WO2021102722A1 - Laser à émission de bord à mode longitudinal unique doté d'une structure de confinement d'oxydation de réseau latéral, et son procédé de préparation - Google Patents

Laser à émission de bord à mode longitudinal unique doté d'une structure de confinement d'oxydation de réseau latéral, et son procédé de préparation Download PDF

Info

Publication number
WO2021102722A1
WO2021102722A1 PCT/CN2019/121155 CN2019121155W WO2021102722A1 WO 2021102722 A1 WO2021102722 A1 WO 2021102722A1 CN 2019121155 W CN2019121155 W CN 2019121155W WO 2021102722 A1 WO2021102722 A1 WO 2021102722A1
Authority
WO
WIPO (PCT)
Prior art keywords
layer
emitting laser
grating
type
aluminum component
Prior art date
Application number
PCT/CN2019/121155
Other languages
English (en)
Chinese (zh)
Inventor
王岩
罗帅
季海铭
Original Assignee
江苏华兴激光科技有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 江苏华兴激光科技有限公司 filed Critical 江苏华兴激光科技有限公司
Publication of WO2021102722A1 publication Critical patent/WO2021102722A1/fr

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S5/00Semiconductor lasers
    • H01S5/20Structure or shape of the semiconductor body to guide the optical wave ; Confining structures perpendicular to the optical axis, e.g. index or gain guiding, stripe geometry, broad area lasers, gain tailoring, transverse or lateral reflectors, special cladding structures, MQW barrier reflection layers
    • H01S5/22Structure or shape of the semiconductor body to guide the optical wave ; Confining structures perpendicular to the optical axis, e.g. index or gain guiding, stripe geometry, broad area lasers, gain tailoring, transverse or lateral reflectors, special cladding structures, MQW barrier reflection layers having a ridge or stripe structure

