WO2021100956A1 - 산업단지 마이크로그리드 내 중소 업체의 re100 참여를 위한 가상발전소 운영 시스템 및 방법 - Google Patents

산업단지 마이크로그리드 내 중소 업체의 re100 참여를 위한 가상발전소 운영 시스템 및 방법 Download PDF

Info

Publication number
WO2021100956A1
WO2021100956A1 PCT/KR2019/016996 KR2019016996W WO2021100956A1 WO 2021100956 A1 WO2021100956 A1 WO 2021100956A1 KR 2019016996 W KR2019016996 W KR 2019016996W WO 2021100956 A1 WO2021100956 A1 WO 2021100956A1
Authority
WO
WIPO (PCT)
Prior art keywords
power
renewable
power generation
certificate
power plant
Prior art date
Application number
PCT/KR2019/016996
Other languages
English (en)
French (fr)
Inventor
백경석
오재철
Original Assignee
주식회사 아이온커뮤니케이션즈
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 주식회사 아이온커뮤니케이션즈 filed Critical 주식회사 아이온커뮤니케이션즈
Publication of WO2021100956A1 publication Critical patent/WO2021100956A1/ko

Links

Images

Classifications

    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06QINFORMATION AND COMMUNICATION TECHNOLOGY [ICT] SPECIALLY ADAPTED FOR ADMINISTRATIVE, COMMERCIAL, FINANCIAL, MANAGERIAL OR SUPERVISORY PURPOSES; SYSTEMS OR METHODS SPECIALLY ADAPTED FOR ADMINISTRATIVE, COMMERCIAL, FINANCIAL, MANAGERIAL OR SUPERVISORY PURPOSES, NOT OTHERWISE PROVIDED FOR
    • G06Q50/00Information and communication technology [ICT] specially adapted for implementation of business processes of specific business sectors, e.g. utilities or tourism
    • G06Q50/06Energy or water supply
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J3/00Circuit arrangements for ac mains or ac distribution networks
    • H02J3/008Circuit arrangements for ac mains or ac distribution networks involving trading of energy or energy transmission rights
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J3/00Circuit arrangements for ac mains or ac distribution networks
    • H02J3/38Arrangements for parallely feeding a single network by two or more generators, converters or transformers
    • H02J3/381Dispersed generators
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y04INFORMATION OR COMMUNICATION TECHNOLOGIES HAVING AN IMPACT ON OTHER TECHNOLOGY AREAS
    • Y04SSYSTEMS INTEGRATING TECHNOLOGIES RELATED TO POWER NETWORK OPERATION, COMMUNICATION OR INFORMATION TECHNOLOGIES FOR IMPROVING THE ELECTRICAL POWER GENERATION, TRANSMISSION, DISTRIBUTION, MANAGEMENT OR USAGE, i.e. SMART GRIDS
    • Y04S10/00Systems supporting electrical power generation, transmission or distribution
    • Y04S10/12Monitoring or controlling equipment for energy generation units, e.g. distributed energy generation [DER] or load-side generation
    • Y04S10/123Monitoring or controlling equipment for energy generation units, e.g. distributed energy generation [DER] or load-side generation the energy generation units being or involving renewable energy sources
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y04INFORMATION OR COMMUNICATION TECHNOLOGIES HAVING AN IMPACT ON OTHER TECHNOLOGY AREAS
    • Y04SSYSTEMS INTEGRATING TECHNOLOGIES RELATED TO POWER NETWORK OPERATION, COMMUNICATION OR INFORMATION TECHNOLOGIES FOR IMPROVING THE ELECTRICAL POWER GENERATION, TRANSMISSION, DISTRIBUTION, MANAGEMENT OR USAGE, i.e. SMART GRIDS
    • Y04S10/00Systems supporting electrical power generation, transmission or distribution
    • Y04S10/50Systems or methods supporting the power network operation or management, involving a certain degree of interaction with the load-side end user applications
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y04INFORMATION OR COMMUNICATION TECHNOLOGIES HAVING AN IMPACT ON OTHER TECHNOLOGY AREAS
    • Y04SSYSTEMS INTEGRATING TECHNOLOGIES RELATED TO POWER NETWORK OPERATION, COMMUNICATION OR INFORMATION TECHNOLOGIES FOR IMPROVING THE ELECTRICAL POWER GENERATION, TRANSMISSION, DISTRIBUTION, MANAGEMENT OR USAGE, i.e. SMART GRIDS
    • Y04S50/00Market activities related to the operation of systems integrating technologies related to power network operation or related to communication or information technologies
    • Y04S50/10Energy trading, including energy flowing from end-user application to grid

