WO2021100615A1 - Predictive maintenance assessment device, predictive maintenance assessment method, and program - Google Patents

Predictive maintenance assessment device, predictive maintenance assessment method, and program Download PDF

Info

Publication number
WO2021100615A1
WO2021100615A1 PCT/JP2020/042322 JP2020042322W WO2021100615A1 WO 2021100615 A1 WO2021100615 A1 WO 2021100615A1 JP 2020042322 W JP2020042322 W JP 2020042322W WO 2021100615 A1 WO2021100615 A1 WO 2021100615A1
Authority
WO
WIPO (PCT)
Prior art keywords
value
difference value
ratio
output
predictive maintenance
Prior art date
Application number
PCT/JP2020/042322
Other languages
French (fr)
Japanese (ja)
Inventor
貴之 野木
雄一 竹内
隼平 中村
Original Assignee
芝浦機械株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 芝浦機械株式会社 filed Critical 芝浦機械株式会社
Priority to DE112020005706.2T priority Critical patent/DE112020005706T5/en
Priority to KR1020217015134A priority patent/KR102574186B1/en
Priority to CN202080008480.XA priority patent/CN113286995B/en
Publication of WO2021100615A1 publication Critical patent/WO2021100615A1/en

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01MTESTING STATIC OR DYNAMIC BALANCE OF MACHINES OR STRUCTURES; TESTING OF STRUCTURES OR APPARATUS, NOT OTHERWISE PROVIDED FOR
    • G01M13/00Testing of machine parts
    • G01M13/02Gearings; Transmission mechanisms
    • G01M13/028Acoustic or vibration analysis
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01HMEASUREMENT OF MECHANICAL VIBRATIONS OR ULTRASONIC, SONIC OR INFRASONIC WAVES
    • G01H3/00Measuring characteristics of vibrations by using a detector in a fluid
    • G01H3/10Amplitude; Power
    • G01H3/14Measuring mean amplitude; Measuring mean power; Measuring time integral of power
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01MTESTING STATIC OR DYNAMIC BALANCE OF MACHINES OR STRUCTURES; TESTING OF STRUCTURES OR APPARATUS, NOT OTHERWISE PROVIDED FOR
    • G01M13/00Testing of machine parts
    • G01M13/02Gearings; Transmission mechanisms
    • G01M13/021Gearings
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06QINFORMATION AND COMMUNICATION TECHNOLOGY [ICT] SPECIALLY ADAPTED FOR ADMINISTRATIVE, COMMERCIAL, FINANCIAL, MANAGERIAL OR SUPERVISORY PURPOSES; SYSTEMS OR METHODS SPECIALLY ADAPTED FOR ADMINISTRATIVE, COMMERCIAL, FINANCIAL, MANAGERIAL OR SUPERVISORY PURPOSES, NOT OTHERWISE PROVIDED FOR
    • G06Q10/00Administration; Management
    • G06Q10/04Forecasting or optimisation specially adapted for administrative or management purposes, e.g. linear programming or "cutting stock problem"
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06QINFORMATION AND COMMUNICATION TECHNOLOGY [ICT] SPECIALLY ADAPTED FOR ADMINISTRATIVE, COMMERCIAL, FINANCIAL, MANAGERIAL OR SUPERVISORY PURPOSES; SYSTEMS OR METHODS SPECIALLY ADAPTED FOR ADMINISTRATIVE, COMMERCIAL, FINANCIAL, MANAGERIAL OR SUPERVISORY PURPOSES, NOT OTHERWISE PROVIDED FOR
    • G06Q10/00Administration; Management
    • G06Q10/06Resources, workflows, human or project management; Enterprise or organisation planning; Enterprise or organisation modelling
    • G06Q10/063Operations research, analysis or management
    • G06Q10/0635Risk analysis of enterprise or organisation activities
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06QINFORMATION AND COMMUNICATION TECHNOLOGY [ICT] SPECIALLY ADAPTED FOR ADMINISTRATIVE, COMMERCIAL, FINANCIAL, MANAGERIAL OR SUPERVISORY PURPOSES; SYSTEMS OR METHODS SPECIALLY ADAPTED FOR ADMINISTRATIVE, COMMERCIAL, FINANCIAL, MANAGERIAL OR SUPERVISORY PURPOSES, NOT OTHERWISE PROVIDED FOR
    • G06Q10/00Administration; Management
    • G06Q10/20Administration of product repair or maintenance
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06QINFORMATION AND COMMUNICATION TECHNOLOGY [ICT] SPECIALLY ADAPTED FOR ADMINISTRATIVE, COMMERCIAL, FINANCIAL, MANAGERIAL OR SUPERVISORY PURPOSES; SYSTEMS OR METHODS SPECIALLY ADAPTED FOR ADMINISTRATIVE, COMMERCIAL, FINANCIAL, MANAGERIAL OR SUPERVISORY PURPOSES, NOT OTHERWISE PROVIDED FOR
    • G06Q50/00Information and communication technology [ICT] specially adapted for implementation of business processes of specific business sectors, e.g. utilities or tourism
    • G06Q50/04Manufacturing
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06QINFORMATION AND COMMUNICATION TECHNOLOGY [ICT] SPECIALLY ADAPTED FOR ADMINISTRATIVE, COMMERCIAL, FINANCIAL, MANAGERIAL OR SUPERVISORY PURPOSES; SYSTEMS OR METHODS SPECIALLY ADAPTED FOR ADMINISTRATIVE, COMMERCIAL, FINANCIAL, MANAGERIAL OR SUPERVISORY PURPOSES, NOT OTHERWISE PROVIDED FOR
    • G06Q50/00Information and communication technology [ICT] specially adapted for implementation of business processes of specific business sectors, e.g. utilities or tourism
    • G06Q50/10Services

Definitions

  • the present invention relates to a predictive maintenance determination device, a predictive maintenance determination method, and a program for predicting the occurrence of an abnormality in a device.
  • the gear damage detection device described in Patent Document 1 detects the occurrence of gear damage by analyzing the output of the AE sensor and detecting the signal strength in a specific frequency region.
  • the damage detection device of Patent Document 1 has a problem that the abnormality cannot be detected unless an abnormality such as damage actually occurs in the device. Therefore, when an abnormality is detected, it is necessary to immediately stop the equipment to inspect and maintain the abnormal part, replace consumable parts (bearings, seal parts, etc.), and perform cleaning. Therefore, the equipment must be stopped at an unexpected timing, and there is a possibility that not only the equipment but also the production line must be stopped. This could have a significant impact on the production process.
  • the present invention has been made in view of the above, and is a predictive maintenance determination device, a predictive maintenance determination method, and a predictive maintenance determination device capable of notifying the occurrence of an abnormality that affects the operation of an apparatus before an abnormality actually occurs.
  • the purpose is to provide a program.
  • the predictive maintenance determination device acquires the AE sensor installed on the surface of the housing of the device and the output of the AE sensor for a predetermined time.
  • the first difference value calculation unit that calculates the first difference value between the maximum value and the minimum value of the output, the average value calculation unit that calculates the average value of the output for the predetermined time, and the predetermined time.
  • a second difference value calculation unit for calculating a second difference value between a maximum value and a minimum value of an output less than the average value among the outputs of the minute, and the first difference value with respect to the second difference value.
  • the first ratio calculation unit that calculates the ratio of the difference value and the notification unit that notifies the predictive maintenance of the device when the ratio calculated by the first ratio calculation unit is equal to or greater than the first predetermined value. It is characterized by having.
  • the predictive maintenance determination device acquires the output of the AE sensor installed on the surface of the housing of the device, and obtains the first difference value between the maximum value and the minimum value of the output for a predetermined time.
  • a third difference value calculation unit that calculates the difference value, a second ratio calculation unit that calculates the second ratio that is the ratio of the first difference value to the third difference value, and the second ratio. It is characterized by including a notification unit for notifying that an abnormality may occur in the device when the ratio of
  • the predictive maintenance determination device acquires the output of the AE sensor installed on the surface of the housing of the device, and obtains the first difference value between the maximum value and the minimum value of the output for a predetermined time.
  • the first difference value calculation unit to be calculated, the average value calculation unit to calculate the average value of the output for the predetermined time, and the third ratio which is the ratio of the first difference value to the average value are calculated. Notification that an abnormality may occur in the device based on the third ratio calculation unit and the two-dimensional map in which the first difference value and the third ratio are taken as each axis. It is characterized by having a part and.
  • the predictive maintenance determination device can notify the occurrence of an abnormality that affects the operation of the device before the abnormality actually occurs, that is, when a sign of the abnormality is detected. Therefore, it is possible to preset the timing for inspecting and maintaining the equipment, replacing consumable parts, cleaning, and the like. Therefore, the operating state of the production line can be maintained by operating another device while the device is stopped.
  • FIG. 1 is an explanatory diagram of an acoustic emission and an AE sensor.
  • FIG. 2 is an overall configuration diagram of a predictive maintenance determination system using the predictive maintenance determination device according to the first embodiment.
  • FIG. 3 is a structural diagram of the extruder according to the first embodiment.
  • FIG. 4 is a hardware configuration diagram of the predictive maintenance determination device according to the first embodiment.
  • FIG. 5 is a functional configuration diagram of the predictive maintenance determination device according to the first embodiment.
  • FIG. 6 is an explanatory diagram of the predictive maintenance determination method according to the first embodiment.
  • FIG. 7 is a flowchart showing an example of the flow of processing performed by the predictive maintenance determination device according to the first embodiment.
  • FIG. 8 is a functional configuration diagram of the predictive maintenance determination device according to the second embodiment.
  • FIG. 1 is an explanatory diagram of an acoustic emission and an AE sensor.
  • FIG. 2 is an overall configuration diagram of a predictive maintenance determination system using the predictive maintenance determination device according to the first embodiment.
  • FIG. 9 is an explanatory diagram of the predictive maintenance determination method in the second embodiment.
  • FIG. 10 is a flowchart showing an example of the processing flow in the second embodiment.
  • FIG. 11 is an overall configuration diagram of a predictive maintenance determination system using the predictive maintenance determination device according to the third embodiment.
  • FIG. 12 is a functional configuration diagram of the predictive maintenance determination device according to the third embodiment.
  • FIG. 13 is a diagram showing an example of a determination criterion in the third embodiment.
  • FIG. 14 is a flowchart showing an example of the flow of processing performed by the signal analysis unit and the third determination unit in the third embodiment.
  • FIG. 15 is an overall configuration diagram of a predictive maintenance determination system using the predictive maintenance determination device according to the fourth embodiment.
  • FIG. 16 is a functional configuration diagram of the predictive maintenance determination device according to the fourth embodiment.
  • FIG. 17 is a diagram showing an example of a determination criterion when the vibration acceleration is larger than the third predetermined value.
  • FIG. 18 is a flowchart showing an example of the flow of processing performed by the signal analysis unit and the fourth determination unit in the fourth embodiment.
  • FIG. 19 is a system block diagram showing an example of the system configuration of the predictive maintenance determination system according to the fifth embodiment.
  • AE acoustic emission
  • AE is a phenomenon in which when a solid material is deformed, the strain energy accumulated up to that point is emitted as sound waves (elastic waves, AE waves).
  • the frequency band of the AE wave is said to be about several tens of kHz to several MHz, and has a frequency band that cannot be detected by a general vibration sensor or acceleration sensor. Therefore, in order to detect the AE wave, a dedicated AE sensor is used. The AE sensor will be described in detail later.
  • FIG. 1 is an explanatory diagram of an acoustic emission and an AE sensor.
  • FIG. 1A when deformation, contact, friction, or the like occurs at the AE source P inside the solid material Q, an AE wave W is generated.
  • the AE wave W spreads radially from the AE source P and propagates inside the solid material Q at a speed corresponding to the solid material Q.
  • the AE wave W propagating inside the solid material Q is detected by the AE sensor 20 installed on the surface of the solid material Q. Then, the AE sensor 20 outputs the detection signal D. Since the detection signal D is a signal representing vibration, it is an AC signal having positive and negative values. However, since it is difficult to handle the detection signal D (AE wave W) as it is when performing various calculations, it is common to treat the negative portion of the detection signal D as a rectified waveform obtained by half-wave rectification. Further, when analyzing the AE wave W, it is generally treated as a value obtained by averaging the root mean square value of the rectified waveform over a predetermined time and taking a square root, that is, an effective value (RMS (Root Mean Square) value).
  • RMS Root Mean Square
  • the propagation velocity of the AE wave W differs between the longitudinal wave and the transverse wave (the longitudinal wave is faster than the transverse wave), but the difference can be ignored in consideration of the size (propagation distance) of the solid material Q. , No distinction is made between longitudinal waves and transverse waves. That is, the AE wave W detected within a predetermined time is used as a measurement signal for analysis regardless of whether it is a longitudinal wave or a transverse wave.
  • the AE sensor 20 is included in the shield case 20a. Then, a receiving surface 20b that receives the AE wave W is formed on the bottom surface of the AE sensor 20.
  • the wavefront surface 20b is made of an insulating material.
  • a magnet 20c is installed near the bottom surface of the shield case 20a, and the AE sensor 20 is fixed to the metal housing 30a of the device 30 subject to predictive maintenance by the magnet 20c. At that time, the wave receiving surface 20b is installed in close contact with the surface of the metal housing 30a of the device 30.
  • a vapor-deposited film 20d made of copper or the like is formed on the wave receiving surface 20b.
  • a piezoelectric element 20e such as lead zirconate titanate (PZT) is installed on the upper portion of the thin-film deposition film 20d.
  • the piezoelectric element 20e receives the AE wave W via the wave receiving surface 20b and outputs an electric signal corresponding to the AE wave W.
  • the electric signal output by the piezoelectric element 20e is output as a detection signal D via the vapor deposition film 20f and the connector 20g. Since the detection signal D is weak, a preamplifier (not shown in FIG. 1B) is installed inside the AE sensor 20 in order to suppress the influence of noise mixing, and the detection signal D is set in advance. It may be output after being amplified.
  • AE is also generated by minute scratches and friction, so it is possible to detect signs of equipment abnormality at an early stage. Further, since the AE wave W spreads radially from the AE source P, if it is a metal housing, by installing the AE sensor 20, the AE wave W can be observed at any position of the housing and the detection signal D It is possible to obtain. The specific analysis method of the detection signal D will be described later. Further, since the frequency band of the signal that can be detected differs depending on the type of the AE sensor 20, it is desirable to consider the material of the device to be measured and the like when selecting the AE sensor 20 to be used.
  • the predictive maintenance determination device the predictive maintenance determination method, and the embodiment of the program according to the present disclosure will be described in detail based on the drawings.
  • the present invention is not limited to these embodiments.
  • the components in the following embodiments include those that can be easily conceived by those skilled in the art, or those that are substantially the same.
  • the first embodiment of the present disclosure is an example of the predictive maintenance determination device 12a that detects and notifies a sign that an abnormality occurs in the device.
  • FIG. 2 is an overall configuration diagram of a predictive maintenance determination system using the predictive maintenance determination device according to the first embodiment.
  • the predictive maintenance determination system 10a applies the predictive maintenance determination device 12a of the present disclosure to the predictive maintenance determination of the gear box 30 that reduces the rotational driving force of the motor 22 to drive the extruder 40.
  • the gear box 30 is an example of the device 30.
  • the gear box 30 is configured by meshing a plurality of gears to reduce the rotational driving force of the motor 22 connected to the input side and transmit it to the output side.
  • the predictive maintenance determination system 10a detects and notifies signs of abnormality such as cracks and wear generated in the gear and wear of the shaft supporting the gear.
  • the device configuration described below is an example, and the device subject to predictive maintenance is not limited to the gear box 30. Further, the drive target of the gear box 30 is not limited to the extruder 40. The outline of the extruder 40 will be described later (see FIG. 3).
  • the predictive maintenance determination device 12a acquires the output of the AE sensor 20 installed on the surface of the metal housing 30a of the gear box 30 connected to the extruder 40. Then, the predictive maintenance determination device 12a performs predictive maintenance of the gear box 30 by analyzing the output of the AE sensor 20.
  • the AE sensor 20 a sensor having a frequency band capable of detecting the AE wave W propagating inside the metal housing 30a is used.
  • the frequency band of the AE wave W to be detected is known, it is desirable to use the AE sensor 20 having high sensitivity in the frequency band.
  • the AE sensor 20 having high sensitivity in the frequency band including 150 kHz is used.
  • the mounting position of the AE sensor 20 with respect to the metal housing 30a of the gear box 30 does not matter, but it is desirable to mount the AE sensor 20 in the vicinity of a place where an abnormality is likely to occur. For example, it is desirable to mount the AE sensor 20 in the vicinity of the output shaft of the gearbox 30.
  • the predictive maintenance determination device 12a causes an abnormality by a monitor, a speaker or the like (not shown) shown in FIG. Notify that there are signs.
  • FIG. 3 is a structural diagram of the extruder according to the first embodiment.
  • the extruder 40 rotates, for example, a resin raw material by rotating a screw 42 installed at a position where the output shaft 32 is extended as the output shaft 32 is rotationally driven in response to the output of the gear box 30. And the powdery filler are kneaded.
  • the extruder 40 shown in FIG. 3 is a twin-screw extruder having two output shafts 32 installed at an inter-shaft distance C.
  • the two output shafts 32 are arranged in parallel inside the barrel portion 44 while maintaining a constant inter-axis distance C.
  • the bases of two screws 42 that rotate in the same direction while meshing with each other are connected to each output shaft 32.
  • the output shaft 32 transmits the rotation of the motor 22 decelerated by the gear box 30 to the screw 42.
  • the screw 42 rotates at a speed of, for example, 300 revolutions per minute.
  • the insertion hole 46 is a hole provided along the longitudinal direction of the barrel portion 44, and a part of the cylinder overlaps so that two screws 42 that mesh with each other can be inserted.
  • a material supply port 47 for supplying the pellet-shaped resin raw material to be kneaded and the powder-like filler material to the insertion hole 46 is provided on one end side of the barrel portion 44 in the longitudinal direction.
  • a discharge port 48 for discharging the kneaded material while passing through the insertion hole 46 is provided on the other end side of the barrel portion 44 in the longitudinal direction.
  • a heater 49 is provided on the outer periphery of the barrel portion 44 to heat the material supplied to the insertion hole 46 by heating the barrel portion 44.
  • the screw 42 has the first screw portion 42a, the second screw portion 42b, and the like from one end side of the barrel portion 44 provided with the material supply port 47 toward the other end side of the barrel portion 44 provided with the discharge port 48. It has a third screw portion 42c. Although detailed description will be omitted, the first screw portion 42a, the second screw portion 42b, and the third screw portion 42c have different shapes in order to knead the materials uniformly.
  • the first screw portion 42a, the second screw portion 42b, and the third screw portion 42 of the screw 42 are directed from one end side where the material supply port 47 is provided to the other end side where the discharge port 48 is provided. It has a first barrel portion 44a, a second barrel portion 44b, and a third barrel portion 44c corresponding to the screw portion 42c.
