is a remote control device that communicates with the drone, it can generate a real-time image signal based on the received signal of the undamaged receiving antenna of the remote control device.
  • the transmitting antenna is damaged, at least the signal transmission strategy is adjusted. Adjust the signal transmission strategy, including but not limited to the following implementation methods:
  • the current transmission mode adjusts the current transmission mode to a transmission mode that is adapted to the number of undamaged transmitting antennas, where different transmission modes correspond to different numbers of transmitting antennas .
  • the number of undamaged transmitting antennas of the UAV is one
  • the current transmitting mode of the UAV is 2T mode
  • the minimum number of transmitting antennas required by the 2T mode is 2, then the current UAV’s
  • the transmission mode is adjusted to 1T mode, which is a mode supported by one antenna.
  • different transmission modes also correspond to different transmission powers. When the current transmission mode of the UAV is adjusted from 2T mode to 1T mode, the transmission power of a single transmitting antenna can be increased to Ensure the performance of the wireless communication system.
  • the transmitting antennas include multiple groups of transmitting antennas, and if at least one of the multiple groups of transmitting antennas is damaged, at least one group of transmitting antennas is selected from the remaining groups of transmitting antennas to send signals to the outside.
  • the transmitting antennas of UAVs include group A, group B, group C, and group D, which can transmit signals individually. If one of the antennas of group A is damaged, the antennas from group B, group C, Select any group in group D to send the current signal.
  • the mobile platform needs to adjust the receiving strategy and/or sending strategy, and can send a receiving strategy change message and/or a sending strategy change message to the signal source with which it communicates, so that the signal source updates its own signal sending strategy and / Or signal reception strategy.
  • the mobile platform is a drone and the signal source is a remote control device, the drone will send and receive a strategy change message and/or send a strategy change message to the remote control device communicating with the drone, so that the remote control device updates the signal of the remote control device Sending strategy and/or signal receiving strategy.
  • the remote control device can also send a receiving strategy change message and/or a sending strategy change message to the drone, so that the drone updates the signal sending strategy and/or signal receiving strategy of the drone.
  • the receiving strategy change message and/or the sending strategy change message carry time information, so that the drone and the remote control device can be adjusted synchronously.
  • the receiving strategy change message carries time information for strategy adjustment, and the UAV and the remote control device change their receiving strategies at the same time according to the time information.
  • the movable platform after detecting that there is a damaged antenna, the movable platform sends the information of the damaged antenna to the mobile terminal for the user to view.
  • the mobile terminal is a user-side device that can interact with the user and is a computer device that has functions such as computing, Internet access, and communication required by the user.
  • the implementation form of the mobile terminal can be various, for example, it can be Smart phones, wearable devices (such as virtual reality head-mounted display devices), tablet computers, desktop computers, and smart TVs.
  • the mobile terminal includes an electronic display screen through which the user can interact with the mobile terminal; the electronic display screen can display information that the antenna is damaged for the user to view.
  • the embodiment of this application does not limit the display form of the information of the damaged antenna of the mobile terminal.
  • the display form of the information of the damaged antenna includes but is not limited to the following display forms:
  • the mobile terminal displays a short message containing information about the damaged antenna.
  • the content of the short message can be text information containing the damaged antenna, or text information containing the code of the damaged antenna.
  • the display interface on the mobile terminal displays information indicating that the antenna is damaged.
  • the display interface may display the text information of the damaged antenna, or it may be text information containing the code of the damaged antenna, or it may be the graphic information of the damaged antenna marked on the schematic diagram of the first movable platform.
  • FIG. 3 is a schematic flowchart of a method for controlling a movable platform provided by an exemplary embodiment of this application. As shown in Figure 3, the method includes:
  • S304 Send a signal with the current signal sending strategy, and receive the signal with the current signal receiving strategy.
  • the movable platform obtains the received signal of the antenna; then, according to the received signal of the antenna, performs fault detection on the antenna, and obtains the fault detection result; finally, based on the obtained
  • the antenna failure detection result automatically adjusts the signal transmission strategy and/or signal reception strategy of the movable platform, optimizes the overall system performance of the movable platform, and reduces the incidence of accidents.
  • Fig. 4 is a schematic structural diagram of a movable platform provided by an exemplary embodiment of this application.
  • the movable platform includes a memory 401 and a processor 402, and also includes at least one antenna 403 and the necessary components of a power supply assembly 404.
  • the mobile platform is also provided with an actual signal received power measurement module 405 and a round-trip delay measurement module 406.
  • the memory 401 is used to store computer programs, and can be configured to store other various data to support operations on a removable platform. Examples of such data include instructions for any application or method operating on the data processing device.
  • the memory 401 can be implemented by any type of volatile or non-volatile storage device or a combination thereof, such as static random access memory (SRAM), electrically erasable programmable read-only memory (EEPROM), erasable Programmable read only memory (EPROM), programmable read only memory (PROM), read only memory (ROM), magnetic memory, flash memory, magnetic disk or optical disk.
  • SRAM static random access memory
  • EEPROM electrically erasable programmable read-only memory
  • EPROM erasable Programmable read only memory
  • PROM programmable read only memory
  • ROM read only memory
  • magnetic memory magnetic memory
  • flash memory magnetic disk or optical disk.
  • the antenna 403 is used to communicate with the signal source.
  • the processor 402 can execute the computer instructions stored in the memory 401 to obtain the received signal of the antenna; perform fault detection on the antenna according to the received signal of the antenna; adjust the signal transmission of the movable platform according to the fault detection result of the antenna Strategy and/or signal reception strategy.
  • the antenna includes a receiving antenna and a transmitting antenna.
  • the processor 402 adjusts the signal transmission strategy and/or signal receiving strategy of the movable platform according to the antenna failure detection result, it is specifically used to: if the transmitting antenna is damaged, At least adjust the signal transmission strategy; if the receiving antenna is damaged, at least adjust the signal receiving strategy; if both the receiving antenna and the transmitting antenna are damaged, adjust the signal receiving strategy and the signal sending strategy.
  • the processor 402 adjusts the signal receiving strategy, it is specifically configured to use the received signal of the undamaged receiving antenna as the received signal for signal processing.
  • processor 402 adjusts the signal sending strategy, it is specifically configured to:
  • the current transmission mode adjusts the current transmission mode to a transmission mode that is adapted to the number of undamaged transmitting antennas, where different transmission modes correspond to different numbers of transmitting antennas .
  • the transmitting antennas include multiple groups of transmitting antennas, and the processor 402 is specifically configured to:
  • At least one of the multiple groups of transmission antennas is damaged, at least one group of transmission antennas is selected from the remaining groups of transmission antennas to send signals to the outside.
  • the movable platform is an unmanned aerial vehicle
  • the processor 402 can also be used to: send and receive a policy change message and/or send a policy change message to the remote control device communicating with the unmanned aerial vehicle, so that the remote control device updates the remote control device Signal sending strategy and/or signal receiving strategy;
  • the mobile platform is a remote control device that communicates with the drone.
  • the processor 402 can also be used to send and/or send a policy change message to the drone, so that the drone can update the drone's signal reception. Strategies and/or signaling strategies.
  • the received policy change message and/or the sent policy change message carries time information, and the time information is used to synchronize the drone and the remote control device.
  • the processor 402 when performing fault detection on the antenna according to the received signal of the antenna, is specifically configured to: obtain the actual signal received power of the antenna by using the actual signal received power measurement module; and use the round-trip time delay measurement module to obtain the antenna According to the round-trip time of the signal of the antenna, the reference signal receiving power of the antenna is obtained; according to the actual signal receiving power of the antenna and the reference signal receiving power, the antenna fault detection is performed.
  • the processor 402 when obtaining the reference signal received power of the antenna according to the round-trip time of the antenna signal, is specifically configured to: calculate the distance between the antenna and the signal source according to the round-trip time of the antenna signal; The distance from the signal source to obtain the reference signal received power of the antenna.
  • the processor 402 when acquiring the reference signal received power of the antenna according to the distance between the antenna and the signal source, is specifically configured to: acquire the antenna's reference signal receiving power according to the distance between the antenna and the signal source and a preset distance threshold. Reference signal received power.
  • the processor 402 when performing fault detection on the antenna according to the actual signal received power of the antenna and the reference signal received power, is specifically configured to: for the first antenna, calculate the actual signal received power and reference signal of the first antenna The difference between the received power; according to the difference between the actual signal received power of the first antenna and the reference signal received power, determine whether the first antenna is damaged; wherein, the first antenna is any one of the antennas.
  • the processor 402 when determining whether the first antenna is damaged according to the difference between the actual signal received power of the first antenna and the reference signal received power, is specifically configured to: receive the actual signal of the first antenna The difference between the power and the received power of the reference signal is filtered to obtain the first filter value; if the first filter value is greater than the set threshold, it is determined that the first antenna is damaged; if the first filter value is less than the set threshold The limit value is combined with the difference between the actual signal received power of other antennas and the reference signal received power to continue to determine whether the first antenna is damaged; where the other antennas refer to the antennas other than the first antenna.
  • the processor 402 in combination with the difference between the actual signal received power of other antennas and the reference signal received power, continues to determine whether the first antenna is damaged, and is specifically used for: the actual signal received power of other antennas
  • the difference between the received power of the reference signal and the received power of the reference signal is filtered to obtain the second filter value corresponding to any one of the other antennas; if there is a first filter value greater than the second filter value corresponding to any one of the other antennas and the setting If the sum of the threshold value, it is determined that the first antenna is damaged; if there is no first filter value greater than the sum of the second filter value corresponding to any one of the other antennas and the set threshold value, it is determined that the first antenna has not occurred damage.
  • the processor 402 is further configured to: if there is a damaged antenna in the antenna, send the information of the damaged antenna to the mobile terminal for the user to view.
  • the embodiment of the present application also provides a computer-readable storage medium storing a computer program.
  • the computer-readable storage medium stores a computer program
  • the computer program is executed by one or more processors
  • the one or more processors are caused to execute each step in the method embodiment in FIG. 2.
  • the movable platform obtains the received signal of the antenna; then, according to the received signal of the antenna, performs fault detection on the antenna, and obtains the fault detection result; finally, based on the obtained antenna fault detection result , Automatically adjust the signal sending strategy and/or signal receiving strategy of the movable platform, optimize the overall system performance of the movable platform, and reduce the accident rate.
  • the above-mentioned power supply component in FIG. 4 provides power for various components of the equipment where the power supply component is located.
  • the power supply component may include a power management system, one or more power supplies, and other components associated with generating, managing, and distributing power for the device where the power supply component is located.
  • the embodiments of the present invention can be provided as a method, a system, or a computer program product. Therefore, the present invention may adopt the form of a complete hardware embodiment, a complete software embodiment, or an embodiment combining software and hardware. Moreover, the present invention may adopt the form of a computer program product implemented on one or more computer-usable storage media (including but not limited to disk storage, CD-ROM, optical storage, etc.) containing computer-usable program codes.
  • computer-usable storage media including but not limited to disk storage, CD-ROM, optical storage, etc.
  • the related detection device for example: IMU
  • the method disclosed may be implemented in other ways.
  • the embodiments of the remote control device described above are only illustrative.
  • the division of the modules or units is only a logical function division, and there may be other divisions in actual implementation, such as multiple units or components. It can be combined or integrated into another system, or some features can be ignored or not implemented.
  • the displayed or discussed mutual coupling or direct coupling or communication connection may be indirect coupling or communication connection through some interfaces, remote control devices or units, and may be in electrical, mechanical or other forms.
  • the units described as separate components may or may not be physically separated, and the components displayed as units may or may not be physical units, that is, they may be located in one place, or they may be distributed on multiple network units. Some or all of the units may be selected according to actual needs to achieve the objectives of the solutions of the embodiments.
  • the functional units in the various embodiments of the present invention may be integrated into one processing unit, or each unit may exist alone physically, or two or more units may be integrated into one unit.
  • the above-mentioned integrated unit can be implemented in the form of hardware or software functional unit.
  • the integrated unit is implemented in the form of a software functional unit and sold or used as an independent product, it can be stored in a computer readable storage medium.
  • the technical solution of the present invention essentially or the part that contributes to the prior art or all or part of the technical solution can be embodied in the form of a software product, and the computer software product is stored in a storage medium.
  • the aforementioned storage media include: U disk, mobile hard disk, Read-Only Memory (ROM), Random Access Memory (RAM, Random Access Memory), magnetic disks or optical disks and other media that can store program codes.

