WO2021100703A1 - Electric tool - Google Patents

Electric tool Download PDF

Info

Publication number
WO2021100703A1
WO2021100703A1 PCT/JP2020/042795 JP2020042795W WO2021100703A1 WO 2021100703 A1 WO2021100703 A1 WO 2021100703A1 JP 2020042795 W JP2020042795 W JP 2020042795W WO 2021100703 A1 WO2021100703 A1 WO 2021100703A1
Authority
WO
WIPO (PCT)
Prior art keywords
linear motor
accommodating portion
housing
drive shaft
air
Prior art date
Application number
PCT/JP2020/042795
Other languages
French (fr)
Japanese (ja)
Inventor
剛成 佐藤
勇佑 橘
Original Assignee
京セラインダストリアルツールズ株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 京セラインダストリアルツールズ株式会社 filed Critical 京セラインダストリアルツールズ株式会社
Priority to JP2021558393A priority Critical patent/JP7325530B2/en
Publication of WO2021100703A1 publication Critical patent/WO2021100703A1/en

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23QDETAILS, COMPONENTS, OR ACCESSORIES FOR MACHINE TOOLS, e.g. ARRANGEMENTS FOR COPYING OR CONTROLLING; MACHINE TOOLS IN GENERAL CHARACTERISED BY THE CONSTRUCTION OF PARTICULAR DETAILS OR COMPONENTS; COMBINATIONS OR ASSOCIATIONS OF METAL-WORKING MACHINES, NOT DIRECTED TO A PARTICULAR RESULT
    • B23Q11/00Accessories fitted to machine tools for keeping tools or parts of the machine in good working condition or for cooling work; Safety devices specially combined with or arranged in, or specially adapted for use in connection with, machine tools
    • B23Q11/12Arrangements for cooling or lubricating parts of the machine
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B25HAND TOOLS; PORTABLE POWER-DRIVEN TOOLS; MANIPULATORS
    • B25FCOMBINATION OR MULTI-PURPOSE TOOLS NOT OTHERWISE PROVIDED FOR; DETAILS OR COMPONENTS OF PORTABLE POWER-DRIVEN TOOLS NOT PARTICULARLY RELATED TO THE OPERATIONS PERFORMED AND NOT OTHERWISE PROVIDED FOR
    • B25F5/00Details or components of portable power-driven tools not particularly related to the operations performed and not otherwise provided for