  • the gap between the screw 42 and the barrel portion 44 is formed so as to gradually decrease from the gear box 30 side toward the discharge port 48 side. As a result, the material supplied from the material supply port 47 is kneaded even more uniformly.
  • the length L3 of the screw portion 42c is appropriately determined according to the material to be kneaded.
  • the molten resin is kneaded so as to be uniform. Then, the molten resin that has passed through the screw 42 is discharged from the discharge port 48 in a uniformly kneaded state.
  • FIG. 4 is a hardware configuration diagram of the predictive maintenance determination device according to the first embodiment.
  • the predictive maintenance determination device 12a includes a control unit 13, a storage unit 14, and a peripheral device controller 16.
  • the control unit 13 includes a CPU (Central Processing Unit) 13a, a ROM (Read Only Memory) 13b, and a RAM (Random Access Memory) 13c.
  • the CPU 13a connects the ROM 13b and the RAM 13c via the bus line 15.
  • the CPU 13a reads the control program P1 stored in the storage unit 14 and expands it in the RAM 13c.
  • the CPU 13a controls the operation of the control unit 13 by operating according to the control program P1 expanded in the RAM 13c. That is, the control unit 13 has a general computer configuration that operates based on the control program P1.
  • the control unit 13 further connects the storage unit 14 and the peripheral device controller 16 via the bus line 15.
  • the storage unit 14 is a non-volatile memory such as a flash memory or an HDD (Hard Disk Drive) or the like in which the stored information is retained even when the power is turned off.
  • the storage unit 14 stores the program including the control program P1 and the AE output M (t).
  • the control program P1 is a program for exerting the functions provided by the control unit 13.
  • the AE output M (t) is a signal obtained by converting the effective value of the detection signal D output by the AE sensor 20 into a digital signal by the A / D converter 17.
  • the control program P1 may be provided by being incorporated in the ROM 13b in advance.
  • the control program P1 is a file in a format that can be installed or executed in the control unit 13 and can be read by a computer such as a CD-ROM, a flexible disk (FD), a CD-R, or a DVD (Digital Versatile Disc). It may be configured to be recorded and provided on various recording media. Further, the control program P1 may be stored on a computer connected to a network such as the Internet and provided by downloading via the network. Further, the control program P1 may be configured to be provided or distributed via a network such as the Internet.
  • the peripheral device controller 16 connects to the A / D converter 17, the display device 18, and the operation device 19.
  • the peripheral device controller 16 controls the operation of various connected hardware based on a command from the control unit 13.
  • the A / D converter 17 converts the detection signal D output by the AE sensor 20 into a digital signal and outputs the AE output M (t).
  • the display device 18 is, for example, a liquid crystal display.
  • the display device 18 displays information related to the operating state of the predictive maintenance determination device 12a. Further, the display device 18 notifies when the predictive maintenance determination device 12a detects a sign of abnormality in the gear box 30 (equipment).
  • the operation device 19 is, for example, a touch panel superimposed on the display device 18.
  • the operation device 19 acquires operation information related to the setting and operation of the predictive maintenance determination device 12a.
  • FIG. 5 is a functional configuration diagram of the predictive maintenance determination device according to the first embodiment.
  • the control unit 13 of the predictive maintenance determination device 12a expands the control program P1 into the RAM 13c and operates it to notify the signal acquisition unit 51, the signal analysis unit 52a, the first determination unit 53a, and the notification unit 51 shown in FIG.
  • the unit 54 is realized as a functional unit.
  • the signal acquisition unit 51 acquires the detection signal D output by the AE sensor 20.
  • the signal acquisition unit 51 includes an amplifier to amplify the detection signal D, and also includes an A / D converter to convert the effective value of the detection signal D, which is an analog signal, into the AE output M (t), which is a digital signal. Convert.
  • the signal analysis unit 52a analyzes the AE output M (t) and calculates an evaluation value for determining whether or not a sign of abnormality is observed in the gear box 30.
  • the signal analysis unit 52a further includes a first difference value calculation unit 521, an average value calculation unit 522, a second difference value calculation unit 523, and a first ratio calculation unit 524.
  • the predetermined time may be determined to an appropriate value based on the calculation ability of the predictive maintenance determination device 12a and the like.
  • the average value calculation unit 522 calculates the average value Save of the AE output M (t) for a predetermined time.
  • the ratio R1 (first ratio) is calculated by the signal analysis unit 52a.
  • the ratio R1 is the above-mentioned evaluation value.
  • the first determination unit 53a determines whether or not the ratio R1 calculated by the first ratio calculation unit 524 is equal to or greater than the first predetermined value ⁇ 1.
  • the notification unit 54 When the first determination unit 53a determines that the ratio R1 is equal to or greater than the first predetermined value ⁇ 1, the notification unit 54 notifies the gear box 30 (equipment) regarding predictive maintenance. Specifically, the notification unit 54 notifies the display device 18 by displaying that the gear box 30 shows signs of abnormality.
  • the notification method of the notification unit 54 is not limited to this, and notification may be performed by lighting or blinking an indicator (not shown in FIG. 4), or from a speaker or buzzer (not shown) in FIG. , Sound or voice may be output for notification.
  • the AE output M1 (t) when the gear box 30 to be evaluated has a clear abnormality (for example, the gear built in the gear box 30 is scratched).
  • the gear box 30 has a difference value between the maximum value and the minimum value of the output less than the average value Save of the AE output M1 (t) when an abnormality has occurred in the gear box 30. It was found that the ratio of the difference value between the maximum value and the minimum value of the AE output M2 (t) when is normal increases with the progress of the abnormality of the gear box 30.
  • the inventors have an AE output M (t) with respect to the difference value between the maximum value and the minimum value of the output less than the average value Save of the AE output M (t). )
  • the ratio of the difference value between the maximum value and the minimum value reaches the first predetermined value ⁇ 1 described above, it is determined that it is appropriate to determine that there is a sign of abnormality.
  • the value of the first predetermined value ⁇ 1 may be set to a value corresponding to the gear box 30 to be evaluated by conducting an evaluation experiment or the like in advance.
  • FIG. 6 is an explanatory diagram of the predictive maintenance determination method according to the first embodiment.
  • the graph 60a shown in FIG. 6 is an example of the AE output M (t) from the AE sensor 20 acquired by the signal acquisition unit 51 of the predictive maintenance determination device 12a.
  • the horizontal axis of FIG. 6 represents the time t, and the vertical axis represents the effective value (RMS value) of the AE output M (t) of the AE sensor 20.
  • the AE output from the AE sensor 20 is output as a continuous waveform, and the graph 60a is a scatter diagram obtained by sampling the continuous waveform at predetermined time intervals.
  • the signal acquisition unit 51 acquires the AE output M (t) from the AE sensor 20 while the motor 22, the gear box 30, and the extruder 40 are operating together.
  • the signal analysis unit 52a performs the following signal processing on the AE output M (t).
  • the average value calculation unit 522 calculates the average value Save of the AE output M (t) for a predetermined time (for example, 10 seconds).
  • the second difference value calculation unit 523 removes the AE output M (t) exceeding the average value Save from the output AE (t) for a predetermined time, and then the maximum of the AE output M (t) remaining after removing the AE output M (t).
  • the difference value ⁇ 2 Smax2-Smin1 (second difference value) between the value Smax2 and the minimum value Smin1 is calculated.
  • the first determination unit 53a determines whether or not the ratio R1 calculated by the first ratio calculation unit 524 is equal to or greater than the first predetermined value ⁇ 1. Then, when it is determined that the ratio R1 is equal to or greater than the first predetermined value ⁇ 1, the notification unit 54 has detected a sign of abnormality in the gear box 30 with respect to the display device 18 (see FIG. 4). Is made to perform the notification indicating.
  • the predictive maintenance determination device 12a always performs the above processing while the gearbox 30 and the extruder 40 are operating. Then, at a predetermined time, for example, every 10 seconds, the determination by the first determination unit 53a and the notification by the notification unit 54 are performed.
  • the timing of judgment and notification is not limited to this. That is, the notification may be performed at predetermined time intervals based on the determination result of the AE output M (t) over the past predetermined time. For example, notification may be performed based on the determination result of the AE output M (t) over a predetermined time (for example, 10 seconds) in the past at a timing such as once per second.
  • FIG. 7 is a flowchart showing an example of the flow of processing performed by the predictive maintenance determination device according to the first embodiment.
  • the signal acquisition unit 51 acquires the AE output M (t) for a predetermined time from the storage unit 14 (step S11).
  • the first difference value calculation unit 521 calculates the first difference value ⁇ 1 between the maximum value Smax1 of the AE output M (t) for a predetermined time and the minimum value Smin1 (step S12).
  • the average value calculation unit 522 calculates the average value Save of the AE output M (t) for a predetermined time (step S13).
  • the second difference value calculation unit 523 has a second difference value between the maximum value Smax2 and the minimum value Smin1 of the AE output M (t) less than the average value Save from the AE output M (t) for a predetermined time. Calculate ⁇ 2 (step S14).
  • the first ratio calculation unit 524 calculates the ratio R1 (first ratio) of the first difference value ⁇ 1 to the second difference value ⁇ 2 (step S15).
  • the first determination unit 53a determines whether the first ratio R1 is equal to or greater than the first predetermined value ⁇ 1 (step S16). When it is determined that the first ratio R1 is equal to or greater than the first predetermined value ⁇ 1 (step S16: Yes), the process proceeds to step S17. On the other hand, if it is not determined that the first ratio R1 is equal to or greater than the first predetermined value ⁇ 1 (step S16: No), the process returns to step S11.
  • step S16 the notification unit 54 performs notification related to predictive maintenance of the gear box 30, that is, notification indicating that a sign of abnormality is observed. After that, the predictive maintenance determination device 12a ends the process of FIG. 7.
  • the first difference value calculation unit 521 is an AE installed on the surface of the metal housing 30a (housing) of the gear box 30 (equipment).
  • the AE output M (t) of the sensor 20 is acquired, and the difference value ⁇ 1 (first difference value) between the maximum value Smax1 and the minimum value Smin1 of the AE output M (t) for a predetermined time is calculated.
  • the average value calculation unit 522 calculates the average value Save of the AE output M (t) for a predetermined time.
  • the second difference value calculation unit 523 has a difference value ⁇ 2 between the maximum value Smax2 and the minimum value Smin1 of the AE output M (t) less than the average value Save from the AE output M (t) for a predetermined time. (Second difference value) is calculated.
  • the first ratio calculation unit 524 calculates the ratio R1 (first ratio) of the difference value ⁇ 1 with respect to the difference value ⁇ 2. Then, when the ratio R1 is equal to or greater than the first predetermined value ⁇ 1, the notification unit 54 notifies that the gear box 30 may have an abnormality.
  • the predictive maintenance determination device 12a notifies the gearbox when it detects an AE output M (t) smaller than the AE output M (t) that occurs when a clear abnormality occurs in the gearbox 30. It is possible to notify before an abnormality that affects the operation of 30 occurs.
  • the predictive maintenance determination device 12a of the first embodiment determines the predictive maintenance of the gear box 30 (equipment) that drives the extruder 40. Therefore, since it is possible to notify before an abnormality that affects the operation of the gearbox 30 and the extruder 40 occurs, the extruder 40 is stopped for inspection and maintenance of the gearbox 30, replacement of consumable parts, cleaning, and the like.
  • the timing to perform can be planned in advance. As a result, it is possible to prevent the production line from stopping at an unexpected timing.
  • the frequency analysis generally performed when analyzing the AE wave W is not performed. Therefore, the processing load when analyzing the AE output M (t) can be reduced.
  • the second embodiment of the present disclosure is an example of the predictive maintenance determination device 12b provided in the predictive maintenance determination system 10b (not shown), which detects and notifies a sign that an abnormality occurs in the device.
  • the predictive maintenance determination device 12b includes a predictive maintenance determination method different from the predictive maintenance determination device 12a described above.
  • FIG. 8 is a functional configuration diagram of the predictive maintenance determination device according to the second embodiment.
  • the control unit 13 of the predictive maintenance determination device 12b expands the control program P2 (not shown) into the RAM 13c and operates the signal acquisition unit 51, the signal analysis unit 52b, and the second determination unit shown in FIG.
  • the 53b and the notification unit 54 are realized as functional units.
  • the functions of the signal acquisition unit 51 and the notification unit 54 are the same as those of the predictive maintenance determination device 12a described above.
  • the signal analysis unit 52b analyzes the output of the AE sensor 20 acquired by the signal acquisition unit 51 and calculates an evaluation value for determining whether or not a sign of abnormality is observed in the gear box 30.
  • the signal analysis unit 52b further includes a first difference value calculation unit 521, an abnormal value removal unit 525, a third difference value calculation unit 526, and a second ratio calculation unit 527.
  • the function of the first difference value calculation unit 521 is the same as that of the predictive maintenance determination device 12a described above.
  • the abnormal value removing unit 525 removes an output of a predetermined ratio U or more from the AE output M (t) for a predetermined time with respect to the maximum value Smax1 of the output.
  • the predetermined ratio U is determined based on a preliminary evaluation experiment or the like, and is set to, for example, 30% or the like.
  • the predetermined ratio U is set to a value corresponding to the gear box 30 to be evaluated by conducting an evaluation experiment or the like in advance. Details will be described later.
  • the ratio R2 (second ratio) is the above-mentioned evaluation value calculated by the signal analysis unit 52b.
  • the second determination unit 53b determines whether or not the ratio R2 calculated by the second ratio calculation unit 527 is equal to or greater than the second predetermined value (for example, 3).
  • FIG. 9 is an explanatory diagram of the predictive maintenance determination method in the second embodiment.
  • the graph 60b shown in FIG. 9 is an example of the AE output M (t) from the AE sensor 20 acquired by the signal acquisition unit 51 of the predictive maintenance determination device 12a.
  • the horizontal axis of FIG. 9 represents the time t, and the vertical axis represents the effective value (RMS value) of the AE output M (t) of the AE sensor 20.
  • the AE output from the AE sensor 20 is output as a continuous waveform, and the graph 60b is a scatter diagram obtained by sampling the continuous waveform at predetermined time intervals.
  • the abnormal value removing unit 525 removes an output of a predetermined ratio U or more from the AE output M (t) for a predetermined time with respect to the maximum value Smax1 of the AE output M (t).
  • the abnormal value removal unit 525 has a predetermined ratio U or more with respect to the maximum value Smax1 of the AE output M (t) from the AE output M (t) for a predetermined time.
  • the difference value ⁇ 3 Smax3-Smin1 (third difference value) between the maximum value Smax3 and the minimum value Smin1 of the output remaining after removing the output is calculated.
  • the first determination unit 53a determines whether or not the ratio R2 calculated by the second ratio calculation unit 527 is equal to or greater than the second predetermined value ⁇ 2. Then, when it is determined that the ratio R2 is equal to or greater than the second predetermined value ⁇ 2, the notification unit 54 has detected a sign of abnormality in the gear box 30 with respect to the display device 18 (see FIG. 4). Is made to perform the notification indicating.
  • the predictive maintenance determination device 12b always performs the above processing while the gearbox 30 and the extruder 40 are operating. Then, at predetermined time intervals, for example, every 10 seconds, the determination by the second determination unit 53b and the notification by the notification unit 54 are performed.
  • the timing of judgment and notification is not limited to this. That is, the notification may be performed at predetermined time intervals based on the determination result of the AE output M (t) over the past predetermined time. For example, notification may be performed based on the determination result of the AE output M (t) over a predetermined time (for example, 10 seconds) in the past at a timing such as once per second.
  • the values of the predetermined ratio U and the second predetermined value ⁇ 2 are set to the values corresponding to the gear box 30 to be evaluated by conducting an evaluation experiment or the like in advance.
  • the difference value between the maximum value and the minimum value of the AE output M2 (t) when the gear box 30 is in a normal state is when an abnormality has occurred in the gear box 30. It was found that the difference value between the maximum value and the minimum value of the output obtained by removing the data of the upper 30% of the AE output M1 (t) from the AE output M1 (t) was substantially equal.
  • the inventors obtain a difference value between the maximum value and the minimum value when the upper 30% of the data is removed from the AE output M (t).
  • the ratio of the difference value between the maximum value and the minimum value of the AE output M (t) reaches about 3 (corresponding to the second predetermined value ⁇ 2 described above), it is appropriate to determine that there is a sign of abnormality. Judged to be.
  • the AE output M (t) and the higher data from the AE output M (t) are obtained.
  • it can be regarded as an almost equivalent analysis method. Therefore, any method may be applied to make the determination, but the method described in the second embodiment, that is, the method of determining based on the data obtained by removing the data of the upper predetermined ratio of the AE output M (t). In the case of, the amount of calculation of the analysis process can be reduced because the calculation of the average value is unnecessary.
  • FIG. 10 is a flowchart showing an example of the flow of processing performed by the predictive maintenance determination device according to the second embodiment.
  • the signal acquisition unit 51 acquires the AE output M (t) for a predetermined time from the storage unit 14 (step S21).
  • the first difference value calculation unit 521 calculates the first difference value ⁇ 1 of the maximum value Smax1 and the minimum value Smin1 of the AE output M (t) for a predetermined time (step S22).
  • the abnormal value removing unit 525 removes the AE output M (t) of a predetermined ratio U or more with respect to the maximum value Smax1 of the AE output M (t) for a predetermined time (step S23).
  • the third difference value calculation unit 526 is a third of the maximum value Smax3 after the abnormal value removing unit 525 removes the predetermined AE output M (t) and the minimum value Smin1 of the AE output M (t).
  • the difference value ⁇ 3 is calculated (step S24).
  • the second ratio calculation unit 527 calculates the ratio R2 (second ratio) of the first difference value ⁇ 1 to the third difference value ⁇ 3 (step S25).
  • the second determination unit 53b determines whether the second ratio R2 is equal to or greater than the second predetermined value ⁇ 2 (step S26). When it is determined that the second ratio R2 is equal to or greater than the second predetermined value ⁇ 2 (step S26: Yes), the process proceeds to step S27. On the other hand, if it is not determined that the second ratio R2 is equal to or greater than the second predetermined value ⁇ 2 (step S26: No), the process returns to step S21.
  • step S26 the notification unit 54 performs notification related to predictive maintenance of the gear box 30, that is, notification indicating that a sign of abnormality is observed. After that, the predictive maintenance determination device 12b ends the process of FIG.
  • the first difference value calculation unit 521 is an AE installed on the surface of the metal housing 30a (housing) of the gear box 30 (equipment).
  • the AE output M (t) of the sensor 20 is acquired, and the difference value ⁇ 1 (first difference value) between the maximum value Smax1 and the minimum value Smin1 of the AE output M (t) for a predetermined time is calculated.
  • the third difference value calculation unit 526 removes the output of a predetermined ratio U or more with respect to the maximum value Smax1 among the AE output M (t) for a predetermined time, and then the maximum value of the AE output M (t) remaining.
