WO2021102642A1 - 一种信号处理方法和网络设备 - Google Patents
一种信号处理方法和网络设备 Download PDFInfo
- Publication number
- WO2021102642A1 WO2021102642A1 PCT/CN2019/120672 CN2019120672W WO2021102642A1 WO 2021102642 A1 WO2021102642 A1 WO 2021102642A1 CN 2019120672 W CN2019120672 W CN 2019120672W WO 2021102642 A1 WO2021102642 A1 WO 2021102642A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- matrix
- directions
- network device
- antenna
- virtual user
- Prior art date
Links
Images
Classifications
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04W—WIRELESS COMMUNICATION NETWORKS
- H04W16/00—Network planning, e.g. coverage or traffic planning tools; Network deployment, e.g. resource partitioning or cells structures
- H04W16/24—Cell structures
- H04W16/28—Cell structures using beam steering
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04B—TRANSMISSION
- H04B7/00—Radio transmission systems, i.e. using radiation field
- H04B7/02—Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas
- H04B7/04—Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas
- H04B7/06—Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas at the transmitting station
- H04B7/0613—Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas at the transmitting station using simultaneous transmission
- H04B7/0615—Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas at the transmitting station using simultaneous transmission of weighted versions of same signal
- H04B7/0617—Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas at the transmitting station using simultaneous transmission of weighted versions of same signal for beam forming
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04B—TRANSMISSION
- H04B7/00—Radio transmission systems, i.e. using radiation field
- H04B7/02—Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas
- H04B7/04—Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas
- H04B7/0413—MIMO systems
- H04B7/0426—Power distribution
- H04B7/0434—Power distribution using multiple eigenmodes
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04B—TRANSMISSION
- H04B7/00—Radio transmission systems, i.e. using radiation field
- H04B7/02—Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas
- H04B7/04—Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas
- H04B7/0413—MIMO systems
- H04B7/0452—Multi-user MIMO systems
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04B—TRANSMISSION
- H04B7/00—Radio transmission systems, i.e. using radiation field
- H04B7/02—Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas
- H04B7/04—Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas
- H04B7/0413—MIMO systems
- H04B7/0456—Selection of precoding matrices or codebooks, e.g. using matrices antenna weighting
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04W—WIRELESS COMMUNICATION NETWORKS
- H04W72/00—Local resource management
- H04W72/04—Wireless resource allocation
- H04W72/044—Wireless resource allocation based on the type of the allocated resource
- H04W72/0453—Resources in frequency domain, e.g. a carrier in FDMA
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02D—CLIMATE CHANGE MITIGATION TECHNOLOGIES IN INFORMATION AND COMMUNICATION TECHNOLOGIES [ICT], I.E. INFORMATION AND COMMUNICATION TECHNOLOGIES AIMING AT THE REDUCTION OF THEIR OWN ENERGY USE
- Y02D30/00—Reducing energy consumption in communication networks
- Y02D30/70—Reducing energy consumption in communication networks in wireless communication networks
Definitions
- This application relates to the field of communications, and in particular to a signal processing method and network equipment.
- the number of antennas in a single base station used for massive MIMO (MM) has increased significantly, even reaching 64, 128, 256.
- MM massive MIMO
- the circulator used to eliminate the active echo in the antenna system occupies a large circuit board area and volume, which is an obstacle to further integration of the antenna.
- Active echo refers to the signal fed back by the power amplifier (PA) of the network device when the network device sends a signal to the real user, due to the insufficient isolation between the antennas and mutual coupling. . That is, if there is no circulator, the received active echo will impact the PA, causing loss of PA efficiency.
- PA power amplifier
- the PA circuit can be transformed into a balanced circuit to cancel the active echo.
- 2 PAs in Doherty (DHT) are transformed into 4 PAs.
- DHT Doherty
- the area and cost of the antenna system are doubled due to the doubled number of PAs, which also hinders further integration of the antenna.
- the embodiments of the present application provide a signal processing method and network equipment, which are used to reduce the generation of active echoes.
- the first aspect of the embodiments of the present application provides a signal processing method.
- a network device first obtains a scattering parameter matrix of a passive echo in an antenna system, where the antenna system includes k antennas.
- echo refers to when network equipment is transmitting signals, due to insufficient isolation between adjacent antennas and mutual coupling, the effect of a certain channel In terms of PA, the signal fed in the reverse direction.
- passive echo refers to the signal that each antenna in the network device sends a signal of the same amplitude and the same phase, and the signal is fed back.
- the scattering parameter matrix of the passive echo is the nature of each antenna system in the network equipment, which exists when there is no load, and does not change with the service user equipment or signal environment.
- Active echo refers to the signal that is fed back when the network equipment sends a signal whose amplitude and phase are determined according to the location and demand of the user equipment being served. The active echo changes with the location and requirements of the user equipment.
- the network device determines the m directions with the highest total signal strength as the m virtual user directions according to the scattering parameter matrix of the passive echo. Then, when the target beam whose zero point is aligned with the m virtual user directions is formed, even if the network device sends For forward signals of different amplitudes and phases, the energy of the active echo fed in the reverse direction will be greatly reduced. Therefore, the antenna system in the network equipment does not need a circulator, so the circulator can be eliminated to reduce the size of the antenna system , So that the antenna system can be further integrated.
- the scattering parameter matrix of the passive echo can be expressed as a k ⁇ k order matrix G, where the i-th row and the jth column of the matrix G
- the value of is g(i,j), g(i,j) is equal to the signal strength ratio between the passive echo received by the i-th antenna from the j-th antenna and the signal transmitted by the i-th antenna, then Obtain the signal strength of each antenna in each direction of the passive echo.
- the signal strength of the passive echo received by the antenna is recorded as l i,j , l i,j is equal to the signal of the passive echo received by the i-th antenna from the signal sent by the j-th antenna strength.
- the scattering parameter matrix of the passive echo can be calculated according to the matrix L.
- the scattering parameter matrix of the passive echo is matrix G, where the value in the i-th row and j-th column of G is g(i,j), and g(i,j) is equal to the value received from the i-th column antenna passive antenna j-th column echo intensity L i, the signal strength of the transmitted signal s j and column i of the i antenna ratio, namely:
- the obtained g(i,j) can also be expressed in a plural form, namely:
- a i,j *e j ⁇ i,j are amplitudes, and ⁇ i,j are phases.
- the network device may use a preset algorithm to perform dimensionality reduction processing on the matrix G to obtain an m ⁇ k order matrix V ,
- the row vectors of the matrix V are v0, v1,...,v(m-1) respectively, which are used to represent the directions of m virtual users, and the expressions of the directions of m virtual users are obtained.
- the matrix G is the scattering parameter matrix of each antenna in the antenna system, it represents the signal strength of each antenna with respect to the passive echo, and the m virtual user directions have the highest total signal strength of the passive echo. m directions, if the remaining km directions are ignored, then any row of Gr in the matrix G can be approximated by the linear combination of v0, v1,...,v(m-1):
- the foregoing preset algorithm may be: the network device performs singular value decomposition of the matrix G to obtain U*S *V H , take the first m row vectors in V H as the matrix V.
- U is a unitary matrix of order m ⁇ m
- S is a diagonal matrix of order m ⁇ k with positive semi-definite
- V H is a unitary matrix of order k ⁇ k.
- Any one of the obtained v0, v1,...,v(m-1) is a vector representing the spatial direction, which has both length and direction. Its direction is used to indicate the direction of the virtual user, and its length is used to indicate the passive echo Signal strength.
- PCA principal component analysis
- principal component analysis is used to find out the "pattern" implicit in a large amount of data. It can be used in In terms of pattern recognition, data compression, etc., the role is to map the data set to a low-dimensional space.
- the eigenvalues of the data set are arranged in order of importance.
- the process of dimensionality reduction is the process of discarding unimportant eigenvectors, and the space composed of the remaining eigenvectors is the space after dimensionality reduction.
- the network device can determine the target according to n real user directions and m virtual user directions
- the matrix H of the spatial channel where, Hr is an m ⁇ k-order matrix used to represent the spatial channels of n real user directions, and the target beam is formed according to the matrix H, so that the zero point of the target beam is aligned with the m virtual user directions, thereby reducing the generation of active echo At the same time, it hardly affects business needs.
- a special case of the obtained v0, v1, v2,...,v(m-1) is the orthogonal basis vector of the matrix G
- the network The device determines the target frequency band according to the business requirements.
- the target frequency band is one of the multiple frequency bands obtained by dividing the full frequency band according to the preset frequency band division method.
- the network device obtains the scattering parameter matrix of the passive echo in the antenna system formed under the target frequency band. , In order to adapt to the frequency response characteristics of passive echo, that is, the scattering parameter matrix of passive echo is different at different frequencies.
- a second aspect of the embodiments of the present application provides a network device, including an antenna system and a processor.
- the antenna system can be used to send and receive signals.
- the processor can be used to obtain the scattering parameter matrix of the passive echo in the antenna system.
- the antenna system includes k antennas, where k is a positive integer. According to the scattering parameter matrix of the passive echo, m virtual user directions and m virtual user directions are determined.
- m is a positive integer
- the target beam is formed according to n real user directions and m virtual user directions, and the zero point of the target beam is aligned with m virtual user directions, n It is a positive integer, and n+m ⁇ k, thereby reducing the generation of active echoes, making the antenna system in the network equipment do not need a circulator, thereby reducing the size of the antenna system, and enabling the antenna system to be further integrated.
- the scattering parameter matrix of the passive echo can be expressed as a k ⁇ k order matrix G, where the i-th row and j-th column of matrix G
- the value of is g(i,j), g(i,j) is equal to the signal strength ratio between the passive echo received by the i-th antenna from the j-th antenna and the signal transmitted by the i-th antenna, then Obtain the signal strength of each antenna in each direction of the passive echo.
- the signal strength of the passive echo received by the antenna is recorded as l i,j , l i,j is equal to the signal of the passive echo received by the i-th antenna from the signal sent by the j-th antenna strength.
- the scattering parameter matrix of the passive echo can be calculated according to the matrix L.
- the scattering parameter matrix of the passive echo is matrix G, where the value in the i-th row and j-th column of G is g(i,j), and g(i,j) is equal to the value received from the i-th column antenna passive antenna j-th column echo intensity L i, the signal strength of the transmitted signal s j and column i of the i antenna ratio, namely:
- the obtained g(i,j) can also be expressed in a plural form, namely:
- a i,j *e j ⁇ i,j are amplitudes, and ⁇ i,j are phases.
- the processor is specifically configured to perform dimensionality reduction processing on the matrix G using a preset algorithm to obtain m ⁇ k
- the matrix V of order and the row vectors of the matrix V are v0, v1,...,v(m-1) respectively, which are used to represent the directions of m virtual users, and the expressions of the directions of m virtual users are obtained.
- the matrix G is the scattering parameter matrix of each antenna in the antenna system, it represents the signal strength of each antenna with respect to the passive echo, and the m virtual user directions have the highest total signal strength of the passive echo. m directions, if the remaining km directions are ignored, then any row of Gr in the matrix G can be approximated by the linear combination of v0, v1,...,v(m-1):
- the processor is also used to perform singular value decomposition of the matrix G to obtain U*S*V H , Take the first m row vectors in V H as the matrix V.
- U is a unitary matrix of order m ⁇ m
- S is a diagonal matrix of order m ⁇ k with positive semi-definite
- V H is a unitary matrix of order k ⁇ k.
- Any one of the obtained v0, v1,...,v(m-1) is a vector representing the spatial direction, which has both length and direction. Its direction is used to indicate the direction of the virtual user, and its length is used to indicate the passive echo Signal strength.
- PCA principal component analysis
- principal component analysis is used to find out the "pattern" implicit in a large amount of data. It can be used in In terms of pattern recognition, data compression, etc., the role is to map the data set to a low-dimensional space.
- the eigenvalues of the data set are arranged in order of importance.
- the process of dimensionality reduction is the process of discarding unimportant eigenvectors, and the space composed of the remaining eigenvectors is the space after dimensionality reduction.
- the processor is further configured to perform according to n real user directions and m virtual user directions.