Definitions

  • the invention relates to the technical field of optoelectronic device design, in particular to a single longitudinal mode side-emitting laser with a side grating oxidation limiting structure and a preparation method thereof.
  • Semiconductor lasers also known as laser diodes, are lasers that use semiconductor materials as working materials. Due to the difference in material structure, the specific processes of different types of lasers are quite special. Commonly used working materials are gallium arsenide (GaAs), cadmium sulfide (CdS), indium phosphide (InP), zinc sulfide (ZnS), etc. There are three types of excitation methods: electrical injection, electron beam excitation and optical pumping. Semiconductor laser devices can be divided into homojunctions, single heterojunctions, and double heterojunctions. Homojunction lasers and single heterojunction lasers are mostly pulsed devices at room temperature, while double heterojunction lasers can achieve continuous operation at room temperature.
  • the semiconductor diode laser is the most practical and important type of laser. It is small in size, long in life, and can be pumped by simple current injection. Its working voltage and current are compatible with integrated circuits, so it can be monolithically integrated with it. And you can also directly modulate the current with a frequency up to several tens of GHz to obtain high-speed modulated laser output. Due to these advantages, semiconductor diode lasers have been widely used in laser communications, optical storage, optical gyroscopes, laser printing, ranging and radar. At the same time, semiconductor lasers can also be used as pump light sources for high-power applications, such as lasers for marking, welding, and cutting.
  • Edge emission means that the laser emission direction is along the horizontal direction, that is, perpendicular to the material growth direction. If it emits along the growth direction, it is called a vertical surface emitting laser. Because edge-emitting lasers can obtain higher power, efficiency and spectral characteristics, they are currently widely used in the fields of communication and pumping.
  • Common semiconductor edge-emitting lasers realize fundamental transverse mode operation by narrowing the strip width, and realize single longitudinal mode operation by fabricating a complex grating in the waveguide layer.
  • This refractive index guiding structure has a large resistivity and a horizontal divergence angle of the mode. Large, complex process, low yield.
  • the purpose of the present invention is to overcome the shortcomings of the prior art and provide a single longitudinal mode side emitting laser with a side grating oxidation limiting structure and a preparation method thereof, which is helpful for high-efficiency current injection, realization of large mode volume fundamental transverse mode, and low loss Realization of mode selection grating.
  • the technical solution of the present invention is: a single longitudinal mode side emitting laser with a side grating oxidation confinement structure.
  • the difference is that it includes an N electrode layer; a substrate is arranged on the N electrode layer; The cover layer is arranged on the substrate; the lower waveguide layer is arranged on the lower cover layer; the active area is arranged on the lower waveguide layer;
  • the ridge strip structure is arranged on the active area;
  • the ridge strip structure includes: an upper waveguide layer arranged on the active area; a middle high-aluminum component layer arranged on the upper waveguide layer; an upper cap layer arranged on the active area On the middle high-aluminum component layer; the contact layer is set on the upper cover layer; the P electrode layer is set on the contact layer;
  • the side grating structure is arranged on the side of the ridge strip structure and has a groove-shaped periodic structure.
  • the material of the substrate is GaAs or InP, which is N-type or P-type conductivity;
  • the material of the lower cap layer is AlGaAs, InGaAs, GaAsP, InP, AlGaInP or AlGaInAs, and the doping concentration ranges from 5X10 ⁇ 17/cm ⁇ 3 to 5X10 ⁇ 18/cm ⁇ 3, N-type or P-type conductivity;
  • the material of the lower waveguide layer is AlGaAs, InGaAs, GaAsP, InP, AlGaInP or AlGaInAs, and the doping concentration ranges from 5X10 ⁇ 17/cm ⁇ 3 to 3X10 ⁇ 18/cm ⁇ 3, N-type or P-type conductivity;
  • the active region is an InGaAs/GaAs, InGaAs/AlGaAs, InGaAs/GaAsP multiple quantum well structure, and the center wavelength of the emission spectrum matches the laser lasing wavelength;
  • the material of the upper waveguide layer is AlGaAs, InGaAs, GaAsP, InP, AlGaInP or AlGaInAs, and the doping concentration ranges from 5X10 ⁇ 17/cm ⁇ 3 to 3X10 ⁇ 18/cm ⁇ 3, corresponding to the P-type lower waveguide layer Or N-type conductivity;
  • the upper cap layer is AlGaAs, InGaAs, GaAsP, InP, AlGaInP or AlGaInAs, and the doping concentration ranges from 5X10 ⁇ 17/cm ⁇ 3 to 5X10 ⁇ 18/cm ⁇ 3, P-type or N-type conductivity;
  • the contact layer is made of P-type or N-type conductive highly doped GaAs or InGaAs material, with a thickness of 5nm to 200nm, and a doping concentration of 1X10 ⁇ 19/cm ⁇ 3 to 5X10 ⁇ 19/cm ⁇ 3.
  • the material of the middle high-aluminum composition layer is AlGaAs or AlInAs; an Al 2 O 3 insulating layer can be formed under the condition of high temperature and humid oxygen, changing from a high refractive index to a low refractive index, which is used to limit current and light. field.
  • the side grating structure expands into the ridge strip structure, and the inner grating is formed by cloning.