Landscapes

  • Engineering & Computer Science (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Signal Processing (AREA)
  • Physics & Mathematics (AREA)
  • Electromagnetism (AREA)
  • Quality & Reliability (AREA)
  • Mobile Radio Communication Systems (AREA)
  • Variable-Direction Aerials And Aerial Arrays (AREA)

Abstract

一种可移动平台的控制方法、设备及存储介质。该方法包括:获取天线的接收信号(S201);根据天线的接收信号,对天线进行故障检测(S202);根据天线的故障检测结果,调整可移动平台的信号发送策略和/或信号接收策略(S203)。该方法能够优化可移动平台的无线通信系统性能,降低事故发生率。

Description

可移动平台的控制方法、设备及存储介质 技术领域
本申请涉及无人机技术领域,尤其涉及一种可移动平台的控制方法、设备及存储介质。
背景技术
目前,无人机特别是穿越机,用户通过遥控器采用手动模式控制无人机飞行,无人机坠落的概率高,天线被损坏的可能性大大增加,但是天线内部损坏从外观上并不能轻易的看出来,当天线发生损坏之后,用户可能仍然继续使用,无线信号偏弱,影响整个无线通信系统的性能。
发明内容
本申请的多个方面提供一种可移动平台的控制方法、设备及存储介质,用以检测可移动平台的天线是否损坏,以及时针对天线损坏采取必要措施,提高可移动平台的整体性能,降低事故发生率。
本申请实施例提供一种可移动平台的控制方法,所述可移动平台设有天线,所述天线的数量为多个,所述方法包括:
获取所述天线的接收信号;
根据所述天线的接收信号,对所述天线进行故障检测;
根据所述天线的故障检测结果,调整所述可移动平台的信号发送策略和/或信号接收策略。
本申请实施例还提供一种可移动平台,包括:天线,所述天线的数量为 多个,一个或多个处理器,以及一个或多个存储计算机程序的存储器;
所述一个或多个处理器,用于执行所述计算机程序,以用于:
获取所述天线的接收信号;
根据所述天线的接收信号,对所述天线进行故障检测;
根据所述天线的故障检测结果,调整所述可移动平台的信号发送策略和/或信号接收策略。
本申请实施例还提供一种存储有计算机程序的计算机可读存储介质,当所述计算机程序被一个或多个处理器执行时,致使所述一个或多个处理器执行上述的可移动平台的控制方法。
在本申请一些示例性实施例中,首先,可移动平台获取天线的接收信号;接着,根据天线的接收信号,对天线进行故障检测,并获得故障检测结果;最后,基于获取到的天线的故障检测结果,自动调整可移动平台的信号发送策略和/或信号接收策略,优化可移动平台的整个系统性能,降低事故发生率。
附图说明
此处所说明的附图用来提供对本申请的进一步理解,构成本申请的一部分,本申请的示意性实施例及其说明用于解释本申请,并不构成对本申请的不当限定。在附图中:
图1a为本申请一示例性实施例提供的一种可移动平台控制系统的结构示意图;
图1b为本申请一示例性实施例提供的另一种可移动平台控制系统20的结构示意图;
图2为本申请示例性实施例提供的一种可移动平台的控制方法的流程示意图;
图3为本申请示例性实施例提供的一种可移动平台的控制方法的流程示意图;
图4为本申请一示例性实施例提供的一种可移动平台的结构示意图。
具体实施方式
为使本发明实施例的目的、技术方案和优点更加清楚,下面将结合本发明实施例中的附图,对本发明实施例中的技术方案进行清楚、完整地描述,显然,所描述的实施例是本发明一部分实施例,而不是全部的实施例。基于本发明中的实施例,本领域普通技术人员在没有做出创造性劳动前提下所获得的所有其他实施例,都属于本发明保护的范围。
除非另有定义,本文所使用的所有的技术和科学术语与属于本发明的技术领域的技术人员通常理解的含义相同。本文中在本发明的说明书中所使用的术语只是为了描述具体的实施例的目的,不是旨在于限制本发明。
为了便于理解本申请的技术方案和技术效果,下面对现有技术进行简要说明:
目前,特别是对于运动无人机(穿越机),用户常常通过遥控器采用手动模式控制无人机飞行,无人机坠落的概率高,天线被损坏的可能性大大增加,但是天线内部损坏从外观上并不能轻易的看出来;当天线发生损坏之后,用户可能仍然以为天线还是好的,然后继续使用,无线信号偏弱,影响整个无线通信系统的性能。
针对上述无人机天线发生损坏后,影响整个无线通信系统的问题,在本申请一些示例性实施例中,首先,可移动平台获取天线的接收信号;接着,根据天线的接收信号,对天线进行故障检测,并获得故障检测结果;最后,基于获取到的天线的故障检测结果,自动调整可移动平台的信号发送策略和/或信号接收策略,优化可移动平台的整个系统性能,降低事故发生率。
以下结合附图,详细说明本申请各实施例提供的技术方案。
图1a为本申请一示例性实施例提供的一种可移动平台控制系统10的结构示意图。如图1a所示,可移动平台控制系统10包括第一可移动平台10a和与第一可移动平台10a通信连接的第二可移动平台10b。其中,第一可移动平台10a和第二可移动平台10b分别设有多个天线,两者之间通过天线传输信号实现通信连接。第一可移动平台10a和第二可移动平台10b可以通过自身天线的接收信号,来判断各自的天线是否存在故障;并在第一可移动平台10a和第二可移动平台10b天线存在故障时,自动调整各自的信号发送策略和/或信号接收策略,来保证系统的稳定运行。
在本实施例可移动平台控制系统10中,并不限定第一可移动平台10a和第二可移动平台10b的具体实现形式。第一可移动平台10a和第二可移动平台10b可以为存在通信关系的无人机与遥控装置、遥控赛车与遥控手柄等无线通信设备。
在本实施例中,第一可移动平台10a和第二可移动平台10b上分别设有多个天线,例如,天线可以为偶极子天线,第一可移动平台10a和第二可移动平台10b通过无线建立通信连接。可选地,第一可移动平台10a可以采用WIFI、Lightbridge、OcuSync和第二可移动平台10b建立通信连接,或者,第一可移动平台10a可以通过移动网络与第二可移动平台10b建立通信连接。其中,移动网络的网络制式可以为2G(GSM)、2.5G(GPRS)、3G(WCDMA、TD-SCDMA、CDMA2000、UTMS)、4G(LTE)、4G+(LTE+)、WiMax和5G等中的任意一种。需要说明的是,第一可移动平台10a和第二可移动平台10b之间的通信连接并不限于以上形式,本领域技术人员可根据实际需求进行设定。
在一些实施例中,以第一可移动平台10对天线进行故障检测为例说明。第一可移动平台10a获取天线的接收信号;第一可移动平台10a根据第一可移动平台10a的天线的接收信号,对天线进行故障检测;若第一可移动平台10a检测到自身的天线存在故障时,自动调整信号发送策略和/或信号接收策略, 来保证通信系统的稳定运行。
在本实施例中,第一可移动平台10a根据天线的接收信号,对天线进行故障检测,一种可选实施例为,根据天线的接收信号,获取天线的实际信号接收功率;根据天线的信号的往返时间,获取天线的参考信号接收功率;根据天线的实际信号接收功率和参考信号接收功率,对天线进行故障检测。
在一可选实施例中,第一可移动平台10a设有实际信号接收功率测量模块和往返时延测量模块。第一可移动平台10a利用实际信号接收功率测量模块获取天线的实际信号接收功率;利用往返时延测量模块,获取天线的信号的往返时间;并基于天线的信号的往返时间,计算天线的参考信号接收功率。