Definitions

  • the present invention relates to a virtual power plant operating system and method for participating in RE100 by small and medium-sized companies in the related industrial complex microgrid.
  • small and medium-sized companies in the industrial complex microgrid that support the RE100 certificate acquisition method and provide cost reduction programs It relates to a virtual power plant operating system and method for companies to participate in RE100.
  • Industrial complexes are considered a promising candidate among microgrid target sites as a large number of manufacturing-type companies that consume electricity are concentrated, and there are also many exporters due to the nature of Korea.
  • the RE100 campaign is a public declaration by a company that only electricity made from renewable energy will be used. More than 200 companies worldwide participate, including global companies such as Apple, Google, GM, BMW, Coca-Cola and IKEA.
  • the present invention is to solve the above problems, it is possible to provide a cost reduction program that manages the constructed renewable power generation resources and monitors the amount of renewable power generation, and reduces the economic burden of RE100 participating companies.
  • the RE100 management server for participation in RE100 of small and medium-sized companies in the industrial complex microgrid, it manages information of companies participating in the RE100.
  • Participating company management unit self-generation method support unit that supports securing the RE100 certificate through a self-generation method including equity investment in renewable power generation resources, and support securing the RE100 certificate through a power transaction method with the renewable power generation resources
  • Power transaction method support unit a premium fee payment simulation unit that provides a premium rate plan simulation for securing the RE100 certificate through a premium fee payment method, the self-generation method, and the electricity transaction to companies participating in the RE100 to achieve the RE100
  • a portfolio recommendation unit that recommends at least one of the method and the premium fee payment method, and a cost reduction program providing unit that provides a cost reduction program for cost reduction required for securing the RE100 certificate.
  • the cost reduction program may include at least one of an energy saving program in factories and buildings, a factory power facility abnormality detection program, and a demand response implementation program.
  • the virtual power plant operation server is a virtual power plant operation server for participation of small and medium-sized companies in the industrial complex microgrid for RE100, in which new and renewable power generation resources are constructed and managed in the industrial complex.
  • the management unit the generation amount measurement unit that monitors the generation amount of the new and renewable power plant, the power consumption amount measurement unit that measures the power consumption of the plant or building, the energy saving unit that controls the power consumption in the factory or building, and the power consumption amount of the factory. Accordingly, it may include a factory facility abnormality detection unit that detects an abnormality in the problem facility that consumes power excessively, and a demand response execution unit that performs a demand response within the industrial complex.
  • the renewable power generation resource may include at least one of a photovoltaic (PV), an energy storage system (ESS), an electric vehicle (EV) charging station, and a fuel cell.
  • PV photovoltaic
  • ESS energy storage system
  • EV electric vehicle
  • At least one of an ESS charge/discharge control unit for controlling charging/discharging of the energy storage system (ESS), and an EV charging/discharging control unit for controlling charging/discharging of the electric vehicle charging station may be further included.
  • a power generation amount predicting unit that predicts the amount of power generation of the new and renewable power plant, and a power plant maintenance unit that maintains the new and renewable power plant by detecting an abnormality through the monitored power generation amount and the predicted power generation amount may be further included. have.
  • the virtual power plant operating system for the participation of small and medium-sized companies in the industrial complex microgrid, RE100, a building in the industrial complex by generating new renewable energy or using new renewable energy. Or at least one renewable power generation resource that supplies power to the factory, a RE100 participating company that owns at least one building and/or factory in the industrial complex and participates in the RE100, the renewable power generation resource in the industrial complex To build and manage, monitor the power generation of the new and renewable power plant, measure the power consumption of the factory or building, control to suppress the power consumption in the factory or building, and over-consume power according to the power consumption of the factory.
  • the RE100 is a virtual power plant operating server that detects an abnormality in the problem facility and performs a demand response within the industrial complex, and manages information of the RE100 participating companies, and uses a self-generation method including equity investment in renewable power generation resources.
  • To support securing a certificate to secure the RE100 certificate through a power transaction method with the renewable power generation resources, provide a premium rate plan simulation for securing the RE100 certificate through a premium rate payment method, and to achieve the RE100 It may include a RE100 management server that recommends at least one of the self-generation method, the power transaction method, and the premium rate payment method to the RE100 participating company, and provides a cost reduction program for cost reduction required for securing the RE100 certificate. have.
  • the information of the companies participating in the RE100 in the virtual power plant operating method for participation of small and medium-sized companies in RE100 in the industrial complex microgrid operated by the virtual power plant operating system, the information of the companies participating in the RE100
  • the power transaction method support step the premium rate payment support step of providing a premium rate plan simulation for securing the RE100 certificate through the premium rate payment method, the self-generation method to the RE100 participating company to achieve the RE100, the power transaction method And a portfolio recommendation step of recommending at least one of the premium fee payment methods, and providing a cost reduction program for cost reduction required for securing the RE100 certificate.
  • the step of supporting the power transaction method includes receiving an input of the amount of renewable generation to be secured through a transaction from the RE100 participating company, and performing a power transaction between the renewable power generation resource and the RE100 participating company according to a power transaction rule. Signing a contract, and securing a RE100 certificate according to the amount of transaction power generated by the RE100 participating company with the contracted renewable power generation resource.
  • the premium fee payment support step is the step of receiving a set of new and renewable generation amount and period to be secured through premium fee payment from the RE100 participating company, the cost required for securing the new and renewable generation amount to be secured based on the premium rate plan Simulating, and the RE100 participating company may include the step of securing the RE100 certificate by the premium rate payment.
  • the self-generation support step the step of receiving a stake in the renewable power generation resources for the self-generation method from the RE100 participating company, the step of building and expanding the renewable power generation resources in the industrial complex, new and renewable
  • the step of monitoring the power generation amount of the power plant, and the RE100 participating company may include the step of securing the RE100 certificate through the distribution of the generation amount according to the investment rate of the renewable power generation resource of the RE100 participating company.
  • the self-generation method step further comprises predicting the amount of power generation of the new and renewable power plant, and maintaining the new and renewable power plant by detecting an abnormality through the monitored power generation amount and the predicted power generation amount.
  • the portfolio recommendation step is the step of receiving the achievement target year of the RE100, power consumption data for the last three years, and payable costs from the RE100 participating company, and predicting the amount of power consumption until the target year Including a step of recommending at least one of a self-generating method, an electric power transaction method, and a premium rate payment method by deriving a possible method and a period of achievement as a payable cost, and simulating and providing the expected savings when participating in the cost reduction program. can do.
  • the virtual power plant operating system and method for the participation of small and medium-sized companies in the industrial complex microgrid according to the present invention as described above is to increase the acquisition of RE100 certificates by encouraging companies in the industrial complex to invest in renewable power resources and implementing a cost reduction program. You can aim for a virtuous cycle structure.
  • FIG. 1 is a diagram showing a virtual power plant operating system for participation of small and medium-sized companies in an industrial complex microgrid according to an embodiment of the present invention for RE100.
  • FIG. 2 is a diagram showing a virtual power plant operation server for participation of small and medium-sized companies in an industrial complex microgrid according to an embodiment of the present invention.
  • FIG. 3 is a diagram illustrating a RE100 management server for participation of a small and medium-sized company in an industrial complex microgrid according to an embodiment of the present invention.
  • FIG. 4 is a diagram showing a cost reduction program for reducing the cost of securing RE100 according to an embodiment of the present invention.
  • FIG. 5 is a flowchart showing a method of operating a virtual power plant for participation of a small and medium-sized company in an industrial complex microgrid according to an embodiment of the present invention for RE100.
  • FIG. 6 is a flowchart illustrating a method of supporting RE100 securing of a self-powered method according to an embodiment of the present invention.
  • FIG. 7 is a flowchart illustrating a method of supporting RE100 securing of a power transaction method according to an embodiment of the present invention.
  • FIG. 8 is a flowchart illustrating a method of securing RE100 in a premium rate payment method according to an embodiment of the present invention.
  • FIG. 9 is a flowchart illustrating a method of recommending a RE100 portfolio according to an embodiment of the present invention.
  • FIG. 1 is a diagram showing a virtual power plant operating system for participation of small and medium-sized companies in an industrial complex microgrid according to an embodiment of the present invention for RE100.
  • the virtual power plant operating system 1000 may include a virtual power plant operating server 100, a RE100 management server 200, at least one renewable power generation resource 300, and a RE100 participating company 400. have.
  • the virtual power plant operation server 100 manages the renewable power generation resources 300 built in the industrial complex and monitors the amount of power generation of the renewable power generation resources 300, and the economic burden of securing the RE100 certificate of the RE100 participating companies 400 It can provide a cost-saving program that reduces the cost.
  • the cost reduction program may include at least one of an energy saving program in factories and buildings, a factory power facility abnormality detection program, and a demand response implementation program.
  • the RE100 management server 200 supports a method for the RE100 participating companies 400 to obtain a RE100 certificate, and may recommend a RE100 portfolio for achieving the RE100 of the RE100 participating companies 400. That is, the RE100 management server 200 recommends at least one of a self-generation method, a power transaction method, and a premium rate payment method to the companies 400 participating in the RE100 to achieve RE100, and supports securing the RE100 certificate through each method. I can.
  • the at least one renewable power generation resource 300 may include all power generation resources capable of generating renewable energy or supplying power to buildings and/or factories in the industrial complex by using renewable energy.
  • the renewable power generation resource 300 may include at least one of a photovoltaic power generation system (PV), a fuel cell energy storage system (ESS), an electric vehicle (EV) charging station, and the like. .
  • PV photovoltaic power generation system
  • ESS fuel cell energy storage system
  • EV electric vehicle
  • the photovoltaic (PV) 300_1 may supply electricity generated using a solar power generation system to buildings and/or factories in an industrial complex, and may supply power to an ESS or EV charging station, not limited thereto.
  • the fuel cell 300_2 may react hydrogen and oxygen to directly convert chemical energy into electrical energy to supply power to a building and/or a factory, but is not limited thereto, and may supply power to an ESS or EV charging station.
  • the ESS 300_3 may be charged with solar light (PV) or electric power generated from a fuel cell, and discharge the charged electric power to be supplied to a building and/or a factory.
  • the ESS (300_3) can charge electricity during a time when the power load is low, and, on the contrary, use the charged electricity during a time when the power load is high to reduce the maximum amount of power used.
  • the EV charging station 300_4 may receive power by supplying power to a vehicle or discharging a battery of the vehicle. That is, the EV charging station 200 may be provided with at least one vehicle and a device capable of charging and discharging in both directions (Bi-directional On Board Charger).
  • the means of transport may be a means of transportation that is driven by using the power of a built-in battery such as an electric vehicle, an electric motorcycle, an electric bicycle, or a drone, but is not limited thereto.
  • the means of transportation is an electric vehicle with a built-in battery. Can be
  • the renewable power generation resource 300 is a new energy source (fuel cell, hydrogen energy, etc.) that converts and uses existing fossil fuels and a renewable energy source (solar, hydrogen energy, etc.) that converts and uses renewable energy.
  • a renewable energy source solar, hydrogen energy, etc.
  • EV electric vehicles
  • ESS can be included that reduces the maximum amount of power used by using charged electricity.
  • the RE100 participating company 400 is located in the industrial complex microgrid, and may be a company participating in the RE100.
  • the RE100 participating company 400 may own at least one building and/or factory in the industrial complex.
  • the RE100 participating company 400 may exchange data with the virtual power plant operation server 100 and the RE100 management server 200 through their terminals.
  • FIG. 2 is a diagram showing a virtual power plant operation server for participation of small and medium-sized companies in an industrial complex microgrid according to an embodiment of the present invention.
  • the virtual power plant operation server 100 includes a renewable power generation resource management unit 110, a power generation monitoring unit 120, a power consumption measurement unit 130, an energy saving unit 140, and a factory facility abnormality detection unit. 150 and a demand response implementation unit 160 may be included.
  • the virtual power plant operation server 100 may further include a power generation predicting unit and a power plant maintenance unit.
  • the virtual power plant operation server 100 may further include at least one of an ESS charge/discharge control unit and an EV charge/discharge control unit.
  • the renewable power generation resource management unit 110 may build and manage the renewable power generation resource 300 in the industrial complex.
  • the renewable power generation resource management unit 110 may establish a construction plan of the renewable power generation resource 300, receive investment from the RE100 participating company 400, and build and manage the renewable power generation resource 300 in the industrial complex. .
  • the renewable power generation resource management unit 110 may store a power generation amount distribution rate according to the permeability of each renewable power generation resource 300 to distribute the power generation amount of the RE100 participating companies 400.
  • the renewable power generation resource may include at least one of photovoltaic (PV), an energy storage system (ESS), an electric vehicle (EV) charging station, and a fuel cell.
  • Renewable power generation resources are not limited thereto, and may include all power generation resources capable of supplying power to buildings/factory within the industrial complex by using renewable energy.
  • the power generation monitoring unit 120 may monitor the power generation amount of the renewable power plant.
  • the renewable power plant may include solar light (PV) or a fuel cell that generates renewable energy.
  • the power generation monitoring unit 120 may supply the generated renewable energy to a building/factory, ESS or EV charging station in the industrial complex.
  • the power generation monitoring unit 110 may distribute the power generation amount to the building and/or factory of the RE100 participating company 400 according to the investment rate of the renewable power generation resource 300 of the RE100 participating company 400.
  • the generation amount prediction unit may predict the amount of generation of the new and renewable power plant.
  • the power generation predicting unit may predict the solar power generation amount for each time of the day by referring to the characteristics of the photovoltaic power generation system and meteorological data provided from the Meteorological Agency.
  • the generation amount prediction unit may analyze/retain a linkage relationship between the past meteorological information and the past generation amount, and, based on this, based on the weather data of the day, the amount of solar power generation for each time of the day may be predicted.
  • the power plant maintenance unit may detect an abnormality through the amount of generation measured by the generation amount monitoring unit 120 and the amount of generation predicted by the generation amount prediction unit 130 to maintain the new and renewable power plant.
  • the power plant maintenance department may perform defective replacement, cleaning, and facility failure repair of PV panels that detect an abnormality. Through this, an effect of increasing the power generation efficiency of the renewable power generation resource 300 can be expected.
  • the power consumption measurement unit 130 may monitor actual power consumption of a factory or a building in the industrial complex. In addition, the power consumption measurement unit 130 may predict a power demand amount of a factory or a building in the industrial complex for a certain period.
  • the ESS charging/discharging control unit may control charging/discharging of the energy storage system (hereinafter, ESS).
  • ESS stores electrical energy generated by renewable energy sources (PV, fuel cells, etc.) and can supply power to buildings/factory.
  • the EV charging/discharging control unit may control charging/discharging of an electric vehicle (EV) charging station.
  • the EV charging/discharging control unit can supply power to the building/factory by using the remaining battery power of the electric vehicle (EV) parked at the electric vehicle (EV) charging station after the operation has been completed.
  • the energy saving unit 140 may control the power consumption in the factory and/or the building to be suppressed.
  • the energy saving unit 140 may control the power consumption to be suppressed through the installation of smart devices in the factory/building, control of electronic devices, and the like.
  • the energy saving unit 150 may save energy in a factory/building through smart lighting and control of a heating/cooling air conditioner.
  • the factory facility abnormality detection unit 150 may detect an abnormality in a problem facility that consumes too much power in the factory.
  • the factory facility abnormality detection unit 150 may attach a sensor to a power facility of a factory or discover a problem facility that consumes excessive power through big data analysis and take action. As a result, there is an effect that can be expected to increase the efficiency of consumption of the factory power equipment.
  • the demand response execution unit 160 may perform a demand response within the industrial complex.
  • the demand response execution unit 160 may request a demand response from a building/factory within the industrial complex when the amount of generation measured by the electric power measurement unit 120 does not meet the power consumption measured by the power consumption measurement unit 130. .
  • the demand response implementation unit 160 may provide an incentive to the RE100 participating company 400 corresponding to the building/factory that participated in the demand response.
  • FIG. 3 is a diagram illustrating a RE100 management server for participation of a small and medium-sized company in an industrial complex microgrid according to an embodiment of the present invention.
  • the RE100 management server 200 includes a participating company management unit 210, a self-generating method support unit 220, a power transaction method support unit 230, a premium fee payment simulation unit 240, a portfolio recommendation unit 250 ) And a cost reduction program providing unit 260.
  • Participating company management unit 210 may manage the information of the company 400 participating in the RE100.
  • the participating company management unit 210 may receive an application for participation in RE100 from companies distributed in the industrial complex.
  • the RE100 participating company 400 may own at least one building and/or factory in the industrial complex.
  • the self-generation method support unit 220 may support securing the RE100 certificate through a self-generation method including equity investment in renewable power generation resources 300.
  • the self-generation method support unit 220 may receive a stake in the renewable power generation resource 300 for the self-generation method from the RE100 participating company 400 in a self-generation method.
  • the self-powered method support unit 220 may transmit the stake received from the RE100 participating company 400 to the virtual power plant management server 100.
  • the virtual power plant management server 100 may build and expand the renewable power generation resource 300 in the industrial complex.
  • the virtual power plant management server 100 may monitor the amount of power generation of the constructed renewable power generation resource 300.
  • the virtual power plant management server 100 may support the RE100 participating companies 400 to secure the RE100 certificate through the distribution of the power generation amount according to the investment rate of the power generation amount.
  • the virtual power plant management server 100 may predict the amount of power generation of the new and renewable power plant, and detect an abnormality through the monitored amount of power generation and the predicted amount of power generation to maintain the new and renewable power plant.
  • the power transaction method support unit 230 may support securing the RE100 certificate through a power transaction method with the renewable power generation resource 300.
  • the power transaction method may mean a method of purchasing renewable energy power at a contract price for a certain period by signing a contract with a power generation company.
  • the power transaction method support unit 230 may receive an input of the amount of renewable generation to be secured through the power transaction method from the company 400 participating in the RE100.
  • the power transaction method support unit 230 may sign a contract for a power transaction between the renewable power generation resource 300 and the RE100 participating company 400 according to the power transaction rule.
  • the power transaction rule may include a contract period, an amount of electricity, and an electricity rate, and the RE100 participating company 400 conducts electricity transaction according to the renewable power generation resource 300 and the contract period, amount of electricity, and electricity rate. can do. Accordingly, the RE100 participating company 400 can secure the RE100 certificate according to the amount of transaction development.
  • the premium rate payment simulation unit 240 may provide a premium rate plan simulation for securing the RE100 certificate through a premium rate payment method.
  • the premium rate plan payment method is a method in which a sales business operator such as KEPCO forms a separate rate plan with a premium equivalent to the price of a certificate for renewable energy sources, and authorizes the procurement of renewable energy to power consuming companies that subscribe to this rate plan.
  • the electricity bill is 100 won per 1 kWh and the certificate price is 20 won per 1 kWh
  • customers who have subscribed to the premium plan can pay 120 won per kWh and be recognized for renewable energy procurement.
  • the premium fee payment simulation unit 240 may receive a set of the amount and period of renewable generation to be secured through premium fee payment from the RE100 participating company 400.
  • the premium fee payment simulation unit 240 may simulate the cost required for securing the amount of renewable power to be secured based on the premium rate plan and provide it to the RE100 participating companies 400.
  • the portfolio recommendation unit 250 may recommend at least one of a self-generation method, a power transaction method, and a premium rate payment method to the companies 400 participating in the RE100 in order to achieve RE100.
  • the portfolio recommendation unit 250 may receive the target year of RE100, power consumption data for the last three years, and payable cost from the RE100 participating company 400, and recommend a method that can be performed to the RE100 participating company 400.
  • the portfolio recommendation unit 250 may provide the RE100 participating company 400 with a method of securing a RE100 certificate combining a self-generation method, a power transaction method, and a premium rate payment method.
  • the portfolio recommendation unit 250 may recommend an economically inexpensive method for the target year and payable cost when the payable cost is insufficient compared to the target year.
  • portfolio recommendation unit 250 may simulate and provide the expected savings when participating in a cost reduction program.
  • the cost reduction program providing unit 260 may provide a cost reduction program for reducing the cost required for securing the RE100 certificate.
  • the cost reduction program provider 260 may transmit a list of RE100 participating companies 400 to the virtual power plant operation server 100 to provide a cost reduction program for the RE100 participating companies 400.
  • the cost reduction program may include at least one of an energy saving program in factories and buildings, a factory power facility abnormality detection program, and a demand response implementation program.
  • the cost reduction program may be implemented by at least one of the energy saving unit 140 of the virtual power plant operation server 100, the factory facility abnormality detection unit 150, and the demand response execution unit 160.
  • the cost reduction program will be described in detail in FIG. 4.
  • FIG. 4 is a diagram showing a cost reduction program for reducing the cost of securing RE100 according to an embodiment of the present invention.
  • the cost reduction program may include an energy saving program 261 in a factory/building, a factory facility abnormality detection program 263, and a demand response program participation program 265.
  • the energy saving program 261 in the factory/building is a program that aims to reduce the cost for securing RE100 by controlling the amount of power consumption through the installation of smart devices in the factory/building, control of electronic devices, and the like.
  • the energy saving unit 150 of the virtual power plant operation server 100 can save energy in a factory/building through smart lighting and air conditioning/cooling control.
  • the factory facility abnormality detection program 263 is a program that seeks to reduce the cost for securing RE100 by detecting and replacing an abnormality in the factory power equipment. That is, the factory facility abnormality detection unit 150 of the virtual power plant operation server 100 may attach a sensor to the power facility of the factory or discover a problem facility that consumes excessive power through big data analysis and take action. Accordingly, the factory facility abnormality detection program 263 has an effect of expecting the efficiency of consumption of the factory power facility.
  • the Demand Response Program Participation Program 265 is a program that aims to reduce costs for securing RE100 by providing incentives to companies participating in demand response within the industrial complex.
  • the demand response program participation program 265 may be performed by the demand response execution unit 170 of the virtual power plant operation server 100, and may provide incentives to companies participating in the demand response.
  • the RE100 participating company 400 establishes a reduction implementation contract for the amount of electricity and price to be reduced and implements load reduction, and the company receiving the power reduction instruction during the contract period reduces electricity consumption and reduces the amount of electricity. You can receive an incentive of
  • FIG. 5 is a flowchart showing a method of operating a virtual power plant for participation of a small and medium-sized company in an industrial complex microgrid according to an embodiment of the present invention for RE100.
  • the RE100 management server 200 may manage information of the company 400 participating in the RE100. That is, the RE100 management server 200 may manage information of the RE100 participating company 400 by receiving an application for participation in RE100 from a company occupying the industrial complex.
  • the RE100 management server 200 may support securing the RE100 certificate through a self-generation method including equity investment in renewable power generation resources.
  • a method of supporting securing the RE100 certificate through the self-generation method will be described in detail in FIG. 6.
  • the RE100 management server 200 may support securing the RE100 certificate through a power transaction method with renewable power generation resources. A method of supporting securing the RE100 certificate through the power transaction method will be described in detail in FIG. 7.
  • the RE100 management server 200 may provide a premium rate plan simulation for securing the RE100 certificate through a premium rate payment method.
  • a method of supporting securing the RE100 certificate through the premium fee payment method will be described in detail in FIG. 8.
  • the RE100 management server 200 may recommend at least one of a self-generation method, a power transaction method, and a premium rate payment method to the RE100 participating company 400 to achieve RE100. How the RE100 management server 200 recommends a portfolio to the RE100 participating company 400 will be described in detail with reference to FIG. 9.
  • the RE100 management server 200 may provide a cost reduction program for reducing the cost required for securing the RE100 certificate.
  • the cost reduction program may include at least one of an energy saving program in factories and buildings, a factory power facility abnormality detection program, and a demand response implementation program.
  • FIG. 6 is a flowchart illustrating a method of supporting RE100 securing of a self-powered method according to an embodiment of the present invention.
  • the RE100 management server 200 may communicate with the virtual power plant management server 100 to perform a process of securing RE100 through a self-powered method.
  • the RE100 management server 200 may receive a stake in the renewable power generation resource 300 for self-generation from the RE100 participating company 400 (S610).
  • the RE100 management server 200 may recruit equity investment companies according to the new renewable power generation resource construction plan received from the virtual power plant management server 100.
  • the RE100 participating company 400 may independently invest in the desired renewable power generation resource 300 to receive the power generation amount from the corresponding renewable power generation resource 300, and receive the power generation amount distribution through joint investment.
  • the virtual power plant management server 100 may manage the renewable power generation resources 300 built and expanded in the industrial complex.
  • the renewable power generation resource 400 may include at least one of solar light (PV), an energy storage system (ESS), an electric vehicle (EV) charging station, and a fuel cell.
  • the virtual power plant management server 100 may monitor the amount of power generation of the new and renewable power plant (S630).
  • the virtual power plant management server 100 may predict the amount of power generation of the new and renewable power plant (S640). In addition, the virtual power plant management server 100 may detect an abnormality through the monitored power generation amount and the predicted power generation amount to maintain the new and renewable power plant (S650).
  • the virtual power plant management server 100 may support the RE100 participating companies 400 to secure the RE100 certificate through the distribution of the generation amount according to the investment rate of the renewable power generation resources 300 of the RE100 participating companies 400 (S660).
  • FIG. 7 is a flowchart illustrating a method of supporting RE100 securing of a power transaction method according to an embodiment of the present invention.
  • the RE100 management server 200 may receive an input of the amount of renewable power to be secured from the RE100 participating company 400 through a power transaction method (S710).
  • the power transaction method may mean a method of purchasing renewable energy power at a contract price for a certain period by signing a contract with a power generation company.
  • the RE100 management server 200 may enter into a contract for a power transaction between the renewable power generation resource 300 and the RE100 participating company 400 according to the power transaction rule (S720).
  • the power transaction rule may include the contract period, the amount of electricity, and the electricity rate, and the RE100 participating company 400 may conduct the electricity transaction according to the renewable power generation resource 300 and the contract period, the amount of electricity, and the electricity rate. have.
  • the RE100 participating company 400 may obtain a RE100 certificate according to the amount of transaction power generated with the contracted renewable power generation resource 300 (S730).
  • FIG. 8 is a flowchart illustrating a method of securing RE100 in a premium rate payment method according to an embodiment of the present invention.
  • the RE100 management server 200 may receive the amount and period of renewable power generation to be secured through premium fee payment from the RE100 participating company 400 (S810).
  • the RE100 management server 200 may receive a desired generation amount of 1000 kWh and a desired period of 1 year from the RE100 participating company 400.
  • the RE100 management server 200 may simulate the cost required to secure the amount of renewable power to be secured based on the premium rate plan (S820). For example, if the premium rate is 120 won per 1 kWh, the RE100 participating company 400 may have to pay 120,000 won depending on the desired generation amount of 1000 kWh and the desired period of one year.
  • the RE100 participating company 400 can secure the RE100 certificate by paying the premium rate plan (S850).
  • FIG. 9 is a flowchart illustrating a method of recommending a RE100 portfolio according to an embodiment of the present invention.
  • the RE100 management server 200 may receive input of a target year of RE100, power consumption data for the last three years, and payable costs from the RE100 participating company 400 (S910).
  • the RE100 management server 200 predicts the amount of power consumed by the achievement target year and derives a method and a period of achievement that can be performed as a payable cost, and recommends at least one of a self-generation method, a power transaction method, and a premium fee payment method.
  • the RE100 management server 200 has a target year of 2030 from the RE100 participating companies 400, a total of 3000 kWh of power consumption data for the last three years, and a payable cost of 1000. You can enter 10,000 won.
  • the RE100 management server 200 calculated each method, the self-powered method is an estimated cost of 7 million won, the expected achievement period is 15 years, the power transaction method is an estimated cost of 9 million won, and the expected achievement period is 10 years, If the result is that the premium fee payment method is 10 million won in the budget and the expected achievement period is 3 years, the RE100 management server 200 may recommend a power transaction method and a premium fee payment method to the RE100 participating companies 400. . In addition, the RE100 management server 200 can combine them in consideration of the estimated cost and expected achievement period of the self-generation method, the power transaction method, and the premium payment method, and the expected cost and the expected achievement period are minimized. The portfolio may be extracted and provided to the RE100 participating companies 400.
  • the RE100 management server 200 may recommend an economically inexpensive method for the target year and payable cost when the payable cost is insufficient compared to the target year.
  • the RE100 management server 200 may simulate and provide the expected savings when participating in the cost reduction program (S930).
  • the cost reduction program may include at least one of an energy saving program in factories and buildings, a factory power facility abnormality detection program, and a demand response implementation program.
  • the RE100 participating company 400 may construct a portfolio for achieving RE100 by referring to a method recommended from the RE100 management server 200.