  • a method for preparing a single longitudinal mode side-emitting laser with a side grating oxidation confinement structure which is characterized in that the steps are:
  • the epitaxial material photoetch a striped pattern with side gratings, and etch the epitaxial layer with a high aluminum component layer to the upper waveguide layer;
  • the epitaxial material includes a substrate layered sequentially from bottom to top, Lower cover layer, lower waveguide layer, active area, upper waveguide layer, middle high aluminum component layer, upper cover layer and contact layer;
  • Step 2 Wet oxygen oxidation: horizontally oxidize the middle high-aluminum component layer to the required depth; at this time, the outside of the middle high-aluminum component layer becomes insulating alumina, and the side grating structure expands into the ridge stripe structure. The clone forms an internal grating.
  • Step 3 grow an insulating layer, and etch the upper electrode window
  • Step 4 photolithography and metal stripping to form a P electrode
  • Step 5 wafer thinning
  • Step 6 evaporate the N-type electrode and anneal.
  • the high temperature of 400-470 degrees is used, and the 5:95 H2 and N2 mixed gas is used as the water vapor carrier gas to oxidize the high-aluminum component layer under a pressure of 10 m Bar.
  • the middle high aluminum component layer is oxidized, and an oxide strip is formed in the middle, which limits the current and light field.
  • the insulating layer material is silicon dioxide or silicon nitride, and the thickness is 200-300 nm.
  • the P electrode is thick gold with a thickness of 1 to 3 microns to improve thermal characteristics.
  • the wafer is thinned to 130-150 microns.
  • the N-type electrode material is formed by evaporating AuGeNi/Au alloy by electron beam, and the thickness is 100-500 nm.
  • the present invention discloses a method for realizing a single longitudinal mode side-emitting laser that combines a side grating and an oxidation limiting process.
  • the purpose is to provide a low-loss grating realization method for a semiconductor side-emitting laser, using wet oxygen Oxidation forms an insulating region and a low-refractive-index waveguide region.
  • This method facilitates high-efficiency current injection, realization of large mode volume fundamental transverse modes, and realization of low-loss mode selection gratings.
  • expensive secondary epitaxial material growth and ion implantation technology are not required.
  • FIG. 1 is a schematic diagram of the overall structure of a laser according to an embodiment of the present invention.
  • Figure 2 is a schematic flow chart of a laser manufacturing method according to an embodiment of the present invention.
  • Fig. 3 is a schematic diagram of the structure of the exceptionally extended material in the implementation of the present invention.
  • 1-contact layer 2-upper cover layer, 3-middle high aluminum component layer (31-Al 2 O 3 insulating layer), 4-upper waveguide layer, 5-active area, 6-lower waveguide layer, 7-lower cover layer, 8-substrate, 9-P electrode.
  • exemplary or “illustrative” as used herein means serving as an example, instance, or illustration. Any embodiment described herein as “exemplary” or “illustrative” is not necessarily construed as being preferred or advantageous over other embodiments. All the embodiments described below are exemplary embodiments. These exemplary embodiments are provided to enable those skilled in the art to make and use the embodiments of the present disclosure and are not intended to limit the scope of the present disclosure. The scope of the present disclosure is determined by Claims are defined. In other embodiments, well-known features and methods are described in detail so as not to obscure the present invention.
  • the present invention is a side grating oxidation confinement structure single longitudinal mode edge emitting laser, the difference lies in: it includes an N electrode layer; a substrate 8 arranged on the N electrode layer; lower cover layer 7. Set on the substrate 8; the lower waveguide layer 6 is set on the lower cover layer 7; the active area 5 is set on the lower waveguide layer 6;
  • the ridge strip structure is arranged on the active area 5; the ridge strip structure includes: an upper waveguide layer 4 arranged on the active area 5; a middle high-aluminum component layer 3 arranged on the upper waveguide layer 4; The upper cover layer 2 is arranged on the middle high-aluminum component layer 3; the contact layer 1 is arranged on the upper cover layer 2; the P electrode layer 9 is arranged on the contact layer 1;
  • the side grating structure is arranged on the side of the ridge strip structure and has a groove-shaped periodic structure.
  • the side wall of the main structure is provided with an insulating film (that is, an insulating layer) for protection.
  • the material of the substrate 8 is GaAs or InP, etc., which is N-type or P-type conductivity;
  • the material of the lower cap layer 7 is AlGaAs, InGaAs, GaAsP, InP, AlGaInP or AlGaInAs, etc., and the doping concentration ranges from 5X10 ⁇ 17/cm ⁇ 3 to 5X10 ⁇ 18/cm ⁇ 3, N-type or P-type conductivity;
  • the material of the lower waveguide layer 6 is AlGaAs, InGaAs, GaAsP, InP, AlGaInP or AlGaInAs, etc., and the doping concentration ranges from 5X10 ⁇ 17/cm ⁇ 3 to 3X10 ⁇ 18/cm ⁇ 3, N-type or P-type conductivity;
  • the active region 5 is a multi-quantum well structure such as InGaAs/GaAs, InGaAs/AlGaAs, InGaAs/GaAsP, etc.
  • the center wavelength of the emission spectrum matches the laser lasing wavelength;
  • the multi-quantum well region is a strain-compensating structure, and refraction
  • the rate is higher than that of the waveguide layer (including the upper waveguide layer 4 and the lower waveguide layer 6).