- the user direction determines the matrix H of the target spatial channel, where, Hr is an m ⁇ k-order matrix used to represent the spatial channels of n real user directions, and the target beam is formed according to the matrix H, so that the zero point of the target beam is aligned with the m virtual user directions, thereby reducing the generation of active echo At the same time, it hardly affects business needs.
- a special case of the obtained v0, v1, v2,...,v(m-1) is the orthogonal basis vector of the matrix G
- the The processor is further configured to determine a target frequency band according to business requirements.
- the target frequency band is one of multiple frequency bands obtained by dividing the full frequency band according to a preset frequency band division method.
- the network device obtains the passive return in the antenna system formed under the target frequency band.
- the scattering parameter matrix of the wave is adapted to the frequency response characteristics of the passive echo, that is, the scattering parameter matrix of the passive echo is different at different frequencies.
- a third aspect of the embodiments of the present application provides a network device, including an antenna system and a processor.
- the antenna system is used to send and receive signals, and the processor is used to obtain the scattering parameter matrix of the passive echo in the antenna system.
- the antenna system includes k antennas, where k is a positive integer, and m virtual ones are determined according to the scattering parameter matrix of the passive echo.
- m virtual user directions are the m directions with the highest total passive echo signal strength, m is a positive integer, and the target beam is formed according to n real user directions and m virtual user directions, and the zero point of the target beam is aligned m virtual user directions, n is a positive integer, and n+m ⁇ k, which reduces the generation of active echo, makes the antenna system in the network equipment do not need a circulator, thus reduces the volume of the antenna system, and makes the antenna system Can be further integrated.
- the antenna system includes an antenna, a filter, a first coupler, a second coupler, a power amplifier PA, a coupler switch, and a radio transceiver device, the first coupler and the second coupler are arranged side by side in sequence
- the first coupler is in communication with the PA
- the second coupler is in communication with the first coupler
- the coupler switch is in communication with the radio transceiver device.
- the coupler switch is turned to the first coupler, so that the forward signal output by the PA is received by the radio transceiver. Because the isolation of the switch is not enough, it is not enough to couple a pure passive echo.
- the time interval for sending the forward signal twice can be increased, so that the sending of the forward signal and the receiving of the passive echo can be completely staggered in time, so as to obtain a pure passive echo. Then the passive echo and the forward signal are aligned, and then the matrix G of the scattering parameter matrix of the echo is solved based on the least squares group of frequency domain grouping.
- the embodiments of the present application provide a computer-readable storage medium, including instructions, which when run on a computer, cause the computer to execute the methods described in the foregoing aspects.
- the network device obtains the passive echo scattering parameter matrix in the antenna system, and determines the virtual user direction according to the passive echo scattering parameter matrix.
- the target beam is formed according to the real user position, the target The zero point of the beam is aligned with the direction of the virtual user, which reduces the generation of active echoes, so that the antenna system in the network equipment does not need a circulator, so that the antenna system can be further integrated, thereby reducing the size of the antenna system.
- Figure 1-1 is a schematic diagram of an embodiment of a communication system in an embodiment of this application.
- Figure 1-2 is a schematic diagram of an embodiment of the formed service beam
- Figures 1-3 are schematic diagrams of embodiments of forming multiple narrow beams
- Figures 1-4 are schematic diagrams of an embodiment of an antenna system provided with a circulator
- Figure 1-5 is a schematic diagram of an embodiment of Dougherty's PA
- Figures 1-6 are schematic diagrams of another embodiment of Dougherty's PA
- FIG. 2 is a schematic diagram of an embodiment of a signal processing method in an embodiment of the application
- Figure 3-1 is a schematic diagram of another embodiment of a signal processing method in an embodiment of this application.
- Figure 3-2 is a schematic diagram of an embodiment of the zero point in the embodiment of the application.
- Figure 3-3 is a horizontal pattern and a vertical pattern of the service beam in an embodiment of the application.
- Figure 3-4 is a horizontal pattern and a vertical pattern of the target beam in an embodiment of the application
- Figures 3-5 are schematic diagrams of an embodiment of integration of multiple antennas in an embodiment of the application.
- FIG. 4 is a schematic diagram of an embodiment of a network device in an embodiment of the application.
- Figure 5-1 is a schematic diagram of an embodiment of a network device in an embodiment of this application.
- Figure 5-2 is a schematic diagram of an embodiment of an antenna system
- Figure 5-3 is a schematic diagram of an embodiment of the integration of multiple antennas in a network device.
- the embodiments of the present application provide a signal processing method and network equipment, which are used to reduce the generation of active echoes.
- the present application can be applied to the communication system 100 as shown in FIG. 1-1.
- the communication system 100 includes a network device 110 and multiple user equipment (UE) 120.
- UE user equipment
- the network device 110 may be an LTE system, an NR system, or an authorized auxiliary access long-term evolution (LAA-LTE) system, an evolved base station (evolutional node b, e-nodeB) macro base station, a micro base station (Also referred to as "small base station"), pico base station, access point (access point, AP), transmission point (transmission point, TP), or new generation node b (gNodeB), etc.
- LAA-LTE authorized auxiliary access long-term evolution
- the UE 120 may be a mobile station (MS), a mobile terminal (mobile terminal), a smart terminal, etc.
- the UE 120 may communicate with one or more core networks via the network device 110.
- the UE 120 may be a mobile phone (or called a "cellular" phone), a computer with a mobile terminal, etc.
- the UE 120 may also be a portable, pocket-sized, handheld, computer-built or vehicle-mounted mobile device and future NR network In the UE 120, they exchange voice or data with the network device 110.
- the UE 120 may also include a relay device, and any one that can perform data communication with the base station can be regarded as the UE 120.
- a UE in a general sense will be introduced.
- the UE 120 may also be a vehicle in a vehicle-to-infrastructure/vehicle/pedestrian (V2X) system.
- V2X vehicle-to-infrastructure/vehicle/pedestrian
- the network device 110 may apply the MM technology.
- MIMO multiple input and multiple output
- uses multiple antennas such as 2/4/8 antennas
- the MM technology is based on MIMO, using a large number of antennas (such as 64/128/256) to serve a relatively small number of users, greatly improving the spectrum efficiency.
- network equipment can perform beamforming according to service requirements to form service beams, for example, a service beam as shown in Figure 1-2, with the main lobe aligned with the target user equipment, so that the target user equipment can use the network
- the wireless network service provided by the device.
- MIMO technology or MM technology network equipment can form multiple narrow beams as shown in Figures 1-3 to simultaneously serve multiple user equipment.
- MIMO technology can make full use of space resources, use adaptive array antennas, achieve multiple transmission and multiple reception through multiple antennas, and form different beams in different user directions, without increasing spectrum resources and time slot resources. , Can double the system channel capacity.
- 4G 4th generation mobile communication technology
- the MIMO technology used uses 8 antennas.
- MM technology deploys large-scale antennas in network equipment, such as 64/128/256 antennas, and the number of antenna channels is significantly increased. It belongs to the multi-antenna form of a larger-scale antenna array.
- the network equipment forms multiple narrow beams to concentrate radiation in a smaller space area, so that the energy efficiency of the radio frequency transmission link between the base station and the user equipment is higher, and the transmission power loss of the base station is reduced.
- the number of user equipment serving at the same time is generally far less than the number of base station antennas, thereby enhancing the ability of network equipment to receive and send multiple different signals at the same time, and greatly improve frequency utilization.
- a circulator (as shown in Figure 1-4) is provided on the antenna system of the network device 110.
- the antenna system also includes antenna, band-pass filter (BPF), PA, low noise amplifier (LNA), uplink path, pre-distortion (PD) feedback, analog Digital converters (analog to digital converter, ADC) and digital to analog converters (digital to analog converter, DAC) are common components in antenna systems, and will not be repeated here.
- BPF band-pass filter
- PA low noise amplifier
- PD pre-distortion
- ADC analog to digital converter
- DAC digital to analog converter
- the distortion model of PA can be written as:
- x is the forward signal
- z represents the active echo received by all antennas
- the PA modeled by the standing wave can be constructed to obtain:
- the DPD algorithm can be modeled as its inverse model:
- y is the feedback signal of the DPD algorithm
- invF() means the inverse function of F()
- x0, x1,..., x(k-1) are the forward signals of each antenna.
- the method includes:
- a network device obtains a scattering parameter matrix of a passive echo in an antenna system.
- the antenna system includes k antennas, and k is a positive integer.
- the network device determines m virtual user directions according to the scattering parameter matrix of the passive echo, where the m virtual user directions are the m directions with the highest total signal strength of the passive echo, and m is a positive integer.
- the network device forms a target beam according to the n real user directions and the m virtual user directions, the zero point of the target beam is aligned with the m virtual user directions, n is a positive integer, and n+m ⁇ k.
- the network device obtains the scattering parameter matrix of the passive echo in the antenna system, and determines m virtual user directions according to the scattering parameter matrix of the passive echo, and finally according to the n real user directions and m
- the direction of the virtual user forms a target beam whose zero point is aligned with the direction of the virtual user, which reduces the generation of active echoes, so that the antenna system in the network equipment does not need a circulator, thereby reducing the size of the antenna system and enabling the antenna system to be further integrated .
- the method includes:
- the network device determines a target frequency band according to service requirements, where the target frequency band is one of multiple frequency bands obtained by dividing the full frequency band according to a preset frequency band division method.
- the network equipment first determines the target frequency band according to the user equipment.
- the target frequency band is one of multiple frequency bands obtained by dividing the full frequency band according to a preset frequency band division method.
- the frequency band used by the user equipment is 825. Megahertz, then the selected target frequency band is 824-832 MHz, and then the scattering parameter matrix of the passive echo formed under the target frequency band is obtained, and then the passive echo under the target frequency band is measured.
- the network device obtains the scattering parameter matrix of the passive echo in the antenna system formed under the target frequency band.
- echo refers to when network equipment is transmitting signals, due to insufficient isolation between adjacent antennas and mutual coupling, the effect of a certain channel In terms of PA, the signal fed in the reverse direction.
- passive echo refers to the signal that each antenna in the network device sends a signal of the same amplitude and the same phase, and the signal is fed back.
- the scattering parameter matrix of the passive echo is the nature of each antenna system in the network equipment, which exists when there is no load, and does not change with the service user equipment or signal environment.
- Active echo refers to the fact that when a network device sends a signal whose amplitude and phase are determined according to the location and demand of the user equipment to be served, the signal fed back in will change as the location and demand of the user equipment change. .
- the passive echo received by the antenna includes the signal generated by its own transmission, as well as the signal generated by the mutual coupling of the signals transmitted by other antennas.
- the signal strength of the passive echo received by the antenna is denoted as l i,j , and l i,j is equal to the passive signal received by the i-th antenna from the signal sent by the j-th antenna The signal strength of the echo. Then the matrix L of the signal strength of the passive echo received by each antenna can be obtained:
- the matrix L is a k ⁇ k order matrix, and k is the number of antennas in the network device.
- the scattering parameter matrix of the passive echo can be calculated according to the matrix L.
- the scattering parameter matrix of the passive echo is a k ⁇ k order matrix G, where the value of the i-th row and j-th column of G is g(i,j), and g(i,j) is equal to the i-th column antenna passive echoes received from the first column j L i antenna signal strength, the signal strength of the transmitted signal s j and column i of the i antenna ratio, namely:
- the passive echo parameter obtained is a matrix G of order 64 ⁇ 64:
- the signal strength of the passive echo generated by its own transmission signal received by the 0th antenna is l 0,0
- the strength of the transmission signal of the 0th antenna is s 0 , namely:
- the signal strength of the passive echo generated by the transmitted signal of the k-1th antenna received by the 0th antenna is l 0,k-1
- the strength of the transmitted signal of the 0th antenna is S 0 , namely:
- the obtained g(i,j) can also be expressed in a plural form, namely:
- a i,j *e j ⁇ i,j are amplitudes, and ⁇ i,j are phases.
- the network equipment can deliberately send the passive echo test signal to obtain the passive echo scattering signal, or it can be tested in the service beam sent according to the real service requirements. Make a limit.