Landscapes

  • Engineering & Computer Science (AREA)
  • Business, Economics & Management (AREA)
  • Health & Medical Sciences (AREA)
  • Economics (AREA)
  • Power Engineering (AREA)
  • Marketing (AREA)
  • General Health & Medical Sciences (AREA)
  • Human Resources & Organizations (AREA)
  • Water Supply & Treatment (AREA)
  • Primary Health Care (AREA)
  • Strategic Management (AREA)
  • Tourism & Hospitality (AREA)
  • Physics & Mathematics (AREA)
  • General Business, Economics & Management (AREA)
  • General Physics & Mathematics (AREA)
  • Theoretical Computer Science (AREA)
  • Public Health (AREA)
  • Management, Administration, Business Operations System, And Electronic Commerce (AREA)

Abstract

본 발명은 산업단지 마이크로그리드 내 중소업체의 RE100 참여를 위한 가상발전소 운영 시스템 및 방법에 관한 것으로서, 본 발명의 일 실시예에 따른 RE100 관리 서버는, 산업단지 마이크로그리드 내 중소업체의 RE100 참여를 위한 RE100 관리 서버에 있어서, 상기 RE100에 참여하는 기업의 정보를 관리하는 참여 기업 관리부, 신재생 발전자원의 지분 투자를 포함하는 자가 발전 방식을 통해 상기 RE100 인증서 확보를 지원하는 자가 발전 방식 지원부, 상기 신재생 발전자원과의 전력 거래 방식을 통해 상기 RE100 인증서 확보를 지원하는 전력 거래 방식 지원부, 프리미엄 요금 납부 방식을 통해 상기 RE100 인증서 확보를 위한 프리미엄 요금제 시뮬레이션을 제공하는 프리미엄 요금 납부 시뮬레이션부, 상기 RE100 달성을 위해 상기 RE100에 참여하는 기업에게 상기 자가 발전 방식, 상기 전력 거래 방식 및 상기 프리미엄 요금 납부 방식 중 적어도 하나를 추천하는 포트폴리오 추천부, 및 상기 RE100 인증서 확보에 필요한 비용 절감을 위한 비용절감 프로그램을 제공하는 비용절감 프로그램 제공부를 포함할 수 있다.

