WO2021100899A1 - Composite elastomer composition, structural reinforcement layer, and construction method using composite elastomer composition - Google Patents

Composite elastomer composition, structural reinforcement layer, and construction method using composite elastomer composition Download PDF

Info

Publication number
WO2021100899A1
WO2021100899A1 PCT/KR2019/015915 KR2019015915W WO2021100899A1 WO 2021100899 A1 WO2021100899 A1 WO 2021100899A1 KR 2019015915 W KR2019015915 W KR 2019015915W WO 2021100899 A1 WO2021100899 A1 WO 2021100899A1
Authority
WO
WIPO (PCT)
Prior art keywords
layer
equation
composite
elastic layer
composite elastic
Prior art date
Application number
PCT/KR2019/015915
Other languages
French (fr)
Korean (ko)
Inventor
송준혁
Original Assignee
송준혁
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 송준혁 filed Critical 송준혁
Publication of WO2021100899A1 publication Critical patent/WO2021100899A1/en

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K7/00Use of ingredients characterised by shape
    • C08K7/02Fibres or whiskers
    • C08K7/04Fibres or whiskers inorganic
    • C08K7/14Glass
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09DCOATING COMPOSITIONS, e.g. PAINTS, VARNISHES OR LACQUERS; FILLING PASTES; CHEMICAL PAINT OR INK REMOVERS; INKS; CORRECTING FLUIDS; WOODSTAINS; PASTES OR SOLIDS FOR COLOURING OR PRINTING; USE OF MATERIALS THEREFOR
    • C09D175/00Coating compositions based on polyureas or polyurethanes; Coating compositions based on derivatives of such polymers
    • C09D175/02Polyureas
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09DCOATING COMPOSITIONS, e.g. PAINTS, VARNISHES OR LACQUERS; FILLING PASTES; CHEMICAL PAINT OR INK REMOVERS; INKS; CORRECTING FLUIDS; WOODSTAINS; PASTES OR SOLIDS FOR COLOURING OR PRINTING; USE OF MATERIALS THEREFOR
    • C09D5/00Coating compositions, e.g. paints, varnishes or lacquers, characterised by their physical nature or the effects produced; Filling pastes
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09DCOATING COMPOSITIONS, e.g. PAINTS, VARNISHES OR LACQUERS; FILLING PASTES; CHEMICAL PAINT OR INK REMOVERS; INKS; CORRECTING FLUIDS; WOODSTAINS; PASTES OR SOLIDS FOR COLOURING OR PRINTING; USE OF MATERIALS THEREFOR
    • C09D7/00Features of coating compositions, not provided for in group C09D5/00; Processes for incorporating ingredients in coating compositions
    • C09D7/40Additives
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09DCOATING COMPOSITIONS, e.g. PAINTS, VARNISHES OR LACQUERS; FILLING PASTES; CHEMICAL PAINT OR INK REMOVERS; INKS; CORRECTING FLUIDS; WOODSTAINS; PASTES OR SOLIDS FOR COLOURING OR PRINTING; USE OF MATERIALS THEREFOR
    • C09D7/00Features of coating compositions, not provided for in group C09D5/00; Processes for incorporating ingredients in coating compositions
    • C09D7/40Additives
    • C09D7/70Additives characterised by shape, e.g. fibres, flakes or microspheres
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09DCOATING COMPOSITIONS, e.g. PAINTS, VARNISHES OR LACQUERS; FILLING PASTES; CHEMICAL PAINT OR INK REMOVERS; INKS; CORRECTING FLUIDS; WOODSTAINS; PASTES OR SOLIDS FOR COLOURING OR PRINTING; USE OF MATERIALS THEREFOR
    • C09D7/00Features of coating compositions, not provided for in group C09D5/00; Processes for incorporating ingredients in coating compositions
    • C09D7/80Processes for incorporating ingredients

Definitions

  • the present invention relates to a composite elastomer composition, a structure reinforcing layer, and a method for constructing a composite elastomer, and more specifically, to form a composite elastomer in which glass fibers, which are fine powder fibers, are mixed with polyurea, and the surface of the structure
  • polyurea is a type of elastic body and has excellent tensile, toughness, and ductility properties in addition to waterproofing.
  • An object of the present invention is to solve the conventional problem, by forming a composite elastomer in which glass fiber, which is a fiber of fine powder, is mixed with polyurea, and applying it to the surface of a structure, external factors including external loads or impacts, etc. It is to provide a composite elastomer composition, a structure reinforcing layer, and a method of constructing a composite elastomer that can improve the structural performance, seismic performance, and explosion-proof performance of the structure deteriorated due to these factors.
  • the composite elastomer composition according to the present invention comprises a liquid polyurea; And glass fibers in the form of fine powders mixed with the polyurea, wherein 6 to 15% by weight of the glass fibers are mixed based on 100% by weight of the polyurea.
  • the composite elastomer composition according to the present invention comprises a liquid polyurea; And glass fibers in the form of fine powders to be mixed with the polyurea, wherein 8.5 to 25.5 vol% of the glass fibers are mixed with respect to 100 vol% of the polyurea.
  • the density of the glass fibers is 0.55 to 0.60 g/cc, and the moisture content of the glass fibers is less than 0.08%.
  • the structure reinforcing layer according to the present invention includes a base layer applied to the surface of the structure; And a composite elastic layer applied to the undercoat layer, wherein the composite elastic layer includes the composite elastomer composition according to claim 1 or 2.
  • the thickness of the composite elastic layer is set through any one of a flexural reinforcement design formula and a shear reinforcement design formula according to a reinforcing purpose.
  • the thickness of the composite elastic layer is made of 2 to 10 mm.
  • the flexural reinforcement design formula Is at least 20 ego, Assuming the following (Equation 1-1) is satisfied, Satisfies the following (Equation 1-2) for, With respect to the following (Equation 1-3), and (Equation 1-4) And preset Repeatedly until you are satisfied with your relationship Correct the expected value of.
  • the structure reinforcing layer according to the present invention includes an intermediate layer applied between the undercoat layer and the composite elastic layer; And a top coat layer applied to the composite elastic layer. It further includes at least any one of.
  • the method of constructing the composite elastomer according to the present invention comprises: a ground treatment step of removing foreign substances from the surface of a structure for constructing the composite elastomer composition according to the present invention; And a painting step of applying the composite elastomer composition to the surface of the structure after passing through the base treatment step, wherein the painting step includes, after the base treatment step, a undercoat layer on the surface of the structure. Forming a primer step; And a composite elastic step of forming a composite elastic layer on the surface of the undercoating layer after passing through the undercoating step, wherein the composite elastic layer includes the composite elastomer composition.
  • the painting step prior to the composite elastic step, the intermediate step of forming a thickening layer on the surface of the undercoat layer; And a top coat step of forming a top coat layer on the surface of the composite elastic layer after passing through the composite elastic step. It further includes at least any one of.
  • a composite elastomer is formed in which glass fibers, which are finely powdered fibers, are mixed with polyurea, and then applied to the surface of the structure. Structural performance, seismic performance, and explosion-proof performance of the structure deteriorated due to external factors including load or impact can be improved.
  • the present invention can be easily applied to the entire surface of the structure as well as to the local surface that needs reinforcement in the structure, it is economical and cost-saving, and shows the rapidity of the application process. Due to the deteriorated structure, it is possible to maintain the structural performance, earthquake resistance, and explosion-proof performance of the composite elastomer.
  • the present invention uses a composite elastomer in which glass fiber is mixed with polyurea, so that the thickness of the coating depends on the required strength. It facilitates design and control, and can improve strength and ductility in the reinforcing layer.
  • the present invention is easier to construct than steel plate reinforcement or carbon fiber sheet reinforcement when reinforcing the strength through the safety diagnosis of the structure, and since the required proof strength is determined only by the reinforcing thickness, it is possible to economically perform strength reinforcement.
  • It can increase the application value of composite elastomers.
  • by being applied to the surface of structures (especially, exterior decorative finishes such as masonry, tiles, curtain walls, etc.) damaged by earthquakes it is possible to sufficiently prevent dropping, and propose an economical and simple construction technique.
  • the application of composite elastomers can be increased.
  • the present invention limits the mixing ratio of polyurea and glass fiber, so that when applying the composite elastomer composition to the surface of the structure, the flexural strength, shear strength, ductility, and explosion-proof performance of a structure (especially a concrete structure) that is a brittle material. It is easy to construct, and is efficient in shortening the construction period.
  • the present invention limits the mixing ratio of polyurea and glass fiber, so that when the composite elastomer composition forms the composite elastic layer, the tensile strength of the structure or the composite elastic layer is 20 to 30 N/mm 2 , and the structure is broken. Alternatively, it may exhibit an elongation of 350 to 380% of the composite elastic layer, and an adhesive performance of 2.2 to 2.5 N/mm 2 or more of the composite elastic layer in the structure.
  • the present invention applies any one of a flexural reinforcement design formula and a shear reinforcement design formula according to the purpose of reinforcement, thereby corresponding to the characteristics of the structure to which the structural reinforcing layer is applied.
  • the thickness of the material can be easily adjusted, and the misuse of materials can be prevented in forming the structural reinforcing layer.
  • the present invention stabilizes the flexural reinforcement of the structure through the flexural reinforcement design formula, and can easily set the flexural reinforcement thickness corresponding to the structure to be applied.
  • the present invention stabilizes the shear reinforcement of the structure through the shear reinforcement design formula, and can easily set the shear reinforcement thickness corresponding to the structure to be applied.
  • the strength and ductility of the structure can be improved in response to the deterioration of the structure.
  • the present invention facilitates reinforcement of the strength of the structure through the undercoat layer, and can improve the adhesion of the intermediate layer or the composite elastic layer laminated on the undercoat layer.
  • the present invention can improve the durability and crack resistance of the structure through the intermediate layer, and improve the adhesion between the undercoat layer and the composite elastic layer.
  • the present invention can contribute to improving the performance of the structure through the composite elastic layer, and can improve the adhesion between the undercoat layer and the upper coat layer, and between the intermediate layer and the upper coat layer.
  • the present invention can improve the weather resistance, abrasion resistance, chemical resistance, fire resistance, etc. of the structure while finishing the surface of the structure through the top coat layer.
  • FIG. 1 is a cross-sectional view showing a state in which a structure reinforcing layer according to an embodiment of the present invention is applied to a structure.
  • FIG. 2 is an enlarged cross-sectional view showing a detailed stacking state of a structural reinforcing layer according to an embodiment of the present invention.
  • FIG. 3 is a flow chart showing a method of constructing a composite elastomer according to an embodiment of the present invention.
  • the composite elastomer composition according to an embodiment of the present invention is included in the construction method of the structure reinforcing layer according to an embodiment of the present invention and the composite elastomer according to an embodiment of the present invention.
  • the composite elastomer composition according to an embodiment of the present invention is included in the construction method of the structure reinforcing layer according to an embodiment of the present invention and the composite elastomer according to an embodiment of the present invention.
  • the structural reinforcing layer 20 may be applied to the structure 10 to improve structural performance, seismic performance, and explosion-proof performance of the structure 10.
  • the structural reinforcing layer 20 according to an exemplary embodiment of the present invention restores the performance of the structure 10 degraded due to external factors including external loads or impacts, while improving ductility and resistance to earthquakes. Can be improved.
  • the structure reinforcing layer 20 includes a lower coat layer 21 and a composite elastic layer 23, and further includes at least one of the middle coat layer 22 and the upper coat layer 24. I can.
  • the undercoat layer 21 is applied to the surface of the structure 10.
  • the surface of the structure 10 may be surface-treated through the background treatment step S1 to be described later.
  • the undercoating layer 21 is applied to the surface of the structure 10 through an undercoating step (S21) to be described later.
  • the structure 10 is expressed as a concrete structure, but it is not limited thereto, and the structure 10 is a concrete structure, a non-bearing structure, a bridge pier or beam, a masonry for external decoration, an exterior wall finishing material. , It may represent a variety of known forms such as a frame of a curtain wall.
  • a reinforcing portion 11 requiring reinforcement may be formed to protrude in the structure 10.
  • the composite elastic layer 23 is applied to the undercoat layer 21.
  • the composite elastic layer 23 includes the composite elastomer composition according to an embodiment of the present invention.
  • the composite elastic layer 23 is applied to the undercoat 21 or the intermediate layer 22 on the surface of the structure 10 through the composite elastic step S23 to be described later.
  • the composite elastomer composition according to an embodiment of the present invention is a mixture of polyurea and glass fiber, and is a seismic material for the structure 10 applicable to the spraying method and a structural reinforcing material for the structure, and improves the performance of the structure 10. Through this, it is possible to improve the maintenance work of the structure 10.
  • the composite elastomer composition according to an embodiment of the present invention can improve the properties (high ductility, high toughness) of polyurea, suppress or prevent deterioration of polyurea, and expand or contract polyurea. It improves the resistance to action and can apply high-temperature and high-pressure spraying technology as a spraying method.
  • the composite elastomer composition according to an exemplary embodiment of the present invention may improve the strength and ductility due to the elastic body, thereby imparting a function of improving structural performance and seismic performance of the structure 10.
  • the composite elastomer composition according to an embodiment of the present invention improves the strength and strength of the structure 10 due to the constraining effect on the deformation of the structure 10, and the bending behavior and structural performance of the structure 10
  • a seismic function is given to the structure 10, and since it is not affected by the material of the structure 10, it can be applied to concrete as well as glass, brick, and wood. When it occurs, it can improve the energy dissipation ability and improve the explosion-proof performance.
  • the composite elastomer composition according to an embodiment of the present invention may include a liquid polyurea and glass fibers mixed with the polyurea.
  • Polyurea consists of a reaction of a prepolymer formed by polymerization of a polyol and an isocyanate and a compound curing agent compound having an amine group, preferably a primary reaction of a polyol (30-70 wt%) and an isocyanate (30-70 wt%). Reaction (Urethane reaction) and a secondary reaction (Urea reaction) to synthesize a polymer compound divided by the reaction of the first reaction completed material (30-70 wt%) and an amine compound (30-70 wt%). It can be done.
  • the polyurea is not limited to the above description, and various types of known polyurea may be applied.
  • Glass fiber is an additive that increases the strength of the structure by mixing it with polyurea and spraying and coating it on the surface of the structure.
  • the fine powder glass fiber can exhibit an average particle diameter of 13.5 micrometers and an average length of 300 micrometers.
  • the glass fiber may be mixed with 6 to 15% by weight based on 100% by weight of polyurea.
  • the glass fiber when the glass fiber is added less than 6% by weight, the improvement of the properties of the polyurea is insufficient, and when the glass fiber is larger than 15% by weight, the glass fiber is changed into a factor that hinders the properties of the polyurea.
  • the properties of polyurea are improved, so that the tensile strength of the structure or composite elastic layer is 20 to 30 N/mm 2 , the elongation rate of the structure or composite elastic layer when the structure is broken is 350 to 380 %, and the structure In the composite elastic layer, the adhesive performance of 2.2 ⁇ 2.5 N/mm 2 or more, and more specifically, the adhesive performance of 2.3 N/mm 2 or more, can be exhibited.
  • the glass fiber may be mixed with 8.5 to 25.5% by volume based on 100% by volume of polyurea.
  • the glass fiber when the glass fiber is added less than 8.5% by volume, the improvement of the properties of the polyurea is insufficient, and when the glass fiber is larger than 25.5% by volume, the glass fiber is changed into a factor that hinders the properties of the polyurea.
  • the properties of polyurea are improved, so that the tensile strength of the structure or composite elastic layer is 20 to 30 N/mm 2 , the elongation rate of the structure or composite elastic layer when the structure is broken is 350 to 380 %, and the structure In the composite elastic layer, the adhesive performance of 2.2 ⁇ 2.5 N/mm 2 or more, and more specifically, the adhesive performance of 2.3 N/mm 2 or more, can be exhibited.
  • These glass fibers may exhibit a fine powder solid form.
  • the density of the glass fibers may represent 0.55 ⁇ 0.60 g / cc. More specifically, the density of the glass fibers may represent 0.57 ⁇ 0.59 g / cc. Preferably, the density of the glass fibers may represent 0.58 g/cc. Accordingly, as a characteristic of the glass fiber, it is possible to increase the tensile strength of the polyurea, increase the elongation rate of the polyurea, and reduce the shrinkage rate of the polyurea.
  • the size of the glass fiber is relatively large, so when the glass fiber is sprayed while being mixed with polyurea, the glass fiber is stagnated in the spray nozzle and the mixing ratio of the polyurea and the glass fiber is reduced. It can be changed, and when the density of the glass fiber is greater than the maximum value, the size of the glass fiber is relatively small, and thus the properties of the glass fiber according to an embodiment of the present invention are not exhibited.
  • the moisture content of the glass fiber is less than 0.08%, making it easy to mix with polyurea, minimizing the release rate with polyurea, and minimizing or preventing agglomeration of glass fiber when it is mixed with polyurea. can do.
  • the moisture content of the glass fiber exceeds the reference value, agglomeration phenomenon occurs when mixing with polyurea, and mixing with polyurea may be uneven.
  • the thickness of the composite elastic layer 23 may be 2 to 10 mm. In more detail, the thickness of the composite elastic layer 23 may be 2 to 9 mm.
  • the thickness of the composite elastic layer 23 may be variously set in response to the performance degradation state of the structure 10 or the characteristics of external factors applied to the structure 10, and the thickness of the composite elastic layer 23 If it is less than 2mm, performance improvement by reinforcing the composite elastomer is meaningless, and if it is larger than 9mm or 10mm with respect to the thickness of the composite elastomer 23, there is a difficulty in construction that requires application several times.
  • the thickness of the composite elastic layer 23 may be set through any one of a flexural reinforcement design formula and a shear reinforcement design formula according to the reinforcing purpose.
  • the flexural reinforcement design formula is, Assuming Is at least 20 And satisfies the following (Equation 1-1), Satisfies the following (Equation 1-2) for, With respect to the following (Equation 1-3), and (Equation 1-4) And preset Repeatedly until you are satisfied with your relationship Correct the expected value of. Accordingly, The thickness of the composite elastic layer 23 for flexural reinforcement can be set through the expected value of.
  • the flexural reinforcement design process using the flexural reinforcement design equation The setting stage and, The assumption stage, the warpage setting stage, The setting stage and, It may include a setting step and a bending setting comparison step.
  • the thickness of the composite elastic layer 23 for flexural reinforcement can be set through the expected value of.
  • And preset The comparison result of, And preset If the difference of is out of the range of the flexural reinforcement error, Can be assumed repeatedly.
  • And preset The comparison result of, And preset If the difference in is out of the flexural reinforcement error range, return to the assumption step, change the expected value for tp, and perform the subsequent steps sequentially again, And preset The difference of can be made to be included in the bending reinforcement error range.
  • the thickness of the composite elastic layer 23 can be set.
  • the shear reinforcement design formula is With respect to the following (Equation 2-1) and (Equation 2-2) are satisfied, Satisfies the following (Equation 2-3) and satisfies Equation (2-4) Repeatedly until it satisfies the equation (2-5) for Correct the expected value of. Accordingly, The thickness of the composite elastic layer 23 for shear reinforcement can be set through the expected value of.
  • the shear reinforcement design process using the shear reinforcement design equation may include a setting step and a shear setting comparison step.
  • the thickness of the composite elastic layer 23 for shear reinforcement can be set through the expected value of.
  • the intermediate layer 22 is applied to the undercoat layer 21.
  • the top coat layer 24 may be applied to the middle coat layer 22.
  • the intermediate layer 22 may be applied to the undercoat layer 21 on the surface of the structure 10 through an intermediate step (S22) to be described later.
  • the top coat layer 24 is applied to the composite elastic layer 23.
  • the top coat layer 24 finishes the surface of the structural reinforcement layer 20 according to an exemplary embodiment of the present invention.
  • the top coat layer 24 may be applied to the composite elastic layer 23 on the surface of the structure 10 through a top coat step (S24) to be described later.
  • the method of constructing a composite elastomer according to an embodiment of the present invention is to apply a structure reinforcing layer 20 according to an embodiment of the present invention to the structure 10 to provide structural performance, seismic performance, and explosion-proof performance of the structure 10. Can improve.
  • the construction method of the composite elastomer according to an embodiment of the present invention to the structure 10, while recovering the performance of the structure 10 degraded due to external factors including external loads or impacts, The ability to resist earthquakes can be improved.
  • the construction method of the composite elastomer according to an embodiment of the present invention improves the penetration resistance of chloride ions, eliminates surface cracking in the structure reinforcing layer 20, and imparts water permeability and moisture permeability. I can.
  • the construction method of the composite elastomer according to an embodiment of the present invention adopts the spraying type in the three-stage reinforcing layer compared to the prior art, even if the performance of the structure 10 is degraded in a large area due to external factors, the construction is simple. It is possible to significantly reduce the construction cost, shorten the construction period and shorten the labor cost, give the rapid setting property (within 5 minutes, at least 1 minute) of the composite elastic layer 23, and the undercoat layer 21 or The adhesion to the intermediate layer 22 and the upper coat 24 are improved, and the shape of the structure 10 can be diversified according to the spray method construction.
  • the method of constructing a composite elastomer according to an embodiment of the present invention is a composite elastomer composition in a structurally insufficient part of a reinforced concrete structure, particularly, a beam, a column, a slab, etc. of a reinforced concrete structure. It is a method of coating, and can be applied to the strength reinforcement and repair work of the structure (10).
  • a two-component elastic material composed of polyurea-isocyanate and amine can be used, and glass fibers in the form of fine powder are mixed and heated at a preset mixing ratio, and high pressure sprayed on the part to be reinforced. It shows the form of doing.
  • the construction method of the composite elastomer according to an embodiment of the present invention has excellent workability and can increase the use performance of the structure 10 with excellent adhesive performance.
  • the method of constructing a composite elastomer according to an embodiment of the present invention is characterized by a polyurea reinforced with glass fibers in the form of fine powder.
  • the composite elastomer in which the glass fiber is mixed with the polyurea improves the shear and flexural strength of the structure 10 with excellent reinforcing performance, suppresses or prevents cracks in the structure, and dissipates energy applied to the structure 10 Can represent.
  • the composite elastomer has excellent crack resistance, has excellent tensile strength and elongation in the structure 10 or the composite elastic layer 23, and may exhibit an effect of improving response performance against cracks.
  • the composite elastomer may exhibit an effect that the adhesion on the contact surface is higher than that of the existing reinforcing material due to excellent adhesion, the cause of defects such as swelling or peeling is reduced, and the adhesion retention performance and the reinforcing performance are maintained for a long time.
  • the composite elastomer can completely rapidly cure the composite elastomer layer within 5 minutes after application at a fast construction speed, and can be easily used in a building.
  • the composite elastomer can be reinforced without restrictions on the shape of the structure due to its excellent workability, and can exhibit an effect of improving workability.
  • the composite elastomer has excellent tensile strength, tear strength, durability, and chemical resistance.
  • the composite elastomer can freely adjust the coating thickness (3mm, 5mm, 9mm, etc.), and the reinforcing effect can be adjusted.
  • the construction method of the composite elastomer according to an embodiment of the present invention may include a background treatment step (S1) and a painting step (S2).
  • the concrete member is at room temperature (18 degrees Celsius to 24 degrees Celsius, more specifically, an average temperature of 20 degrees Celsius) and is cured for at least 28 days at a relative humidity of 80% or less.
  • the adhesion with the undercoat layer 21 is prevented from deteriorating, and defects due to moisture occur in the finished structure reinforcing layer 20 Can be prevented.
  • the surface of the structure 10 is surface-treated using a surface treatment method such as blasting, chipping, or grinding, so that foreign substances such as latency, dust, and oil can be completely removed from the surface of the structure 10.
  • a surface treatment method such as blasting, chipping, or grinding, so that foreign substances such as latency, dust, and oil can be completely removed from the surface of the structure 10.
  • the undercoat film is formed on the surface of the structure 10 having a dense structure where it is difficult to penetrate the urethane undercoat, it causes adhesion failure, so that the surface treatment is sufficiently performed on the surface of the structure 10 so that the penetration of the urethane undercoat is smooth.
  • a post-primer process and a sealing process are added to the surface of the structure 10 with severe gaps, flaws, and cracks, the surface of the structure 10 is adjusted again, and then the painting step (S2) to be described later can be performed.
  • the composite elastomer composition is applied to the surface of the structure 10.
  • the painting step (S2) includes an undercoat step (S21) and a complex elastic step (S23), and may further include at least one of an intermediate step (S22) and a topcoat step (S24).
  • S in the composite elastic step (S23) refers to a dedicated spraying device for the construction of a high-temperature and high-pressure composite elastomer.
  • the dedicated spray device all or part of the "composite elastomer composition construction device" disclosed in Korean Patent Publication No. 10-1942962 may be borrowed.
  • the undercoat layer 21 is formed on the surface of the structure 10.
  • a urethane primer (usually transparent primer), which is a flooring material, is applied to the surface of the structure 10 to be sufficiently absorbed with a brush, roller, spray, or the like.
  • the undercoating step (S21) is uniformly applied so as not to partially form a thick film on the surface of the structure 10.
  • the undercoat step (S21) is usually carried out once or twice so that the urethane undercoat is sufficiently absorbed on the surface of the structure 10.
  • the thickness of the undercoat layer 21 may represent about 50 micrometers. In other words, the thickness of the undercoat layer 21 may represent a ratio of 0.005 to 0.025 with respect to the thickness of the composite elastic layer 23.
  • the urethane undercoat may be additionally applied with a non-gatherite to the part where moisture absorption is severe, care should be taken not to form a thick coating layer on the surface of the structure 10.
  • the undercoating layer 21 ensures that there are no poor surfaces on the surface of the structure, and if it is good, no additional application of the urethane undercoat is required.
  • the undercoat layer 21 is removed by grinding, and moisture is completely removed from the surface of the structure 10 (moisture content is 6-8% or less), and then the undercoat layer 21 is removed by grinding. Allow the layer 21 to be formed.
  • the surface of the structure 10, where it is difficult to penetrate the urethane undercoat, is taken to facilitate penetration into the surface of the structure 10 by excessively diluting the urethane undercoat by 50% or more so that the undercoat layer 21 is not formed thick.
  • a composite elastic layer 23 is formed on the surface of the undercoating layer 21.
  • the composite elastic layer 23 includes a composite elastomer composition.
  • the above-described dedicated spray device may be used.
  • the thickness of the composite elastic layer 23 may be about 2 to 10 mm, more specifically, 2 to 9 mm.
  • the composite elastic layer 23 to be formed it should be packaged with suitable protective materials (masking or vinyl, etc.) in advance so that there is no contamination during construction.
  • suitable protective materials masking or vinyl, etc.
  • the contaminants of the lower layer 21 or the middle layer 22 are removed. It can prevent wear.
  • the thickness of the composite elastic layer 23 and the required consumption of the composite elastomer are accurately calculated, and poly Mix enough so that urea and glass fiber are uniformly mixed
  • the dedicated spraying device accurately mixes and sprays the composite elastomer, which is the main material, and the hardener at a preset mixing ratio (1:1 ratio).
  • the dedicated spray device is a spray device exclusively for composite elastomers in which glass fibers are mixed with polyurea, and can mix polyurea and glass fibers by a collision mixing method.
  • the nozzle diameter is 0.024 to 0.048 inch
  • the nozzle diameter is 0.020 to 0.086 inch
  • the spray pressure is 2000 to 3000 psi.
  • the spraying angle represents 30 to 60 degrees
  • the spray distance is about 60 cm and the error range is within 10 cm
  • the temperature of the main body and the hardener in the packaging are 10 to 35 degrees Celsius, respectively
  • PTA for the heating temperature for spraying And PTB may represent 60 to 75 degrees Celsius, respectively.
  • the base material and hardener in the packaging should be prevented from falling below 10 degrees Celsius. Accordingly, the main body and the curing agent in the packaging container can be heated using a drum heater or maintained in a pre-warmed state, thereby preventing the temperature of the main body and the curing agent in the packaging container from lowering due to the atmospheric environment.
  • the PTA temperature can be set 5 to 10 degrees Celsius higher than the PTB temperature to prevent the device from stopping.
  • the PTB temperature may be set to 60 to 65 degrees Celsius.
  • the site of occurrence is removed or grinding is performed, and then it is covered with a putty or a sealing agent, and then applied.
  • the contaminated part may be wiped off, treated with chemicals, and then repainted.
  • a thickening layer is formed on the surface of the undercoat layer 21.
  • the intermediate layer 22 may be formed of various known waterproofing agents, and in an embodiment of the present invention, polyurea applied to the composite elastomer may be used.
  • the thickness of the intermediate layer 22 may represent about 500 micrometers.
  • the thickness of the intermediate layer 22 may represent a ratio of 0.05 to 0.25 with respect to the thickness of the composite elastic layer 23.
  • the intermediate layer 22 When the intermediate layer 22 is formed, if any one of the main material and the hardener is excessively applied due to a spray gun or equipment trouble, the contaminated part may be wiped off, treated with chemicals, and then repainted.
  • a top coat layer 24 is formed on the surface of the complex elastic layer 23.
  • the top coat layer 24 may use various types of known finishing materials or fireproofing agents.
  • the top coat step (S24) is uniformly applied so that the surface of the composite elastic layer 23 is not partially thickened. Accordingly, the top coat step (S24) may be performed once or twice to sufficiently wrap the surface of the composite elastic layer 23.
  • the thickness of the top coat layer 24 may represent about 50 micrometers. In other words, the thickness of the top coat layer 24 may represent a ratio of 0.005 to 0.025 with respect to the thickness of the composite elastic layer 23.
  • the top coat layer 24 may be applied using a brush, roller, spray, etc. with a "polyurea top coat" of a desired color after line marking.
  • top coat layer 24 since color separation and concealment defects may occur when the top coat is excessively diluted, it is advantageous to adhere to the recommended dilution amount with a designated diluent.
  • the material is sufficiently stirred in the spraying device before application.
  • it should be sprayed when the temperature of the product reaches 65 to 75 degrees Celsius.
  • the required amount in the painting step (S2) may vary depending on the surface condition of the structure 10, the application method, and the application conditions, the required amount is adjusted in consideration of the surrounding conditions.
  • a composite elastomer is formed in which glass fibers, which are finely powdered fibers, are mixed with polyurea and applied to the surface of the structure 10. , It is possible to improve the structural performance, seismic performance, and explosion-proof performance of the structure 10 degraded due to external factors including external loads or impacts.
  • the present invention uses a composite elastomer in which glass fiber is mixed with polyurea, so that the thickness of the coating depends on the required strength. Design and control can be facilitated, and strength and ductility in the reinforcing layer 20 can be improved.
  • the application value of the polymer can be increased.
  • by being applied to the surface of structures (especially, exterior decorative finishes such as masonry, tiles, curtain walls, etc.) damaged by earthquakes it is possible to sufficiently prevent dropping, and propose an economical and simple construction technique.
  • the application of composite elastomers can be increased.
  • the flexural strength, shear strength, ductility, and explosion-proof performance of the structure which is a brittle material. It improves the structure, is easy to construct, and is effective in shortening the construction period.
  • the structure (10) The elongation rate of the structure 10 or the composite elastic layer 23 at break may be 350 to 380%, and the adhesive performance of the composite elastic layer 23 in the structure 10 may be 2.2 to 2.5 N/mm 2 or more.
  • the thickness of the composite elastic layer 23 by applying any one of the flexural reinforcement design formula and the shear reinforcement design formula according to the reinforcing purpose, the characteristics of the structure 10 to which the structural reinforcement layer 20 is applied. In response, the thickness of the composite elastic layer 23 can be easily adjusted, and misuse of materials can be prevented in forming the structure reinforcing layer 20.
  • the shear reinforcement of the structure 10 is stabilized, and the shear reinforcement thickness can be conveniently set in response to the structure 10 to be applied.
  • durability and crack resistance of the structure 10 may be improved through the intermediate layer 22, and adhesion between the undercoat layer 21 and the composite elastic layer 23 may be improved.
  • the composite elastic layer 23 contributes to the improvement of the performance of the structure 10, and the adhesion between the undercoat layer 21 and the upper coat layer 24, and the adhesion between the intermediate layer 22 and the upper coat layer 24 Can improve.
  • weather resistance, abrasion resistance, chemical resistance, and fire resistance of the structure 10 may be improved.
  • the present invention forms a composite elastomer obtained by mixing polyurea with glass fiber, which is a fine powder, and applies it to the surface of the structure. It can be applied to composite elastomer compositions that can improve performance and explosion-proof performance, structural reinforcing layers, and construction methods of composite elastomers.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Wood Science & Technology (AREA)
  • Health & Medical Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Medicinal Chemistry (AREA)
  • Polymers & Plastics (AREA)
  • Working Measures On Existing Buildindgs (AREA)