在上述实施例中,基于天线的信号的往返时间,计算天线的参考信号接收功率,一种可选实施例为,根据天线的信号的往返时间,计算天线与信号源之间的距离;根据天线与信号源之间的距离,获取天线的参考信号接收功率。例如,第一可移动平台10a为无人机,第二可移动平台10b(即信号源)为与无人机通信的遥控装置,无人机设有往返时延测量模块,往返时延测量模块可以测量无人机-遥控装置-无人机的无线环路的时间,若往返时延测量模块测量被检测天线的信号的往返时间为t w,则无人机与遥控装置的距离为
Figure PCTCN2019121223-appb-000001
其中,c为光速。
在上述实施例中,根据天线与信号源之间的距离,获取天线的参考信号接收功率,一种可选实施例为,根据天线与信号源之间的距离以及预设距离阈值,获取天线的参考信号接收功率。其中,预设距离阈值是根据测试得到的,本申请实施例对预设距离阈值不作限定,预设距离阈值可以根据实际情况作出调整。
例如,无人机与遥控装置的距离为d,则无人机的天线的参考信号接收功率RSRP f为:
RSRP f=P t+G t+G r-32.4-20log 10(f MHz)-20log 10(max(d m,d))-S
其中,P t是遥控装置侧的发射功率,G t是遥控装置侧的发送天线增益,G r是无人机侧的接收天线增益,f MHz是当前上行的工作频点(以MHz为单位),d m是该预设距离阈值,S是遮蔽效应损耗。
在本实施例中,根据第一可移动平台10a的天线的实际信号接收功率和参考信号之间的差异,即可对判定天线是否发生损坏。第一可移动平台10a在获取到天线的实际信号接收功率和参考信号接收功率后,对天线进行故障检测,一种可选实施例为,针对第一天线,计算第一天线的实际信号接收功率和参考信号接收功率之间的差值;根据第一天线的实际信号接收功率和参考信号接收功率之间的差值,确定第一天线是否发生损坏;其中,第一天线是天线中任一天线。
在上述实施例中,根据第一天线的实际信号接收功率和参考信号接收功率之间的差值,确定第一天线是否发生损坏。一种可选实施例为,对第一天线的实际信号接收功率和参考信号接收功率之间的差值进行滤波处理,得到第一滤波值;若第一滤波值大于设定门限值,则确定第一天线发生损坏;若第一滤波值小于设定门限值,则结合其它天线的实际信号接收功率和参考信号接收功率之间的差值,继续确定第一天线是否发生损坏;其中,其它天线是指天线中除第一天线之外的天线;接着,对其它天线的实际信号接收功率和参考信号接收功率之间的差值进行滤波处理,得到其它天线中任一天线对应的第二滤波值;若存在第一滤波值大于其它天线中任一天线对应的第二滤波值与设定门限值之和,则确定第一天线发生损坏;若不存在第一滤波值大于其它天线中任一天线对应的第二滤波值与设定门限值之和,则确定第一天线未发生损坏。需要说明的是,本申请对设定门限值不作限定,设定门限值可以根据实际情况作出调整,通常,设定门限值的取值为20dB。
例如,以第一可移动平台10a为无人机,第二可移动平台10b为与无人 机通信的遥控装置为例:针对无人机的第i天线,获取第i天线的实际信号接收功率RSRP i和参考信号接收功率RSRP f;计算第i天线的实际信号接收功率RSRP i和参考信号接收功率RSRP f之间的差值ΔRSRP i,ΔRSRP i=RSRP i-RSRP f;对第i天线的实际信号接收功率RSRP i和参考信号接收功率RSRP f之间的差值ΔRSRP i进行阿尔法滤波处理,得到第一滤波值ΔRSRP if;依次计算无人机的每个天线的第一滤波值ΔRSRP if;针对无人机的第i天线,若存在ΔRSRP if>Δ,则无人机的第i天线发生损坏;若存在ΔRSRP if<Δ,则根据其它天线的实际信号接收功率和参考信号接收功率之间的差值,继续确定第一天线是否发生损坏;其中,其它天线是指天线中除第一天线之外的天线。
接着,对其它天线的实际信号接收功率和参考信号接收功率之间的差值进行滤波处理,得到其它天线中任一天线对应的第二滤波值ΔRSRP jf;判断是否存在第一滤波值ΔRSRP if大于第j天线的第二滤波值ΔRSRP jf与设定门限值Δ之和,即ΔRSRP if>Δ+ΔRSRP jf,若存在,则判定第i天线发生损坏。根据上述判断方法,逐一对每个天线进行故障检测,以判定天线是否发生损坏。
在本实施例中,第一可移动平台10a根据天线的故障检测结果,调整信号发送策略和/或信号接收策略。一种可选实施例为,若第一可移动平台10a的接收天线发生损坏,则至少调整信号接收策略;若第一可移动平台10a的发射天线发生损坏,则至少调整信号发送策略;若第一可移动平台10a的接收天线和发射天线均发生损坏,则调整信号接收策略和信号发送策略。本申请实施例第一可移动平台在检测到天线发生损坏时,调整信号发送策略和/或信号接收策略,优化可移动平台的整个系统性能,降低事故发生率。
在上述实施例中,若第一可移动平台10a的接收天线发生损坏,则至少调整天线的接收策略。包括但不限于以下几种实施方式:
若第一可移动平台10a的接收天线发生损坏,调整信号接收策略。一种 可选实施例方式为,将未损坏的接收天线的接收信号作为用于进行信号处理的接收信号。
若第一可移动平台10a接收天线发生损坏,调整信号接收策略和信号发送策略。若发生损坏的接收天线中存在兼具发射信号功能的发射天线,则调整信号接收策略和信号发送策略。
在上述实施例一中,若第一可移动平台10a为无人机。若无人机的接收天线发生损坏,则可以基于无人机未损坏的接收天线的接收信号,生成对无人机进行控制的控制信号。若第一可移动平台10a为与无人机通信的遥控装置,则可以基于遥控装置未损坏的接收天线的接收信号,生成实时图像信号。
在上述实施例中,若发射天线发生损坏,则至少调整信号发送策略。调整信号发送策略,包括但不限于以下几种实施方式:
若未损坏的发射天线数量少于当前发送模式要求的天线数量,则将当前发送模式调整至与未损坏的发射天线数量适配的发送模式,其中,不同的发送模式对应于不同的发射天线数量。例如,无人机当前未损坏的发射天线的数量为一个,无人机当前的发送模式为2T模式,而2T模式的要求的最低的发射天线数量为2根,那么需要将无人机当前的发送模式调整至1T模式,即一个天线所支持的模式。在一种可选的实施例中,不同的发射模式还对应于不同的发射功率,在将无人机当前的发送模式从2T模式调整至1T模式时,可以提高单个发射天线的发射功率,以保证无线通信系统的性能。
发射天线包括多组发射天线,若多组发射天线中的至少一组发射天线中的天线存在损坏,则从剩余组发射天线中选择至少一组发射天线对外发送信号。例如,无人机的发射天线包括能够单独发射信号的A组、B组、C组、D组,共四组天线,若A组天线中的一根发生损坏,则从B组、C组、D组中选择任一组进行当前信号的发送。
在上述实施例中,若接收天线和发射天线均发生损坏,则调整可移动平 台的信号接收策略和信号发送策略。其中,关于调整接收策略和发送策略的具体方式可参见上述实施例的相应部分的描述。
在本实施例中,第一可移动平台10a需要调整天线的接收策略和/或发送策略,可以向第二可移动平台10b发送接收策略变更消息和/或发送策略变更消息,以使得第二可移动平台10b更新自身的信号发送策略和/或信号接收策略。若第一可移动平台10a为无人机,第二可移动平台10b为遥控装置,则无人机向与无人机通信的遥控装置发送接收策略变更消息和/或发送策略变更消息,以使得遥控装置更新遥控装置的信号发送策略和/或信号接收策略。同理,遥控装置也可以向无人机发送接收策略变更消息和/或发送策略变更消息,以使得无人机更新无人机的信号发送策略和/或信号接收策略。进一步,接收策略变更消息和/或发送策略变更消息携带有时间信息,以使无人机和遥控装置进行同步调整。
以下以无人机向遥控装置发送接收策略变更消息,以使得述遥控装置更新遥控装置的信号接收策略的具体过程为例,无人机向遥控装置发送接收策略变更消息;遥控装置在接收到无人机的接收策略变更消息后,向无人机发送已收到通知消息;无人机接收到遥控装置发送的已收到通知消息;无人机与遥控装置一起变更各自的信号接收策略。其中,接收策略变更消息中携带有进行策略调整的时间信息,无人机与遥控装置根据该时间信息在同一时刻变更各自的接收策略。