Description

산업단지 마이크로그리드 내 중소 업체의 RE100 참여를 위한 가상발전소 운영 시스템 및 방법
본 발명은 관한 산업단지 마이크로그리드 내 중소 업체의 RE100 참여를 위한 가상발전소 운영 시스템 및 방법에 관한 것으로서, 특히 RE100 참여 기업의 RE100 인증서 확보 방식을 지원하고 비용절감 프로그램을 제공하는 산업단지 마이크로그리드 내 중소 업체의 RE100 참여를 위한 가상발전소 운영 시스템 및 방법에 관한 것이다.
산업단지는 전력을 소비하는 제조 유형의 업체가 많이 집적되어 있어 마이크로그리드 대상지 중에 유력한 후보로 꼽히고 있으면서, 한국의 특성상 수출 업체가 많이 포진되어 있기도 하다.
다국적 비영리단체 기후그룹(The Climate Group)이 2014년 처음 소개한 것으로서, 재생에너지로 만든 전기만 사용하겠다는 기업의 공개 선언이 RE100 캠페인이다. 전세계적으로 200개가 넘는 기업이 참여하고 있으며, 애플, 구글, GM, BMW, 코카콜라, 이케아 같은 글로벌 기업이 여기에 포함되어 있다.
미국과 유럽이 다수이며 일본, 중국, 인도 등의 아시아 기업도 있으나 한국 기업은 아직 없다. 회사 별 목표 달성 연도는 조금씩 다르면 늦어도 2050년이 제시되고 있다.
각국의 환경 규제가 강해지고, 기후 변화를 걱정하는 일반 소비자들의 압박 흐름이 나타나면서, RE100이 기업 이미지를 좋게 하는 홍보 전략 차원을 넘어서, 이미 참여한 글로벌 기업이 하청 협력 업체에게 참여를 요구하는 사례가 발생하고 있다.
기업은 재생에너지를 확보하기 위해서 녹색요금제로 납부하거나, 신재생 발전 설비 구축, 신재생 전력을 구매하는 방법으로 재생에너지 사용인증서를 발급받아 증빙할 수 있다.
대기업이나 중견기업은 설비 구축이나 구매의 방법으로 상대적으로 쉽게 RE100 참여가 가능하나, RE100에 참여하고 있는 글로벌 기업에 부품이나 하청 업무를 하고 있는 중소 규모의 기업들은 쉽지 않다. 이러한 기업들이 주로 산업단지 내에 분포되어 있는 점과 산업단지의 스마트 산업단지 및 마이크로그리드를 지향하고 있는 환경에 맞추어 산업단지 내에 설치되는 신재생 분산 발전과 앞으로 보급 확대가 예상되는 전기자동차(EV)를 자원으로 활용하고, 에너지 절감 프로그램 제공을 통해 중소 규모의 기업들의 RE100 인증서 확보에 필요한 비용 부담을 줄여주는 방안이 필요한 실정이다.
본 발명은 상기와 같은 문제점을 해결하기 위한 것으로서, 구축한 신재생 발전자원 관리와 신재생 발전량을 모니터링하고, RE100 참여 기업의 경제적 부담을 줄여주는 비용절감 프로그램을 제공할 수 있다.
또한, RE100 참여 기업에게 RE100 인증서를 확보하는 3가지 방식을 지원하고, RE100 인증서 확보를 위한 포트폴리오를 추천할 수 있다.
상기와 같은 목적을 달성하기 위하여, 본 발명의 일 실시예에 따른 RE100 관리 서버는, 산업단지 마이크로그리드 내 중소업체의 RE100 참여를 위한 RE100 관리 서버에 있어서, 상기 RE100에 참여하는 기업의 정보를 관리하는 참여 기업 관리부, 신재생 발전자원의 지분 투자를 포함하는 자가 발전 방식을 통해 상기 RE100 인증서 확보를 지원하는 자가 발전 방식 지원부, 상기 신재생 발전자원과의 전력 거래 방식을 통해 상기 RE100 인증서 확보를 지원하는 전력 거래 방식 지원부, 프리미엄 요금 납부 방식을 통해 상기 RE100 인증서 확보를 위한 프리미엄 요금제 시뮬레이션을 제공하는 프리미엄 요금 납부 시뮬레이션부, 상기 RE100 달성을 위해 상기 RE100에 참여하는 기업에게 상기 자가 발전 방식, 상기 전력 거래 방식 및 상기 프리미엄 요금 납부 방식 중 적어도 하나를 추천하는 포트폴리오 추천부, 및 상기 RE100 인증서 확보에 필요한 비용 절감을 위한 비용절감 프로그램을 제공하는 비용절감 프로그램 제공부를 포함할 수 있다.
일 실시예에서, 상기 비용절감 프로그램은, 공장 및 빌딩 내 에너지 절약 프로그램, 공장 전력 설비 이상 감지 프로그램 및 수요반응 실시 프로그램 중 적어도 하나를 포함할 수 있다.
본 발명의 일 실시예에 따른 가상발전소 운영 서버는, 산업단지 마이크로그리드 내 중소업체의 RE100 참여를 위한 가상발전소 운영 서버에 있어서, 상기 산업단지 내에 신재생 발전자원을 구축하고 관리하는 신재생 발전자원 관리부, 신재생 발전소의 발전량을 모니터링하는 발전량 측정부, 공장 또는 빌딩의 전력소비량을 측정하는 전력소비량 측정부, 상기 공장 또는 빌딩 내의 전력소비량을 억제하도록 제어하는 에너지 절약부, 상기 공장의 전력소비량에 따라 전력을 과소비하는 문제 설비의 이상을 감지하는 공장 설비 이상 감지부, 및 상기 산업단지 내 수요반응을 실시하는 수요반응 실시부를 포함할 수 있다.
일 실시예에서, 상기 신재생 발전자원은, 태양광(PV), 에너지저장시스템(Energy Storage System, ESS), 전기자동차(EV) 충전소, 연료전지 중 적어도 하나를 포함할 수 있다.
일 실시예에서, 상기 에너지저장시스템(ESS)의 충방전을 제어하는 ESS 충방전 제어부, 및 상기 전기자동차 충전소의 충방전을 제어하는 EV 충방전 제어부 중 적어도 하나를 더 포함할 수 있다.
일 실시예에서, 상기 신재생 발전소의 발전량을 예측하는 발전량 예측부, 및 상기 모니터링한 발전량과 상기 예측된 발전량을 통해 이상을 감지하여 상기 신재생 발전소를 유지 보수하는 발전소 유지보수부를 더 포함할 수 있다.
본 발명의 일 실시예에 따른 가상발전소 운영 시스템은, 산업단지 마이크로그리드 내 중소업체의 RE100 참여를 위한 가상발전소 운영 시스템에 있어서, 신재생 에너지를 생성하거나 신재생 에너지를 이용하여 상기 산업단지 내의 빌딩 또는 공장에 전력을 공급하는 적어도 하나의 신재생 발전자원, 상기 산업단지 내에 적어도 하나의 빌딩 및/또는 공장을 소유하고 있으며, 상기 RE100에 참여하는 RE100 참여 기업, 상기 산업단지 내에 상기 신재생 발전자원을 구축하고 관리하고, 상기 신재생 발전소의 발전량을 모니터링하고, 공장 또는 빌딩의 전력소비량을 측정하고, 상기 공장 또는 빌딩 내의 전력소비량을 억제하도록 제어하고, 상기 공장의 전력소비량에 따라 전력을 과소비하는 문제 설비의 이상을 감지하고, 상기 산업단내 내 수요반응을 실시하는 가상발전소 운영 서버, 및 상기 RE100 참여 기업의 정보를 관리하고, 신재생 발전자원의 지분 투자를 포함하는 자가 발전 방식을 통해 상기 RE100 인증서 확보를 지원하고, 상기 신재생 발전자원과의 전력 거래 방식을 통해 상기 RE100 인증서 확보를 지원하고, 프리미엄 요금 납부 방식을 통해 상기 RE100 인증서 확보를 위한 프리미엄 요금제 시뮬레이션을 제공하고, 상기 RE100 달성을 위해 상기 RE100 참여 기업에게 상기 자가 발전 방식, 상기 전력 거래 방식 및 상기 프리미엄 요금 납부 방식 중 적어도 하나를 추천하고, 상기 RE100 인증서 확보에 필요한 비용 절감을 위한 비용절감 프로그램을 제공하는 RE100 관리 서버를 포함할 수 있다.
본 발명의 일 실시예에 따른 가상발전소 운영 방법은, 가상발전소 운영 시스템에 의해 동작하는 산업단지 마이크로그리드 내 중소업체의 RE100 참여를 위한 가상발전소 운영 방법에 있어서, 상기 RE100에 참여하는 기업의 정보를 관리하는 단계, 신재생 발전자원의 지분 투자를 포함하는 자가 발전 방식을 통해 상기 RE100 인증서 확보를 지원하는 자가 발전 방식 지원 단계, 상기 신재생 발전자원과의 전력 거래 방식을 통해 상기 RE100 인증서 확보를 지원하는 전력 거래 방식 지원 단계, 프리미엄 요금 납부 방식을 통해 상기 RE100 인증서 확보를 위한 프리미엄 요금제 시뮬레이션을 제공하는 프리미엄 요금 납부 지원 단계, 상기 RE100 달성을 위해 상기 RE100 참여 기업에게 상기 자가 발전 방식, 상기 전력 거래 방식 및 상기 프리미엄 요금 납부 방식 중 적어도 하나를 추천하는 포트폴리오 추천 단계, 및 상기 RE100 인증서 확보에 필요한 비용 절감을 위한 비용절감 프로그램을 제공하는 단계를 포함할 수 있다.
일 실시예에서, 상기 전력 거래 방식 지원 단계는, 상기 RE100 참여 기업으로부터 거래를 통해 확보하려는 신재생 발전량을 입력받는 단계, 전력 거래 규칙에 따라 상기 신재생 발전자원과 상기 RE100 참여 기업간의 전력 거래를 계약을 체결하는 단계, 및 상기 RE100 참여 기업이 상기 계약한 신재생 발전자원과의 거래 발전량에 따라 RE100 인증서를 확보하는 단계를 포함할 수 있다.
일 실시예에서, 상기 프리미엄 요금 납부 지원 단계는, 상기 RE100 참여 기업으로부터 프리미엄 요금 납부를 통해 확보하려는 신재생 발전량 및 기간을 설정받는 단계, 상기 프리미엄 요금제 기준으로 상기 확보하려는 신재생 발전량 확보에 필요한 비용을 시뮬레이션하는 단계, 및 상기 RE100 참여 기업이 상기 프리미엄 요금제 납부로 RE100 인증서를 확보하는 단계를 포함할 수 있다.
일 실시예에서, 상기 자가 발전 지원 단계는, 상기 RE100 참여 기업으로부터 자가 발전 방식을 위한 신재생 발전자원의 지분을 투자받는 단계, 상기 신재생 발전자원을 산업단지 내에 구축 및 증설하는 단계, 신재생 발전소의 발전량을 모니터링하는 단계, 및 상기 RE100 참여 기업이 상기 RE100 참여 기업의 상기 신재생 발전자원 투자율에 따른 발전량 배분을 통해 RE100 인증서를 확보하는 단계를 포함할 수 있다.
일 실시예에서, 상기 자가 발전 방식 단계는, 상기 신재생 발전소의 발전량을 예측하는 단계, 및 상기 모니터링한 발전량과 상기 예측된 발전량을 통해 이상을 감지하여 상기 신재생 발전소를 유지 보수하는 단계를 더 포함할 수 있다.
일 실시예에서, 상기 포트폴리오 추천 단계는, 상기 RE100 참여 기업으로부터 상기 RE100의 달성 목표 년도, 최근 3년간의 소비전력 데이터, 지불 가능 비용을 입력받는 단계, 상기 달성 목표 년도까지 소비 전력량을 예측하여 상기 지불 가능 비용으로 가능한 방식 및 달성 기간을 도출하여, 자가 발전 방식, 전력 거래 방식 및 프리미엄 요금 납부 방식 중 적어도 하나를 추천 단계, 및 상기 비용절감 프로그램 참여 시 예상되는 절감액을 시뮬레이션하여 제공하는 단계를 포함할 수 있다.
일 실시예에서, 상기 달성 목표 년도까지 소비 전력량을 예측하여 상기 지불 가능 비용으로 가능한 방식 및 달성 기간을 도출하여, 자가 발전 방식, 전력 거래 방식 및 프리미엄 요금 납부 방식 중 적어도 하나를 추천 단계는, 상기 달성 목표 년도 대비 상기 지불 가능 비용이 부족할 경우, 상기 달성 목표 년도 및 상기 지불 가능 비용에 대해 경제적으로 저렴한 방식을 추천할 수 있다.
상기와 같은 본 발명에 따른 산업단지 마이크로그리드 내 중소 업체의 RE100 참여를 위한 가상발전소 운영 시스템 및 방법은 산업단지 내 기업의 신재생 발전자원 투자 독려와 비용절감 프로그램 실시를 통해 RE100 인증서 확보를 증대하는 선순환 구조를 지향할 수 있다.
도 1은 본 발명의 일 실시예에 따른 산업단지 마이크로그리드 내 중소업체의 RE100 참여를 위한 가상발전소 운영 시스템을 나타내는 도면이다.
도 2는 본 발명의 일 실시예에 따른 산업단지 마이크로그리드 내 중소업체의 RE100 참여를 위한 가상발전소 운영 서버를 나타내는 도면이다.
도 3은 본 발명의 일 실시예에 따른 산업단지 마이크로그리드 내 중소업체의 RE100 참여를 위한 RE100 관리 서버를 나타내는 도면이다.
도 4는 본 발명의 일 실시예에 따른 RE100 확보 비용 절감을 위한 비용절감 프로그램을 나타내는 도면이다.
도 5는 본 발명의 일 실시예에 따른 산업단지 마이크로그리드 내 중소업체의 RE100 참여를 위한 가상발전소 운영 방법을 나타내는 흐름도이다.
도 6은 본 발명의 일 실시예에 따른 자가 발전 방식의 RE100 확보 지원 방법을 나타내는 흐름도이다.
도 7은 본 발명의 일 실시예에 따른 전력 거래 방식의 RE100 확보 지원 방법을 나타내는 흐름도이다.
도 8은 본 발명의 일 실시예에 따른 프리미엄 요금 납부 방식의 RE100 확보 지원 방법을 나타내는 흐름도이다.
도 9는 본 발명의 일 실시예에 따른 RE100 포트폴리오 추천 방법을 나타내는 흐름도이다.
이하에서 본 발명의 기술적 사상을 명확화하기 위하여 첨부된 도면을 참조하여 본 발명의 바람직한 실시예를 상세하게 설명하도록 한다. 본 발명을 설명함에 있어서, 관련된 공지 기능 또는 구성요소에 대한 구체적인 설명이 본 발명의 요지를 불필요하게 흐릴 수 있다고 판단되는 경우 그 상세한 설명을 생략할 것이다. 도면들 중 실질적으로 동일한 기능구성을 갖는 구성요소들에 대하여는 비록 다른 도면상에 표시되더라도 가능한 한 동일한 참조번호들 및 부호들을 부여하였다. 설명의 편의를 위하여 필요한 경우에는 장치와 방법을 함께 서술하도록 한다.
도 1은 본 발명의 일 실시예에 따른 산업단지 마이크로그리드 내 중소업체의 RE100 참여를 위한 가상발전소 운영 시스템을 나타내는 도면이다.
도 1을 참조하면, 가상발전소 운영 시스템(1000)은 가상발전소 운영 서버(100), RE100 관리 서버(200), 적어도 하나의 신재생 발전자원(300) 및 RE100 참여 기업(400)을 포함할 수 있다.