  • the material of the upper waveguide layer 4 is AlGaAs, InGaAs, GaAsP, InP, AlGaInP or AlGaInAs, etc., and the doping concentration ranges from 5X10 ⁇ 17/cm ⁇ 3 to 3X10 ⁇ 18/cm ⁇ 3, corresponding to the lower waveguide layer being P-type or N-type conductivity;
  • the upper cap layer 2 is AlGaAs, InGaAs, GaAsP, InP, AlGaInP or AlGaInAs, etc., and the doping concentration ranges from 5X10 ⁇ 17/cm ⁇ 3 to 5X10 ⁇ 18/cm ⁇ 3, P-type or N-type conductivity;
  • the contact layer 1 is a P-type or N-type conductive highly doped GaAs or InGaAs material, with a thickness of 5 nm to 200 nm, and a doping concentration of 1X10 ⁇ 19/cm ⁇ 3 to 5X10 ⁇ 19/cm ⁇ 3.
  • the material of the middle high-aluminum component layer 3 is AlGaAs or AlInAs; the Al component is 0.95-0.99; the Al 2 O 3 insulating layer 31 can be formed under the condition of high temperature and humid oxygen, changing from high refractive index to low
  • the refractive index changes from a high refractive index of 3 (around) to a low refractive index of 1.75 (around), which is used to limit the current and light field.
  • the thickness is less than 50nm and is used to form a weak refractive index guide.
  • a high-aluminum component layer is added, which can be used for current limiting and forming a weak refractive index guiding structure after partial oxidation.
  • the combination with side grating can realize the selection of the longitudinal mode of the laser.
  • the side grating structure is further oxidized, expands into the ridge strip structure, and clones to form an internal low-loss grating structure.
  • a method for preparing a single longitudinal mode side-emitting laser with a side grating oxidation confinement structure which is characterized in that the steps are:
  • the epitaxial material photoetch a strip pattern with side gratings, and etch the epitaxial layer through the middle high-aluminum component layer 3 to the upper waveguide layer 4;
  • the epitaxial material includes layers stacked sequentially from bottom to top
  • the substrate 8, the lower cap layer 7, the lower waveguide layer 6, the active region 5, the upper waveguide layer 4, the middle high-aluminum component layer 3, the upper cap layer 2, and the contact layer 1; the middle high-aluminum component layer 3 is the The most important feature of epitaxial materials, its composition and thickness determine the current and optical field confinement effects.
  • Step 2 wet oxygen oxidation: horizontally oxidize the middle high-aluminum component layer 3 to the required depth; at this time, the outside of the middle high-aluminum component layer 3 becomes insulating aluminum oxide, with a refractive index of about 1.75, which is very sensitive to current and light fields. Both have a restrictive effect, which is a strong restriction on the current and a weak restriction on the light field, which is conducive to the expansion of the lateral light field.
  • the side grating structure expands into the ridge strip structure, cloning to form an internal grating.
  • Step 3 Growing an insulating layer, and etching the upper electrode window; the side wall of the main structure is exposed, and an insulating film (ie, insulating layer) must be grown as a whole for protection;
  • Step 4 photolithography and metal stripping to form the P electrode 9;
  • Step 5 wafer thinning
  • Step 6 evaporate the N-type electrode and anneal.
  • the etching process is a combination of dry and wet methods, and the process used is an induction induced plasma etching technology using online monitoring.
  • the middle high aluminum component layer 3 is oxidized under a pressure of 10 mBar.
  • the middle high-aluminum component layer 3 is oxidized, and an oxide strip is formed in the middle to limit the current and light field.
  • the insulating layer material is silicon dioxide or silicon nitride, and the thickness is 200-300 nm.
  • the P electrode 9 is thick gold with a thickness of 1 to 3 microns, which is used to improve thermal characteristics.
  • the wafer is thinned to 130-150 microns. It not only guarantees strength, but also facilitates heat dissipation.
  • the N-type electrode material is formed by electron beam evaporation of AuGeNi/Au alloy, and the thickness is 100-500 nm.
  • the invention discloses a method for realizing a single longitudinal mode side-emitting laser with a side grating oxidation limiting structure, which is suitable for the mode control of a semiconductor side-emitting laser, and is helpful for high-efficiency current injection and realization of a large mode volume fundamental transverse mode.
  • the present invention proposes to introduce a high-aluminum component into a specific thin layer of a conventional side-emitting epitaxial material structure, and through wet oxygen oxidation in a similar surface-emitting laser process, a part of the specific film layer becomes an insulating layer and a low-refractive-index area to realize current limitation And the weak refractive index guiding effect, on the one hand to improve the injection efficiency, on the other hand can reduce the horizontal divergence angle.
  • the side gratings By fabricating side gratings on both sides of the laser ridge strips, during the oxidation of the high aluminum component, the side gratings move inward and transfer to the inside of the ridge strips, thereby forming a standing wave field with a specific wavelength in the ridge strips away from the surface.
  • the intensity of the selection of the longitudinal mode can be adjusted, and at the same time, the loss caused by the large roughness of the ridge strip surface can be reduced, and the longitudinal mode selection can be realized by forming a low-loss grating structure.