图1b为本申请一示例性实施例提供的另一种可移动平台控制系统20的结构示意图。如图1b所示,可移动平台控制系统20包括第一可移动平台20a和与第一可移动平台20a通信连接的第二可移动平台20b,以及与第一可移动平台20a通信连接的移动终端20c。其中,第一可移动平台20a和第二可移动平台20b分别设有多个天线,两者之间通过天线传输信号实现通信连接,因此,第一可移动平台20a和第二可移动平台20b可以通过自身天线的接收信号,来判断各自的天线是否存在故障;并在第一可移动平台20a和第二可移 动平台20b天线存在故障时,自动调整各自信号发送策略和/或信号接收策略,来保证系统的稳定运行。此外,第一可移动平台20a在检测到自身天线存在故障后,将损坏的天线的信息发送给移动终端20c以供用户进行查看,用户以采取进一步的应对措施。
在本实施例中,关于第一可移动平台20a和与第二可移动平台20b的连接方式和实现形式可以参见上述各实施例的描述,本实施例不再赘述。
在本实施例中,移动终端20c为用户侧的设备,可以与用户交互,且具有用户所需的计算、上网、通信等功能的计算机设备,其实现形式可以有多种,例如,例如,可以是智能手机、穿戴设备(如虚拟现实头戴式显示设备)、平板电脑、台式电脑以及智能电视等。在本实施例中,第一可移动平台20a与移动终端20c通过无线建立通信连接。可选地,第一可移动平台20a可以采用WIFI、Lightbridge、OcuSync和第二可移动平台20b建立通信连接,或者,第一可移动平台20a可以通过移动网络与第二可移动平台20b建立通信连接。其中,移动网络的网络制式可以为2G(GSM)、2.5G(GPRS)、3G(WCDMA、TD-SCDMA、CDMA2000、UTMS)、4G(LTE)、4G+(LTE+)、WiMax和5G等中的任意一种。
在本实施例中,移动终端20c包括一电子显示屏,用户可以通过电子显示屏与移动终端20c进行交互;电子显示屏可展示有损坏天线的信息以供用户进行查看。
在本实施例中,第一可移动平台20a和与第二可移动平台20b对各自天线的故障检测可参照前述各实施例的相应部分的描述,在此不作赘述。
在本实施例中,将损坏的天线的信息发送给移动终端20c以供用户进行查看,其中,本申请实施例对移动终端20c损坏的天线的信息的展示形式不作限定,损坏天线的信息的展示形式包括但不限于以下展示形式:
移动终端20c上展示包含损坏天线的信息的短信。其中,短信内容可以 为包含天线存在损坏的文字信息,也可以为包含损坏天线的编码的文字信息。
移动终端20c上显示界面上展示有损坏天线的信息。其中,显示界面上可展示有损坏天线的文字信息,也可以为包含损坏天线的编码的文字信息,也可以为在第一可移动平台20a的示意图上标记有损坏天线的图形信息。
本申请实施例的可移动平台控制系统,首先,可移动平台获取天线的接收信号;接着,根据天线的接收信号,对天线进行故障检测,并获得故障检测结果;最后,基于获取到的天线的故障检测结果,自动调整可移动平台的信号发送策略和/或信号接收策略,优化可移动平台的整个系统性能,降低事故发生率。
除上述提供的可移动平台控制系统之外,本申请一些实施例还提供一种可移动平台的控制方法,本申请所提供的可移动平台的处理方法可应用于上述可移动平台控制系统,但并不限于上述实施例提供的可移动平台控制系统。图2为本申请示例性实施例提供的一种可移动平台的控制方法的流程示意图。如图2所示,该方法包括:
S201:获取天线的接收信号;
S202:根据天线的接收信号,对天线进行故障检测;
S203:根据天线的故障检测结果,调整可移动平台的信号发送策略和/或信号接收策略。
在本实施例中,上述方法的执行主体可以为无人机、与无人机配对通信的遥控装置、遥控赛车以及与遥控赛车配对的遥控手柄等通过多根天线进行通信的设备。
在本实施例中,可移动平台首先获取天线的接收信号;接着,根据的天线的接收信号,对天线进行故障检测;若检测到自身的天线存在故障时,自动调整各自的信号发送策略和/或信号接收策略,来保证自身通信系统的稳定运行。
在本实施例中,可移动平台根据天线的接收信号,对天线进行故障检测,一种可选实施例为,根据天线的接收信号,获取天线的实际信号接收功率;根据天线的信号的往返时间,获取天线的参考信号接收功率;根据天线的实际信号接收功率和参考信号接收功率,对天线进行故障检测。
在一可选实施例中,可移动平台设有实际信号接收功率测量模块和往返时延测量模块。可移动平台利用实际信号接收功率测量模块获取天线的实际信号接收功率;利用往返时延测量模块,获取天线的信号的往返时间;并基于天线的信号的往返时间,计算天线的参考信号接收功率。
在上述实施例中,基于天线的信号的往返时间,计算天线的参考信号接收功率,一种可选实施例为,根据天线的信号的往返时间,计算天线与信号源之间的距离;根据天线与信号源之间的距离,获取天线的参考信号接收功率。例如,可移动平台为无人机,信号源为与无人机通信的遥控装置,无人机设有往返时延测量模块,往返时延测量模块可以测量无人机-遥控装置-无人机的无线环路的时间,若往返时延测量模块测量被检测天线的信号的往返时间为t w,则无人机与遥控装置的距离为
Figure PCTCN2019121223-appb-000002
其中,c为光速。
在上述实施例中,根据天线与信号源之间的距离,获取天线的参考信号接收功率,一种可选实施例为,根据天线与信号源之间的距离以及预设距离阈值,获取天线的参考信号接收功率。其中,本申请实施例对预设距离阈值不作限定,预设距离阈值可以根据实际情况作出调整。
例如,无人机与遥控装置的距离为d,则无人机的天线的参考信号接收功率RSRP f为:
RSRP f=P t+G t+G r-32.4-20log 10(f MHz)-20log 10(max(d m,d))-S
其中,P t是遥控装置侧的发射功率,G t是遥控装置侧的发送天线增益,G r是无人机侧的接收天线增益,f MHz是当前上行的工作频点(以MHz为单位), d m是该预设距离阈值,S是遮蔽效应损耗。
在本实施例中,根据可移动平台的天线的实际信号接收功率和参考信号之间的差异,即可对判定天线是否发生损坏。可移动平台在获取到天线的实际信号接收功率和参考信号接收功率后,对天线进行故障检测,一种可选实施例为,针对第一天线,计算第一天线的实际信号接收功率和参考信号接收功率之间的差值;根据第一天线的实际信号接收功率和参考信号接收功率之间的差值,确定第一天线是否发生损坏;其中,第一天线是天线中任一天线。
在上述实施例中,根据第一天线的实际信号接收功率和参考信号接收功率之间的差值,确定第一天线是否发生损坏。一种可选实施例为,对第一天线的实际信号接收功率和参考信号接收功率之间的差值进行滤波处理,得到第一滤波值;若第一滤波值大于设定门限值,则确定第一天线发生损坏;若第一滤波值小于设定门限值,则结合其它天线的实际信号接收功率和参考信号接收功率之间的差值,继续确定第一天线是否发生损坏;其中,其它天线是指天线中除第一天线之外的天线;接着,对其它天线的实际信号接收功率和参考信号接收功率之间的差值进行滤波处理,得到其它天线中任一天线对应的第二滤波值;若存在第一滤波值大于其它天线中任一天线对应的第二滤波值与设定门限值之和,则确定第一天线发生损坏;若不存在第一滤波值大于其它天线中任一天线对应的第二滤波值与设定门限值之和,则确定第一天线未发生损坏。需要说明的是,本申请对设定门限值不作限定,设定门限值可以根据实际情况作出调整,通常,设定门限值的取值为20dB。