가상발전소 운영 서버(100)는 산업단지 내에 구축한 신재생 발전자원(300)의 관리와 신재생 발전자원(300)의 발전량을 모니터링하고, RE100 참여 기업(400)의 RE100 인증서 확보에 대한 경제적 부담을 줄여주는 비용절감 프로그램을 제공할 수 있다. 일 실시예에서, 비용절감 프로그램은 공장 및 빌딩 내 에너지 절약 프로그램, 공장 전력 설비 이상 감지 프로그램 및 수요반응 실시 프로그램 중 적어도 하나를 포함할 수 있다.
RE100 관리 서버(200)는 RE100 참여 기업(400)이 RE100 인증서를 확보하기 위한 방식을 지원하고, RE100 참여 기업(400)의 RE100 달성을 위한 RE100 포트폴리오를 추천할 수 있다. 즉, RE100 관리 서버(200)는 RE100 달성을 위해 RE100에 참여하는 기업(400)에게 자가 발전 방식, 전력 거래 방식 및 프리미엄 요금 납부 방식 중 적어도 하나를 추천하고, 각 방식을 통한 RE100 인증서 확보를 지원할 수 있다.
여기서, 적어도 하나의 신재생 발전자원(300)은 신재생 에너지를 생성하거나 신재생 에너지를 이용하여 산업단지 내의 빌딩 및/또는 공장에 전력을 공급할 수 있는 모든 발전자원을 포함할 수 있다.
일 실시예에서, 신재생 발전자원(300)은 태양광 발전 시스템(PV), 연료전지 에너지저장시스템(Energy Storage System, 이하 ESS), 전기자동차(EV) 충전소 및 중 적어도 하나를 포함할 수 있다.
태양광(PV)(300_1)은 태양광 발전 시스템을 이용하여 생성되는 전기를 산업단지 내의 빌딩 및/또는 공장으로 공급할 수 있으며, 이에 한정되는 것이 아니라 ESS 또는 EV 충전소로 전력을 공급할 수 있다.
연료전지(300_2)는 수소와 산소를 반응시켜 화학적 에너지를 직접 전기에너지로 변환시켜 얻은 전력을 빌딩 및/또는 공장으로 공급할 수 있으며, 이에 한정되는 것이 아니라 ESS 또는 EV 충전소로 전력을 공급할 수 있다.
ESS(300_3)는 태양광(PV) 또는 연료전지에서 생성되는 전력으로 충전되고, 상기 충전된 전력을 방전하여 빌딩 및/또는 공장에 공급할 수 있다. ESS(300_3)는 전력 부하가 낮은 시간대에 전기를 충전해두고, 반대로 전력 부하가 높은 시간대에는 충전된 전기를 활용해 최대 사용 전력량을 감소시켜줄 수 있다.
EV 충전소(300_4)는 운송수단에 전력을 공급하거나 운송수단의 배터리를 방전시켜 전력을 공급받을 수 있다. 즉, EV 충전소(200)는 적어도 하나의 운송수단과 양방향으로 충방전할 수 있는 장치(양방향 충전기, Bi-directional On Board Charger)가 구비될 수 있다. 여기서, 운송수단은 전기자동차, 전기오토바이, 전기자전거 또는 드론 등 내장된 배터리의 전력을 이용하여 구동되는 운송수단일 수 있으나 이에 한정되는 것은 아니고, 본 실시예에서 운송수단은 배터리가 내장된 전기자동차일 수 있다.
다시 말해, 본 실시예에 의한 신재생 발전자원(300)은 기존의 화석연료를 변환시켜 이용하는 신에너지원(연료전지, 수소에너지 등)과 재생가능한 에너지를 변환시켜 이용하는 재생에너지원(태양광, 태양열, 바이오, 풍력, 수력 등)을 포함하는 신재생 에너지원뿐만 아니라, 배터리의 여유전력을 이용하여 빌딩/공장에 전력을 공급해주는 전기자동차(EV), 전력 부하가 낮은 시간대에 전기를 충전해두고, 반대로 전력 부하가 높은 시간대에는 충전된 전기를 활용해 최대 사용 전력량을 감소시켜주는 ESS를 포함할 수 있다.
RE100 참여 기업(400)은 산업단지 마이크로그리드 내에 입주하고 있으며, RE100에 참여하는 기업일 수 있다. RE100 참여 기업(400)은 산업단지 내에 적어도 하나의 빌딩 및/또는 공장을 소유하고 있을 수 있다. RE100 참여 기업(400)은 자신의 단말기 등을 통해 가상발전소 운영 서버(100) 및 RE100 관리 서버(200) 등과 데이터를 주고받을 수 있다.
도 2는 본 발명의 일 실시예에 따른 산업단지 마이크로그리드 내 중소업체의 RE100 참여를 위한 가상발전소 운영 서버를 나타내는 도면이다.
도 2를 참조하면, 가상발전소 운영 서버(100)는 신재생 발전자원 관리부(110), 발전량 모니터링부(120), 전력소비량 측정부(130), 에너지 절약부(140), 공장 설비 이상 감지부(150) 및 수요반응 실시부(160)를 포함할 수 있다. 일 실시예에 따라, 가상발전소 운영 서버(100)는 발전량 예측부 및 발전소 유지보수부를 더 포함할 수 있다. 또한, 가상발전소 운영 서버(100)는 ESS 충방전 제어부 및 EV 충방전 제어부 중 적어도 하나를 더 포함할 수 있다.
신재생 발전자원 관리부(110)는 산업단지 내에 신재생 발전자원(300)을 구축하고 관리할 수 있다. 신재생 발전자원 관리부(110)는 신재생 발전자원(300)의 구축 계획을 수립하고, RE100 참여 기업(400)으로부터 투자를 받아 산업단지 내에 신재생 발전자원(300)을 구축하고 관리할 수 있다.
일 실시예에서, 신재생 발전자원 관리부(110)는 RE100 참여 기업(400)의 발전량 배분을 위해 각 신재생 발전자원(300)의 투자율에 따른 발전량 배분률을 저장할 수 있다.
일 실시예에서, 신재생 발전자원은 태양광(PV), 에너지저장시스템(Energy Storage System, 이하 ESS), 전기자동차(EV) 충전소, 연료전지 중 적어도 하나를 포함할 수 있다. 신재생 발전자원은 이에 한정하는 것이 아니라, 신재생 에너지를 이용하여 산업단지 내의 빌딩/공장에 전력을 공급할 수 있는 모든 발전자원을 포함할 수 있다.
발전량 모니터링부(120)는 신재생 발전소의 발전량을 모니터링할 수 있다. 여기서, 신재생 발전소는 신재생 에너지를 생성하는 태양광(PV) 또는 연료전지를 포함할 수 있다.
발전량 모니터링부(120)는 생성된 신재생 에너지를 산업단지 내의 빌딩/공장, ESS 또는 EV 충전소에 공급할 수 있다. 일 실시예에서, 발전량 모니터링부(110)는 RE100 참여 기업(400)의 신재생 발전자원(300) 투자율에 따라 RE100 참여 기업(400)의 빌딩 및/또는 공장에 발전량을 배분할 수 있다.
또한, 발전량 예측부(미도시)는 신재생 발전소의 발전량을 예측할 수 있다. 태양광 발전소를 예로 들어 설명하면, 발전량 예측부는 태양광 발전 시스템의 특성과 기상청으로부터 제공되는 기상 데이터를 참고하여 당일 시간대별 태양광 발전량을 예측할 수 있다.
이를 위해, 발전량 예측부는 과거 기상정보와 과거 발전량 간의 연계관계를 분석/보유할 수 있으며, 이를 참고로 당일 기상 데이터에 기반하여 당일 시간대별 태양광 발전량을 예측할 수 있다.
또한, 발전소 유지보수부(미도시)는 발전량 모니터링부(120)가 측정한 발전량과 발전량 예측부(130)가 예측한 발전량을 통해 이상을 감지하여 신재생 발전소를 유지 보수할 수 있다. 예를 들어, 발전소 유지보수부는 신재생 발전소가 태양광 발전소일 경우, 이상을 감지한 PV 패널 불량 교체, 청소, 설비 고장 수리를 할 수 있다. 이를 통해, 신재생 발전자원(300)의 발전 효율을 증대시키는 효과를 기대할 수 있다.
전력소비량 측정부(130)는 산업단지 내의 공장 또는 빌딩의 실제 전력 소비량을 모니터링할 수 있다. 또한, 전력소비량 측정부(130)는 산업단지 내의 공장 또는 빌딩의 일정 기간의 전력 수요량을 예측할 수 있다.
ESS 충방전 제어부(미도시)는 에너지저장시스템(이하, ESS)의 충방전을 제어할 수 있다. ESS는 신재생 에너지원(PV, 연료전지 등)에 의해 생성된 전기 에너지를 저장하고, 빌딩/공장에 전력을 공급할 수 있다.
EV 충방전 제어부(미도시)는 전기자동차(EV) 충전소의 충방전을 제어할 수 있다. EV 충방전 제어부는 V2G 자원으로서 일차적으로 운행을 마치고 전기자동차(EV) 충전소에 주차 중인 전기자동차(EV)의 배터리 여유전력을 이용하여 빌딩/공장에 전력을 공급할 수 있다.
에너지 절약부(140)는 공장 및/또는 빌딩 내의 전력소비량을 억제하도록 제어할 수 있다. 에너지 절약부(140)는 공장/빌딩 내의 스마트 기기의 설치, 전자기기의 제어 등을 통해 전력소비량을 억제하도록 제어할 수 있다. 예를 들면, 에너지 절약부(150)는 스마트 조명, 냉난방 공조기 제어를 통해 공장/빌딩 내 에너지를 절약할 수 있다.
공장 설비 이상 감지부(150)는 공장 내의 전력을 과소비하는 문제 설비의 이상을 감지할 수 있다. 공장 설비 이상 감지부(150)는 공장의 전력 설비에 센서를 부착하거나 빅데이터 분석을 통해 전력을 과소비하는 문제 설비를 발견하고 조치를 취할 수 있다. 이로써, 공장 전력 설비의 소비 효율화를 기대할 수 있는 효과가 있다.
수요반응 실시부(160)는 산업단지 내 수요 반응을 실시할 수 있다. 수요반응 실시부(160)는 전량 측정부(120)가 측정한 발전량으로 전력소비량 측정부(130)가 측정한 전력 소비량을 충족시키지 못할 경우, 산업단지 내 빌딩/공장에 수요 반응을 요청할 수 있다. 수요반응 실시부(160)는 수요 반응에 참여한 빌딩/공장에 해당하는 RE100 참여 기업(400)에게 인센티브를 지급할 수 있다.
도 3은 본 발명의 일 실시예에 따른 산업단지 마이크로그리드 내 중소업체의 RE100 참여를 위한 RE100 관리 서버를 나타내는 도면이다.
도 3을 참조하면, RE100 관리 서버(200)는 참여 기업 관리부(210), 자가 발전 방식 지원부(220), 전력 거래 방식 지원부(230), 프리미엄 요금 납부 시뮬레이션부(240), 포트폴리오 추천부(250) 및 비용절감 프로그램 제공부(260)를 포함할 수 있다.
참여 기업 관리부(210)는 RE100에 참여하는 기업(400)의 정보를 관리할 수 있다. 참여 기업 관리부(210)는 산업단지 내에 분포되어 있는 기업으로부터 RE100 참여 신청을 받을 수 있다. RE100 참여 기업(400)은 산업단지 내에 적어도 하나의 빌딩 및/또는 공장을 소유하고 있을 수 있다.
자가 발전 방식 지원부(220)는 신재생 발전자원(300)의 지분 투자를 포함하는 자가 발전 방식을 통해 상기 RE100 인증서 확보를 지원할 수 있다.
자가 발전 방식 지원부(220)는 자가 발전 방식으로 RE100 참여 기업(400)으로부터 자가 발전 방식을 위한 신재생 발전자원(300)의 지분을 투자받을 수 있다. 자가 발전 방식 지원부(220)는 RE100 참여 기업(400)으로부터 투자받은 지분을 가상발전소 관리 서버(100)에 전송할 수 있다.
이 때, 가상발전소 관리 서버(100)는 신재생 발전자원(300)을 산업단지 내에 구축 및 증설할 수 있다. 가상발전소 관리 서버(100)는 구축한 신재생 발전자원(300)의 발전량을 모니터링할 수 있다. 또한, 가상발전소 관리 서버(100)는 발전량의 투자율에 따른 발전량 배분을 통해 RE100 참여 기업(400)이 RE100 인증서를 확보하도록 지원할 수 있다.
일 실시예에서, 가상발전소 관리 서버(100)는 신재생 발전소의 발전량을 예측할 수 있고, 모니터링한 발전량과 예측된 발전량을 통해 이상을 감지하여 상기 신재생 발전소를 유지 보수할 수 있다.
전력 거래 방식 지원부(230)는 신재생 발전자원(300)과의 전력 거래 방식을 통해 RE100 인증서 확보를 지원할 수 있다. 이 때, 전력 거래 방식은 발전사업자와 계약을 체결하여 일정기간 계약가로 재생에너지 전력을 구매하는 방식을 의미할 수 있다.
전력 거래 방식 지원부(230)는 RE100에 참여하는 기업(400)으로부터 전력 거래 방식을 통해 확보하려는 신재생 발전량을 입력받을 수 있다. 또한, 전력 거래 방식 지원부(230)는 전력 거래 규칙에 따라 신재생 발전자원(300)과 RE100 참여 기업(400)간의 전력 거래를 계약을 체결할 수 있다. 일 실시예에서, 전력 거래 규칙은 계약기간, 전력량, 전력요금을 포함할 수 있으며, RE100 참여 기업(400)은 신재생 발전자원(300)과 계약기간, 전력량, 전력요금에 따라 전력 거래를 실시할 수 있다. 이에 따라, RE100 참여 기업(400)은 거래 발전량에 따라 RE100 인증서를 확보할 수 있다.
프리미엄 요금 납부 시뮬레이션부(240)는 프리미엄 요금 납부 방식을 통해 RE100 인증서 확보를 위한 프리미엄 요금제 시뮬레이션을 제공할 수 있다. 프리미엄 요금제 납부 방식은 한국전력공사와 같은 판매사업자가 재생에너지원에 대한 인증서 가격에 준하는 프리미엄을 붙여 별도의 요금제를 구성하고 이 요금제에 가입하는 전력소비기업에게 재생에너지 조달을 인정해주는 방식이다.
예를 들어 전기요금이 1kWh 당 100원이고 인증서 가격이 1kWh당 20원이라면 프리미엄 요금제에 가입한 고객들은 kWh 당 120원을 내고 재생에너지 조달을 인정받게 될 수 있다.
프리미엄 요금 납부 시뮬레이션부(240)는 RE100 참여 기업(400)으로부터 프리미엄 요금 납부를 통해 확보하려는 신재생 발전량 및 기간을 설정받을 수 있다. 프리미엄 요금 납부 시뮬레이션부(240)는 프리미엄 요금제 기준으로 확보하려는 신재생 발전량 확보에 필요한 비용을 시뮬레이션하여 RE100 참여 기업(400)에 제공할 수 있다.
포트폴리오 추천부(250)는 RE100 달성을 위해 RE100에 참여하는 기업(400)에게 자가 발전 방식, 전력 거래 방식 및 프리미엄 요금 납부 방식 중 적어도 하나를 추천할 수 있다.