Definitions

  • This disclosure relates to power tools.
  • Patent Document 1 describes a technique related to a power tool.
  • the power tool comprises a first linear motor that reciprocates the tip tool, a housing, and a tuned mass damper.
  • the housing houses the first linear motor.
  • the tuned mass damper absorbs the vibration generated in the housing.
  • FIG. 1 is a schematic side view showing an example of the power tool 1.
  • the power tool 1 is, for example, a hand-held reciprocating saw.
  • an AC power supply is supplied to the power tool 1.
  • the power tool 1 operates based on the supplied AC power supply.
  • the electric tool 1 includes a mounting portion 2 to which a tip tool is mounted and a housing 3 that accommodates a linear motor or the like that reciprocates the mounting portion 2.
  • the housing 3 is gripped by the user.
  • the tip tool can be attached to and detached from the mounting portion 2, for example.
  • the tip tool 4 is an elongated blade. Reciprocating saw blades are also called saw blades or blades.
  • FIG. 2 is a schematic side view showing a state in which the tip tool 4 is attached to the attachment portion 2.
  • the power tool 1 will be described with reference to the front side, the rear side, the upper side, and the lower side shown in FIG.
  • the tip tool 4 side of the power tool 1 is the front side, and the opposite side is the rear side.
  • the tip tool 4 reciprocates by reciprocating the mounting portion 2 by the linear motor in the housing 3.
  • the tip tool 4 reciprocates in the front-back direction.
  • the power tool 1 can perform machining such as cutting on a work by a tip tool 4 that reciprocates.
  • the power tool 1 includes a work holder 5 for holding the work and a fixing portion 6 for fixing the work holder 5.
  • the housing 3 has, for example, a long shape along one direction.
  • the fixing portion 6 is provided at the front end of the housing 3.
  • the work holder 5 and the mounting portion 2 extend forward from the fixing portion 6.
  • the power tool 1 includes a trigger switch 7, a lock button 8, and a power cable 9.
  • the trigger switch 7 and the lock button 8 are provided on the housing 3 so as to be exposed from the housing 3.
  • the trigger switch 7 is a switch for operating the power tool 1.
  • the lock button 8 is a button for continuously operating the power tool 1.
  • the power cable 9 is a cable that transmits AC power.
  • the power cable 9 is connected to, for example, an outlet that outputs commercial power.
  • FIG. 3 is a schematic side view showing an example of the inside of the housing 3.
  • the housing 3 can be divided into two, for example.
  • the inside of the housing 3 can be seen by removing one of the two divided parts constituting the housing 3.
  • FIG. 4 is a diagram showing an outline of a cross-sectional structure of the structure shown in FIG. 3 in arrow view AA.
  • FIG. 5 is a diagram showing an outline of a cross-sectional structure of the structure shown in FIG. 3 in arrow view BB.
  • the electric tool 1 includes a plurality of linear motors 10, a drive shaft 11 driven by the plurality of linear motors 10, an auxiliary mechanism 12, and a dynamic vibration absorber 13.
  • the plurality of linear motors 10, the drive shaft 11, the auxiliary mechanism 12, and the dynamic vibration absorber 13 are housed in the housing 3.
  • the drive shaft 11 extends along the front-rear direction.
  • the front end of the drive shaft 11 is fixed to the mounting portion 2.
  • the plurality of linear motors 10 can reciprocate the drive shaft 11.
  • the reciprocating motion of the drive shaft 11 causes the mounting portion 2 to reciprocate.
  • the tip tool 4 reciprocates.
  • each linear motor 10 reciprocates the mounting portion 2 via the drive shaft 11.
  • each linear motor 10 reciprocates the tip tool 4 via the drive shaft 11 and the mounting portion 2.
  • the auxiliary mechanism 12 assists the reciprocating motion of the tip tool 4 by the linear motor 10 by utilizing the resonance caused by the spring.
  • the Tuned Mass Damper 13 suppresses the vibration of the housing 3.
  • the drive shaft 11, the mounting portion 2, and the tip tool 4 driven by the linear motor 10 may be collectively referred to as a drive object.
  • the linear motor 10 reciprocates the object to be driven.
  • the power tool 1 includes, for example, two linear motors 10.
  • One linear motor 10 is housed in, for example, the front side portion of the housing 3.
  • the other linear motor 10 is housed in, for example, a rear portion of the housing 3.
  • the linear motor 10 on the front side may be referred to as a linear motor 10A.
  • the linear motor 10 on the rear side may be referred to as a linear motor 10B.
  • the housing 3 includes a grip portion 300 that is gripped by the user.
  • the grip portion 300 has a substantially tubular shape.
  • the grip portion 300 extends in the front-rear direction.
  • the auxiliary mechanism 12 and the dynamic vibration absorber 13 are housed in, for example, the grip portion 300.
  • the auxiliary mechanism 12 and the dynamic vibration absorber 13 are arranged in a direction orthogonal to the front-rear direction.
  • the auxiliary mechanism 12 and the dynamic vibration absorber 13 are arranged in the vertical direction, but the arrangement of the auxiliary mechanism 12 and the dynamic vibration absorber 13 is not limited to this.
  • the auxiliary mechanism 12 and the dynamic vibration absorber 13 may be arranged in the left-right direction orthogonal to the front-rear direction and the up-down direction.
  • the housing 3 includes an accommodating portion 310 for accommodating the linear motor 10A and an accommodating portion 320 accommodating the linear motor 10B.
  • the accommodating portion 310 is located on the front side of the grip portion 300.
  • the linear motor 10A is located on the front side of the grip portion 300.
  • the linear motor 10A is located on the front side of the auxiliary mechanism 12 and the dynamic vibration absorber 13.
  • the accommodating portion 320 is located behind the grip portion 300.
  • the linear motor 10B is located on the rear side of the grip portion 300.
  • the linear motor 10B is located behind the auxiliary mechanism 12 and the dynamic vibration absorber 13.
  • Each linear motor 10 includes a stator 100 and a mover 110.
  • the stator 100 is fixed in the housing 3.
  • the mover 110 can reciprocate along the front-rear direction.
  • the mover 110 is fixed to the drive shaft 11.
  • the drive shaft 11 reciprocates in conjunction with the reciprocating motion of the mover 110.
  • the stator 100 includes a core 101 and a plurality of coils 102 wound around the core 101.
  • the coil 102 is schematically shown.
  • the core 101 includes a frame-shaped portion 101a and two teeth 101b (see FIG. 5) protruding from the inside of the frame-shaped portion 101a so as to face each other.
  • the two teeth 101b face each other in the vertical direction.
  • Two coils 102 are wound around each tooth 101b.
  • the stator 100 includes four coils 102.
  • the coil 102 is wound around the teeth 101b via the insulating member 103.
  • An insulating member 103 exists between the two coils 102 wound around one tooth 101b.
  • Two coils 102 wound around one tooth 101b are connected in parallel. Further, the four coils 102 included in the stator 100 are connected in parallel.
  • the winding direction of the two coils 102 wound around the upper teeth 101b is opposite to the winding direction of the two coils 102 wound around the lower teeth 101b.
  • the magnetic pole generated on the upper teeth 101b is the opposite magnetic pole of the magnetic pole generated on the lower teeth 101b.
  • the mover 110 is located between two teeth 101b facing each other.
  • the mover 110 includes two magnets 111 and a spacer 112 located between the two magnets 111.
  • the two magnets 111 and the spacer 112 are aligned in the front-rear direction and are fixed to the drive shaft 11.
  • the magnetic pole at the upper end of the front magnet 111 is the opposite of the magnetic pole at the lower end of the front magnet 111.
  • the magnetic pole at the upper end of the magnet 111 on the rear side is the opposite of the magnetic pole at the lower end of the magnet 111 on the rear side.
  • the magnetic pole at the upper end of the front magnet 111 is the opposite of the magnetic pole at the upper end of the rear magnet 111.
  • the magnetic pole at the lower end of the front magnet 111 is the opposite of the magnetic pole at the lower end of the rear magnet 111.
  • An insulating member 103 exists between the coil 102 on the mover 110 side of the two coils 102 wound around the teeth 101b and each magnet 111 of the mover 110.
  • the mover 110 does not have to include the spacer 112. In this case, the two magnets 111 may be located adjacent to each other.
  • FIGS. 6 and 7 are diagrams for explaining an example of the operation of the linear motor 10.
  • the description of the frame-shaped portion 101a of the core 101 and the insulating member 103 is omitted for convenience of explanation.
  • the magnetic poles at the upper end and the lower end of the front magnet 111 are S pole and N pole, respectively. Further, the magnetic poles of the upper end portion and the lower end portion of the magnet 111 on the rear side are N pole and S pole, respectively.
  • the magnetic poles of the upper and lower teeth 101b are set to the S pole and the N pole, respectively, as shown in FIG.
  • the upper end of the front magnet 111 and the upper teeth 101b repel each other, while the upper end of the rear magnet 111 and the upper teeth 101b attract each other.
  • the lower end of the front magnet 111 and the lower teeth 101b repel each other, while the lower end of the rear magnet 111 and the lower teeth 101b attract each other.
  • the mover 110 moves to the front side, and the drive shaft 11 moves to the front side accordingly.
  • the mover 110 of each linear motor 10 reciprocates in the front-rear direction, so that the drive shaft 11, the mounting portion 2, and the tip tool 4 reciprocate in the front-rear direction. That is, the mover 110 of each linear motor 10 reciprocates in the front-rear direction, so that the object to be driven reciprocates in the front-rear direction.
  • the mover 110 and the driving object may be collectively referred to as a reciprocating motion body.
  • a conversion mechanism such as a cam that converts the rotary motion into a reciprocating motion is unnecessary as compared with the case where the rotary motor is used.
  • a reduction mechanism such as a gear is not required. Noise may be generated from the conversion mechanism and the deceleration mechanism. In this example, since the conversion mechanism and the deceleration mechanism are unnecessary, the noise of the power tool 1 can be reduced.
  • auxiliary mechanism 12 ⁇ Configuration example of auxiliary mechanism> Next, a configuration example of the auxiliary mechanism 12 will be described.
  • the configuration described below is an example, and the configuration of the auxiliary mechanism 12 is not limited to the following example.
  • the auxiliary mechanism 12 includes two springs 121 and a holding portion 120 that holds one end of the two springs 121.
  • the holding portion 120 is fixed to the drive shaft 11.
  • Each spring 121 is, for example, a compression coil spring.
  • the holding portion 120 and the two springs 121 are arranged along the front-rear direction.
  • One spring 121 is located on the front side of the holding portion 120, and the other spring 121 is located on the rear side of the holding portion 120.
  • Each spring 121 can be extended in the front-rear direction.
  • the drive shaft 11 passes through the inside of each spring 121.
  • each spring 121 moves according to the movement of the holding portion 120.
  • the other end of each spring 121 is indirectly or directly fixed to the housing 3.
  • the auxiliary mechanism 12 includes, for each spring 121, a holding member 122 that holds the other end of the spring 121.
  • the auxiliary mechanism 12 includes a fixing portion 123 for fixing the holding member 122 to the grip portion 300 for each holding member 122.
  • the fixing portion 123 may be formed integrally with the housing 3 or may be a separate body from the housing 3.
  • Each of the holding member 122 and the fixing portion 123 has a through hole penetrating in the front-rear direction.
  • each spring 121 may be a free end or a fixed end. That is, the two ends of each spring 121 may both be free ends or both may be fixed ends. Further, one of the two ends of each spring 121 may be a free end, and the other of the two ends may be a fixed end.
  • the holding portion 120 Since the holding portion 120 is fixed to the drive shaft 11, it moves together with the drive shaft 11.
  • the two springs 121 are housed in the grip 300 in a state slightly shorter than the natural length. That is, the initial state of each spring 121 is a slightly compressed state.
  • the spring 121 on the front side expands from the initial state, and the spring 121 on the rear side compresses from the initial state.
  • a force in the forward direction is applied to the holding portion 120 and the drive shaft 11.
  • the spring 121 on the front side compresses from the initial state, and the spring 121 on the rear side expands from the initial state.
  • a force in the rear direction is applied to the holding portion 120 and the drive shaft 11.
  • the holding portion 120 and the drive shaft 11 can vibrate in the front-rear direction by the action of the spring 121. It can be said that the vibration in the front-back direction is a reciprocating motion in the front-back direction.
  • the holding portion 120 and the drive shaft 11 may vibrate in the front-rear direction even by the force from the linear motor 10. It is possible.
  • the spring 121 so that the vibrations of the holding portion 120 and the driving shaft 11 resonate when a force from the linear motor 10 is applied to the holding portion 120 and the driving shaft 11 vibrating by the spring 121.
  • the spring constant etc. of is set appropriately.
  • the auxiliary mechanism 12 can assist the reciprocating motion of the holding portion 120 and the drive shaft 11 by the linear motor 10 by utilizing the resonance caused by the spring 121.
  • the auxiliary mechanism 12 can assist the reciprocating motion of the mounting portion 2 and the tip tool 4 by the linear motor 10 by utilizing the resonance caused by the spring 121. Therefore, the electric power required to drive the linear motor 10 can be reduced. As a result, the power consumption of the power tool 1 can be reduced.
  • the heat generation of the linear motor 10 can be reduced.
  • the linear motor 10, the drive object including the drive shaft 11 and the like driven by the linear motor 10, and the auxiliary mechanism 12 constitute a linear resonance actuator.
  • the auxiliary mechanism 12 does not have to include one of the two springs 121. Further, the arrangement location of the auxiliary mechanism 12 in the housing 3 is not limited to the above example.
  • the dynamic vibration absorber 13 includes, for example, a mass body 130 and two springs 131 for moving the mass body 130.
  • the mass body 130 and the two springs 131 are aligned in the front-rear direction.
  • One spring 131 is located on the front side of the mass body 130, and the other spring 131 is located on the rear side of the mass body 130.
  • Each spring 131 can expand and contract along the front-rear direction.
  • the Tuned Mass Damper 13 includes, for each spring 131, a holding member 132 that holds the other end of the spring 131.
  • the dynamic vibration absorber 13 includes a fixing portion 133 for fixing the holding member 132 to the grip portion 300 for each holding member 132.
  • the other end of each spring 131 is indirectly fixed to the housing 3.
  • the end of each spring 131 may be a free end or a fixed end. That is, the two ends of each spring 131 may both be free ends or both may be fixed ends. Further, one of the two ends of each spring 131 may be a free end, and the other of the two ends may be a fixed end.
  • the Tuned Mass Damper 13 is configured such that the mass body 130 vibrates in a phase opposite to the vibration of the reciprocating motion (in other words, the reciprocating motion).
  • the dynamic vibration absorber 13 can absorb the vibration generated in the housing 3 due to the vibration of the reciprocating motion body. Therefore, the vibration of the housing 3 gripped by the user can be reduced. As a result, the operability of the power tool 1 is improved.
  • the location of the Tuned Mass Damper 13 in the housing 3 is not limited to the above example.
  • the power tool 1 has a cooling mechanism for cooling the linear motor 10.
  • the cooling mechanism includes a plurality of check valves 140 to 143 and an air pressure increasing / decreasing unit 150.
  • the check valves 140 and 141 are provided in the accommodating portion 310 in which the linear motor 10A is accommodated.
  • the check valves 142 and 143 are provided in the accommodating portion 320 in which the linear motor 10B is accommodated.
  • the air pressure increase / decrease unit 150 can increase / decrease the air pressure in the accommodating units 310 and 320.
  • the check valve 140 can take in the air outside the housing 3 into the accommodating portion 310. On the other hand, the check valve 140 cannot exhaust air into the accommodating portion 310 to the outside of the housing 3.
  • the check valve 141 can exhaust the air inside the accommodating portion 310 to the outside of the housing 3. On the other hand, the check valve 141 cannot take in the air outside the housing 3 into the accommodating portion 310.
  • the check valve 140 is located above the linear motor 10A, for example.
  • the check valve 141 is located, for example, below the linear motor 10A.
  • the check valve 140, the linear motor 10A, and the check valve 141 are arranged in the vertical direction.
  • the check valve 142 can take in the air outside the housing 3 into the accommodating portion 320. On the other hand, the check valve 142 cannot exhaust air into the accommodating portion 320 to the outside of the housing 3.
  • the check valve 143 can exhaust the air inside the accommodating portion 320 to the outside of the housing 3. On the other hand, the check valve 143 cannot take in the air outside the housing 3 into the accommodating portion 320.
  • the check valve 142 is located above the linear motor 10B, for example.
  • the check valve 143 is located, for example, below the linear motor 10B.
  • the check valve 142, the linear motor 10B, and the check valve 143 are arranged in the vertical direction.
  • the air pressure increase / decrease portion 150 is housed in, for example, the rear end portion of the grip portion 300.
  • the air pressure increasing / decreasing unit 150 includes, for example, a tubular portion 151.
  • the tubular portion 151 is open in the front-rear direction.
  • the drive shaft 11 passes through the inside of the tubular portion 151.
  • the air pressure increasing / decreasing section 150 includes a first partition section 152 and a second partition section 153.
  • the first partition portion 152 and the second partition portion 153 divide the front space on the front side of the air pressure increase / decrease unit 150 and the rear space on the rear side of the air pressure increase / decrease unit 150 in the housing 3.
  • the accommodating portion 310 and the accommodating portion 320 are separated by the first partition portion 152 and the second partition portion 153.
  • the first partition portion 152 has, for example, a flange shape.
  • the first partition portion 152 is projected from the outer peripheral surface so as to surround the outer peripheral surface of the tubular portion 151.
  • the first partition portion 152 is fixed to the inner peripheral surface of the grip portion 300 so as to follow the circumferential direction thereof.
  • the second partition portion 153 is located inside the tubular portion 151, and divides the space inside the tubular portion 151 into two in the front-rear direction.
  • the second partition portion 153 includes, for example, a plate-shaped portion 153a and an O-ring 153b.
  • the plate-shaped portion 153a is fixed to the drive shaft 11 inside the tubular portion 151.
  • a groove is formed once on the side surface of the plate-shaped portion 153a. By fitting the O-ring 153b into this groove, the second partition portion 153 comes into close contact with the inner peripheral surface of the tubular portion 151.
  • the air pressure increase / decrease unit 150 increases / decreases the air pressure in the front space and the air pressure in the rear space in conjunction with the reciprocating motion of the driving object.
  • the check valve 140 takes in air into the accommodating portion 310 when the air pressure in the accommodating portion 310 decreases, and the check valve 141 takes in the air in the accommodating portion 310 when the air pressure in the accommodating portion 310 increases.
  • the linear motor 10A in the accommodating portion 310 is cooled.
  • the air pressure in the accommodating portion 310 increases or decreases in conjunction with the reciprocating motion of the second partition portion 153, the intake air by the check valve 140 and the exhaust air by the check valve 141 are alternately and continuously performed. Will be.
  • the air taken into the accommodating portion 310 from the upper side of the accommodating portion 310 hits the linear motor 10A as cooling air, and then is discharged from the lower side of the accommodating portion 310. It is repeatedly executed to cool the linear motor 10A.
  • the check valve 142 takes in air into the accommodating portion 330, and when the air pressure in the accommodating portion 320 increases, the check valve 143 exhausts the air in the accommodating portion 320. By doing so, the linear motor 10B in the accommodating portion 320 is cooled.
  • the air pressure in the accommodating portion 320 increases or decreases in conjunction with the reciprocating motion of the second partition portion 153, the intake air by the check valve 142 and the exhaust air by the check valve 143 are alternately and continuously performed. Will be.
  • the air taken into the accommodating portion 320 from the upper side of the accommodating portion 320 hits the linear motor 10B as cooling air, and then is discharged from the lower side of the accommodating portion 320. It is repeatedly executed to cool the linear motor 10B.
  • the air pressure increasing / decreasing unit 150 may be provided behind the linear motor 10B.
  • the air pressure in the accommodating portions 310 and 320 located on the front side of the air pressure increasing / decreasing portion 150 decreases.
  • the check valve 140 takes in air into the accommodating portion 310
  • the check valve 142 takes in air into the accommodating portion 320.
  • the air pressure in the accommodating portions 310 and 320 increases.
  • the check valve 141 exhausts the air in the accommodating portion 310
  • the check valve 143 exhausts the air in the accommodating portion 320.
  • the air pressure increase / decrease unit 150 may be provided on the front side of the linear motor 10A.
  • the air pressure in the accommodating portions 310 and 320 is increased or decreased by the reciprocating motion of the second partition portion 153 in conjunction with the reciprocating motion of the drive shaft 11. Then, as the air pressure in the accommodating portions 310 and 320 increases or decreases, cooling air for cooling the linear motor 10 flows through the accommodating portions 310 and 320. As a result, the linear motor 10 can be cooled by reciprocating the drive shaft 11 by the linear motor 10. Therefore, the linear motor 10 can be cooled with a simple configuration.
  • the power tool 1 of this example includes a plurality of electric wires 20.
  • the plurality of electric wires 20 include electric wires 20a to 20e.
  • FIG. 8 is a diagram showing an arrangement example of the electric wires 20a to 20e. In FIG. 8, the power tool 1 is schematically shown.
  • each of the two linear motors 10 includes four coils 102. Therefore, the power tool 1 includes a total of eight coils 102. The eight coils 102 are connected in parallel, for example.
  • the power cable 9 includes electric wires 20a and 20b.
  • the electric wire 20a transmits an AC voltage of one phase of the AC power supply.
  • the wire 20b transmits the AC voltage of the other phase of the AC power supply.
  • the electric wire 20a is connected to, for example, one end of each coil 102 of the rear linear motor 10B.
  • the electric wire 20b is connected to, for example, one end of the switch circuit 70 of the trigger switch 7.
  • the electric wire 20b is connected to the switch circuit 70 through the accommodating portion 320 and the grip portion 300.
  • the switch circuit 70 is located, for example, in the grip portion 300.
  • the electric wire 20c connects the other end of the switch circuit 70 to one end of each coil 102 of the linear motor 10A.
  • the electric wire 20c is connected to one end of each coil of the linear motor 10A from the switch circuit 70 through the accommodating portion 310.
  • the electric wire 20d connects one end of each coil 102 of the linear motor 10A and the other end of each coil 102 of the linear motor 10B.
  • the electric wire 20d is connected to the other end of the coil 102 of the linear motor 10B from one end of the coil 102 of the linear motor 10A through the accommodating portion 310, the grip portion 300, and the accommodating portion 320 in this order.
  • the electric wire 20e connects the other end of each coil 102 of the linear motor 10A and one end of each coil 102 of the linear motor 10B.
  • the electric wire 20e is connected to one end of the coil 102 of the linear motor 10B from the other end of the coil 102 of the linear motor 10A through the accommodating portion 310, the grip portion 300, and the accommodating portion 320 in this order.
  • the electric wires 20b, 20e, and 20d are collectively passed through, for example, a groove provided on the inner peripheral surface of the grip portion 300. As a result, the electric wires 20b, 20e, and 20d are fixed to the grip portion 300.
  • the method of fixing the electric wires 20b, 20e, and 20d to the grip portion 300 is not limited to this.
  • the number of electric wires 20 included in the power tool 1 is not limited to the above example.
  • the connection method between the configurations by the electric wire 20 is not limited to the above example.
  • the electric wire 20a of the power cable 9 may be directly connected to the other end of each coil 102 of the linear motor 10A.
  • the electric wire 20a passes through the accommodating portion 320, the grip portion 300, and the accommodating portion 310 in this order, and is connected to the other end of the coil 102 of the linear motor 10A.
  • the method of connecting the eight coils 102 included in the power tool 1 is not limited to the above example.
  • the four coils 102 connected in parallel provided by the linear motor 10A and the four coils 102 connected in parallel provided by the linear motor 10B may be connected in series.
  • the power tool 1 includes a dynamic vibration absorber 13 that absorbs the vibration of the housing 3.
  • the vibration of the electric tool 1 can be suppressed even when a relatively heavy reciprocating motion body including the mover 110 of the linear motor 10 or the like performs the reciprocating motion. .. Therefore, the operability of the power tool 1 is improved.
  • the dynamic vibration absorber 13 is located in the grip portion 300 through which the drive shaft 11 passes.
  • the Tuned Mass Damper 13 can be arranged near the drive shaft 11 that performs the reciprocating motion that causes the vibration of the housing 3. Therefore, the Tuned Mass Damper 13 can more appropriately absorb the vibration of the housing 3.
  • the linear motor 10A since the linear motor 10A is located closer to the tip tool 4 than the grip portion 300, it becomes easy to transmit the force from the linear motor 10A to the tip tool 4. Therefore, the linear motor 10A can efficiently reciprocate the tip tool 4.
  • the electric tool 1 since the electric tool 1 includes a plurality of linear motors 10, the performance of the electric tool 1 can be improved.
  • linear motors 10 are provided before and after the grip portion 300.
  • the distance between the hand of the user holding the grip portion 300 and the tip tool 4 can be reduced as compared with the case where the linear motors 10A and 10B are both provided on the front side of the grip portion 300. Therefore, the operability of the power tool 1 is improved.
  • the auxiliary mechanism 12 that assists the reciprocating motion of the driven object by the linear motor 10 is located in the grip portion 300 that is gripped by the user's hand. This makes it easier for the user to hold the power tool 1. Therefore, the operability of the power tool 1 is improved.
  • the dynamic vibration absorber 13 is located in the grip portion 300 gripped by the user. This makes it easier for the user to hold the power tool 1. Therefore, the operability of the power tool 1 is improved.
  • the power tool 1 can appropriately cool the linear motor 10 by using the check valves 140 to 143 and the air pressure increase / decrease unit 150.
  • a cooling fan can be attached to the motor shaft to rotate the cooling fan in conjunction with the rotation of the motor shaft.
  • the same configuration as that of the rotary motor cannot be adopted.
  • the housing 3 can be divided into two, but the configuration of the housing 3 is not limited to this.
  • the grip portion 300, the accommodating portion 310, and the accommodating portion 320 may be formed as separate bodies.
  • the grip portion 300 and the accommodating portions 310 and 320 may be connected by a fixing member 990 or the like.
  • the electric tool 1 includes two linear motors 10, one linear motor 10 may be provided, or three or more linear motors 10 may be provided.
  • FIG. 10 is a diagram showing an example of the configuration of the power tool 1 in this case.
  • FIG. 10 shows an example of the inside of the housing 3 as in FIG. 3 described above.
  • FIG. 11 is a diagram showing an outline of a cross-sectional structure of the structure shown in FIG. 10 in arrow CC.
  • the housing 3 includes an accommodating portion 330 accommodating the tuned mass damper 53.
  • the accommodating portion 330 is adjacent to the accommodating portion 320 behind the accommodating portion 320.
  • the accommodating portion 310, the grip portion 300, the accommodating portion 320, and the accommodating portion 330 are arranged in the front-rear direction.
  • the housing 3 shown in FIGS. 10 and 11 has a shape in which the accommodating portion 330 is attached to the rear surface (the rear surface of the accommodating portion 320) of the housing 3 shown in FIG. 1 and the like.
  • the Tuned Mass Damper 53 includes a mass body 530 and two springs 531 for moving the mass body 530, similarly to the above-mentioned Tuned Mass Damper 13.
  • the mass body 530 and the two springs 531 are arranged in the front-rear direction.
  • One spring 531 is located on the front side of the mass body 530, and the other spring 531 is located on the rear side of the mass body 530.
  • Each spring 531 can expand and contract along the front-rear direction.
  • One end of the two springs 531 is a free end, and is connected to both ends of the mass body 530 in the front-rear direction.
  • Each of the other ends of the two springs 531 is fixed to the housing 3 and serves as a fixed end. In this example, each of the other ends of the two springs 531 is fixed to the inner surface of the accommodating portion 330.
  • the Tuned Mass Damper 53 is located on the extension line of the drive shaft 11 that performs reciprocating motion on the rear side of the grip portion 300.
  • the two springs 531 and the mass body 530 of the dynamic vibration absorber 53 and the drive shaft 11 are aligned on a straight line.
  • the position of the Tuned Mass Damper 53 on the extension line of the drive shaft 11 means that the drive shaft 11 is extended in the longitudinal direction in the cross-sectional view of the power tool 1 along the longitudinal direction of the drive shaft 11. Overlaps with the Tuned Mass Damper 53.
  • the fact that the two springs 531 and the mass body 530 of the dynamic vibration absorber 53 and the drive shaft 11 are aligned in a straight line means that the drive shaft 11 is aligned in a straight line in the cross-sectional view of the power tool 1 along the longitudinal direction of the drive shaft 11. It means that the drive shaft 11 overlaps with the two springs 531 and the mass body 530 when the 11 is extended in the longitudinal direction.
  • the Tuned Mass Damper 53 is configured such that the mass body 530 vibrates in a phase opposite to the vibration of the reciprocating motion body. As a result, the Tuned Mass Damper 53 can absorb the vibration generated in the housing 3 by the vibration of the reciprocating motion body. Therefore, the vibration of the housing 3 gripped by the user can be reduced.
  • the Tuned Mass Damper 53 is located on the extension line of the drive shaft 11 that performs reciprocating motion on the rear side of the grip portion 300.
  • the vibration generated in the housing 3 is more absorbed as compared with the case where the dynamic vibration absorber 13 is located in the grip portion 300. Therefore, the vibration of the housing 3 gripped by the user can be further reduced.
  • the power tool 1 may include a battery 80 that outputs a DC power supply.
  • FIG. 12 is a diagram showing an example of the configuration of the power tool 1 including the battery 80.
  • FIG. 12 shows an example of the inside of the housing 3 as in FIG. 3 described above.
  • the power tool 1 of this example is provided with a battery 80 instead of the power cable 9.
  • the battery 80 can be attached to and detached from, for example, a rear portion of the housing 3 (a rear portion of the accommodating portion 320).
  • the battery 80 includes, for example, a rechargeable secondary battery.
  • the battery 80 outputs a DC power supply.
  • the accommodating portion 320 of the housing 3 accommodates the driving unit 90 that drives the linear motors 10A and 10B based on the DC power supply output from the battery 80.
  • the drive unit 90 is located behind the grip unit 300.
  • the drive unit 90 includes, for example, a substrate 91 and a circuit configuration 92 formed on the substrate 91.
  • the circuit configuration 92 includes, for example, an inverter circuit that generates an AC power source based on a DC power source from the battery 80. The AC power generated in the circuit configuration 92 is supplied to the linear motors 10A and 10B.
  • Two electric wires 20f and 20g extend from the drive unit 90.
  • the electric wire 20f transmits the AC voltage of one phase of the AC power supply generated in the circuit configuration 92.
  • the electric wire 20f transmits the AC voltage of the other phase of the AC power supply.
  • the electric wire 20f is connected to one end of each coil 102 of the linear motor 10B (see FIG. 8).
  • an electric wire 20g is connected to one end of the switch circuit 70 (see FIG. 8).
  • FIG. 13 is a diagram showing another configuration example of the power tool 1 including the battery 80.
  • the power tool 1 does not include the linear motor 10B and the check valves 142 and 143.
  • the linear motor 10B is not housed in the housing unit 320, but the driving unit 90 is housed in the housing unit 320.
  • the battery 80 may be non-detachably fixed to the housing 3. Further, the battery 80 may include a non-rechargeable primary battery. Further, the mounting position of the battery 80 with respect to the housing 3 is not limited to the above example. Further, the battery 80 and the housing 3 may be connected by a cable.
  • the linear motor 10 may include heat radiation fins 95 attached to the coil 102.
  • FIG. 14 is a diagram showing a configuration example of a linear motor 10 provided with heat radiation fins 95.
  • the description of the frame-shaped portion 101a of the core 101 and the insulating member 103 is omitted.
  • heat radiation fins 95 are attached to each coil 102. Further, the heat radiation fin 95 is attached to the rear side of the coil 102.
  • the heat radiating fin 95 is made of a metal having high thermal conductivity, such as aluminum.
  • the heat radiating fin 95 is fixed to the coil 102 by, for example, an insulating adhesive having high thermal conductivity. The method of attaching the heat radiation fin 95 to the coil 102 is not limited to this.
  • FIG. 15 is a diagram showing an example of a state in which the heat radiation fin 95 and the coil 102 to which the heat radiation fin 95 is attached are viewed from the arrow D of FIG.
  • the heat radiating fin 95 includes a base material 95a and a plurality of fins 95b erected on one surface of the base material 95a.
  • the fin 95b can also be said to be a protrusion.
  • the fins 95b are shown with diagonal lines.
  • the base material 95a has, for example, a plate shape.
  • Each fin 95b has, for example, a long plate shape in one direction. In this example, each fin 95b has its longitudinal direction along the vertical direction.
  • the plurality of fins 95b are arranged at intervals along a direction orthogonal to the vertical direction.
  • the plurality of fins 95b are arranged at equal intervals, for example.
  • the plurality of fins 95b do not have to be arranged at equal intervals.
  • the heat radiating fins 95 are attached to the coil 102, the coil 102 that easily generates heat can be appropriately cooled.
  • the plurality of fins 95b are arranged at intervals along the direction orthogonal to the vertical direction. As a result, the flow of the cooling air that cools the linear motor 10 is less likely to be obstructed by the radiating fins 95.
  • the cooling air 900 for cooling the linear motor 10A is on the upper side. It flows downward from.
  • a plurality of fins 95b are arranged at intervals along a direction orthogonal to the vertical direction in which the cooling air 900 flows. This makes it easier for the cooling air 900 to pass between the fins 95b. Therefore, the flow of the cooling air 900 is less likely to be obstructed by the heat radiation fins 95. As a result, the cooling effect of the linear motor 10 by the cooling air is improved.
  • the shape of the heat radiation fin 95 is not limited to the above example. Further, the heat radiation fins 95 may be attached only to a part of the plurality of coils 102 included in the linear motor 10. That is, the heat radiation fin 95 may be attached to at least one of the plurality of coils 102 included in the linear motor 10. Further, the mounting position of the heat radiation fin 95 with respect to the coil 102 is not limited to the above example. For example, the heat radiation fin 95 may be attached to the front side of the coil 102. Further, a plurality of heat radiation fins 95 may be attached to one coil 102. For example, heat dissipation fins 95 may be attached to each of the front side and the rear side of one coil 102. Further, as shown in FIG. 16, insulating paper 995 may be arranged around each coil 102. Then, the heat radiating fins 95 may be arranged on the insulating paper 995.
  • the power tool 1 was a reciprocating saw, but it may be another hand-held power tool that reciprocates the tip tool.
  • the electric tool 1 may be an electric hammer, a jigsaw, or an electric saw.
  • the power tool 1 has been described in detail, but the above description is an example in all aspects, and the disclosure is not limited thereto.
  • the various examples described above can be applied in combination as long as they do not contradict each other. And it is understood that innumerable examples not illustrated can be assumed without departing from the scope of this disclosure.