  • the difference value ⁇ 3 (third difference value) between Smax3 and the minimum value Smin1 is calculated.
  • the second ratio calculation unit 527 calculates the ratio R2 (second ratio) of the difference value ⁇ 1 with respect to the difference value ⁇ 3.
  • the second determination unit 53b notifies that when the ratio R2 is equal to or greater than the second predetermined value ⁇ 2, the notification unit 54 notifies that the gear box 30 shows a sign of abnormality.
  • the predictive maintenance determination device 12b notifies when the AE output M (t) smaller than the AE output M (t) generated when a clear abnormality occurs in the gear box 30 is detected, so that the gear box is notified. It is possible to notify before an abnormality that affects the operation of 30 occurs.
  • the predictive maintenance determination device 12b of the second embodiment determines the predictive maintenance of the gear box 30 (equipment) that drives the extruder 40. Therefore, since it is possible to notify before an abnormality that affects the operation of the gearbox 30 and the extruder 40 occurs, the extruder 40 is stopped for inspection and maintenance of the gearbox 30, replacement of consumable parts, cleaning, and the like.
  • the timing to perform can be planned in advance. As a result, it is possible to prevent the production line from stopping at an unexpected timing.
  • FIG. 11 is an overall configuration diagram of a predictive maintenance determination system using the predictive maintenance determination device according to the third embodiment.
  • the predictive maintenance determination system 10c detects and notifies abnormal signs such as cracks and wear generated in the gear box 30 that drives the extruder 40 by decelerating the rotational driving force of the motor 22, and wear of the shaft that supports the gears. To do.
  • the predictive maintenance determination device 12c is provided in the predictive maintenance determination system 10c to detect and notify a sign that an abnormality occurs in the device.
  • the predictive maintenance determination device 12c includes a predictive maintenance determination method different from the predictive maintenance determination devices 12a and 12b described above.
  • FIG. 12 is a functional configuration diagram of the predictive maintenance determination device according to the third embodiment.
  • the control unit 13 of the predictive maintenance determination device 12c expands the control program P3 (not shown) into the RAM 13c and operates the signal acquisition unit 51, the signal analysis unit 52b, and the third determination unit shown in FIG.
  • the 53c and the notification unit 54 are realized as functional units.
  • the function of the signal acquisition unit 51 is the same as that of the predictive maintenance determination devices 12a and 12b described above.
  • the function of the notification unit 54 is as described in the first embodiment. That is, in the case of the present embodiment, the notification unit 54 performs notification according to the determination result of the third determination unit 53c.
  • the signal analysis unit 52c analyzes the AE output M (t) acquired by the signal acquisition unit 51 and calculates an evaluation value for determining whether or not a sign of abnormality is observed in the gear box 30.
  • the signal analysis unit 52c further includes a first difference value calculation unit 521, an average value calculation unit 522, and a third ratio calculation unit 528.
  • the third ratio calculation unit 528 calculates the predetermined time calculated by the first difference value calculation unit 521 with respect to the average value Save of the AE output M (t) for the predetermined time calculated by the average value calculation unit 522.
  • the third determination unit 53c of the gear box 30 is based on the difference value ⁇ 1 calculated by the first difference value calculation unit 521 of the signal analysis unit 52c and the ratio R3 calculated by the third ratio calculation unit 528. Determine the state.
  • the specific determination method will be described below.
  • FIG. 13 is a diagram showing an example of a determination criterion in the third embodiment.
  • the third determination unit 53c determines that the gear box 30 is normal. Then, at this time, the notification unit 54 does not perform any notification. At this time, the notification unit 54 may perform notification indicating that the gear box 30 is normal.
  • the difference value ⁇ 1 is smaller than the difference value first threshold value Td1
  • the third ratio R3 is equal to or higher than the ratio first threshold value Tr1 and larger than the ratio first threshold value Tr1 than the ratio second threshold value Tr2.
  • the difference value ⁇ 1 is equal to or larger than the difference value first threshold value Td1, is smaller than the difference value second threshold value Td2 larger than the difference value first threshold value Td1, and the third ratio R3 is the ratio third.
  • the difference value ⁇ 1 and the third ratio R3 are smaller than the two threshold values Tr2, that is, when the difference value ⁇ 1 and the third ratio R3 are inside the region W3 of FIG. Judged as being in a follow-up state. Then, the notification unit 54 notifies that the patient is in a follow-up required state with a medium frequency (for example, about once every 6 months).
  • the difference value ⁇ 1 is equal to or larger than the difference value second threshold value Td2, is larger than the difference value second threshold value Td2, is smaller than the difference value third threshold value Td3, and the third ratio R3 is the ratio second.
  • the threshold value Tr2 is smaller than the threshold value Tr2, that is, when the difference value ⁇ 1 and the third ratio R3 are inside the region W4 in FIG. Judge that it is in the observation state. Then, the notification unit 54 notifies that the patient is in a follow-up required state with high frequency (for example, about once every three months).
  • the third determination unit 53c determines that the gear box 30 is in a state requiring maintenance with a low degree of urgency. Then, the notification unit 54 notifies that the vehicle is in a state requiring maintenance with a low degree of urgency (for example, a state in which maintenance within 2 to 3 years is recommended).
  • the difference value ⁇ 1 is equal to or larger than the difference value second threshold value Td2, is larger than the difference value second threshold value Td2, is smaller than the difference value third threshold value Td3, and the third ratio R3 is the ratio second threshold value.
  • Tr2 or more that is, when the difference value ⁇ 1 and the third ratio R3 are inside the region W6 of FIG. 13
  • the third determination unit 53c has a gear box 30 having a medium degree of urgency. Judge that maintenance is required. Then, the notification unit 54 notifies that the urgency is in a moderate maintenance required state (for example, a state in which maintenance within 1 to 2 years is recommended).
  • the third determination unit 53c determines. It is determined that the gear box 30 is in a state requiring maintenance with a high degree of urgency. Then, the notification unit 54 notifies that the vehicle is in a state requiring maintenance with a high degree of urgency (for example, a state in which maintenance within one year is recommended).
  • a two-dimensional map 80a may be created to evaluate the state of the gearbox 30 based on the positions of the evaluation values plotted on the two-dimensional map 80a. That is, as described in the third embodiment, a plurality of threshold values are set according to the evaluation functions on the vertical axis and the horizontal axis, and the gear box 30 is based on the relationship between the measured evaluation value and the threshold value. The condition may be evaluated.
  • the number of AE sensors 20 installed in the gear box 30 is not limited to one. That is, a plurality of AE sensors 20 may be installed on the surfaces of the gearbox 30 corresponding to each axial direction, and the output of each AE sensor 20 may be evaluated by the two-dimensional map 80a shown in FIG. By simultaneously measuring the plurality of channels in this way, the state of the gear box 30 in each axial direction can be evaluated, so that the position where the abnormality of the gear box 30 has occurred can be more accurately specified.
  • the place where the AE sensor 20 is installed has variations such as the input shaft side (motor 22 side), the output shaft side (extruder 40 side), and the intermediate shaft side (center portion of the gear box 30) of the gear box 30. You may let me.
  • FIG. 14 is a flowchart illustrating an example of a processing flow performed by the signal analysis unit and the third determination unit in the third embodiment.
  • the signal acquisition unit 51 acquires the AE output M (t) for a predetermined time from the storage unit 14 (step S31).
  • the signal analysis unit 52c sorts the AE output M (t) for the predetermined time acquired in step S31 in descending order from the largest value (step S32).
  • the signal analysis unit 52c removes sudden values from the AE output M (t) sorted in descending order in step S32 (step S33). Specifically, the AE output M (t) sorted in descending order is classified in increments of 100 (0 ⁇ M (t) ⁇ 100, 101 ⁇ M (t) ⁇ 200, ...), And classified as 100. If there are only two or less data in the notch, the two or less data are removed.
  • the first difference value calculation unit 521 specifies the maximum value Smax1 and the minimum value Smin1 of the AE output M (t) (step S34).
  • the average value calculation unit 522 calculates the average value Save of the AE output M (t) for a predetermined time (step S35).
  • the third determination unit 53c determines the state of the gear box 30 according to the reference described in FIG. 13 (step S37).
  • the first difference value calculation unit 521 is an AE installed on the surface of the metal housing 30a (housing) of the gear box 30 (equipment).
  • the AE output M (t) of the sensor 20 is acquired, and the difference value ⁇ 1 (first difference value) between the maximum value Smax1 and the minimum value Smin1 of the AE output M (t) for a predetermined time is calculated.
  • the average value calculation unit 522 calculates the average value Save of the AE output M (t) for a predetermined time.
  • the third ratio calculation unit 528 calculates the third ratio R3, which is the ratio of the difference value ⁇ 1 (first difference value) to the average value Save.
  • the notification unit 54 notifies that the gear box 30 may have an abnormality based on the difference value ⁇ 1 and the third ratio R3, that is, based on the two-dimensional map 80a.
  • the predictive maintenance determination device 12c notifies when the AE output M (t) smaller than the AE output M (t) generated when a clear abnormality occurs in the gear box 30 is detected, so that the gear box is notified. It is possible to notify before an abnormality that affects the operation of 30 occurs.
  • the determination method described in the third embodiment that is, the determination method based on the two-dimensional map 80a of FIG. 13, may be applied to the first embodiment and the second embodiment. By performing the determination based on the plurality of determination scales in this way, the state of the gear box 30 can be determined in more detail.
  • the fourth embodiment of the present disclosure is an example of the predictive maintenance determination device 12d provided in the predictive maintenance determination system 10d, which detects and notifies a sign that an abnormality occurs in the device.
  • FIG. 15 is an overall configuration diagram of a predictive maintenance determination system using the predictive maintenance determination device according to the fourth embodiment.
  • the predictive maintenance determination system 10d has a configuration in which the vibration sensor 70 is added to the configuration of the predictive maintenance determination system 2a described with reference to FIG.
  • the vibration sensor 70 is installed on the surface of the metal housing 30a of the gear box 30 and measures the magnitude of the vibration acceleration generated in the gear box 30. Specifically, the magnitude of the vibration acceleration in the range of several Hz to several tens of Hz, which is lower than the frequency range measured by the AE sensor 20, is detected.
  • the vibration sensor 70 is an example of an acceleration sensor in the present disclosure, and for example, a piezoelectric acceleration sensor or the like is used.
  • the predictive maintenance determination system 10d measures the magnitude of the vibration acceleration generated in the gear box 30 and determines the state of the gear box 30 described in the third embodiment when the vibration acceleration is larger than a predetermined acceleration. Switch the method to be performed to another judgment method. That is, in the predictive maintenance determination system 10d, when the magnitude of the vibration acceleration generated in the gear box 30 is larger than the predetermined acceleration, that is, the third predetermined value ⁇ 3, the gear box 30 is based on a determination standard different from that of FIG. Judge the state of. On the other hand, when the magnitude of the vibration acceleration generated in the gear box 30 is equal to or less than the third predetermined value ⁇ 3, the state of the gear box 30 is determined according to the determination criteria shown in FIG. According to the evaluation experiments by the inventors, the third predetermined value ⁇ 3 is preferably about 10 m / s 2.
  • FIG. 16 is a functional configuration diagram of the predictive maintenance determination device according to the fourth embodiment.
  • the control unit 13 of the predictive maintenance determination device 12d expands the control program P3 (not shown) into the RAM 13c and operates the signal acquisition unit 55, the signal analysis unit 52d, and the fourth determination unit shown in FIG.
  • the 53d and the notification unit 54 are realized as functional units.
  • the signal acquisition unit 55 acquires the AE output M (t) for a predetermined time from the storage unit 14. Further, the signal acquisition unit 55 acquires the vibration acceleration from the vibration sensor 70.
  • the signal analysis unit 52d includes a vibration acceleration determination unit 520 in addition to the functions described in the third embodiment.
  • the vibration acceleration determination unit 520 determines whether or not the vibration acceleration acquired by the vibration sensor 70 is larger than the third predetermined value ⁇ 3.
  • the function of the notification unit 54 is as described in the first embodiment. That is, in the case of the present embodiment, the notification unit 54 performs notification according to the determination result of the fourth determination unit 53d.
  • the fourth determination unit 53d determines the state of the gear box 30 by a determination method according to the magnitude of the vibration acceleration acquired by the vibration sensor 70. The specific determination method will be described later.
  • the predictive maintenance determination device 12d uses the determination criteria (two-dimensional map 80b) shown in FIG. 17, for example, to determine the gear box 30.
  • the determination criteria two-dimensional map 80b shown in FIG. 17, for example, to determine the gear box 30.
  • FIG. 17 is a diagram showing an example of a determination criterion when the vibration acceleration is larger than the third predetermined value ⁇ 3.
  • the vertical axis of FIG. 17 is the difference value ⁇ 1 (first difference value), and the horizontal axis is the minimum value Smin1 of the AE output M (t) or the average value Save of the AE output M (t). ing. Then, the fourth determination unit 53d determines whether or not an abnormality may occur in the gear box 30 based on the two-dimensional map 80b formed by the difference value ⁇ 1 and the minimum value Smin1 (or the average value Save). ..
  • the fourth determination unit 53d determines that the gear box 30 is in a state requiring follow-up observation at a low frequency (for example, about once a year). It is determined that it is in a state that requires observation). Then, the notification unit 54 notifies that the patient is in a follow-up required state with a low frequency (for example, about once a year).
  • the difference value ⁇ 1 is equal to or larger than the difference value first threshold value Td1, is larger than the difference value first threshold value Td1, is smaller than the difference value second threshold value Td2, and has a minimum value Smin1 (or average value Save).
  • the signal output threshold value Ts1 is smaller than the signal output threshold value Ts1, that is, when the difference value ⁇ 1 and the minimum value Smin1 (or the average value Save) are inside the region W12 in FIG. It is determined that the patient is in a state requiring follow-up at a medium frequency. Then, the notification unit 54 notifies that the patient is in a follow-up required state with a medium frequency (for example, about once every 6 months).
  • the fourth determination unit 53d puts the gearbox 30 in a state requiring follow-up at a high frequency. Judge that there is. Then, the notification unit 54 notifies that the patient is in a follow-up required state with high frequency (for example, about once every three months).
  • the fourth determination unit 53d determines that the gear box 30 is in a state requiring maintenance with a low degree of urgency. Then, the notification unit 54 notifies that the vehicle is in a state requiring maintenance with a low degree of urgency (for example, a state in which maintenance within 2 to 3 years is recommended).
  • the fourth determination unit 53d indicates that the gear box 30 is in a state requiring maintenance with a medium degree of urgency. Judged to be in. Then, the notification unit 54 notifies that the urgency is in a moderate maintenance required state (for example, a state in which maintenance within 1 to 2 years is recommended).
  • the fourth determination is made.
  • the unit 53d determines that the gear box 30 is in a state requiring maintenance with a high degree of urgency. Then, the notification unit 54 notifies that the vehicle is in a state requiring maintenance with a high degree of urgency (for example, a state in which maintenance within one year is recommended).
  • FIG. 18 is a flowchart illustrating an example of a processing flow performed by the signal analysis unit and the fourth determination unit in the fourth embodiment.
  • the signal acquisition unit 55 acquires the vibration acceleration from the vibration sensor 70. (Step S41).
  • the signal acquisition unit 55 acquires the AE output M (t) for a predetermined time from the storage unit 14 (step S42).
  • the vibration acceleration determination unit 520 determines whether the vibration acceleration is larger than the third predetermined value ⁇ 3 (step S43). When it is determined that the vibration acceleration is larger than the third predetermined value ⁇ 3 (step S43: Yes), the process proceeds to step S44. On the other hand, if it is not determined that the vibration acceleration is larger than the third predetermined value ⁇ 3 (step S43: No), the process proceeds to step S45.
  • the fourth determination unit 53d determines the state of the gear box 30 based on the two-dimensional map 80b (step S44). After that, the process of FIG. 18 is completed.
  • the fourth determination unit 53d determines the state of the gear box 30 based on the two-dimensional map 80a (step S45). After that, the process of FIG. 18 is completed.
  • the predictive maintenance determination device 12d of the fourth embodiment acquires the output of the vibration sensor 70 (accelerometer) installed on the surface of the gear box 30 (equipment), and outputs the vibration sensor 70.
  • the notification unit 54 causes an abnormality in the gear box 30 based on the minimum or average value of the output of the AE sensor 20 and the difference value ⁇ 1 (first difference value). Notifies that there is a risk of occurrence.
  • the output of the vibration sensor 70 is equal to or less than the third predetermined value ⁇ 3, there is a possibility that an abnormality may occur in the gear box 30 based on the difference value ⁇ 1 (first difference value) and the third ratio R3. Notify that there is.
  • the predictive maintenance determination device 12d can notify the gear box 30 before an abnormality that affects the operation of the gear box 30 occurs even when a high vibration acceleration is generated in the gear box 30.
  • a fifth embodiment of the present disclosure is an example of the predictive maintenance determination device 12e provided in the predictive maintenance determination system 10e (see FIG. 19) that detects and notifies a sign that an abnormality occurs in the device.
  • FIG. 19 is a system block diagram showing an example of the system configuration of the predictive maintenance determination system according to the fifth embodiment.
  • the predictive maintenance determination system 10e outputs the outputs (outputs amplified by the preamplifier) of the AE sensors 21a, 21b, ... Installed in the plurality of gear boxes 31a, 31b, ... It is transmitted to 12e, and the predictive maintenance determination device 12e determines the states of the gear boxes 31a, 31b, ...
  • the gear boxes 31a and 31b are rotationally driven by motors 23a, 23b, ..., To drive the extruders 41a, 41b, ..., Respectively. Further, it is assumed that the outputs of the AE sensors 21a, 21b, ... Are given identification information for identifying the gear box in which each AE sensor is installed.
  • the installation location of the predictive maintenance determination device 12e does not have to be in the vicinity of the gear boxes 31a, 31b, ... It may be located far away from the gearboxes 31a, 31b, .... Further, the gear boxes 31a, 31b, ... Connected to the predictive maintenance determination device 12e are not limited to the gear boxes installed in the same factory, and may be gear boxes installed in a plurality of factories.
  • the predictive maintenance determination device 12e has the same configuration as any of the predictive maintenance determination devices 12a to 12d described above. Then, the predictive maintenance determination device 12e outputs the outputs of the AE sensors 21a, 21b, ... To the first determination unit 53a, the second determination unit 53b, the third determination unit 53c, and the fourth determination unit 53d. The state of the gear boxes 31a, 31b, ... Is determined by the same determination method as any of the above.
  • the notification unit 54 included in the predictive maintenance determination device 12e notifies the determined content.
  • the predictive maintenance determination device 12e includes a plurality of determination logics for determining different AE output M (t) obtained from different types of gear boxes, and the predictive maintenance determination device 12e receives the AE output M (t). ), The state of the gearbox may be determined by using the determination logic corresponding to the gearbox that has detected the AE output M (t).