Abstract

The present invention relates to: a composite elastomer composition that forms a composite elastomer in which a glass fiber, which is a fiber fine powder, is mixed in a polyurea, the composite elastomer being coated on the surface of a structure, and thus can improve the structural performance, seismic performance and explosion-proof performance of the structure, which deteriorate because of external factors including external load, impact and the like; a structural reinforcement layer; and a construction method using the composite elastomer composition. To this end, the composite elastomer composition comprises a liquid polyurea and a glass fiber mixed in the polyurea, wherein the glass fiber is mixed in an amount of 6-15 wt% on the basis of 100 wt% of the polyurea, or is mixed in an amount of 8.5-25.5 vol% on the basis of 100 vol% of the polyurea.

Description

복합탄성중합체 조성물과 구조보강용 층 그리고 복합탄성중합체의 시공방법Composite elastomer composition, structural reinforcement layer, and construction method of composite elastomer
본 발명은 복합탄성중합체 조성물과 구조보강용 층 그리고 복합탄성중합체의 시공방법에 관한 것으로, 보다 구체적으로는 폴리우레아에 미분말의 파이버인 유리섬유를 혼입한 복합탄성중합체를 형성하고, 이를 구조체의 표면에 도포함으로써, 외부하중이나 충격 등을 포함한 외부요인들로 인해 저하된 구조체의 구조성능, 내진성능, 방폭성능을 향상시킬 수 있는 복합탄성중합체 조성물과 구조보강용 층 그리고 복합탄성중합체의 시공방법에 관한 것이다.The present invention relates to a composite elastomer composition, a structure reinforcing layer, and a method for constructing a composite elastomer, and more specifically, to form a composite elastomer in which glass fibers, which are fine powder fibers, are mixed with polyurea, and the surface of the structure By applying to the composite elastomer composition, the structural reinforcing layer, and the construction method of the composite elastomer, which can improve the structural performance, seismic performance, and explosion-proof performance of the structure deteriorated due to external factors including external load or impact, etc. About.
일반적으로, 폴리우레아는 탄성체의 일종으로 방수 외에 우수한 인장, 인성 및 연성적인 성질을 가지고 있다.In general, polyurea is a type of elastic body and has excellent tensile, toughness, and ductility properties in addition to waterproofing.
종래의 폴리우레아를 이용한 구조체의 보강공법 중에는 구조체에 FRP(Fiber Reinforced Polymer) 시트를 접착한 다음, 그 위에 폴리우레아를 도포한 연구들이 있다. 이러한 방법은 시트접착과 폴리우레아 도포에 의한 2회 시공을 실시해야 하는 번거로움이 있다. 또한, 구조체의 표면에 시트부착의 어려움이 있으며, 조적식 구조체(외부 치장용 조적조나 커튼월 등의 외부마감재)의 국부표면에 보강이 필요한 경우에도 구조체의 전체표면을 시공해야 하므로, 불필요한 보강 및 시공이 이루어지는 단점이 있었다.Among the conventional reinforcing methods of structures using polyurea, there are studies in which a FRP (Fiber Reinforced Polymer) sheet is adhered to the structure and then polyurea is applied thereon. This method is cumbersome to perform the two-time construction by sheet adhesion and polyurea coating. In addition, there is a difficulty in attaching sheets to the surface of the structure, and even when reinforcement is required on the local surface of a masonry structure (external finishing materials such as masonry for external decoration or curtain wall), the entire surface of the structure must be constructed, so unnecessary reinforcement and There was a drawback of construction.
선행기술로는 대한민국 등록특허공보 제10-0708058호(발명의 명칭: 콘크리트 구조물 보강용 에프알피(FRP) 패널, 2007. 04. 16. 공고)가 있다.As a prior art, there is Korean Patent Publication No. 10-0708058 (name of invention: FRP panel for reinforcing concrete structures, 2007. 04. 16. Announcement).
본 발명의 목적은 종래의 문제점을 해결하기 위한 것으로서, 폴리우레아에 미분말의 파이버인 유리섬유를 혼입한 복합탄성중합체를 형성하고, 이를 구조체의 표면에 도포함으로써, 외부하중이나 충격 등을 포함한 외부요인들로 인해 저하된 구조체의 구조성능, 내진성능, 방폭성능을 향상시킬 수 있는 복합탄성중합체 조성물과 구조보강용 층 그리고 복합탄성중합체의 시공방법을 제공함에 있다.An object of the present invention is to solve the conventional problem, by forming a composite elastomer in which glass fiber, which is a fiber of fine powder, is mixed with polyurea, and applying it to the surface of a structure, external factors including external loads or impacts, etc. It is to provide a composite elastomer composition, a structure reinforcing layer, and a method of constructing a composite elastomer that can improve the structural performance, seismic performance, and explosion-proof performance of the structure deteriorated due to these factors.
상술한 본 발명의 목적을 달성하기 위한 바람직한 실시예에 따르면, 본 발명에 따른 복합탄성중합체 조성물은 액상의 폴리우레아; 및 상기 폴리우레아에 혼입되는 미세 분말 형태의 유리섬유;를 포함하되, 상기 유리섬유는, 상기 폴리우레아 100 중량%를 기준으로 6~15 중량%가 혼입된다.According to a preferred embodiment for achieving the object of the present invention described above, the composite elastomer composition according to the present invention comprises a liquid polyurea; And glass fibers in the form of fine powders mixed with the polyurea, wherein 6 to 15% by weight of the glass fibers are mixed based on 100% by weight of the polyurea.
본 발명에 따른 복합탄성중합체 조성물은 액상의 폴리우레아; 및 상기 폴리우레아에 혼입되는 미세 분말 형태의 유리섬유;를 포함하되, 상기 유리섬유는, 상기 폴리우레아 100 체적%를 기준으로 8.5~25.5 체적%가 혼입된다.The composite elastomer composition according to the present invention comprises a liquid polyurea; And glass fibers in the form of fine powders to be mixed with the polyurea, wherein 8.5 to 25.5 vol% of the glass fibers are mixed with respect to 100 vol% of the polyurea.
여기서, 상기 유리섬유의 밀도는 0.55~0.60 g/cc 를 나타내고, 상기 유리섬유의 수분율은 0.08 % 미만을 나타낸다.Here, the density of the glass fibers is 0.55 to 0.60 g/cc, and the moisture content of the glass fibers is less than 0.08%.
본 발명에 따른 구조보강용 층은 구조체의 표면에 도포되는 하도층; 및 상기 하도층에 도포되는 복합탄성층;을 포함하되, 상기 복합탄성층은, 제1항 또는 제2항에 기재된 복합탄성중합체 조성물을 포함한다.The structure reinforcing layer according to the present invention includes a base layer applied to the surface of the structure; And a composite elastic layer applied to the undercoat layer, wherein the composite elastic layer includes the composite elastomer composition according to claim 1 or 2.
여기서, 상기 복합탄성층의 두께는, 보강목적에 따라 휨보강설계식과 전단보강설계식 중 어느 하나를 통해 설정된다.Here, the thickness of the composite elastic layer is set through any one of a flexural reinforcement design formula and a shear reinforcement design formula according to a reinforcing purpose.
여기서, 상기 복합탄성층의 두께는, 2~10mm로 이루어진다.Here, the thickness of the composite elastic layer is made of 2 to 10 mm.
여기서, 상기 휨보강설계식은,
Figure PCTKR2019015915-appb-I000001
는 최소 20
Figure PCTKR2019015915-appb-I000002
이고,
Figure PCTKR2019015915-appb-I000003
를 가정할 때, 다음의 (식1-1)을 만족하고,
Figure PCTKR2019015915-appb-I000004
에 대하여 다음의 (식1-2)를 만족하며,
Figure PCTKR2019015915-appb-I000005
에 대하여 다음의 (식1-3)을 만족하고, (식 1-4)의
Figure PCTKR2019015915-appb-I000006
과 기설정된
Figure PCTKR2019015915-appb-I000007
의 관계를 만족할 때까지 반복적으로
Figure PCTKR2019015915-appb-I000008
의 예상값을 수정한다.
Here, the flexural reinforcement design formula,
Figure PCTKR2019015915-appb-I000001
Is at least 20
Figure PCTKR2019015915-appb-I000002
ego,
Figure PCTKR2019015915-appb-I000003
Assuming the following (Equation 1-1) is satisfied,
Figure PCTKR2019015915-appb-I000004
Satisfies the following (Equation 1-2) for,
Figure PCTKR2019015915-appb-I000005
With respect to the following (Equation 1-3), and (Equation 1-4)
Figure PCTKR2019015915-appb-I000006
And preset
Figure PCTKR2019015915-appb-I000007
Repeatedly until you are satisfied with your relationship
Figure PCTKR2019015915-appb-I000008
Correct the expected value of.
Figure PCTKR2019015915-appb-I000009
..........(식1-1)
Figure PCTKR2019015915-appb-I000009
..........(Equation 1-1)
Figure PCTKR2019015915-appb-I000010
........................(식1-2)
Figure PCTKR2019015915-appb-I000010
........................(Equation 1-2)
Figure PCTKR2019015915-appb-I000011
..........(식1-3)
Figure PCTKR2019015915-appb-I000011
..........(Equation 1-3)
Figure PCTKR2019015915-appb-I000012
........................................(식1-4)
Figure PCTKR2019015915-appb-I000012
........................................(Equation 1-4)
Figure PCTKR2019015915-appb-I000013
: 복합탄성층의 도포면적
Figure PCTKR2019015915-appb-I000014
Figure PCTKR2019015915-appb-I000013
: Application area of composite elastic layer
Figure PCTKR2019015915-appb-I000014
Figure PCTKR2019015915-appb-I000015
: 인장철근의 단면적
Figure PCTKR2019015915-appb-I000016
Figure PCTKR2019015915-appb-I000015
: Cross-sectional area of tensile reinforcement
Figure PCTKR2019015915-appb-I000016
Figure PCTKR2019015915-appb-I000017
: 압축철근의 단면적
Figure PCTKR2019015915-appb-I000018
Figure PCTKR2019015915-appb-I000017
: Cross-sectional area of compression reinforcing bar
Figure PCTKR2019015915-appb-I000018
Figure PCTKR2019015915-appb-I000019
: 압축연단으로부터 콘크리트의 장방형응력블록의 높이
Figure PCTKR2019015915-appb-I000020
Figure PCTKR2019015915-appb-I000019
: Height of the rectangular stress block of concrete from the compression edge
Figure PCTKR2019015915-appb-I000020
Figure PCTKR2019015915-appb-I000021
: 보의 폭
Figure PCTKR2019015915-appb-I000022
Figure PCTKR2019015915-appb-I000021
: Beam width
Figure PCTKR2019015915-appb-I000022
Figure PCTKR2019015915-appb-I000023
: 압축연단으로부터 중립축까지의 거리
Figure PCTKR2019015915-appb-I000024
Figure PCTKR2019015915-appb-I000023
: Distance from compression edge to neutral axis
Figure PCTKR2019015915-appb-I000024
Figure PCTKR2019015915-appb-I000025
: 보의 유효깊이
Figure PCTKR2019015915-appb-I000026
Figure PCTKR2019015915-appb-I000025
: Effective depth of beam
Figure PCTKR2019015915-appb-I000026
Figure PCTKR2019015915-appb-I000027
: 압축연단으로부터 압축철근 중심까지의 거리
Figure PCTKR2019015915-appb-I000028
Figure PCTKR2019015915-appb-I000027
: Distance from the compression edge to the center of the compression reinforcing bar
Figure PCTKR2019015915-appb-I000028
Figure PCTKR2019015915-appb-I000029
: 인장연단으로부터 보강되는 복합탄성층의 도심까지의 거리
Figure PCTKR2019015915-appb-I000030
Figure PCTKR2019015915-appb-I000029
: Distance from the tensile edge to the center of the reinforced composite elastic layer
Figure PCTKR2019015915-appb-I000030
Figure PCTKR2019015915-appb-I000031
: 콘크리트 압축강도
Figure PCTKR2019015915-appb-I000032
Figure PCTKR2019015915-appb-I000031
: Concrete compressive strength
Figure PCTKR2019015915-appb-I000032
Figure PCTKR2019015915-appb-I000033
: 복합탄성층의 인장강도
Figure PCTKR2019015915-appb-I000034
Figure PCTKR2019015915-appb-I000033
: Tensile strength of composite elastic layer
Figure PCTKR2019015915-appb-I000034
Figure PCTKR2019015915-appb-I000035
: 압축철근의 응력
Figure PCTKR2019015915-appb-I000036
Figure PCTKR2019015915-appb-I000037
Figure PCTKR2019015915-appb-I000035
: Stress of compression reinforcement
Figure PCTKR2019015915-appb-I000036
Figure PCTKR2019015915-appb-I000037
Figure PCTKR2019015915-appb-I000038
: 인장철근이 항복강도
Figure PCTKR2019015915-appb-I000039
Figure PCTKR2019015915-appb-I000038
: Yield strength of tensile reinforcement
Figure PCTKR2019015915-appb-I000039
Figure PCTKR2019015915-appb-I000040
: 보의 전체 춤
Figure PCTKR2019015915-appb-I000041
Figure PCTKR2019015915-appb-I000040
: Bo's full dance
Figure PCTKR2019015915-appb-I000041
Figure PCTKR2019015915-appb-I000042
: 인장철근의 중심으로부터 도포된 복합탄성층 도심까지의 거리
Figure PCTKR2019015915-appb-I000043
Figure PCTKR2019015915-appb-I000042
: Distance from the center of the tensile reinforcement to the center of the applied composite elastic layer
Figure PCTKR2019015915-appb-I000043
Figure PCTKR2019015915-appb-I000044
: 공칭 휨내력
Figure PCTKR2019015915-appb-I000045
Figure PCTKR2019015915-appb-I000044
: Nominal bending strength
Figure PCTKR2019015915-appb-I000045
Figure PCTKR2019015915-appb-I000046
: 설계 휨내력
Figure PCTKR2019015915-appb-I000047
Figure PCTKR2019015915-appb-I000046
: Design bending strength
Figure PCTKR2019015915-appb-I000047
Figure PCTKR2019015915-appb-I000048
: 복합탄성층의 두께
Figure PCTKR2019015915-appb-I000049
Figure PCTKR2019015915-appb-I000048
: Thickness of composite elastic layer
Figure PCTKR2019015915-appb-I000049
Figure PCTKR2019015915-appb-I000050
: 휨에 대한 강도감소계수
Figure PCTKR2019015915-appb-I000050
: Strength reduction factor for warpage
여기서, 상기 전단보강설계식은,
Figure PCTKR2019015915-appb-I000051
에 대하여 다음의 (식2-1)과 (식2-2)를 만족하고,
Figure PCTKR2019015915-appb-I000052
에 대하여 다음의 (식2-3)을 만족하며, 식 (2-4)를 만족하는
Figure PCTKR2019015915-appb-I000053
에 대한 식 (2-5)를 만족할 때까지 반복적으로
Figure PCTKR2019015915-appb-I000054
의 예상값을 수정한다.
Here, the shear reinforcement design formula,
Figure PCTKR2019015915-appb-I000051
With respect to the following (Equation 2-1) and (Equation 2-2) are satisfied,
Figure PCTKR2019015915-appb-I000052
Satisfies the following (Equation 2-3) and satisfies Equation (2-4)
Figure PCTKR2019015915-appb-I000053
Repeatedly until it satisfies the equation (2-5) for
Figure PCTKR2019015915-appb-I000054
Correct the expected value of.
Figure PCTKR2019015915-appb-I000055
.........................(식 2-1)
Figure PCTKR2019015915-appb-I000055
.........................(Equation 2-1)
Figure PCTKR2019015915-appb-I000056
...............(식 2-2)
Figure PCTKR2019015915-appb-I000056
...............(Equation 2-2)
Figure PCTKR2019015915-appb-I000057
................................(식 2-3)
Figure PCTKR2019015915-appb-I000057
................................(Equation 2-3)
Figure PCTKR2019015915-appb-I000058
.........................(식 2-4)
Figure PCTKR2019015915-appb-I000058
.........................(Equation 2-4)
Figure PCTKR2019015915-appb-I000059
...............................(식 2-5)
Figure PCTKR2019015915-appb-I000059
...............................(Equation 2-5)
Figure PCTKR2019015915-appb-I000060
: 전단철근의 단면적
Figure PCTKR2019015915-appb-I000061
Figure PCTKR2019015915-appb-I000060
: Cross-sectional area of shear reinforcement
Figure PCTKR2019015915-appb-I000061
Figure PCTKR2019015915-appb-I000062
: 보의 폭
Figure PCTKR2019015915-appb-I000063
Figure PCTKR2019015915-appb-I000062
: Beam width
Figure PCTKR2019015915-appb-I000063
Figure PCTKR2019015915-appb-I000064
: 보의 유효깊이
Figure PCTKR2019015915-appb-I000065
Figure PCTKR2019015915-appb-I000064
: Effective depth of beam
Figure PCTKR2019015915-appb-I000065
Figure PCTKR2019015915-appb-I000066
: 콘크리트 압축강도
Figure PCTKR2019015915-appb-I000067
Figure PCTKR2019015915-appb-I000066
: Concrete compressive strength
Figure PCTKR2019015915-appb-I000067
Figure PCTKR2019015915-appb-I000068
: 복합탄성층의 인장강도
Figure PCTKR2019015915-appb-I000069
Figure PCTKR2019015915-appb-I000068
: Tensile strength of composite elastic layer
Figure PCTKR2019015915-appb-I000069
Figure PCTKR2019015915-appb-I000070
: 전단철근의 항복강도
Figure PCTKR2019015915-appb-I000071
Figure PCTKR2019015915-appb-I000070
: Yield strength of shear reinforcement
Figure PCTKR2019015915-appb-I000071
Figure PCTKR2019015915-appb-I000072
: 복합탄성층의 두께
Figure PCTKR2019015915-appb-I000073
Figure PCTKR2019015915-appb-I000072
: Thickness of composite elastic layer
Figure PCTKR2019015915-appb-I000073
Figure PCTKR2019015915-appb-I000074
: 콘크리트가 부담하는 전단내력,
Figure PCTKR2019015915-appb-I000075
,
Figure PCTKR2019015915-appb-I000076
Figure PCTKR2019015915-appb-I000074
: Shear strength borne by concrete,
Figure PCTKR2019015915-appb-I000075
,
Figure PCTKR2019015915-appb-I000076
Figure PCTKR2019015915-appb-I000077
: 공칭 전단내력
Figure PCTKR2019015915-appb-I000078
Figure PCTKR2019015915-appb-I000077
: Nominal shear strength
Figure PCTKR2019015915-appb-I000078
Figure PCTKR2019015915-appb-I000079
: 복합탄성층이 부담하는 전단내력
Figure PCTKR2019015915-appb-I000080
Figure PCTKR2019015915-appb-I000079
: Shear strength borne by the composite elastic layer
Figure PCTKR2019015915-appb-I000080
Figure PCTKR2019015915-appb-I000081
: 전단철근이 부담하는 전단내력
Figure PCTKR2019015915-appb-I000082
Figure PCTKR2019015915-appb-I000081
: Shear strength borne by shear reinforcing bars
Figure PCTKR2019015915-appb-I000082
Figure PCTKR2019015915-appb-I000083
: 설계전단내력
Figure PCTKR2019015915-appb-I000084
Figure PCTKR2019015915-appb-I000083
: Design shear strength
Figure PCTKR2019015915-appb-I000084
Figure PCTKR2019015915-appb-I000085
: 전단에 대한 강도감소계수
Figure PCTKR2019015915-appb-I000085
: Strength reduction factor for shear
본 발명에 따른 구조보강용 층은 상기 하도층과 상기 복합탄성층 사이에 도포되는 중도층; 및 상기 복합탄성층에 도포되는 상도층; 중 적어도 어느 하나를 더 포함한다.The structure reinforcing layer according to the present invention includes an intermediate layer applied between the undercoat layer and the composite elastic layer; And a top coat layer applied to the composite elastic layer. It further includes at least any one of.
본 발명에 따른 복합탄성중합체의 시공방법은 본 발명에 따른 복합탄성중합체 조성물을 시공하기 위한 구조체의 표면에서 이물질을 제거하는 바탕처리단계; 및 상기 바탕처리단계를 거친 다음, 상기 구조체의 표면에 상기 복합탄성중합체 조성물을 도포하는 도장단계;를 포함하고, 상기 도장단계는, 상기 바탕처리단계를 거친 다음, 상기 구조체의 표면에 하도층을 형성하는 하도단계; 및 상기 하도단계를 거친 다음, 상기 하도층의 표면에 복합탄성층을 형성하는 복합탄성단계;를 포함하며, 상기 복합탄성층은, 상기 복합탄성중합체 조성물을 포함한다.The method of constructing the composite elastomer according to the present invention comprises: a ground treatment step of removing foreign substances from the surface of a structure for constructing the composite elastomer composition according to the present invention; And a painting step of applying the composite elastomer composition to the surface of the structure after passing through the base treatment step, wherein the painting step includes, after the base treatment step, a undercoat layer on the surface of the structure. Forming a primer step; And a composite elastic step of forming a composite elastic layer on the surface of the undercoating layer after passing through the undercoating step, wherein the composite elastic layer includes the composite elastomer composition.
여기서, 상기 도장단계는, 상기 복합탄성단계에 앞서, 상기 하도층의 표면에 증도층을 형성하는 중도단계; 및 상기 복합탄성단계를 거친 다음, 상기 복합탄성층의 표면에 상도층을 형성하는 상도단계; 중 적어도 어느 하나를 더 포함한다.Here, the painting step, prior to the composite elastic step, the intermediate step of forming a thickening layer on the surface of the undercoat layer; And a top coat step of forming a top coat layer on the surface of the composite elastic layer after passing through the composite elastic step. It further includes at least any one of.
본 발명에 따른 복합탄성중합체 조성물과 구조보강용 층 그리고 복합탄성중합체의 시공방법에 따르면, 폴리우레아에 미분말의 파이버인 유리섬유를 혼입한 복합탄성중합체 형성하고, 이를 구조체의 표면에 도포함으로써, 외부하중이나 충격 등을 포함한 외부요인들로 인해 저하된 구조체의 구조성능, 내진성능, 방폭성능을 향상시킬 수 있다.According to the construction method of the composite elastomer composition, the structure reinforcing layer, and the composite elastomer according to the present invention, a composite elastomer is formed in which glass fibers, which are finely powdered fibers, are mixed with polyurea, and then applied to the surface of the structure. Structural performance, seismic performance, and explosion-proof performance of the structure deteriorated due to external factors including load or impact can be improved.