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Portable Power Tools In General (AREA)

Abstract

This electric tool comprises a first linear motor that causes a distal-end tool to move in a reciprocating manner, a housing, and a dynamic vibration absorber. The housing accommodates the first linear motor. The dynamic vibration absorber absorbs vibration occurring in the housing.

Description

電動工具Electric tool 関連出願の相互参照Cross-reference of related applications
 本出願は、日本国出願2019-208674号(2019年11月19日出願)の優先権を主張するものであり、当該出願の開示全体を、ここに参照のために取り込む。 This application claims the priority of Japanese application No. 2019-208674 (filed on November 19, 2019), and the entire disclosure of the application is incorporated herein by reference.
 本開示は、電動工具に関する。 This disclosure relates to power tools.
 特許文献1には、電動工具に関する技術が記載されている。 Patent Document 1 describes a technique related to a power tool.
特開2002-144255号公報JP-A-2002-144255
 電動工具が開示される。一の実施の形態では、電動工具は、先端工具を往復運動させる第1リニアモータと、ハウジングと、動吸振器とを備える。ハウジングは、第1リニアモータを収容する。動吸振器は、ハウジングに発生する振動を吸収する。 The power tool is disclosed. In one embodiment, the power tool comprises a first linear motor that reciprocates the tip tool, a housing, and a tuned mass damper. The housing houses the first linear motor. The tuned mass damper absorbs the vibration generated in the housing.
電動工具の一例を示す側面図である。It is a side view which shows an example of a power tool. 電動工具の一例を示す側面図である。It is a side view which shows an example of a power tool. 電動工具の一例を示す側面図である。It is a side view which shows an example of a power tool. 電動工具の一例を示す断面図である。It is sectional drawing which shows an example of an electric tool. 電動工具の一例を示す断面図である。It is sectional drawing which shows an example of an electric tool. リニアモータの動作の一例を説明するための図である。It is a figure for demonstrating an example of operation of a linear motor. リニアモータの動作の一例を説明するための図である。It is a figure for demonstrating an example of operation of a linear motor. 電線の配置例を示す図である。It is a figure which shows the arrangement example of an electric wire. ハウジングの構成例を示す図である。It is a figure which shows the structural example of a housing. 電動工具の一例を示す側面図である。It is a side view which shows an example of a power tool. 電動工具の一例を示す断面図である。It is sectional drawing which shows an example of an electric tool. 電動工具の一例を示す側面図である。It is a side view which shows an example of a power tool. 電動工具の一例を示す側面図である。It is a side view which shows an example of a power tool. リニアモータの一例を示す図である。It is a figure which shows an example of a linear motor. コイルと放熱フィン一例を示す図である。It is a figure which shows an example of a coil and a radiating fin. リニアモータの一例を示す図である。It is a figure which shows an example of a linear motor.
 図1は電動工具1の一例を示す概略側面図である。電動工具1は、例えば、手持ちのレシプロソーである。電動工具1には例えば交流電源が供給される。電動工具1は、供給される交流電源に基づいて動作を行う。 FIG. 1 is a schematic side view showing an example of the power tool 1. The power tool 1 is, for example, a hand-held reciprocating saw. For example, an AC power supply is supplied to the power tool 1. The power tool 1 operates based on the supplied AC power supply.
 図1に示されるように、電動工具1は、先端工具が取り付けられる取付部2と、取付部2を往復運動させるリニアモータ等を収容するハウジング3とを備える。ハウジング3はユーザによって把持される。先端工具は、例えば、取付部2に対して着脱可能である。本例では、電動工具1はレシプロソーであることから、先端工具4は細長い刃物である。レシプロソーの刃物は、鋸刃あるいはブレードとも呼ばれる。図2は、取付部2に先端工具4を取り付けた様子を示す概略側面図である。以後、図1に示される前側、後ろ側、上側及び下側を用いて電動工具1について説明する。電動工具1の先端工具4側が前側となり、それとは反対側が後ろ側となる。 As shown in FIG. 1, the electric tool 1 includes a mounting portion 2 to which a tip tool is mounted and a housing 3 that accommodates a linear motor or the like that reciprocates the mounting portion 2. The housing 3 is gripped by the user. The tip tool can be attached to and detached from the mounting portion 2, for example. In this example, since the power tool 1 is a reciprocating saw, the tip tool 4 is an elongated blade. Reciprocating saw blades are also called saw blades or blades. FIG. 2 is a schematic side view showing a state in which the tip tool 4 is attached to the attachment portion 2. Hereinafter, the power tool 1 will be described with reference to the front side, the rear side, the upper side, and the lower side shown in FIG. The tip tool 4 side of the power tool 1 is the front side, and the opposite side is the rear side.
 電動工具1では、ハウジング3内のリニアモータによって取付部2が往復運動させられることによって、先端工具4が往復運動する。先端工具4は前後方向に往復運動を行う。電動工具1は、往復運動する先端工具4によって、ワークに対して切断等の加工を行うことが可能である。 In the electric tool 1, the tip tool 4 reciprocates by reciprocating the mounting portion 2 by the linear motor in the housing 3. The tip tool 4 reciprocates in the front-back direction. The power tool 1 can perform machining such as cutting on a work by a tip tool 4 that reciprocates.
 電動工具1は、ワークを保持するワークホルダ5と、ワークホルダ5が固定される固定部6とを備える。ハウジング3は、例えば、一方向に沿って長い形状を成している。固定部6は、ハウジング3の前側端に設けられている。ワークホルダ5及び取付部2は、固定部6から前側に延びている。 The power tool 1 includes a work holder 5 for holding the work and a fixing portion 6 for fixing the work holder 5. The housing 3 has, for example, a long shape along one direction. The fixing portion 6 is provided at the front end of the housing 3. The work holder 5 and the mounting portion 2 extend forward from the fixing portion 6.
 電動工具1は、トリガスイッチ7、ロックボタン8及び電源ケーブル9を備える。トリガスイッチ7及びロックボタン8は、ハウジング3から露出するようにハウジング3に設けられている。トリガスイッチ7は、電動工具1を運転させるためのスイッチである。トリガスイッチ7が押された状態では先端工具4が往復運動を行う。一方で、トリガスイッチ7が押されていない状態では、先端工具4は往復運動を行わない。ロックボタン8は、電動工具1を連続運転させるためのボタンである。トリガスイッチ7が強く押された状態でロックボタン8が押され、その後、ロックボタン8が押された状態でトリガスイッチ7が押されなくなると、電動工具1の動作モードは連続運転モードとなる。連続運転モードの電動工具1では、トリガスイッチ7が押されていない状態でも先端工具4が連続して往復運動する。電動工具1の動作モードが連続運転モードのときにトリガスイッチ7が押されると、連続運転モードが解除される。その後、トリガスイッチ7が押されなくなると、先端工具4の往復運動が停止する。電源ケーブル9は交流電源を伝達するケーブルである。電源ケーブル9は、例えば、商用電源を出力するコンセントに接続される。 The power tool 1 includes a trigger switch 7, a lock button 8, and a power cable 9. The trigger switch 7 and the lock button 8 are provided on the housing 3 so as to be exposed from the housing 3. The trigger switch 7 is a switch for operating the power tool 1. When the trigger switch 7 is pressed, the tip tool 4 reciprocates. On the other hand, when the trigger switch 7 is not pressed, the tip tool 4 does not reciprocate. The lock button 8 is a button for continuously operating the power tool 1. When the lock button 8 is pressed while the trigger switch 7 is strongly pressed, and then the trigger switch 7 is not pressed while the lock button 8 is pressed, the operation mode of the power tool 1 becomes the continuous operation mode. In the power tool 1 in the continuous operation mode, the tip tool 4 continuously reciprocates even when the trigger switch 7 is not pressed. When the trigger switch 7 is pressed while the operation mode of the power tool 1 is the continuous operation mode, the continuous operation mode is released. After that, when the trigger switch 7 is no longer pressed, the reciprocating motion of the tip tool 4 is stopped. The power cable 9 is a cable that transmits AC power. The power cable 9 is connected to, for example, an outlet that outputs commercial power.
 図3は、ハウジング3の内部の様子の一例を示す概略側面図である。ハウジング3は、例えば2分割可能となっている。図3では、ハウジング3を構成する2つの分割部品のうちの一方の分割部品が取り外されることによって、ハウジング3の内部が見えるようになっている。図4は、図3に示される構造の矢視A-Aにおける断面構造の概略を示す図である。図5は、図3に示される構造の矢視B-Bにおける断面構造の概略を示す図である。 FIG. 3 is a schematic side view showing an example of the inside of the housing 3. The housing 3 can be divided into two, for example. In FIG. 3, the inside of the housing 3 can be seen by removing one of the two divided parts constituting the housing 3. FIG. 4 is a diagram showing an outline of a cross-sectional structure of the structure shown in FIG. 3 in arrow view AA. FIG. 5 is a diagram showing an outline of a cross-sectional structure of the structure shown in FIG. 3 in arrow view BB.
 図3~5に示されるように、電動工具1は、複数のリニアモータ10と、当該複数のリニアモータ10によって駆動される駆動軸11と、補助機構12と、動吸振器13とを備える。複数のリニアモータ10、駆動軸11、補助機構12及び動吸振器13は、ハウジング3に収容されている。 As shown in FIGS. 3 to 5, the electric tool 1 includes a plurality of linear motors 10, a drive shaft 11 driven by the plurality of linear motors 10, an auxiliary mechanism 12, and a dynamic vibration absorber 13. The plurality of linear motors 10, the drive shaft 11, the auxiliary mechanism 12, and the dynamic vibration absorber 13 are housed in the housing 3.
 駆動軸11は、前後方向に沿って延在する。駆動軸11の前側端は取付部2に固定されている。複数のリニアモータ10は、駆動軸11を往復運動させることができる。駆動軸11が往復運動することによって、取付部2が往復運動する。その結果、先端工具4が往復運動する。各リニアモータ10は、駆動軸11を介して取付部2を往復運動させると言える。また、各リニアモータ10は、駆動軸11及び取付部2を介して先端工具4を往復運動させると言える。補助機構12は、バネによる共振を利用して、リニアモータ10による先端工具4の往復運動を補助する。動吸振器13は、ハウジング3の振動を抑制する。以後、リニアモータ10によって駆動される駆動軸11、取付部2及び先端工具4をまとめて駆動対象物と呼ぶことがある。リニアモータ10は駆動対象物を往復運動させる。 The drive shaft 11 extends along the front-rear direction. The front end of the drive shaft 11 is fixed to the mounting portion 2. The plurality of linear motors 10 can reciprocate the drive shaft 11. The reciprocating motion of the drive shaft 11 causes the mounting portion 2 to reciprocate. As a result, the tip tool 4 reciprocates. It can be said that each linear motor 10 reciprocates the mounting portion 2 via the drive shaft 11. Further, it can be said that each linear motor 10 reciprocates the tip tool 4 via the drive shaft 11 and the mounting portion 2. The auxiliary mechanism 12 assists the reciprocating motion of the tip tool 4 by the linear motor 10 by utilizing the resonance caused by the spring. The Tuned Mass Damper 13 suppresses the vibration of the housing 3. Hereinafter, the drive shaft 11, the mounting portion 2, and the tip tool 4 driven by the linear motor 10 may be collectively referred to as a drive object. The linear motor 10 reciprocates the object to be driven.
 電動工具1は、例えば2つのリニアモータ10を備える。一方のリニアモータ10は、例えば、ハウジング3の前側部分に収容されている。他方のリニアモータ10は、例えば、ハウジング3の後ろ側部分に収容されている。以後、前側のリニアモータ10をリニアモータ10Aと呼ぶことがある。また、後ろ側のリニアモータ10をリニアモータ10Bと呼ぶことがある。 The power tool 1 includes, for example, two linear motors 10. One linear motor 10 is housed in, for example, the front side portion of the housing 3. The other linear motor 10 is housed in, for example, a rear portion of the housing 3. Hereinafter, the linear motor 10 on the front side may be referred to as a linear motor 10A. Further, the linear motor 10 on the rear side may be referred to as a linear motor 10B.
 ハウジング3は、ユーザによって把持される把持部300を備える。把持部300は、略筒状を成している。把持部300は前後方向に延びている。補助機構12及び動吸振器13は、例えば把持部300に収容されている。補助機構12及び動吸振器13は、前後方向に直交する方向において並んでいる。本例では、補助機構12及び動吸振器13は上下方向に並んでいるが、補助機構12及び動吸振器13の並び方はこの限りではない。例えば、補助機構12及び動吸振器13は、前後方向及び上下方向に直交する左右方向に並んでもよい。 The housing 3 includes a grip portion 300 that is gripped by the user. The grip portion 300 has a substantially tubular shape. The grip portion 300 extends in the front-rear direction. The auxiliary mechanism 12 and the dynamic vibration absorber 13 are housed in, for example, the grip portion 300. The auxiliary mechanism 12 and the dynamic vibration absorber 13 are arranged in a direction orthogonal to the front-rear direction. In this example, the auxiliary mechanism 12 and the dynamic vibration absorber 13 are arranged in the vertical direction, but the arrangement of the auxiliary mechanism 12 and the dynamic vibration absorber 13 is not limited to this. For example, the auxiliary mechanism 12 and the dynamic vibration absorber 13 may be arranged in the left-right direction orthogonal to the front-rear direction and the up-down direction.
 ハウジング3は、リニアモータ10Aを収容する収容部310と、リニアモータ10Bを収容する収容部320とを備える。収容部310は把持部300の前側に位置する。これにより、リニアモータ10Aは把持部300の前側に位置する。リニアモータ10Aは補助機構12及び動吸振器13の前側に位置する。収容部320は把持部300の後ろ側に位置する。これにより、リニアモータ10Bは把持部300の後が側に位置する。リニアモータ10Bは補助機構12及び動吸振器13の後ろ側に位置する。 The housing 3 includes an accommodating portion 310 for accommodating the linear motor 10A and an accommodating portion 320 accommodating the linear motor 10B. The accommodating portion 310 is located on the front side of the grip portion 300. As a result, the linear motor 10A is located on the front side of the grip portion 300. The linear motor 10A is located on the front side of the auxiliary mechanism 12 and the dynamic vibration absorber 13. The accommodating portion 320 is located behind the grip portion 300. As a result, the linear motor 10B is located on the rear side of the grip portion 300. The linear motor 10B is located behind the auxiliary mechanism 12 and the dynamic vibration absorber 13.
 <リニアモータの構成例>
 次にリニアモータ10の構成例について説明する。以下に説明する構成は一例であって、リニアモータ10の構成は下記の例に限られない。
<Example of linear motor configuration>
Next, a configuration example of the linear motor 10 will be described. The configuration described below is an example, and the configuration of the linear motor 10 is not limited to the following example.
 各リニアモータ10は、固定子100及び可動子110を備える。固定子100はハウジング3内に固定される。可動子110は、前後方向に沿って往復運動を行うことが可能である。可動子110は駆動軸11に固定される。駆動軸11は、可動子110の往復運動に連動して往復運動を行う。 Each linear motor 10 includes a stator 100 and a mover 110. The stator 100 is fixed in the housing 3. The mover 110 can reciprocate along the front-rear direction. The mover 110 is fixed to the drive shaft 11. The drive shaft 11 reciprocates in conjunction with the reciprocating motion of the mover 110.
 固定子100は、コア101と、当該コア101に巻かれる複数のコイル102とを備える。各図では、コイル102が模式的に示されている。コア101は、枠状部101aと、当該枠状部101aの内側から互いに対向するように突出する2つのティース101b(図5参照)とを備える。2つのティース101bは上下方向で対向している。各ティース101bには、2つのコイル102が巻かれている。本例では、固定子100は4つのコイル102を備える。コイル102は、絶縁部材103を介してティース101bに巻かれている。一つのティース101bに巻かれた2つのコイル102の間には絶縁部材103が存在する。 The stator 100 includes a core 101 and a plurality of coils 102 wound around the core 101. In each figure, the coil 102 is schematically shown. The core 101 includes a frame-shaped portion 101a and two teeth 101b (see FIG. 5) protruding from the inside of the frame-shaped portion 101a so as to face each other. The two teeth 101b face each other in the vertical direction. Two coils 102 are wound around each tooth 101b. In this example, the stator 100 includes four coils 102. The coil 102 is wound around the teeth 101b via the insulating member 103. An insulating member 103 exists between the two coils 102 wound around one tooth 101b.
 一つのティース101bに巻かれた2つのコイル102は並列接続されている。さらに、固定子100が備える4つのコイル102は並列接続されている。上側のティース101bに巻かれた2つのコイル102の巻線方向は、下側のティース101bに巻かれた2つのコイル102の巻線方向の逆方向となっている。本例では、上側のティース101bに発生する磁極は、下側のティース101bに発生する磁極の逆の磁極となる。 Two coils 102 wound around one tooth 101b are connected in parallel. Further, the four coils 102 included in the stator 100 are connected in parallel. The winding direction of the two coils 102 wound around the upper teeth 101b is opposite to the winding direction of the two coils 102 wound around the lower teeth 101b. In this example, the magnetic pole generated on the upper teeth 101b is the opposite magnetic pole of the magnetic pole generated on the lower teeth 101b.
 可動子110は、互いに対向する2つのティース101bの間に位置する。可動子110は、2つの磁石111と、当該2つの磁石111の間に位置するスペーサ112とを備える。2つの磁石111及びスペーサ112は、前後方向に沿って並んでおり、駆動軸11に固定されている。前側の磁石111の上側端部の磁極は、前側の磁石111の下側端部の磁極の逆の磁極となっている。後ろ側の磁石111の上側端部の磁極は、後ろ側の磁石111の下側端部の磁極の逆の磁極となっている。前側の磁石111の上側端部の磁極は、後ろ側の磁石111の上側端部の磁極と逆の磁極となっている。前側の磁石111の下側端部の磁極は、後ろ側の磁石111の下側端部の磁極と逆の磁極となっている。ティース101bに巻かれた2つのコイル102のうちの可動子110側のコイル102と、可動子110の各磁石111との間には絶縁部材103が存在する。なお、可動子110はスペーサ112を備えなくてもよい。この場合、2つの磁石111は互いに隣接するように位置してもよい。 The mover 110 is located between two teeth 101b facing each other. The mover 110 includes two magnets 111 and a spacer 112 located between the two magnets 111. The two magnets 111 and the spacer 112 are aligned in the front-rear direction and are fixed to the drive shaft 11. The magnetic pole at the upper end of the front magnet 111 is the opposite of the magnetic pole at the lower end of the front magnet 111. The magnetic pole at the upper end of the magnet 111 on the rear side is the opposite of the magnetic pole at the lower end of the magnet 111 on the rear side. The magnetic pole at the upper end of the front magnet 111 is the opposite of the magnetic pole at the upper end of the rear magnet 111. The magnetic pole at the lower end of the front magnet 111 is the opposite of the magnetic pole at the lower end of the rear magnet 111. An insulating member 103 exists between the coil 102 on the mover 110 side of the two coils 102 wound around the teeth 101b and each magnet 111 of the mover 110. The mover 110 does not have to include the spacer 112. In this case, the two magnets 111 may be located adjacent to each other.
 図6及び7は、リニアモータ10の動作の一例を説明するための図である。図6及び7に示されるリニアモータ10では、説明の便宜上、コア101の枠状部101aと絶縁部材103の記載が省略されている。 6 and 7 are diagrams for explaining an example of the operation of the linear motor 10. In the linear motor 10 shown in FIGS. 6 and 7, the description of the frame-shaped portion 101a of the core 101 and the insulating member 103 is omitted for convenience of explanation.
 図6及び7の例では、前側の磁石111の上側端部及び下側端部の磁極は、それぞれS極及びN極となっている。また、後ろ側の磁石111の上側端部及び下側端部の磁極は、それぞれN極及びS極となっている。 In the examples of FIGS. 6 and 7, the magnetic poles at the upper end and the lower end of the front magnet 111 are S pole and N pole, respectively. Further, the magnetic poles of the upper end portion and the lower end portion of the magnet 111 on the rear side are N pole and S pole, respectively.