例如,以第一可移动平台10a为无人机,第二可移动平台10b为与无人机通信的遥控装置为例:针对无人机的第i天线,获取第i天线的实际信号接收功率RSRP i和参考信号接收功率RSRP f;计算第i天线的实际信号接收功率RSRP i和参考信号接收功率RSRP f之间的差值ΔRSRP i,ΔRSRP i=RSRP i-RSRP f;对第i天线的实际信号接收功率RSRP i和参考信号接收功率RSRP f之间的差值 ΔRSRP i进行阿尔法滤波处理,得到第一滤波值ΔRSRP if;依次计算无人机的每个天线的第一滤波值ΔRSRP if;针对无人机的第i天线,若存在ΔRSRP if>Δ,则无人机的第i天线发生损坏;若存在ΔRSRP if<Δ,则根据其它天线的实际信号接收功率和参考信号接收功率之间的差值,继续确定第一天线是否发生损坏;其中,其它天线是指天线中除第一天线之外的天线。
接着,对其它天线的实际信号接收功率和参考信号接收功率之间的差值进行滤波处理,得到其它天线中任一天线对应的第二滤波值ΔRSRP jf;判断是否存在存在第一滤波值ΔRSRP if大于第j天线的第二滤波值ΔRSRP jf与设定门限值Δ之和,即ΔRSRP if>Δ+ΔRSRP jf,若存在,则判定第i天线发生损坏。根据上述判断方法,逐一对每个天线进行故障检测,以判定天线是否发生损坏。
在本实施例中,可移动平台根据天线的故障检测结果,调整信号发送策略和/或信号接收策略。一种可选实施例为,若可移动平台的接收天线发生损坏,则至少调整信号接收策略;若可移动平台的发射天线发生损坏,则至少调整信号发送策略;若可移动平台的接收天线和发射天线均发生损坏,则调整信号接收策略和发送策略。本申请实施例第一可移动平台在检测到天线发生损坏时,调整信号发送策略和/或信号接收策略,优化可移动平台的整个系统性能,降低事故发生率。
在上述实施例中,若可移动平台的接收天线发生损坏,则至少调整天线的接收策略。包括但不限于以下几种实施方式:
若可移动平台的接收天线发生损坏,调整信号接收策略。一种可选实施例方式为,将未损坏的接收天线的接收信号作为用于进行信号处理的接收信号。
若可移动平台接收天线发生损坏,调整信号接收策略和信号发送策略。若发生损坏的接收天线中存在兼具发射信号功能的发射天线,则调整信号接 收策略和信号发送策略。
在上述实施例一中,若可移动平台为无人机。若无人机的接收天线发生损坏,则可以基于无人机未损坏的接收天线的接收信号,生成对无人机进行控制的控制信号。若可移动平台为与无人机通信的遥控装置,则可以基于遥控装置未损坏的接收天线的接收信号,生成实时图像信号。
在上述实施例中,若发射天线发生损坏,则至少调整信号发送策略。调整信号发送策略,包括但不限于以下几种实施方式:
若未损坏的发射天线数量少于当前发送模式要求的天线数量,则将当前发送模式调整至与未损坏的发射天线数量适配的发送模式,其中,不同的发送模式对应于不同的发射天线数量。例如,无人机当前未损坏的发射天线的数量为一个,无人机当前的发送模式为2T模式,而2T模式的要求的最低的发射天线数量为2根,那么需要将无人机当前的发送模式调整至1T模式,即一个天线所支持的模式。在一种可选的实施例中,不同的发射模式还对应于不同的发射功率,在将无人机当前的发送模式从2T模式调整至1T模式时,可以提高单个发射天线的发射功率,以保证无线通信系统的性能。
发射天线包括多组发射天线,若多组发射天线中的至少一组发射天线中的天线存在损坏,则从剩余组发射天线中选择至少一组发射天线对外发送信号。例如,无人机的发射天线包括能够单独发射信号的A组、B组、C组、D组,共四组天线,若A组天线中的一根发生损坏,则从B组、C组、D组中选择任一组进行当前信号的发送。
在上述实施例中,若接收天线和发射天线均发生损坏,则调整信号接收策略和信号发送策略。其中,关于调整信号接收策略和发送策略的具体方式可参见上述实施例的相应部分的描述。
在本实施例中,可移动平台需要调整接收策略和/或发送策略,可以向与其通信的信号源发送接收策略变更消息和/或发送策略变更消息,以使得信号 源更新自身的信号发送策略和/或信号接收策略。若可移动平台为无人机,信号源为遥控装置,则无人机向与无人机通信的遥控装置发送接收策略变更消息和/或发送策略变更消息,以使得遥控装置更新遥控装置的信号发送策略和/或信号接收策略。同理,遥控装置也可以向无人机发送接收策略变更消息和/或发送策略变更消息,以使得无人机更新无人机的信号发送策略和/或信号接收策略。进一步,接收策略变更消息和/或发送策略变更消息携带有时间信息,以使无人机和遥控装置进行同步调整。
以下以无人机向遥控装置发送接收策略变更消息为例,以使得述遥控装置更新遥控装置的信号接收策略的具体过程:无人机向遥控装置发送接收策略变更消息;遥控装置在接收到无人机的接收策略变更消息后,向无人机发送已收到通知消息;无人机接收到遥控装置发送的已收到通知消息;无人机与遥控装置一起变更各自的信号接收策略。其中,接收策略变更消息中携带有进行策略调整的时间信息,无人机与遥控装置根据时间信息在同一时刻变更各自的接收策略。
在本实施例中,可移动平台检测到存在损坏的天线后,将损坏的天线的信息发送给移动终端以供用户进行查看。
在上述实施例中,移动终端为用户侧的设备,可以与用户交互,且具有用户所需的计算、上网、通信等功能的计算机设备,其实现形式可以有多种,例如,例如,可以是智能手机、穿戴设备(如虚拟现实头戴式显示设备)、平板电脑、台式电脑以及智能电视等。移动终端包括一电子显示屏,用户可以通过电子显示屏与移动终端进行交互;电子显示屏可展示有损坏天线的信息以供用户进行查看。
本申请实施例对移动终端损坏的天线的信息的展示形式不作限定,损坏天线的信息的展示形式包括但不限于以下展示形式:
移动终端上展示包含损坏天线的信息的短信。其中,短信内容可以为包 含天线存在损坏的文字信息,也可以为包含损坏天线的编码的文字信息。
移动终端上显示界面上展示有损坏天线的信息。其中,显示界面上可展示有损坏天线的文字信息,也可以为包含损坏天线的编码的文字信息,也可以为在第一可移动平台的示意图上标记有损坏天线的图形信息。
基于以上各实施例的描述,图3为本申请示例性实施例提供的一种可移动平台的控制方法的流程示意图。如图3所示,该方法包括:
S301:获取天线的接收信号;
S302:判断是否存在损坏的天线,若是,则执行步骤S303,若否,则执行步骤304;
S303:调整可移动平台的信号发送策略和/或信号接收策略;
S304:以当前信号发送策略发送信号,以当前信号接收策略接收信号。
本申请上述可移动平台的控制方法的实施例,首先,可移动平台获取天线的接收信号;接着,根据天线的接收信号,对天线进行故障检测,并获得故障检测结果;最后,基于获取到的天线的故障检测结果,自动调整可移动平台的信号发送策略和/或信号接收策略,优化可移动平台的整个系统性能,降低事故发生率。
图4为本申请一示例性实施例提供的一种可移动平台的结构示意图。如图4所示,该可移动平台包括:存储器401和处理器402,还包括至少一个天线403和电源组件404的必须组件。可移动平台还设有实际信号接收功率测量模块405和往返时延测量模块406。
存储器401,用于存储计算机程序,并可被配置为存储其它各种数据以支持在可移动平台上的操作。这些数据的示例包括用于在数据处理设备上操作的任何应用程序或方法的指令。
存储器401,可以由任何类型的易失性或非易失性存储设备或者它们的组合实现,如静态随机存取存储器(SRAM),电可擦除可编程只读存储器(EEPROM),可擦除可编程只读存储器(EPROM),可编程只读存储器(PROM),只读存储器(ROM),磁存储器,快闪存储器,磁盘或光盘。
天线403,用于与信号源进行通信。
处理器402,可执行存储器401中存储的计算机指令,以用于:获取天线的接收信号;根据天线的接收信号,对天线进行故障检测;根据天线的故障检测结果,调整可移动平台的信号发送策略和/或信号接收策略。
可选地,天线包括接收天线和发射天线,处理器402在根据天线的故障检测结果,调整可移动平台的信号发送策略和/或信号接收策略时,具体用于:若发射天线发生损坏,则至少调整信号发送策略;若接收天线发生损坏,则至少调整信号接收策略;若接收天线和发射天线均发生损坏,则调整信号接收策略和信号发送策略。
可选地,处理器402在调整信号接收策略时,具体用于:将未损坏的接收天线的接收信号作为用于进行信号处理的接收信号。