  • the determination result may be returned to the gear box via the Internet 100. Then, the determination result may be notified by a notification device such as an alarm (not shown in FIG. 19) installed in the gear box.
  • the predictive maintenance determination device 12e of the fifth embodiment is connected to the AE sensors 21a and 21b installed on the surfaces of one or more gear boxes 31a and 31b (equipment) via the Internet 100.
  • the outputs of the AE sensors 21a and 21b are acquired. As a result, it is possible to determine the abnormality of the gear box (equipment) at a place away from the gear box (equipment).
  • Average value calculation unit 523 ... Second difference value calculation unit, 524 ... First ratio calculation unit, 525 ... Abnormal value removal unit, 526 ... Third difference value calculation unit, 527 ... Second ratio calculation unit, Save ... Average value, Smax1, Smax2, Smax3 ... maximum value, Smin1 ... minimum value, ⁇ 1 ... difference value (first difference value), ⁇ 2 ... difference value (second difference value), ⁇ 3 ... difference value (third difference value), M (t), M1 (t), M2 (t) ... AE output, R1 ... ratio (first ratio), R2 ... ratio (second ratio), R3 ... ratio (third ratio), U ... Predetermined ratio, Td1 ... difference value first threshold, Td2 ...
  • difference value second threshold Td3 ... difference value third threshold
  • Tr1 ... ratio first threshold
  • Tr2 ... ratio second threshold
  • Ts1 signal output threshold
  • ⁇ 1 ... th 1 predetermined value ⁇ 2 ... 2nd predetermined value

Landscapes

  • Business, Economics & Management (AREA)
  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Engineering & Computer Science (AREA)
  • Human Resources & Organizations (AREA)
  • Economics (AREA)
  • Strategic Management (AREA)
  • Tourism & Hospitality (AREA)
  • Marketing (AREA)
  • Theoretical Computer Science (AREA)
  • General Business, Economics & Management (AREA)
  • Entrepreneurship & Innovation (AREA)
  • Operations Research (AREA)
  • Quality & Reliability (AREA)
  • Acoustics & Sound (AREA)
  • Health & Medical Sciences (AREA)
  • General Health & Medical Sciences (AREA)
  • Primary Health Care (AREA)
  • Development Economics (AREA)
  • Game Theory and Decision Science (AREA)
  • Educational Administration (AREA)
  • Manufacturing & Machinery (AREA)
  • Investigating Or Analyzing Materials By The Use Of Ultrasonic Waves (AREA)
  • Testing Of Devices, Machine Parts, Or Other Structures Thereof (AREA)
  • Measurement Of Mechanical Vibrations Or Ultrasonic Waves (AREA)

Abstract

A first differential value calculation unit (521) of this predictive maintenance assessment device (12a) acquires AE outputs (M(t)) of an AE sensor (20) installed on the surface of a metal casing (casing) of a gear box (30), and calculates a differential value (δ1) (first differential value) between the maximum value (Smax1) and the minimum value (Smin1) of the AE output in a prescribed temporal duration. An average value calculation unit (522) calculates an average value (Save) of the AE outputs in the prescribed temporal duration. A second differential value calculation unit (523) calculates a second differential value (δ2) (second differential value) between the minimum value (Smin1) and a maximum value (Smax2) of AE outputs that are less than the average value (Save), from among AE outputs in the prescribed temporal duration. A first ratio calculation unit (524) calculates the ratio (R1) (first ratio) of the first differential value to the second differential value. When the ratio (R1) is equal to or greater than a first prescribed value (ε1), a notification unit (54) issues a notification that there is a risk of an abnormality occurring in the gear box (30).

Description

予知保全判定装置、予知保全判定方法及びプログラムPredictive maintenance judgment device, predictive maintenance judgment method and program
 本発明は、機器の異常の発生を予測する予知保全判定装置、予知保全判定方法及びプログラムに関する。 The present invention relates to a predictive maintenance determination device, a predictive maintenance determination method, and a program for predicting the occurrence of an abnormality in a device.
 固体材料が変形する際に、それまでに蓄積していたひずみエネルギーを音波(AE波)として放出する現象が知られている。そして、従来、AEセンサによってAE波を検出して、その波形を分析することにより、歯車の損傷を検出する損傷検出装置が知られている。 It is known that when a solid material is deformed, the strain energy accumulated up to that point is emitted as sound waves (AE waves). Conventionally, there is known a damage detection device that detects damage to a gear by detecting an AE wave with an AE sensor and analyzing the waveform.
 例えば、特許文献1に記載された歯車の損傷検出装置は、AEセンサの出力を分析して、特定の周波数領域の信号強度を検出することによって、歯車の損傷の発生を検出している。 For example, the gear damage detection device described in Patent Document 1 detects the occurrence of gear damage by analyzing the output of the AE sensor and detecting the signal strength in a specific frequency region.
特開2009-42151号公報Japanese Unexamined Patent Publication No. 2009-42151
 しかしながら、特許文献1の損傷検出装置にあっては、機器に実際に損傷等の異常が発生しないと、当該異常を検出することができないという問題があった。したがって、異常が検出された際には、機器を即座に停止して異常箇所の点検や整備、消耗部品(ベアリングやシール部品等)の交換、清掃等を行う必要があった。そのため、予期しないタイミングで機器を停止しなければならず、当該機器のみならず、生産ラインを停止する等の措置を行わなければならない可能性があった。これによって、生産工程に大きな影響を及ぼす可能性があった。 However, the damage detection device of Patent Document 1 has a problem that the abnormality cannot be detected unless an abnormality such as damage actually occurs in the device. Therefore, when an abnormality is detected, it is necessary to immediately stop the equipment to inspect and maintain the abnormal part, replace consumable parts (bearings, seal parts, etc.), and perform cleaning. Therefore, the equipment must be stopped at an unexpected timing, and there is a possibility that not only the equipment but also the production line must be stopped. This could have a significant impact on the production process.
 本発明は、上記に鑑みてなされたものであって、機器の動作に影響を与える異常の発生を、実際に異常が発生する前に報知することができる予知保全判定装置、予知保全判定方法及びプログラムを提供することを目的とする。 The present invention has been made in view of the above, and is a predictive maintenance determination device, a predictive maintenance determination method, and a predictive maintenance determination device capable of notifying the occurrence of an abnormality that affects the operation of an apparatus before an abnormality actually occurs. The purpose is to provide a program.
 上述した課題を解決し、目的を達成するために、本発明に係る予知保全判定装置は、機器の筐体の表面に設置したAEセンサと、前記AEセンサの出力を取得して、所定時間分の前記出力の最大値と最小値との第1の差分値を算出する第1の差分値算出部と、前記所定時間分の前記出力の平均値を算出する平均値算出部と、前記所定時間分の前記出力のうち、前記平均値未満の出力の最大値と最小値との第2の差分値を算出する第2の差分値算出部と、前記第2の差分値に対する、前記第1の差分値の比率を算出する第1の比率算出部と、前記第1の比率算出部が算出した比率が第1の所定値以上である場合に、前記機器の予知保全に係る報知を行う報知部と、を備えることを特徴とする。 In order to solve the above-mentioned problems and achieve the object, the predictive maintenance determination device according to the present invention acquires the AE sensor installed on the surface of the housing of the device and the output of the AE sensor for a predetermined time. The first difference value calculation unit that calculates the first difference value between the maximum value and the minimum value of the output, the average value calculation unit that calculates the average value of the output for the predetermined time, and the predetermined time. A second difference value calculation unit for calculating a second difference value between a maximum value and a minimum value of an output less than the average value among the outputs of the minute, and the first difference value with respect to the second difference value. The first ratio calculation unit that calculates the ratio of the difference value and the notification unit that notifies the predictive maintenance of the device when the ratio calculated by the first ratio calculation unit is equal to or greater than the first predetermined value. It is characterized by having.
 また、本発明に係る予知保全判定装置は、機器の筐体の表面に設置したAEセンサの出力を取得して、所定時間分の前記出力の最大値と最小値との第1の差分値を算出する第1の差分値算出部と、前記所定時間分の前記出力のうち、前記最大値に対して所定割合以上の出力を除去した後に残った出力の最大値と最小値との第3の差分値を算出する第3の差分値算出部と、前記第3の差分値に対する、前記第1の差分値の比率である第2の比率を算出する第2の比率算出部と、前記第2の比率が第2の所定値以上である場合に、前記機器に異常が発生するおそれがあることを報知する報知部と、を備えることを特徴とする。 Further, the predictive maintenance determination device according to the present invention acquires the output of the AE sensor installed on the surface of the housing of the device, and obtains the first difference value between the maximum value and the minimum value of the output for a predetermined time. A third of the first difference value calculation unit to be calculated and the maximum value and the minimum value of the output remaining after removing the output of a predetermined ratio or more with respect to the maximum value among the outputs for the predetermined time. A third difference value calculation unit that calculates the difference value, a second ratio calculation unit that calculates the second ratio that is the ratio of the first difference value to the third difference value, and the second ratio. It is characterized by including a notification unit for notifying that an abnormality may occur in the device when the ratio of
 また、本発明に係る予知保全判定装置は、機器の筐体の表面に設置したAEセンサの出力を取得して、所定時間分の前記出力の最大値と最小値との第1の差分値を算出する第1の差分値算出部と、前記所定時間分の前記出力の平均値を算出する平均値算出部と、前記平均値に対する前記第1の差分値の比率である第3の比率を算出する第3の比率算出部と、前記第1の差分値と前記第3の比率とを各軸にとった2次元マップに基づいて、前記機器に異常が発生するおそれがあることを報知する報知部と、を備えることを特徴とする。 Further, the predictive maintenance determination device according to the present invention acquires the output of the AE sensor installed on the surface of the housing of the device, and obtains the first difference value between the maximum value and the minimum value of the output for a predetermined time. The first difference value calculation unit to be calculated, the average value calculation unit to calculate the average value of the output for the predetermined time, and the third ratio which is the ratio of the first difference value to the average value are calculated. Notification that an abnormality may occur in the device based on the third ratio calculation unit and the two-dimensional map in which the first difference value and the third ratio are taken as each axis. It is characterized by having a part and.
 本発明に係る予知保全判定装置は、機器の動作に影響を与える異常の発生を、実際に異常が発生する前、すなわち異常の兆候が検出された時点で報知することができる。したがって、機器の点検や整備、消耗部品の交換、清掃等を行うタイミングを予め設定することができる。そのため、機器が停止している間は別の機器を稼働させる等によって、生産ラインの稼働状態を維持することができる。 The predictive maintenance determination device according to the present invention can notify the occurrence of an abnormality that affects the operation of the device before the abnormality actually occurs, that is, when a sign of the abnormality is detected. Therefore, it is possible to preset the timing for inspecting and maintaining the equipment, replacing consumable parts, cleaning, and the like. Therefore, the operating state of the production line can be maintained by operating another device while the device is stopped.
図1は、アコースティックエミッション及びAEセンサの説明図である。FIG. 1 is an explanatory diagram of an acoustic emission and an AE sensor. 図2は、第1の実施形態に係る予知保全判定装置を用いた予知保全判定システムの全体構成図である。FIG. 2 is an overall configuration diagram of a predictive maintenance determination system using the predictive maintenance determination device according to the first embodiment. 図3は、第1の実施形態に係る押出機の構造図である。FIG. 3 is a structural diagram of the extruder according to the first embodiment. 図4は、第1の実施形態に係る予知保全判定装置のハードウェア構成図である。FIG. 4 is a hardware configuration diagram of the predictive maintenance determination device according to the first embodiment. 図5は、第1の実施形態に係る予知保全判定装置の機能構成図である。FIG. 5 is a functional configuration diagram of the predictive maintenance determination device according to the first embodiment. 図6は、第1の実施形態における予知保全判定方法の説明図である。FIG. 6 is an explanatory diagram of the predictive maintenance determination method according to the first embodiment. 図7は、第1の実施形態に係る予知保全判定装置が行う処理の流れの一例を示すフローチャートである。FIG. 7 is a flowchart showing an example of the flow of processing performed by the predictive maintenance determination device according to the first embodiment. 図8は、第2の実施形態に係る予知保全判定装置の機能構成図である。FIG. 8 is a functional configuration diagram of the predictive maintenance determination device according to the second embodiment. 図9は、第2の実施形態における予知保全判定方法の説明図である。FIG. 9 is an explanatory diagram of the predictive maintenance determination method in the second embodiment. 図10は、第2の実施形態における処理の流れの一例を示すフローチャートである。FIG. 10 is a flowchart showing an example of the processing flow in the second embodiment. 図11は、第3の実施形態に係る予知保全判定装置を用いた予知保全判定システムの全体構成図である。FIG. 11 is an overall configuration diagram of a predictive maintenance determination system using the predictive maintenance determination device according to the third embodiment. 図12は、第3の実施形態に係る予知保全判定装置の機能構成図である。FIG. 12 is a functional configuration diagram of the predictive maintenance determination device according to the third embodiment. 図13は、第3の実施形態における判定基準の一例を示す図である。FIG. 13 is a diagram showing an example of a determination criterion in the third embodiment. 図14は、第3の実施形態において信号分析部と第3の判定部が行う処理の流れの一例を示すフローチャートである。FIG. 14 is a flowchart showing an example of the flow of processing performed by the signal analysis unit and the third determination unit in the third embodiment. 図15は、第4の実施形態に係る予知保全判定装置を用いた予知保全判定システムの全体構成図である。FIG. 15 is an overall configuration diagram of a predictive maintenance determination system using the predictive maintenance determination device according to the fourth embodiment. 図16は、第4の実施形態に係る予知保全判定装置の機能構成図である。FIG. 16 is a functional configuration diagram of the predictive maintenance determination device according to the fourth embodiment. 図17は、振動加速度が第3の所定値よりも大きい場合の判定基準の一例を示す図である。FIG. 17 is a diagram showing an example of a determination criterion when the vibration acceleration is larger than the third predetermined value. 図18は、第4の実施形態において信号分析部と第4の判定部が行う処理の流れの一例を示すフローチャートである。FIG. 18 is a flowchart showing an example of the flow of processing performed by the signal analysis unit and the fourth determination unit in the fourth embodiment. 図19は、第5の実施形態の予知保全判定システムのシステム構成の一例を示すシステムブロック図である。FIG. 19 is a system block diagram showing an example of the system configuration of the predictive maintenance determination system according to the fifth embodiment.
[アコースティックエミッション(AE:Acoustic Emission)の説明]
 実施形態の説明の前に、機器の予知保全の判定を行うために使用するアコースティックエミッション(以下、AEと呼ぶ)について説明する。AEとは、固体材料が変形する際に、それまでに蓄積していたひずみエネルギーを音波(弾性波、AE波)として放出する現象である。当該AE波を検出することによって、固体材料の異常を予測することができる。AE波の周波数帯域は、数10kHz~数MHz程度と言われており、一般的な振動センサや加速度センサでは検出できない周波数帯域を有する。したがって、AE波を検出するためには、専用のAEセンサを用いる。AEセンサについて、詳しくは後述する。
[Explanation of Acoustic Emission (AE)]
Prior to the description of the embodiment, the acoustic emission (hereinafter referred to as AE) used for determining the predictive maintenance of the device will be described. AE is a phenomenon in which when a solid material is deformed, the strain energy accumulated up to that point is emitted as sound waves (elastic waves, AE waves). By detecting the AE wave, an abnormality of the solid material can be predicted. The frequency band of the AE wave is said to be about several tens of kHz to several MHz, and has a frequency band that cannot be detected by a general vibration sensor or acceleration sensor. Therefore, in order to detect the AE wave, a dedicated AE sensor is used. The AE sensor will be described in detail later.
 図1は、アコースティックエミッション及びAEセンサの説明図である。図1(a)に示すように、固体材料Qの内部のAE発生源Pで変形や接触、摩擦等が発生すると、AE波Wが発生する。AE波Wは、AE発生源Pから放射状に広がって、固体材料Qの内部を、当該固体材料Qに応じた速度で伝搬する。 FIG. 1 is an explanatory diagram of an acoustic emission and an AE sensor. As shown in FIG. 1A, when deformation, contact, friction, or the like occurs at the AE source P inside the solid material Q, an AE wave W is generated. The AE wave W spreads radially from the AE source P and propagates inside the solid material Q at a speed corresponding to the solid material Q.
 固体材料Qの内部を伝搬したAE波Wは、固体材料Qの表面に設置したAEセンサ20によって検出される。そして、AEセンサ20は検出信号Dを出力する。検出信号Dは、振動を表す信号であるため、正負の値を有する交流信号である。しかし、このままでは検出信号D(AE波W)に対して各種演算を行う際に扱いにくいため、検出信号Dの負の部分を半波整流した整流波形として取り扱うのが一般的である。また、AE波Wを分析する際には、一般に、整流波形の二乗値を所定の時間で平均化して平方根をとった値、すなわち実効値(RMS(Root Mean Square)値)として取り扱う。 The AE wave W propagating inside the solid material Q is detected by the AE sensor 20 installed on the surface of the solid material Q. Then, the AE sensor 20 outputs the detection signal D. Since the detection signal D is a signal representing vibration, it is an AC signal having positive and negative values. However, since it is difficult to handle the detection signal D (AE wave W) as it is when performing various calculations, it is common to treat the negative portion of the detection signal D as a rectified waveform obtained by half-wave rectification. Further, when analyzing the AE wave W, it is generally treated as a value obtained by averaging the root mean square value of the rectified waveform over a predetermined time and taking a square root, that is, an effective value (RMS (Root Mean Square) value).
 AE波Wの伝搬速度は縦波と横波とで異なる(縦波は横波よりも速い)が、固体材料Qの大きさ(伝搬距離)を考慮すると、その差は無視できるため、本実施形態では、縦波と横波の区別は行わない。すなわち、縦波と横波の区別なく、所定の時間内に検出されたAE波Wを測定信号として分析の対象とする。 The propagation velocity of the AE wave W differs between the longitudinal wave and the transverse wave (the longitudinal wave is faster than the transverse wave), but the difference can be ignored in consideration of the size (propagation distance) of the solid material Q. , No distinction is made between longitudinal waves and transverse waves. That is, the AE wave W detected within a predetermined time is used as a measurement signal for analysis regardless of whether it is a longitudinal wave or a transverse wave.
 AEセンサ20は、図1(b)に示すように、シールドケース20aに内包されている。そして、AEセンサ20の底面には、AE波Wを受ける受波面20bが形成される。受波面20bは、絶縁物で形成されている。また、シールドケース20aの底面付近にはマグネット20cが設置されて、AEセンサ20は、マグネット20cによって、予知保全の対象となる機器30の金属筐体30aに固定される。その際、受波面20bは、機器30の金属筐体30aの表面に密着した状態で設置される。 As shown in FIG. 1B, the AE sensor 20 is included in the shield case 20a. Then, a receiving surface 20b that receives the AE wave W is formed on the bottom surface of the AE sensor 20. The wavefront surface 20b is made of an insulating material. Further, a magnet 20c is installed near the bottom surface of the shield case 20a, and the AE sensor 20 is fixed to the metal housing 30a of the device 30 subject to predictive maintenance by the magnet 20c. At that time, the wave receiving surface 20b is installed in close contact with the surface of the metal housing 30a of the device 30.