- the network device determines m virtual user directions according to the scattering parameter matrix of the passive echo, where the m virtual user directions are the m directions with the highest total signal strength of the passive echo, and m is a positive integer.
- the m virtual user directions are the m directions with the highest total signal strength of the passive echo. Specifically, assuming that there is a user equipment in one of the m virtual user directions, when the network device transmits a signal in the direction of the virtual user, the network device will receive a signal with a signal strength equivalent to the passive echo.
- the matrix G can be reduced in dimensionality using a preset algorithm to obtain a matrix V of order m ⁇ k, where m is the number of virtual user directions , M is less than k, where the row vectors of the matrix V are v0, v1,..., v(m-1) respectively, which are used to represent m virtual user directions, then the matrix V can be expressed as:
- the preset algorithm may be singular value decomposition (SVD).
- s0, s1,..., s(k-1) are arranged in descending order.
- R H obtained from the 0th row vector to the k-1 row vector followed by the total signal strength direction from high-strength low sorted, then take R H front m row vectors to form a new matrix V , That is, the m directions with the highest total signal strength are obtained:
- Vi (r i0 r i1 ...ri (k-1) ), where i is equal to 0,1,2,...,m-1, then the row vectors of the matrix V are v0,v1,...,v(m -1), used to indicate the direction of m virtual users, namely:
- any one of v0, v1,...,v(m-1) is a vector representing a spatial direction, which has both length and direction. Its direction is used to indicate the direction of virtual users, and its length is used to indicate passive The signal strength of the echo.
- PCA principal component analysis
- the function is to map the data set to a low-dimensional space.
- the eigenvalues of the data set are arranged in order of importance.
- the process of dimensionality reduction is the process of discarding unimportant eigenvectors, and the space composed of the remaining eigenvectors is the space after dimensionality reduction.
- the matrix G is the scattering parameter matrix of each antenna in the antenna system, it represents the signal strength of each antenna with respect to the passive echo, and the m virtual user directions have the highest total signal strength of the passive echo. m directions, if the remaining km directions are ignored, then any row of Gr in the matrix G can be approximated by the linear combination of m virtual user directions v0, v1,...,v(m-1):
- the number of virtual user directions can be determined by the staff or determined by the program.
- a network device with 64 antennas can form up to 64 dimensions, that is, use the same time-frequency resource to transmit signals in 64 different directions.
- a cell often does not have so many user equipments.
- the staff can use the remaining 24 dimensions as virtual user directions.
- the program can first use the first few directions as the virtual user direction, and perform a simulation to see how much signal strength can be canceled compared with when the virtual user direction is not used. If it is less than 6db, increase the number of virtual user directions, if it exceeds 6db, reduce the number of virtual user directions until a suitable number position is determined.
- the obtained passive echo scattering parameter matrix is:
- v0, v1, v2, v3, v4, v5, v6, and v7 are matrixes of order 1 ⁇ 64 respectively.
- v0, v1, v2,..., v(m-1) are m dimensions of the k-dimensional space formed by the network device through k antennas, and the remaining dimensions are used for Real business needs services. It should be noted that the obtained v0, v1,..., v(m-1) is not the only solution for virtual user directions. According to different algorithms for reducing the dimensionality of matrix G, different matrices V can be obtained, namely You can get different virtual user directions. It should be noted that the value of m can be artificially set or determined by matrix G, which is not limited here.
- v0, v1,...,v(m-1) is the orthogonal basis vector of matrix G
- the matrix Hr of order n ⁇ k is the original spatial channel matrix, where n Is a positive integer less than k. That is, among the k dimensions, n dimensions are used to serve business needs, then m dimensions can be selected from the remaining k-n dimensions as the virtual user direction, and it can be seen that m is less than or equal to k-n.
- k is equal to 64 and n is equal to 40, that is, 40 dimensions are used to serve business needs, and 8 of the remaining 24 dimensions are selected as virtual user directions.
- the network device forms a target beam according to the n real user directions and the m virtual user directions, the zero point of the target beam is aligned with the m virtual user directions, n is a positive integer, and n+m ⁇ k.
- the zero point refers to the intersection of two adjacent lobes in a beam.
- the zero point shown in Fig. 3-2 is the intersection of the main lobe and side lobes of the target beam, and the radiation signal formed by the antenna system at this intersection is weak.
- the matrix Hr represents the direction of n user equipments served by the network equipment. When these user devices move, the matrix Hr will be updated, and then the matrix H will also be updated. In addition, if there is a strong correlation between a certain direction in the matrix Hr and a certain direction in the matrix V during the movement of the user equipment, then other user equipment can be used as the new direction to replace the old one. , Which is to update the matrix Hr. Then, the network equipment can jointly perform beamforming according to the real user direction and the virtual user direction, that is, perform beamforming on the served user equipment according to the matrix H to obtain the target beam.
- the horizontal pattern and vertical pattern as shown in Figure 3-3 represent service beams formed by the network device only according to the direction of the real user but not the direction of the virtual user. Assuming that the direction of the virtual user is 30° in the horizontal direction and 82° in the vertical direction, the network device can form the target beam as shown in Figure 3-4.
- the phase and/or phase of the target beam The amplitude is adjusted, the horizontal beam pointing of the specific service beam is offset by 2°, and the main lobe energy is reduced by 0.5db, so that the zero point of the target beam is aligned with m virtual users when the impact on service requirements is negligible Direction, which effectively reduces the active echo and achieves the effect shown in Figure 3-5.
- the antenna system does not need a circulator, thereby reducing the size of the antenna system, so that the antenna system can be further integrated.
- an embodiment of the present application further provides a network device 400, including an antenna system 410 and a processor 420, where the antenna system 410 includes k antennas, and k is a positive integer for transmitting and receiving signals.
- the processor 420 is configured to obtain the scattering parameter matrix of the passive echo in the antenna system 410, and determine m virtual user directions according to the scattering parameter matrix of the passive echo, and the m virtual user directions are the total signal of the passive echo.
- n is a positive integer
- n+m ⁇ k the generation of active echo is reduced, so that the antenna system in the network device does not need a circulator, thereby reducing the volume of the antenna system, and enabling the antenna system to be further integrated.
- the scattering parameter matrix of the passive echo is a k ⁇ k order matrix G
- the value of the i-th row and the j-th column of the matrix G is g(i,j)
- g(i,j) is equal to the i-th column antenna received
- the signal strength ratio between the passive echo from the j-th column antenna and the signal transmitted by the i-th column antenna represents the scattering parameter matrix of the passive echo.
- the processor 420 is specifically configured to: use a preset algorithm to reduce the dimension of the matrix G to obtain a matrix V of order m ⁇ k.
- the row vectors of the matrix V are respectively v0, v1,...,v(m- 1), used to respectively indicate the directions of m virtual users, so as to obtain the directions of m virtual users.
- the preset algorithm can be the singular value decomposition of the matrix G to obtain U*S*V H , and the first m row vectors in V H are taken as the matrix V, where U is m ⁇ m order S is a positive semi-definite m ⁇ k order diagonal matrix, and V H is a k ⁇ k order unitary matrix.
- Each row vector v0,v1,...,v(m-1 Any one of) is a vector representing a spatial direction, which has both a length and a direction. The direction is used to represent the virtual user direction, and the length is used to represent the signal strength of the passive echo.
- the processor 420 is specifically configured to determine a matrix H of the target spatial channel according to n real user directions and m virtual user directions, where: Hr is an m ⁇ k-order matrix used to represent the spatial channels of n real user directions, and the target beam is formed according to the matrix H. While reducing the generation of active echoes, it hardly affects service requirements.
- the processor 420 is also specifically configured to determine a target frequency band according to service requirements, the target frequency band being one of multiple frequency bands obtained by dividing the full frequency band according to a preset frequency band division method, and obtaining the passive echo in the antenna system formed under the target frequency band
- the scattering parameter matrix is adapted to the frequency response characteristics of passive echo, that is, the scattering parameter matrix of passive echo is different at different frequencies.
- an embodiment of the present application further provides a network device 500, including an antenna system 510 and a processor 520.
- the antenna system 510 is used to send and receive signals.
- the processor 520 is configured to obtain the scattering parameter matrix of the passive echo in the antenna system.
- the antenna system includes k antennas, where k is a positive integer, and determines m virtual user directions according to the scattering parameter matrix of the passive echo.
- the direction is the m directions with the highest total signal strength of the passive echo
- m is a positive integer
- the target beam is formed according to n real user directions and m virtual user directions, and the zero point of the target beam is aligned with the m virtual user directions,
- n It is a positive integer and n+m ⁇ k, which reduces the generation of active echoes, so that the antenna system in the network equipment does not need a circulator, thereby reducing the size of the antenna system and enabling the antenna system to be further integrated.
- the antenna system 510 further includes an antenna 511, a filter 512, a first coupler 513-1, a second coupler 513-2, a PA 514, a coupler switch 515 and radio transceiver 516.
- the antenna system 510 may also include an LNA.
- the first coupler 513-1 and the second coupler 513-2 are sequentially arranged side by side in front of the PA 514 in the antenna transmission direction.
- the first coupler 513-1 and the PA 514 are connected, and the second coupler 513-2 is connected to the first coupler 513-2.
- a coupler 513-1 is connected.
- the coupler switch 515 communicates with the radio transceiver 516, and is used to communicate with the second coupler 513-2 when the antenna 511 receives a signal.
- a common antenna uses a single coupler, which is equivalent to the first coupler 513-1 in Fig. 5-2, and is used to perform DPD correction on the forward signal.
- an additional One coupler forms a double coupler combination, namely the first coupler 513-1 and the second coupler 513-2.
- the coupler switch 515 When the antenna 510 receives the passive echo, the coupler switch 515 is turned to the second coupler 513-2, so that the signal received by the antenna 510 is directed to the radio transceiver 516 through the coupler switch 515; when the antenna 510 transmits forward When the signal is received, the coupler switch 515 is turned to the first coupler 513-1, so that the forward signal output by the PA 514 is received by the radio transceiver 516. Since the isolation of the coupler switch 515 is not enough to couple pure passive echoes, in some feasible embodiments, the time interval for sending the forward signal twice can be increased, so that the forward signal is sent and the forward signal is received. Passive echoes can be completely staggered in time to obtain pure passive echoes. Then the passive echo and the forward signal are aligned, and then the matrix G of the scattering parameter matrix of the echo is solved based on the least squares group of frequency domain grouping.
- the network device obtains the scattering parameter matrix of the passive echo in the antenna system, and determines m virtual user directions according to the scattering parameter matrix of the passive echo, and finally according to the n real user directions and m
- the direction of the virtual user forms a target beam whose zero point is aligned with the direction of the virtual user, which reduces the generation of active echoes, so that the antenna system in the network equipment does not need a circulator, thereby reducing the size of the antenna system and enabling the antenna system to be further integrated .
- FIG. 1-2 From the structure shown in FIG. 1-2, it is integrated into the structure shown in FIG. 5-3, thereby reducing the volume of the antenna system 510 and enabling the antenna system to be further integrated.
- integrating multiple PAs 514 into a multi-channel front-end module (FEM) integrated chip and a multi-channel integrated radio on chip (ROC) can also realize the integration of the PA 514 and the subsequent filter 512.
- FEM front-end module
- ROC integrated radio on chip
- the antenna 510 referred to is a kind of converter, which is a component used to transmit or receive electromagnetic waves in radio equipment, and is used to transform the guided wave propagating on the transmission line into an unbounded medium (usually a free space).
- the electromagnetic wave propagated in the, or the reverse transformation.
- the antenna 510 transmits, it converts high-frequency current into electromagnetic waves and radiates it into the air; when the antenna 510 receives it, it receives electromagnetic waves from the air and converts it into high-frequency current.
- the processor 520 may further include a hardware chip.
- the aforementioned hardware chip may be an application-specific integrated circuit (ASIC), programmable logic device (PLD), CPU, RISC microprocessor (advanced RISC machine, ARM), and digital signal processing (digital signal processing). processor, DSP), etc. or a combination thereof.