 図6に示されるように、上側及び下側のティース101bの磁極がそれぞれN極及びS極に設定された場合を考える。この場合、前側の磁石111の上側端部と上側のティース101bとが引き合う一方、後側の磁石111の上側端部と上側のティース101bとが反発する。また、前側の磁石111の下側端部と下側のティース101bとが引き合う一方、後側の磁石111の下側端部と下側のティース101bとが反発する。これにより、可動子110が後ろ側へ移動し、それに応じて駆動軸11が後ろ側へ移動する。 As shown in FIG. 6, consider a case where the magnetic poles of the upper and lower teeth 101b are set to the north pole and the south pole, respectively. In this case, the upper end of the front magnet 111 and the upper teeth 101b attract each other, while the upper end of the rear magnet 111 and the upper teeth 101b repel each other. Further, the lower end portion of the magnet 111 on the front side and the tooth 101b on the lower side attract each other, while the lower end portion of the magnet 111 on the rear side and the tooth 101b on the lower side repel each other. As a result, the mover 110 moves to the rear side, and the drive shaft 11 moves to the rear side accordingly.
 次に、図7に示されるように、上側及び下側のティース101bの磁極がそれぞれS極及びN極に設定された場合を考える。この場合、前側の磁石111の上側端部と上側のティース101bとが反発する一方、後側の磁石111の上側端部と上側のティース101bとが引き合う。また、前側の磁石111の下側端部と下側のティース101bとが反発する一方、後側の磁石111の下側端部と下側のティース101bとが引き合う。これにより、可動子110が前側へ移動し、それに応じて駆動軸11が前側へ移動する。 Next, consider the case where the magnetic poles of the upper and lower teeth 101b are set to the S pole and the N pole, respectively, as shown in FIG. In this case, the upper end of the front magnet 111 and the upper teeth 101b repel each other, while the upper end of the rear magnet 111 and the upper teeth 101b attract each other. Further, the lower end of the front magnet 111 and the lower teeth 101b repel each other, while the lower end of the rear magnet 111 and the lower teeth 101b attract each other. As a result, the mover 110 moves to the front side, and the drive shaft 11 moves to the front side accordingly.
 本例では、電動工具1が運転中の場合、電源ケーブル9が伝達する交流電源が各リニアモータ10に直接供給される。これにより、固定子100の各コイル102に交流電流が流れて、各ティース101bの磁極は、図6の状態と図7の状態を交互にとるようになる。これにより、可動子110が前後方向に往復運動する。 In this example, when the power tool 1 is in operation, the AC power transmitted by the power cable 9 is directly supplied to each linear motor 10. As a result, an alternating current flows through each coil 102 of the stator 100, and the magnetic poles of the teeth 101b alternately take the state of FIG. 6 and the state of FIG. 7. As a result, the mover 110 reciprocates in the front-rear direction.
 このようにして、各リニアモータ10の可動子110が前後方向に往復運動することによって、駆動軸11、取付部2及び先端工具4が前後方向に往復運動する。つまり、各リニアモータ10の可動子110が前後方向に往復運動することによって、駆動対象物が前後方向に往復運動する。以後、可動子110及び駆動対象物をまとめて往復運動体と呼ぶことがある。 In this way, the mover 110 of each linear motor 10 reciprocates in the front-rear direction, so that the drive shaft 11, the mounting portion 2, and the tip tool 4 reciprocate in the front-rear direction. That is, the mover 110 of each linear motor 10 reciprocates in the front-rear direction, so that the object to be driven reciprocates in the front-rear direction. Hereinafter, the mover 110 and the driving object may be collectively referred to as a reciprocating motion body.
 本例のように、リニアモータ10によって先端工具4を往復運動させる場合には、回転式モータを使用する場合と比較して、回転運動を往復運動に変換する、カム等の変換機構が不要となる。また、本例では、ギア等の減速機構も不要となる。変換機構及び減速機構からは騒音が生じる可能性がある。本例では、変換機構及び減速機構が不要となることから、電動工具1の騒音を低減することができる。 When the tip tool 4 is reciprocated by the linear motor 10 as in this example, a conversion mechanism such as a cam that converts the rotary motion into a reciprocating motion is unnecessary as compared with the case where the rotary motor is used. Become. Further, in this example, a reduction mechanism such as a gear is not required. Noise may be generated from the conversion mechanism and the deceleration mechanism. In this example, since the conversion mechanism and the deceleration mechanism are unnecessary, the noise of the power tool 1 can be reduced.
 <補助機構の構成例>
 次に補助機構12の構成例について説明する。以下に説明する構成は一例であって、補助機構12の構成は下記の例に限られない。
<Configuration example of auxiliary mechanism>
Next, a configuration example of the auxiliary mechanism 12 will be described. The configuration described below is an example, and the configuration of the auxiliary mechanism 12 is not limited to the following example.
 補助機構12は、2つのバネ121と、当該2つのバネ121の一端を保持する保持部120とを備える。保持部120は駆動軸11に固定されている。各バネ121は、例えば圧縮コイルバネである。保持部120と2つのバネ121は前後方向に沿って並んでいる。一方のバネ121は保持部120の前側に位置し、他方のバネ121は保持部120の後ろ側に位置する。各バネ121は、前後方向に伸張可能である。駆動軸11は各バネ121の内側を通っている。 The auxiliary mechanism 12 includes two springs 121 and a holding portion 120 that holds one end of the two springs 121. The holding portion 120 is fixed to the drive shaft 11. Each spring 121 is, for example, a compression coil spring. The holding portion 120 and the two springs 121 are arranged along the front-rear direction. One spring 121 is located on the front side of the holding portion 120, and the other spring 121 is located on the rear side of the holding portion 120. Each spring 121 can be extended in the front-rear direction. The drive shaft 11 passes through the inside of each spring 121.
 各バネ121の一端は、保持部120の移動に応じて移動する。各バネ121の他端は、ハウジング3に間接的あるいは直接的に固定されている。本例では、補助機構12は、各バネ121について、バネ121の他端を保持する保持部材122を備える。また、補助機構12は、各保持部材122について、保持部材122を把持部300に固定する固定部123を備える。これにより、各バネ121の他端は、ハウジング3に間接的に固定される。固定部123は、ハウジング3と一体的に形成されてもよいし、ハウジング3と別体であってもよい。保持部材122及び固定部123のそれぞれは、前後方向に貫通する貫通孔を有している。駆動軸11は保持部材122及び固定部123の貫通孔を通っている。各バネ121の端部は、自由端であってもよいし、固定端であってもよい。すなわち、各バネ121の2つの端部は、どちらも自由端であってもよいし、どちらも固定端であってもよい。また、各バネ121の2つの端部の一方が自由端であり、当該2つの端部の他方が固定端であってもよい。 One end of each spring 121 moves according to the movement of the holding portion 120. The other end of each spring 121 is indirectly or directly fixed to the housing 3. In this example, the auxiliary mechanism 12 includes, for each spring 121, a holding member 122 that holds the other end of the spring 121. Further, the auxiliary mechanism 12 includes a fixing portion 123 for fixing the holding member 122 to the grip portion 300 for each holding member 122. As a result, the other end of each spring 121 is indirectly fixed to the housing 3. The fixing portion 123 may be formed integrally with the housing 3 or may be a separate body from the housing 3. Each of the holding member 122 and the fixing portion 123 has a through hole penetrating in the front-rear direction. The drive shaft 11 passes through the through holes of the holding member 122 and the fixing portion 123. The end of each spring 121 may be a free end or a fixed end. That is, the two ends of each spring 121 may both be free ends or both may be fixed ends. Further, one of the two ends of each spring 121 may be a free end, and the other of the two ends may be a fixed end.
 保持部120は、駆動軸11に固定されていることから、駆動軸11とともに移動する。本例では、2つのバネ121は、自然長よりも少し短い状態で把持部300に収容されている。つまり、各バネ121の初期状態は少し圧縮された状態となっている。 Since the holding portion 120 is fixed to the drive shaft 11, it moves together with the drive shaft 11. In this example, the two springs 121 are housed in the grip 300 in a state slightly shorter than the natural length. That is, the initial state of each spring 121 is a slightly compressed state.
 補助機構12では、保持部120及び駆動軸11が後ろ側に移動すると、前側のバネ121が初期状態から伸張するとともに、後ろ側のバネ121が初期状態から圧縮する。これにより、保持部120及び駆動軸11には前方向の力が加わる。一方で、保持部120及び駆動軸11が前側に移動すると、前側のバネ121が初期状態から圧縮するとともに、後ろ側のバネ121が初期状態から伸張する。これにより、保持部120及び駆動軸11には後ろ方向の力が加わる。 In the auxiliary mechanism 12, when the holding portion 120 and the drive shaft 11 move to the rear side, the spring 121 on the front side expands from the initial state, and the spring 121 on the rear side compresses from the initial state. As a result, a force in the forward direction is applied to the holding portion 120 and the drive shaft 11. On the other hand, when the holding portion 120 and the drive shaft 11 move to the front side, the spring 121 on the front side compresses from the initial state, and the spring 121 on the rear side expands from the initial state. As a result, a force in the rear direction is applied to the holding portion 120 and the drive shaft 11.
 このように、補助機構12では、バネ121の働きによって、保持部120及び駆動軸11が移動する方向とは逆方向の力が保持部120及び駆動軸11に加わる。これにより、保持部120及び駆動軸11は、バネ121の働きによって、前後方向に振動することが可能である。前後方向の振動は、前後方向の往復運動であるとも言える。 As described above, in the auxiliary mechanism 12, a force in the direction opposite to the direction in which the holding portion 120 and the drive shaft 11 move is applied to the holding portion 120 and the drive shaft 11 by the action of the spring 121. As a result, the holding portion 120 and the drive shaft 11 can vibrate in the front-rear direction by the action of the spring 121. It can be said that the vibration in the front-back direction is a reciprocating motion in the front-back direction.
 一方で、上述のように、リニアモータ10は駆動軸11を前後方向に往復運動させることから、保持部120及び駆動軸11は、リニアモータ10からの力によっても、前後方向に振動することが可能である。 On the other hand, as described above, since the linear motor 10 reciprocates the drive shaft 11 in the front-rear direction, the holding portion 120 and the drive shaft 11 may vibrate in the front-rear direction even by the force from the linear motor 10. It is possible.
 本例では、バネ121によって振動する保持部120及び駆動軸11に対して、リニアモータ10からの力が加えられた場合に、保持部120及び駆動軸11の振動が共振するように、バネ121のバネ定数等が適切に設定されている。これにより、補助機構12は、バネ121による共振を利用して、リニアモータ10による保持部120及び駆動軸11の往復運動を補助することができる。言い換えれば、補助機構12は、バネ121による共振を利用して、リニアモータ10による取付部2及び先端工具4の往復運動を補助することができる。よって、リニアモータ10の駆動に必要な電力を減少することができる。その結果、電動工具1の消費電力を低減することができる。また、リニアモータ10の発熱を低減することができる。本例では、リニアモータ10と、リニアモータ10によって駆動される、駆動軸11等を含む駆動対象物と、補助機構12とは、リニア共振アクチュエータを構成していると言える。なお、補助機構12は、2つのバネ121の一方を備えなくてもよい。また、ハウジング3内での補助機構12の配置場所は上記の例に限られない。 In this example, the spring 121 so that the vibrations of the holding portion 120 and the driving shaft 11 resonate when a force from the linear motor 10 is applied to the holding portion 120 and the driving shaft 11 vibrating by the spring 121. The spring constant etc. of is set appropriately. As a result, the auxiliary mechanism 12 can assist the reciprocating motion of the holding portion 120 and the drive shaft 11 by the linear motor 10 by utilizing the resonance caused by the spring 121. In other words, the auxiliary mechanism 12 can assist the reciprocating motion of the mounting portion 2 and the tip tool 4 by the linear motor 10 by utilizing the resonance caused by the spring 121. Therefore, the electric power required to drive the linear motor 10 can be reduced. As a result, the power consumption of the power tool 1 can be reduced. Moreover, the heat generation of the linear motor 10 can be reduced. In this example, it can be said that the linear motor 10, the drive object including the drive shaft 11 and the like driven by the linear motor 10, and the auxiliary mechanism 12 constitute a linear resonance actuator. The auxiliary mechanism 12 does not have to include one of the two springs 121. Further, the arrangement location of the auxiliary mechanism 12 in the housing 3 is not limited to the above example.
 <動吸振器の構成例>
 次に動吸振器13の構成例について説明する。以下に説明する構成は一例であって、動吸振器13の構成は下記の例に限られない。
<Example of Tuned Mass Damper Configuration>
Next, a configuration example of the dynamic vibration absorber 13 will be described. The configuration described below is an example, and the configuration of the tuned mass damper 13 is not limited to the following example.
 動吸振器13は、例えば、質量体130と、当該質量体130を移動させる2つのバネ131とを備える。質量体130と2つのバネ131は前後方向に沿って並んでいる。一方のバネ131は質量体130の前側に位置し、他方のバネ131は質量体130の後ろ側に位置する。各バネ131は前後方向に沿って伸縮可能である。 The dynamic vibration absorber 13 includes, for example, a mass body 130 and two springs 131 for moving the mass body 130. The mass body 130 and the two springs 131 are aligned in the front-rear direction. One spring 131 is located on the front side of the mass body 130, and the other spring 131 is located on the rear side of the mass body 130. Each spring 131 can expand and contract along the front-rear direction.
 2つのバネ131の一端は、質量体130の前後方向の両端にそれぞれ接続されている。2つのバネ131の他端のそれぞれは、ハウジング3に対して間接的あるいは直接的に固定されている。本例では、動吸振器13は、各バネ131について、バネ131の他端を保持する保持部材132を備える。また、動吸振器13は、各保持部材132ついて、保持部材132を把持部300に固定する固定部133を備える。これにより、各バネ131の他端は、ハウジング3に間接的に固定される。各バネ131の端部は、自由端であってもよいし、固定端であってもよい。すなわち、各バネ131の2つの端部は、どちらも自由端であってもよいし、どちらも固定端であってもよい。また、各バネ131の2つの端部の一方が自由端であり、当該2つの端部の他方が固定端であってもよい。 One ends of the two springs 131 are connected to both ends of the mass body 130 in the front-rear direction. Each of the other ends of the two springs 131 is indirectly or directly fixed to the housing 3. In this example, the Tuned Mass Damper 13 includes, for each spring 131, a holding member 132 that holds the other end of the spring 131. Further, the dynamic vibration absorber 13 includes a fixing portion 133 for fixing the holding member 132 to the grip portion 300 for each holding member 132. As a result, the other end of each spring 131 is indirectly fixed to the housing 3. The end of each spring 131 may be a free end or a fixed end. That is, the two ends of each spring 131 may both be free ends or both may be fixed ends. Further, one of the two ends of each spring 131 may be a free end, and the other of the two ends may be a fixed end.
 動吸振器13は、質量体130が、往復運動体の振動(言い換えれば、往復運動)とは逆位相で振動するように構成されている。これにより、動吸振器13は、往復運動体の振動によってハウジング3に生じる振動を吸収することができる。よって、ユーザによって把持されるハウジング3の振動を小さくすることができる。その結果、電動工具1の操作性が向上する。なお、ハウジング3内での動吸振器13の配置場所は上記の例に限られない。 The Tuned Mass Damper 13 is configured such that the mass body 130 vibrates in a phase opposite to the vibration of the reciprocating motion (in other words, the reciprocating motion). As a result, the dynamic vibration absorber 13 can absorb the vibration generated in the housing 3 due to the vibration of the reciprocating motion body. Therefore, the vibration of the housing 3 gripped by the user can be reduced. As a result, the operability of the power tool 1 is improved. The location of the Tuned Mass Damper 13 in the housing 3 is not limited to the above example.
 <冷却機構の構成例>
 電動工具1は、リニアモータ10を冷却する冷却機構を有している。冷却機構は、複数の逆止弁140~143と、空気圧増減部150とを備える。逆止弁140及び141は、リニアモータ10Aが収容される収容部310に設けられている。逆止弁142及び143は、リニアモータ10Bが収容される収容部320に設けられている。空気圧増減部150は、収容部310及び320内での空気圧を増減することができる。
<Configuration example of cooling mechanism>
The power tool 1 has a cooling mechanism for cooling the linear motor 10. The cooling mechanism includes a plurality of check valves 140 to 143 and an air pressure increasing / decreasing unit 150. The check valves 140 and 141 are provided in the accommodating portion 310 in which the linear motor 10A is accommodated. The check valves 142 and 143 are provided in the accommodating portion 320 in which the linear motor 10B is accommodated. The air pressure increase / decrease unit 150 can increase / decrease the air pressure in the accommodating units 310 and 320.
 逆止弁140は、ハウジング3の外側の空気を収容部310内に取り込むことが可能である。一方で、逆止弁140は、収容部310内に空気を、ハウジング3の外側に排気することはできない。 The check valve 140 can take in the air outside the housing 3 into the accommodating portion 310. On the other hand, the check valve 140 cannot exhaust air into the accommodating portion 310 to the outside of the housing 3.
 逆止弁141は、収容部310内の空気を、ハウジング3の外側に排気することが可能である。一方で、逆止弁141は、ハウジング3の外側の空気を収容部310内に取り込むことはできない。 The check valve 141 can exhaust the air inside the accommodating portion 310 to the outside of the housing 3. On the other hand, the check valve 141 cannot take in the air outside the housing 3 into the accommodating portion 310.
 逆止弁140は、例えば、リニアモータ10Aの上側に位置する。逆止弁141は、例えば、リニアモータ10Aの下側に位置する。逆止弁140、リニアモータ10A及び逆止弁141は上下方向に沿って並んでいる。 The check valve 140 is located above the linear motor 10A, for example. The check valve 141 is located, for example, below the linear motor 10A. The check valve 140, the linear motor 10A, and the check valve 141 are arranged in the vertical direction.
 逆止弁142は、ハウジング3の外側の空気を収容部320内に取り込むことが可能である。一方で、逆止弁142は、収容部320内に空気を、ハウジング3の外側に排気することはできない。 The check valve 142 can take in the air outside the housing 3 into the accommodating portion 320. On the other hand, the check valve 142 cannot exhaust air into the accommodating portion 320 to the outside of the housing 3.
 逆止弁143は、収容部320内の空気を、ハウジング3の外側に排気することが可能である。一方で、逆止弁143は、ハウジング3の外側の空気を収容部320内に取り込むことはできない。 The check valve 143 can exhaust the air inside the accommodating portion 320 to the outside of the housing 3. On the other hand, the check valve 143 cannot take in the air outside the housing 3 into the accommodating portion 320.
 逆止弁142は、例えば、リニアモータ10Bの上側に位置する。逆止弁143は、例えば、リニアモータ10Bの下側に位置する。逆止弁142、リニアモータ10B及び逆止弁143は上下方向に沿って並んでいる。 The check valve 142 is located above the linear motor 10B, for example. The check valve 143 is located, for example, below the linear motor 10B. The check valve 142, the linear motor 10B, and the check valve 143 are arranged in the vertical direction.
 空気圧増減部150は、例えば、把持部300の後端部に収容されている。空気圧増減部150は、例えば筒状部151を備える。筒状部151は前後方向に開口している。駆動軸11は筒状部151の内側を通っている。 The air pressure increase / decrease portion 150 is housed in, for example, the rear end portion of the grip portion 300. The air pressure increasing / decreasing unit 150 includes, for example, a tubular portion 151. The tubular portion 151 is open in the front-rear direction. The drive shaft 11 passes through the inside of the tubular portion 151.