 受波面20bの上部には銅等の蒸着膜20dが形成される。そして、蒸着膜20dの上部には、ジルコン酸チタン酸鉛(PZT)等の圧電素子20eが設置される。圧電素子20eは、受波面20bを介してAE波Wを受けて、当該AE波Wに応じた電気信号を出力する。圧電素子20eが出力した電気信号は、蒸着膜20f及びコネクタ20gを介して、検出信号Dとして出力される。なお、検出信号Dは微弱であるため、ノイズの混入による影響を抑制するために、AEセンサ20の内部にプリアンプ(図1(b)には非図示)を設置して、検出信号Dを予め増幅した後で出力してもよい。 A vapor-deposited film 20d made of copper or the like is formed on the wave receiving surface 20b. Then, a piezoelectric element 20e such as lead zirconate titanate (PZT) is installed on the upper portion of the thin-film deposition film 20d. The piezoelectric element 20e receives the AE wave W via the wave receiving surface 20b and outputs an electric signal corresponding to the AE wave W. The electric signal output by the piezoelectric element 20e is output as a detection signal D via the vapor deposition film 20f and the connector 20g. Since the detection signal D is weak, a preamplifier (not shown in FIG. 1B) is installed inside the AE sensor 20 in order to suppress the influence of noise mixing, and the detection signal D is set in advance. It may be output after being amplified.
 AEは、微細な傷や摩擦によっても発生するため、機器の異常の兆候を早期に発見することができる。また、AE波WはAE発生源Pから放射状に広がるため、金属製の筐体であれば、AEセンサ20を設置することによって、筐体のどの位置でもAE波Wを観測して検出信号Dを取得することが可能である。なお、検出信号Dの具体的な分析方法は後述する。また、AEセンサ20は、種類によって検出可能な信号の周波数帯域が異なるため、使用するAEセンサ20を選定する際には、計測対象となる機器の材質等を考慮するのが望ましい。 AE is also generated by minute scratches and friction, so it is possible to detect signs of equipment abnormality at an early stage. Further, since the AE wave W spreads radially from the AE source P, if it is a metal housing, by installing the AE sensor 20, the AE wave W can be observed at any position of the housing and the detection signal D It is possible to obtain. The specific analysis method of the detection signal D will be described later. Further, since the frequency band of the signal that can be detected differs depending on the type of the AE sensor 20, it is desirable to consider the material of the device to be measured and the like when selecting the AE sensor 20 to be used.
 以下に、本開示に係る予知保全判定装置、予知保全判定方法及びプログラムの実施形態を図面に基づいて詳細に説明する。なお、これらの実施形態により本発明が限定されるものではない。また、下記実施形態における構成要素には、当業者が置換可能、且つ、容易に想到できるもの、或いは実質的に同一のものが含まれる。 Hereinafter, the predictive maintenance determination device, the predictive maintenance determination method, and the embodiment of the program according to the present disclosure will be described in detail based on the drawings. The present invention is not limited to these embodiments. In addition, the components in the following embodiments include those that can be easily conceived by those skilled in the art, or those that are substantially the same.
[第1の実施形態]
 本開示の第1の実施形態は、機器の異常が発生する兆候を検出して報知する予知保全判定装置12aの例である。
[First Embodiment]
The first embodiment of the present disclosure is an example of the predictive maintenance determination device 12a that detects and notifies a sign that an abnormality occurs in the device.
[予知保全判定装置の概略構成の説明]
 まず、図2を用いて、本実施形態における予知保全判定装置12aを用いた予知保全判定システム10aの全体構成について説明する。図2は、第1の実施形態に係る予知保全判定装置を用いた予知保全判定システムの全体構成図である。なお、予知保全判定システム10aは、本開示の予知保全判定装置12aを、モータ22の回転駆動力を減速して押出機40を駆動する歯車箱30の予知保全の判定に適用したものである。なお、歯車箱30は、機器30の一例である。歯車箱30は、複数の歯車が噛み合って構成されて、入力側に接続されたモータ22の回転駆動力を減速して、出力側に伝達する。予知保全判定システム10aは、歯車に発生する亀裂や摩耗、及び歯車を支える軸の摩耗等の異常の兆候を検出して報知する。なお、以下に説明する装置構成は一例であって、予知保全の対象となる機器は、歯車箱30に限定されるものではない。また、歯車箱30の駆動対象は、押出機40に限定されるものではない。なお、押出機40の概要は後述する(図3参照)。
[Explanation of the outline configuration of the predictive maintenance judgment device]
First, with reference to FIG. 2, the overall configuration of the predictive maintenance determination system 10a using the predictive maintenance determination device 12a in the present embodiment will be described. FIG. 2 is an overall configuration diagram of a predictive maintenance determination system using the predictive maintenance determination device according to the first embodiment. The predictive maintenance determination system 10a applies the predictive maintenance determination device 12a of the present disclosure to the predictive maintenance determination of the gear box 30 that reduces the rotational driving force of the motor 22 to drive the extruder 40. The gear box 30 is an example of the device 30. The gear box 30 is configured by meshing a plurality of gears to reduce the rotational driving force of the motor 22 connected to the input side and transmit it to the output side. The predictive maintenance determination system 10a detects and notifies signs of abnormality such as cracks and wear generated in the gear and wear of the shaft supporting the gear. The device configuration described below is an example, and the device subject to predictive maintenance is not limited to the gear box 30. Further, the drive target of the gear box 30 is not limited to the extruder 40. The outline of the extruder 40 will be described later (see FIG. 3).
 予知保全判定装置12aは、押出機40に接続された歯車箱30の金属筐体30aの表面に設置されたAEセンサ20の出力を取得する。そして、予知保全判定装置12aは、AEセンサ20の出力を分析することによって、歯車箱30の予知保全を行う。 The predictive maintenance determination device 12a acquires the output of the AE sensor 20 installed on the surface of the metal housing 30a of the gear box 30 connected to the extruder 40. Then, the predictive maintenance determination device 12a performs predictive maintenance of the gear box 30 by analyzing the output of the AE sensor 20.
 なお、AEセンサ20としては、金属筐体30aの内部を伝搬するAE波Wを検出可能な周波数帯域を有するセンサを用いる。特に、検出するAE波Wの周波数帯域がわかっている場合は、当該周波数帯域に高い感度を有するAEセンサ20を用いるのが望ましい。例えば、本実施の形態では、150kHzを含む周波数帯域に高い感度を有するAEセンサ20を使用する。 As the AE sensor 20, a sensor having a frequency band capable of detecting the AE wave W propagating inside the metal housing 30a is used. In particular, when the frequency band of the AE wave W to be detected is known, it is desirable to use the AE sensor 20 having high sensitivity in the frequency band. For example, in the present embodiment, the AE sensor 20 having high sensitivity in the frequency band including 150 kHz is used.
 また、歯車箱30の金属筐体30aに対するAEセンサ20の取付位置は問わないが、歯車箱30の異常が発生しやすい場所の近傍に取り付けるのが望ましい。例えば、AEセンサ20は、歯車箱30の出力軸の近傍に取り付けるのが望ましい。 Further, the mounting position of the AE sensor 20 with respect to the metal housing 30a of the gear box 30 does not matter, but it is desirable to mount the AE sensor 20 in the vicinity of a place where an abnormality is likely to occur. For example, it is desirable to mount the AE sensor 20 in the vicinity of the output shaft of the gearbox 30.
 予知保全に係る判定を行った結果、歯車箱30に異常が発生する兆候があると判定されると、予知保全判定装置12aは、図2の非図示のモニタやスピーカ等によって、異常が発生する兆候があることを報知する。 As a result of making a determination related to predictive maintenance, when it is determined that there is a sign that an abnormality occurs in the gear box 30, the predictive maintenance determination device 12a causes an abnormality by a monitor, a speaker or the like (not shown) shown in FIG. Notify that there are signs.
[押出機の構造の説明]
 図3は、第1の実施形態に係る押出機の構造図である。押出機40は、歯車箱30の出力に応じて回転駆動される出力軸32の回転に伴って、当該出力軸32を延長した位置に設置されたスクリュ42を回転させることにより、例えば、樹脂原料と粉体状の充填剤とを混練する。特に、図3に示す押出機40は、軸間距離Cで設置された2本の出力軸32を備える二軸押出機である。
[Explanation of extruder structure]
FIG. 3 is a structural diagram of the extruder according to the first embodiment. The extruder 40 rotates, for example, a resin raw material by rotating a screw 42 installed at a position where the output shaft 32 is extended as the output shaft 32 is rotationally driven in response to the output of the gear box 30. And the powdery filler are kneaded. In particular, the extruder 40 shown in FIG. 3 is a twin-screw extruder having two output shafts 32 installed at an inter-shaft distance C.
 2本の出力軸32は、バレル部44の内部に、一定の軸間距離Cを保って平行に配置される。そして、各出力軸32には、互いに噛み合いながら同方向に回転する2本のスクリュ42の基部が接続されている。出力軸32は、歯車箱30によって減速されたモータ22の回転を、スクリュ42に伝達する。スクリュ42は、例えば、毎分300回転等の速度で回転する。 The two output shafts 32 are arranged in parallel inside the barrel portion 44 while maintaining a constant inter-axis distance C. The bases of two screws 42 that rotate in the same direction while meshing with each other are connected to each output shaft 32. The output shaft 32 transmits the rotation of the motor 22 decelerated by the gear box 30 to the screw 42. The screw 42 rotates at a speed of, for example, 300 revolutions per minute.
 バレル部44の内部には、各スクリュ42が挿入される、円筒状の2つの挿通孔46が設けられている。挿通孔46は、バレル部44の長手方向に沿って設けられた孔であり、互いに噛み合う2本のスクリュ42が挿入可能なように、円筒の一部が重なり合っている。バレル部44の長手方向の一端側には、混練されるペレット状の樹脂原料と粉体状の充填剤の材料とを挿通孔46に供給するための材料供給口47が設けられている。バレル部44の長手方向の他端側には、挿通孔46を通過する間に混練された材料を吐出する吐出口48が設けられている。バレル部44の外周には、バレル部44を加熱することにより挿通孔46に供給された材料を加熱するヒータ49が設けられている。 Inside the barrel portion 44, two cylindrical insertion holes 46 into which each screw 42 is inserted are provided. The insertion hole 46 is a hole provided along the longitudinal direction of the barrel portion 44, and a part of the cylinder overlaps so that two screws 42 that mesh with each other can be inserted. A material supply port 47 for supplying the pellet-shaped resin raw material to be kneaded and the powder-like filler material to the insertion hole 46 is provided on one end side of the barrel portion 44 in the longitudinal direction. On the other end side of the barrel portion 44 in the longitudinal direction, a discharge port 48 for discharging the kneaded material while passing through the insertion hole 46 is provided. A heater 49 is provided on the outer periphery of the barrel portion 44 to heat the material supplied to the insertion hole 46 by heating the barrel portion 44.
 スクリュ42は、材料供給口47が設けられたバレル部44の一端側から、吐出口48が設けられたバレル部44の他端側に向けて、第1スクリュ部42a、第2スクリュ部42b、第3スクリュ部42cを有する。詳細な説明は省略するが、材料を均一に混練するために、第1スクリュ部42a、第2スクリュ部42b、第3スクリュ部42cは、それぞれ異なる形状を有する。 The screw 42 has the first screw portion 42a, the second screw portion 42b, and the like from one end side of the barrel portion 44 provided with the material supply port 47 toward the other end side of the barrel portion 44 provided with the discharge port 48. It has a third screw portion 42c. Although detailed description will be omitted, the first screw portion 42a, the second screw portion 42b, and the third screw portion 42c have different shapes in order to knead the materials uniformly.
 バレル部44も同様に、材料供給口47が設けられた一端側から、吐出口48が設けられた他端側に向けて、スクリュ42の第1スクリュ部42a、第2スクリュ部42b、第3スクリュ部42cに対応して、第1バレル部44a、第2バレル部44b、第3バレル部44cを有する。スクリュ42とバレル部44との隙間は、歯車箱30側から吐出口48側に向かって漸減するように形成されている。これによって、材料供給口47から供給された材料は、より一層均一に混練される。 Similarly, in the barrel portion 44, the first screw portion 42a, the second screw portion 42b, and the third screw portion 42 of the screw 42 are directed from one end side where the material supply port 47 is provided to the other end side where the discharge port 48 is provided. It has a first barrel portion 44a, a second barrel portion 44b, and a third barrel portion 44c corresponding to the screw portion 42c. The gap between the screw 42 and the barrel portion 44 is formed so as to gradually decrease from the gear box 30 side toward the discharge port 48 side. As a result, the material supplied from the material supply port 47 is kneaded even more uniformly.
 バレル部44の長手方向の全長L、第1バレル部44aと第1スクリュ部42aの長さL1、第2バレル部44bと第2スクリュ部42bの長さL2、第3バレル部44cと第3スクリュ部42cの長さL3は、混練する材料に応じて適宜決定される。 The total length L of the barrel portion 44 in the longitudinal direction, the length L1 of the first barrel portion 44a and the first screw portion 42a, the length L2 of the second barrel portion 44b and the second screw portion 42b, the third barrel portion 44c and the third The length L3 of the screw portion 42c is appropriately determined according to the material to be kneaded.
 スクリュ42の先端付近では、溶融した樹脂が均一になるように混練される。そして、スクリュ42を通過した溶融樹脂は、均一に混練された状態で吐出口48から吐出される。 Near the tip of the screw 42, the molten resin is kneaded so as to be uniform. Then, the molten resin that has passed through the screw 42 is discharged from the discharge port 48 in a uniformly kneaded state.
[予知保全判定装置のハードウェア構成の説明]
 次に、図4を用いて、予知保全判定装置12aのハードウェア構成について説明する。図4は、第1の実施形態に係る予知保全判定装置のハードウェア構成図である。
[Explanation of hardware configuration of predictive maintenance judgment device]
Next, the hardware configuration of the predictive maintenance determination device 12a will be described with reference to FIG. FIG. 4 is a hardware configuration diagram of the predictive maintenance determination device according to the first embodiment.
 予知保全判定装置12aは、制御部13と、記憶部14と、周辺機器コントローラ16と、を備える。 The predictive maintenance determination device 12a includes a control unit 13, a storage unit 14, and a peripheral device controller 16.
 制御部13は、CPU(Central Processing Unit)13aと、ROM(Read Only Memory)13bと、RAM(Random Access Memory)13cと、を備える。CPU13aは、バスライン15を介して、ROM13bと、RAM13cと接続する。CPU13aは、記憶部14に記憶された制御プログラムP1を読み出して、RAM13cに展開する。CPU13aは、RAM13cに展開された制御プログラムP1に従って動作することで、制御部13の動作を制御する。すなわち、制御部13は、制御プログラムP1に基づいて動作する、一般的なコンピュータの構成を有する。 The control unit 13 includes a CPU (Central Processing Unit) 13a, a ROM (Read Only Memory) 13b, and a RAM (Random Access Memory) 13c. The CPU 13a connects the ROM 13b and the RAM 13c via the bus line 15. The CPU 13a reads the control program P1 stored in the storage unit 14 and expands it in the RAM 13c. The CPU 13a controls the operation of the control unit 13 by operating according to the control program P1 expanded in the RAM 13c. That is, the control unit 13 has a general computer configuration that operates based on the control program P1.
 制御部13は、更に、バスライン15を介して、記憶部14と、周辺機器コントローラ16と接続する。 The control unit 13 further connects the storage unit 14 and the peripheral device controller 16 via the bus line 15.
 記憶部14は、電源を切っても記憶情報が保持される、フラッシュメモリ等の不揮発性メモリ、又はHDD(Hard Disk Drive)等である。記憶部14は、制御プログラムP1を含むプログラムと、AE出力M(t)と、を記憶する。制御プログラムP1は、制御部13が備える機能を発揮させるためのプログラムである。AE出力M(t)は、AEセンサ20が出力した検出信号Dの実効値を、A/D変換器17でデジタル信号に変換した信号である。 The storage unit 14 is a non-volatile memory such as a flash memory or an HDD (Hard Disk Drive) or the like in which the stored information is retained even when the power is turned off. The storage unit 14 stores the program including the control program P1 and the AE output M (t). The control program P1 is a program for exerting the functions provided by the control unit 13. The AE output M (t) is a signal obtained by converting the effective value of the detection signal D output by the AE sensor 20 into a digital signal by the A / D converter 17.
 なお、制御プログラムP1は、ROM13bに予め組み込まれて提供されてもよい。また、制御プログラムP1は、制御部13にインストール可能な形式又は実行可能な形式のファイルで、CD-ROM、フレキシブルディスク(FD)、CD-R、DVD(Digital Versatile Disc)等のコンピュータで読み取り可能な記録媒体に記録して提供するように構成してもよい。さらに、制御プログラムP1を、インターネット等のネットワークに接続されたコンピュータ上に格納し、ネットワーク経由でダウンロードさせることにより提供するように構成してもよい。また、制御プログラムP1を、インターネット等のネットワーク経由で提供または配布するように構成してもよい。 The control program P1 may be provided by being incorporated in the ROM 13b in advance. The control program P1 is a file in a format that can be installed or executed in the control unit 13 and can be read by a computer such as a CD-ROM, a flexible disk (FD), a CD-R, or a DVD (Digital Versatile Disc). It may be configured to be recorded and provided on various recording media. Further, the control program P1 may be stored on a computer connected to a network such as the Internet and provided by downloading via the network. Further, the control program P1 may be configured to be provided or distributed via a network such as the Internet.
 周辺機器コントローラ16は、A/D変換器17と、表示デバイス18と、操作デバイス19と接続する。周辺機器コントローラ16は、制御部13からの指令に基づいて、接続された各種ハードウェアの動作を制御する。 The peripheral device controller 16 connects to the A / D converter 17, the display device 18, and the operation device 19. The peripheral device controller 16 controls the operation of various connected hardware based on a command from the control unit 13.
 A/D変換器17は、AEセンサ20が出力した検出信号Dをデジタル信号に変換して、AE出力M(t)を出力する。 The A / D converter 17 converts the detection signal D output by the AE sensor 20 into a digital signal and outputs the AE output M (t).
 表示デバイス18は、例えば液晶ディスプレイである。表示デバイス18は、予知保全判定装置12aの動作状態に係る情報を表示する。また、表示デバイス18は、予知保全判定装置12aが、歯車箱30(機器)の異常の兆候を検出した際に報知を行う。 The display device 18 is, for example, a liquid crystal display. The display device 18 displays information related to the operating state of the predictive maintenance determination device 12a. Further, the display device 18 notifies when the predictive maintenance determination device 12a detects a sign of abnormality in the gear box 30 (equipment).