Landscapes

  • Physics & Mathematics (AREA)
  • Geometry (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Electromagnetism (AREA)
  • Optics & Photonics (AREA)
  • Semiconductor Lasers (AREA)

Abstract

L'invention concerne un laser à émission de bord à mode longitudinal unique doté d'une structure de confinement d'oxydation de réseau latéral, et son procédé de préparation. Le laser à émission de bord à mode longitudinal unique doté d'une structure de confinement d'oxydation à réseau latéral comprend une couche d'électrode N ; un substrat (8) disposé sur la couche d'électrode N ; une couche de couverture inférieure (7) disposée sur le substrat (8) ; une couche de guide d'ondes inférieure (6) disposée sur la couche de recouvrement inférieure (7) ; une région active (5) disposée sur la couche de guide d'ondes inférieure (6) ; et une structure de bande de crête disposée sur la région active (5). La structure de bande de crête comprend : une couche de guide d'ondes supérieure (4) disposée sur la zone active (5) ; une couche intermédiaire de composant à haute teneur en aluminium (3) disposée sur la couche de guide d'ondes supérieure (4) ; une couche de recouvrement supérieure (2) disposée sur la couche intermédiaire de composant à haute teneur en aluminium (3) ; une couche de contact (1) disposée sur la couche de recouvrement supérieure (2) ; et une couche d'électrode P (9) disposée sur la couche de contact (1) ; et une structure de réseau latéral qui est disposée sur une partie latérale de la structure de bande de crête et qui est d'une structure périodique en forme de rainure. La présente invention facilite la réalisation d'une injection de courant efficace et d'un mode transversal fondamental de volume à mode large, et la sélection d'un réseau dans un mode à faible perte.
PCT/CN2019/121155 2019-11-25 2019-11-27 Laser à émission de bord à mode longitudinal unique doté d'une structure de confinement d'oxydation de réseau latéral, et son procédé de préparation WO2021102722A1 (fr)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201911163482.1A CN110880675A (zh) 2019-11-25 2019-11-25 侧面光栅氧化限制结构单纵模边发射激光器及其制备方法
CN201911163482.1 2019-11-25

Publications (1)

Publication Number Publication Date
WO2021102722A1 true WO2021102722A1 (fr) 2021-06-03

Family

ID=69729669

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2019/121155 WO2021102722A1 (fr) 2019-11-25 2019-11-27 Laser à émission de bord à mode longitudinal unique doté d'une structure de confinement d'oxydation de réseau latéral, et son procédé de préparation

Country Status (2)

Country Link
CN (1) CN110880675A (fr)
WO (1) WO2021102722A1 (fr)

Families Citing this family (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111711070A (zh) * 2020-08-18 2020-09-25 江西铭德半导体科技有限公司 边发射单模激光器及制造方法
CN113991422B (zh) * 2021-09-15 2023-09-19 中山大学 一种基于介质侧壁光栅的确定性光栅耦合系数的dfb激光器制作方法
CN113904215A (zh) * 2021-10-09 2022-01-07 苏州长瑞光电有限公司 垂直腔面发射激光器湿法氧化方法及垂直腔面发射激光器
CN114188819B (zh) * 2021-11-03 2023-06-16 江苏华兴激光科技有限公司 一种1342纳米波长大功率微结构dfb激光器
CN114696217B (zh) * 2022-03-02 2023-11-14 无锡市华辰芯光半导体科技有限公司 一种边发射发光器件及其形成方法
CN114300945A (zh) * 2022-03-09 2022-04-08 广东先导院科技有限公司 用于GaAs边发射激光器的脊波导结构制备方法
CN114421280B (zh) * 2022-03-29 2022-08-09 武汉云岭光电有限公司 半导体激光器及其制作方法
CN116613628B (zh) * 2023-07-20 2023-11-10 苏州长光华芯光电技术股份有限公司 具有侧壁光栅结构的边发射半导体发光结构及其制备方法