 また、空気圧増減部150は、第1仕切り部152及び第2仕切り部153を備える。第1仕切り部152及び第2仕切り部153は、ハウジング3において、空気圧増減部150よりも前側の前側空間と、空気圧増減部150よりも後ろ側の後ろ側空間とを区分する。これにより、収容部310と収容部320が、第1仕切り部152及び第2仕切り部153によって区分される。 Further, the air pressure increasing / decreasing section 150 includes a first partition section 152 and a second partition section 153. The first partition portion 152 and the second partition portion 153 divide the front space on the front side of the air pressure increase / decrease unit 150 and the rear space on the rear side of the air pressure increase / decrease unit 150 in the housing 3. As a result, the accommodating portion 310 and the accommodating portion 320 are separated by the first partition portion 152 and the second partition portion 153.
 第1仕切り部152は、例えばフランジ状を成している。第1仕切り部152は、筒状部151の外周面を取り囲むように、当該外周面に突設されている。第1仕切り部152は、把持部300の内周面をその周方向に沿うように当該内周面に固定されている。 The first partition portion 152 has, for example, a flange shape. The first partition portion 152 is projected from the outer peripheral surface so as to surround the outer peripheral surface of the tubular portion 151. The first partition portion 152 is fixed to the inner peripheral surface of the grip portion 300 so as to follow the circumferential direction thereof.
 第2仕切り部153は、筒状部151の内側に位置し、筒状部151の内側の空間を前後方向に2つに区分する。第2仕切り部153は、例えば、板状部153a及びOリング153bを備える。板状部153aは、筒状部151の内側において駆動軸11に固定されている。板状部153aの側面には溝が1周形成されている。この溝にOリング153bが嵌められることによって、第2仕切り部153は、筒状部151の内周面と密着する。 The second partition portion 153 is located inside the tubular portion 151, and divides the space inside the tubular portion 151 into two in the front-rear direction. The second partition portion 153 includes, for example, a plate-shaped portion 153a and an O-ring 153b. The plate-shaped portion 153a is fixed to the drive shaft 11 inside the tubular portion 151. A groove is formed once on the side surface of the plate-shaped portion 153a. By fitting the O-ring 153b into this groove, the second partition portion 153 comes into close contact with the inner peripheral surface of the tubular portion 151.
 ハウジング3の前側空間及び後ろ側空間が、第1仕切り部152及び第2仕切り部153によって区分されることによって、前側空間と後ろ側空間の間での空気の流れが防止される。本例では、駆動軸11に固定された第2仕切り部153が、駆動軸11の前後方向の往復運動に連動して、前後方向に往復運動を行う。これにより、前側空間内の空気圧と、後ろ側空間内の空気圧とが変化する。空気圧増減部150は、前側空間内の空気圧と後ろ側空間内の空気圧を、駆動対象物の往復運動に連動して増減するとも言える。 By separating the front space and the rear space of the housing 3 by the first partition portion 152 and the second partition portion 153, the flow of air between the front space and the rear space is prevented. In this example, the second partition portion 153 fixed to the drive shaft 11 reciprocates in the front-rear direction in conjunction with the reciprocating motion of the drive shaft 11 in the front-rear direction. As a result, the air pressure in the front space and the air pressure in the rear space change. It can be said that the air pressure increase / decrease unit 150 increases / decreases the air pressure in the front space and the air pressure in the rear space in conjunction with the reciprocating motion of the driving object.
 第2仕切り部153が前側に移動すると、前側空間内の空気圧が増加するとともに、後ろ側空間内の空気圧が減少する。よって、第2仕切り部153が前側に移動すると、収容部310内の空気圧が増加するとともに収容部320内の空気圧が減少する。第2仕切り部153が後ろ側に移動すると、前側空間内の空気圧が減少するとともに、後ろ側空間内の空気圧が増加する。よって、第2仕切り部153が後ろ側に移動すると、収容部310内の空気圧が減少するとともに収容部320内の空気圧が増加する。 When the second partition portion 153 moves to the front side, the air pressure in the front space increases and the air pressure in the rear space decreases. Therefore, when the second partition portion 153 moves to the front side, the air pressure in the accommodating portion 310 increases and the air pressure in the accommodating portion 320 decreases. When the second partition portion 153 moves to the rear side, the air pressure in the front space decreases and the air pressure in the rear space increases. Therefore, when the second partition portion 153 moves to the rear side, the air pressure in the accommodating portion 310 decreases and the air pressure in the accommodating portion 320 increases.
 本例では、収容部310内の空気圧が減少したとき逆止弁140が収容部310内に空気を取り込み、収容部310内の空気圧が増加したとき逆止弁141が収容部310内の空気を排気することによって、収容部310内のリニアモータ10Aが冷却される。本例では、収容部310内の空気圧は、第2仕切り部153の往復運動に連動して増減することから、逆止弁140による吸気と逆止弁141による排気とが交互に連続的に行われる。これにより、電動工具1では、収容部310の上側から収容部310内に取り込まれた空気が、冷却風として、リニアモータ10Aに当たり、その後、収容部310の下側から排出されるという処理が、繰り返し実行されて、リニアモータ10Aが冷却される。 In this example, the check valve 140 takes in air into the accommodating portion 310 when the air pressure in the accommodating portion 310 decreases, and the check valve 141 takes in the air in the accommodating portion 310 when the air pressure in the accommodating portion 310 increases. By exhausting, the linear motor 10A in the accommodating portion 310 is cooled. In this example, since the air pressure in the accommodating portion 310 increases or decreases in conjunction with the reciprocating motion of the second partition portion 153, the intake air by the check valve 140 and the exhaust air by the check valve 141 are alternately and continuously performed. Will be. As a result, in the power tool 1, the air taken into the accommodating portion 310 from the upper side of the accommodating portion 310 hits the linear motor 10A as cooling air, and then is discharged from the lower side of the accommodating portion 310. It is repeatedly executed to cool the linear motor 10A.
 同様に、収容部320内の空気圧が減少したとき逆止弁142が収容部330内に空気を取り込み、収容部320内の空気圧が増加したとき逆止弁143が収容部320内の空気を排気することによって、収容部320内のリニアモータ10Bが冷却される。本例では、収容部320内の空気圧は、第2仕切り部153の往復運動に連動して増減することから、逆止弁142による吸気と逆止弁143による排気とが交互に連続的に行われる。これにより、電動工具1では、収容部320の上側から収容部320内に取り込まれた空気が、冷却風として、リニアモータ10Bに当たり、その後、収容部320の下側から排出されるという処理が、繰り返し実行されて、リニアモータ10Bが冷却される。 Similarly, when the air pressure in the accommodating portion 320 decreases, the check valve 142 takes in air into the accommodating portion 330, and when the air pressure in the accommodating portion 320 increases, the check valve 143 exhausts the air in the accommodating portion 320. By doing so, the linear motor 10B in the accommodating portion 320 is cooled. In this example, since the air pressure in the accommodating portion 320 increases or decreases in conjunction with the reciprocating motion of the second partition portion 153, the intake air by the check valve 142 and the exhaust air by the check valve 143 are alternately and continuously performed. Will be. As a result, in the power tool 1, the air taken into the accommodating portion 320 from the upper side of the accommodating portion 320 hits the linear motor 10B as cooling air, and then is discharged from the lower side of the accommodating portion 320. It is repeatedly executed to cool the linear motor 10B.
 なお、冷却機構の構成は上記の例に限られない。例えば、空気圧増減部150は、リニアモータ10Bよりも後ろ側に設けられてもよい。この場合、第2仕切り部153が後ろ側に移動すると、空気圧増減部150の前側に位置する収容部310及び320内の空気圧が減少する。これにより、逆止弁140は収容部310内に空気を取り込み、逆止弁142は収容部320内に空気を取り込む。一方で、第2仕切り部153が前側に移動すると、収容部310及び320内の空気圧が増加する。これにより、逆止弁141は収容部310内の空気を排気し、逆止弁143は収容部320内の空気を排気する。また、空気圧増減部150は、リニアモータ10Aよりも前側に設けられてもよい。 The configuration of the cooling mechanism is not limited to the above example. For example, the air pressure increasing / decreasing unit 150 may be provided behind the linear motor 10B. In this case, when the second partition portion 153 moves to the rear side, the air pressure in the accommodating portions 310 and 320 located on the front side of the air pressure increasing / decreasing portion 150 decreases. As a result, the check valve 140 takes in air into the accommodating portion 310, and the check valve 142 takes in air into the accommodating portion 320. On the other hand, when the second partition portion 153 moves to the front side, the air pressure in the accommodating portions 310 and 320 increases. As a result, the check valve 141 exhausts the air in the accommodating portion 310, and the check valve 143 exhausts the air in the accommodating portion 320. Further, the air pressure increase / decrease unit 150 may be provided on the front side of the linear motor 10A.
 このように、本例に係る冷却機構では、駆動軸11の往復運動に連動して第2仕切り部153が往復運動することにより、収容部310及び320内の空気圧が増減する。そして、収容部310及び320内の空気圧が増減することによって、収容部310及び320にはリニアモータ10を冷却する冷却風が流れる。これにより、リニアモータ10によって駆動軸11を往復運動させることによって、当該リニアモータ10を冷却することができる。よって、簡単な構成でリニアモータ10を冷却することができる。 As described above, in the cooling mechanism according to this example, the air pressure in the accommodating portions 310 and 320 is increased or decreased by the reciprocating motion of the second partition portion 153 in conjunction with the reciprocating motion of the drive shaft 11. Then, as the air pressure in the accommodating portions 310 and 320 increases or decreases, cooling air for cooling the linear motor 10 flows through the accommodating portions 310 and 320. As a result, the linear motor 10 can be cooled by reciprocating the drive shaft 11 by the linear motor 10. Therefore, the linear motor 10 can be cooled with a simple configuration.
 また、図3及び4の構成例では、駆動軸11が前側に移動したとき、収容部310内の空気圧が増加するとともに収容部320内での空気圧が減少する。一方で、駆動軸11が後ろ側に移動したとき、収容部310内の空気圧が減少するとともに収容部320内の空気圧が増加する。これにより、駆動軸11の往復運動に連動させて収容部310及び320内の空気圧を効率よく増減させることができる。よって、リニアモータ10A及び10Bを効率良く冷却することができる。 Further, in the configuration examples of FIGS. 3 and 4, when the drive shaft 11 moves to the front side, the air pressure in the accommodating portion 310 increases and the air pressure in the accommodating portion 320 decreases. On the other hand, when the drive shaft 11 moves to the rear side, the air pressure in the accommodating portion 310 decreases and the air pressure in the accommodating portion 320 increases. As a result, the air pressure in the accommodating portions 310 and 320 can be efficiently increased or decreased in conjunction with the reciprocating motion of the drive shaft 11. Therefore, the linear motors 10A and 10B can be cooled efficiently.
 <ハウジング内の電線の配置例>
 本例の電動工具1は複数の電線20を備える。複数の電線20には電線20a~20eが含まれる。図8は電線20a~20eの配置例を示す図である。図8では、電動工具1が模式的に示されている。
<Example of arrangement of electric wires in the housing>
The power tool 1 of this example includes a plurality of electric wires 20. The plurality of electric wires 20 include electric wires 20a to 20e. FIG. 8 is a diagram showing an arrangement example of the electric wires 20a to 20e. In FIG. 8, the power tool 1 is schematically shown.
 本例では、上述のように、2つのリニアモータ10のそれぞれが4つのコイル102を備えている。したがって、電動工具1は合計8つのコイル102を備える。8つのコイル102は、例えば並列接続される。 In this example, as described above, each of the two linear motors 10 includes four coils 102. Therefore, the power tool 1 includes a total of eight coils 102. The eight coils 102 are connected in parallel, for example.
 電源ケーブル9は電線20a及び20bを備える。電線20aは、交流電源の一方の相の交流電圧を伝達する。電線20bは、交流電源の他方の相の交流電圧を伝達する。電線20aは、例えば、後方のリニアモータ10Bの各コイル102の一端に接続される。電線20bは、例えば、トリガスイッチ7が有するスイッチ回路70の一端に接続される。電線20bは、収容部320内及び把持部300内を通って、スイッチ回路70に接続される。スイッチ回路70は、例えば把持部300内に位置する。 The power cable 9 includes electric wires 20a and 20b. The electric wire 20a transmits an AC voltage of one phase of the AC power supply. The wire 20b transmits the AC voltage of the other phase of the AC power supply. The electric wire 20a is connected to, for example, one end of each coil 102 of the rear linear motor 10B. The electric wire 20b is connected to, for example, one end of the switch circuit 70 of the trigger switch 7. The electric wire 20b is connected to the switch circuit 70 through the accommodating portion 320 and the grip portion 300. The switch circuit 70 is located, for example, in the grip portion 300.
 電線20cは、スイッチ回路70の他端とリニアモータ10Aの各コイル102の一端を接続する。電線20cは、スイッチ回路70から収容部310内を通ってリニアモータ10Aの各コイルの一端に接続される。電線20dは、リニアモータ10Aの各コイル102の一端と、リニアモータ10Bの各コイル102の他端とを接続する。電線20dは、リニアモータ10Aのコイル102の一端から、収容部310、把持部300及び収容部320を順に通ってリニアモータ10Bのコイル102の他端に接続される。電線20eは、リニアモータ10Aの各コイル102の他端と、リニアモータ10Bの各コイル102の一端とを接続する。電線20eは、リニアモータ10Aのコイル102の他端から、収容部310、把持部300及び収容部320を順に通ってリニアモータ10Bのコイル102の一端に接続される。電線20b,20e,20dは、例えば、把持部300の内周面に設けられた溝にまとめて通されている。これにより、電線20b,20e,20dは把持部300に固定されている。電線20b,20e,20dの把持部300に対する固定方法はこれに限られない。 The electric wire 20c connects the other end of the switch circuit 70 to one end of each coil 102 of the linear motor 10A. The electric wire 20c is connected to one end of each coil of the linear motor 10A from the switch circuit 70 through the accommodating portion 310. The electric wire 20d connects one end of each coil 102 of the linear motor 10A and the other end of each coil 102 of the linear motor 10B. The electric wire 20d is connected to the other end of the coil 102 of the linear motor 10B from one end of the coil 102 of the linear motor 10A through the accommodating portion 310, the grip portion 300, and the accommodating portion 320 in this order. The electric wire 20e connects the other end of each coil 102 of the linear motor 10A and one end of each coil 102 of the linear motor 10B. The electric wire 20e is connected to one end of the coil 102 of the linear motor 10B from the other end of the coil 102 of the linear motor 10A through the accommodating portion 310, the grip portion 300, and the accommodating portion 320 in this order. The electric wires 20b, 20e, and 20d are collectively passed through, for example, a groove provided on the inner peripheral surface of the grip portion 300. As a result, the electric wires 20b, 20e, and 20d are fixed to the grip portion 300. The method of fixing the electric wires 20b, 20e, and 20d to the grip portion 300 is not limited to this.
 なお、電動工具1が備える電線20の数は上記の例に限られない。また、電動工具1において、電線20よる構成間の接続方法は上記の例に限られない。例えば、電源ケーブル9の電線20aは、リニアモータ10Aの各コイル102の他端に直接接続されてもよい。この場合、電線20aは、収容部320、把持部300及び収容部310を順に通って、リニアモータ10Aのコイル102の他端に接続される。また、電動工具1が備える8個のコイル102の接続方法は上記の例に限られない。例えば、リニアモータ10Aが備える、並列接続された4つのコイル102と、リニアモータ10Bが備える、並列接続された4つのコイル102とは直列接続されてもよい。 The number of electric wires 20 included in the power tool 1 is not limited to the above example. Further, in the power tool 1, the connection method between the configurations by the electric wire 20 is not limited to the above example. For example, the electric wire 20a of the power cable 9 may be directly connected to the other end of each coil 102 of the linear motor 10A. In this case, the electric wire 20a passes through the accommodating portion 320, the grip portion 300, and the accommodating portion 310 in this order, and is connected to the other end of the coil 102 of the linear motor 10A. Further, the method of connecting the eight coils 102 included in the power tool 1 is not limited to the above example. For example, the four coils 102 connected in parallel provided by the linear motor 10A and the four coils 102 connected in parallel provided by the linear motor 10B may be connected in series.
 以上のように、本例に係る電動工具1は、ハウジング3の振動を吸収する動吸振器13を備える。これにより、本例のように、リニアモータ10の可動子110等を含む、比較的重量が大きい往復運動体が往復運動を行う場合であっても、電動工具1の振動を抑制することができる。よって、電動工具1の操作性が向上する。 As described above, the power tool 1 according to this example includes a dynamic vibration absorber 13 that absorbs the vibration of the housing 3. Thereby, as in this example, the vibration of the electric tool 1 can be suppressed even when a relatively heavy reciprocating motion body including the mover 110 of the linear motor 10 or the like performs the reciprocating motion. .. Therefore, the operability of the power tool 1 is improved.
 また、本例では、駆動軸11が通る把持部300内に動吸振器13が位置する。これにより、ハウジング3の振動の発生原因となる往復運動を行う駆動軸11の近くに動吸振器13を配置することができる。よって、動吸振器13は、ハウジング3の振動をより適切に吸収することができる。 Further, in this example, the dynamic vibration absorber 13 is located in the grip portion 300 through which the drive shaft 11 passes. As a result, the Tuned Mass Damper 13 can be arranged near the drive shaft 11 that performs the reciprocating motion that causes the vibration of the housing 3. Therefore, the Tuned Mass Damper 13 can more appropriately absorb the vibration of the housing 3.
 また、本例では、リニアモータ10Aは、把持部300よりも先端工具4側に位置することから、リニアモータ10Aから先端工具4に力を伝えやすくなる。よって、リニアモータ10Aは先端工具4を効率よく往復運動させることができる。 Further, in this example, since the linear motor 10A is located closer to the tip tool 4 than the grip portion 300, it becomes easy to transmit the force from the linear motor 10A to the tip tool 4. Therefore, the linear motor 10A can efficiently reciprocate the tip tool 4.
 また、本例では、電動工具1は複数のリニアモータ10を備えることから、電動工具1の性能を向上させることができる。 Further, in this example, since the electric tool 1 includes a plurality of linear motors 10, the performance of the electric tool 1 can be improved.
 また、本例では、把持部300の前後にリニアモータ10が設けられている。これにより、リニアモータ10A及び10Bがともに把持部300の前側に設けられる場合と比較して、把持部300を持つユーザの手と先端工具4との間の距離を小さくすることができる。よって、電動工具1の操作性が向上する。 Further, in this example, linear motors 10 are provided before and after the grip portion 300. As a result, the distance between the hand of the user holding the grip portion 300 and the tip tool 4 can be reduced as compared with the case where the linear motors 10A and 10B are both provided on the front side of the grip portion 300. Therefore, the operability of the power tool 1 is improved.
 また、本例では、リニアモータ10による駆動対象物の往復運動を補助する補助機構12が、ユーザの手によって把持される把持部300内に位置する。これにより、ユーザは電動工具1を持ちやすくなる。よって、電動工具1の操作性が向上する。 Further, in this example, the auxiliary mechanism 12 that assists the reciprocating motion of the driven object by the linear motor 10 is located in the grip portion 300 that is gripped by the user's hand. This makes it easier for the user to hold the power tool 1. Therefore, the operability of the power tool 1 is improved.