또한, 본 발명은 구조체의 전체표면은 물론 구조체에서 보강이 필요한 국소표면에 용이하게 도포할 수 있으므로, 경제성 및 비용 절감 효과, 도포 공정의 신속성을 나타내고, 구조체의 국소표면에 도포되더라도 외부요인들로 인해 저하된 구조체에서 복합탄성중합체가 갖는 구조성능, 내진성능, 방폭성능을 유지시킬 수 있다.In addition, since the present invention can be easily applied to the entire surface of the structure as well as to the local surface that needs reinforcement in the structure, it is economical and cost-saving, and shows the rapidity of the application process. Due to the deteriorated structure, it is possible to maintain the structural performance, earthquake resistance, and explosion-proof performance of the composite elastomer.
또한, 폴리우레아와 유리섬유의 별도 시공 및 반복 시공에 따른 번거로움과 기능 향상에 한계가 있지만, 본 발명은 폴리우레아에 유리섬유가 혼입된 복합탄성중합체를 사용함으로써, 소요강도에 따라 도포두께의 설계 및 조절을 용이하게 하고, 보강층에서 강도 및 연성을 증진시킬 수 있다.In addition, there is a limit to the hassle and function improvement due to the separate construction and repeated construction of polyurea and glass fiber, but the present invention uses a composite elastomer in which glass fiber is mixed with polyurea, so that the thickness of the coating depends on the required strength. It facilitates design and control, and can improve strength and ductility in the reinforcing layer.
또한, 본 발명은 구조체의 안전진단을 통해 내력을 보강할 경우, 철판 보강 또는 탄소섬유시트 보강보다 시공이 용이하고, 소요내력이 단지 보강두께에 의해 결정되므로, 경제적으로 내력보강을 실시할 수 있으며, 복합탄성중합체의 활용가치를 크게 할 수 있다. 특히, 지진으로 인한 피해가 있는 구조체(특히, 조적조, 타일 등과 같은 외부 치장용 마감재 또는 커튼월 등)의 표면에 도포됨으로써, 탈락을 충분히 방지할 수 있고, 경제적이며, 간편한 시공기법을 제안하고, 복합탄성중합체의 활용가지를 크게 할 수 있다.In addition, the present invention is easier to construct than steel plate reinforcement or carbon fiber sheet reinforcement when reinforcing the strength through the safety diagnosis of the structure, and since the required proof strength is determined only by the reinforcing thickness, it is possible to economically perform strength reinforcement. , It can increase the application value of composite elastomers. In particular, by being applied to the surface of structures (especially, exterior decorative finishes such as masonry, tiles, curtain walls, etc.) damaged by earthquakes, it is possible to sufficiently prevent dropping, and propose an economical and simple construction technique. The application of composite elastomers can be increased.
또한, 본 발명은 폴리우레아와 유리섬유의 혼합비율을 한정함으로써, 구조체의 표면에 복합탄성중합체 조성물을 도포할 때, 취성 재료인 구조체(특히, 콘크리트 구조물)의 휨강도, 전단강도, 연성, 방폭성능을 향상시키고, 시공이 용이하며, 공기 단축에 효율적이다. 또한, 본 발명은 폴리우레아와 유리섬유의 혼합비율을 한정함으로써, 복합탄성중합체 조성물이 복합탄성층을 형성함에 있어서, 구조체 또는 복합탄성층의 인장강도 20~30 N/mm2, 구조체 파단시 구조체 또는 복합탄성층의 신장율 350~380 %, 구조체에서 복합탄성층의 접착성능 2.2~2.5 N/mm2 이상을 나타낼 수 있다.In addition, the present invention limits the mixing ratio of polyurea and glass fiber, so that when applying the composite elastomer composition to the surface of the structure, the flexural strength, shear strength, ductility, and explosion-proof performance of a structure (especially a concrete structure) that is a brittle material. It is easy to construct, and is efficient in shortening the construction period. In addition, the present invention limits the mixing ratio of polyurea and glass fiber, so that when the composite elastomer composition forms the composite elastic layer, the tensile strength of the structure or the composite elastic layer is 20 to 30 N/mm 2 , and the structure is broken. Alternatively, it may exhibit an elongation of 350 to 380% of the composite elastic layer, and an adhesive performance of 2.2 to 2.5 N/mm 2 or more of the composite elastic layer in the structure.
또한, 본 발명은 복합탄성층의 두께를 설정함에 있어서, 보강목적에 따라 휨보강설계식과 전단보강설계식 중 어느 하나를 적용함으로써, 구조보강용 층이 도포되는 구조체의 특성에 대응하여 복합탄성층의 두께을 간편하게 조절할 수 있고, 구조보강용 층을 형성함에 있어서 재료의 오남용을 방지할 수 있다.In addition, in setting the thickness of the composite elastic layer, the present invention applies any one of a flexural reinforcement design formula and a shear reinforcement design formula according to the purpose of reinforcement, thereby corresponding to the characteristics of the structure to which the structural reinforcing layer is applied. The thickness of the material can be easily adjusted, and the misuse of materials can be prevented in forming the structural reinforcing layer.
또한, 본 발명은 휨보강설계식을 통해 구조체의 휨보강을 안정화시키고, 도포하고자 하는 구조체에 대응하여 휨보강두께를 간편하게 설정할 수 있다.In addition, the present invention stabilizes the flexural reinforcement of the structure through the flexural reinforcement design formula, and can easily set the flexural reinforcement thickness corresponding to the structure to be applied.
또한, 본 발명은 전단보강설계식을 통해 구조체의 전단보강을 안정화시키고, 도포하고자 하는 구조체에 대응하여 전단보강두께를 간편하게 설정할 수 있다.In addition, the present invention stabilizes the shear reinforcement of the structure through the shear reinforcement design formula, and can easily set the shear reinforcement thickness corresponding to the structure to be applied.
또한, 본 발명은 복합탄성층의 두께를 한정함으로써, 구조체의 성능저하 상태에 대응하여 구조체의 강도 및 연성을 증진시킬 수 있다.In addition, according to the present invention, by limiting the thickness of the composite elastic layer, the strength and ductility of the structure can be improved in response to the deterioration of the structure.
또한, 본 발명은 하도층을 통해 구조체의 강도보강을 용이하게 하고, 하도층에 적층되는 중도층 또는 복합탄성층의 부착성을 향상시킬 수 있다.In addition, the present invention facilitates reinforcement of the strength of the structure through the undercoat layer, and can improve the adhesion of the intermediate layer or the composite elastic layer laminated on the undercoat layer.
또한, 본 발명은 중도층을 통해 구조체의 내구성, 내균열성을 향상시키고, 하도층과 복합탄성층 사이의 부착력을 향상시킬 수 있다.In addition, the present invention can improve the durability and crack resistance of the structure through the intermediate layer, and improve the adhesion between the undercoat layer and the composite elastic layer.
또한, 본 발명은 복합탄성층을 통해 구조체의 성능 향상에 이바지하고, 하도층과 상도층 사이의 부착력, 중도층과 상도층 사이의 부착력을 향상시킬 수 있다.In addition, the present invention can contribute to improving the performance of the structure through the composite elastic layer, and can improve the adhesion between the undercoat layer and the upper coat layer, and between the intermediate layer and the upper coat layer.
또한, 본 발명은 상도층을 통해 구조체의 표면을 마감하는 한편, 구조체의 내후성, 내마모성, 내약품성, 내화성 등을 향상시킬 수 있다.In addition, the present invention can improve the weather resistance, abrasion resistance, chemical resistance, fire resistance, etc. of the structure while finishing the surface of the structure through the top coat layer.
도 1은 본 발명의 일 실시예에 따른 구조보강용 층이 구조체에 도포된 상태를 도시한 단면도이다.1 is a cross-sectional view showing a state in which a structure reinforcing layer according to an embodiment of the present invention is applied to a structure.
도 2는 본 발명의 일 실시예에 따른 구조보강용 층의 상세 적층 상태를 도시한 확대단면도이다.2 is an enlarged cross-sectional view showing a detailed stacking state of a structural reinforcing layer according to an embodiment of the present invention.
도 3은 본 발명의 일 실시예에 따른 복합탄성중합체의 시공방법을 도시한 순서도이다.3 is a flow chart showing a method of constructing a composite elastomer according to an embodiment of the present invention.
이하, 첨부된 도면들을 참조하여 본 발명에 따른 복합탄성중합체 조성물과 구조보강용 층 그리고 복합탄성중합체의 시공방법의 일 실시예를 설명한다. 이때, 본 발명은 실시예에 의해 제한되거나 한정되는 것은 아니다. 또한, 본 발명을 설명함에 있어서, 공지된 기능 혹은 구성에 대해 구체적인 설명은 본 발명의 요지를 명확하게 하기 위해 생략될 수 있다.Hereinafter, an embodiment of a composite elastomer composition, a structure reinforcing layer, and a construction method of the composite elastomer according to the present invention will be described with reference to the accompanying drawings. At this time, the present invention is not limited or limited by the examples. In addition, in describing the present invention, detailed descriptions of known functions or configurations may be omitted to clarify the gist of the present invention.
본 발명을 설명함에 있어서, 본 발명의 일 실시예에 따른 복합탄성중합체 조성물은 본 발명의 일 실예에 따른 구조보강용 층 및 본 발명의 일 실시예에 따른 복합탄성중합체의 시공방법에 포함되는 것으로 설명한다.In describing the present invention, the composite elastomer composition according to an embodiment of the present invention is included in the construction method of the structure reinforcing layer according to an embodiment of the present invention and the composite elastomer according to an embodiment of the present invention. Explain.
본 발명의 일 실예에 따른 구조보강용 층(20)은 구조체(10)에 도포되어 구조체(10)의 구조성능, 내진성능, 방폭성능을 향상시킬 수 있다. 또한, 본 발명의 일 실예에 따른 구조보강용 층(20)은 외부하중이나 충격 등을 포함한 외부요인들로 인해 저하된 구조체(10)의 성능을 회복시키는 한편, 지진에 대한 연성 및 저항능력을 개선시킬 수 있다.The structural reinforcing layer 20 according to an exemplary embodiment of the present invention may be applied to the structure 10 to improve structural performance, seismic performance, and explosion-proof performance of the structure 10. In addition, the structural reinforcing layer 20 according to an exemplary embodiment of the present invention restores the performance of the structure 10 degraded due to external factors including external loads or impacts, while improving ductility and resistance to earthquakes. Can be improved.
본 발명의 일 실예에 따른 구조보강용 층(20)은 하도층(21)과 복합탄성층(23)을 포함하고, 중도층(22)과 상도층(24) 중 적어도 어느 하나를 더 포함할 수 있다.The structure reinforcing layer 20 according to an exemplary embodiment of the present invention includes a lower coat layer 21 and a composite elastic layer 23, and further includes at least one of the middle coat layer 22 and the upper coat layer 24. I can.
하도층(21)은 구조체(10)의 표면에 도포된다. 여기서, 구조체(10)의 표면은 후술하는 바탕처리단계(S1)를 거쳐 표면처리가 이루어질 수 있다. 하도층(21)은 후술하는 하도단계(S21)를 통해 구조체(10)의 표면에 도포된다.The undercoat layer 21 is applied to the surface of the structure 10. Here, the surface of the structure 10 may be surface-treated through the background treatment step S1 to be described later. The undercoating layer 21 is applied to the surface of the structure 10 through an undercoating step (S21) to be described later.
본 발명의 일 실시예에서 구조체(10)는 콘크리트 구조물로 표현하였지만, 여기에 한정하는 것은 아니고, 구조체(10)는 콘크리트 구조물, 비내력 구조물, 교량의 교각이나 보, 외부 치장용 조적조, 외벽마감재, 커튼월의 프레임 등 공지된 다양한 형태를 나타낼 수 있다. 본 발명의 일 실시예에서 구조체(10)에는 보강이 필요한 보강부(11)가 돌출 형성될 수 있다.In one embodiment of the present invention, the structure 10 is expressed as a concrete structure, but it is not limited thereto, and the structure 10 is a concrete structure, a non-bearing structure, a bridge pier or beam, a masonry for external decoration, an exterior wall finishing material. , It may represent a variety of known forms such as a frame of a curtain wall. In an embodiment of the present invention, a reinforcing portion 11 requiring reinforcement may be formed to protrude in the structure 10.
복합탄성층(23)은 하도층(21)에 도포된다. 복합탄성층(23)은 본 발명의 일 실시예에 따른 복합탄성중합체 조성물을 포함한다. 복합탄성층(23)은 후술하는 복합탄성단계(S23)를 통해 구조체(10)의 표면에서 하도층(21) 또는 중도층(22)에 도포된다.The composite elastic layer 23 is applied to the undercoat layer 21. The composite elastic layer 23 includes the composite elastomer composition according to an embodiment of the present invention. The composite elastic layer 23 is applied to the undercoat 21 or the intermediate layer 22 on the surface of the structure 10 through the composite elastic step S23 to be described later.
본 발명의 일 실시예에 따른 복합탄성중합체 조성물은 폴리우레아와 유리섬유의 혼합물로써, 분사 방식에 적용 가능한 구조체(10)의 내진 재료 및 구조체의 구조보강 재료이고, 구조체(10)의 성능 개선을 통해 구조체(10)의 유지 보수 작업을 개선시킬 수 있다. 좀더 자세하게, 본 발명의 일 실시예에 따른 복합탄성중합체 조성물은 폴리우레아의 특성(고연성, 고인성)을 향상시키고, 폴리우레아의 열화 현상을 억제 또는 방지할 수 있으며, 폴리우레아의 팽창 또는 수축 작용에 대한 저항 성능을 향상시키고, 분사 방식으로 고온 고압의 분사 기술을 적용할 수 있다.The composite elastomer composition according to an embodiment of the present invention is a mixture of polyurea and glass fiber, and is a seismic material for the structure 10 applicable to the spraying method and a structural reinforcing material for the structure, and improves the performance of the structure 10. Through this, it is possible to improve the maintenance work of the structure 10. In more detail, the composite elastomer composition according to an embodiment of the present invention can improve the properties (high ductility, high toughness) of polyurea, suppress or prevent deterioration of polyurea, and expand or contract polyurea. It improves the resistance to action and can apply high-temperature and high-pressure spraying technology as a spraying method.
본 발명의 일 실시예에 따른 복합탄성중합체 조성물은 탄성체로 인한 내력과 연성을 개선하여 구조체(10)의 구조성능 및 내진성능 개선기능을 부여할 수 있다. 좀더 자세하게, 본 발명의 일 실시예에 따른 복합탄성중합체 조성물은 구조체(10)의 변형에 대한 구속 효과로 인해 구조체(10)의 내력 및 강도를 개선하고, 구조체(10)의 휨거동 및 구조성능을 개선하며, 구조체(10)의 연성 증진을 통해 구조체(10)에 내진 기능이 부여되고, 구조체(10)의 재질에 영향을 받지 않아 콘크리트는 물론 유리, 벽돌, 목재 등에 적용할 수 있으며, 지진 발생시 에너지 소산 능력을 향상시키고, 방폭성능을 개선할 수 있다.The composite elastomer composition according to an exemplary embodiment of the present invention may improve the strength and ductility due to the elastic body, thereby imparting a function of improving structural performance and seismic performance of the structure 10. In more detail, the composite elastomer composition according to an embodiment of the present invention improves the strength and strength of the structure 10 due to the constraining effect on the deformation of the structure 10, and the bending behavior and structural performance of the structure 10 And, by improving the ductility of the structure 10, a seismic function is given to the structure 10, and since it is not affected by the material of the structure 10, it can be applied to concrete as well as glass, brick, and wood. When it occurs, it can improve the energy dissipation ability and improve the explosion-proof performance.
본 발명의 일 실시예에 따른 복합탄성중합체 조성물은 액상의 폴리우레아와, 폴리우레아에 혼입되는 유리섬유를 포함할 수 있다.The composite elastomer composition according to an embodiment of the present invention may include a liquid polyurea and glass fibers mixed with the polyurea.
폴리우레아는 폴리올과 이소시아네이트의 중합으로 형성되는 프리폴리머 및 아민기를 갖는 화합물 경화제 화합물의 반응으로 이루어지는데, 바람직하게는 폴리올(30~70 wt%)과 이소시아네이트(30~70 wt%)가 반응하는 1차 반응(Urethane 반응)과, 1차 반응이 완료된 물질(30~70 wt%)과 아민화합물(30~70 wt%)과의 반응으로 구분된 고분자 화합물을 합성하도록 하는 2차 반응(Urea 반응)으로 이루어질수 있다.Polyurea consists of a reaction of a prepolymer formed by polymerization of a polyol and an isocyanate and a compound curing agent compound having an amine group, preferably a primary reaction of a polyol (30-70 wt%) and an isocyanate (30-70 wt%). Reaction (Urethane reaction) and a secondary reaction (Urea reaction) to synthesize a polymer compound divided by the reaction of the first reaction completed material (30-70 wt%) and an amine compound (30-70 wt%). It can be done.
본 발명의 일 실시예에서 폴리우레아는 위의 설명에 한정하는 것은 아니고, 공지된 다양한 형태의 폴리우레아가 적용될 수 있다.In an embodiment of the present invention, the polyurea is not limited to the above description, and various types of known polyurea may be applied.
유리섬유는 폴리우레아에 혼입하여 구조체의 표면에 분사 및 코팅하여 구조체의 강도를 증가시키는 첨가제이다. 미분말인 유리섬유(Mill Glass Fiber)는 평균입자직경 13.5 마이크로미터, 평균길이 300 마이크로미터를 나타낼 수 있다.Glass fiber is an additive that increases the strength of the structure by mixing it with polyurea and spraying and coating it on the surface of the structure. The fine powder glass fiber (Mill Glass Fiber) can exhibit an average particle diameter of 13.5 micrometers and an average length of 300 micrometers.
일예로, 유리섬유는 폴리우레아 100 중량%를 기준으로 6~15 중량%가 혼입될 수 있다. 여기서, 유리섬유가 6 중량%보다 작게 첨가되면, 폴리우레아의 특성 향상이 미비하고, 유리섬유가 15 중량% 보다 커지면, 유리섬유가 폴리우레아의 특성을 저해하는 요소로 변화된다. 하지만, 유리섬유의 혼합비율이 한정됨으로써, 폴리우레아의 특성이 향상되어 구조체 또는 복합탄성층의 인장강도 20~30 N/mm2, 구조체 파단시 구조체 또는 복합탄성층의 신장율 350~380 %, 구조체에서 복합탄성층의 접착성능 2.2~2.5 N/mm2 이상, 좀더 자세하게는, 접착성능 2.3 N/mm2 이상을 나타낼 수 있다.For example, the glass fiber may be mixed with 6 to 15% by weight based on 100% by weight of polyurea. Here, when the glass fiber is added less than 6% by weight, the improvement of the properties of the polyurea is insufficient, and when the glass fiber is larger than 15% by weight, the glass fiber is changed into a factor that hinders the properties of the polyurea. However, by limiting the mixing ratio of glass fibers, the properties of polyurea are improved, so that the tensile strength of the structure or composite elastic layer is 20 to 30 N/mm 2 , the elongation rate of the structure or composite elastic layer when the structure is broken is 350 to 380 %, and the structure In the composite elastic layer, the adhesive performance of 2.2~2.5 N/mm 2 or more, and more specifically, the adhesive performance of 2.3 N/mm 2 or more, can be exhibited.
다른 예로, 유리섬유는 폴리우레아 100 체적%를 기준으로 8.5~25.5 체적%가 혼입될 수 있다. 여기서, 유리섬유가 8.5 체적%보다 작게 첨가되면, 폴리우레아의 특성 향상이 미비하고, 유리섬유가 25.5 체적% 보다 커지면, 유리섬유가 폴리우레아의 특성을 저해하는 요소로 변화된다. 하지만, 유리섬유의 혼합비율이 한정됨으로써, 폴리우레아의 특성이 향상되어 구조체 또는 복합탄성층의 인장강도 20~30 N/mm2, 구조체 파단시 구조체 또는 복합탄성층의 신장율 350~380 %, 구조체에서 복합탄성층의 접착성능 2.2~2.5 N/mm2 이상, 좀더 자세하게는, 접착성능 2.3 N/mm2 이상을 나타낼 수 있다.As another example, the glass fiber may be mixed with 8.5 to 25.5% by volume based on 100% by volume of polyurea. Here, when the glass fiber is added less than 8.5% by volume, the improvement of the properties of the polyurea is insufficient, and when the glass fiber is larger than 25.5% by volume, the glass fiber is changed into a factor that hinders the properties of the polyurea. However, by limiting the mixing ratio of glass fibers, the properties of polyurea are improved, so that the tensile strength of the structure or composite elastic layer is 20 to 30 N/mm 2 , the elongation rate of the structure or composite elastic layer when the structure is broken is 350 to 380 %, and the structure In the composite elastic layer, the adhesive performance of 2.2~2.5 N/mm 2 or more, and more specifically, the adhesive performance of 2.3 N/mm 2 or more, can be exhibited.
이러한 유리섬유는 미세 분말 고체 형태를 나타낼 수 있다.These glass fibers may exhibit a fine powder solid form.
여기서, 유리섬유의 밀도는 0.55~0.60 g/cc 를 나타낼 수 있다. 좀더 구체적으로, 유리섬유의 밀도는 0.57~0.59 g/cc 를 나타낼 수 있다. 바람직하게, 유리섬유의 밀도는 0.58 g/cc 를 나타낼 수 있다. 이에 따라, 유리섬유의 특성으로, 폴리우레아의 인장강도을 증가시키고, 폴리우레아의 신장율을 증가시키며, 폴리우레아의 수축율을 줄일 수 있다. 여기서, 유리섬유의 밀도가 최소값보다 작아지는 경우, 상대적으로 유리섬유의 크기가 커지므로 폴리우레아와 혼입된 상태에서 분사될 때, 분사노즐에서 유리섬유가 정체되어 폴리우레아와 유리섬유의 혼합비율을 변경시킬 수 있고, 유리섬유의 밀도가 최대값보다 커지면, 상대적으로 유리섬유의 크기가 작아지므로, 본 발명의 일 실시예에 따른 유리섬유의 특성을 발휘하지 못하게 된다.Here, the density of the glass fibers may represent 0.55 ~ 0.60 g / cc. More specifically, the density of the glass fibers may represent 0.57 ~ 0.59 g / cc. Preferably, the density of the glass fibers may represent 0.58 g/cc. Accordingly, as a characteristic of the glass fiber, it is possible to increase the tensile strength of the polyurea, increase the elongation rate of the polyurea, and reduce the shrinkage rate of the polyurea. Here, when the density of the glass fiber is smaller than the minimum value, the size of the glass fiber is relatively large, so when the glass fiber is sprayed while being mixed with polyurea, the glass fiber is stagnated in the spray nozzle and the mixing ratio of the polyurea and the glass fiber is reduced. It can be changed, and when the density of the glass fiber is greater than the maximum value, the size of the glass fiber is relatively small, and thus the properties of the glass fiber according to an embodiment of the present invention are not exhibited.