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5982804A (en) * 1996-08-01 1999-11-09 Pioneer Electronic Corporation Non-regrowth distributed feedback ridge semiconductor laser and method of manufacturing the same
JP2002043688A (ja) * 2000-07-28 2002-02-08 Furukawa Electric Co Ltd:The リッジ型分布帰還半導体レーザ素子
WO2003102646A2 (fr) * 2002-05-30 2003-12-11 Massachusetts Institute Of Technology Guide d'ondes optiques a reseau non-uniforme sur les parois laterales
CN103545711A (zh) * 2013-10-22 2014-01-29 中国科学院半导体研究所 分布反馈式激光器及其制备方法
CN106953235A (zh) * 2016-03-17 2017-07-14 中国科学院半导体研究所 单模GaSb基半导体激光器及其制备方法

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1610995B (zh) * 2002-09-20 2012-12-05 索尼株式会社 半导体激光器及其制造方法
CN102545051A (zh) * 2012-01-16 2012-07-04 苏州纳睿光电有限公司 一种氮化镓基激光器管芯的制备方法
CN212011600U (zh) * 2019-11-25 2020-11-24 江苏华兴激光科技有限公司 侧面光栅氧化限制结构单纵模边发射激光器

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5982804A (en) * 1996-08-01 1999-11-09 Pioneer Electronic Corporation Non-regrowth distributed feedback ridge semiconductor laser and method of manufacturing the same
JP2002043688A (ja) * 2000-07-28 2002-02-08 Furukawa Electric Co Ltd:The リッジ型分布帰還半導体レーザ素子
WO2003102646A2 (fr) * 2002-05-30 2003-12-11 Massachusetts Institute Of Technology Guide d'ondes optiques a reseau non-uniforme sur les parois laterales
CN103545711A (zh) * 2013-10-22 2014-01-29 中国科学院半导体研究所 分布反馈式激光器及其制备方法
CN106953235A (zh) * 2016-03-17 2017-07-14 中国科学院半导体研究所 单模GaSb基半导体激光器及其制备方法

Also Published As

Publication number Publication date
CN110880675A (zh) 2020-03-13

Similar Documents

Publication Publication Date Title
WO2021102722A1 (fr) Laser à émission de bord à mode longitudinal unique doté d'une structure de confinement d'oxydation de réseau latéral, et son procédé de préparation
US6320893B1 (en) Surface emitting semiconductor laser
Takeuchi et al. GaN-based vertical-cavity surface-emitting lasers with AlInN/GaN distributed Bragg reflectors
US7638792B2 (en) Tunnel junction light emitting device
US11876349B2 (en) Semiconductor device, semiconductor laser, and method of producing a semiconductor device
CN111682402B (zh) 一种对称dbr结构的面发射半导体激光芯片及其制备方法
JP2004289157A (ja) レーザダイオード構造およびその製造方法
JP2019012744A (ja) 半導体発光素子および半導体発光素子の製造方法
JP2011124442A (ja) 半導体レーザ装置及びその製造方法
CN212011600U (zh) 侧面光栅氧化限制结构单纵模边发射激光器
CN108233180B (zh) 一种AlGaInP结构的808nm半导体激光器结构
CN211789982U (zh) 一种紧凑型多波长垂直腔面发射半导体激光器
CN219086444U (zh) 一种半导体激光器
CN107645121B (zh) 脊形阵列半导体激光器及其制作方法
US20070127533A1 (en) Long-wavelength vertical cavity surface emitting lasers having oxide aperture and method for manufacturing the same
US7965752B1 (en) Native green laser semiconductor devices
Cheng et al. Nitride laser diodes with nonepitaxial cladding layers
CN114976865A (zh) 一种带高对比度光栅的高效垂直腔面eml芯片
EP0284684B1 (fr) Laser à semi-conducteur avec canal inverse et substrat plan
KR20030033277A (ko) 수직으로 집적화된 고출력 면발광 반도체 레이저 장치 및그 제조 방법
NL2026923B1 (en) Dual-wavelength monolithic integrated surface-emitting semiconductor laser
CN113381294B (zh) 单片集成边发射激光器及制备方法
CN111276867B (zh) 单片集成双波长半导体激光器及其制备方法
JPS6334993A (ja) 半導体レ−ザ装置
Mei et al. Green and Blue Vertical‐Cavity Surface‐Emitting Lasers

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 19953996

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 19953996

Country of ref document: EP

Kind code of ref document: A1