 また、本例では、動吸振器13が、ユーザによって把持される把持部300内に位置する。これにより、ユーザは電動工具1を持ちやすくなる。よって、電動工具1の操作性が向上する。 Further, in this example, the dynamic vibration absorber 13 is located in the grip portion 300 gripped by the user. This makes it easier for the user to hold the power tool 1. Therefore, the operability of the power tool 1 is improved.
 また、本例に係る電動工具1は、逆止弁140~143及び空気圧増減部150を用いてリニアモータ10を適切に冷却することができる。なお、ブラシレスモータ等の回転式モータを冷却する場合には、モータ軸に冷却ファンを取り付けて、モータ軸の回転に連動させて冷却ファンを回転させることができる。しかしながら、リニアモータ10を冷却する場合には、回転式モータと同様の構成を採用することはできない。 Further, the power tool 1 according to this example can appropriately cool the linear motor 10 by using the check valves 140 to 143 and the air pressure increase / decrease unit 150. When cooling a rotary motor such as a brushless motor, a cooling fan can be attached to the motor shaft to rotate the cooling fan in conjunction with the rotation of the motor shaft. However, when cooling the linear motor 10, the same configuration as that of the rotary motor cannot be adopted.
 上記の例では、ハウジング3は2分割可能となっていたが、ハウジング3の構成はこれに限られない。例えば、図9に示されるように、把持部300と、収容部310と、収容部320とが別体で構成されてもよい。この場合、把持部300と、収容部310及び320とは、固定部材990等によって連結されてもよい。 In the above example, the housing 3 can be divided into two, but the configuration of the housing 3 is not limited to this. For example, as shown in FIG. 9, the grip portion 300, the accommodating portion 310, and the accommodating portion 320 may be formed as separate bodies. In this case, the grip portion 300 and the accommodating portions 310 and 320 may be connected by a fixing member 990 or the like.
 また、電動工具1は、2つのリニアモータ10を備えているが、一つリニアモータ10を備えてもよいし、3つ以上のリニアモータ10を備えてもよい。 Further, although the electric tool 1 includes two linear motors 10, one linear motor 10 may be provided, or three or more linear motors 10 may be provided.
 また、動吸振器13は、把持部300よりも後ろ側に位置してもよい。図10は、この場合の電動工具1の構成の一例を示す図である。図10には、上述の図3と同様、ハウジング3の内部の様子の一例が示されている。図11は、図10に示される構造の矢視C-Cにおける断面構造の概略を示す図である。 Further, the dynamic vibration absorber 13 may be located behind the grip portion 300. FIG. 10 is a diagram showing an example of the configuration of the power tool 1 in this case. FIG. 10 shows an example of the inside of the housing 3 as in FIG. 3 described above. FIG. 11 is a diagram showing an outline of a cross-sectional structure of the structure shown in FIG. 10 in arrow CC.
 図10及び11の例では、ハウジング3は、動吸振器53を収容する収容部330を備える。収容部330は収容部320の後ろ側において収容部320と隣接している。収容部310、把持部300、収容部320及び収容部330は前後方向に並んでいる。図10及び11に示されるハウジング3は、図1等に示される上述のハウジング3の後ろ側の面(収容部320の後ろ側の面)に収容部330を取り付けた形状となっている。 In the examples of FIGS. 10 and 11, the housing 3 includes an accommodating portion 330 accommodating the tuned mass damper 53. The accommodating portion 330 is adjacent to the accommodating portion 320 behind the accommodating portion 320. The accommodating portion 310, the grip portion 300, the accommodating portion 320, and the accommodating portion 330 are arranged in the front-rear direction. The housing 3 shown in FIGS. 10 and 11 has a shape in which the accommodating portion 330 is attached to the rear surface (the rear surface of the accommodating portion 320) of the housing 3 shown in FIG. 1 and the like.
 図11に示されるように、動吸振器53は、上述の動吸振器13と同様に、質量体530と、当該質量体530を移動させる2つのバネ531とを備える。質量体530と2つのバネ531は前後方向に沿って並んでいる。一方のバネ531は質量体530の前側に位置し、他方のバネ531は質量体530の後ろ側に位置する。各バネ531は前後方向に沿って伸縮可能である。 As shown in FIG. 11, the Tuned Mass Damper 53 includes a mass body 530 and two springs 531 for moving the mass body 530, similarly to the above-mentioned Tuned Mass Damper 13. The mass body 530 and the two springs 531 are arranged in the front-rear direction. One spring 531 is located on the front side of the mass body 530, and the other spring 531 is located on the rear side of the mass body 530. Each spring 531 can expand and contract along the front-rear direction.
 2つのバネ531の一端は、自由端となっており、質量体530の前後方向の両端にそれぞれ接続されている。2つのバネ531の他端のそれぞれは、ハウジング3に固定されており、固定端となっている。本例では、2つのバネ531の他端のそれぞれは、収容部330の内側の面に固定されている。 One end of the two springs 531 is a free end, and is connected to both ends of the mass body 530 in the front-rear direction. Each of the other ends of the two springs 531 is fixed to the housing 3 and serves as a fixed end. In this example, each of the other ends of the two springs 531 is fixed to the inner surface of the accommodating portion 330.
 本例では、動吸振器53は、把持部300の後ろ側において、往復運動を行う駆動軸11の延長線上に位置する。そして、動吸振器53の2つのバネ531及び質量体530と、駆動軸11とは、直線上に並んでいる。ここで、動吸振器53が駆動軸11の延長線上に位置するとは、駆動軸11の長手方向に沿った電動工具1の断面視において、駆動軸11を長手方向に延長したときに駆動軸11が動吸振器53と重なることをいう。また、動吸振器53の2つのバネ531及び質量体530と、駆動軸11とが直線上に並んでいるとは、駆動軸11の長手方向に沿った電動工具1の断面視において、駆動軸11を長手方向に延長したときに駆動軸11が2つのバネ531及び質量体530と重なることをいう。 In this example, the Tuned Mass Damper 53 is located on the extension line of the drive shaft 11 that performs reciprocating motion on the rear side of the grip portion 300. The two springs 531 and the mass body 530 of the dynamic vibration absorber 53 and the drive shaft 11 are aligned on a straight line. Here, the position of the Tuned Mass Damper 53 on the extension line of the drive shaft 11 means that the drive shaft 11 is extended in the longitudinal direction in the cross-sectional view of the power tool 1 along the longitudinal direction of the drive shaft 11. Overlaps with the Tuned Mass Damper 53. Further, the fact that the two springs 531 and the mass body 530 of the dynamic vibration absorber 53 and the drive shaft 11 are aligned in a straight line means that the drive shaft 11 is aligned in a straight line in the cross-sectional view of the power tool 1 along the longitudinal direction of the drive shaft 11. It means that the drive shaft 11 overlaps with the two springs 531 and the mass body 530 when the 11 is extended in the longitudinal direction.
 動吸振器53は、質量体530が、往復運動体の振動とは逆位相で振動するように構成されている。これにより、動吸振器53は、往復運動体の振動によってハウジング3に生じる振動を吸収することができる。よって、ユーザによって把持されるハウジング3の振動を小さくすることができる。 The Tuned Mass Damper 53 is configured such that the mass body 530 vibrates in a phase opposite to the vibration of the reciprocating motion body. As a result, the Tuned Mass Damper 53 can absorb the vibration generated in the housing 3 by the vibration of the reciprocating motion body. Therefore, the vibration of the housing 3 gripped by the user can be reduced.
 また、本例では、動吸振器53は、把持部300の後ろ側において、往復運動を行う駆動軸11の延長線上に位置する。これにより、図3等に示されるように、動吸振器13が把持部300内に位置する場合と比較して、ハウジング3に生じる振動がより吸収される。よって、ユーザによって把持されるハウジング3の振動をさらに小さくすることができる。 Further, in this example, the Tuned Mass Damper 53 is located on the extension line of the drive shaft 11 that performs reciprocating motion on the rear side of the grip portion 300. As a result, as shown in FIG. 3 and the like, the vibration generated in the housing 3 is more absorbed as compared with the case where the dynamic vibration absorber 13 is located in the grip portion 300. Therefore, the vibration of the housing 3 gripped by the user can be further reduced.
 電動工具1は、直流電源を出力するバッテリ80を備えてもよい。図12はバッテリ80を備える電動工具1の構成の一例を示す図である。図12には、上述の図3と同様、ハウジング3の内部の様子の一例が示されている。 The power tool 1 may include a battery 80 that outputs a DC power supply. FIG. 12 is a diagram showing an example of the configuration of the power tool 1 including the battery 80. FIG. 12 shows an example of the inside of the housing 3 as in FIG. 3 described above.
 本例の電動工具1では、電源ケーブル9の替わりにバッテリ80を備える。バッテリ80は、例えば、ハウジング3の後ろ側の部分(収容部320の後ろ側の部分)に対して着脱可能である。バッテリ80は、例えば、充電可能な二次電池を備える。バッテリ80は直流電源を出力する。 The power tool 1 of this example is provided with a battery 80 instead of the power cable 9. The battery 80 can be attached to and detached from, for example, a rear portion of the housing 3 (a rear portion of the accommodating portion 320). The battery 80 includes, for example, a rechargeable secondary battery. The battery 80 outputs a DC power supply.
 本例では、ハウジング3の収容部320に、バッテリ80から出力される直流電源に基づいて、リニアモータ10A及び10Bを駆動する駆動部90が収容されている。駆動部90は、把持部300よりも後ろ側に位置する。駆動部90は、例えば、基板91と、当該基板91に形成された回路構成92とを備えている。回路構成92には、例えば、バッテリ80からの直流電源に基づいて交流電源を生成するインバータ回路が含まれる。回路構成92で生成された交流電源はリニアモータ10A及び10Bに供給される。 In this example, the accommodating portion 320 of the housing 3 accommodates the driving unit 90 that drives the linear motors 10A and 10B based on the DC power supply output from the battery 80. The drive unit 90 is located behind the grip unit 300. The drive unit 90 includes, for example, a substrate 91 and a circuit configuration 92 formed on the substrate 91. The circuit configuration 92 includes, for example, an inverter circuit that generates an AC power source based on a DC power source from the battery 80. The AC power generated in the circuit configuration 92 is supplied to the linear motors 10A and 10B.
 駆動部90からは2本の電線20f及び20gが延びている。電線20fは、回路構成92で生成された交流電源の一方の相の交流電圧を伝達する。電線20fは、当該交流電源の他方の相の交流電圧を伝達する。本例では、電源ケーブル9の電線20aの替わりに電線20fがリニアモータ10Bの各コイル102の一端に接続される(図8参照)。また、電源ケーブル9の電線20bの替わりに電線20gがスイッチ回路70の一端に接続される(図8参照)。 Two electric wires 20f and 20g extend from the drive unit 90. The electric wire 20f transmits the AC voltage of one phase of the AC power supply generated in the circuit configuration 92. The electric wire 20f transmits the AC voltage of the other phase of the AC power supply. In this example, instead of the electric wire 20a of the power cable 9, the electric wire 20f is connected to one end of each coil 102 of the linear motor 10B (see FIG. 8). Further, instead of the electric wire 20b of the power cable 9, an electric wire 20g is connected to one end of the switch circuit 70 (see FIG. 8).
 図13は、バッテリ80を備える電動工具1の他の構成例を示す図である。図13の例では、電動工具1は、リニアモータ10Bと逆止弁142及び143を備えていない。収容部320には、リニアモータ10Bは収容されておらず、駆動部90が収容されている。 FIG. 13 is a diagram showing another configuration example of the power tool 1 including the battery 80. In the example of FIG. 13, the power tool 1 does not include the linear motor 10B and the check valves 142 and 143. The linear motor 10B is not housed in the housing unit 320, but the driving unit 90 is housed in the housing unit 320.
 なお、バッテリ80は、ハウジング3に着脱不可に固定されてもよい。また、バッテリ80は、充電不可な一次電池を備えてもよい。また、ハウジング3に対するバッテリ80の取り付け位置は上記の例に限られない。また、バッテリ80とハウジング3との間がケーブルで接続されてもよい。 The battery 80 may be non-detachably fixed to the housing 3. Further, the battery 80 may include a non-rechargeable primary battery. Further, the mounting position of the battery 80 with respect to the housing 3 is not limited to the above example. Further, the battery 80 and the housing 3 may be connected by a cable.
 リニアモータ10は、コイル102に取り付けられた放熱フィン95を備えてもよい。図14は、放熱フィン95を備えるリニアモータ10の構成例を示す図である。図14に示されるリニアモータ10では、説明の便宜上、コア101の枠状部101aと絶縁部材103の記載が省略されている。 The linear motor 10 may include heat radiation fins 95 attached to the coil 102. FIG. 14 is a diagram showing a configuration example of a linear motor 10 provided with heat radiation fins 95. In the linear motor 10 shown in FIG. 14, for convenience of explanation, the description of the frame-shaped portion 101a of the core 101 and the insulating member 103 is omitted.
 図14の例では、各コイル102に放熱フィン95が取り付けられている。また、放熱フィン95は、コイル102の後ろ側に取り付けられている。放熱フィン95は、例えば、アルミニウム等の熱伝導率が高い金属で構成されている。放熱フィン95は、例えば、熱伝導率の高い絶縁性接着剤によってコイル102に固定される。なお、放熱フィン95のコイル102に対する取付方法はこの限りではない。 In the example of FIG. 14, heat radiation fins 95 are attached to each coil 102. Further, the heat radiation fin 95 is attached to the rear side of the coil 102. The heat radiating fin 95 is made of a metal having high thermal conductivity, such as aluminum. The heat radiating fin 95 is fixed to the coil 102 by, for example, an insulating adhesive having high thermal conductivity. The method of attaching the heat radiation fin 95 to the coil 102 is not limited to this.
 図15は、放熱フィン95と、それが取り付けられたコイル102を、図14の矢視Dから見た様子の一例を示す図である。図15に示されるように、放熱フィン95は、ベース材95aと、当該ベース材95aの一方面に立設された複数のフィン95bとを備える。フィン95bは突起部とも言える。図15では、説明の便宜上、フィン95bには斜線が示されている。 FIG. 15 is a diagram showing an example of a state in which the heat radiation fin 95 and the coil 102 to which the heat radiation fin 95 is attached are viewed from the arrow D of FIG. As shown in FIG. 15, the heat radiating fin 95 includes a base material 95a and a plurality of fins 95b erected on one surface of the base material 95a. The fin 95b can also be said to be a protrusion. In FIG. 15, for convenience of explanation, the fins 95b are shown with diagonal lines.
 ベース材95aは、例えば板状を成している。各フィン95bは、例えば、一方向に長い板状を成している。本例では、各フィン95bは、その長手方向が上下方向に沿っている。そして、複数のフィン95bは、上下方向に対して直交する方向に沿って、間隔を空けて並べられている。複数のフィン95bは、例えば等間隔に並べられる。なお、複数のフィン95bは、等間隔に並べられなくてもよい。 The base material 95a has, for example, a plate shape. Each fin 95b has, for example, a long plate shape in one direction. In this example, each fin 95b has its longitudinal direction along the vertical direction. The plurality of fins 95b are arranged at intervals along a direction orthogonal to the vertical direction. The plurality of fins 95b are arranged at equal intervals, for example. The plurality of fins 95b do not have to be arranged at equal intervals.
 このように、本例では、コイル102に放熱フィン95が取り付けられていることから、発熱し易いコイル102を適切に冷却することができる。 As described above, in this example, since the heat radiating fins 95 are attached to the coil 102, the coil 102 that easily generates heat can be appropriately cooled.
 また 本例では、複数のフィン95bは、上下方向に対して直交する方向に沿って、間隔を空けて並べられている。これにより、リニアモータ10を冷却する冷却風の流れが、放熱フィン95によって阻害されにくくなる。 Further, in this example, the plurality of fins 95b are arranged at intervals along the direction orthogonal to the vertical direction. As a result, the flow of the cooling air that cools the linear motor 10 is less likely to be obstructed by the radiating fins 95.
 例えば、前側のリニアモータ10Aのコイル102に取り付けられる放熱フィン95に注目する。上側の逆止弁140が収容部310内に取り込んだ空気は、下側の逆止弁141から排気されることから、図14に示されるように、リニアモータ10Aを冷却する冷却風900は上側から下側に向けて流れる。放熱フィン95では、複数のフィン95bが、冷却風900が流れる上下方向に対して直交する方向に沿って間隔を空けて並べられている。これにより、冷却風900がフィン95b間を通りやすくなる。よって、冷却風900の流れが放熱フィン95によって阻害されにくくなる。その結果、冷却風によるリニアモータ10の冷却効果が向上する。 For example, pay attention to the heat radiation fin 95 attached to the coil 102 of the linear motor 10A on the front side. Since the air taken in by the upper check valve 140 into the accommodating portion 310 is exhausted from the lower check valve 141, as shown in FIG. 14, the cooling air 900 for cooling the linear motor 10A is on the upper side. It flows downward from. In the heat radiating fins 95, a plurality of fins 95b are arranged at intervals along a direction orthogonal to the vertical direction in which the cooling air 900 flows. This makes it easier for the cooling air 900 to pass between the fins 95b. Therefore, the flow of the cooling air 900 is less likely to be obstructed by the heat radiation fins 95. As a result, the cooling effect of the linear motor 10 by the cooling air is improved.
 なお、放熱フィン95の形状は上記の例に限らない。また、リニアモータ10が備える複数のコイル102の一部だけに放熱フィン95が取り付けられてもよい。つまり、リニアモータ10が備える複数のコイル102の少なくとも一つに放熱フィン95が取り付けられてもよい。また、コイル102に対する放熱フィン95の取り付け位置は上記の例に限られない。例えば、放熱フィン95は、コイル102の前側に取り付けられてもよい。また、一つのコイル102に対して複数の放熱フィン95が取り付けられてもよい。例えば、一つのコイル102の前側及び後ろ側のそれぞれに対して放熱フィン95が取り付けられてもよい。また、図16に示されるように、各コイル102の周囲部には絶縁紙995を配置してもよい。そして、絶縁紙995上に放熱フィン95を配置してもよい。 The shape of the heat radiation fin 95 is not limited to the above example. Further, the heat radiation fins 95 may be attached only to a part of the plurality of coils 102 included in the linear motor 10. That is, the heat radiation fin 95 may be attached to at least one of the plurality of coils 102 included in the linear motor 10. Further, the mounting position of the heat radiation fin 95 with respect to the coil 102 is not limited to the above example. For example, the heat radiation fin 95 may be attached to the front side of the coil 102. Further, a plurality of heat radiation fins 95 may be attached to one coil 102. For example, heat dissipation fins 95 may be attached to each of the front side and the rear side of one coil 102. Further, as shown in FIG. 16, insulating paper 995 may be arranged around each coil 102. Then, the heat radiating fins 95 may be arranged on the insulating paper 995.
 上記の例では、電動工具1は、レシプロソーであったが、先端工具を往復運動させる他の手持ちの電動工具であってもよい。例えば、電動工具1は、電動ハンマーであってもよいし、ジグソーであってもよいし、電動ノコギリであってもよい。 In the above example, the power tool 1 was a reciprocating saw, but it may be another hand-held power tool that reciprocates the tip tool. For example, the electric tool 1 may be an electric hammer, a jigsaw, or an electric saw.
 以上のように、電動工具1は詳細に説明されたが、上記した説明は、全ての局面において例示であって、この開示がそれに限定されるものではない。また、上述した各種例は、相互に矛盾しない限り組み合わせて適用可能である。そして、例示されていない無数の例が、この開示の範囲から外れることなく想定され得るものと解される。 As described above, the power tool 1 has been described in detail, but the above description is an example in all aspects, and the disclosure is not limited thereto. In addition, the various examples described above can be applied in combination as long as they do not contradict each other. And it is understood that innumerable examples not illustrated can be assumed without departing from the scope of this disclosure.
 1 電動工具
 2 取付部
 3 ハウジング
 4 先端工具
 10,10A,10B リニアモータ
 12 補助機構
 13 動吸振器
 20 電線
 80 バッテリ
 90 駆動部
 95 放熱フィン
 102 コイル
 140~143 逆止弁
 150 空気圧増減部
 153 第2仕切り部
 300 把持部
1 Power tool 2 Mounting part 3 Housing 4 Tip tool 10, 10A, 10B Linear motor 12 Auxiliary mechanism 13 Tuned mass damper 20 Electric wire 80 Battery 90 Drive part 95 Heat dissipation fin 102 Coil 140 to 143 Check valve 150 Air pressure increase / decrease part 153 2nd Partition 300 Grip