- ASIC application-specific integrated circuit
- PLD programmable logic device
- CPU RISC microprocessor
- DSP digital signal processing
- DSP digital signal processing
- the above-mentioned PLD may be a complex programmable logic device (CPLD), a field-programmable gate array (FPGA), a generic array logic (GAL) or any combination thereof.
- CPLD complex programmable logic device
- FPGA field-programmable gate array
- GAL generic array logic
- the computer program product includes one or more computer instructions.
- the computer may be a general-purpose computer, a special-purpose computer, a computer network, software and hardware with similar computer functions, or other programmable devices.
- the computer instructions may be stored in a computer-readable storage medium or transmitted from one computer-readable storage medium to another computer-readable storage medium.
- the computer instructions may be transmitted from a website, computer, server, or data center. Transmission to another website, computer, server or data center via wired (such as coaxial cable, optical fiber, digital subscriber line (DSL)) or wireless (such as infrared, wireless, microwave, etc.).
- wired such as coaxial cable, optical fiber, digital subscriber line (DSL)
- wireless such as infrared, wireless, microwave, etc.
- the computer-readable storage medium may be any available medium that can be stored by a computer or a data storage device such as a server or a data center integrated with one or more available media.
- the usable medium may be a magnetic medium (for example, a floppy disk, a hard disk, and a magnetic tape), an optical medium (for example, a DVD), or a semiconductor medium (for example, a solid state disk (SSD)).
- the disclosed system, device, and method can be implemented in other ways.
- the device embodiments described above are only illustrative.
- the division of the units is only a logical function division, and there may be other divisions in actual implementation, for example, multiple units or components may be combined or It can be integrated into another system, or some features can be ignored or not implemented.
- the displayed or discussed mutual coupling or direct coupling or communication connection may be indirect coupling or communication connection through some interfaces, devices or units, and may be in electrical, mechanical or other forms.
- the units described as separate components may or may not be physically separated, and the components displayed as units may or may not be physical units, that is, they may be located in one place, or they may be distributed on multiple network units. Some or all of the units may be selected according to actual needs to achieve the objectives of the solutions of the embodiments.
- the functional units in the various embodiments of the present application may be integrated into one processing unit, or each unit may exist alone physically, or two or more units may be integrated into one unit.
- the above-mentioned integrated unit can be implemented in the form of hardware or software functional unit.
- the integrated unit is implemented in the form of a software functional unit and sold or used as an independent product, it can be stored in a computer readable storage medium.
- the technical solution of the present application essentially or the part that contributes to the existing technology or all or part of the technical solution can be embodied in the form of a software product, and the computer software product is stored in a storage medium , Including several instructions to make a computer device (which may be a personal computer, a server, or a network device, etc.) execute all or part of the steps of the methods described in the various embodiments of the present application.
- the aforementioned storage media include: U disk, mobile hard disk, read-only memory (ROM, Read-Only Memory), random access memory (RAM, Random Access Memory), magnetic disks or optical disks and other media that can store program codes. .
Landscapes
- Engineering & Computer Science (AREA)
- Computer Networks & Wireless Communication (AREA)
- Signal Processing (AREA)
- Power Engineering (AREA)
- Mobile Radio Communication Systems (AREA)
- Radio Transmission System (AREA)
Abstract
本申请实施例提供了一种信号处理方法和网络设备,用于减少有源回波的产生。本申请实施例方法中,网络设备首先获取天线系统中无源回波的散射参数矩阵,并根据无源回波的散射参数矩阵确定m个虚拟用户方向,即无源回波的信号总强度最高的m个方向,然后根据n个真实用户方向和m个虚拟用户方向形成其零点对准m个虚拟用户方向的目标波束,从而减少了有源回波的产生,使得网络设备中的天线系统中不需要环形器,使得天线系统可以进一步集成,从而降低天线系统的体积。
Description
本申请涉及通信领域,尤其涉及一种信号处理方法和网络设备。
随着第五代移动通信技术(5th generation mobile networks,5G)发展,用于大规模多进多出(massive MIMO,MM)的单个基站内的天线数量大幅度增加,甚至达到了64、128、256。为了使网络设备能容纳庞大数量的天线,需要对天线进一步的集成。但是在天线系统中,用于消除天线系统中的有源回波的环形器占据了较大的电路板面积和体积,是对天线进一步集成的阻碍。
有源回波指的是网络设备向真实用户方向发送信号时,由于各天线之间的隔离度不够而产生相互耦合的情况下,其功率放大器(power amplifier,PA)被反向馈入的信号。即假如没有环形器,接收到的有源回波会冲击PA,造成PA效率的损失。
当前,可以通过将PA的电路改造为平衡式电路来抵消有源回波。如将多尔蒂(doherty,DHT)中的2个PA改造成4个PA。但是改造成平衡式电路后,由于PA的数量翻倍,造成天线系统的面积和成本翻倍,同样阻碍着对天线的进一步集成。
发明内容
本申请实施例提供了一种信号处理方法和网络设备,用于减少有源回波的产生。
本申请实施例的第一方面提供了一种信号处理方法,网络设备首先获取天线系统中无源回波的散射参数矩阵,其中,天线系统包括k根天线。需要说明的是,回波(包括有源回波和无源回波)是指当网络设备发射信号时,由于邻近天线之间的隔离度不够而产生相互耦合的情况下,对某一个通道的PA而言,反向馈入的信号。不同的是,无源回波是指网络设备中各个天线发送相同幅度和相同相位的信号,而反向馈入的信号。无源回波的散射参数矩阵为网络设备中各天线系统的性质,在空载的时候就存在,不随着服务的用户设备或者信号环境而改变。而有源回波指的是,网络设备发送根据服务的用户设备的位置和需求而定其幅度和相位的信号时,反向馈入的信号。有源回波随着用户设备的位置和需求的改变而变化。
接着网络设备根据无源回波的散射参数矩阵确定信号总强度最高的m个方向作为m个虚拟用户方向,那么当形成其零点对准m个虚拟用户方向的目标波束时,即使网络设备发送了不同幅度、不同相位的前向信号,反向馈入的有源回波的能量都会大幅减小,则网络设备中的天线系统中不需要环形器,因此可以去除环形器而降低天线系统的体积,使得天线系统可以进一步集成。
结合第一方面,本申请实施例的第一方面的第一种实现方式中,无源回波的散射参数矩阵可以表示为k×k阶矩阵G,其中,矩阵G的第i行第j列的数值为g(i,j),g(i,j)等于第i列天线接收到的来自第j列天线的无源回波与第i列天线发射的信号之间的信号强度比,则得到了各个天线关于无源回波的各个方向的信号强度。
具体的,将天线接收到的无源回波的信号强度记为l
i,j,l
i,j等于第i根天线接收到的 来自第j跟天线发送的信号产生的无源回波的信号强度。
设k为网络设备中天线的数量,各个天线所接收到的无源回波的信号强度的k×k阶矩阵L:
当确定了无源回波的信号强度的矩阵L后,可以根据矩阵L计算无源回波的散射参数矩阵。具体的,无源回波的散射参数矩阵为矩阵G,其中,G的第i行第j列的数值为g(i,j),g(i,j)等于第i列天线接收到的来自第j列天线的无源回波的强度L
i,j与第i列天线的发射信号的信号强度s
i的比值,即:
g(i,j)=l
i,j/s
i
最终得到矩阵G:
在一些可行的实施例中,得到的g(i,j)也可以使用复数的形式来表示,即:
g(i,j)=A
i,j*e
jφi,j
A
i,j*e
jφi,j中的A
i,j为幅度,φ
i,j是相位。