 操作デバイス19は、例えば表示デバイス18に重畳されたタッチパネルである。操作デバイス19は、予知保全判定装置12aの設定や操作に係る操作情報を取得する。 The operation device 19 is, for example, a touch panel superimposed on the display device 18. The operation device 19 acquires operation information related to the setting and operation of the predictive maintenance determination device 12a.
[予知保全判定装置の機能構成の説明]
 次に、図5を用いて、予知保全判定装置12aの機能構成について説明する。図5は、第1の実施形態に係る予知保全判定装置の機能構成図である。予知保全判定装置12aの制御部13は、制御プログラムP1をRAM13cに展開して動作させることによって、図5に示す信号取得部51と、信号分析部52aと、第1の判定部53aと、報知部54とを機能部として実現する。
[Explanation of the functional configuration of the predictive maintenance judgment device]
Next, the functional configuration of the predictive maintenance determination device 12a will be described with reference to FIG. FIG. 5 is a functional configuration diagram of the predictive maintenance determination device according to the first embodiment. The control unit 13 of the predictive maintenance determination device 12a expands the control program P1 into the RAM 13c and operates it to notify the signal acquisition unit 51, the signal analysis unit 52a, the first determination unit 53a, and the notification unit 51 shown in FIG. The unit 54 is realized as a functional unit.
 信号取得部51は、AEセンサ20が出力した検出信号Dを取得する。信号取得部51は、増幅器を備えて、検出信号Dを増幅するとともに、A/D変換器を備えて、アナログ信号である検出信号Dの実効値をデジタル信号であるAE出力M(t)に変換する。 The signal acquisition unit 51 acquires the detection signal D output by the AE sensor 20. The signal acquisition unit 51 includes an amplifier to amplify the detection signal D, and also includes an A / D converter to convert the effective value of the detection signal D, which is an analog signal, into the AE output M (t), which is a digital signal. Convert.
 信号分析部52aは、AE出力M(t)を分析して、歯車箱30に異常の兆候が見られるかを判定するための評価値を算出する。 The signal analysis unit 52a analyzes the AE output M (t) and calculates an evaluation value for determining whether or not a sign of abnormality is observed in the gear box 30.
 信号分析部52aは、さらに、第1の差分値算出部521と、平均値算出部522と、第2の差分値算出部523と、第1の比率算出部524と、を備える。 The signal analysis unit 52a further includes a first difference value calculation unit 521, an average value calculation unit 522, a second difference value calculation unit 523, and a first ratio calculation unit 524.
 第1の差分値算出部521は、所定時間分(例えば10秒間)のAE出力M(t)の最大値Smax1と最小値Smin1との差分値δ1=Smax1-Smin1(第1の差分値)を算出する。なお、所定時間は、予知保全判定装置12aの計算能力等に基づいて適切な値に決定すればよい。 The first difference value calculation unit 521 sets the difference value δ1 = Smax1-Smin1 (first difference value) between the maximum value Smax1 and the minimum value Smin1 of the AE output M (t) for a predetermined time (for example, 10 seconds). calculate. The predetermined time may be determined to an appropriate value based on the calculation ability of the predictive maintenance determination device 12a and the like.
 平均値算出部522は、所定時間分のAE出力M(t)の平均値Saveを算出する。 The average value calculation unit 522 calculates the average value Save of the AE output M (t) for a predetermined time.
 第2の差分値算出部523は、所定時間分のAE出力M(t)の中から、平均値Save未満のAE出力M(t)の最大値Smax2と最小値Smin1との差分値δ2=Smax2-Smin1(第2の差分値)を算出する。 The second difference value calculation unit 523 has a difference value δ2 = Smax2 between the maximum value Smax2 and the minimum value Smin1 of the AE output M (t) less than the average value Save from the AE output M (t) for a predetermined time. -Smin1 (second difference value) is calculated.
 第1の比率算出部524は、第2の差分値δ2に対する、第1の差分値の比率R1=δ1/δ2を算出する。比率R1(第1の比率)は、信号分析部52aが算出する。比率R1は、前記した評価値である。 The first ratio calculation unit 524 calculates the ratio R1 = δ1 / δ2 of the first difference value to the second difference value δ2. The ratio R1 (first ratio) is calculated by the signal analysis unit 52a. The ratio R1 is the above-mentioned evaluation value.
 第1の判定部53aは、第1の比率算出部524が算出した比率R1が第1の所定値ε1以上であるか否かを判定する。 The first determination unit 53a determines whether or not the ratio R1 calculated by the first ratio calculation unit 524 is equal to or greater than the first predetermined value ε1.
 報知部54は、第1の判定部53aが、比率R1が第1の所定値ε1以上であると判定した場合に、歯車箱30(機器)の予知保全に係る報知を行う。具体的には、報知部54は、表示デバイス18に、歯車箱30に異常の兆候が見られることを表示することによって報知する。なお、報知部54の報知方法は、これに限定されるものではなく、図4に非図示のインジケータを点灯又は点滅させることによって報知してもよいし、図4に非図示のスピーカやブザーから、音又は音声を出力することによって報知してもよい。 When the first determination unit 53a determines that the ratio R1 is equal to or greater than the first predetermined value ε1, the notification unit 54 notifies the gear box 30 (equipment) regarding predictive maintenance. Specifically, the notification unit 54 notifies the display device 18 by displaying that the gear box 30 shows signs of abnormality. The notification method of the notification unit 54 is not limited to this, and notification may be performed by lighting or blinking an indicator (not shown in FIG. 4), or from a speaker or buzzer (not shown) in FIG. , Sound or voice may be output for notification.
[予知保全判定方法の説明]
 発明者らの評価実験によると、評価対象である歯車箱30に明らかな異常(例えば、歯車箱30に内蔵された歯車に傷がつく等)が発生している場合のAE出力M1(t)と、当該歯車箱30が正常である場合のAE出力M2(t)と、を比較すると、AE出力M2(t)の最大値と最小値との差分値に対する、AE出力M1(t)の最大値と最小値との差分値の比率が約5であることがわかった。さらに、この比率は、歯車箱30の異常が進展するほど大きな値になることがわかったため、当該比率が5に達する前、例えば3程度になった場合に、歯車箱30に異常の兆候があると判定するのが望ましいことがわかった。
[Explanation of predictive maintenance judgment method]
According to the evaluation experiments of the inventors, the AE output M1 (t) when the gear box 30 to be evaluated has a clear abnormality (for example, the gear built in the gear box 30 is scratched). Comparing with the AE output M2 (t) when the gear box 30 is normal, the maximum value of the AE output M1 (t) with respect to the difference value between the maximum value and the minimum value of the AE output M2 (t). It was found that the ratio of the difference value between the value and the minimum value was about 5. Further, since it was found that this ratio becomes larger as the abnormality of the gear box 30 progresses, there is a sign of abnormality in the gear box 30 before the ratio reaches 5, for example, about 3. It turned out that it is desirable to judge.
 さらに、発明者らの評価によって、歯車箱30に異常が発生している場合のAE出力M1(t)の平均値Save未満の出力の最大値と最小値との差分値に対する、当該歯車箱30が正常である場合のAE出力M2(t)の最大値と最小値との差分値の比率が、歯車箱30の異常の進行に伴って増大することがわかった。 Further, according to the evaluation by the inventors, the gear box 30 has a difference value between the maximum value and the minimum value of the output less than the average value Save of the AE output M1 (t) when an abnormality has occurred in the gear box 30. It was found that the ratio of the difference value between the maximum value and the minimum value of the AE output M2 (t) when is normal increases with the progress of the abnormality of the gear box 30.
 そのため、発明者らは、異常の兆候を捉えて報知を行うためには、AE出力M(t)の平均値Save未満の出力の最大値と最小値との差分値に対する、AE出力M(t)の最大値と最小値との差分値と、の比率が、前記した第1の所定値ε1に達した場合に、異常の兆候があると判定するのが適切であると判断した。なお、第1の所定値ε1の値は、事前に評価実験等を行って、評価対象となる歯車箱30に応じた値に設定すればよい。 Therefore, in order to catch and notify the sign of abnormality, the inventors have an AE output M (t) with respect to the difference value between the maximum value and the minimum value of the output less than the average value Save of the AE output M (t). ) When the ratio of the difference value between the maximum value and the minimum value reaches the first predetermined value ε1 described above, it is determined that it is appropriate to determine that there is a sign of abnormality. The value of the first predetermined value ε1 may be set to a value corresponding to the gear box 30 to be evaluated by conducting an evaluation experiment or the like in advance.
 次に、図6を用いて、予知保全判定装置12aが予知保全のための判定、すなわち歯車箱30に異常の兆候が見られるかの判定を行う方法を説明する。図6は、第1の実施形態における予知保全判定方法の説明図である。 Next, with reference to FIG. 6, a method in which the predictive maintenance determination device 12a determines for predictive maintenance, that is, whether or not a sign of abnormality is observed in the gear box 30 will be described. FIG. 6 is an explanatory diagram of the predictive maintenance determination method according to the first embodiment.
 図6に示すグラフ60aは、予知保全判定装置12aの信号取得部51が取得したAEセンサ20からのAE出力M(t)の一例である。図6の横軸は時刻tを表し、縦軸はAEセンサ20のAE出力M(t)の実効値(RMS値)を表す。なお、AEセンサ20からのAE出力は連続波形で出力されるが、グラフ60aは、当該連続波形を所定の時間間隔でサンプリングした散布図としたものである。なお、信号取得部51は、モータ22と歯車箱30と押出機40とが、ともに稼働している状態で、AEセンサ20からのAE出力M(t)を取得する。 The graph 60a shown in FIG. 6 is an example of the AE output M (t) from the AE sensor 20 acquired by the signal acquisition unit 51 of the predictive maintenance determination device 12a. The horizontal axis of FIG. 6 represents the time t, and the vertical axis represents the effective value (RMS value) of the AE output M (t) of the AE sensor 20. The AE output from the AE sensor 20 is output as a continuous waveform, and the graph 60a is a scatter diagram obtained by sampling the continuous waveform at predetermined time intervals. The signal acquisition unit 51 acquires the AE output M (t) from the AE sensor 20 while the motor 22, the gear box 30, and the extruder 40 are operating together.
 信号分析部52aは、AE出力M(t)に対して、以下の信号処理を行う。まず、第1の差分値算出部521は、AE出力M(t)の所定時間分、例えば図6に示す10秒間における最大値Smax1と最小値Smin1との差分値δ1=Smax1-Smin1(第1の差分値)を算出する。 The signal analysis unit 52a performs the following signal processing on the AE output M (t). First, the first difference value calculation unit 521 has a difference value δ1 = Smax1-Smin1 (first) between the maximum value Smax1 and the minimum value Smin1 in a predetermined time of the AE output M (t), for example, 10 seconds shown in FIG. Difference value) is calculated.
 次に、平均値算出部522は、所定時間分(例えば10秒分)のAE出力M(t)の平均値Saveを算出する。 Next, the average value calculation unit 522 calculates the average value Save of the AE output M (t) for a predetermined time (for example, 10 seconds).
 さらに、第2の差分値算出部523は、所定時間分の出力AE(t)の中から、平均値Saveを超えるAE出力M(t)を除去した後に残ったAE出力M(t)の最大値Smax2と最小値Smin1との差分値δ2=Smax2-Smin1(第2の差分値)を算出する。 Further, the second difference value calculation unit 523 removes the AE output M (t) exceeding the average value Save from the output AE (t) for a predetermined time, and then the maximum of the AE output M (t) remaining after removing the AE output M (t). The difference value δ2 = Smax2-Smin1 (second difference value) between the value Smax2 and the minimum value Smin1 is calculated.
 そして、第1の比率算出部524は、第2の差分値δ2に対する、第1の差分値δ1の比率R1(第1の比率)を算出する。すなわち、第1の比率算出部524は、比率R1を、R1=δ1/δ2によって算出する。 Then, the first ratio calculation unit 524 calculates the ratio R1 (first ratio) of the first difference value δ1 to the second difference value δ2. That is, the first ratio calculation unit 524 calculates the ratio R1 by R1 = δ1 / δ2.
 第1の判定部53aは、第1の比率算出部524が算出した比率R1が第1の所定値ε1以上であるか否かを判定する。そして、比率R1が第1の所定値ε1以上であると判定された場合に、報知部54は、表示デバイス18(図4参照)に対して、歯車箱30の異常の兆候が検出されたことを示す報知を行わせる。 The first determination unit 53a determines whether or not the ratio R1 calculated by the first ratio calculation unit 524 is equal to or greater than the first predetermined value ε1. Then, when it is determined that the ratio R1 is equal to or greater than the first predetermined value ε1, the notification unit 54 has detected a sign of abnormality in the gear box 30 with respect to the display device 18 (see FIG. 4). Is made to perform the notification indicating.
 予知保全判定装置12aは、歯車箱30及び押出機40が動作している間は、常に上記した処理を行う。そして、所定時間、例えば10秒毎に、第1の判定部53aによる判定と報知部54における報知とを行う。 The predictive maintenance determination device 12a always performs the above processing while the gearbox 30 and the extruder 40 are operating. Then, at a predetermined time, for example, every 10 seconds, the determination by the first determination unit 53a and the notification by the notification unit 54 are performed.
 なお、判定及び報知のタイミングは、これに限定されない。すなわち、過去の所定時間に亘るAE出力M(t)の判定結果に基づいて報知を、所定の時間間隔で行ってもよい。例えば、1秒に1回等のタイミングで、過去の所定時間(例えば10秒)に亘るAE出力M(t)の判定結果に基づく報知を行ってもよい。 The timing of judgment and notification is not limited to this. That is, the notification may be performed at predetermined time intervals based on the determination result of the AE output M (t) over the past predetermined time. For example, notification may be performed based on the determination result of the AE output M (t) over a predetermined time (for example, 10 seconds) in the past at a timing such as once per second.
[予知保全判定装置が行う処理の流れの説明]
 次に、図7を用いて、第1の実施形態に係る予知保全判定装置12aが行う処理の流れを説明する。図7は、第1の実施形態に係る予知保全判定装置が行う処理の流れの一例を示すフローチャートである。
[Explanation of the processing flow performed by the predictive maintenance judgment device]
Next, the flow of processing performed by the predictive maintenance determination device 12a according to the first embodiment will be described with reference to FIG. 7. FIG. 7 is a flowchart showing an example of the flow of processing performed by the predictive maintenance determination device according to the first embodiment.
 信号取得部51は、記憶部14から、所定時間分のAE出力M(t)を取得する(ステップS11)。 The signal acquisition unit 51 acquires the AE output M (t) for a predetermined time from the storage unit 14 (step S11).
 第1の差分値算出部521は、所定時間分のAE出力M(t)の最大値Smax1と、最小値Smin1との第1の差分値δ1を算出する(ステップS12)。 The first difference value calculation unit 521 calculates the first difference value δ1 between the maximum value Smax1 of the AE output M (t) for a predetermined time and the minimum value Smin1 (step S12).
 平均値算出部522は、所定時間分のAE出力M(t)の平均値Saveを算出する(ステップS13)。 The average value calculation unit 522 calculates the average value Save of the AE output M (t) for a predetermined time (step S13).
 第2の差分値算出部523は、所定時間分のAE出力M(t)の中から、平均値Save未満のAE出力M(t)の最大値Smax2と最小値Smin1との第2の差分値δ2を算出する(ステップS14)。 The second difference value calculation unit 523 has a second difference value between the maximum value Smax2 and the minimum value Smin1 of the AE output M (t) less than the average value Save from the AE output M (t) for a predetermined time. Calculate δ2 (step S14).
 第1の比率算出部524は、第2の差分値δ2に対する、第1の差分値δ1の比率R1(第1の比率)を算出する(ステップS15)。 The first ratio calculation unit 524 calculates the ratio R1 (first ratio) of the first difference value δ1 to the second difference value δ2 (step S15).
 第1の判定部53aは、第1の比率R1が第1の所定値ε1以上であるかを判定する(ステップS16)。第1の比率R1が第1の所定値ε1以上であると判定される(ステップS16:Yes)と、ステップS17に進む。一方、第1の比率R1が第1の所定値ε1以上であると判定されない(ステップS16:No)と、ステップS11に戻る。 The first determination unit 53a determines whether the first ratio R1 is equal to or greater than the first predetermined value ε1 (step S16). When it is determined that the first ratio R1 is equal to or greater than the first predetermined value ε1 (step S16: Yes), the process proceeds to step S17. On the other hand, if it is not determined that the first ratio R1 is equal to or greater than the first predetermined value ε1 (step S16: No), the process returns to step S11.
 ステップS16でYesと判定されると、報知部54は、歯車箱30の予知保全に係る報知、すなわち、異常の兆候が見られることを示す報知を行う。その後、予知保全判定装置12aは、図7の処理を終了する。 If it is determined to be Yes in step S16, the notification unit 54 performs notification related to predictive maintenance of the gear box 30, that is, notification indicating that a sign of abnormality is observed. After that, the predictive maintenance determination device 12a ends the process of FIG. 7.
 以上説明したように、第1の実施形態の予知保全判定装置12aにおいて、第1の差分値算出部521は、歯車箱30(機器)の金属筐体30a(筐体)の表面に設置したAEセンサ20のAE出力M(t)を取得して、所定時間分のAE出力M(t)の最大値Smax1と最小値Smin1との差分値δ1(第1の差分値)を算出する。平均値算出部522は、所定時間分のAE出力M(t)の平均値Saveを算出する。そして、第2の差分値算出部523は、所定時間分のAE出力M(t)の中から、平均値Save未満のAE出力M(t)の最大値Smax2と最小値Smin1との差分値δ2(第2の差分値)を算出する。第1の比率算出部524は、差分値δ2に対する、差分値δ1の比率R1(第1の比率)を算出する。そして、比率R1が第1の所定値ε1以上である場合に、報知部54は、歯車箱30に異常が発生するおそれがあることを報知する。これにより、予知保全判定装置12aは、歯車箱30に明らかな異常が起こった際に発生するAE出力M(t)よりも小さいAE出力M(t)を検出した時点で報知するため、歯車箱30の動作に影響を与える異常が起こる前に報知することができる。 As described above, in the predictive maintenance determination device 12a of the first embodiment, the first difference value calculation unit 521 is an AE installed on the surface of the metal housing 30a (housing) of the gear box 30 (equipment). The AE output M (t) of the sensor 20 is acquired, and the difference value δ1 (first difference value) between the maximum value Smax1 and the minimum value Smin1 of the AE output M (t) for a predetermined time is calculated. The average value calculation unit 522 calculates the average value Save of the AE output M (t) for a predetermined time. Then, the second difference value calculation unit 523 has a difference value δ2 between the maximum value Smax2 and the minimum value Smin1 of the AE output M (t) less than the average value Save from the AE output M (t) for a predetermined time. (Second difference value) is calculated. The first ratio calculation unit 524 calculates the ratio R1 (first ratio) of the difference value δ1 with respect to the difference value δ2. Then, when the ratio R1 is equal to or greater than the first predetermined value ε1, the notification unit 54 notifies that the gear box 30 may have an abnormality. As a result, the predictive maintenance determination device 12a notifies the gearbox when it detects an AE output M (t) smaller than the AE output M (t) that occurs when a clear abnormality occurs in the gearbox 30. It is possible to notify before an abnormality that affects the operation of 30 occurs.