또한, 유리섬유의 수분율은 0.08 % 미만을 나타냄으로써, 폴리우레아와의 혼합을 용이하게 하고, 폴리우레아와 이형율을 최소화시킬 수 있으며, 폴리우레아와의 혼합시 유리섬유가 응집되는 것을 최소화 또는 방지할 수 있다. 하지만, 유리섬유의 수분율이 기준값을 벗어나는 경우, 폴리우레아와 혼합시 뭉침 현상이 발생되고, 폴리우레아와의 혼합을 불균일하게 할 수 있다.In addition, the moisture content of the glass fiber is less than 0.08%, making it easy to mix with polyurea, minimizing the release rate with polyurea, and minimizing or preventing agglomeration of glass fiber when it is mixed with polyurea. can do. However, when the moisture content of the glass fiber exceeds the reference value, agglomeration phenomenon occurs when mixing with polyurea, and mixing with polyurea may be uneven.
이러한 복합탄성층(23)의 두께는 2~10 mm로 이루어질 수 있다. 좀더 자세하게, 복합탄성층(23)의 두께는 2~9 mm로 이루어질 수 있다. 복합탄성층(23)의 두께는 구조체(10)의 성능 저하 상태 또는 구조체(10)에 가해지는 외부요인들의 특성들에 대응하여 다양하게 설정될 수 있고, 복합탄성층(23)의 두께에 대해 2mm보다 작은 경우에는 복합탄성중합체 보강에 의한 성능개선이 무의미하며, 복합탄성층(23)의 두께에 대해 9mm 또는 10 mm보다 커지는 경우에는 도포를 수차례 실시해야 하는 시공상의 어려움이 있다.The thickness of the composite elastic layer 23 may be 2 to 10 mm. In more detail, the thickness of the composite elastic layer 23 may be 2 to 9 mm. The thickness of the composite elastic layer 23 may be variously set in response to the performance degradation state of the structure 10 or the characteristics of external factors applied to the structure 10, and the thickness of the composite elastic layer 23 If it is less than 2mm, performance improvement by reinforcing the composite elastomer is meaningless, and if it is larger than 9mm or 10mm with respect to the thickness of the composite elastomer 23, there is a difficulty in construction that requires application several times.
이러한 복합탄성층(23)의 두께는 보강목적에 따라 휨보강설계식과 전단보강설계식 중 어느 하나를 통해 설정될 수 있다.The thickness of the composite elastic layer 23 may be set through any one of a flexural reinforcement design formula and a shear reinforcement design formula according to the reinforcing purpose.
첫째, 휨보강설계식을 이용하여 휨보강 설계 프로세스를 거침으로써, 복합탄성층(23)의 두께를 설정할 수 있다.First, it is possible to set the thickness of the composite elastic layer 23 by going through the flexural reinforcement design process using the flexural reinforcement design formula.
휨보강설계식은,
Figure PCTKR2019015915-appb-I000086
를 가정할 때,
Figure PCTKR2019015915-appb-I000087
는 최소 20
Figure PCTKR2019015915-appb-I000088
이고, 다음의 (식1-1)을 만족하고,
Figure PCTKR2019015915-appb-I000089
에 대하여 다음의 (식1-2)를 만족하며,
Figure PCTKR2019015915-appb-I000090
에 대하여 다음의 (식1-3)을 만족하고, (식 1-4)의
Figure PCTKR2019015915-appb-I000091
과 기설정된
Figure PCTKR2019015915-appb-I000092
의 관계를 만족할 때까지 반복적으로
Figure PCTKR2019015915-appb-I000093
의 예상값을 수정한다. 이에 따라,
Figure PCTKR2019015915-appb-I000094
의 예상값을 통해 휨보강을 위한 복합탄성층(23)의 두께를 설정할 수 있다.
The flexural reinforcement design formula is,
Figure PCTKR2019015915-appb-I000086
Assuming
Figure PCTKR2019015915-appb-I000087
Is at least 20
Figure PCTKR2019015915-appb-I000088
And satisfies the following (Equation 1-1),
Figure PCTKR2019015915-appb-I000089
Satisfies the following (Equation 1-2) for,
Figure PCTKR2019015915-appb-I000090
With respect to the following (Equation 1-3), and (Equation 1-4)
Figure PCTKR2019015915-appb-I000091
And preset
Figure PCTKR2019015915-appb-I000092
Repeatedly until you are satisfied with your relationship
Figure PCTKR2019015915-appb-I000093
Correct the expected value of. Accordingly,
Figure PCTKR2019015915-appb-I000094
The thickness of the composite elastic layer 23 for flexural reinforcement can be set through the expected value of.
Figure PCTKR2019015915-appb-I000095
..........(식1-1)
Figure PCTKR2019015915-appb-I000095
..........(Equation 1-1)
Figure PCTKR2019015915-appb-I000096
........................(식1-2)
Figure PCTKR2019015915-appb-I000096
........................(Equation 1-2)
Figure PCTKR2019015915-appb-I000097
..........(식1-3)
Figure PCTKR2019015915-appb-I000097
..........(Equation 1-3)
Figure PCTKR2019015915-appb-I000098
........................................(식1-4)
Figure PCTKR2019015915-appb-I000098
........................................(Equation 1-4)
Figure PCTKR2019015915-appb-I000099
: 복합탄성층의 도포면적
Figure PCTKR2019015915-appb-I000100
Figure PCTKR2019015915-appb-I000099
: Application area of composite elastic layer
Figure PCTKR2019015915-appb-I000100
Figure PCTKR2019015915-appb-I000101
: 인장철근의 단면적
Figure PCTKR2019015915-appb-I000102
Figure PCTKR2019015915-appb-I000101
: Cross-sectional area of tensile reinforcement
Figure PCTKR2019015915-appb-I000102
Figure PCTKR2019015915-appb-I000103
: 압축철근의 단면적
Figure PCTKR2019015915-appb-I000104
Figure PCTKR2019015915-appb-I000103
: Cross-sectional area of compression reinforcing bar
Figure PCTKR2019015915-appb-I000104
Figure PCTKR2019015915-appb-I000105
: 압축연단으로부터 콘크리트의 장방형응력블록의 높이
Figure PCTKR2019015915-appb-I000106
Figure PCTKR2019015915-appb-I000105
: Height of the rectangular stress block of concrete from the compression edge
Figure PCTKR2019015915-appb-I000106
Figure PCTKR2019015915-appb-I000107
: 보의 폭
Figure PCTKR2019015915-appb-I000108
Figure PCTKR2019015915-appb-I000107
: Beam width
Figure PCTKR2019015915-appb-I000108
Figure PCTKR2019015915-appb-I000109
: 압축연단으로부터 중립축까지의 거리
Figure PCTKR2019015915-appb-I000110
Figure PCTKR2019015915-appb-I000109
: Distance from compression edge to neutral axis
Figure PCTKR2019015915-appb-I000110
Figure PCTKR2019015915-appb-I000111
: 보의 유효깊이
Figure PCTKR2019015915-appb-I000112
Figure PCTKR2019015915-appb-I000111
: Effective depth of beam
Figure PCTKR2019015915-appb-I000112
Figure PCTKR2019015915-appb-I000113
: 압축연단으로부터 압축철근 중심까지의 거리
Figure PCTKR2019015915-appb-I000114
Figure PCTKR2019015915-appb-I000113
: Distance from the compression edge to the center of the compression reinforcing bar
Figure PCTKR2019015915-appb-I000114
Figure PCTKR2019015915-appb-I000115
: 인장연단으로부터 보강되는 복합탄성층의 도심까지의 거리
Figure PCTKR2019015915-appb-I000116
Figure PCTKR2019015915-appb-I000115
: Distance from the tensile edge to the center of the reinforced composite elastic layer
Figure PCTKR2019015915-appb-I000116
Figure PCTKR2019015915-appb-I000117
: 콘크리트 압축강도
Figure PCTKR2019015915-appb-I000118
Figure PCTKR2019015915-appb-I000117
: Concrete compressive strength
Figure PCTKR2019015915-appb-I000118
Figure PCTKR2019015915-appb-I000119
: 복합탄성층의 인장강도
Figure PCTKR2019015915-appb-I000120
Figure PCTKR2019015915-appb-I000119
: Tensile strength of composite elastic layer
Figure PCTKR2019015915-appb-I000120
Figure PCTKR2019015915-appb-I000121
: 압축철근의 응력
Figure PCTKR2019015915-appb-I000122
Figure PCTKR2019015915-appb-I000123
Figure PCTKR2019015915-appb-I000121
: Stress of compression reinforcement
Figure PCTKR2019015915-appb-I000122
Figure PCTKR2019015915-appb-I000123
Figure PCTKR2019015915-appb-I000124
: 인장철근이 항복강도
Figure PCTKR2019015915-appb-I000125
Figure PCTKR2019015915-appb-I000124
: Yield strength of tensile reinforcement
Figure PCTKR2019015915-appb-I000125
Figure PCTKR2019015915-appb-I000126
: 보의 전체 춤
Figure PCTKR2019015915-appb-I000127
Figure PCTKR2019015915-appb-I000126
: Bo's full dance
Figure PCTKR2019015915-appb-I000127
Figure PCTKR2019015915-appb-I000128
: 인장철근의 중심으로부터 도포된 복합탄성층 도심까지의 거리
Figure PCTKR2019015915-appb-I000129
Figure PCTKR2019015915-appb-I000128
: Distance from the center of the tensile reinforcement to the center of the applied composite elastic layer
Figure PCTKR2019015915-appb-I000129
Figure PCTKR2019015915-appb-I000130
: 공칭 휨내력
Figure PCTKR2019015915-appb-I000131
Figure PCTKR2019015915-appb-I000130
: Nominal bending strength
Figure PCTKR2019015915-appb-I000131
Figure PCTKR2019015915-appb-I000132
: 설계 휨내력
Figure PCTKR2019015915-appb-I000133
Figure PCTKR2019015915-appb-I000132
: Design bending strength
Figure PCTKR2019015915-appb-I000133
Figure PCTKR2019015915-appb-I000134
: 복합탄성층의 두께
Figure PCTKR2019015915-appb-I000135
Figure PCTKR2019015915-appb-I000134
: Thickness of composite elastic layer
Figure PCTKR2019015915-appb-I000135
Figure PCTKR2019015915-appb-I000136
: 휨에 대한 강도감소계수
Figure PCTKR2019015915-appb-I000136
: Strength reduction factor for warpage
이에 따라, 휨보강설계식을 이용한 휨보강 설계 프로세스는
Figure PCTKR2019015915-appb-I000137
설정단계와,
Figure PCTKR2019015915-appb-I000138
가정단계와, 휨설정단계와,
Figure PCTKR2019015915-appb-I000139
설정단계와,
Figure PCTKR2019015915-appb-I000140
설정단계와, 휨설정비교단계를 포함할 수 있다.
Accordingly, the flexural reinforcement design process using the flexural reinforcement design equation
Figure PCTKR2019015915-appb-I000137
The setting stage and,
Figure PCTKR2019015915-appb-I000138
The assumption stage, the warpage setting stage,
Figure PCTKR2019015915-appb-I000139
The setting stage and,
Figure PCTKR2019015915-appb-I000140
It may include a setting step and a bending setting comparison step.
(
Figure PCTKR2019015915-appb-I000141
설정단계)
(
Figure PCTKR2019015915-appb-I000141
Setting stage)
본 발명의 일 실시예에 따른 구조보강용 층(20)이 설치되는 구조체(10) 및 본 발명의 일 실시예에 따른 구조보강용 층(20)의 설치 위치에 대응하여
Figure PCTKR2019015915-appb-I000142
를 기설정된 값으로 설정한다.
Corresponding to the installation position of the structure 10 in which the structural reinforcement layer 20 is installed according to an embodiment of the present invention and the structural reinforcement layer 20 according to an embodiment of the present invention
Figure PCTKR2019015915-appb-I000142
Is set to a preset value.
(
Figure PCTKR2019015915-appb-I000143
가정단계)
(
Figure PCTKR2019015915-appb-I000143
Assumption stage)
본 발명의 일 실시예에 따른 구조보강용 층(20)이 설치되는 구조체(10) 및 본 발명의 일 실시예에 따른 구조보강용 층(20)의 설치 위치에 대응하여
Figure PCTKR2019015915-appb-I000144
를 예상값으로 가정한다.
Corresponding to the installation position of the structure 10 in which the structural reinforcement layer 20 is installed according to an embodiment of the present invention and the structural reinforcement layer 20 according to an embodiment of the present invention
Figure PCTKR2019015915-appb-I000144
Is assumed to be the expected value.
(휨설정단계)(Bending setting step)
상술한 (식1-1)에 휨관계변수를 대입하여 변수들 사이의 상관 관계를 도출한다.By substituting the flexural relationship variable in (Equation 1-1) described above, the correlation between the variables is derived.
(
Figure PCTKR2019015915-appb-I000145
설정단계)
(
Figure PCTKR2019015915-appb-I000145
Setting stage)
상술한 (식1-2)에 휨관계변수를 대입하여 변수들 사이의 상관 관계를 도출한다.By substituting the flexural relationship variable in (Equation 1-2) described above, the correlation between the variables is derived.
(
Figure PCTKR2019015915-appb-I000146
설정단계)
(
Figure PCTKR2019015915-appb-I000146
Setting stage)
상술한 (식1-3)에 휨관계변수를 대입하여 변수들 사이의 상관 관계를 도출한다.By substituting the flexural relationship variable in (Equation 1-3) described above, the correlation between the variables is derived.
(휨설정비교단계)(Bending setting comparison step)
상술한 (식1-4)를 이용하여
Figure PCTKR2019015915-appb-I000147
Figure PCTKR2019015915-appb-I000148
과 기설정된
Figure PCTKR2019015915-appb-I000149
를 비교한다.
Figure PCTKR2019015915-appb-I000150
과 기설정된
Figure PCTKR2019015915-appb-I000151
의 관계에서 상술한 (식1-4)를 만족할 때까지 반복적으로
Figure PCTKR2019015915-appb-I000152
의 예상값을 수정한다. 이에 따라,
Figure PCTKR2019015915-appb-I000153
의 예상값을 통해 휨보강을 위한 복합탄성층(23)의 두께를 설정할 수 있다.
Using the above (Equation 1-4)
Figure PCTKR2019015915-appb-I000147
Figure PCTKR2019015915-appb-I000148
And preset
Figure PCTKR2019015915-appb-I000149
Compare
Figure PCTKR2019015915-appb-I000150
And preset
Figure PCTKR2019015915-appb-I000151
Until the above-described (Equation 1-4) is satisfied in the relationship of
Figure PCTKR2019015915-appb-I000152
Correct the expected value of. Accordingly,
Figure PCTKR2019015915-appb-I000153
The thickness of the composite elastic layer 23 for flexural reinforcement can be set through the expected value of.
일예로,
Figure PCTKR2019015915-appb-I000154
과 기설정된
Figure PCTKR2019015915-appb-I000155
의 비교 결과,
Figure PCTKR2019015915-appb-I000156
과 기설정된
Figure PCTKR2019015915-appb-I000157
의 차이가 휨보강오차범위에 해당되는 경우,
Figure PCTKR2019015915-appb-I000158
가정단계에서 가정한 예상값인
Figure PCTKR2019015915-appb-I000159
를 휨보강을 위한 두께로 설정할 수 있다.
For example,
Figure PCTKR2019015915-appb-I000154
And preset
Figure PCTKR2019015915-appb-I000155
The comparison result of,
Figure PCTKR2019015915-appb-I000156
And preset
Figure PCTKR2019015915-appb-I000157
If the difference in falls within the range of bending reinforcement error,
Figure PCTKR2019015915-appb-I000158
The estimated value assumed at the assumption stage
Figure PCTKR2019015915-appb-I000159
Can be set as the thickness for flexural reinforcement.
다른 예로,
Figure PCTKR2019015915-appb-I000160
과 기설정된
Figure PCTKR2019015915-appb-I000161
의 비교 결과,
Figure PCTKR2019015915-appb-I000162
과 기설정된
Figure PCTKR2019015915-appb-I000163
의 차이가 휨보강오차범위를 벗어나는 경우,
Figure PCTKR2019015915-appb-I000164
를 반복적으로 가정할 수 있다. 다시 말해,
Figure PCTKR2019015915-appb-I000165
과 기설정된
Figure PCTKR2019015915-appb-I000166
의 비교 결과,
Figure PCTKR2019015915-appb-I000167
과 기설정된
Figure PCTKR2019015915-appb-I000168
의 차이가 휨보강오차범위를 벗어나는 경우, 가정단계로 복귀하여 tp에 대한 예상값을 변경하고, 후속단계를 순차적으로 다시 실시함으로써,
Figure PCTKR2019015915-appb-I000169
과 기설정된
Figure PCTKR2019015915-appb-I000170
의 차이가 휨보강오차범위에 포함되도록 할 수 있다.
In another example,
Figure PCTKR2019015915-appb-I000160
And preset
Figure PCTKR2019015915-appb-I000161
The comparison result of,
Figure PCTKR2019015915-appb-I000162
And preset
Figure PCTKR2019015915-appb-I000163
If the difference of is out of the range of the flexural reinforcement error,
Figure PCTKR2019015915-appb-I000164
Can be assumed repeatedly. In other words,
Figure PCTKR2019015915-appb-I000165
And preset
Figure PCTKR2019015915-appb-I000166
The comparison result of,
Figure PCTKR2019015915-appb-I000167
And preset
Figure PCTKR2019015915-appb-I000168
If the difference in is out of the flexural reinforcement error range, return to the assumption step, change the expected value for tp, and perform the subsequent steps sequentially again,
Figure PCTKR2019015915-appb-I000169
And preset
Figure PCTKR2019015915-appb-I000170
The difference of can be made to be included in the bending reinforcement error range.
둘째, 전단보강설계식을 이용하여 전단보강 설계 프로세스를 거침으로써, 복합탄성층(23)의 두께를 설정할 수 있다.Second, by going through the shear reinforcement design process using the shear reinforcement design equation, the thickness of the composite elastic layer 23 can be set.
전단보강설계식은
Figure PCTKR2019015915-appb-I000171
에 대하여 다음의 (식2-1)과 (식2-2)를 만족하고,
Figure PCTKR2019015915-appb-I000172
에 대하여 다음의 (식2-3)을 만족하며, 식 (2-4)를 만족하는
Figure PCTKR2019015915-appb-I000173
에 대한 식 (2-5)를 만족할 때까지 반복적으로
Figure PCTKR2019015915-appb-I000174
의 예상값을 수정한다. 이에 따라,
Figure PCTKR2019015915-appb-I000175
의 예상값을 통해 전단보강을 위한 복합탄성층(23)의 두께를 설정할 수 있다.
The shear reinforcement design formula is
Figure PCTKR2019015915-appb-I000171
With respect to the following (Equation 2-1) and (Equation 2-2) are satisfied,
Figure PCTKR2019015915-appb-I000172
Satisfies the following (Equation 2-3) and satisfies Equation (2-4)
Figure PCTKR2019015915-appb-I000173
Repeatedly until it satisfies the equation (2-5) for
Figure PCTKR2019015915-appb-I000174
Correct the expected value of. Accordingly,
Figure PCTKR2019015915-appb-I000175
The thickness of the composite elastic layer 23 for shear reinforcement can be set through the expected value of.
Figure PCTKR2019015915-appb-I000176
.........................(식 2-1)
Figure PCTKR2019015915-appb-I000176
.........................(Equation 2-1)
Figure PCTKR2019015915-appb-I000177
...............(식 2-2)
Figure PCTKR2019015915-appb-I000177
...............(Equation 2-2)
Figure PCTKR2019015915-appb-I000178
................................(식 2-3)
Figure PCTKR2019015915-appb-I000178
................................(Equation 2-3)
Figure PCTKR2019015915-appb-I000179
.........................(식 2-4)
Figure PCTKR2019015915-appb-I000179
.........................(Equation 2-4)
Figure PCTKR2019015915-appb-I000180
...............................(식 2-5)
Figure PCTKR2019015915-appb-I000180
...............................(Equation 2-5)
Figure PCTKR2019015915-appb-I000181
: 전단철근의 단면적
Figure PCTKR2019015915-appb-I000182
Figure PCTKR2019015915-appb-I000181
: Cross-sectional area of shear reinforcement
Figure PCTKR2019015915-appb-I000182
Figure PCTKR2019015915-appb-I000183
: 보의 폭
Figure PCTKR2019015915-appb-I000184
Figure PCTKR2019015915-appb-I000183
: Beam width
Figure PCTKR2019015915-appb-I000184
Figure PCTKR2019015915-appb-I000185
: 보의 유효깊이
Figure PCTKR2019015915-appb-I000186
Figure PCTKR2019015915-appb-I000185
: Effective depth of beam
Figure PCTKR2019015915-appb-I000186
Figure PCTKR2019015915-appb-I000187
: 콘크리트 압축강도
Figure PCTKR2019015915-appb-I000188
Figure PCTKR2019015915-appb-I000187
: Concrete compressive strength
Figure PCTKR2019015915-appb-I000188
Figure PCTKR2019015915-appb-I000189
: 복합탄성층의 인장강도
Figure PCTKR2019015915-appb-I000190
Figure PCTKR2019015915-appb-I000189
: Tensile strength of composite elastic layer
Figure PCTKR2019015915-appb-I000190
Figure PCTKR2019015915-appb-I000191
: 전단철근의 항복강도
Figure PCTKR2019015915-appb-I000192
Figure PCTKR2019015915-appb-I000191
: Yield strength of shear reinforcement
Figure PCTKR2019015915-appb-I000192
Figure PCTKR2019015915-appb-I000193
: 복합탄성층의 두께
Figure PCTKR2019015915-appb-I000194
Figure PCTKR2019015915-appb-I000193
: Thickness of composite elastic layer
Figure PCTKR2019015915-appb-I000194
Figure PCTKR2019015915-appb-I000195
: 콘크리트가 부담하는 전단내력,
Figure PCTKR2019015915-appb-I000196
,
Figure PCTKR2019015915-appb-I000197
Figure PCTKR2019015915-appb-I000195
: Shear strength borne by concrete,
Figure PCTKR2019015915-appb-I000196
,
Figure PCTKR2019015915-appb-I000197
Figure PCTKR2019015915-appb-I000198
: 공칭 전단내력
Figure PCTKR2019015915-appb-I000199
Figure PCTKR2019015915-appb-I000198
: Nominal shear strength
Figure PCTKR2019015915-appb-I000199
Figure PCTKR2019015915-appb-I000200
: 복합탄성층이 부담하는 전단내력
Figure PCTKR2019015915-appb-I000201
Figure PCTKR2019015915-appb-I000200
: Shear strength borne by the composite elastic layer
Figure PCTKR2019015915-appb-I000201