结合第一方面的第一种实现方式,本申请实施例的第一方面的第二种实现方式中,网络设备可以使用预设算法对矩阵G进行降维处理,得到m×k阶的矩阵V,矩阵V的各行向量分别v0,v1,…,v(m-1),用于分别表示m个虚拟用户方向,则得到了m个虚拟用户方向的表达式。
在本申请实施例中,由于矩阵G为天线系统中各个天线的散射参数矩阵,代表各个天线关于无源回波的信号强度,而m个虚拟用户方向是无源回波的信号总强度最高的m个方向,如果忽略其余的k-m个方向,那么矩阵G中的任意一行Gr都可以由v0,v1,…,v(m-1)线性组合近似得到:
Gr≈q0×v0+q1×v1+q2×v2+…+q(m-1)×v(m-1)
其中,q0,q1,…,q(m-1)均为常数。
结合第一方面的第二种实现方式,本申请实施例的第一方面的第三种实现方式中,对于上述预设算法,可以为:网络设备将矩阵G进行奇异值分解,得到U*S*V
H,取V
H中前m个行向量作为矩阵V。其中,U是m×m阶的酉矩阵,S是半正定的m×k阶的对角矩阵,而V
H为k×k阶的酉矩阵。得到的v0,v1,…,v(m-1)中的任意一个为表示空间方向的矢量,既有长度也有方向,其方向用于表示虚拟用户方向,其长度用于表示无源回波的信号强度。
奇异值分解在统计中的主要应用为主成分分析(principal component analysis,PCA),主成分分析作为一种数据分析方法,用来找出大量数据中所隐含的“模式”,它可以用在模 式识别,数据压缩等方面,作用是把数据集映射到低维空间中去。数据集的特征值按照重要性排列,降维的过程就是舍弃不重要的特征向量的过程,而剩下的特征向量组成的空间即为降维后的空间。
结合第一方面的第二种实现方式、第三种实现方式,本申请实施例的第一方面的第四种实现方式中,网络设备可以根据n个真实用户方向和m个虚拟用户方向确定目标空间信道的矩阵H,其中,
Hr为用于表示n个真实用户方向的空间信道的m×k阶矩阵,并根据矩阵H形成目标波束,使得目标波束的零点对准m个虚拟用户方向,在减少有源回波的产生的同时,几乎不影响业务需求。
在一些可行的实施例中,得到的v0,v1,v2,…,v(m-1)的一种特例是矩阵G的正交基向量,那么设n×k阶的矩阵Hr为原空间信道矩阵,其中,n为小于k的正整数。即k个维度中,使用了n个维度为业务需求服务,那么可以从剩余的k-n个维度中选择m个维度,作为虚拟用户方向,则可知,m小于等于k-n。例如,k等于64,n等于40,即使用了40个维度为业务需求服务,剩余的24个维度中,可选择m(m<=24)个维度作为虚拟用户方向。
结合第一方面、第一方面的第一种实现方式、第二种实现方式、第三种实现方式、第四种实现方式,本申请实施例的第一方面的第五种实现方式中,网络设备根据业务需求确定目标频带,目标频带为根据预设的频带划分方式将全频带划分得到的多个频带中的一个,网络设备获取目标频带下形成的天线系统中无源回波的散射参数矩阵,以适应无源回波具有频率响应的特性,即在不同频率下无源回波的散射参数矩阵是不同的。
本申请实施例的第二方面提供了一种网络设备,包括天线系统和处理器。其中天线系统可用于收发信号。处理器可用于获取天线系统中无源回波的散射参数矩阵,天线系统包括k根天线,k为正整数,根据无源回波的散射参数矩阵确定m个虚拟用户方向,m个虚拟用户方向为无源回波的信号总强度最高的m个方向,m为正整数,并根据n个真实用户方向和m个虚拟用户方向形成目标波束,目标波束的零点对准m个虚拟用户方向,n为正整数,且n+m≤k,从而减少了有源回波的产生,使得网络设备中的天线系统中不需要环形器,从而降低天线系统的体积,使得天线系统可以进一步集成。
结合第二方面,本申请实施例的第二方面的第一种实现方式中,无源回波的散射参数矩阵可以表示为k×k阶矩阵G,其中,矩阵G的第i行第j列的数值为g(i,j),g(i,j)等于第i列天线接收到的来自第j列天线的无源回波与第i列天线发射的信号之间的信号强度比,则得到了各个天线关于无源回波的各个方向的信号强度。
具体的,将天线接收到的无源回波的信号强度记为l
i,j,l
i,j等于第i根天线接收到的来自第j跟天线发送的信号产生的无源回波的信号强度。
设k为网络设备中天线的数量,各个天线所接收到的无源回波的信号强度的k×k阶矩阵L:
当确定了无源回波的信号强度的矩阵L后,可以根据矩阵L计算无源回波的散射参数矩阵。具体的,无源回波的散射参数矩阵为矩阵G,其中,G的第i行第j列的数值为g(i,j),g(i,j)等于第i列天线接收到的来自第j列天线的无源回波的强度L
i,j与第i列天线的发射信号的信号强度s
i的比值,即:
g(i,j)=l
i,j/s
i
最终得到矩阵G:
在一些可行的实施例中,得到的g(i,j)也可以使用复数的形式来表示,即:
g(i,j)=A
i,j*e
jφi,j
A
i,j*e
jφi,j中的A
i,j为幅度,φ
i,j是相位。
结合第二方面的第一种实现方式,本申请实施例的第二方面的第二种实现方式中,该处理器,具体用于使用预设算法对矩阵G进行降维处理,得到m×k阶的矩阵V,矩阵V的各行向量分别v0,v1,…,v(m-1),用于分别表示m个虚拟用户方向,则得到了m个虚拟用户方向的表达式。
在本申请实施例中,由于矩阵G为天线系统中各个天线的散射参数矩阵,代表各个天线关于无源回波的信号强度,而m个虚拟用户方向是无源回波的信号总强度最高的m个方向,如果忽略其余的k-m个方向,那么矩阵G中的任意一行Gr都可以由v0,v1,…,v(m-1)线性组合近似得到:
Gr≈q0×v0+q1×v1+q2×v2+…+q(m-1)×v(m-1)
其中,q0,q1,…,q(m-1)均为常数。
结合第二方面的第二种实现方式,本申请实施例的第二方面的第三种实现方式中,该处理器,还用于将矩阵G进行奇异值分解,得到U*S*V
H,取V
H中前m个行向量作为矩阵V。其中,U是m×m阶的酉矩阵,S是半正定的m×k阶的对角矩阵,而V
H为k×k阶的酉矩阵。得到的v0,v1,…,v(m-1)中的任意一个为表示空间方向的矢量,既有长度也有方向,其方向用于表示虚拟用户方向,其长度用于表示无源回波的信号强度。
奇异值分解在统计中的主要应用为主成分分析(principal component analysis,PCA),主成分分析作为一种数据分析方法,用来找出大量数据中所隐含的“模式”,它可以用在模式识别,数据压缩等方面,作用是把数据集映射到低维空间中去。数据集的特征值按照重要性排列,降维的过程就是舍弃不重要的特征向量的过程,而剩下的特征向量组成的空间即为降维后的空间。
结合第二方面的第二种实现方式、第三种实现方式,本申请实施例的第二方面的第四 种实现方式中,该处理器,还用于根据n个真实用户方向和m个虚拟用户方向确定目标空间信道的矩阵H,其中,
Hr为用于表示n个真实用户方向的空间信道的m×k阶矩阵,并根据矩阵H形成目标波束,使得目标波束的零点对准m个虚拟用户方向,在减少有源回波的产生的同时,几乎不影响业务需求。
在一些可行的实施例中,得到的v0,v1,v2,…,v(m-1)的一种特例是矩阵G的正交基向量,那么设n×k阶的矩阵Hr为原空间信道矩阵,其中,n为小于k的正整数。即k个维度中,使用了n个维度为业务需求服务,那么可以从剩余的k-n个维度中选择m个维度,作为虚拟用户方向,则可知,m小于等于k-n。例如,k等于64,n等于40,即使用了40个维度为业务需求服务,剩余的24个维度中,可选择m(m<=24)个维度作为虚拟用户方向。
结合第二方面、第二方面的第一种实现方式、第二种实现方式、第三种实现方式、第四种实现方式,本申请实施例的第二方面的第五种实现方式中,该处理器,还用于根据业务需求确定目标频带,目标频带为根据预设的频带划分方式将全频带划分得到的多个频带中的一个,网络设备获取目标频带下形成的天线系统中无源回波的散射参数矩阵,以适应无源回波具有频率响应的特性,即在不同频率下无源回波的散射参数矩阵是不同的。
本申请实施例的第三方面提供了一种网络设备,包括天线系统和处理器。其中天线系统用于收发信号,处理器用于获取天线系统中无源回波的散射参数矩阵,天线系统包括k根天线,k为正整数,并根据无源回波的散射参数矩阵确定m个虚拟用户方向,m个虚拟用户方向为无源回波的信号总强度最高的m个方向,m为正整数,根据n个真实用户方向和m个虚拟用户方向形成目标波束,目标波束的零点对准m个虚拟用户方向,n为正整数,且n+m≤k,减少了有源回波的产生,使得网络设备中的天线系统中不需要环形器,从而降低天线系统的体积,使得天线系统可以进一步集成。
在一些可行的实施例中,天线系统包括天线、滤波器、第一耦合器、第二耦合器、功率放大器PA、耦合器开关和无线电收发装置,第一耦合器和第二耦合器依次并排设置在天线发射的方向上PA的前方,第一耦合器与PA连通,第二耦合器与第一耦合器连通,耦合器开关与无线电收发装置连通。当天线发送前向信号时,将耦合器开关打向第一耦合器,使得PA输出的前向信号被无线电收发装置接收,由于开关的隔离度不够,不足以耦合出纯净的无源回波,因此,在一些可行的实施例中,可以增加2次发送前向信号的时间间隔,使得发送前向信号和接收无源回波在时间上完全可以错开,从而得到纯净的无源回波。然后将无源回波和前向信号对齐,然后基于频域分组的最小二乘组求解回波的散射参数矩阵的矩阵G。
第三方面,本申请实施例提供了一种计算机可读存储介质,包括指令,当其在计算机上运行时,使得计算机执行上述各方面所述的方法。
在本申请实施例中,网络设备通过获取天线系统中无源回波的散射参数矩阵,并根据无源回波的散射参数矩阵确定虚拟用户方向,当根据真实用户位置形成目标波束时,使得目标波束的零点对准虚拟用户方向,减少了有源回波的产生,使得网络设备中的天线系统中不需要环形器,使得天线系统可以进一步集成,从而降低天线系统的体积。
图1-1为本申请实施例中通信系统的实施例示意图;
图1-2为形成的业务波束的实施例示意图;
图1-3为形成的多个窄波束的实施例示意图;
图1-4为设置了环形器的天线系统的实施例示意图;
图1-5为多尔蒂的PA的实施例示意图;
图1-6为多尔蒂的PA的另一实施例示意图;
图2为本申请实施例中一种信号处理方法的实施例示意图;
图3-1为本申请实施例中一种信号处理方法的另一实施例示意图;
图3-2为本申请实施例中零点的实施例示意图;
图3-3为本申请实施例中业务波束的水平方向图和垂直方向图;
图3-4为本申请实施例中目标波束的水平方向图和垂直方向图;
图3-5为本申请实施例中多个天线集成的实施例示意图;
图4为本申请实施例中一种网络设备的实施例示意图;
图5-1为本申请实施例中一种网络设备的实施例示意图;
图5-2为天线系统的实施例示意图;
图5-3为网络设备中多根天线集成的实施例示意图。
本申请实施例提供了一种信号处理方法和网络设备,用于减少有源回波的产生。
应该理解,术语“包括”和“具有”以及他们的任何变形,意图在于覆盖不排他的包含,例如,包含了一系列步骤或单元的过程、方法、系统、产品或设备不必限于清楚地列出的那些步骤或单元,而是可包括没有清楚地列出的或对于这些过程、方法、产品或设备固有的其它步骤或单元。
本申请可以应用到如图1-1所示的通信系统100上,该通信系统100包括网络设备110和多个用户设备(user equipment,UE)120。
网络设备110可以是LTE系统、NR系统或者授权辅助接入长期演进(authorized auxiliary access long-term evolution,LAA-LTE)系统中的演进型基站(evolutional node b,e-nodeB)宏基站、微基站(也称为“小基站”)、微微基站、接入站点(access point,AP)、传输站点(transmission point,TP)或新一代基站(new generation node b,gNodeB)等。
UE 120可为移动台(mobile station,MS)、移动终端(mobile terminal)、智能终端等,该UE 120可以经网络设备110与一个或多个核心网进行通信。例如,UE 120可以是移动电话(或称为“蜂窝”电话)、具有移动终端的计算机等,UE 120还可以是便携式、袖珍式、手持式、计算机内置的或者车载的移动装置以及未来NR网络中的UE 120,它们与网络设备110交换语音或数据。本申请中,UE 120还可以包括中继设备,和基站可以进行数据通信的都可以看为UE 120,本申请中将以一般意义上的UE来介绍。在一些可行的 实现方式中,UE 120还可以为车辆对基础设施/车辆/行人(vehicle to infrastructure/vehicle/pedestrian,V2X)系统中的车辆。
在本申请实施例中,网络设备110可应用MM技术。需要说明的是,多进多出(multiple input multiple output,MIMO)是在发送端和接收端都使用多根天线(如2/4/8根天线),在收发之间构成多个信道。而MM技术是在MIMO的基础上,采用大量天线(如64/128/256)来服务数量相对较少的用户,极大地提高频谱效率。
具体的,网络设备可以根据业务需求进行波束赋形,以形成业务波束,例如形成如图1-2所示的业务波束,其主瓣对准目标用户设备,以使得该目标用户设备可以使用网络设备提供的无线网络服务。通过MIMO技术或MM技术,网络设备可以形成如图1-3所示多个窄波束,以同时服务多个用户设备。
需要说明的是,MIMO技术能充分利用空间资源,使用自适应阵列天线,通过多个天线实现多发多收,在不同用户方向上形成不同的波束,在不增加频谱资源和时隙资源的情况下,可以成倍的提高系统信道容量。例如第四代移动通信技术(the 4th generation mobile communication technology,4G)网络,所使用的MIMO技术采用了8根天线。而MM技术在MIMO技术的基础上,在网络设备部署了大规模天线,如64/128/256根天线,天线通道数显著提升,属于更大规模天线阵列的多天线形态。
通过MM技术,网络设备形成多个窄波束,集中辐射更小的空间区域内,从而使基站和用户设备之间的射频传输链路上的能量效率更高,减少基站发射功率的损耗,而且由于同时服务的用户设备的数目一般远少于基站天线的数目,从而增强了网络设备同时接收和发送多路不同信号的能力,大大提高频率利用率。