可选地,处理器402在调整信号发送策略时,具体用于:
若未损坏的发射天线数量少于当前发送模式要求的天线数量,则将当前发送模式调整至与未损坏的发射天线数量适配的发送模式,其中,不同的发送模式对应于不同的发射天线数量。
可选地,发射天线包括多组发射天线,处理器402在调整信号发送策略时,具体用于:
若多组发射天线中的至少一组发射天线中的天线存在损坏,则从剩余组发射天线中选择至少一组发射天线对外发送信号。
可选地,可移动平台为无人机,处理器402,还可用于:向与无人机通信的遥控装置发送接收策略变更消息和/或发送策略变更消息,以使得遥控装置 更新遥控装置的信号发送策略和/或信号接收策略;
可移动平台为与无人机通信的遥控装置,处理器402,还可用于:向无人机发送接收策略变更消息和/或发送策略变更消息,以使得无人机更新无人机的信号接收策略和/或信号发送策略。
可选地,接收策略变更消息和/或发送策略变更消息携带有时间信息,所述时间信息用于使无人机和遥控装置进行同步调整。
可选地,处理器402,在根据天线的接收信号,对天线进行故障检测时,具体用于:利用实际信号接收功率测量模块获取天线的实际信号接收功率;利用往返时延测量模块,获取天线的信号的往返时间;根据天线的信号的往返时间,获取天线的参考信号接收功率;根据天线的实际信号接收功率和参考信号接收功率,对天线进行故障检测。
可选地,处理器402,在根据天线的信号的往返时间,获取天线的参考信号接收功率时,具体用于:根据天线的信号的往返时间,计算天线与信号源之间的距离;根据天线与信号源之间的距离,获取天线的参考信号接收功率。
可选地,处理器402,在根据天线与信号源之间的距离,获取天线的参考信号接收功率时,具体用于:根据天线与信号源之间的距离以及预设距离阈值,获取天线的参考信号接收功率。
可选地,处理器402,在根据天线的实际信号接收功率和参考信号接收功率,对天线进行故障检测时,具体用于:针对第一天线,计算第一天线的实际信号接收功率和参考信号接收功率之间的差值;根据第一天线的实际信号接收功率和参考信号接收功率之间的差值,确定第一天线是否发生损坏;其中,第一天线是天线中任一天线。
可选地,处理器402,在根据第一天线的实际信号接收功率和参考信号接收功率之间的差值,确定第一天线是否发生损坏时,具体用于:对第一天线的实际信号接收功率和参考信号接收功率之间的差值进行滤波处理,得到第 一滤波值;若第一滤波值大于设定门限值,则确定第一天线发生损坏;若第一滤波值小于设定门限值,则结合其它天线的实际信号接收功率和参考信号接收功率之间的差值,继续确定第一天线是否发生损坏;其中,其它天线是指天线中除第一天线之外的天线。
可选地,处理器402,在结合其它天线的实际信号接收功率和参考信号接收功率之间的差值,继续确定第一天线是否发生损坏时,具体用于:对其它天线的实际信号接收功率和参考信号接收功率之间的差值进行滤波处理,得到其它天线中任一天线对应的第二滤波值;若存在第一滤波值大于其它天线中任一天线对应的第二滤波值与设定门限值之和,则确定第一天线发生损坏;若不存在第一滤波值大于其它天线中任一天线对应的第二滤波值与设定门限值之和,则确定第一天线未发生损坏。
可选地,处理器402,还用于:若天线中存在发生损坏的天线,将发生损坏的天线的信息发送给移动终端以供用户进行查看。
相应地,本申请实施例还提供一种存储有计算机程序的计算机可读存储介质。当计算机可读存储介质存储计算机程序,且计算机程序被一个或多个处理器执行时,致使一个或多个处理器执行图2方法实施例中的各步骤。
本申请上述设备的实施例,首先,可移动平台获取天线的接收信号;接着,根据天线的接收信号,对天线进行故障检测,并获得故障检测结果;最后,基于获取到的天线的故障检测结果,自动调整可移动平台的信号发送策略和/或信号接收策略,优化可移动平台的整个系统性能,降低事故发生率。
上述图4的电源组件,为电源组件所在设备的各种组件提供电力。电源组件可以包括电源管理系统,一个或多个电源,及其他与为电源组件所在设备生成、管理和分配电力相关联的组件。
本领域内的技术人员应明白,本发明的实施例可提供为方法、系统、或 计算机程序产品。因此,本发明可采用完全硬件实施例、完全软件实施例、或结合软件和硬件方面的实施例的形式。而且,本发明可采用在一个或多个其中包含有计算机可用程序代码的计算机可用存储介质(包括但不限于磁盘存储器、CD-ROM、光学存储器等)上实施的计算机程序产品的形式。
本发明是参照根据本发明实施例的方法、设备(系统)、和计算机程序产品的流程图和/或方框图来描述的。应理解可由计算机程序指令实现流程图和/或方框图中的每一流程和/或方框、以及流程图和/或方框图中的流程和/或方框的结合。可提供这些计算机程序指令到通用计算机、专用计算机、嵌入式处理机或其他可编程数据处理设备的处理器以产生一个机器,使得通过计算机或其他可编程数据处理设备的处理器执行的指令产生用于实现在流程图一个流程或多个流程和/或方框图一个方框或多个方框中指定的功能的装置。
还需要说明的是,术语“包括”、“包含”或者其任何其他变体意在涵盖非排他性的包含,从而使得包括一系列要素的过程、方法、商品或者设备不仅包括那些要素,而且还包括没有明确列出的其他要素,或者是还包括为这种过程、方法、商品或者设备所固有的要素。在没有更多限制的情况下,由语句“包括一个……”限定的要素,并不排除在包括所述要素的过程、方法、商品或者设备中还存在另外的相同要素。
以上各个实施例中的技术方案、技术特征在与本相冲突的情况下均可以单独,或者进行组合,只要未超出本领域技术人员的认知范围,均属于本申请保护范围内的等同实施例。
在本发明所提供的几个实施例中,应该理解到,所揭露的相关检测装置(例如:IMU)和方法,可以通过其它的方式实现。例如,以上所描述的遥控装置实施例仅仅是示意性的,例如,所述模块或单元的划分,仅仅为一种逻辑功能划分,实际实现时可以有另外的划分方式,例如多个单元或组件可以结合或者可以集成到另一个系统,或一些特征可以忽略,或不执行。另一 点,所显示或讨论的相互之间的耦合或直接耦合或通信连接可以是通过一些接口,遥控装置或单元的间接耦合或通信连接,可以是电性,机械或其它的形式。
所述作为分离部件说明的单元可以是或者也可以不是物理上分开的,作为单元显示的部件可以是或者也可以不是物理单元,即可以位于一个地方,或者也可以分布到多个网络单元上。可以根据实际的需要选择其中的部分或者全部单元来实现本实施例方案的目的。
另外,在本发明各个实施例中的各功能单元可以集成在一个处理单元中,也可以是各个单元单独物理存在,也可以两个或两个以上单元集成在一个单元中。上述集成的单元既可以采用硬件的形式实现,也可以采用软件功能单元的形式实现。
所述集成的单元如果以软件功能单元的形式实现并作为独立的产品销售或使用时,可以存储在一个计算机可读取存储介质中。基于这样的理解,本发明的技术方案本质上或者说对现有技术做出贡献的部分或者该技术方案的全部或部分可以以软件产品的形式体现出来,该计算机软件产品存储在一个存储介质中,包括若干指令用以使得计算机处理器(processor)执行本发明各个实施例所述方法的全部或部分步骤。而前述的存储介质包括:U盘、移动硬盘、只读存储器(ROM,Read-Only Memory)、随机存取存储器(RAM,Random Access Memory)、磁盘或者光盘等各种可以存储程序代码的介质。
以上所述仅为本发明的实施例,并非因此限制本发明的专利范围,凡是利用本发明说明书及附图内容所作的等效结构或等效流程变换,或直接或间接运用在其他相关的技术领域,均同理包括在本发明的专利保护范围内。
最后应说明的是:以上各实施例仅用以说明本发明的技术方案,而非对其限制;尽管参照前述各实施例对本发明进行了详细的说明,本领域的普通技术人员应当理解:其依然可以对前述各实施例所记载的技术方案进行修改, 或者对其中部分或者全部技术特征进行等同替换;而这些修改或者替换,并不使相应技术方案的本质脱离本发明各实施例技术方案的范围。