Claims (13)

  1.  先端工具を往復運動させる第1リニアモータと、
     前記第1リニアモータを収容するハウジングと、
     前記ハウジングの振動を吸収する動吸振器と
    を備える、電動工具。
    The first linear motor that reciprocates the tip tool and
    A housing for accommodating the first linear motor and
    An electric tool including a dynamic vibration absorber that absorbs the vibration of the housing.
  2.  請求項1に記載の電動工具であって、
     前記ハウジングは把持部を有し、
     前記第1リニアモータは、前記把持部よりも前記先端工具側に位置する、電動工具。
    The power tool according to claim 1.
    The housing has a grip and
    The first linear motor is an electric tool located on the tip tool side of the grip portion.
  3.  請求項2に記載の電動工具であって、
     前記把持部よりも、前記先端工具側とは反対側に位置し、前記先端工具を往復運動させる第2リニアモータをさらに備える、電動工具。
    The power tool according to claim 2.
    An electric tool further provided with a second linear motor that is located on the side opposite to the tip tool side of the grip portion and reciprocates the tip tool.
  4.  請求項1に記載の電動工具であって、
     直流電源を出力するバッテリと、
     前記直流電源に基づいて、前記第1リニアモータを駆動する駆動部と
    をさらに備え、
     前記ハウジングは把持部を有し、
     前記駆動部は、前記把持部よりも、前記先端工具側とは反対側に位置する、電動工具。
    The power tool according to claim 1.
    A battery that outputs DC power and
    A drive unit that drives the first linear motor based on the DC power supply is further provided.
    The housing has a grip and
    The drive unit is an electric tool located on the side opposite to the tip tool side of the grip portion.
  5.  請求項1に記載の電動工具であって、
     前記ハウジングは把持部を有し、
     前記把持部内に位置し、バネによる共振を利用して、前記第1リニアモータによる前記先端工具の往復運動を補助する補助機構をさらに備える、電動工具。
    The power tool according to claim 1.
    The housing has a grip and
    An electric tool that is located in the grip portion and further includes an auxiliary mechanism that assists the reciprocating motion of the tip tool by the first linear motor by utilizing resonance by a spring.
  6.  請求項1に記載の電動工具であって、
     前記ハウジングは把持部を有し、
     前記動吸振器は、前記把持部内に位置する、電動工具。
    The power tool according to claim 1.
    The housing has a grip and
    The dynamic vibration absorber is an electric tool located in the grip portion.
  7.  請求項1に記載の電動工具であって、
     前記ハウジングは把持部を有し、
     前記動吸振器は、前記把持部よりも、前記先端工具側とは反対側に位置する、電動工具。
    The power tool according to claim 1.
    The housing has a grip and
    The dynamic vibration absorber is an electric tool located on the side opposite to the tip tool side of the grip portion.
  8.  請求項7に記載の電動工具であって、
     前記第1リニアモータによって往復運動させられ、前記把持部内を通る駆動軸を備え、
     前記第1リニアモータは、前記駆動軸を往復運動させることによって前記先端工具を往復運動させ、
     前記動吸振器は、前記駆動軸の延長線上に位置する、電動工具。
    The power tool according to claim 7.
    A drive shaft that is reciprocated by the first linear motor and passes through the grip portion is provided.
    The first linear motor reciprocates the tip tool by reciprocating the drive shaft.
    The dynamic vibration absorber is an electric tool located on an extension line of the drive shaft.
  9.  請求項1から請求項7のいずれか一つに記載の電動工具であって、
     前記第1リニアモータを冷却する冷却機構をさらに備え、
     前記ハウジングは、前記第1リニアモータを収容する収容部を有し、
     前記冷却機構は、
      前記収容部内に空気を取り込む第1逆止弁と、
      前記収容部内の空気を排気する第2逆止弁と、
      前記収容部内の空気圧を、前記先端工具の往復運動に連動して増減する空気圧増減部と
    を有し、
     前記空気圧が減少したとき前記第1逆止弁が前記収容部内に空気を取り込み、前記空気圧が増加したとき前記第2逆止弁が前記収容部内の空気を排気することによって、前記第1リニアモータが冷却される、電動工具。
    The power tool according to any one of claims 1 to 7.
    Further provided with a cooling mechanism for cooling the first linear motor,
    The housing has an accommodating portion for accommodating the first linear motor.
    The cooling mechanism
    A first check valve that takes in air into the accommodating portion,
    A second check valve that exhausts the air in the accommodating portion,
    It has an air pressure increase / decrease portion that increases / decreases the air pressure in the accommodating portion in conjunction with the reciprocating motion of the tip tool.
    When the air pressure decreases, the first check valve takes in air into the accommodating portion, and when the air pressure increases, the second check valve exhausts the air in the accommodating portion, thereby causing the first linear motor. Is cooled, power tools.
  10.  請求項9に記載の電動工具であって、
     前記第1リニアモータによって往復運動させられる駆動軸を備え、
     前記第1リニアモータは、前記駆動軸を往復運動させることによって前記先端工具を往復運動させ、
     前記空気圧増減部は、前記収容部を区分し、前記駆動軸に固定された仕切り部を有し、
     前記駆動軸の往復運動に連動して前記仕切り部が往復運動することにより、前記空気圧が増減する、電動工具。
    The power tool according to claim 9.
    A drive shaft that is reciprocated by the first linear motor is provided.
    The first linear motor reciprocates the tip tool by reciprocating the drive shaft.
    The air pressure increase / decrease portion divides the accommodating portion and has a partition portion fixed to the drive shaft.
    An electric tool in which the air pressure increases or decreases as the partition portion reciprocates in conjunction with the reciprocating motion of the drive shaft.
  11.  請求項3に記載の電動工具であって、
     前記第1及び第2リニアモータを冷却する冷却機構と、
     前記第1及び第2リニアモータによって往復運動させられる駆動軸と
    を備え、
     前記第1及び第2リニアモータは、前記駆動軸を往復運動させることによって前記先端工具を往復運動させ、
     前記ハウジングは、
      前記第1リニアモータを収容する第1収容部と、
      前記第2リニアモータを収容する第2収容部と
    を有し、
     前記冷却機構は、
      前記第1及び第2収容部を区分し、前記駆動軸に固定された仕切り部と、
      前記第1収容部内に空気を取り込む第1逆止弁と、
      前記第1収容部内の空気を排気する第2逆止弁と、
      前記第2収容部内に空気を取り込む第3逆止弁と、
      前記第2収容部内の空気を排気する第4逆止弁と
    を有し、
     前記仕切り部が前記駆動軸とともに第1方向に移動する場合、前記第1収容部内の第1空気圧が増加するとともに前記第2収容部内の第2空気圧が減少し、
     前記仕切り部が前記駆動軸とともに、前記第1方向とは逆の第2方向に移動する場合、前記第1空気圧が減少するとともに前記第2空気圧が増加し、
     前記第1空気圧が減少したとき前記第1逆止弁が前記第1収容部内に空気を取り込み、前記第1空気圧が増加したとき前記第2逆止弁が前記第1収容部内の空気を排気することによって、前記第1リニアモータが冷却され、
     前記第2空気圧が減少したとき前記第3逆止弁が前記第2収容部内に空気を取り込み、前記第2空気圧が増加したとき前記第4逆止弁が前記第2収容部内の空気を排気することによって、前記第2リニアモータが冷却される、電動工具。
    The power tool according to claim 3.
    A cooling mechanism for cooling the first and second linear motors,
    It is provided with a drive shaft that is reciprocated by the first and second linear motors.
    The first and second linear motors reciprocate the tip tool by reciprocating the drive shaft.
    The housing is
    A first accommodating portion accommodating the first linear motor and
    It has a second accommodating portion for accommodating the second linear motor, and has a second accommodating portion.
    The cooling mechanism
    The first and second accommodating portions are separated, and the partition portion fixed to the drive shaft and the partition portion are
    A first check valve that takes in air into the first accommodating portion,
    A second check valve that exhausts the air in the first accommodating portion,
    A third check valve that takes in air into the second accommodating portion,
    It has a fourth check valve that exhausts the air in the second accommodating portion.
    When the partition portion moves in the first direction together with the drive shaft, the first air pressure in the first accommodating portion increases and the second air pressure in the second accommodating portion decreases.
    When the partition portion moves together with the drive shaft in a second direction opposite to the first direction, the first air pressure decreases and the second air pressure increases.
    When the first air pressure decreases, the first check valve takes in air into the first accommodating portion, and when the first air pressure increases, the second check valve exhausts the air in the first accommodating portion. As a result, the first linear motor is cooled.
    When the second air pressure decreases, the third check valve takes in air into the second accommodating portion, and when the second air pressure increases, the fourth check valve exhausts the air in the second accommodating portion. A power tool that cools the second linear motor.
  12.  請求項1から請求項11のいずれか一つに記載の電動工具であって、
     前記第1リニアモータは、
      コイルと、
      前記コイルに取り付けられた放熱フィンと
    を有する、電動工具。
    The power tool according to any one of claims 1 to 11.
    The first linear motor is
    With the coil
    A power tool having radiating fins attached to the coil.
  13.  請求項1に記載の電動工具であって、
     前記ハウジングは把持部を有し、
     前記把持部を通る電線をさらに備える、電動工具。
    The power tool according to claim 1.
    The housing has a grip and
    A power tool further comprising an electric wire passing through the grip portion.
PCT/JP2020/042795 2019-11-19 2020-11-17 Electric tool WO2021100703A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2021558393A JP7325530B2 (en) 2019-11-19 2020-11-17 Electric tool