Figure PCTKR2019015915-appb-I000202
: 전단철근이 부담하는 전단내력
Figure PCTKR2019015915-appb-I000203
Figure PCTKR2019015915-appb-I000202
: Shear strength borne by shear reinforcing bars
Figure PCTKR2019015915-appb-I000203
Figure PCTKR2019015915-appb-I000204
: 설계전단내력
Figure PCTKR2019015915-appb-I000205
Figure PCTKR2019015915-appb-I000204
: Design shear strength
Figure PCTKR2019015915-appb-I000205
Figure PCTKR2019015915-appb-I000206
: 전단에 대한 강도감소계수
Figure PCTKR2019015915-appb-I000206
: Strength reduction factor for shear
이에 따라, 전단보강설계식을 이용한 전단보강 설계 프로세스는
Figure PCTKR2019015915-appb-I000207
설정단계와,
Figure PCTKR2019015915-appb-I000208
설정단계와,
Figure PCTKR2019015915-appb-I000209
설정단계와, 전단설정비교단계를 포함할 수 있다.
Accordingly, the shear reinforcement design process using the shear reinforcement design equation
Figure PCTKR2019015915-appb-I000207
The setting stage and,
Figure PCTKR2019015915-appb-I000208
The setting stage and,
Figure PCTKR2019015915-appb-I000209
It may include a setting step and a shear setting comparison step.
(
Figure PCTKR2019015915-appb-I000210
설정단계)
(
Figure PCTKR2019015915-appb-I000210
Setting stage)
상술한 (식2-1)과 (2-2)에 전단관계변수를 대입하여 변수들 사이의 상관 관계를 도출한다.The correlation between the variables is derived by substituting the shear relationship variable in (Equations 2-1) and (2-2) described above.
(
Figure PCTKR2019015915-appb-I000211
설정단계)
(
Figure PCTKR2019015915-appb-I000211
Setting stage)
상술한 (식2-3)에 전단관계변수를 대입하여 변수들 사이의 상관 관계를 도출한다.The correlation between the variables is derived by substituting the shear relationship variable in (Equation 2-3) described above.
(
Figure PCTKR2019015915-appb-I000212
설정단계)
(
Figure PCTKR2019015915-appb-I000212
Setting stage)
상술한 (식2-4)에 전단관계변수를 대입하여 변수들 사이의 상관 관계를 도출한다.The correlation between the variables is derived by substituting the shear relationship variable in (Equation 2-4) described above.
(전단설정비교단계)(Shear setting comparison step)
상술한 (식2-5)를 이용하여
Figure PCTKR2019015915-appb-I000213
과 기설정된
Figure PCTKR2019015915-appb-I000214
를 비교한다.
Using the above (Equation 2-5)
Figure PCTKR2019015915-appb-I000213
And preset
Figure PCTKR2019015915-appb-I000214
Compare
식 (2-4)를 만족하는
Figure PCTKR2019015915-appb-I000215
에 대한 식 (2-5)를 만족할 때까지 반복적으로
Figure PCTKR2019015915-appb-I000216
의 예상값을 수정한다. 이에 따라,
Figure PCTKR2019015915-appb-I000217
의 예상값을 통해 전단보강을 위한 복합탄성층(23)의 두께를 설정할 수 있다.
Satisfying Equation (2-4)
Figure PCTKR2019015915-appb-I000215
Repeatedly until it satisfies the equation (2-5) for
Figure PCTKR2019015915-appb-I000216
Correct the expected value of. Accordingly,
Figure PCTKR2019015915-appb-I000217
The thickness of the composite elastic layer 23 for shear reinforcement can be set through the expected value of.
중도층(22)은 하도층(21)에 도포된다. 중도층(22)에는 상도층(24)이 도포될 수 있다. 중도층(22)은 후술하는 중도단계(S22)를 통해 구조체(10)의 표면에서 하도층(21)에 도포될 수 있다.The intermediate layer 22 is applied to the undercoat layer 21. The top coat layer 24 may be applied to the middle coat layer 22. The intermediate layer 22 may be applied to the undercoat layer 21 on the surface of the structure 10 through an intermediate step (S22) to be described later.
상도층(24)은 복합탄성층(23)에 도포된다. 상도층(24)은 본 발명의 일 실예에 따른 구조보강용 층(20)의 표면을 마감한다. 상도층(24)은 후술하는 상도단계(S24)를 통해 구조체(10)의 표면에서 복합탄성층(23)에 도포될 수 있다.The top coat layer 24 is applied to the composite elastic layer 23. The top coat layer 24 finishes the surface of the structural reinforcement layer 20 according to an exemplary embodiment of the present invention. The top coat layer 24 may be applied to the composite elastic layer 23 on the surface of the structure 10 through a top coat step (S24) to be described later.
상술한 본 발명의 일 실예에 따른 구조보강용 층(20)에 대한 성능 테스트 결과, 무근콘크리트의 휨부재에 적용시 취성 재료인 콘크리트에 대해 연성이 증진되는 한편, 강도가 약 58%(최대 57.5%)까지 향상되는 것이 나타나고, 철근콘크리트의 휨부재에 적용시 2배 이상의 연성이 증진하는 한편, 강도가 최대 약 26%(최대 25.17%)까지 향상되는 것이 나타난다.As a result of the performance test of the structural reinforcing layer 20 according to an exemplary embodiment of the present invention, when applied to a flexural member of unrooted concrete, ductility is improved for the brittle material concrete, while the strength is about 58% (maximum 57.5). %), and when applied to a flexural member of reinforced concrete, the ductility is improved by more than two times, while the strength is improved up to about 26% (maximum 25.17%).
또한, 본 발명의 일 실예에 따른 구조보강용 층(20)이 구조체(10)에 적용됨으로써, 콘크리트의 에너지 소산 능력이 향상됨을 관찰할 수 있었고, 구조체(10)에 대한 강한 구속력을 통해 구조체(10)의 내력 향상은 물론 구조체(10)의 균열 억제, 구조체(10)의 연성 증가 성능을 관찰할 수 있었다.In addition, by applying the structural reinforcing layer 20 according to an exemplary embodiment of the present invention to the structure 10, it was observed that the energy dissipation ability of concrete is improved, and the structure ( 10), as well as improving the strength of the structure 10, it was possible to observe the ability to suppress the cracks and increase the ductility of the structure 10.
본 발명의 일 실시예에 따른 복합탄성중합체의 시공방법은 구조체(10)에 본 발명의 일 실예에 따른 구조보강용 층(20)을 도포하여 구조체(10)의 구조성능, 내진성능, 방폭성능을 향상시킬 수 있다. 또한, 구조체(10)에 본 발명의 일 실시예에 따른 복합탄성중합체의 시공방법이 적용됨으로써, 외부하중이나 충격 등을 포함한 외부요인들로 인해 저하된 구조체(10)의 성능을 회복시키는 한편, 지진에 대한 저항능력을 개선시킬 수 있다. 또한, 본 발명의 일 실시예에 따른 복합탄성중합체의 시공방법은 염화물이온의 침투저항성이 향상되고, 구조보강용 층(20)에서 표면의 잔갈라짐을 없애며, 내투수성 및 습기 투과성을 부여할 수 있다.The method of constructing a composite elastomer according to an embodiment of the present invention is to apply a structure reinforcing layer 20 according to an embodiment of the present invention to the structure 10 to provide structural performance, seismic performance, and explosion-proof performance of the structure 10. Can improve. In addition, by applying the construction method of the composite elastomer according to an embodiment of the present invention to the structure 10, while recovering the performance of the structure 10 degraded due to external factors including external loads or impacts, The ability to resist earthquakes can be improved. In addition, the construction method of the composite elastomer according to an embodiment of the present invention improves the penetration resistance of chloride ions, eliminates surface cracking in the structure reinforcing layer 20, and imparts water permeability and moisture permeability. I can.
또한, 본 발명의 일 실시예에 따른 복합탄성중합체의 시공방법은 종래에 비해 3단계의 보강층에서 분사식을 채택하므로, 외부요인들로 인해 넓은 면적에서 구조체(10)의 성능이 저하되더라도 시공의 간편함을 부여하고, 시공가격을 대폭 줄일 수 있으며, 공기 단축 및 인건비 단축을 초래하고, 복합탄성층(23)의 급결 성질(5분 이내, 최소 1분 이내)을 부여하며, 하도층(21) 또는 중도층(22)과의 접착성 및 상도층(24)과의 접착성이 향상되고, 분사 방식 시공에 따라 구조체(10)의 형상을 다양화할 수 있다.In addition, since the construction method of the composite elastomer according to an embodiment of the present invention adopts the spraying type in the three-stage reinforcing layer compared to the prior art, even if the performance of the structure 10 is degraded in a large area due to external factors, the construction is simple. It is possible to significantly reduce the construction cost, shorten the construction period and shorten the labor cost, give the rapid setting property (within 5 minutes, at least 1 minute) of the composite elastic layer 23, and the undercoat layer 21 or The adhesion to the intermediate layer 22 and the upper coat 24 are improved, and the shape of the structure 10 can be diversified according to the spray method construction.
일예로, 본 발명의 일 실시예에 따른 복합탄성중합체의 시공방법은 구조체(10) 중 철근 콘크리트 구조물, 특히, 철근 콘크리트 구조물의 보, 기둥, 슬래브 등 구조적으로 부재력이 부족한 부분에 복합탄성중합체 조성물을 코팅하는 방법이고, 구조체(10)의 내력 보강 및 보수 공사에 적용할 수 있다. 여기서, 복합탄성중합체는 폴리우레아-이소시아네이트와 아민으로 구성되는 2액형 탄성물질을 사용할 수 있고, 여기에 미세 분말 형태의 유리섬유를 기설정된 혼합비율로 혼합 가열하고, 이것을 보강하고자 하는 부위에 고압 분사하는 형태를 나타낸다. 이에 의해 형성되는 복합탄성층(23)은 순간적으로 완전히 접착(30초 이내)되므로, 복합탄성층(23)의 경화를 신속하게 하고, 복합탄성층(23)의 두께를 안정되게 형성한다. 따라서, 본 발명의 일 실시예에 따른 복합탄성중합체의 시공방법은 시공성이 우수하며, 우수한 접착성능으로 구조체(10)의 사용 성능을 증대시킬 수 있다.As an example, the method of constructing a composite elastomer according to an embodiment of the present invention is a composite elastomer composition in a structurally insufficient part of a reinforced concrete structure, particularly, a beam, a column, a slab, etc. of a reinforced concrete structure. It is a method of coating, and can be applied to the strength reinforcement and repair work of the structure (10). Here, as the composite elastomer, a two-component elastic material composed of polyurea-isocyanate and amine can be used, and glass fibers in the form of fine powder are mixed and heated at a preset mixing ratio, and high pressure sprayed on the part to be reinforced. It shows the form of doing. Since the composite elastic layer 23 formed thereby is completely bonded instantly (within 30 seconds), the curing of the composite elastic layer 23 is accelerated and the thickness of the composite elastic layer 23 is stably formed. Therefore, the construction method of the composite elastomer according to an embodiment of the present invention has excellent workability and can increase the use performance of the structure 10 with excellent adhesive performance.
특히, 본 발명의 일 실시예에 따른 복합탄성중합체의 시공방법은 미세 분말 형태의 유리섬유로 보강된 폴리우레아에 특징이 있다.In particular, the method of constructing a composite elastomer according to an embodiment of the present invention is characterized by a polyurea reinforced with glass fibers in the form of fine powder.
이에 따라, 폴리우레아에 유리섬유가 혼입된 복합탄성중합체는 우수한 보강 성능으로 구조체(10)의 전단 및 휨 강도를 개선하고 구조체의 균열을 억제 또는 방지하며, 구조체(10)에 가해지는 에너지 소산 효과를 나타낼 수 있다. 또한, 복합탄성중합체는 우수한 내균열성으로, 구조체(10) 또는 복합탄성층(23)에서 인장강도, 신장율이 뛰어나고, 균열에 대한 대응성능의 향상 효과를 나타낼 수 있다. 또한, 복합탄성중합체는 우수한 부착력으로 접촉면에서의 부착력이 기존 보강재보다 높고, 부풀음 또는 박리 등의 하자 원인이 감소되며, 부착 유지성능 및 보강 성능이 오래 유지되는 효과를 나타낼 수 있다. 또한, 복합탄성중합체는 빠른 시공속도로, 도포 후 5분 이내에 복합탄성층을 완전히 급결할 수 있고, 건축물에서의 사용을 용이하게 할 수 있다. 또한, 복합탄성중합체는 탁월한 시공성으로 구조체의 형상에 제약이 없이 보강이 가능하고, 시공성을 우수하게 하는 효과를 나타낼 수 있다. 또한, 복합탄성중합체는 인장강도, 인열강도, 내구성, 내약품성 등이 매우 우수하다. 또한, 복합탄성중합체는 도막두께(3mm, 5mm, 9mm 등)를 자유롭게 조정할 수 있고, 보강 효과 조절이 가능하다.Accordingly, the composite elastomer in which the glass fiber is mixed with the polyurea improves the shear and flexural strength of the structure 10 with excellent reinforcing performance, suppresses or prevents cracks in the structure, and dissipates energy applied to the structure 10 Can represent. In addition, the composite elastomer has excellent crack resistance, has excellent tensile strength and elongation in the structure 10 or the composite elastic layer 23, and may exhibit an effect of improving response performance against cracks. In addition, the composite elastomer may exhibit an effect that the adhesion on the contact surface is higher than that of the existing reinforcing material due to excellent adhesion, the cause of defects such as swelling or peeling is reduced, and the adhesion retention performance and the reinforcing performance are maintained for a long time. In addition, the composite elastomer can completely rapidly cure the composite elastomer layer within 5 minutes after application at a fast construction speed, and can be easily used in a building. In addition, the composite elastomer can be reinforced without restrictions on the shape of the structure due to its excellent workability, and can exhibit an effect of improving workability. In addition, the composite elastomer has excellent tensile strength, tear strength, durability, and chemical resistance. In addition, the composite elastomer can freely adjust the coating thickness (3mm, 5mm, 9mm, etc.), and the reinforcing effect can be adjusted.
본 발명의 일 실시예에 따른 복합탄성중합체의 시공방법은 바탕처리단계(S1)와, 도장단계(S2)를 포함할 수 있다.The construction method of the composite elastomer according to an embodiment of the present invention may include a background treatment step (S1) and a painting step (S2).
<바탕처리단계(S1)><Base processing step (S1)>
본 발명의 일 실시예에 따른 복합탄성중합체 조성물을 시공하기 위한 구조체(10)의 표면에서 이물질을 제거한다.Foreign substances are removed from the surface of the structure 10 for constructing the composite elastomer composition according to an embodiment of the present invention.
구조체(10) 중 콘크리트 구조물에 대하여 신축인 경우, 콘크리트 부재는 상온(섭씨 18도 내지 섭씨 24도, 좀더 자세하게, 평균온도 섭씨 20도)이고 상대습도 80% 이하에서 최소 28일간 양생한다.In the case of new construction with respect to the concrete structure among the structures 10, the concrete member is at room temperature (18 degrees Celsius to 24 degrees Celsius, more specifically, an average temperature of 20 degrees Celsius) and is cured for at least 28 days at a relative humidity of 80% or less.
이때, 구조체(10)의 표면에서 표면함수율은 8% 이하가 되도록 건조시킴으로써, 하도층(21)과의 접착력이 저하되는 것을 방지하고, 완성된 구조보강용 층(20)에서 수분에 의한 불량 발생을 방지할 수 있다.At this time, by drying the surface of the structure 10 so that the surface moisture content is less than 8%, the adhesion with the undercoat layer 21 is prevented from deteriorating, and defects due to moisture occur in the finished structure reinforcing layer 20 Can be prevented.
구조체(10)의 표면은 블라스팅, 칩핑, 그라인딩 등의 표면처리 방식을 사용하여 표면처리함으로써, 구조체(10)의 표면에서 레이턴스, 먼지, 유분 등 이물질을 완전히 제거할 수 있다.The surface of the structure 10 is surface-treated using a surface treatment method such as blasting, chipping, or grinding, so that foreign substances such as latency, dust, and oil can be completely removed from the surface of the structure 10.
우레탄하도의 침투가 어려운 치밀한 구조의 구조체(10)의 표면에서는 하도피막이 형성되어 부착 불량을 유발시키므로, 우레탄하도의 침투가 원활하도록 구조체(10)의 표면에서 표면처리를 충분히 실시하도록 한다.Since the undercoat film is formed on the surface of the structure 10 having a dense structure where it is difficult to penetrate the urethane undercoat, it causes adhesion failure, so that the surface treatment is sufficiently performed on the surface of the structure 10 so that the penetration of the urethane undercoat is smooth.
구조체(10)의 표면에서 틈새, 흠, 균열이 심한 부분은 후프라이머공정 및 실링 공정을 부가하고, 구조체(10)의 표면을 다시 조정한 다음 후술하는 도장단계(S2)를 실시할수 있도록 한다.A post-primer process and a sealing process are added to the surface of the structure 10 with severe gaps, flaws, and cracks, the surface of the structure 10 is adjusted again, and then the painting step (S2) to be described later can be performed.
<도장단계(S2)> <Painting step (S2)>
바탕처리단계(S1)를 거친 다음, 구조체(10)의 표면에 복합탄성중합체 조성물을 도포한다.After passing through the background treatment step (S1), the composite elastomer composition is applied to the surface of the structure 10.
도장단계(S2)는 하도단계(S21)와, 복합탄성단계(S23)를 포함하고, 중도단계(S22)와 상도단계(S24) 중 적어도 어느 하나를 더 포함할 수 있다.The painting step (S2) includes an undercoat step (S21) and a complex elastic step (S23), and may further include at least one of an intermediate step (S22) and a topcoat step (S24).
구분division 제품명product name 도장방법Painting method 색상color 비고Remark
하도Hado 우레탄하도(프라이머)Urethane primer (primer) B,R,SB,R,S 투명Transparency 강도보강 및 부착성 향상Strength reinforcement and adhesion improvement
중도Midway 초강력 중도제(선택)Super strong moderator (optional) RAKE,RRAKE,R 모든색All colors 내구성, 내균열성, 부착력이 우수한 도막방수재Coating waterproofing material with excellent durability, crack resistance, and adhesion
복합탄성Complex elasticity 복합탄성중합체Composite elastomer SS 모든색All colors 초속경화형으로 폴리우레아에 미세유리섬유가 혼입된 도막보강재Ultra-fast curing type, coating reinforcement with fine glass fibers mixed with polyurea
상도normal course 상도 및 내화 처리Top coat and fireproof treatment B,R,SB,R,S 모든색All colors 내후성, 내마모성, 내약품성, 내화성 등이 우수한 마감재Finishing material with excellent weather resistance, abrasion resistance, chemical resistance, and fire resistance
여기서, "B" 는 붓을 의미하고, "R" 은 롤러를 의미하며, "S" 는 분사장치를 의미하고, "RAKE" 는 갈퀴를 의미한다. 특히, 복합탄성단계(S23)에서 "S" 는 고온 및 고압의 복합탄성중합체 전용의 시공을 위한 전용스프레이장치를 의미한다. 여기서, 전용스프레이장치는 등록특허공보 제10-1942962에 개시된 "복합탄성중합체 조성물 시공장치"의 전체 또는 일부를 차용할 수 있다.<하도단계(S21)>Here, "B" means a brush, "R" means a roller, "S" means an injection device, and "RAKE" means a rake. In particular, "S" in the composite elastic step (S23) refers to a dedicated spraying device for the construction of a high-temperature and high-pressure composite elastomer. Here, as the dedicated spray device, all or part of the "composite elastomer composition construction device" disclosed in Korean Patent Publication No. 10-1942962 may be borrowed.
바탕처리단계(S1)를 거친 다음, 구조체(10)의 표면에 하도층(21)을 형성한다.After passing through the background treatment step (S1), the undercoat layer 21 is formed on the surface of the structure 10.
바탕처리단계(S1)를 거친 다음, 바닥재인 우레탄하도(통상의 투명한 프라이머)를 붓, 롤러, 스프레이 등으로 구조체(10)의 표면에 충분히 흡수되도록 도포한다. 이때, 하도단계(S21)는 구조체(10)의 표면에서 부분적으로 후도막이 되지 않도록 균일하게 도포한다. 이에 따라, 하도단계(S21)는 통상 1회 또는 2회를 실시하여 구조체(10)의 표면에 우레탄하도가 충분히 흡수되도록 한다. 여기서, 하도층(21)의 두께는 약 50 마이크로미터를 나타낼 수 있다. 다른 표현으로, 하도층(21)의 두께는 복합탄성층(23)의 두께 대비 0.005~0.025의 비율을 나타낼 수 있다.After passing through the background treatment step (S1), a urethane primer (usually transparent primer), which is a flooring material, is applied to the surface of the structure 10 to be sufficiently absorbed with a brush, roller, spray, or the like. At this time, the undercoating step (S21) is uniformly applied so as not to partially form a thick film on the surface of the structure 10. Accordingly, the undercoat step (S21) is usually carried out once or twice so that the urethane undercoat is sufficiently absorbed on the surface of the structure 10. Here, the thickness of the undercoat layer 21 may represent about 50 micrometers. In other words, the thickness of the undercoat layer 21 may represent a ratio of 0.005 to 0.025 with respect to the thickness of the composite elastic layer 23.
우레탄하도의 흡습이 심한 부분에는 무회석으로 추가 도포할 수 있지만, 구조체(10)의 표면에 두꺼운 도막층이 형성되지 않도록 주의한다. 하도층(21)은 구조체의 표면에서 부실한 면이 없도록 하고, 양호한 경우에는 우레탄하도의 추가 도포가 필요하지 않게 된다.Although the urethane undercoat may be additionally applied with a non-gatherite to the part where moisture absorption is severe, care should be taken not to form a thick coating layer on the surface of the structure 10. The undercoating layer 21 ensures that there are no poor surfaces on the surface of the structure, and if it is good, no additional application of the urethane undercoat is required.
하도층(21)을 형성하고 난 다음, 우천시는 하도층(21)을 그라인딩(Grinding)하여 제거하고, 구조체(10)의 표면에서 수분을 완전히 제거(함수율 6~8% 이하)한 다음, 하도층(21)이 형성되도록 한다.After forming the undercoat layer 21, in case of rain, the undercoat layer 21 is removed by grinding, and moisture is completely removed from the surface of the structure 10 (moisture content is 6-8% or less), and then the undercoat layer 21 is removed by grinding. Allow the layer 21 to be formed.