포트폴리오 추천부(250)는 RE100 참여 기업(400)으로부터 RE100의 달성 목표 년도, 최근 3년간의 소비전력 데이터, 지불 가능 비용을 입력받아 RE100 참여 기업(400)에게 수행 가능한 방식을 추천할 수 있다. 포트폴리오 추천부(250)는 자가 발전 방식, 전력 거래 방식 및 프리미엄 요금 납부 방식을 조합한 RE100 인증서 확보 방법을 RE100 참여 기업(400)에게 제공할 수 있다.
일 실시예에서, 포트폴리오 추천부(250)는 달성 목표 년도 대비 지불 가능 비용이 부족할 경우, 달성 목표 년도 및 지불 가능 비용에 대해 경제적으로 저렴한 방식을 추천할 수 있다.
또한, 포트폴리오 추천부(250)는 비용절감 프로그램 참여 시 예상되는 절감액을 시뮬레이션하여 제공할 수 있다.
비용절감 프로그램 제공부(260)는 RE100 인증서 확보에 필요한 비용의 절감을 위한 비용절감 프로그램을 제공할 수 있다. 비용절감 프로그램 제공부(260)는 RE100 참여 기업(400)의 비용절감 프로그램 제공을 위해 RE100 참여 기업(400) 리스트를 가상발전소 운영 서버(100)에 전송할 수 있다.
일 실시예에서, 비용절감 프로그램은 공장 및 빌딩 내 에너지 절약 프로그램, 공장 전력 설비 이상 감지 프로그램 및 수요반응 실시 프로그램 중 적어도 하나를 포함할 수 있다. 비용절감 프로그램은 가상발전소 운영 서버(100)의 에너지 절약부(140), 공장 설비 이상 감지부(150), 수요반응 실시부(160) 중 적어도 하나에서 실시될 수 있다. 비용절감 프로그램은 도 4에서 구체적으로 설명하도록 한다.
도 4는 본 발명의 일 실시예에 따른 RE100 확보 비용 절감을 위한 비용절감 프로그램을 나타내는 도면이다.
도 4를 참조하면, 비용절감 프로그램은 공장/빌딩 내 에너지 절약 프로그램(261), 공장 설비 이상 감지 프로그램(263), 수요반응 프로그램 참여 프로그램(265)를 포함할 수 있다.
공장/빌딩 내 에너지 절약 프로그램(261)은 공장/빌딩 내의 스마트 기기의 설치, 전자기기의 제어 등을 통해 전력소비량을 억제하도록 제어함으로써 RE100 확보를 위한 비용절감을 도모하는 프로그램이다. 예를 들면, 가상발전소 운영 서버(100)의 에너지 절약부(150)는 스마트 조명, 냉난방 공조기 제어를 통해 공장/빌딩 내 에너지를 절약할 수 있다.
공장 설비 이상 감지 프로그램(263)은 공장 전력 설비의 이상을 감지하고 교체함으로써 RE100 확보를 위한 비용절감을 도모하는 프로그램이다. 즉, 가상발전소 운영 서버(100)의 공장 설비 이상 감지부(150)는 공장의 전력 설비에 센서를 부착하거나 빅데이터 분석을 통해 전력을 과소비하는 문제 설비를 발견하고 조치를 취할 수 있다. 이로써, 공장 설비 이상 감지 프로그램(263)은 공장 전력 설비의 소비 효율화를 기대할 수 있는 효과가 있다.
수요반응 프로그램 참여 프로그램(265)은 산업단지 내 수요 반응에 참여하는 기업에게 인센티브를 제공함으로써 RE100 확보를 위한 비용절감을 도모하는 프로그램이다. 수요반응 프로그램 참여 프로그램(265)은 가상발전소 운영 서버(100)의 수요반응 실시부(170)에 의해 수행될 수 있으며, 수요반응에 참여한 기업에게 인센티브를 제공할 수 있다.
즉, RE100 참여 기업(400)이 감축할 전력량과 가격에 대해 감축이행계약을 수립하여 부하감축을 시행하는 것으로, 계약기간 중 전력량 감축지시를 받은 기업은 전기소비를 줄여 전력량 감축을 이행함으로써 그 만큼의 인센티브를 지급받을 수 있다.
도 5는 본 발명의 일 실시예에 따른 산업단지 마이크로그리드 내 중소업체의 RE100 참여를 위한 가상발전소 운영 방법을 나타내는 흐름도이다.
도 5를 참조하면, RE100 참여 기업 관리 단계(S510)에서, RE100 관리 서버(200)는 RE100에 참여하는 기업(400)의 정보를 관리할 수 있다. 즉, RE100 관리 서버(200)는 산업단지 내 입주하고 있는 기업으로부터 RE100 참여 신청을 받아 RE100 참여 기업(400)의 정보를 관리할 수 있다.
자가 발전 방식 지원 단계(S520)에서, RE100 관리 서버(200)는 신재생 발전자원의 지분 투자를 포함하는 자가 발전 방식을 통해 상기 RE100 인증서 확보를 지원할 수 있다. 자가 발전 방식을 통해 RE100 인증서 확보를 지원하는 방법은 도 6에서 구체적으로 설명하도록 한다.
전력 거래 방식 지원 단계(S530)에서, RE100 관리 서버(200)는 신재생 발전자원과의 전력 거래 방식을 통해 상기 RE100 인증서 확보를 지원할 수 있다. 전력 거래 방식을 통해 RE100 인증서 확보를 지원하는 방법은 도 7에서 구체적으로 설명하도록 한다.
프리미엄 요금 납부 지원 단계(S540)에서, RE100 관리 서버(200)는 프리미엄 요금 납부 방식을 통해 상기 RE100 인증서 확보를 위한 프리미엄 요금제 시뮬레이션을 제공할 수 있다. 프리미엄 요금 납부 방식을 통해 RE100 인증서 확보를 지원하는 방법은 도 8에서 구체적으로 설명하도록 한다.
포트폴리오 추천 단계(S550)에서, RE100 관리 서버(200)는 RE100 달성을 위해 RE100 참여 기업(400)에게 자가 발전 방식, 전력 거래 방식 및 프리미엄 요금 납부 방식 중 적어도 하나를 추천할 수 있다. RE100 관리 서버(200)가 RE100 참여 기업(400)에게 포트폴리오를 추천하는 방법은 도 9에서 구체적으로 설명하도록 한다.
비용 절감 단계(S560)에서, RE100 관리 서버(200)는 RE100 인증서 확보에 필요한 비용의 절감을 위한 비용절감 프로그램을 제공할 수 있다. 일 실시예에서, 비용절감 프로그램은, 공장 및 빌딩 내 에너지 절약 프로그램, 공장 전력 설비 이상 감지 프로그램 및 수요반응 실시 프로그램 중 적어도 하나를 포함할 수 있다.
도 6은 본 발명의 일 실시예에 따른 자가 발전 방식의 RE100 확보 지원 방법을 나타내는 흐름도이다.
RE100 관리 서버(200)는 가상발전소 관리 서버(100)와 통신하여 자가 발전 방식을 통한 RE100 확보 지원 프로세스를 수행할 수 있다.
도 6을 참조하면, RE100 관리 서버(200)는 RE100 참여 기업(400)으로부터 자가 발전 방식을 위한 신재생 발전자원(300)의 지분을 투자받을 수 있다(S610). RE100 관리 서버(200)는 가상발전소 관리 서버(100)로부터 수신한 신재생 발전자원 구축 계획에 따른 지분 투자 기업을 모집할 수 있다.
이 때, RE100 참여 기업(400)은 원하는 신재생 발전자원(300)에 단독투자하여 해당 신재생 발전자원(300)으로부터 발전량을 공급받을 수 있고, 공동투자를 통해 발전량을 배분받을 수 있다.
다음으로, 신재생 발전자원(300)을 산업단지 내에 구축 및 증설할 수 있다(S620). 가상발전소 관리 서버(100)는 산업단지 내에 구축 및 증설된 신재생 발전자원(300)을 관리할 수 있다. 일 실시예에서, 신재생 발전자원(400)은 태양광(PV), 에너지저장시스템(Energy Storage System, ESS), 전기자동차(EV) 충전소, 연료전지 중 적어도 하나를 포함할 수 있다.
가상발전소 관리 서버(100)는 신재생 발전소의 발전량을 모니터링할 수 있다(S630).
일 실시예에서, 가상발전소 관리 서버(100)는 신재생 발전소의 발전량을 예측할 수 있다(S640). 또한, 가상발전소 관리 서버(100)는 모니터링한 발전량과 예측된 발전량을 통해 이상을 감지하여 상기 신재생 발전소를 유지 보수할 수 있다(S650).
또한, 가상발전소 관리 서버(100)는 RE100 참여 기업(400)의 신재생 발전자원(300) 투자율에 따른 발전량 배분을 통해 RE100 참여 기업(400)이 RE100 인증서를 확보하도록 지원할 수 있다(S660).
도 7은 본 발명의 일 실시예에 따른 전력 거래 방식의 RE100 확보 지원 방법을 나타내는 흐름도이다.
도 7을 참조하면, RE100 관리 서버(200)는 RE100 참여 기업(400)으로부터 전력 거래 방식을 통해 확보하려는 신재생 발전량을 입력받을 수 있다(S710). 이 때, 전력 거래 방식은 발전사업자와 계약을 체결하여 일정기간 계약가로 재생에너지 전력을 구매하는 방식을 의미할 수 있다.
RE100 관리 서버(200)는 전력 거래 규칙에 따라 신재생 발전자원(300)과 RE100 참여 기업(400)간의 전력 거래를 계약을 체결할 수 있다(S720). 이 때, 전력 거래 규칙은 계약기간, 전력량, 전력요금을 포함할 수 있으며, RE100 참여 기업(400)은 신재생 발전자원(300)과 계약기간, 전력량, 전력요금에 따라 전력 거래를 실시할 수 있다.
RE100 참여 기업(400)은 계약한 신재생 발전자원(300)과의 거래 발전량에 따라 RE100 인증서를 확보할 수 있다(S730).
도 8은 본 발명의 일 실시예에 따른 프리미엄 요금 납부 방식의 RE100 확보 지원 방법을 나타내는 흐름도이다.
RE100 관리 서버(200)는 RE100 참여 기업(400)으로부터 프리미엄 요금 납부를 통해 확보하려는 신재생 발전량 및 기간을 설정받을 수 있다(S810). 예를 들어, RE100 관리 서버(200)는 RE100 참여 기업(400)으로부터 희망 발전량 1000kWh, 희망 기간 1년을 설정받을 수 있다.
RE100 관리 서버(200)는 프리미엄 요금제 기준으로 확보하려는 신재생 발전량 확보에 필요한 비용을 시뮬레이션할 수 있다(S820). 예를 들어, 프리미엄 요금이 1kWh당 120원일 경우, RE100 참여 기업(400)은 희망 발전량 1000kWh, 희망 기간 1년에 따라 120,000원을 지불해야할 수 있다.
이로써, RE100 참여 기업(400)은 프리미엄 요금제 납부로 RE100 인증서를 확보할 수 있다(S850).
도 9는 본 발명의 일 실시예에 따른 RE100 포트폴리오 추천 방법을 나타내는 흐름도이다.
도 9를 참조하면, RE100 관리 서버(200)는 RE100 참여 기업(400)으로부터 RE100의 달성 목표 년도, 최근 3년간의 소비전력 데이터, 지불 가능 비용을 입력받을 수 있다(S910).
또한, RE100 관리 서버(200)는 달성 목표 년도까지 소비 전력량을 예측하여 지불 가능 비용으로 수행 가능한 방식 및 달성 기간을 도출하여, 자가 발전 방식, 전력 거래 방식 및 프리미엄 요금 납부 방식 중 적어도 하나를 추천할 수 있다(S920).
예를 들어, 2019년을 현재 기준으로 할 때, RE100 관리 서버(200)는 RE100 참여 기업(400)으로부터 달성 목표 년도가 2030년, 최근 3년간의 소비전력 데이터가 총 3000kWh, 지불 가능 비용이 1000만원을 입력받을 수 있다.
이 때, RE100 관리 서버(200)는 각 방식을 계산 결과, 자가 발전 방식은 예상 소요 비용 700만원, 예상 달성 기간 15년이고, 전력 거래 방식은 예상 소요 비용 900만원, 예상 달성 기간 10년이고, 프리미엄 요금 납부 방식은 예산 소요 비용 1000만원, 예상 달성 기간 3년이라는 결과가 나왔으면, RE100 관리 서버(200)는 상기 RE100 참여 기업(400)에게 전력 거래 방식 및 프리미엄 요금 납부 방식을 추천할 수 있다. 또한, RE100 관리 서버(200)는 자가 발전 방식, 전력 거래 방식, 및 프리미엄 요금 납부 방식의 예상 소요 비용 및 예상 달성 기간을 고려하여 이들을 조합할 수 있고, 예상 소요 비용 및 예상 달성 기간이 가장 최소화되는 포트폴리오를 추출하여 RE100 참여 기업(400)에게 제공할 수 있다.
일 실시예에서, RE100 관리 서버(200)는 달성 목표 년도 대비 지불 가능 비용이 부족할 경우, 달성 목표 년도 및 지불 가능 비용에 대해 경제적으로 저렴한 방식을 추천할 수 있다.
또한, RE100 관리 서버(200)는 비용절감 프로그램 참여 시 예상되는 절감액을 시뮬레이션하여 제공할 수 있다(S930). 일 실시예에서, 비용절감 프로그램은 공장 및 빌딩 내 에너지 절약 프로그램, 공장 전력 설비 이상 감지 프로그램 및 수요반응 실시 프로그램 중 적어도 하나를 포함할 수 있다.
RE100 참여 기업(400)은 RE100 관리 서버(200)로부터 추천받은 방식을 참고하여 RE100 달성을 위한 포트폴리오를 구성할 수 있다.
지금까지 본 발명에 대하여 도면에 도시된 바람직한 실시예들을 중심으로 상세히 살펴보았다. 이러한 실시예들은 이 발명을 한정하려는 것이 아니라 예시적인 것에 불과하며, 한정적인 관점이 아니라 설명적인 관점에서 고려되어야 한다. 본 발명의 진정한 기술적 보호범위는 전술한 설명이 아니라 첨부된 특허청구범위의 기술적 사상에 의해서 정해져야 할 것이다. 비록 본 명세서에 특정한 용어들이 사용되었으나 이는 단지 본 발명의 개념을 설명하기 위한 목적에서 사용된 것이지 의미한정이나 특허청구범위에 기재된 본 발명의 범위를 제한하기 위하여 사용된 것은 아니다. 본 발명의 각 단계는 반드시 기재된 순서대로 수행되어야 할 필요는 없고, 병렬적, 선택적 또는 개별적으로 수행될 수 있다. 본 발명이 속하는 기술 분야에서 통상의 지식을 가진 자는 특허청구범위에서 청구하는 본 발명의 본질적인 기술사상에서 벗어나지 않는 범위에서 다양한 변형 형태 및 균등한 타 실시예가 가능하다는 점을 이해할 것이다. 균등물은 현재 공지된 균등물뿐만 아니라 장래에 개발될 균등물 즉 구조와 무관하게 동일한 기능을 수행하도록 발명된 모든 구성요소를 포함하는 것으로 이해되어야 한다.