使用MIMO技术或MM技术的网络设备110发射信号后,会产生有源回波,会造成PA的效率的损失。为了抵消有源回波,在网络设备110的天线系统上会设置环形器(如图1-4)。一般的,天线系统还包括天线、带通滤波器(band-pass filter,BPF)、PA、低噪声放大器(low noise amplifier,LNA)、上行通路、预失真(pre-distortion,PD)反馈、模数转换器(analog to digital converter,ADC)和数模转换器(digital to analog converter,DAC),均为天线系统中常见的部件,此处不做赘述。但是,对于使用MM技术的庞大天线数量的天线系统而言,环形器占据较大的电路板面积和体积,使得天线系统无法进一步集成。
当前,可以通过将PA的电路改造为平衡式电路的方式抵消有源回波。例如,将只有一个多尔蒂(DHT1)的2个PA(如图1-5)改造成2个多尔蒂(DHT1和DHT2)的4个PA(如图1-6),其中,单个DHT中的2个PA通过合路器(combiner)进行合路。但是改造成平衡式电路后,由于PA的数量翻倍,造成天线系统的面积和体积翻倍,同样阻碍着对天线的进一步集成。
当前,还可以通过对数字预失真(digital pre-distortion,DPD)算法的改进来提升线性,以抵消有源回波。具体的,可以将PA的失真模型可以写作:
y=f(x,z)
其中,x为前向信号,z表示所有天线接收到的有源回波,则可以构造受到驻波冲击的PA建模得到:
y=F(x0,x1,…..x(k-1))
其中k为天线数,那么可以将DPD算法建模为其反模型:
y=invF(x0,x1,….x(k-1))
其中,y为DPD算法的反馈信号,invF()意为F()的反函数,x0,x1,…,x(k-1)为各天线的前向信号。但是这使得复杂度成指数增加,且必须保证所有天线的DPD算法过程处理在一颗芯片上,工程上不具实用性。另外,DPD算法在理论上只能解决各天线的功率之间的非线性问题,而无法解决PA效率、饱和功率降低等其他问题。
为此,本申请提供的一种信号处理方法,请参考图2,该方法包括:
201、网络设备获取天线系统中无源回波的散射参数矩阵,天线系统包括k根天线,k为正整数。
202、网络设备根据无源回波的散射参数矩阵确定m个虚拟用户方向,m个虚拟用户方向为无源回波的信号总强度最高的m个方向,m为正整数。
203、网络设备根据n个真实用户方向和m个虚拟用户方向形成目标波束,目标波束的零点对准m个虚拟用户方向,n为正整数,且n+m≤k。
在本申请实施例中,网络设备通过获取天线系统中无源回波的散射参数矩阵,并根据无源回波的散射参数矩阵确定m个虚拟用户方向,最后根据n个真实用户方向和m个虚拟用户方向形成其零点对准虚拟用户方向的目标波束,减少了有源回波的产生,使得网络设备中的天线系统中不需要环形器,从而降低天线系统的体积,使得天线系统可以进一步集成。
具体的,本申请提供的一种信号处理方法,请参考图3-1,该方法包括:
301、网络设备根据业务需求确定目标频带,目标频带为根据预设的频带划分方式将全频带划分得到的多个频带中的一个。
由于无源回波具有频率响应的特性,在不同频率下无源回波的散射参数矩阵是不同的。因此,在一些可能的实现方式中,可以根据预设的频带划分方式将全频带划分得到的多个频带,然后对每一个频带下的无源回波进行测量,得到不同的散射参数矩阵。例如,若天线所支持的频带为824~896(单位:兆赫兹),即全频带的宽度为896-824=72兆赫兹,则预设的频带划分方式可以为:将每8兆赫兹为一个频带,将全频带划分为72/8=9个频带。在本申请实施例中,网络设备首先根据用户设备确定目标频带,目标频带为根据预设的频带划分方式将全频带划分得到的多个频带中的一个,例如,用户设备所使用的频带为825兆赫兹,那么所选用的目标频带为824~832兆赫兹,然后再获取目标频带下形成的无源回波的散射参数矩阵,然后再对目标频带进行下的无源回波进行测量。
302、网络设备获取目标频带下形成的天线系统中无源回波的散射参数矩阵。
需要说明的是,回波(包括有源回波和无源回波)是指当网络设备发射信号时,由于邻近天线之间的隔离度不够而产生相互耦合的情况下,对某一个通道的PA而言,反向馈入的信号。不同的是,无源回波是指网络设备中各个天线发送相同幅度和相同相位的信号,而反向馈入的信号。无源回波的散射参数矩阵为网络设备中各天线系统的性质,在空载的时候就存在,不随着服务的用户设备或者信号环境而改变。而有源回波指的是,网络设备发送根据服务的用户设备的位置和需求而定其幅度和相位的信号时,反向馈入的信号,随着用户设备的位置和需求的改变而变化。
需要说明的是,天线接收到的无源回波包括自己发射的信号产生的,也包括其他天线发射的信号互耦合后产生的。在本申请实施例中,将天线接收到的无源回波的信号强度记为l
i,j,l
i,j等于第i根天线接收到的来自第j跟天线发送的信号产生的无源回波的信号强度。那么即可得到各个天线所接收到的无源回波的信号强度的矩阵L:
其中,矩阵L为k×k阶矩阵,k为网络设备中天线的数量。
当确定了无源回波的信号强度的矩阵L后,可以根据矩阵L计算无源回波的散射参数矩阵。具体的,无源回波的散射参数矩阵为k×k阶矩阵G,其中,G的第i行第j列的数值为g(i,j),g(i,j)等于第i列天线接收到的来自第j列天线的无源回波的信号强度L
i,j与第i列天线的发射信号的信号强度s
i的比值,即:
g(i,j)=l
i,j/s
i
最终得到矩阵G:
例如,假设网络设备具有64根天线,即k=64,那么获得的无源回波参数即为64×64阶的矩阵G:
那么,第0根天线接收的自身的发射信号产生的无源回波的信号强度为l
0,0,第0根天线的发射信号的强度为s
0,即:
g(0,0)=l
0,0/s
0
第0根天线接收的第k-1根天线的发射信号产生的无源回波的信号强度为l
0,k-1,第0根天线的发射信号的强度为S
0,即:
g(0,k-1)=l
0,k-1/s
0
在一些可行的实施例中,得到的g(i,j)也可以使用复数的形式来表示,即:
A
i,j*e
jφi,j中的A
i,j为幅度,φ
i,j是相位。
需要说明的是,网络设备可以特意发送对无源回波进行测试的信号,以获取无源回波的散射信号,也可以根据真实的业务需求所发送的业务波束中进行测试得到,此处不做限定。
303、网络设备根据无源回波的散射参数矩阵确定m个虚拟用户方向,m个虚拟用户方向为无源回波的信号总强度最高的m个方向,m为正整数。
在本申请实施例中,m个虚拟用户方向为无源回波的信号总强度最高的m个方向。具体的,假设存在用户设备在m个虚拟用户方向中的一个方向上,当网络设备向该虚拟用户方向发射信号时,会让网络设备接收到与无源回波的信号强度相当的信号。
具体的,在获取了网络设备获取无源回波的散射参数矩阵(矩阵G)后,可以使用预设算法将矩阵G降维,得到m×k阶的矩阵V,m为虚拟用户方向的数量,m小于k,其中,矩阵V的各行向量分别v0,v1,…,v(m-1),用于表示m个虚拟用户方向,则矩阵V可以表示为:
例如,预设算法可以为奇异值分解(singular value decomposition,SVD)。具体的,矩阵G做SVD,得到矩阵G=U*S*R
H,其中,矩阵U是m×m阶的酉矩阵,矩阵R
H为k×k阶的酉矩阵,而矩阵S为半正定的m×k阶的对角矩阵,且矩阵S为矩阵G的奇异值:
其中,s0,s1,…,s(k-1)为由大到小排列。
由此,便得到R
H为:
需要说明的是,得到的R
H中从第0行向量到第k-1行向量依次为信号总强度从高强到低排序的方向,则取R
H中前m个行向量组成新的矩阵V,即得到信号总强度最高的m个方向:
即Vi=(r
i0r
i1…r
i(k-1)),其中,i等于0,1,2,…,m-1,则矩阵V的各行向量分别v0,v1,…,v(m-1),用于表示m个虚拟用户方向,即:
需要说明的是,v0,v1,…,v(m-1)中的任意一个为表示空间方向的矢量,既有长度也有方向,其方向用于表示虚拟用户方向,其长度用于表示无源回波的信号强度。
需要说明的是,奇异值分解在统计中的主要应用为主成分分析(principal component analysis,PCA),主成分分析作为一种数据分析方法,用来找出大量数据中所隐含的“模式”,它可以用在模式识别,数据压缩等方面,作用是把数据集映射到低维空间中去。数据集的特征值按照重要性排列,降维的过程就是舍弃不重要的特征向量的过程,而剩下的特征向量组成的空间即为降维后的空间。
在本申请实施例中,由于矩阵G为天线系统中各个天线的散射参数矩阵,代表各个天线关于无源回波的信号强度,而m个虚拟用户方向是无源回波的信号总强度最高的m个方向,如果忽略其余的k-m个方向,那么矩阵G中的任意一行Gr都可以由m个虚拟用户方向v0,v1,…,v(m-1)线性组合而近似得到:
Gr≈q0×v0+q1×v1+q2×v2+…+q(m-1)×v(m-1)
其中,q0,q1,…,q(m-1)均为常数。
需要说明的是,虚拟用户方向的数量可以是工作人员确定的,也可以是程序确定的。例如,一个具有64根天线的网络设备,最多可以形成64个维度,即使用同一个时频资源,向64个不同的方向发射信号。但是一个小区往往没有那么多用户设备,假设在某个时刻只需要40个维度即可满足用户需求,那么工作人员可以从剩余的24个维度可以用于作为虚拟用户方向。即使用了40个维度为业务需求服务,剩余的24个维度中,可选择m(m<=24)个维度作为虚拟用户方向。如果使用程序,那么可以首先确定预设的值,该值为需要抵消的有源回波的信号强度,比如6db。那么,程序可以首先设使用前几个方向作为虚拟用户方向,进行模拟,看看与未使用虚拟用户方向时比较,能抵消多少信号强度。假如不足6db则增加虚拟用户方向的数量,如果超过6db则减少虚拟用户方向的数量,直至确定合适的数量位置。
例如,假设网络设备的天线数量为64,即k=64,则获得的无源回波的散射参数矩阵为:
假设有8个虚拟用户方向,即m=8,那么可以对矩阵G进行降维,得到8×64的矩阵V:
其中,v0,v1,v2,v3,v4,v5,v6,v7分别为1×64阶的矩阵。
需要说明的是,v0,v1,v2,…,v(m-1)为网络设备通过k根天线所形成的最多可达k维空间的各个维度中的m个维度,其余的维度用于为真实的业务需求服务。需要说明的是,得到的v0,v1,…,v(m-1)并非唯一的虚拟用户方向的方案,根据不同的对矩阵G进行降维的算法的不同,可以得到不同的矩阵V,即可以得到不同的虚拟用户方向。需要说明的是,m的值可以是人为设定,也可以通过矩阵G确定,此处不做限定。
需要说明的是,得到的v0,v1,…,v(m-1)的一种特例是矩阵G的正交基向量,那么设n×k阶的矩阵Hr为原空间信道矩阵,其中,n为小于k的正整数。即k个维度中,使用了n个维度为业务需求服务,那么可以从剩余的k-n个维度中选择m个维度,作为虚拟用户方向,则可知,m小于等于k-n。例如,k等于64,n等于40,即使用了40个维度为业务需求服务,剩余的24个维度中,选择8个维度作为虚拟用户方向。
304、网络设备根据n个真实用户方向和m个虚拟用户方向形成目标波束,目标波束的零点对准m个虚拟用户方向,n为正整数,且n+m≤k。
在本申请实施例中,零点指的是一个波束中的两个相邻波瓣的交点。例如,如图3-2所示的零点,即为目标波束的主瓣和旁瓣的交点,天线系统在该交点上的形成的辐射信号较弱。
在本申请实施例中,当确定了代表m个虚拟用户方向的矩阵V后,则可以得到(m+n)×k阶的新的空间信道矩阵H:
其中,矩阵Hr表示网络设备服务的n个用户设备的方向。当这些用户设备移动时,矩阵Hr就会更新,那么矩阵H也会更新。另外,如果在用户设备的移动过程中,出现矩阵Hr中的某个方向和矩阵V中的某个方向的相关性很强情况,那么可以使用其他用户设备作为新的方向,以取代旧的方向,即更新矩阵Hr。那么,网络设备可以根据真实用户方向和 虚拟用户方向联合进行波束赋型,即根据矩阵H对服务的用户设备进行波束赋形,得到目标波束。
需要说明的是,如果形成其零点对准虚拟用户方向的波束,即发射的信号在v0,v1,v2,…,v(m-1)方向上的能量减小,那么即使网络设备发送了不同幅度、不同相位的前向,而反向馈入的有源回波的能量同样会减小。
相比较未使用虚拟用户方向形成的波束,其赋型权值相当于调整了波束的相位和/或幅度,使得目标波束的零点对准虚拟用户方向。例如,如图3-3所示的水平方向图(horizontal pattern)和垂直方向图(vertical pattern)表示网络设备仅根据真实用户方向而未根据虚拟用户方向的情况下形成的业务波束。假设虚拟用户方向为水平方向角度30°,垂直方向角度82°,那么网络设备可以形成如图3-4所示的目标波束,与图3-3的情况相比,目标波束的相位和/或幅度得到调整,具体的业务波束的水平波束指向偏移2°,主瓣能量降低0.5db,以使得在对业务需求的影响可忽略的情况下,使得该目标波束的零点对准m个虚拟用户方向,从而有效地降低了有源回波,实现如图3-5所示的效果。最终使得天线系统中不需要环形器,从而降低天线系统的体积,使得天线系统可以进一步集成。
以上对本申请提供的方法实施例进行了描述,以下对本申请提供的具体装置进行描述。
参考图4,本申请实施例还提供了一种网络设备400,包括天线系统410和处理器420,其中,天线系统410包括k根天线,k为正整数,用于收发信号。处理器420,用于获取天线系统410中无源回波的散射参数矩阵,并根据无源回波的散射参数矩阵确定m个虚拟用户方向,m个虚拟用户方向为无源回波的信号总强度最高的m个方向,m为正整数,最后根据n个真实用户方向和m个虚拟用户方向形成其零点对准m个虚拟用户方向目标波束,n为正整数,且n+m≤k,从而减少了有源回波的产生,使得网络设备中的天线系统中不需要环形器,从而降低天线系统的体积,使得天线系统可以进一步集成。
其中,无源回波的散射参数矩阵为k×k阶矩阵G,矩阵G的第i行第j列的数值为g(i,j),g(i,j)等于第i列天线接收到的来自第j列天线的无源回波与第i列天线发射的信号之间的信号强度比,以此表示了无源回波的散射参数矩阵。
在一些可能的实现方式中,处理器420具体用于:使用预设算法将矩阵G降维,得到m×k阶的矩阵V,矩阵V的各行向量分别v0,v1,…,v(m-1),用于分别表示m个虚拟用户方向,以求得m个虚拟用户方向。