우레탄하도의 침투가 어려운 구조체(10)의 표면은 하도층(21)이 두껍게 형성되지 않도록 우레탄하도를 50% 이상 과량 희석하여 구조체(10)의 표면 내부로 침투가 용이하도록 조치한다.The surface of the structure 10, where it is difficult to penetrate the urethane undercoat, is taken to facilitate penetration into the surface of the structure 10 by excessively diluting the urethane undercoat by 50% or more so that the undercoat layer 21 is not formed thick.
구조체(10)의 표면에서 하도층(21)이 형성되지 않은 부분은 중도층(22) 또는 복합탄성층(23)을 형성할 때, 기포가 발생될 수 있으므로, 반드시 빠짐없이 도포하여야 한다.When forming the intermediate layer 22 or the composite elastic layer 23 on the surface of the structure 10 where the undercoat layer 21 is not formed, bubbles may be generated, and therefore must be applied without missing.
<복합탄성단계(S22)><Complex elastic step (S22)>
하도단계(S21)를 거친 다음, 하도층(21)의 표면에 복합탄성층(23)을 형성한다. 여기서, 복합탄성층(23)에는 복합탄성중합체 조성물이 포함된다. 복합탄성단계(S23)는 상술한 전용스프레이장치를 사용할 수 있다.After going through the undercoating step (S21), a composite elastic layer 23 is formed on the surface of the undercoating layer 21. Here, the composite elastic layer 23 includes a composite elastomer composition. In the complex elastic step (S23), the above-described dedicated spray device may be used.
여기서, 복합탄성층(23)의 두께는 약 2~10 mm, 좀더 자세하게, 2~9 mm 를 나타낼 수 있다.Here, the thickness of the composite elastic layer 23 may be about 2 to 10 mm, more specifically, 2 to 9 mm.
형성하고자 하는 복합탄성층(23)의 주위에는 사전에 적당한 보호자재(마스킹 또는 비닐 등)로 포장하여 시공 시 오염이 없도록 하여야 한다.Around the composite elastic layer 23 to be formed, it should be packaged with suitable protective materials (masking or vinyl, etc.) in advance so that there is no contamination during construction.
하도층(21) 또는 중도층(22)을 형성하고 난 다음에는 최소 2시간 경과 후 하도층(21) 또는 중도층(22)의 오염물을 제거하여 하도층(21) 또는 중도층(22)의 마모를 방지할 수 있다.After forming the lower layer 21 or the middle layer 22, after at least 2 hours have elapsed, the contaminants of the lower layer 21 or the middle layer 22 are removed. It can prevent wear.
상술한 바와 같이 보강목적에 따라 휨보강설계식과 전단보강설계식 중 어느 하나를 이용함으로써, 복합탄성층(23)의 두께 및 소요되는 복합탄성중합체의 소모량을 정확히 계산하고, 주제의 공급에 앞서 폴리우레아와 유리섬유가 균일 혼합물이 되도록 충분히 혼합한다. 전용스프레이장치는 주제인 복합탄성중합체와 경화제를 기설정된 혼합비(1:1 비율)로 정확히 혼합하여 분사되도록 한다.As described above, by using one of the flexural reinforcement design formula and the shear reinforcement design formula according to the reinforcing purpose, the thickness of the composite elastic layer 23 and the required consumption of the composite elastomer are accurately calculated, and poly Mix enough so that urea and glass fiber are uniformly mixed The dedicated spraying device accurately mixes and sprays the composite elastomer, which is the main material, and the hardener at a preset mixing ratio (1:1 ratio).
전용스프레이장치는 폴리우레아에 유리섬유가 혼입된 복합탄성중합체 전용의 스프레이 장치이고, 충돌혼합식으로 폴리우레아와 유리섬유를 혼합할 수 있다. 전용스프레이장치의 작업조건에 있어서, 플랫패턴의 노즐인 경우, 노즐구경은 0.024~0.048 inch 를 나타내고, 라운드패턴의 노즐인 경우, 노즐구경은 0.020~0.086 inch 를 나타내며, 분사압력은 2000~3000 psi 를 나타내고, 분사각도는 30~60 도 를 나타내며, 분사거리는 약 60cm 에서 오차범위를 10cm 이내로 나타내고, 포장용기 내의 주제와 경화제 온도는 각각 섭씨 10~35 도 를 나타내며, 분사를 위한 히팅온도에 대해 PTA와 PTB는 각각 섭씨 60~75 도 를 나타낼 수 있다.The dedicated spray device is a spray device exclusively for composite elastomers in which glass fibers are mixed with polyurea, and can mix polyurea and glass fibers by a collision mixing method. In the working conditions of the dedicated spray device, in the case of a flat pattern nozzle, the nozzle diameter is 0.024 to 0.048 inch, in the case of a round pattern nozzle, the nozzle diameter is 0.020 to 0.086 inch, and the spray pressure is 2000 to 3000 psi. And the spraying angle represents 30 to 60 degrees, the spray distance is about 60 cm and the error range is within 10 cm, the temperature of the main body and the hardener in the packaging are 10 to 35 degrees Celsius, respectively, and PTA for the heating temperature for spraying And PTB may represent 60 to 75 degrees Celsius, respectively.
통상, 포장용기 내의 주제와 경화제는 섭씨 10도 이하로 낮아지는 것을 방지해야 한다. 이에 따라, 포장용기 내의 주제와 경화제는 드럼히터를 사용하여 가온하거나, 미리 가온된 상태를 유지시킴으로써, 대기 환경에 의해 포장용기 내의 주제와 경화제의 온도가 낮아지는 것을 방지할 수 있다.Normally, the base material and hardener in the packaging should be prevented from falling below 10 degrees Celsius. Accordingly, the main body and the curing agent in the packaging container can be heated using a drum heater or maintained in a pre-warmed state, thereby preventing the temperature of the main body and the curing agent in the packaging container from lowering due to the atmospheric environment.
또한, 압력의 불균일에 의해 전용스프레이장치가 멈출 경우, PTA 온도를 PTB온도보다 섭씨 5~10도 높게 세팅하여 장치의 멈춤 현상을 방지할 수 있다. 일예로, PTA 온도가 섭씨 70도로 설정되는 경우, PTB 온도는 섭씨 60~65도로 설정할 수 있다.In addition, when the dedicated spray device is stopped due to uneven pressure, the PTA temperature can be set 5 to 10 degrees Celsius higher than the PTB temperature to prevent the device from stopping. For example, when the PTA temperature is set to 70 degrees Celsius, the PTB temperature may be set to 60 to 65 degrees Celsius.
구조체(10)의 표면에서 부풀음 등이 발생되는 경우, 발생 부위를 제거하거나 그라인딩을 실시한 다음, 퍼티 또는 실링제 등으로 메꿈 후 후속 도포한다.When swelling or the like occurs on the surface of the structure 10, the site of occurrence is removed or grinding is performed, and then it is covered with a putty or a sealing agent, and then applied.
복합탄성층(23)의 형성시 스프레이 건이나 설비 트러블로 인하여 주제 및 경화제 중 어느 하나가 과량도포 되는 경우, 오염된 부분을 닦아내고, 약품 처리한 다음, 재도장을 실시할 수 있다.When any one of the main material and the hardener is excessively applied due to a spray gun or equipment trouble during the formation of the composite elastic layer 23, the contaminated part may be wiped off, treated with chemicals, and then repainted.
<중도단계(S23)><Intermediate step (S23)>
복합탄성단계(S23)에 앞서, 하도층(21)의 표면에 증도층을 형성한다. 중도층(22)은 공지된 다양한 도막방수제를 사용할 수 있고, 본 발명의 일 실시예에서는 복합탄성중합체에 적용된 폴리우레아를 사용할 수 있다.Prior to the complex elastic step (S23), a thickening layer is formed on the surface of the undercoat layer 21. The intermediate layer 22 may be formed of various known waterproofing agents, and in an embodiment of the present invention, polyurea applied to the composite elastomer may be used.
여기서, 중도층(22)의 두께는 약 500 마이크로미터를 나타낼 수 있다. 다른 표현으로, 중도층(22)의 두께는 복합탄성층(23)의 두께 대비 0.05~0.25의 비율을 나타낼 수 있다.Here, the thickness of the intermediate layer 22 may represent about 500 micrometers. In other words, the thickness of the intermediate layer 22 may represent a ratio of 0.05 to 0.25 with respect to the thickness of the composite elastic layer 23.
하도층(21)을 형성하고 난 다음에는 최소 2시간 경과 후 하도층(21)의 오염물을 제거하여 하도층(21)의 마모를 방지할 수 있다.After forming the undercoat layer 21, after at least 2 hours elapse, contaminants of the undercoat layer 21 may be removed to prevent abrasion of the undercoat layer 21.
중도층(22)의 형성시 스프레이 건이나 설비 트러블로 인하여 주제 및 경화제 중 어느 하나가 과량도포 되는 경우, 오염된 부분을 닦아내고, 약품 처리한 다음, 재도장을 실시할 수 있다.When the intermediate layer 22 is formed, if any one of the main material and the hardener is excessively applied due to a spray gun or equipment trouble, the contaminated part may be wiped off, treated with chemicals, and then repainted.
<상도단계(S24)><Top coat step (S24)>
복합탄성단계(S23)를 거친 다음, 복합탄성층(23)의 표면에 상도층(24)을 형성한다. 상도층(24)은 공지된 다양한 형태의 마감재 또는 내화제를 사용할 수 있다.After passing through the complex elastic step (S23), a top coat layer 24 is formed on the surface of the complex elastic layer 23. The top coat layer 24 may use various types of known finishing materials or fireproofing agents.
복합탄성층(23)을 형성한 다음에는, 복합탄성층(23)의 표면에서 오염물을 제거하고, 상온에서 48시간 이내에 붓, 롤러, 스프레이 등을 사용하여 도포할 수 있다. 이때, 상도단계(S24)는 복합탄성층(23)의 표면에서 부분적으로 후도막이 되지 않도록 균일하게 도포한다. 이에 따라, 상도단계(S24)는 통상 1회 또는 2회를 실시하여 복합탄성층(23)의 표면을 충분히 감쌀 수 있다. 여기서, 상도층(24)의 두께는 약 50 마이크로미터를 나타낼 수 있다. 다른 표현으로, 상도층(24)의 두께는 복합탄성층(23)의 두께 대비 0.005~0.025의 비율을 나타낼 수 있다.After the composite elastic layer 23 is formed, contaminants are removed from the surface of the composite elastic layer 23, and can be applied using a brush, roller, spray, or the like within 48 hours at room temperature. At this time, the top coat step (S24) is uniformly applied so that the surface of the composite elastic layer 23 is not partially thickened. Accordingly, the top coat step (S24) may be performed once or twice to sufficiently wrap the surface of the composite elastic layer 23. Here, the thickness of the top coat layer 24 may represent about 50 micrometers. In other words, the thickness of the top coat layer 24 may represent a ratio of 0.005 to 0.025 with respect to the thickness of the composite elastic layer 23.
상도층(24)은 라인마킹 후 원하는 색상의 "폴리우레아 상도" 로 붓, 롤러, 스프레이 등을 사용하여 도포할 수 있다.The top coat layer 24 may be applied using a brush, roller, spray, etc. with a "polyurea top coat" of a desired color after line marking.
상도층(24)을 형성함에 있어서, 상도는 과잉 희석 시 색 분리 및 은폐 불량이 발생될 수 있으므로, 반드시 지정희석제로 추천 희석량을 준수하는 것이 유리하다.In forming the top coat layer 24, since color separation and concealment defects may occur when the top coat is excessively diluted, it is advantageous to adhere to the recommended dilution amount with a designated diluent.
이러한 도장단계(S2)를 실시함에 있어서 다음의 주의사항을 준수함으로써, 하자 예방에 이바지할 수 있다.By observing the following precautions in carrying out this painting step (S2), it is possible to contribute to the prevention of defects.
첫째, 자재 보관 시 직사광선이나 화인으로부터 멀리 보관한다.First, when storing materials, keep them away from direct sunlight or fines.
둘째, 도장단계(S2)에 있어서, 분사방식을 이용하는 경우, 도포 전에 분사장치 내에서 재료를 충분히 교반시킨다. 특히, 전용스프레이장치인 경우, 제품의 온도가 섭씨 65~75도가 되었을 때 분사되도록 한다.Second, in the painting step (S2), when using the spraying method, the material is sufficiently stirred in the spraying device before application. In particular, in the case of a dedicated spray device, it should be sprayed when the temperature of the product reaches 65 to 75 degrees Celsius.
셋째, 도장단계(S2)에서의 소요량은 구조체(10)의 표면상태, 도포방법 및 도포조건에 따라 차이가 날 수 있으므로, 주변 조건을 고려하여 소요량을 조절한다.Third, since the required amount in the painting step (S2) may vary depending on the surface condition of the structure 10, the application method, and the application conditions, the required amount is adjusted in consideration of the surrounding conditions.
넷째, 희석 시 물성에 영향을 미치므로 절대 희석하지 않는다.Fourth, do not dilute absolutely because it affects the physical properties when dilution.
다섯째, 도장단계(S2)에 사용되는 기구는 사용 후 희석제로 여러 번 세척하여 보관한다.Fifth, the equipment used in the painting step (S2) is washed several times with a diluent after use and stored.
상술한 복합탄성중합체 조성물과 구조보강용 층 그리고 복합탄성중합체의 시공방법에 따르면, 폴리우레아에 미분말의 파이버인 유리섬유를 혼입한 복합탄성중합체를 형성하고, 이를 구조체(10)의 표면에 도포함으로써, 외부하중이나 충격 등을 포함한 외부요인들로 인해 저하된 구조체(10)의 구조성능, 내진성능, 방폭성능을 향상시킬 수 있다.According to the above-described composite elastomer composition, the structure reinforcing layer, and the construction method of the composite elastomer, a composite elastomer is formed in which glass fibers, which are finely powdered fibers, are mixed with polyurea and applied to the surface of the structure 10. , It is possible to improve the structural performance, seismic performance, and explosion-proof performance of the structure 10 degraded due to external factors including external loads or impacts.
또한, 구조체(10)의 전체표면은 물론 구조체(10)에서 보강이 필요한 국소표면에 용이하게 도포할 수 있으므로, 경제성 및 비용 절감 효과, 도포 공정의 신속성을 나타내고, 구조체(10)의 국소표면에 도포되더라도 외부요인들로 인해 저하된 구조체(10)에서 복합탄성중합체가 갖는 구조성능, 내진성능, 방폭성능을 유지시킬 수 있다.In addition, since it can be easily applied not only to the entire surface of the structure 10 but also to the local surface that needs reinforcement in the structure 10, it shows economical efficiency and cost reduction effect, and speed of the application process. Even if applied, it is possible to maintain the structural performance, seismic performance, and explosion-proof performance of the composite elastomer in the structure 10 degraded due to external factors.
또한, 폴리우레아와 유리섬유의 별도 시공 및 반복 시공에 따른 번거로움과 기능 향상에 한계가 있지만, 본 발명은 폴리우레아에 유리섬유가 혼입된 복합탄성중합체를 사용함으로써, 소요강도에 따라 도포두께의 설계 및 조절을 용이하게 하고, 보강층(20)에서 강도 및 연성을 증진시킬 수 있다.In addition, there is a limit to the hassle and function improvement due to separate construction and repeated construction of polyurea and glass fiber, but the present invention uses a composite elastomer in which glass fiber is mixed with polyurea, so that the thickness of the coating depends on the required strength. Design and control can be facilitated, and strength and ductility in the reinforcing layer 20 can be improved.
또한, 구조체의 안전진단을 통해 내력을 보강할 경우, 철판 보강 또는 탄소섬유시트 보강보다 시공이 용이하고, 소요내력이 단지 보강두께에 의해 결정되므로, 경제적으로 내력보강을 실시할 수 있으며, 복합탄성중합체의 활용가치를 크게 할 수 있다. 특히, 지진으로 인한 피해가 있는 구조체(특히, 조적조, 타일 등과 같은 외부 치장용 마감재 또는 커튼월 등)의 표면에 도포됨으로써, 탈락을 충분히 방지할 수 있고, 경제적이며, 간편한 시공기법을 제안하고, 복합탄성중합체의 활용가지를 크게 할 수 있다.In addition, in the case of reinforcing the strength through the safety diagnosis of the structure, it is easier to construct than reinforced steel plate or carbon fiber sheet, and the required strength is determined only by the reinforcement thickness, so it is possible to economically perform strength reinforcement The application value of the polymer can be increased. In particular, by being applied to the surface of structures (especially, exterior decorative finishes such as masonry, tiles, curtain walls, etc.) damaged by earthquakes, it is possible to sufficiently prevent dropping, and propose an economical and simple construction technique. The application of composite elastomers can be increased.
또한, 폴리우레아와 유리섬유의 혼합비율을 한정함으로써, 구조체(10)의 표면에 복합탄성중합체 조성물을 도포할 때, 취성 재료인 구조체(특히, 콘크리트 구조물)의 휨강도, 전단강도, 연성, 방폭성능을 향상시키고, 시공이 용이하며, 공기 단축에 효율적이다. 또한, 폴리우레아와 유리섬유의 혼합비율을 한정함으로써, 복합탄성중합체 조성물이 복합탄성층(23)을 형성함에 있어서, 구조체(10) 또는 복합탄성층의 인장강도 20~30 N/mm2, 구조체(10) 파단시 구조체(10) 또는 복합탄성층(23)의 신장율 350~380 %, 구조체(10)에서 복합탄성층(23)의 접착성능 2.2~2.5 N/mm2 이상을 나타낼 수 있다.In addition, by limiting the mixing ratio of polyurea and glass fiber, when applying the composite elastomer composition to the surface of the structure 10, the flexural strength, shear strength, ductility, and explosion-proof performance of the structure (especially concrete structure), which is a brittle material. It improves the structure, is easy to construct, and is effective in shortening the construction period. In addition, by limiting the mixing ratio of polyurea and glass fiber, when the composite elastomer composition forms the composite elastic layer 23, the tensile strength of the structure 10 or the composite elastic layer is 20 to 30 N/mm 2 , the structure (10) The elongation rate of the structure 10 or the composite elastic layer 23 at break may be 350 to 380%, and the adhesive performance of the composite elastic layer 23 in the structure 10 may be 2.2 to 2.5 N/mm 2 or more.
또한, 복합탄성층(23)의 두께를 설정함에 있어서, 보강목적에 따라 휨보강설계식과 전단보강설계식 중 어느 하나를 적용함으로써, 구조보강용 층(20)이 도포되는 구조체(10)의 특성에 대응하여 복합탄성층(23)의 두께을 간편하게 조절할 수 있고, 구조보강용 층(20)을 형성함에 있어서 재료의 오남용을 방지할 수 있다.In addition, in setting the thickness of the composite elastic layer 23, by applying any one of the flexural reinforcement design formula and the shear reinforcement design formula according to the reinforcing purpose, the characteristics of the structure 10 to which the structural reinforcement layer 20 is applied. In response, the thickness of the composite elastic layer 23 can be easily adjusted, and misuse of materials can be prevented in forming the structure reinforcing layer 20.
또한, 휨보강설계식을 통해 구조체(10)의 휨보강을 안정화시키고, 도포하고자 하는 구조체(10)에 대응하여 휨보강두께를 간편하게 설정할 수 있다.In addition, it is possible to stabilize the flexural reinforcement of the structure 10 through the flexural reinforcement design formula, and conveniently set the flexural reinforcement thickness corresponding to the structure 10 to be applied.
또한, 전단보강설계식을 통해 구조체(10)의 전단보강을 안정화시키고, 도포하고자 하는 구조체(10)에 대응하여 전단보강두께를 간편하게 설정할 수 있다.In addition, through the shear reinforcement design formula, the shear reinforcement of the structure 10 is stabilized, and the shear reinforcement thickness can be conveniently set in response to the structure 10 to be applied.
또한, 복합탄성층(23)의 두께를 한정함으로써, 구조체(10)의 성능저하 상태에 대응하여 구조체(10)의 강도 및 연성을 증진시킬 수 있다.In addition, by limiting the thickness of the composite elastic layer 23, it is possible to improve the strength and ductility of the structure 10 in response to the deteriorated state of the structure 10.
또한, 하도층(21)을 통해 구조체(10)의 강도보강을 용이하게 하고, 하도층(21)에 적층되는 중도층(22) 또는 복합탄성층(23)의 부착성을 향상시킬 수 있다.In addition, it is possible to easily reinforce the strength of the structure 10 through the undercoat layer 21, and improve the adhesion of the intermediate layer 22 or the composite elastic layer 23 stacked on the undercoat layer 21.
또한, 중도층(22)을 통해 구조체(10)의 내구성, 내균열성을 향상시키고, 하도층(21)과 복합탄성층(23) 사이의 부착력을 향상시킬 수 있다.In addition, durability and crack resistance of the structure 10 may be improved through the intermediate layer 22, and adhesion between the undercoat layer 21 and the composite elastic layer 23 may be improved.
또한, 복합탄성층(23)을 통해 구조체(10)의 성능 향상에 이바지하고, 하도층(21)과 상도층(24) 사이의 부착력, 중도층(22)과 상도층(24) 사이의 부착력을 향상시킬 수 있다.In addition, the composite elastic layer 23 contributes to the improvement of the performance of the structure 10, and the adhesion between the undercoat layer 21 and the upper coat layer 24, and the adhesion between the intermediate layer 22 and the upper coat layer 24 Can improve.
또한, 상도층(24)을 통해 구조체(10)의 표면을 마감하는 한편, 구조체(10)의 내후성, 내마모성, 내약품성, 내화성 등을 향상시킬 수 있다.In addition, while finishing the surface of the structure 10 through the top coat layer 24, weather resistance, abrasion resistance, chemical resistance, and fire resistance of the structure 10 may be improved.
상술한 바와 같이 도면을 참조하여 본 발명의 바람직한 실시예를 설명하였지만, 해당 기술분야의 숙련된 당업자라면, 하기의 청구범위에 기재된 본 발명의 사상 및 영역으로부터 벗어나지 않는 범위 내에서 본 발명을 다양하게 수정 또는 변경시킬 수 있다.As described above, preferred embodiments of the present invention have been described with reference to the drawings, but those skilled in the art will variously modify the present invention within the scope not departing from the spirit and scope of the present invention described in the following claims. Can be modified or changed.
본 발명은 폴리우레아에 미분말의 파이버인 유리섬유를 혼입한 복합탄성중합체를 형성하고, 이를 구조체의 표면에 도포함으로써, 외부하중이나 충격 등을 포함한 외부요인들로 인해 저하된 구조체의 구조성능, 내진성능, 방폭성능을 향상시킬 수 있는 복합탄성중합체 조성물과 구조보강용 층 그리고 복합탄성중합체의 시공방법에 적용할 수 있다.The present invention forms a composite elastomer obtained by mixing polyurea with glass fiber, which is a fine powder, and applies it to the surface of the structure. It can be applied to composite elastomer compositions that can improve performance and explosion-proof performance, structural reinforcing layers, and construction methods of composite elastomers.