 また、第1の実施形態の予知保全判定装置12aは、押出機40を駆動する歯車箱30(機器)の予知保全の判定を行う。したがって、歯車箱30や押出機40の動作に影響を与える異常が起こる前に報知することができるため、押出機40を停止して歯車箱30の点検や整備、消耗部品の交換、清掃等を行うタイミングを予め計画することができる。これにより、予期しないタイミングでの生産ラインの停止を防止することができる。 Further, the predictive maintenance determination device 12a of the first embodiment determines the predictive maintenance of the gear box 30 (equipment) that drives the extruder 40. Therefore, since it is possible to notify before an abnormality that affects the operation of the gearbox 30 and the extruder 40 occurs, the extruder 40 is stopped for inspection and maintenance of the gearbox 30, replacement of consumable parts, cleaning, and the like. The timing to perform can be planned in advance. As a result, it is possible to prevent the production line from stopping at an unexpected timing.
 また、第1の実施形態の予知保全判定装置12aでは、一般にAE波Wを分析する際に行う周波数分析を行わない。したがって、AE出力M(t)を分析する際の処理の負荷を低減させることができる。 Further, in the predictive maintenance determination device 12a of the first embodiment, the frequency analysis generally performed when analyzing the AE wave W is not performed. Therefore, the processing load when analyzing the AE output M (t) can be reduced.
[第2の実施形態]
 本開示の第2の実施形態は、予知保全判定システム10b(非図示)が備えて、機器の異常が発生する兆候を検出して報知する予知保全判定装置12bの例である。予知保全判定装置12bは、前記した予知保全判定装置12aとは異なる予知保全の判定方法を備える。
[Second Embodiment]
The second embodiment of the present disclosure is an example of the predictive maintenance determination device 12b provided in the predictive maintenance determination system 10b (not shown), which detects and notifies a sign that an abnormality occurs in the device. The predictive maintenance determination device 12b includes a predictive maintenance determination method different from the predictive maintenance determination device 12a described above.
[予知保全判定装置の機能構成の説明]
 図8を用いて、予知保全判定装置12bの機能構成について説明する。図8は、第2の実施形態に係る予知保全判定装置の機能構成図である。予知保全判定装置12bの制御部13は、制御プログラムP2(非図示)をRAM13cに展開して動作させることによって、図8に示す信号取得部51と、信号分析部52bと、第2の判定部53bと、報知部54とを機能部として実現する。
[Explanation of the functional configuration of the predictive maintenance judgment device]
The functional configuration of the predictive maintenance determination device 12b will be described with reference to FIG. FIG. 8 is a functional configuration diagram of the predictive maintenance determination device according to the second embodiment. The control unit 13 of the predictive maintenance determination device 12b expands the control program P2 (not shown) into the RAM 13c and operates the signal acquisition unit 51, the signal analysis unit 52b, and the second determination unit shown in FIG. The 53b and the notification unit 54 are realized as functional units.
 信号取得部51と報知部54の機能は、前記した予知保全判定装置12aと同じである。 The functions of the signal acquisition unit 51 and the notification unit 54 are the same as those of the predictive maintenance determination device 12a described above.
 信号分析部52bは、信号取得部51が取得したAEセンサ20の出力を分析して、歯車箱30に異常の兆候が見られるかを判定するための評価値を算出する。 The signal analysis unit 52b analyzes the output of the AE sensor 20 acquired by the signal acquisition unit 51 and calculates an evaluation value for determining whether or not a sign of abnormality is observed in the gear box 30.
 信号分析部52bは、さらに、第1の差分値算出部521と、異常値除去部525と、第3の差分値算出部526と、第2の比率算出部527と、を備える。 The signal analysis unit 52b further includes a first difference value calculation unit 521, an abnormal value removal unit 525, a third difference value calculation unit 526, and a second ratio calculation unit 527.
 第1の差分値算出部521の機能は、前記した予知保全判定装置12aと同じである。 The function of the first difference value calculation unit 521 is the same as that of the predictive maintenance determination device 12a described above.
 異常値除去部525は、所定時間分のAE出力M(t)から、当該出力の最大値Smax1に対して所定割合U以上の出力を除去する。所定割合Uは、事前の評価実験等に基づいて決定されて、例えば30%等に設定される。なお、所定割合Uは、事前に評価実験等を行って、評価対象となる歯車箱30に応じた値に設定される。詳しくは後述する。 The abnormal value removing unit 525 removes an output of a predetermined ratio U or more from the AE output M (t) for a predetermined time with respect to the maximum value Smax1 of the output. The predetermined ratio U is determined based on a preliminary evaluation experiment or the like, and is set to, for example, 30% or the like. The predetermined ratio U is set to a value corresponding to the gear box 30 to be evaluated by conducting an evaluation experiment or the like in advance. Details will be described later.
 第3の差分値算出部526は、異常値除去部525の出力の最大値Smax3と最小値Smin1の差分値δ3=Smax3-Smin1(第3の差分値)を算出する。 The third difference value calculation unit 526 calculates the difference value δ3 = Smax3-Smin1 (third difference value) between the maximum value Smax3 and the minimum value Smin1 of the output of the abnormal value removal unit 525.
 第2の比率算出部527は、第3の差分値δ3に対する、第1の差分値δ1の比率R2=δ1/δ3を算出する。比率R2(第2の比率)は、信号分析部52bが算出する、前記した評価値である。 The second ratio calculation unit 527 calculates the ratio R2 = δ1 / δ3 of the first difference value δ1 to the third difference value δ3. The ratio R2 (second ratio) is the above-mentioned evaluation value calculated by the signal analysis unit 52b.
 第2の判定部53bは、第2の比率算出部527が算出した比率R2が第2の所定値(例えば3)以上であるか否かを判定する。 The second determination unit 53b determines whether or not the ratio R2 calculated by the second ratio calculation unit 527 is equal to or greater than the second predetermined value (for example, 3).
[予知保全判定方法の説明]
 次に、図9を用いて、予知保全判定装置12bが予知保全のための判定、すなわち歯車箱30に異常の兆候が見られるかの判定を行う方法を説明する。図9は、第2の実施形態における予知保全判定方法の説明図である。
[Explanation of predictive maintenance judgment method]
Next, with reference to FIG. 9, a method in which the predictive maintenance determination device 12b makes a determination for predictive maintenance, that is, whether or not a sign of abnormality is observed in the gear box 30 will be described. FIG. 9 is an explanatory diagram of the predictive maintenance determination method in the second embodiment.
 図9に示すグラフ60bは、予知保全判定装置12aの信号取得部51が取得したAEセンサ20からのAE出力M(t)の一例である。図9の横軸は時刻tを表し、縦軸はAEセンサ20のAE出力M(t)の実効値(RMS値)を表す。なお、AEセンサ20からのAE出力は連続波形で出力されるが、グラフ60bは、当該連続波形を所定の時間間隔でサンプリングした散布図としたものである。 The graph 60b shown in FIG. 9 is an example of the AE output M (t) from the AE sensor 20 acquired by the signal acquisition unit 51 of the predictive maintenance determination device 12a. The horizontal axis of FIG. 9 represents the time t, and the vertical axis represents the effective value (RMS value) of the AE output M (t) of the AE sensor 20. The AE output from the AE sensor 20 is output as a continuous waveform, and the graph 60b is a scatter diagram obtained by sampling the continuous waveform at predetermined time intervals.
 第1の差分値算出部521は、AE出力M(t)の所定時間分、例えば、図9に示す10秒間における最大値Smax1と最小値Smin1との差分値δ1=Smax1-Smin1(第1の差分値)を算出する。 The first difference value calculation unit 521 has a difference value δ1 = Smax1-Smin1 (first) between the maximum value Smax1 and the minimum value Smin1 in a predetermined time of the AE output M (t), for example, 10 seconds shown in FIG. Difference value) is calculated.
 次に、異常値除去部525は、所定時間分のAE出力M(t)から、当該AE出力M(t)の最大値Smax1に対して所定割合U以上の出力を除去する。 Next, the abnormal value removing unit 525 removes an output of a predetermined ratio U or more from the AE output M (t) for a predetermined time with respect to the maximum value Smax1 of the AE output M (t).
 そして、第3の差分値算出部526は、異常値除去部525が、所定時間分のAE出力M(t)から、当該AE出力M(t)の最大値Smax1に対して所定割合U以上の出力を除去した後に残った出力の最大値Smax3と最小値Smin1との差分値δ3=Smax3-Smin1(第3の差分値)を算出する。 Then, in the third difference value calculation unit 526, the abnormal value removal unit 525 has a predetermined ratio U or more with respect to the maximum value Smax1 of the AE output M (t) from the AE output M (t) for a predetermined time. The difference value δ3 = Smax3-Smin1 (third difference value) between the maximum value Smax3 and the minimum value Smin1 of the output remaining after removing the output is calculated.
 第2の比率算出部527は、第3の差分値δ3に対する、第1の差分値δ1の比率R2(第2の比率)を算出する。すなわち、第2の比率算出部527は、比率R2を、R2=δ1/δ3によって算出する。 The second ratio calculation unit 527 calculates the ratio R2 (second ratio) of the first difference value δ1 to the third difference value δ3. That is, the second ratio calculation unit 527 calculates the ratio R2 by R2 = δ1 / δ3.
 第1の判定部53aは、第2の比率算出部527が算出した比率R2が第2の所定値ε2以上であるか否かを判定する。そして、比率R2が第2の所定値ε2以上であると判定された場合に、報知部54は、表示デバイス18(図4参照)に対して、歯車箱30の異常の兆候が検出されたことを示す報知を行わせる。 The first determination unit 53a determines whether or not the ratio R2 calculated by the second ratio calculation unit 527 is equal to or greater than the second predetermined value ε2. Then, when it is determined that the ratio R2 is equal to or greater than the second predetermined value ε2, the notification unit 54 has detected a sign of abnormality in the gear box 30 with respect to the display device 18 (see FIG. 4). Is made to perform the notification indicating.
 予知保全判定装置12bは、歯車箱30及び押出機40が動作している間は、常に上記した処理を行う。そして、所定時間毎、例えば10秒毎に、第2の判定部53bによる判定と報知部54における報知とを行う。 The predictive maintenance determination device 12b always performs the above processing while the gearbox 30 and the extruder 40 are operating. Then, at predetermined time intervals, for example, every 10 seconds, the determination by the second determination unit 53b and the notification by the notification unit 54 are performed.
 なお、判定及び報知のタイミングは、これに限定されるものではない。すなわち、過去の所定時間に亘るAE出力M(t)の判定結果に基づいて、所定の時間間隔で報知を行ってもよい。例えば、1秒に1回等のタイミングで、過去の所定時間(例えば10秒)に亘るAE出力M(t)の判定結果に基づく報知を行ってもよい。 The timing of judgment and notification is not limited to this. That is, the notification may be performed at predetermined time intervals based on the determination result of the AE output M (t) over the past predetermined time. For example, notification may be performed based on the determination result of the AE output M (t) over a predetermined time (for example, 10 seconds) in the past at a timing such as once per second.
 なお、第2の実施形態において、所定割合U及び第2の所定値ε2の値は、事前に評価実験等を行って、評価対象となる歯車箱30に応じた値に設定される。 In the second embodiment, the values of the predetermined ratio U and the second predetermined value ε2 are set to the values corresponding to the gear box 30 to be evaluated by conducting an evaluation experiment or the like in advance.
 発明者らの評価実験により、前記したように、評価対象である歯車箱30が正常である場合のAE出力M2(t)の最大値と最小値との差分値に対する、当該歯車箱30に明らかな異常が発生している場合のAE出力M1(t)の最大値と最小値との差分値の比率が約5であることがわかった。さらに、この比率は、歯車箱30の異常が進展するほど大きな値になることがわかったため、当該比率が5に達する前、例えば3程度になった場合に、歯車箱30に異常の兆候があると判定するのが望ましいことがわかった。 As described above, by the evaluation experiment of the inventors, it is clear in the gear box 30 with respect to the difference value between the maximum value and the minimum value of the AE output M2 (t) when the gear box 30 to be evaluated is normal. It was found that the ratio of the difference value between the maximum value and the minimum value of the AE output M1 (t) when such an abnormality occurred was about 5. Further, since it was found that this ratio becomes larger as the abnormality of the gear box 30 progresses, there is a sign of abnormality in the gear box 30 before the ratio reaches 5, for example, about 3. It turned out that it is desirable to judge.
 さらに、発明者らの評価によって、歯車箱30が正常な状態である場合のAE出力M2(t)の最大値と最小値との差分値は、歯車箱30に異常が発生している場合のAE出力M1(t)から、AE出力M1(t)の上位約30%のデータを除去した出力の最大値と最小値との差分値とほぼ等しいことがわかった。 Further, according to the evaluation by the inventors, the difference value between the maximum value and the minimum value of the AE output M2 (t) when the gear box 30 is in a normal state is when an abnormality has occurred in the gear box 30. It was found that the difference value between the maximum value and the minimum value of the output obtained by removing the data of the upper 30% of the AE output M1 (t) from the AE output M1 (t) was substantially equal.
 そのため、発明者らは、異常の兆候を捉えて報知を行うためには、AE出力M(t)から、上位約30%のデータを除去した場合の最大値と最小値との差分値に対する、AE出力M(t)の最大値と最小値との差分値の比率が約3(前記した第2の所定値ε2に対応)に達した場合に、異常の兆候があると判定するのが適切であると判断した。 Therefore, in order to catch the sign of abnormality and notify the inventor, the inventors obtain a difference value between the maximum value and the minimum value when the upper 30% of the data is removed from the AE output M (t). When the ratio of the difference value between the maximum value and the minimum value of the AE output M (t) reaches about 3 (corresponding to the second predetermined value ε2 described above), it is appropriate to determine that there is a sign of abnormality. Judged to be.
 また、第1の実施形態で説明した評価方法と、第2の実施形態で説明した評価方法と、を比較すると、AE出力M(t)と、当該AE出力M(t)から上位のデータを除去したデータと、を比較する点で、ほぼ等価な分析方法であると見なすことができる。したがって、いずれの方法を適用して判定を行ってよいが、第2の実施形態に記載した方法、すなわちAE出力M(t)の上位の所定割合のデータを除去したデータに基づいて判定する方法の方が、平均値の算出が不要な分だけ分析処理の計算量が少なくて済む。 Further, when the evaluation method described in the first embodiment and the evaluation method described in the second embodiment are compared, the AE output M (t) and the higher data from the AE output M (t) are obtained. In terms of comparing the removed data with, it can be regarded as an almost equivalent analysis method. Therefore, any method may be applied to make the determination, but the method described in the second embodiment, that is, the method of determining based on the data obtained by removing the data of the upper predetermined ratio of the AE output M (t). In the case of, the amount of calculation of the analysis process can be reduced because the calculation of the average value is unnecessary.
[予知保全判定装置が行う処理の流れの説明]
 次に、図10を用いて、第2の実施形態に係る予知保全判定装置12bが行う処理の流れを説明する。図10は、第2の実施形態に係る予知保全判定装置が行う処理の流れの一例を示すフローチャートである。
[Explanation of the processing flow performed by the predictive maintenance judgment device]
Next, the flow of processing performed by the predictive maintenance determination device 12b according to the second embodiment will be described with reference to FIG. FIG. 10 is a flowchart showing an example of the flow of processing performed by the predictive maintenance determination device according to the second embodiment.
 信号取得部51は、記憶部14から、所定時間分のAE出力M(t)を取得する(ステップS21)。 The signal acquisition unit 51 acquires the AE output M (t) for a predetermined time from the storage unit 14 (step S21).
 第1の差分値算出部521は、所定時間分のAE出力M(t)の最大値Smax1と、最小値Smin1と、の第1の差分値δ1を算出する(ステップS22)。 The first difference value calculation unit 521 calculates the first difference value δ1 of the maximum value Smax1 and the minimum value Smin1 of the AE output M (t) for a predetermined time (step S22).
 異常値除去部525は、所定時間分のAE出力M(t)の最大値Smax1に対して所定割合U以上のAE出力M(t)を除去する(ステップS23)。 The abnormal value removing unit 525 removes the AE output M (t) of a predetermined ratio U or more with respect to the maximum value Smax1 of the AE output M (t) for a predetermined time (step S23).
 第3の差分値算出部526は、異常値除去部525が所定のAE出力M(t)を除去した後の最大値Smax3と、AE出力M(t)の最小値Smin1と、の第3の差分値δ3を算出する(ステップS24)。 The third difference value calculation unit 526 is a third of the maximum value Smax3 after the abnormal value removing unit 525 removes the predetermined AE output M (t) and the minimum value Smin1 of the AE output M (t). The difference value δ3 is calculated (step S24).
 第2の比率算出部527は、第3の差分値δ3に対する、第1の差分値δ1の比率R2(第2の比率)を算出する(ステップS25)。 The second ratio calculation unit 527 calculates the ratio R2 (second ratio) of the first difference value δ1 to the third difference value δ3 (step S25).
 第2の判定部53bは、第2の比率R2が第2の所定値ε2以上であるかを判定する(ステップS26)。第2の比率R2が第2の所定値ε2以上であると判定される(ステップS26:Yes)と、ステップS27に進む。一方、第2の比率R2が第2の所定値ε2以上であると判定されない(ステップS26:No)と、ステップS21に戻る。 The second determination unit 53b determines whether the second ratio R2 is equal to or greater than the second predetermined value ε2 (step S26). When it is determined that the second ratio R2 is equal to or greater than the second predetermined value ε2 (step S26: Yes), the process proceeds to step S27. On the other hand, if it is not determined that the second ratio R2 is equal to or greater than the second predetermined value ε2 (step S26: No), the process returns to step S21.
 ステップS26でYesと判定されると、報知部54は、歯車箱30の予知保全に係る報知、すなわち、異常の兆候が見られることを示す報知を行う。その後、予知保全判定装置12bは、図10の処理を終了する。 If it is determined to be Yes in step S26, the notification unit 54 performs notification related to predictive maintenance of the gear box 30, that is, notification indicating that a sign of abnormality is observed. After that, the predictive maintenance determination device 12b ends the process of FIG.