Claims (29)

  1. 一种可移动平台的控制方法,其特征在于,所述可移动平台设有天线,所述天线的数量为多个,所述方法包括:
    获取所述天线的接收信号;
    根据所述天线的接收信号,对所述天线进行故障检测;
    根据所述天线的故障检测结果,调整所述可移动平台的信号发送策略和/或信号接收策略。
  2. 根据权利要求1所述的方法,其特征在于,所述天线包括发射天线和接收天线,所述根据所述天线的故障检测结果,调整所述可移动平台的信号发送策略和/或信号接收策略,包括:
    若所述发射天线发生损坏,则至少调整所述可移动平台的信号发送策略;
    若所述接收天线发生损坏,则至少调整所述可移动平台的信号接收策略;
    若所述发射天线和所述接收天线均发生损坏,则调整所述可移动平台的信号接收策略和信号发送策略。
  3. 根据权利要求2所述的方法,其特征在于,所述调整所述可移动平台的信号接收策略,包括:
    将未损坏的接收天线的接收信号作为用于进行信号处理的接收信号。
  4. 根据权利要求2所述的方法,其特征在于,所述调整所述可移动平台的信号发送策略,包括:
    若未损坏的发射天线数量少于当前发送模式要求的天线数量,则将当前发送模式调整至与未损坏的发射天线数量适配的发送模式,其中,不同的发送模式对应于不同的发射天线数量。
  5. 根据权利要求2所述的方法,其特征在于,所述发射天线包括多组发射天线,所述调整所述可移动平台的信号发送策略,包括:
    若所述多组发射天线中的至少一组发射天线中的天线存在损坏,则从剩余组发射天线中选择至少一组发射天线对外发送信号。
  6. 根据权利要求1所述的方法,其特征在于,
    所述可移动平台为无人机,所述方法还包括:向与所述无人机通信的遥控装置发送接收策略变更消息和/或发送策略变更消息,以使得所述遥控装置更新所述遥控装置的信号接收策略和/或信号发送策略;
    所述可移动平台为与无人机通信的遥控装置,所述方法还包括:向所述无人机发送接收策略变更消息和/或发送策略变更消息,以使得所述无人机更新所述无人机的信号接收策略和/或信号发送策略。
  7. 根据权利要求6所述的方法,其特征在于,所述接收策略变更消息和/或发送策略变更消息携带有时间信息,所述时间信息用于使所述无人机和所述遥控装置进行同步调整。
  8. 根据权利要求1所述的方法,其特征在于,所述根据所述天线的接收信号,对所述天线进行故障检测,包括:
    根据所述天线的接收信号,获取所述天线的实际信号接收功率;
    根据所述天线的信号的往返时间,获取所述天线的参考信号接收功率;
    根据所述天线的实际信号接收功率和所述参考信号接收功率,对所述天线进行故障检测。
  9. 根据权利要求8所述的方法,其特征在于,所述根据所述天线的信号的往返时间,获取所述天线的参考信号接收功率,包括:
    根据所述天线的信号的往返时间,计算所述天线与信号源之间的距离;
    根据所述天线与信号源之间的距离,获取所述天线的参考信号接收功率。
  10. 根据权利要求9所述的方法,其特征在于,所述根据所述天线与信号源之间的距离,获取所述天线的参考信号接收功率,包括:
    根据所述天线与信号源之间的距离以及预设距离阈值,获取所述天线的参考信号接收功率。
  11. 根据权利要求8所述的方法,其特征在于,所述根据所述天线的实际信号接收功率和参考信号接收功率,对所述天线进行故障检测,包括:
    针对第一天线,计算所述第一天线的实际信号接收功率和参考信号接收功率之间的差值;
    根据所述第一天线的实际信号接收功率和参考信号接收功率之间的差值,确定所述第一天线是否发生损坏;
    其中,所述第一天线是所述天线中任一天线。
  12. 根据权利要求11所述的方法,其特征在于,根据所述第一天线的实际信号接收功率和参考信号接收功率之间的差值,确定所述第一天线是否发生损坏,包括:
    对所述第一天线的实际信号接收功率和参考信号接收功率之间的差值进行滤波处理,得到第一滤波值;
    若第一滤波值大于设定门限值,则确定所述第一天线发生损坏;
    若第一滤波值小于设定门限值,则结合其它天线的实际信号接收功率和参考信号接收功率之间的差值,继续确定所述第一天线是否发生损坏;
    其中,所述其它天线是指所述天线中除第一天线之外的天线。
  13. 根据权利要求12所述的方法,其特征在于,所述结合其它天线的实际信号接收功率和参考信号接收功率之间的差值,继续确定第一天线是否发生损坏,包括:
    对所述其它天线的实际信号接收功率和参考信号接收功率之间的差值进行滤波处理,得到其它天线中任一天线对应的第二滤波值;
    若存在第一滤波值大于其它天线中任一天线对应的第二滤波值与设定门 限值之和,则确定所述第一天线发生损坏;
    若不存在第一滤波值大于其它天线中任一天线对应的第二滤波值与设定门限值之和,则确定所述第一天线未发生损坏。
  14. 根据权利要求1-13任一所述的方法,其特征在于,还包括:
    若所述天线中存在发生损坏的天线,将发生损坏的天线的信息发送给移动终端以供用户进行查看。
  15. 一种可移动平台,其特征在于,包括:天线,所述天线的数量为多个,一个或多个处理器,以及一个或多个存储计算机程序的存储器;
    所述一个或多个处理器,用于执行所述计算机程序,以用于:
    获取所述天线的接收信号;
    根据所述天线的接收信号,对所述天线进行故障检测;
    根据所述天线的故障检测结果,调整所述可移动平台的信号发送策略和/或信号接收策略。
  16. 根据权利要求15所述的可移动平台,其特征在于,所述天线包括接收天线和发射天线,所述一个或多个处理器在根据所述天线的故障检测结果,调整所述可移动平台的信号发送策略和/或信号接收策略时,具体用于:
    若所述发射天线发生损坏,则至少调整所述可移动平台的信号发送策略;
    若所述接收天线发生损坏,则至少调整所述可移动平台的信号接收策略;
    若所述发射天线和所述接收天线均发生损坏,则调整所述可移动平台的信号接收策略和信号发送策略。
  17. 根据权利要求16所述的可移动平台,其特征在于,所述一个或多个处理器在调整所述可移动平台的信号接收策略时,具体用于:
    将未损坏的接收天线的接收信号作为用于进行信号处理的接收信号。
  18. 根据权利要求16所述的可移动平台,其特征在于,所述一个或多个处理器在调整所述可移动平台的信号发送策略时,具体用于:
    若未损坏的发射天线数量少于当前发送模式要求的天线数量,则将当前发送模式调整至与未损坏的发射天线数量适配的发送模式,其中,不同的发送模式对应于不同的发射天线数量。
  19. 根据权利要求16所述的可移动平台,其特征在于,所述发射天线包括多组发射天线,所述一个或多个处理器在调整所述可移动平台的信号发送策略时,具体用于:
    若所述多组发射天线中的至少一组发射天线中的天线存在损坏,则从剩余组发射天线中选择至少一组发射天线对外发送信号。
  20. 根据权利要求15所述的可移动平台,其特征在于,
    所述可移动平台为无人机,所述一个或多个处理器,还可用于:向与所述无人机通信的遥控装置发送接收策略变更消息和/或发送策略变更消息,以使得所述遥控装置更新所述遥控装置的信号接收策略和/或信号发送策略;
    所述可移动平台为与无人机通信的遥控装置,所述一个或多个处理器,还可用于:向所述无人机发送接收策略变更消息和/或发送策略变更消息,以使得所述无人机更新所述无人机的信号接收策略和/或信号发送策略。
  21. 根据权利要求20所述的可移动平台,其特征在于,所述接收策略变更消息和/或发送策略变更消息携带有时间信息,所述时间信息用于使所述无人机和所述遥控装置进行同步调整。
  22. 根据权利要求15所述的可移动平台,其特征在于,所述可移动平台还设有实际信号接收功率测量模块和往返时延测量模块,所述一个或多个处理器,在根据所述天线的接收信号,对所述天线进行故障检测时,具体用于:
    利用实际信号接收功率测量模块获取所述天线的实际信号接收功率;
    利用往返时延测量模块,获取所述天线的信号的往返时间;
    根据所述天线的信号的往返时间,获取所述天线的参考信号接收功率;
    根据所述天线的实际信号接收功率和所述参考信号接收功率,对所述天线进行故障检测。
  23. 根据权利要求22所述的可移动平台,其特征在于,所述一个或多个处理器,在根据所述天线的信号的往返时间,获取所述天线的参考信号接收功率时,具体用于:
    根据所述天线的信号的往返时间,计算所述天线与信号源之间的距离;
    根据所述天线与信号源之间的距离,获取所述天线的参考信号接收功率。
  24. 根据权利要求23所述的可移动平台,其特征在于,所述一个或多个处理器,在根据所述天线与信号源之间的距离,获取所述天线的参考信号接收功率时,具体用于:
    根据所述天线与信号源之间的距离以及预设距离阈值,获取所述天线的参考信号接收功率。
  25. 根据权利要求22所述的可移动平台,其特征在于,所述一个或多个处理器,在根据所述天线的实际信号接收功率和参考信号接收功率,对所述天线进行故障检测时,具体用于:
    针对第一天线,计算所述第一天线的实际信号接收功率和参考信号接收功率之间的差值;
    根据所述第一天线的实际信号接收功率和参考信号接收功率之间的差值,确定所述第一天线是否发生损坏;
    其中,所述第一天线是所述天线中任一天线。
  26. 根据权利要求25所述的可移动平台,其特征在于,所述一个或多个处理器,在根据所述第一天线的实际信号接收功率和参考信号接收功率之间 的差值,确定所述第一天线是否发生损坏时,具体用于:
    对所述第一天线的实际信号接收功率和参考信号接收功率之间的差值进行滤波处理,得到第一滤波值;
    若第一滤波值大于设定门限值,则确定所述第一天线发生损坏;
    若第一滤波值小于设定门限值,则结合其它天线的实际信号接收功率和参考信号接收功率之间的差值,继续确定所述第一天线是否发生损坏;
    其中,所述其它天线是指所述天线中除第一天线之外的天线。
  27. 根据权利要求26所述的可移动平台,其特征在于,所述一个或多个处理器,在结合其它天线的实际信号接收功率和参考信号接收功率之间的差值,继续确定第一天线是否发生损坏时,具体用于:
    对所述其它天线的实际信号接收功率和参考信号接收功率之间的差值进行滤波处理,得到其它天线中任一天线对应的第二滤波值;
    若存在第一滤波值大于其它天线中任一天线对应的第二滤波值与设定门限值之和,则确定所述第一天线发生损坏;
    若不存在第一滤波值大于其它天线中任一天线对应的第二滤波值与设定门限值之和,则确定所述第一天线未发生损坏。
  28. 根据权利要求15-27任一所述的可移动平台,其特征在于,所述一个或多个处理器还用于:
    若所述天线中存在发生损坏的天线,将发生损坏的天线的信息发送给移动终端以供用户进行查看。
  29. 一种存储有计算机程序的计算机可读存储介质,其特征在于,当所述计算机程序被一个或多个处理器执行时,致使所述一个或多个处理器执行权利要求1-14任一项所述的可移动平台的控制方法。
PCT/CN2019/121223 2019-11-27 2019-11-27 可移动平台的控制方法、设备及存储介质 WO2021102730A1 (zh)