Claims (10)

  1. 액상의 폴리우레아; 및Liquid polyurea; And
    상기 폴리우레아에 혼입되는 미세 분말 형태의 유리섬유;를 포함하되,Including; glass fibers in the form of fine powder mixed with the polyurea,
    상기 유리섬유는,The glass fiber,
    상기 폴리우레아 100 중량%를 기준으로 6~15 중량%가 혼입되는 것을 특징으로 하는 복합탄성중합체 조성물.Composite elastomer composition, characterized in that 6 to 15% by weight is incorporated based on 100% by weight of the polyurea.
  2. 액상의 폴리우레아; 및Liquid polyurea; And
    상기 폴리우레아에 혼입되는 미세 분말 형태의 유리섬유;를 포함하되,Including; glass fibers in the form of fine powder mixed with the polyurea,
    상기 유리섬유는,The glass fiber,
    상기 폴리우레아 100 체적%를 기준으로 8.5~25.5 체적%가 혼입되는 것을 특징으로 하는 복합탄성중합체 조성물.Composite elastomer composition, characterized in that 8.5 to 25.5 volume% is incorporated based on 100 volume% of the polyurea.
  3. 제1항 또는 제2항에 있어서,The method according to claim 1 or 2,
    상기 유리섬유의 밀도는 0.55~0.60 g/cc 를 나타내고,The density of the glass fiber represents 0.55 ~ 0.60 g / cc,
    상기 유리섬유의 수분율은 0.08 % 미만을 나타내는 것을 특징으로 하는 복합탄성중합체 조성물.The composite elastomer composition, characterized in that the moisture content of the glass fiber is less than 0.08%.
  4. 구조체의 표면에 도포되는 하도층; 및An undercoat layer applied to the surface of the structure; And
    상기 하도층에 도포되는 복합탄성층;을 포함하되,Including; a composite elastic layer applied to the undercoat layer,
    상기 복합탄성층은,The composite elastic layer,
    제1항 또는 제2항에 기재된 복합탄성중합체 조성물을 포함하는 것을 특징으로 하는 구조보강용 층.A layer for structural reinforcement comprising the composite elastomer composition according to claim 1 or 2.
  5. 제4항에 있어서,The method of claim 4,
    상기 복합탄성층의 두께는,The thickness of the composite elastic layer,
    보강목적에 따라 휨보강설계식과 전단보강설계식 중 어느 하나를 통해 설정되는 것을 특징으로 하는 구조보강용 층.A layer for structural reinforcement, characterized in that it is set through any one of a flexural reinforcement design formula and a shear reinforcement design formula according to the purpose of reinforcement.
  6. 제5항에 있어서,The method of claim 5,
    상기 휨보강설계식은,The flexural reinforcement design formula,
    Figure PCTKR2019015915-appb-I000218
    는 최소 20
    Figure PCTKR2019015915-appb-I000219
    이고,
    Figure PCTKR2019015915-appb-I000220
    를 가정할 때, 다음의 (식1-1)을 만족하고,
    Figure PCTKR2019015915-appb-I000221
    에 대하여 다음의 (식1-2)를 만족하며,
    Figure PCTKR2019015915-appb-I000222
    에 대하여 다음의 (식1-3)을 만족하고, (식 1-4)의
    Figure PCTKR2019015915-appb-I000223
    과 기설정된
    Figure PCTKR2019015915-appb-I000224
    의 관계를 만족할 때까지 반복적으로
    Figure PCTKR2019015915-appb-I000225
    의 예상값을 수정하는 것을 특징으로 하는 구조보강용 층.
    Figure PCTKR2019015915-appb-I000218
    Is at least 20
    Figure PCTKR2019015915-appb-I000219
    ego,
    Figure PCTKR2019015915-appb-I000220
    Assuming the following (Equation 1-1) is satisfied,
    Figure PCTKR2019015915-appb-I000221
    Satisfies the following (Equation 1-2) for,
    Figure PCTKR2019015915-appb-I000222
    With respect to the following (Equation 1-3), and (Equation 1-4)
    Figure PCTKR2019015915-appb-I000223
    And preset
    Figure PCTKR2019015915-appb-I000224
    Repeatedly until you are satisfied with your relationship
    Figure PCTKR2019015915-appb-I000225
    Structural reinforcement layer, characterized in that to correct the expected value of.
    Figure PCTKR2019015915-appb-I000226
    ..........(식1-1)
    Figure PCTKR2019015915-appb-I000226
    ..........(Equation 1-1)
    Figure PCTKR2019015915-appb-I000227
    ........................(식1-2)
    Figure PCTKR2019015915-appb-I000227
    ........................(Equation 1-2)
    Figure PCTKR2019015915-appb-I000228
    ..........(식1-3)
    Figure PCTKR2019015915-appb-I000228
    ..........(Equation 1-3)
    Figure PCTKR2019015915-appb-I000229
    ........................................(식1-4)
    Figure PCTKR2019015915-appb-I000229
    ........................................(Equation 1-4)
    Figure PCTKR2019015915-appb-I000230
    : 복합탄성층의 도포면적
    Figure PCTKR2019015915-appb-I000231
    Figure PCTKR2019015915-appb-I000230
    : Application area of composite elastic layer
    Figure PCTKR2019015915-appb-I000231
    Figure PCTKR2019015915-appb-I000232
    : 인장철근의 단면적
    Figure PCTKR2019015915-appb-I000233
    Figure PCTKR2019015915-appb-I000232
    : Cross-sectional area of tensile reinforcement
    Figure PCTKR2019015915-appb-I000233
    Figure PCTKR2019015915-appb-I000234
    : 압축철근의 단면적
    Figure PCTKR2019015915-appb-I000235
    Figure PCTKR2019015915-appb-I000234
    : Cross-sectional area of compression reinforcing bar
    Figure PCTKR2019015915-appb-I000235
    Figure PCTKR2019015915-appb-I000236
    : 압축연단으로부터 콘크리트의 장방형응력블록의 높이
    Figure PCTKR2019015915-appb-I000237
    Figure PCTKR2019015915-appb-I000236
    : Height of the rectangular stress block of concrete from the compression edge
    Figure PCTKR2019015915-appb-I000237
    Figure PCTKR2019015915-appb-I000238
    : 보의 폭
    Figure PCTKR2019015915-appb-I000239
    Figure PCTKR2019015915-appb-I000238
    : Beam width
    Figure PCTKR2019015915-appb-I000239
    Figure PCTKR2019015915-appb-I000240
    : 압축연단으로부터 중립축까지의 거리
    Figure PCTKR2019015915-appb-I000241
    Figure PCTKR2019015915-appb-I000240
    : Distance from compression edge to neutral axis
    Figure PCTKR2019015915-appb-I000241
    Figure PCTKR2019015915-appb-I000242
    : 보의 유효깊이
    Figure PCTKR2019015915-appb-I000243
    Figure PCTKR2019015915-appb-I000242
    : Effective depth of beam
    Figure PCTKR2019015915-appb-I000243
    Figure PCTKR2019015915-appb-I000244
    : 압축연단으로부터 압축철근 중심까지의 거리
    Figure PCTKR2019015915-appb-I000245
    Figure PCTKR2019015915-appb-I000244
    : Distance from the compression edge to the center of the compression reinforcing bar
    Figure PCTKR2019015915-appb-I000245
    Figure PCTKR2019015915-appb-I000246
    : 인장연단으로부터 보강되는 복합탄성층의 도심까지의 거리
    Figure PCTKR2019015915-appb-I000247
    Figure PCTKR2019015915-appb-I000246
    : Distance from the tensile edge to the center of the reinforced composite elastic layer
    Figure PCTKR2019015915-appb-I000247
    Figure PCTKR2019015915-appb-I000248
    : 콘크리트 압축강도
    Figure PCTKR2019015915-appb-I000249
    Figure PCTKR2019015915-appb-I000248
    : Concrete compressive strength
    Figure PCTKR2019015915-appb-I000249
    Figure PCTKR2019015915-appb-I000250
    : 복합탄성층의 인장강도
    Figure PCTKR2019015915-appb-I000251
    Figure PCTKR2019015915-appb-I000250
    : Tensile strength of composite elastic layer
    Figure PCTKR2019015915-appb-I000251
    Figure PCTKR2019015915-appb-I000252
    : 압축철근의 응력
    Figure PCTKR2019015915-appb-I000253
    Figure PCTKR2019015915-appb-I000254
    Figure PCTKR2019015915-appb-I000252
    : Stress of compression reinforcement
    Figure PCTKR2019015915-appb-I000253
    Figure PCTKR2019015915-appb-I000254
    Figure PCTKR2019015915-appb-I000255
    : 인장철근이 항복강도
    Figure PCTKR2019015915-appb-I000256
    Figure PCTKR2019015915-appb-I000255
    : Yield strength of tensile reinforcement
    Figure PCTKR2019015915-appb-I000256
    Figure PCTKR2019015915-appb-I000257
    : 보의 전체 춤
    Figure PCTKR2019015915-appb-I000258
    Figure PCTKR2019015915-appb-I000257
    : Bo's full dance
    Figure PCTKR2019015915-appb-I000258
    Figure PCTKR2019015915-appb-I000259
    : 인장철근의 중심으로부터 도포된 복합탄성층 도심까지의 거리
    Figure PCTKR2019015915-appb-I000260
    Figure PCTKR2019015915-appb-I000259
    : Distance from the center of the tensile reinforcement to the center of the applied composite elastic layer
    Figure PCTKR2019015915-appb-I000260
    Figure PCTKR2019015915-appb-I000261
    : 공칭 휨내력
    Figure PCTKR2019015915-appb-I000262
    Figure PCTKR2019015915-appb-I000261
    : Nominal bending strength
    Figure PCTKR2019015915-appb-I000262
    Figure PCTKR2019015915-appb-I000263
    : 설계 휨내력
    Figure PCTKR2019015915-appb-I000264
    Figure PCTKR2019015915-appb-I000263
    : Design bending strength
    Figure PCTKR2019015915-appb-I000264
    Figure PCTKR2019015915-appb-I000265
    : 복합탄성층의 두께
    Figure PCTKR2019015915-appb-I000266
    Figure PCTKR2019015915-appb-I000265
    : Thickness of composite elastic layer
    Figure PCTKR2019015915-appb-I000266
    Figure PCTKR2019015915-appb-I000267
    : 휨에 대한 강도감소계수
    Figure PCTKR2019015915-appb-I000267
    : Strength reduction factor for warpage
  7. 제5항에 있어서,The method of claim 5,
    상기 전단보강설계식은,The shear reinforcement design formula is,
    Figure PCTKR2019015915-appb-I000268
    에 대하여 다음의 (식2-1)과 (식2-2)를 만족하고,
    Figure PCTKR2019015915-appb-I000269
    에 대하여 다음의 (식2-3)을 만족하며, 식 (2-4)를 만족하는
    Figure PCTKR2019015915-appb-I000270
    에 대한 식 (2-5)를 만족할 때까지 반복적으로
    Figure PCTKR2019015915-appb-I000271
    의 예상값을 수정하는 것을 특징으로 하는 구조보강용 층.
    Figure PCTKR2019015915-appb-I000268
    With respect to the following (Equation 2-1) and (Equation 2-2) are satisfied,
    Figure PCTKR2019015915-appb-I000269
    Satisfies the following (Equation 2-3) and satisfies Equation (2-4)
    Figure PCTKR2019015915-appb-I000270
    Repeatedly until it satisfies the equation (2-5) for
    Figure PCTKR2019015915-appb-I000271
    Structural reinforcement layer, characterized in that to correct the expected value of.
    Figure PCTKR2019015915-appb-I000272
    .........................(식 2-1)
    Figure PCTKR2019015915-appb-I000272
    .........................(Equation 2-1)
    Figure PCTKR2019015915-appb-I000273
    ...............(식 2-2)
    Figure PCTKR2019015915-appb-I000273
    ...............(Equation 2-2)
    Figure PCTKR2019015915-appb-I000274
    ................................(식 2-3)
    Figure PCTKR2019015915-appb-I000274
    ................................(Equation 2-3)
    Figure PCTKR2019015915-appb-I000275
    .........................(식 2-4)
    Figure PCTKR2019015915-appb-I000275
    .........................(Equation 2-4)
    Figure PCTKR2019015915-appb-I000276
    ...............................(식 2-5)
    Figure PCTKR2019015915-appb-I000276
    ...............................(Equation 2-5)
    Figure PCTKR2019015915-appb-I000277
    : 전단철근의 단면적
    Figure PCTKR2019015915-appb-I000278
    Figure PCTKR2019015915-appb-I000277
    : Cross-sectional area of shear reinforcement
    Figure PCTKR2019015915-appb-I000278
    Figure PCTKR2019015915-appb-I000279
    : 보의 폭
    Figure PCTKR2019015915-appb-I000280
    Figure PCTKR2019015915-appb-I000279
    : Beam width
    Figure PCTKR2019015915-appb-I000280
    Figure PCTKR2019015915-appb-I000281
    : 보의 유효깊이
    Figure PCTKR2019015915-appb-I000282
    Figure PCTKR2019015915-appb-I000281
    : Effective depth of beam
    Figure PCTKR2019015915-appb-I000282
    Figure PCTKR2019015915-appb-I000283
    : 콘크리트 압축강도
    Figure PCTKR2019015915-appb-I000284
    Figure PCTKR2019015915-appb-I000283
    : Concrete compressive strength
    Figure PCTKR2019015915-appb-I000284
    Figure PCTKR2019015915-appb-I000285
    : 복합탄성층의 인장강도
    Figure PCTKR2019015915-appb-I000286
    Figure PCTKR2019015915-appb-I000285
    : Tensile strength of composite elastic layer
    Figure PCTKR2019015915-appb-I000286
    Figure PCTKR2019015915-appb-I000287
    : 전단철근의 항복강도
    Figure PCTKR2019015915-appb-I000288
    Figure PCTKR2019015915-appb-I000287
    : Yield strength of shear reinforcement
    Figure PCTKR2019015915-appb-I000288
    Figure PCTKR2019015915-appb-I000289
    : 복합탄성층의 두께
    Figure PCTKR2019015915-appb-I000290
    Figure PCTKR2019015915-appb-I000289
    : Thickness of composite elastic layer
    Figure PCTKR2019015915-appb-I000290
    Figure PCTKR2019015915-appb-I000291
    : 콘크리트가 부담하는 전단내력,
    Figure PCTKR2019015915-appb-I000292
    ,
    Figure PCTKR2019015915-appb-I000293
    Figure PCTKR2019015915-appb-I000291
    : Shear strength borne by concrete,
    Figure PCTKR2019015915-appb-I000292
    ,
    Figure PCTKR2019015915-appb-I000293
    Figure PCTKR2019015915-appb-I000294
    : 공칭 전단내력
    Figure PCTKR2019015915-appb-I000295
    Figure PCTKR2019015915-appb-I000294
    : Nominal shear strength
    Figure PCTKR2019015915-appb-I000295
    Figure PCTKR2019015915-appb-I000296
    : 복합탄성층이 부담하는 전단내력
    Figure PCTKR2019015915-appb-I000297
    Figure PCTKR2019015915-appb-I000296
    : Shear strength borne by the composite elastic layer
    Figure PCTKR2019015915-appb-I000297
    Figure PCTKR2019015915-appb-I000298
    : 전단철근이 부담하는 전단내력
    Figure PCTKR2019015915-appb-I000299
    Figure PCTKR2019015915-appb-I000298
    : Shear strength borne by shear reinforcing bars
    Figure PCTKR2019015915-appb-I000299
    Figure PCTKR2019015915-appb-I000300
    : 설계전단내력
    Figure PCTKR2019015915-appb-I000301
    Figure PCTKR2019015915-appb-I000300
    : Design shear strength
    Figure PCTKR2019015915-appb-I000301
    Figure PCTKR2019015915-appb-I000302
    : 전단에 대한 강도감소계수
    Figure PCTKR2019015915-appb-I000302
    : Strength reduction factor for shear
  8. 제3항에 있어서,The method of claim 3,
    상기 하도층과 상기 복합탄성층 사이에 도포되는 중도층; 및An intermediate layer applied between the undercoat layer and the composite elastic layer; And
    상기 복합탄성층에 도포되는 상도층;A top coat layer applied to the composite elastic layer;
    중 적어도 어느 하나를 더 포함하는 것을 특징으로 하는 구조보강용 층.Structure reinforcing layer, characterized in that it further comprises at least any one of.
  9. 제1항 또는 제2항에 기재된 복합탄성중합체 조성물을 시공하기 위한 구조체의 표면에서 이물질을 제거하는 바탕처리단계; 및A ground treatment step of removing foreign substances from the surface of the structure for constructing the composite elastomer composition according to claim 1 or 2; And
    상기 바탕처리단계를 거친 다음, 상기 구조체의 표면에 상기 복합탄성중합체 조성물을 도포하는 도장단계;를 포함하고,After passing through the ground treatment step, a painting step of applying the composite elastomer composition to the surface of the structure; Including,
    상기 도장단계는,The painting step,
    상기 바탕처리단계를 거친 다음, 상기 구조체의 표면에 하도층을 형성하는 하도단계; 및A undercoating step of forming a undercoating layer on the surface of the structure after passing through the undercoat step; And
    상기 하도단계를 거친 다음, 상기 하도층의 표면에 복합탄성층을 형성하는 복합탄성단계;를 포함하며,After passing through the undercoat step, a composite elastic step of forming a composite elastic layer on the surface of the undercoat layer; includes,
    상기 복합탄성층은,The composite elastic layer,
    상기 복합탄성중합체 조성물을 포함하는 것을 특징으로 하는 복합탄성중합체의 시공방법.Construction method of a composite elastomer comprising the composite elastomer composition.
  10. 제9항에 있어서,The method of claim 9,
    상기 도장단계는,The painting step,
    상기 복합탄성단계에 앞서, 상기 하도층의 표면에 증도층을 형성하는 중도단계; 및Prior to the complex elastic step, the intermediate step of forming a thickening layer on the surface of the undercoat layer; And
    상기 복합탄성단계를 거친 다음, 상기 복합탄성층의 표면에 상도층을 형성하는 상도단계;A top coat step of forming a top coat layer on the surface of the composite elastic layer after passing through the composite elastic step;
    중 적어도 어느 하나를 더 포함하는 것을 특징으로 하는 복합탄성중합체의 시공방법.Construction method of the composite elastomer, characterized in that it further comprises at least any one of.
PCT/KR2019/015915 2019-11-18 2019-11-20 Composite elastomer composition, structural reinforcement layer, and construction method using composite elastomer composition WO2021100899A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
KR10-2019-0147628 2019-11-18
KR1020190147628A KR102279044B1 (en) 2019-11-18 2019-11-18 Composite elastomer composition and spraying layer for structural reinforcement and construction method of composite elastomer