Claims (14)

  1. 산업단지 마이크로그리드 내 중소업체의 RE100 참여를 위한 RE100 관리 서버에 있어서,
    상기 RE100에 참여하는 기업의 정보를 관리하는 참여 기업 관리부;
    신재생 발전자원의 지분 투자를 포함하는 자가 발전 방식을 통해 상기 RE100 인증서 확보를 지원하는 자가 발전 방식 지원부;
    상기 신재생 발전자원과의 전력 거래 방식을 통해 상기 RE100 인증서 확보를 지원하는 전력 거래 방식 지원부;
    프리미엄 요금 납부 방식을 통해 상기 RE100 인증서 확보를 위한 프리미엄 요금제 시뮬레이션을 제공하는 프리미엄 요금 납부 시뮬레이션부;
    상기 RE100 달성을 위해 상기 RE100에 참여하는 기업에게 상기 자가 발전 방식, 상기 전력 거래 방식 및 상기 프리미엄 요금 납부 방식 중 적어도 하나를 추천하는 포트폴리오 추천부; 및
    상기 RE100 인증서 확보에 필요한 비용 절감을 위한 비용절감 프로그램을 제공하는 비용절감 프로그램 제공부를 포함하는 RE100 관리 서버.
  2. 제1항에 있어서,
    상기 비용절감 프로그램은,
    공장 및 빌딩 내 에너지 절약 프로그램, 공장 전력 설비 이상 감지 프로그램 및 수요반응 실시 프로그램 중 적어도 하나를 포함하는 것을 특징으로 하는 RE100 관리 서버.
  3. 산업단지 마이크로그리드 내 중소업체의 RE100 참여를 위한 가상발전소 운영 서버에 있어서,
    상기 산업단지 내에 신재생 발전자원을 구축하고 관리하는 신재생 발전자원 관리부;
    신재생 발전소의 발전량을 모니터링하는 발전량 측정부;
    공장 또는 빌딩의 전력소비량을 측정하는 전력소비량 측정부;
    상기 공장 또는 빌딩 내의 전력소비량을 억제하도록 제어하는 에너지 절약부;
    상기 공장의 전력소비량에 따라 전력을 과소비하는 문제 설비의 이상을 감지하는 공장 설비 이상 감지부; 및
    상기 산업단지 내 수요반응을 실시하는 수요반응 실시부를 포함하는 가상발전소 운영 서버.
  4. 제3항에 있어서,
    상기 신재생 발전자원은,
    태양광(PV), 에너지저장시스템(Energy Storage System, ESS), 전기자동차(EV) 충전소, 연료전지 중 적어도 하나를 포함하는 것을 특징으로 하는 가상발전소 운영 서버.
  5. 제4항에 있어서,
    상기 에너지저장시스템(ESS)의 충방전을 제어하는 ESS 충방전 제어부; 및
    상기 전기자동차 충전소의 충방전을 제어하는 EV 충방전 제어부 중 적어도 하나를 더 포함하는 것을 특징으로 하는 가상발전소 운영 서버.
  6. 제2항에 있어서,
    상기 신재생 발전소의 발전량을 예측하는 발전량 예측부; 및
    상기 모니터링한 발전량과 상기 예측된 발전량을 통해 이상을 감지하여 상기 신재생 발전소를 유지 보수하는 발전소 유지보수부를 더 포함하는 것을 특징으로 하는 가상발전소 운영 서버.
  7. 산업단지 마이크로그리드 내 중소업체의 RE100 참여를 위한 가상발전소 운영 시스템에 있어서,
    신재생 에너지를 생성하거나 신재생 에너지를 이용하여 상기 산업단지 내의 빌딩 또는 공장에 전력을 공급하는 적어도 하나의 신재생 발전자원;
    상기 산업단지 내에 적어도 하나의 빌딩 및/또는 공장을 소유하고 있으며, 상기 RE100에 참여하는 RE100 참여 기업;
    상기 산업단지 내에 상기 신재생 발전자원을 구축하고 관리하고, 상기 신재생 발전소의 발전량을 모니터링하고, 공장 또는 빌딩의 전력소비량을 측정하고, 상기 공장 또는 빌딩 내의 전력소비량을 억제하도록 제어하고, 상기 공장의 전력소비량에 따라 전력을 과소비하는 문제 설비의 이상을 감지하고, 상기 산업단내 내 수요반응을 실시하는 가상발전소 운영 서버; 및
    상기 RE100 참여 기업의 정보를 관리하고, 신재생 발전자원의 지분 투자를 포함하는 자가 발전 방식을 통해 상기 RE100 인증서 확보를 지원하고, 상기 신재생 발전자원과의 전력 거래 방식을 통해 상기 RE100 인증서 확보를 지원하고, 프리미엄 요금 납부 방식을 통해 상기 RE100 인증서 확보를 위한 프리미엄 요금제 시뮬레이션을 제공하고, 상기 RE100 달성을 위해 상기 RE100 참여 기업에게 상기 자가 발전 방식, 상기 전력 거래 방식 및 상기 프리미엄 요금 납부 방식 중 적어도 하나를 추천하고, 상기 RE100 인증서 확보에 필요한 비용 절감을 위한 비용절감 프로그램을 제공하는 RE100 관리 서버를 포함하는 가상발전소 운영 시스템.
  8. 가상발전소 운영 시스템에 의해 동작하는 산업단지 마이크로그리드 내 중소업체의 RE100 참여를 위한 가상발전소 운영 방법에 있어서,
    상기 RE100에 참여하는 기업의 정보를 관리하는 단계;
    신재생 발전자원의 지분 투자를 포함하는 자가 발전 방식을 통해 상기 RE100 인증서 확보를 지원하는 자가 발전 방식 지원 단계;
    상기 신재생 발전자원과의 전력 거래 방식을 통해 상기 RE100 인증서 확보를 지원하는 전력 거래 방식 지원 단계;
    프리미엄 요금 납부 방식을 통해 상기 RE100 인증서 확보를 위한 프리미엄 요금제 시뮬레이션을 제공하는 프리미엄 요금 납부 지원 단계;
    상기 RE100 달성을 위해 상기 RE100 참여 기업에게 상기 자가 발전 방식, 상기 전력 거래 방식 및 상기 프리미엄 요금 납부 방식 중 적어도 하나를 추천하는 포트폴리오 추천 단계; 및
    상기 RE100 인증서 확보에 필요한 비용 절감을 위한 비용절감 프로그램을 제공하는 단계를 포함하는 가상발전소 운영 방법.
  9. 제8항에 있어서,
    상기 전력 거래 방식 지원 단계는,
    상기 RE100 참여 기업으로부터 거래를 통해 확보하려는 신재생 발전량을 입력받는 단계;
    전력 거래 규칙에 따라 상기 신재생 발전자원과 상기 RE100 참여 기업간의 전력 거래를 계약을 체결하는 단계; 및
    상기 RE100 참여 기업이 상기 계약한 신재생 발전자원과의 거래 발전량에 따라 RE100 인증서를 확보하는 단계를 포함하는 가상발전소 운영 방법.
  10. 제8항에 있어서,
    상기 프리미엄 요금 납부 지원 단계는,
    상기 RE100 참여 기업으로부터 프리미엄 요금 납부를 통해 확보하려는 신재생 발전량 및 기간을 설정받는 단계;
    상기 프리미엄 요금제 기준으로 상기 확보하려는 신재생 발전량 확보에 필요한 비용을 시뮬레이션하는 단계; 및
    상기 RE100 참여 기업이 상기 프리미엄 요금제 납부로 RE100 인증서를 확보하는 단계를 포함하는 가상발전소 운영 방법.
  11. 제8항에 있어서,
    상기 자가 발전 지원 단계는,
    상기 RE100 참여 기업으로부터 자가 발전 방식을 위한 신재생 발전자원의 지분을 투자받는 단계;
    상기 신재생 발전자원을 산업단지 내에 구축 및 증설하는 단계;
    신재생 발전소의 발전량을 모니터링하는 단계; 및
    상기 RE100 참여 기업이 상기 RE100 참여 기업의 상기 신재생 발전자원 투자율에 따른 발전량 배분을 통해 RE100 인증서를 확보하는 단계를 포함하는 가상발전소 운영 방법.
  12. 제8항에 있어서,
    상기 자가 발전 방식 단계는,
    상기 신재생 발전소의 발전량을 예측하는 단계; 및
    상기 모니터링한 발전량과 상기 예측된 발전량을 통해 이상을 감지하여 상기 신재생 발전소를 유지 보수하는 단계를 더 포함하는 것을 특징으로 하는 가상발전소 운영 방법.
  13. 제8항에 있어서,
    상기 포트폴리오 추천 단계는,
    상기 RE100 참여 기업으로부터 상기 RE100의 달성 목표 년도, 최근 3년간의 소비전력 데이터, 지불 가능 비용을 입력받는 단계;
    상기 달성 목표 년도까지 소비 전력량을 예측하여 상기 지불 가능 비용으로 가능한 방식 및 달성 기간을 도출하여, 자가 발전 방식, 전력 거래 방식 및 프리미엄 요금 납부 방식 중 적어도 하나를 추천 단계; 및
    상기 비용절감 프로그램 참여 시 예상되는 절감액을 시뮬레이션하여 제공하는 단계를 포함하는 가상발전소 운영 방법.
  14. 제13항에 있어서,
    상기 달성 목표 년도까지 소비 전력량을 예측하여 상기 지불 가능 비용으로 가능한 방식 및 달성 기간을 도출하여, 자가 발전 방식, 전력 거래 방식 및 프리미엄 요금 납부 방식 중 적어도 하나를 추천 단계는,
    상기 달성 목표 년도 대비 상기 지불 가능 비용이 부족할 경우, 상기 달성 목표 년도 및 상기 지불 가능 비용에 대해 경제적으로 저렴한 방식을 추천하는 것을 특징으로 하는 가상발전소 운영 방법.
PCT/KR2019/016996 2019-11-22 2019-12-04 산업단지 마이크로그리드 내 중소 업체의 re100 참여를 위한 가상발전소 운영 시스템 및 방법 WO2021100956A1 (ko)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
KR1020190150976A KR102138656B1 (ko) 2019-11-22 2019-11-22 산업단지 마이크로그리드 내 중소 업체의 re100 참여를 위한 가상발전소 운영 시스템 및 방법
KR10-2019-0150976 2019-11-22