在一些可能的实现方式中,预设算法可以为将矩阵G进行奇异值分解,得到U*S*V
H,取V
H中前m个行向量作为矩阵V,其中,U是m×m阶的酉矩阵,S是半正定的m×k阶的对角矩阵,而V
H为k×k阶的酉矩阵,得到的V中的每个行向量v0,v1,…,v(m-1)中的任意一个为表示空间方向的矢量,既有长度也有方向,其方向用于表示虚拟用户方向,其长度用于表示无源回波的信号强度。
在一些可能的实现方式中,处理器420具体用于可以根据n个真实用户方向和m个虚拟用户方向确定目标空间信道的矩阵H,其中,
Hr为用于表示n个真实用户方向的空间信道的m×k阶矩阵,并根据矩阵H形成目标波束,在减少有源回波的产生的同时,也几乎不影响业务需求。
处理器420具体还用于根据业务需求确定目标频带,目标频带为根据预设的频带划分 方式将全频带划分得到的多个频带中的一个,获取目标频带下形成的天线系统中无源回波的散射参数矩阵,以适应无源回波具有频率响应的特性,即在不同频率下无源回波的散射参数矩阵是不同的。
如图5-1,本申请实施例还提供了一种网络设备500,包括天线系统510和处理器520。
天线系统510,用于收发信号。
处理器520,用于获取天线系统中无源回波的散射参数矩阵,天线系统包括k根天线,k为正整数,并根据无源回波的散射参数矩阵确定m个虚拟用户方向,虚拟用户方向为无源回波的信号总强度最高的m个方向,m为正整数,根据n个真实用户方向和m个虚拟用户方向形成目标波束,目标波束的零点对准m个虚拟用户方向,n为正整数,且n+m≤k,减少了有源回波的产生,使得网络设备中的天线系统中不需要环形器,从而降低天线系统的体积,使得天线系统可以进一步集成。
在一些可能的实现方式中,如图5-2所示,天线系统510还包括天线511、滤波器512、第一耦合器513-1、第二耦合器513-2、PA 514、耦合器开关515和无线电收发装置516。在一些可行的实施例中天线系统510还可以包括LNA。
第一耦合器513-1和第二耦合器513-2依次并排设置在天线发射的方向上PA 514的前方,第一耦合器513-1与PA 514连通,第二耦合器513-2与第一耦合器513-1连通。
耦合器开关515与无线电收发装置516连通,用于当天线511接收信号时,与第二耦合器513-2连通。
需要说明的是,常用的天线中使用了单耦合器,相当于图5-2中的第一耦合器513-1,用于对前向信号进行DPD校正,在本申请实施例中,额外添加一个耦合器,形成双耦合器组合,即为第一耦合器513-1和第二耦合器513-2。
当天线510接收无源回波时,将耦合器开关515打向第二耦合器513-2,使得将天线510接收到的信号通过耦合器开关515导向无线电收发装置516;当天线510发送前向信号时,将耦合器开关515打向第一耦合器513-1,使得PA 514输出的前向信号被无线电收发装置516接收。由于耦合器开关515的隔离度不够,不足以耦合出纯净的无源回波,因此,在一些可行的实施例中,可以增加2次发送前向信号的时间间隔,使得发送前向信号和接收无源回波在时间上完全可以错开,从而得到纯净的无源回波。然后将无源回波和前向信号对齐,然后基于频域分组的最小二乘组求解回波的散射参数矩阵的矩阵G。
在本申请实施例中,网络设备通过获取天线系统中无源回波的散射参数矩阵,并根据无源回波的散射参数矩阵确定m个虚拟用户方向,最后根据n个真实用户方向和m个虚拟用户方向形成其零点对准虚拟用户方向的目标波束,减少了有源回波的产生,使得网络设备中的天线系统中不需要环形器,从而降低天线系统的体积,使得天线系统可以进一步集成。
从如图1-2的结构,集成为如图5-3所示的结构,从而降低天线系统510的体积,使得天线系统可以进一步集成。比如将多个PA 514集成为多通道前端模块(front-end module,FEM)集成芯片和多通道集成射频芯片(radio on chip,ROC),也可以实现PA 514和后面的滤波器512集成。
需要说明的是,所指的天线510是一种变换器,是无线电设备中用来发射或接收电磁 波的部件,用于把传输线上传播的导行波变换成在无界媒介(通常是自由空间)中传播的电磁波,或者进行相反的变换。天线510当天线发射时,把高频电流转换为电磁波,并辐射到空中;当天线510接收时,从空中接收电磁波,并转换为高频电流。
处理器520还可以进一步包括硬件芯片。上述硬件芯片可以是专用集成电路(application-specific integrated circuit,ASIC),可编程逻辑器件(programmable logic device,PLD),CPU,RISC微处理器(advanced RISC machine,ARM),数字信号处理(digital signal processor,DSP)等或其组合。上述PLD可以是复杂可编程逻辑器件(complex programmable logic device,CPLD),现场可编程逻辑门阵列(field-programmable gate array,FPGA),通用阵列逻辑(generic array logic,GAL)或其任意组合。在本申请实施例中,处理器520所执行的步骤,与方法实施例中的步骤相同,此处不做赘述。
在上述实施例中,可以全部或部分地通过软件、硬件、固件或者其任意组合来实现。当使用软件实现时,可以全部或部分地以计算机程序产品的形式实现。
所述计算机程序产品包括一个或多个计算机指令。在计算机上加载和执行所述计算机程序指令时,全部或部分地产生按照本发明实施例所述的流程或功能。所述计算机可以是通用计算机、专用计算机、计算机网络、具有类似计算机功能的软硬件、或者其他可编程装置。所述计算机指令可以存储在计算机可读存储介质中,或者从一个计算机可读存储介质向另一计算机可读存储介质传输,例如,所述计算机指令可以从一个网站站点、计算机、服务器或数据中心通过有线(例如同轴电缆、光纤、数字用户线(DSL))或无线(例如红外、无线、微波等)方式向另一个网站站点、计算机、服务器或数据中心进行传输。所述计算机可读存储介质可以是计算机能够存储的任何可用介质或者是包含一个或多个可用介质集成的服务器、数据中心等数据存储设备。所述可用介质可以是磁性介质,(例如,软盘、硬盘、磁带)、光介质(例如,DVD)、或者半导体介质(例如固态硬盘Solid State Disk(SSD))等。
所属领域的技术人员可以清楚地了解到,为描述的方便和简洁,上述描述的系统,装置和单元的具体工作过程,可以参考前述方法实施例中的对应过程,在此不再赘述。
在本申请所提供的几个实施例中,应该理解到,所揭露的系统,装置和方法,可以通过其它的方式实现。例如,以上所描述的装置实施例仅仅是示意性的,例如,所述单元的划分,仅仅为一种逻辑功能划分,实际实现时可以有另外的划分方式,例如多个单元或组件可以结合或者可以集成到另一个系统,或一些特征可以忽略,或不执行。另一点,所显示或讨论的相互之间的耦合或直接耦合或通信连接可以是通过一些接口,装置或单元的间接耦合或通信连接,可以是电性,机械或其它的形式。
所述作为分离部件说明的单元可以是或者也可以不是物理上分开的,作为单元显示的部件可以是或者也可以不是物理单元,即可以位于一个地方,或者也可以分布到多个网络单元上。可以根据实际的需要选择其中的部分或者全部单元来实现本实施例方案的目的。
另外,在本申请各个实施例中的各功能单元可以集成在一个处理单元中,也可以是各个单元单独物理存在,也可以两个或两个以上单元集成在一个单元中。上述集成的单元既可以采用硬件的形式实现,也可以采用软件功能单元的形式实现。
所述集成的单元如果以软件功能单元的形式实现并作为独立的产品销售或使用时,可以存储在一个计算机可读取存储介质中。基于这样的理解,本申请的技术方案本质上或者说对现有技术做出贡献的部分或者该技术方案的全部或部分可以以软件产品的形式体现出来,该计算机软件产品存储在一个存储介质中,包括若干指令用以使得一台计算机设备(可以是个人计算机,服务器,或者网络设备等)执行本申请各个实施例所述方法的全部或部分步骤。而前述的存储介质包括:U盘、移动硬盘、只读存储器(ROM,Read-Only Memory)、随机存取存储器(RAM,Random Access Memory)、磁碟或者光盘等各种可以存储程序代码的介质。
以上所述,以上实施例仅用以说明本申请的技术方案,而非对其限制;尽管参照前述实施例对本申请进行了详细的说明,本领域的普通技术人员应当理解:其依然可以对前述各实施例所记载的技术方案进行修改,或者对其中部分技术特征进行等同替换;而这些修改或者替换,并不使相应技术方案的本质脱离本申请各实施例技术方案的范围。
Claims (15)
- 一种信号处理方法,其特征在于,包括:网络设备获取天线系统中无源回波的散射参数矩阵,所述天线系统包括k根天线,k为正整数;所述网络设备根据所述无源回波的散射参数矩阵确定m个虚拟用户方向,所述m个虚拟用户方向为所述无源回波的信号总强度最高的m个方向,m为正整数;所述网络设备根据n个真实用户方向和所述m个虚拟用户方向形成目标波束,所述目标波束的零点对准所述m个虚拟用户方向,n为正整数,且n+m≤k。
- 根据权利要求1所述方法,其特征在于,所述无源回波的散射参数矩阵为k×k阶矩阵G,所述矩阵G的第i行第j列的数值为g(i,j),g(i,j)等于第i列天线接收到的来自第j列天线的无源回波与第i列天线发射的信号之间的信号强度比。
- 根据权利要求2所述方法,其特征在于,所述网络设备根据所述无源回波的散射参数矩阵确定m个虚拟用户方向包括:所述网络设备使用预设算法将所述矩阵G降维,得到m×k阶的矩阵V,矩阵V的各行向量分别v0,v1,…,v(m-1),用于分别表示m个虚拟用户方向。
- 根据权利要求3所述方法,其特征在于,所述网络设备使用预设算法将矩阵G降维,得到m×k阶的矩阵V包括:所述网络设备将所述矩阵G进行奇异值分解,得到U*S*V H,取V H中前m个行向量作为所述矩阵V,其中,U是m×m阶的酉矩阵,S是半正定的m×k阶的对角矩阵,而V H为k×k阶的酉矩阵。
- 根据权利要求1-5中任一项所述方法,其特征在于,所述网络设备获取天线系统中无源回波的散射参数矩阵包括:所述网络设备根据业务需求确定目标频带,所述目标频带为根据预设的频带划分方式将全频带划分得到的多个频带中的一个;所述网络设备获取所述目标频带下形成的所述天线系统中所述无源回波的散射参数矩阵。
- 一种网络设备,其特征在于,包括天线系统和处理器;其中,所述天线系统用于收发信号;所述处理器,用于获取天线系统中无源回波的散射参数矩阵,所述天线系统包括k根天线,k为正整数;所述处理器,还用于根据所述无源回波的散射参数矩阵确定m个虚拟用户方向,所述m个虚拟用户方向为所述无源回波的信号总强度最高的m个方向,m为正整数;所述处理器,还用于根据n个真实用户方向和所述m个虚拟用户方向形成目标波束,所述目标波束的零点对准所述m个虚拟用户方向,n为正整数,且n+m≤k。
- 根据权利要求7所述网络设备,其特征在于,所述无源回波的散射参数矩阵为k×k阶矩阵G,所述矩阵G的第i行第j列的数值为g(i,j),g(i,j)等于第i列天线接收到的来自第j列天线的无源回波与第i列天线发射的信号之间的信号强度比。
- 根据权利要求8所述网络设备,其特征在于,所述处理器,具体用于:使用预设算法将所述矩阵G降维,得到m×k阶的矩阵V,矩阵V的各行向量分别v0,v1,…,v(m-1),用于分别表示m个虚拟用户方向。
- 根据权利要求9所述网络设备,其特征在于,所述处理器,具体用于:将所述矩阵G进行奇异值分解,得到U*S*V H,取V H中前m个行向量作为所述矩阵V,其中,U是m×m阶的酉矩阵,S是半正定的m×k阶的对角矩阵,而V H为k×k阶的酉矩阵。
- 根据权利要求7-11中任一项所述网络设备,其特征在于,所述处理器,具体用于:根据业务需求确定目标频带,所述目标频带为根据预设的频带划分方式将全频带划分得到的多个频带中的一个;获取所述目标频带下形成的所述天线系统中所述无源回波的散射参数矩阵。
- 一种网络设备,其特征在于,包括:天线系统和处理器;所述天线系统,用于收发信号;所述处理器,用于获取天线系统中无源回波的散射参数矩阵,所述天线系统包括k根天线,k为正整数,并根据所述无源回波的散射参数矩阵确定m个虚拟用户方向,所述m个虚拟用户方向为所述无源回波的信号总强度最高的m个方向,m为正整数,根据n个真实用户方向和所述m个虚拟用户方向形成目标波束,所述目标波束的零点对准所述m个虚拟用户方向,n为正整数,且n+m≤k。
- 根据权利要求13所述网络设备,其特征在于,所述天线系统包括天线、滤波器、第一耦合器、第二耦合器、功率放大器PA、耦合器开关和无线电收发装置;所述第一耦合器和所述第二耦合器依次并排设置在所述天线发射的方向上所述PA的前方,所述第一耦合器与所述PA连通,所述第二耦合器与所述第一耦合器连通;所述耦合器开关与所述无线电收发装置连通,用于当所述天线接收信号时,与所述第二耦合器连通。
- 一种计算机可读存储介质,包括指令,当其在计算机上运行时,使得计算机执行如权利要求1-6所述的方法。
Priority Applications (4)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
PCT/CN2019/120672 WO2021102642A1 (zh) | 2019-11-25 | 2019-11-25 | 一种信号处理方法和网络设备 |
CN201980102235.2A CN114667686A (zh) | 2019-11-25 | 2019-11-25 | 一种信号处理方法和网络设备 |
EP19954693.8A EP4050808A4 (en) | 2019-11-25 | 2019-11-25 | SIGNAL PROCESSING METHOD AND NETWORK DEVICE |
US17/752,308 US11991534B2 (en) | 2019-11-25 | 2022-05-24 | Signal processing method and network device |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