Publications (1)

Publication Number Publication Date
WO2021100899A1 true WO2021100899A1 (en) 2021-05-27

Family

ID=75980581

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/KR2019/015915 WO2021100899A1 (en) 2019-11-18 2019-11-20 Composite elastomer composition, structural reinforcement layer, and construction method using composite elastomer composition

Country Status (2)

Country Link
KR (1) KR102279044B1 (en)
WO (1) WO2021100899A1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114856242A (en) * 2021-11-17 2022-08-05 天津大学 Anti-explosion reinforcing structure for wall and anti-explosion wall thereof

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR102470658B1 (en) 2022-03-16 2022-11-25 (주) 펜테크 Complex waterproof constructure
KR102596351B1 (en) 2023-09-01 2023-10-31 (주) 펜테크 Waterproof paint for preventing the neutralization of concrete

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101819914B1 (en) * 2017-12-07 2018-01-18 (주)유니텍건설 A Coating Composition of Surface Protection Having Polyurea for Reducing Earthquake Damage of Non-resistance Force Construction and Decoration Panels of Outer Wall and Constructing Methods using Thereof
KR101942962B1 (en) * 2018-08-31 2019-01-28 송준혁 Composite elastomer composition, method of construction thereof and apparatus for construction thereof
KR101923918B1 (en) * 2017-11-13 2019-02-22 주식회사 광림티엔아이 Structural reinforcement method using high tensile fast curing type polyurea composition and structural reinforcement means
KR101978636B1 (en) * 2019-01-29 2019-05-16 최형철 Repairing and reinforcing method of crack and damage part for concrete structure
KR102028103B1 (en) * 2019-08-06 2019-10-01 (주)페트로산업 Slow drying and highly stretchable polyurea coating composition with high hardness, method of use the same and waterproof method using the same

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100708058B1 (en) 2005-04-08 2007-04-16 부산대학교 산학협력단 FRP panel for concrete structure reinforcement
EP2643375B1 (en) 2010-11-26 2014-08-27 Bayer Intellectual Property GmbH Use of aqueous dispersions as primers
MX2016015200A (en) 2014-05-20 2017-02-23 Basf Coatings Gmbh Adhesion promoter for aqueous coating compositions.

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101923918B1 (en) * 2017-11-13 2019-02-22 주식회사 광림티엔아이 Structural reinforcement method using high tensile fast curing type polyurea composition and structural reinforcement means
KR101819914B1 (en) * 2017-12-07 2018-01-18 (주)유니텍건설 A Coating Composition of Surface Protection Having Polyurea for Reducing Earthquake Damage of Non-resistance Force Construction and Decoration Panels of Outer Wall and Constructing Methods using Thereof
KR101942962B1 (en) * 2018-08-31 2019-01-28 송준혁 Composite elastomer composition, method of construction thereof and apparatus for construction thereof
KR101978636B1 (en) * 2019-01-29 2019-05-16 최형철 Repairing and reinforcing method of crack and damage part for concrete structure
KR102028103B1 (en) * 2019-08-06 2019-10-01 (주)페트로산업 Slow drying and highly stretchable polyurea coating composition with high hardness, method of use the same and waterproof method using the same

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114856242A (en) * 2021-11-17 2022-08-05 天津大学 Anti-explosion reinforcing structure for wall and anti-explosion wall thereof

Also Published As

Publication number Publication date
KR102279044B1 (en) 2021-07-19
KR20210060058A (en) 2021-05-26

Similar Documents

Publication Publication Date Title
WO2021100899A1 (en) Composite elastomer composition, structural reinforcement layer, and construction method using composite elastomer composition
WO2012006923A1 (en) Modified inorganic powder composite material and preparation method thereof
WO2015034164A1 (en) Inorganic-based neutralization-proof, water-proof, and erosion-proof paint composition for floor finish material, capable of being applied, without primer, in wet state with concrete water content of 100%, and method for applying neutralization-proof, water-proof, and erosion-proof flooring material, using composition
WO2017171489A1 (en) Manufacturing method for barrier film
WO2016105059A1 (en) High-strength steel having excellent resistance to brittle crack propagation, and production method therefor
WO2016105064A1 (en) High-strength steel having excellent resistance to brittle crack propagation, and production method therefor
WO2016114477A1 (en) Method of estimating indoor heating and cooling loads by using estimated insolation
WO2012111963A2 (en) Substrate film and method for manufacturing same
WO2019045548A1 (en) Hard coating film having multilayer-structure, and polyimide film comprising same
WO2017111476A1 (en) Ink composition for steel material, having excellent adhesion, method for manufacturing printed steel sheet by using same, and printed steel sheet manufactured thereby
WO2019093731A1 (en) Photocurable composition and coating layer including cured product thereof
WO2018016780A1 (en) Calcium compound-containing high-early strength mixture for cement concrete and production method therefor
WO2017095069A1 (en) Coating composition having excellent corrosion resistance and fingerprint resistance, stainless steel sheet having etching patterns, and manufacturing method therefor
WO2018016781A1 (en) Slag-containing high-early strength mixture for cement concrete and production method therefor
WO2017160016A1 (en) Dual-curable low-temperature crosslinked blocked isocyanate and composition comprising same
WO2018216932A1 (en) Method for manufacturing foam molded product
WO2021172741A1 (en) Pipe fixing device and method for manufacturing same
WO2018128208A1 (en) Asphalt composition and asphalt paving method using same
WO2016021746A1 (en) Colorless and transparent polyimide thin film having high transmittance and low phase difference, and method for manufacturing same
WO2011052934A2 (en) Inkjet composition for formation of transparent film, and preparation method thereof
WO2010008213A9 (en) Silane based compound, method for preparing the same, and surface treating agent composition for copper foil including the silane based compound
WO2019132369A1 (en) Adhesive composition including at least two types of dyes, adhesive sheet, and display device including same
WO2021225245A1 (en) System for designing aseismatic device to protect, from earthquake, electrical installation including switchboard and control panel
WO2022092424A1 (en) Artificial reef
WO2019059693A2 (en) Solvent-free photo-curable resin composition for polarizing plate protective layer, polarizing plate comprising cured product thereof, and image display device

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 19953117

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

32PN Ep: public notification in the ep bulletin as address of the adressee cannot be established

Free format text: NOTING OF LOSS OF RIGHTS PURSUANT TO RULE 112(1) EPC (EPO FORM 1205A DATED 05/09/2022)

122 Ep: pct application non-entry in european phase

Ref document number: 19953117

Country of ref document: EP

Kind code of ref document: A1