Priority Applications (2)

Application Number Priority Date Filing Date Title
CN201980033246.XA CN112154612A (zh) 2019-11-27 2019-11-27 可移动平台的控制方法、设备及存储介质
PCT/CN2019/121223 WO2021102730A1 (zh) 2019-11-27 2019-11-27 可移动平台的控制方法、设备及存储介质

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/CN2019/121223 WO2021102730A1 (zh) 2019-11-27 2019-11-27 可移动平台的控制方法、设备及存储介质

Publications (1)

Publication Number Publication Date
WO2021102730A1 true WO2021102730A1 (zh) 2021-06-03

Family

ID=73891512

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2019/121223 WO2021102730A1 (zh) 2019-11-27 2019-11-27 可移动平台的控制方法、设备及存储介质

Country Status (2)

Country Link
CN (1) CN112154612A (zh)
WO (1) WO2021102730A1 (zh)

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6296205B1 (en) * 1999-03-11 2001-10-02 Aeroastro, Inc. RF inspection satellite
CN106656683A (zh) * 2017-02-27 2017-05-10 北京中船信息科技有限公司 一种无人机通信链路故障检测装置及方法
CN107168151A (zh) * 2017-04-20 2017-09-15 中国人民解放军海军工程大学 一种短波接收天线效率空中立体无线自动检测系统及方法
CN108351620A (zh) * 2015-09-16 2018-07-31 深圳市大疆创新科技有限公司 用于操作移动平台的方法和设备
CN108513692A (zh) * 2017-04-21 2018-09-07 深圳市大疆创新科技有限公司 一种射频控制系统和控制方法

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1913402B (zh) * 2005-08-11 2010-10-13 中兴通讯股份有限公司 一种智能天线故障检测的方法
CN101741481B (zh) * 2008-11-21 2013-04-03 中国移动通信集团河南有限公司 一种天馈系统性能检测方法及装置
JP6274031B2 (ja) * 2014-06-26 2018-02-07 株式会社オートネットワーク技術研究所 車両用通信システム、車載機、携帯機及びコンピュータプログラム

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6296205B1 (en) * 1999-03-11 2001-10-02 Aeroastro, Inc. RF inspection satellite
CN108351620A (zh) * 2015-09-16 2018-07-31 深圳市大疆创新科技有限公司 用于操作移动平台的方法和设备
CN106656683A (zh) * 2017-02-27 2017-05-10 北京中船信息科技有限公司 一种无人机通信链路故障检测装置及方法
CN107168151A (zh) * 2017-04-20 2017-09-15 中国人民解放军海军工程大学 一种短波接收天线效率空中立体无线自动检测系统及方法
CN108513692A (zh) * 2017-04-21 2018-09-07 深圳市大疆创新科技有限公司 一种射频控制系统和控制方法

Also Published As

Publication number Publication date
CN112154612A (zh) 2020-12-29

Similar Documents

Publication Publication Date Title
US11886204B2 (en) Unmanned aerial vehicle and supervision method and monitoring system for flight state thereof
US20190369613A1 (en) Electronic device and method for controlling multiple drones
CN108521807B (zh) 无人机的控制方法、设备及障碍物的提示方法、设备
US11429094B2 (en) Drone communication system and communication system of drone server
EP3309762A1 (en) Fire disaster monitoring method and apparatus
EP3792725B1 (en) Method and apparatus for reporting flight route information, and method and apparatus for determining information
US20170272933A1 (en) Method of realizing virtual subscriber identity module card and system thereof
US20190026930A1 (en) Digital information retrieval and rendering in a factory environment
CN107004345A (zh) 控制方法、无人机及遥控设备
US11609755B2 (en) Method for upgrading modules in unmanned aircraft system and unmanned aircraft system
US11064123B2 (en) Method and Apparatus for zooming relative to an object
US11221635B2 (en) Aerial vehicle heading control method and apparatus and electronic device
CN105940627A (zh) 无人飞行器通信方法及系统
US20200058224A1 (en) Route information transmission method, apparatus and system, unmanned aerial vehicle, ground station, and computer readable storage medium
US20180276997A1 (en) Flight tag obtaining method, terminal, and server
US20200302799A1 (en) Unmanned aerial vehicle control method and device, and unmanned aerial vehicle operating method and device
US20200247554A1 (en) Method for detecting positioning apparatus of unmanned aerial vehicle, and unmanned aerial vehicle
US11212724B2 (en) Cell reselection method and device
CN109218598B (zh) 一种相机切换方法、装置及无人机
US11877253B2 (en) Aircraft time synchronization system and method
CN106254183B (zh) 基于飞行器的控制方法、装置及飞行器
US20200160727A1 (en) Method for determining flight policy of unmanned aerial vehicle, unmanned aerial vehicle and ground device
US20210048813A1 (en) Load control methods, mobile platforms, and computer-readable storage media
US20200278673A1 (en) Information processing apparatus and flight control system
US11109239B2 (en) Method for communication in unlicensed band and apparatus for same

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 19954607

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 19954607

Country of ref document: EP

Kind code of ref document: A1