Publications (1)

Publication Number Publication Date
WO2021100956A1 true WO2021100956A1 (ko) 2021-05-27

Family

ID=71831628

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/KR2019/016996 WO2021100956A1 (ko) 2019-11-22 2019-12-04 산업단지 마이크로그리드 내 중소 업체의 re100 참여를 위한 가상발전소 운영 시스템 및 방법

Country Status (2)

Country Link
KR (1) KR102138656B1 (ko)
WO (1) WO2021100956A1 (ko)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN116384674A (zh) * 2023-03-31 2023-07-04 国网上海市电力公司 一种基于阻塞管理的虚拟电厂与配电网协同方法及系统
US11875371B1 (en) 2017-04-24 2024-01-16 Skyline Products, Inc. Price optimization system

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR102649725B1 (ko) * 2021-07-28 2024-03-21 주식회사 레플러스 Re100 이행방안 포트폴리오 구성을 위한 최적화 장치 및 방법
KR102594798B1 (ko) * 2022-01-28 2023-10-26 한국전기연구원 클라우드 기반 건물 에너지 컨설팅 시스템 및 방법
KR20230121449A (ko) 2022-02-11 2023-08-18 한전케이디엔주식회사 Re100 달성을 위한 신재생 에너지원 자동 매칭 인공지능 시스템 및 이의 동작 방법
KR102548132B1 (ko) * 2022-09-23 2023-06-28 주식회사 해줌 에너지 데이터 기반 re100 통합 관리 시스템 및 방법
KR102612557B1 (ko) * 2023-06-01 2023-12-11 옴니시스템 주식회사 고객 참여형 신전력 요금제 및 신재생 에너지 공유 공동체 전력 서비스 관리 장치 및 방법
KR102603782B1 (ko) * 2023-08-01 2023-11-17 주식회사 코텍에너지 가정용 연료전지에 대한 가상발전소 운영 시스템 및방법

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101214323B1 (ko) * 2011-12-29 2013-02-01 대한전선 주식회사 전력거래 시스템 연계형 전력관리용 스마트 전력량계
KR20170132662A (ko) * 2017-04-05 2017-12-04 가천대학교 산학협력단 가상발전소 시뮬레이터를 이용한 가상발전소 최적운영시뮬레이션 방법
KR20190030074A (ko) * 2017-09-13 2019-03-21 주식회사 케이티 신재생 발전소의 에너지 저장 장치를 제어하는 방법 및 서버

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101214323B1 (ko) * 2011-12-29 2013-02-01 대한전선 주식회사 전력거래 시스템 연계형 전력관리용 스마트 전력량계
KR20170132662A (ko) * 2017-04-05 2017-12-04 가천대학교 산학협력단 가상발전소 시뮬레이터를 이용한 가상발전소 최적운영시뮬레이션 방법
KR20190030074A (ko) * 2017-09-13 2019-03-21 주식회사 케이티 신재생 발전소의 에너지 저장 장치를 제어하는 방법 및 서버

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
"A Study on the System for the Development of Enterprise-Type Prosumer", March 2017 (2017-03-01) *
"Like Apple, Google... Korea 's First ''- RE,100 Corporation '' Establishment within This Year?", BLO.NAVER.COM, 4 November 2019 (2019-11-04), Retrieved from the Internet <URL:http://hard.blog.me/221697916558> [retrieved on 20200330] *

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US11875371B1 (en) 2017-04-24 2024-01-16 Skyline Products, Inc. Price optimization system
CN116384674A (zh) * 2023-03-31 2023-07-04 国网上海市电力公司 一种基于阻塞管理的虚拟电厂与配电网协同方法及系统

Also Published As

Publication number Publication date
KR102138656B1 (ko) 2020-07-28

Similar Documents

Publication Publication Date Title
WO2021100956A1 (ko) 산업단지 마이크로그리드 내 중소 업체의 re100 참여를 위한 가상발전소 운영 시스템 및 방법
WO2019225834A1 (ko) 에너지 저장 장치와 태양광 발전을 이용한 전력 공급 제어 시스템 및 방법
WO2011065733A2 (en) Network system and method of controlling network system
WO2014168376A1 (ko) 위치기반 전력중개용 모듈, 전기자동차 및 중개서버 그리고 이에 사용되는 사용자인증 콘센트 또는 커넥터
WO2020204262A1 (ko) 분산자원 활용 관리방법 및 서버, 이를 포함하는 마이크로그리드 전력 거래 시스템
WO2011055975A2 (en) Network system and method of controlling the same
WO2011074925A2 (ko) 스마트 포털을 이용한 수요응답 시스템 및 방법
WO2011052958A2 (en) Method of controlling network system
WO2011065775A2 (en) Network system and method of controlling network system
JP2017077151A (ja) 建物の消費電力予測システム、蓄電装置の制御システム、及び蓄電装置の制御方法
WO2020032433A1 (ko) 태양광 발전 시스템 및 그 제어 방법
WO2015102151A1 (ko) 전기 자동차용 배터리팩을 이용한 전력 운용 방법
Ghosh et al. Accelerating electric vehicle adoption: techno-economic assessment to modify existing fuel stations with fast charging infrastructure
EP2491675A1 (en) Method of controlling network system
WO2019151675A1 (ko) 태양광발전 장치
WO2020162461A1 (ja) 電力制御システムおよび電力制御方法
WO2023243783A1 (ko) 블록체인 기반의 신재생에너지 소비 인증 장치
KR102450203B1 (ko) 전기차 충전을 위한 가변형 전력제어 시스템
WO2021132759A1 (ko) 이종 분산 자원과 연계된 에너지 저장 장치의 지능형 운전 방법 및 장치
KR20110058418A (ko) 전력 관리 가능한 전기 제품
WO2020256305A1 (ko) 전기 렌터카와 관광 코스를 연계한 게이미피케이션 v2g 서비스 시스템 및 방법
WO2011049384A2 (en) Network system and method of controlling the same
Xu et al. Can retired lithium-ion batteries be a game changer in fast charging stations?
WO2022114317A1 (ko) 양방향 충전 및 방전을 이용한 가상 발전소 운용 방법 및 장치
WO2020075907A1 (ko) 분산 전력 자원의 확보를 위한 어그리게이터의 보상 방법

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 19953050

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 19953050

Country of ref document: EP

Kind code of ref document: A1