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2019208674 2019-11-19
JP2019-208674 2019-11-19

Publications (1)

Publication Number Publication Date
WO2021100703A1 true WO2021100703A1 (en) 2021-05-27

Family

ID=75980571

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2020/042795 WO2021100703A1 (en) 2019-11-19 2020-11-17 Electric tool

Country Status (2)

Country Link
JP (1) JP7325530B2 (en)
WO (1) WO2021100703A1 (en)

Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000263303A (en) * 1999-03-18 2000-09-26 Ballado Investments Inc Chuck with linear motor for axially moving tool
JP2002011676A (en) * 2000-05-23 2002-01-15 Hilti Ag Hand-held tool with electromagnetic hammering mechanism
JP2002144255A (en) * 2000-11-06 2002-05-21 Hitachi Ltd Power tool with linear motor
JP2003250261A (en) * 2002-02-22 2003-09-05 Hitachi Ltd Drive unit and its driving method
JP2004343933A (en) * 2003-05-16 2004-12-02 Matsushita Electric Works Ltd Linear actuator for both vibration and rolling drive, and electric toothbrush using the same
JP2008048564A (en) * 2006-08-21 2008-02-28 Murata Mach Ltd Linear motor and machine tool mounting it
JP2009502535A (en) * 2005-08-03 2009-01-29 ワツカー コンストラクション イクイップメント アクチェンゲゼルシャフト Drill and / or hammer
JP2010012586A (en) * 2008-07-07 2010-01-21 Makita Corp Working tool
JP2012218077A (en) * 2011-04-05 2012-11-12 Makita Corp Electric power tool with linear motor
JP2018117994A (en) * 2017-01-27 2018-08-02 株式会社マキタ Cutting-off tool

Patent Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000263303A (en) * 1999-03-18 2000-09-26 Ballado Investments Inc Chuck with linear motor for axially moving tool
JP2002011676A (en) * 2000-05-23 2002-01-15 Hilti Ag Hand-held tool with electromagnetic hammering mechanism
JP2002144255A (en) * 2000-11-06 2002-05-21 Hitachi Ltd Power tool with linear motor
JP2003250261A (en) * 2002-02-22 2003-09-05 Hitachi Ltd Drive unit and its driving method
JP2004343933A (en) * 2003-05-16 2004-12-02 Matsushita Electric Works Ltd Linear actuator for both vibration and rolling drive, and electric toothbrush using the same
JP2009502535A (en) * 2005-08-03 2009-01-29 ワツカー コンストラクション イクイップメント アクチェンゲゼルシャフト Drill and / or hammer
JP2008048564A (en) * 2006-08-21 2008-02-28 Murata Mach Ltd Linear motor and machine tool mounting it
JP2010012586A (en) * 2008-07-07 2010-01-21 Makita Corp Working tool
JP2012218077A (en) * 2011-04-05 2012-11-12 Makita Corp Electric power tool with linear motor
JP2018117994A (en) * 2017-01-27 2018-08-02 株式会社マキタ Cutting-off tool

Also Published As

Publication number Publication date
JPWO2021100703A1 (en) 2021-05-27
JP7325530B2 (en) 2023-08-14

Similar Documents

Publication Publication Date Title
CN105471217B (en) Linear actuator, electric brush, electric cutting machine, and electric inflator
JP5826526B2 (en) Electric tool
US7607229B2 (en) Electric razor
JP5176891B2 (en) Actuator and electric toothbrush using the same
JP4400463B2 (en) Vibration type linear actuator and electric toothbrush using the same
US8214959B2 (en) Actuator and electric toothbrush using the same
WO2010071054A1 (en) Working tool
US8327488B2 (en) Actuator and electric toothbrush using the same
WO2016067532A1 (en) Brushless motor and electrically powered tool
JP5929241B2 (en) Actuator and electric hairdressing beauty instrument
JP2005185067A (en) Vibration-type linear actuator and hair cutter provided with the same
JP7367735B2 (en) Electric tool
JP2019522541A (en) FIXING STRUCTURE FOR ELECTRIC CLEANING TOOL DRIVE
JP2009142980A (en) Electric hand tool device having vibration damping device
JP2009022157A (en) Drive unit for hand tool device
JP2002144255A (en) Power tool with linear motor
JP7365789B2 (en) electric work equipment
WO2021100703A1 (en) Electric tool
JP2016116267A (en) Power tool
JP2016068205A (en) Electric power tool
EP3393021B1 (en) Oscillatory linear actuator and cutting device
CN110425036A (en) A kind of gas-liquid-liquid three-phase flow air exhaust cooling device
US20200198114A1 (en) Electric working machine
JP6115937B2 (en) Compressor motor and control method thereof
JP2022090991A (en) Motor and electric tool

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 20890880

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2021558393

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 20890880

Country of ref document: EP

Kind code of ref document: A1