PCT/CN2019/120672 WO2021102642A1 (zh) | 2019-11-25 | 2019-11-25 | 一种信号处理方法和网络设备 |
Related Child Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
US17/752,308 Continuation US11991534B2 (en) | 2019-11-25 | 2022-05-24 | Signal processing method and network device |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2021102642A1 true WO2021102642A1 (zh) | 2021-06-03 |
Family
ID=76128985
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/CN2019/120672 WO2021102642A1 (zh) | 2019-11-25 | 2019-11-25 | 一种信号处理方法和网络设备 |
Country Status (4)
Country | Link |
---|---|
US (1) | US11991534B2 (zh) |
EP (1) | EP4050808A4 (zh) |
CN (1) | CN114667686A (zh) |
WO (1) | WO2021102642A1 (zh) |
Citations (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN104793206A (zh) * | 2015-04-28 | 2015-07-22 | 西北工业大学 | 利用发射栅瓣的成像方法 |
CN107196684A (zh) * | 2017-03-27 | 2017-09-22 | 上海华为技术有限公司 | 一种天线系统、信号处理系统以及信号处理方法 |
CN107976671A (zh) * | 2017-11-10 | 2018-05-01 | 西安电子科技大学 | 一种适用于稀疏阵列天线的雷达目标角度计算方法 |
WO2019077122A1 (en) * | 2017-10-20 | 2019-04-25 | Fraunhofer-Gesellschaft zur Förderung der angewandten Forschung e.V. | INTEGRAL DUPLEX TRANSMITTER / RECEIVER |
CN110247689A (zh) * | 2018-03-09 | 2019-09-17 | 深圳捷豹电波科技有限公司 | 终端的通信区域分配方法、装置、通信设备及存储介质 |
Family Cites Families (13)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH10247874A (ja) | 1997-03-04 | 1998-09-14 | Kokusai Electric Co Ltd | 時分割双方向方式携帯電話中継装置 |
KR100841638B1 (ko) | 2006-04-25 | 2008-06-26 | 삼성전자주식회사 | 시분할복신 무선통신시스템의 수신부 보호 장치 |
CN201340897Y (zh) | 2008-12-31 | 2009-11-04 | 南京拓邦微电子有限公司 | Td-scdma表贴小型化环行器 |
WO2010095946A1 (en) * | 2009-02-20 | 2010-08-26 | Nederlandse Organisatie Voor Toegepast-Natuurwetenschappelijk Onderzoek Tno | A method of detecting a scatterer in a structure, a radar system and a computer program product |
CN101527956B (zh) | 2009-03-31 | 2011-05-04 | 华为技术有限公司 | 一种信号放大装置及基站系统 |
US9019849B2 (en) * | 2011-11-07 | 2015-04-28 | Telefonaktiebolaget L M Ericsson (Publ) | Dynamic space division duplex (SDD) wireless communications with multiple antennas using self-interference cancellation |
CN103580710A (zh) | 2012-07-18 | 2014-02-12 | 中兴通讯股份有限公司 | Tdd制式射频收发电路及方法、射频前端电路和终端 |
DE102013218555A1 (de) * | 2013-07-18 | 2015-01-22 | Rohde & Schwarz Gmbh & Co. Kg | System und Verfahren zur Ausleuchtung und Abbildung eines Objekts |
US9780859B2 (en) * | 2014-02-28 | 2017-10-03 | Spatial Digital Systems, Inc. | Multi-user MIMO via active scattering platforms |
CA2953636C (en) * | 2014-06-26 | 2019-01-15 | Huawei Technologies Co., Ltd. | Interference cancellation apparatus and method |
US9806846B2 (en) * | 2015-07-24 | 2017-10-31 | Ziva Corp. | Wireless sensing with time reversal |
US9793969B2 (en) * | 2015-09-29 | 2017-10-17 | Ziva Corp. | Array-to-array beamforming and iterative time reversal techniques |
US10135506B2 (en) * | 2016-11-30 | 2018-11-20 | University Of South Florida | Low complexity flexible beam-width for directional modulation |
-
2019
- 2019-11-25 EP EP19954693.8A patent/EP4050808A4/en active Pending
- 2019-11-25 CN CN201980102235.2A patent/CN114667686A/zh active Pending
- 2019-11-25 WO PCT/CN2019/120672 patent/WO2021102642A1/zh unknown
-
2022
- 2022-05-24 US US17/752,308 patent/US11991534B2/en active Active
Patent Citations (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN104793206A (zh) * | 2015-04-28 | 2015-07-22 | 西北工业大学 | 利用发射栅瓣的成像方法 |
CN107196684A (zh) * | 2017-03-27 | 2017-09-22 | 上海华为技术有限公司 | 一种天线系统、信号处理系统以及信号处理方法 |
WO2019077122A1 (en) * | 2017-10-20 | 2019-04-25 | Fraunhofer-Gesellschaft zur Förderung der angewandten Forschung e.V. | INTEGRAL DUPLEX TRANSMITTER / RECEIVER |
CN107976671A (zh) * | 2017-11-10 | 2018-05-01 | 西安电子科技大学 | 一种适用于稀疏阵列天线的雷达目标角度计算方法 |
CN110247689A (zh) * | 2018-03-09 | 2019-09-17 | 深圳捷豹电波科技有限公司 | 终端的通信区域分配方法、装置、通信设备及存储介质 |
Non-Patent Citations (1)
Title |
---|
See also references of EP4050808A4 * |
Also Published As
Publication number | Publication date |
---|---|
CN114667686A (zh) | 2022-06-24 |
US20220286869A1 (en) | 2022-09-08 |
US11991534B2 (en) | 2024-05-21 |
EP4050808A1 (en) | 2022-08-31 |
EP4050808A4 (en) | 2022-11-09 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
KR102589737B1 (ko) | 상호 인덕턴스를 이용한 전력결합기/분배기 | |
US11664876B2 (en) | Method and device for training downlink beams | |
US10320450B2 (en) | Antenna arrangement for two polarizations | |
EP3698477B1 (en) | Full-duplex transceiver apparatus | |
US20220303020A1 (en) | Central unit, remote unit, small cell system, and communication method | |
WO2019206157A1 (zh) | 下行波束训练方法、网络设备和终端设备 | |
CN111510188B (zh) | 波束搜索方法及装置 | |
KR102159576B1 (ko) | 핑거프린트 기반의 빔 간섭 제거 시스템 및 방법 | |
WO2021102642A1 (zh) | 一种信号处理方法和网络设备 | |
US10868363B2 (en) | Antenna system and signal transmission method | |
TWI708520B (zh) | 基地台及其操作方法與通訊系統 | |
CN114039638A (zh) | 一种混合波束成形器与模数转换器联合设计方法 | |
Zhao et al. | Dynamic Hybrid Beamforming for Terahertz Multi-User Ultra-Massive MIMO Systems with Imperfect Hardware | |
CN115603781B (zh) | 单用户模拟波束搜索方法和装置 | |
US20240348323A1 (en) | Coverage enhancing devices with frequency filters | |
WO2023185974A1 (zh) | 通信方法以及相关装置 | |
EP4383450A1 (en) | Antenna array, antenna system and communication device | |
WO2021228179A1 (zh) | 一种通信方法及装置 | |
Parveen et al. | Performance of BER with different diversity techniques for millimeter-wave communication system | |
CN118118042A (zh) | 一种多通道非线性对消系统、方法及装置 | |
Nguyen et al. | THE PERFORMANCE OF A HYBRID BEAMFORMING mmWAVE MIMO SYSTEM WITH NON-IDEAL HARDWARE | |
Wei et al. | SIMRP: Self-Interference Mitigation Using RIS and Phase Shifter Network | |
CN107801216A (zh) | 用于无线通信的方法和设备 | |
WO2020133997A1 (en) | Selectively driven ultra-wideband antenna arrays | |
CN117336755A (zh) | 一种基于wpt辅助的去蜂窝大规模mimo低功耗高能效优化方法 |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 19954693 Country of ref document: EP Kind code of ref document: A1 |
|
ENP | Entry into the national phase |
Ref document number: 2019954693 Country of ref document: EP Effective date: 20220527 |
|
NENP | Non-entry into the national phase |
Ref country code: DE |