 以上説明したように、第2の実施形態の予知保全判定装置12bにおいて、第1の差分値算出部521は、歯車箱30(機器)の金属筐体30a(筐体)の表面に設置したAEセンサ20のAE出力M(t)を取得して、所定時間分のAE出力M(t)の最大値Smax1と最小値Smin1との差分値δ1(第1の差分値)を算出する。第3の差分値算出部526は、所定時間分のAE出力M(t)のうち、最大値Smax1に対して所定割合U以上の出力を除去した後に残ったAE出力M(t)の最大値Smax3と最小値Smin1との差分値δ3(第3の差分値)を算出する。そして、第2の比率算出部527は、差分値δ3に対する差分値δ1の比率R2(第2の比率)を算出する。第2の判定部53bは、比率R2が第2の所定値ε2以上である場合に、報知部54は、歯車箱30に異常の兆候が見られることを報知する。これにより、予知保全判定装置12bは、歯車箱30に明らかな異常が起こった際に発生するAE出力M(t)よりも小さいAE出力M(t)を検出した時点で報知するため、歯車箱30の動作に影響を与える異常が起こる前に報知することができる。 As described above, in the predictive maintenance determination device 12b of the second embodiment, the first difference value calculation unit 521 is an AE installed on the surface of the metal housing 30a (housing) of the gear box 30 (equipment). The AE output M (t) of the sensor 20 is acquired, and the difference value δ1 (first difference value) between the maximum value Smax1 and the minimum value Smin1 of the AE output M (t) for a predetermined time is calculated. The third difference value calculation unit 526 removes the output of a predetermined ratio U or more with respect to the maximum value Smax1 among the AE output M (t) for a predetermined time, and then the maximum value of the AE output M (t) remaining. The difference value δ3 (third difference value) between Smax3 and the minimum value Smin1 is calculated. Then, the second ratio calculation unit 527 calculates the ratio R2 (second ratio) of the difference value δ1 with respect to the difference value δ3. The second determination unit 53b notifies that when the ratio R2 is equal to or greater than the second predetermined value ε2, the notification unit 54 notifies that the gear box 30 shows a sign of abnormality. As a result, the predictive maintenance determination device 12b notifies when the AE output M (t) smaller than the AE output M (t) generated when a clear abnormality occurs in the gear box 30 is detected, so that the gear box is notified. It is possible to notify before an abnormality that affects the operation of 30 occurs.
 また、第2の実施形態の予知保全判定装置12bは、押出機40を駆動する歯車箱30(機器)の予知保全の判定を行う。したがって、歯車箱30や押出機40の動作に影響を与える異常が起こる前に報知することができるため、押出機40を停止して歯車箱30の点検や整備、消耗部品の交換、清掃等を行うタイミングを予め計画することができる。これにより、予期しないタイミングでの生産ラインの停止を防止することができる。 Further, the predictive maintenance determination device 12b of the second embodiment determines the predictive maintenance of the gear box 30 (equipment) that drives the extruder 40. Therefore, since it is possible to notify before an abnormality that affects the operation of the gearbox 30 and the extruder 40 occurs, the extruder 40 is stopped for inspection and maintenance of the gearbox 30, replacement of consumable parts, cleaning, and the like. The timing to perform can be planned in advance. As a result, it is possible to prevent the production line from stopping at an unexpected timing.
[第3の実施形態]
 次に、本開示の第3の実施形態として、図11に示す予知保全判定装置12cについて説明する。図11は、第3の実施形態に係る予知保全判定装置を用いた予知保全判定システムの全体構成図である。
[Third Embodiment]
Next, as a third embodiment of the present disclosure, the predictive maintenance determination device 12c shown in FIG. 11 will be described. FIG. 11 is an overall configuration diagram of a predictive maintenance determination system using the predictive maintenance determination device according to the third embodiment.
 予知保全判定システム10cは、モータ22の回転駆動力を減速して押出機40を駆動する歯車箱30に発生する亀裂や摩耗、及び歯車を支える軸の摩耗等の異常の兆候を検出して報知する。予知保全判定装置12cは、予知保全判定システム10cに備えられて、機器の異常が発生する兆候を検出して報知する。予知保全判定装置12cは、前記した予知保全判定装置12a,12bとは異なる予知保全の判定方法を備える。 The predictive maintenance determination system 10c detects and notifies abnormal signs such as cracks and wear generated in the gear box 30 that drives the extruder 40 by decelerating the rotational driving force of the motor 22, and wear of the shaft that supports the gears. To do. The predictive maintenance determination device 12c is provided in the predictive maintenance determination system 10c to detect and notify a sign that an abnormality occurs in the device. The predictive maintenance determination device 12c includes a predictive maintenance determination method different from the predictive maintenance determination devices 12a and 12b described above.
[予知保全判定装置の機能構成の説明]
 次に、図12を用いて、予知保全判定装置12cの機能構成について説明する。図12は、第3の実施形態に係る予知保全判定装置の機能構成図である。予知保全判定装置12cの制御部13は、制御プログラムP3(非図示)をRAM13cに展開して動作させることによって、図12に示す信号取得部51と、信号分析部52bと、第3の判定部53cと、報知部54とを機能部として実現する。
[Explanation of the functional configuration of the predictive maintenance judgment device]
Next, the functional configuration of the predictive maintenance determination device 12c will be described with reference to FIG. FIG. 12 is a functional configuration diagram of the predictive maintenance determination device according to the third embodiment. The control unit 13 of the predictive maintenance determination device 12c expands the control program P3 (not shown) into the RAM 13c and operates the signal acquisition unit 51, the signal analysis unit 52b, and the third determination unit shown in FIG. The 53c and the notification unit 54 are realized as functional units.
 信号取得部51の機能は、前記した予知保全判定装置12a,12bと同じである。また、報知部54の機能は、第1の実施形態で説明した通りである。即ち、本実施形態の場合、報知部54は、第3の判定部53cの判定結果に応じた報知を行う。 The function of the signal acquisition unit 51 is the same as that of the predictive maintenance determination devices 12a and 12b described above. The function of the notification unit 54 is as described in the first embodiment. That is, in the case of the present embodiment, the notification unit 54 performs notification according to the determination result of the third determination unit 53c.
 信号分析部52cは、信号取得部51が取得したAE出力M(t)を分析して、歯車箱30に異常の兆候が見られるかを判定するための評価値を算出する。 The signal analysis unit 52c analyzes the AE output M (t) acquired by the signal acquisition unit 51 and calculates an evaluation value for determining whether or not a sign of abnormality is observed in the gear box 30.
 信号分析部52cは、さらに、第1の差分値算出部521と、平均値算出部522と、第3の比率算出部528と、を備える。 The signal analysis unit 52c further includes a first difference value calculation unit 521, an average value calculation unit 522, and a third ratio calculation unit 528.
 第1の差分値算出部521と平均値算出部522の機能は、前記した予知保全判定装置12aと同じである。そして、第3の比率算出部528は、平均値算出部522が算出した、所定時間分のAE出力M(t)の平均値Saveに対する、第1の差分値算出部521が算出した、所定時間分のAE出力M(t)の最大値Smax1と最小値Smin1との差分値δ1(第1の差分値)の比率である比率R3(=δ1/Save:第3の比率)を算出する。 The functions of the first difference value calculation unit 521 and the average value calculation unit 522 are the same as those of the predictive maintenance determination device 12a described above. Then, the third ratio calculation unit 528 calculates the predetermined time calculated by the first difference value calculation unit 521 with respect to the average value Save of the AE output M (t) for the predetermined time calculated by the average value calculation unit 522. The ratio R3 (= δ1 / Save: third ratio), which is the ratio of the difference value δ1 (first difference value) between the maximum value Smax1 and the minimum value Smin1 of the AE output M (t) of the minute, is calculated.
 第3の判定部53cは、信号分析部52cの第1の差分値算出部521が算出した差分値δ1と、第3の比率算出部528が算出した比率R3とに基づいて、歯車箱30の状態を判定する。具体的な判定方法は、以下に説明する。 The third determination unit 53c of the gear box 30 is based on the difference value δ1 calculated by the first difference value calculation unit 521 of the signal analysis unit 52c and the ratio R3 calculated by the third ratio calculation unit 528. Determine the state. The specific determination method will be described below.
[予知保全判定装置の判定方法の説明]
 次に、図13を用いて、予知保全判定装置12cの第3の判定部53cが行う判定方法を説明する。発明者らは、様々な状態にある複数の歯車箱30にAEセンサ20を設置して、それぞれ20秒間に亘って取得した複数のデータ(データ点数約2000(サンプリング周波数約100Hz))を分析した。分析の結果、歯車箱30の状態を判定するのに適した判定方法を創出した。図13は、第3の実施形態における判定基準の一例を示す図である。
[Explanation of the judgment method of the predictive maintenance judgment device]
Next, the determination method performed by the third determination unit 53c of the predictive maintenance determination device 12c will be described with reference to FIG. The inventors installed the AE sensor 20 in a plurality of gear boxes 30 in various states and analyzed a plurality of data (data points of about 2000 (sampling frequency of about 100 Hz)) acquired over 20 seconds each. .. As a result of the analysis, a determination method suitable for determining the state of the gear box 30 was created. FIG. 13 is a diagram showing an example of a determination criterion in the third embodiment.
 図13の縦軸には、差分値δ1(第1の差分値)をとり、横軸には、第3の比率R3(=δ1/Save)をとっている。そして、第3の判定部53cは、差分値δ1と第3の比率R3とが形成する2次元マップ80aに基づいて、歯車箱30に異常が発生するおそれがあるかを判定する。 The vertical axis of FIG. 13 has a difference value δ1 (first difference value), and the horizontal axis has a third ratio R3 (= δ1 / Save). Then, the third determination unit 53c determines whether or not an abnormality may occur in the gear box 30 based on the two-dimensional map 80a formed by the difference value δ1 and the third ratio R3.
 具体的には、差分値δ1が差分値第1閾値Td1よりも小さく、尚且つ、第3の比率R3が比率第1閾値Tr1よりも小さい場合、即ち、差分値δ1と第3の比率R3が、図13の領域W1の内側にある場合に、第3の判定部53cは、歯車箱30が正常であると判定する。そして、このとき、報知部54は、何らの報知も行わない。なお、報知部54は、このときに歯車箱30が正常であることを示す報知を行ってもよい。 Specifically, when the difference value δ1 is smaller than the difference value first threshold value Td1 and the third ratio R3 is smaller than the ratio first threshold value Tr1, that is, the difference value δ1 and the third ratio R3 are , When it is inside the region W1 of FIG. 13, the third determination unit 53c determines that the gear box 30 is normal. Then, at this time, the notification unit 54 does not perform any notification. At this time, the notification unit 54 may perform notification indicating that the gear box 30 is normal.
 また、差分値δ1が差分値第1閾値Td1よりも小さく、尚且つ、第3の比率R3が比率第1閾値Tr1以上であって、比率第1閾値Tr1よりも大きい比率第2閾値Tr2よりも小さい場合、即ち、差分値δ1と第3の比率R3が、図13の領域W2の内側にある場合に、第3の判定部53cは、歯車箱30が低頻度での要経過観察状態(例えば1年に1回程度の経過観察が必要な状態)にあると判定する。そして、報知部54は、低頻度(例えば1年に1回程度)の要経過観察状態にあることを示す報知を行う。 Further, the difference value δ1 is smaller than the difference value first threshold value Td1, and the third ratio R3 is equal to or higher than the ratio first threshold value Tr1 and larger than the ratio first threshold value Tr1 than the ratio second threshold value Tr2. When the difference value δ1 and the third ratio R3 are small, that is, when the difference value δ1 and the third ratio R3 are inside the region W2 of FIG. It is judged that the patient is in a state where follow-up observation is required about once a year). Then, the notification unit 54 notifies that the patient is in a follow-up required state with a low frequency (for example, about once a year).
 また、差分値δ1が差分値第1閾値Td1以上であって、当該差分値第1閾値Td1よりも大きい差分値第2閾値Td2よりも小さく、尚且つ、第3の比率R3が、前記比率第2閾値Tr2よりも小さい場合、即ち、差分値δ1と第3の比率R3が、図13の領域W3の内側にある場合に、第3の判定部53cは、歯車箱30が中頻度での要経過観察状態にあると判定する。そして、報知部54は、中頻度(例えば6ヶ月に1回程度)の要経過観察状態にあることを示す報知を行う。 Further, the difference value δ1 is equal to or larger than the difference value first threshold value Td1, is smaller than the difference value second threshold value Td2 larger than the difference value first threshold value Td1, and the third ratio R3 is the ratio third. When the difference value δ1 and the third ratio R3 are smaller than the two threshold values Tr2, that is, when the difference value δ1 and the third ratio R3 are inside the region W3 of FIG. Judged as being in a follow-up state. Then, the notification unit 54 notifies that the patient is in a follow-up required state with a medium frequency (for example, about once every 6 months).
 また、差分値δ1が差分値第2閾値Td2以上であって、差分値第2閾値Td2よりも大きい差分値第3閾値Td3よりも小さく、尚且つ、第3の比率R3が、前記比率第2閾値Tr2よりも小さい場合、即ち、差分値δ1と第3の比率R3が、図13の領域W4の内側にある場合に、第3の判定部53cは、歯車箱30が高頻度での要経過観察状態にあると判定する。そして、報知部54は、高頻度(例えば3ヶ月に1回程度)の要経過観察状態にあることを示す報知を行う。 Further, the difference value δ1 is equal to or larger than the difference value second threshold value Td2, is larger than the difference value second threshold value Td2, is smaller than the difference value third threshold value Td3, and the third ratio R3 is the ratio second. When the threshold value Tr2 is smaller than the threshold value Tr2, that is, when the difference value δ1 and the third ratio R3 are inside the region W4 in FIG. Judge that it is in the observation state. Then, the notification unit 54 notifies that the patient is in a follow-up required state with high frequency (for example, about once every three months).
 また、差分値δ1が差分値第2閾値Td2よりも小さく、尚且つ、第3の比率R3が比率第2閾値Tr2以上である場合、即ち、差分値δ1と第3の比率R3が、図13の領域W5の内側にある場合に、第3の判定部53cは、歯車箱30が、緊急度の低い要整備状態にあると判定する。そして、報知部54は、緊急度の低い要整備状態(例えば2~3年以内の整備を推奨する状態)にあることを示す報知を行う。 Further, when the difference value δ1 is smaller than the difference value second threshold value Td2 and the third ratio R3 is the ratio second threshold value Tr2 or more, that is, the difference value δ1 and the third ratio R3 are shown in FIG. When it is inside the region W5, the third determination unit 53c determines that the gear box 30 is in a state requiring maintenance with a low degree of urgency. Then, the notification unit 54 notifies that the vehicle is in a state requiring maintenance with a low degree of urgency (for example, a state in which maintenance within 2 to 3 years is recommended).
 また、差分値δ1が差分値第2閾値Td2以上であって、当該差分値第2閾値Td2よりも大きい差分値第3閾値Td3よりも小さく、尚且つ、第3の比率R3が比率第2閾値Tr2以上である場合、即ち、差分値δ1と第3の比率R3が、図13の領域W6の内側にある場合に、第3の判定部53cは、歯車箱30が、緊急度が中程度の要整備状態にあると判定する。そして、報知部54は、緊急度が中程度の要整備状態(例えば1~2年以内の整備を推奨する状態)にあることを示す報知を行う。 Further, the difference value δ1 is equal to or larger than the difference value second threshold value Td2, is larger than the difference value second threshold value Td2, is smaller than the difference value third threshold value Td3, and the third ratio R3 is the ratio second threshold value. When it is Tr2 or more, that is, when the difference value δ1 and the third ratio R3 are inside the region W6 of FIG. 13, the third determination unit 53c has a gear box 30 having a medium degree of urgency. Judge that maintenance is required. Then, the notification unit 54 notifies that the urgency is in a moderate maintenance required state (for example, a state in which maintenance within 1 to 2 years is recommended).
 また、差分値δ1が差分値第3閾値Td3以上である場合、即ち、差分値δ1と第3の比率R3が、図13の領域W7の内側にある場合に、第3の判定部53cは、歯車箱30が、緊急度が高い要整備状態にあると判定する。そして、報知部54は、緊急度が高い要整備状態(例えば1年以内の整備を推奨する状態)にあることを示す報知を行う。 Further, when the difference value δ1 is equal to or larger than the difference value third threshold value Td3, that is, when the difference value δ1 and the third ratio R3 are inside the region W7 of FIG. 13, the third determination unit 53c determines. It is determined that the gear box 30 is in a state requiring maintenance with a high degree of urgency. Then, the notification unit 54 notifies that the vehicle is in a state requiring maintenance with a high degree of urgency (for example, a state in which maintenance within one year is recommended).
 なお、第1の実施形態で使用した比率R1(=δ1/δ2)、又は第2の実施形態で使用した比率R2(=δ1/δ3)を横軸にとり、差分値δ1を縦軸にとった2次元マップ80aを作成して、当該2次元マップ80aにプロットされた評価値の位置に基づいて歯車箱30の状態を評価してもよい。即ち、第3の実施形態で説明したように、縦軸及び横軸の評価関数に応じた複数の閾値を設定して、計測された評価値と閾値との関係に基づいて、歯車箱30の状態を評価してもよい。 The ratio R1 (= δ1 / δ2) used in the first embodiment or the ratio R2 (= δ1 / δ3) used in the second embodiment is taken on the horizontal axis, and the difference value δ1 is taken on the vertical axis. A two-dimensional map 80a may be created to evaluate the state of the gearbox 30 based on the positions of the evaluation values plotted on the two-dimensional map 80a. That is, as described in the third embodiment, a plurality of threshold values are set according to the evaluation functions on the vertical axis and the horizontal axis, and the gear box 30 is based on the relationship between the measured evaluation value and the threshold value. The condition may be evaluated.
 また、本実施形態において、歯車箱30に設置するAEセンサ20の数は1個に限定されるものではない。即ち、複数のAEセンサ20を、歯車箱30の各軸方向に対応する面に設置して、各AEセンサ20の出力を、それぞれ図13に示した2次元マップ80aで評価してもよい。このように、複数チャンネルの同時計測を行うことによって、歯車箱30の各軸方向の状態を評価することができるため、歯車箱30の異常が発生した位置をより正確に特定することができる。 Further, in the present embodiment, the number of AE sensors 20 installed in the gear box 30 is not limited to one. That is, a plurality of AE sensors 20 may be installed on the surfaces of the gearbox 30 corresponding to each axial direction, and the output of each AE sensor 20 may be evaluated by the two-dimensional map 80a shown in FIG. By simultaneously measuring the plurality of channels in this way, the state of the gear box 30 in each axial direction can be evaluated, so that the position where the abnormality of the gear box 30 has occurred can be more accurately specified.
 また、AEセンサ20を設置する場所は、歯車箱30の入力軸側(モータ22側)、出力軸側(押出機40側)、中間軸側(歯車箱30の中央部)等のバリエーションを持たせてもよい。 Further, the place where the AE sensor 20 is installed has variations such as the input shaft side (motor 22 side), the output shaft side (extruder 40 side), and the intermediate shaft side (center portion of the gear box 30) of the gear box 30. You may let me.
[予知保全判定装置が行うデータ処理の流れの説明]
 次に、図14を用いて、信号分析部52cと第3の判定部53cが行う判定処理の流れを説明する。図14は、第3の実施形態において信号分析部と第3の判定部が行う処理の流れの一例を説明するフローチャートである。
[Explanation of the flow of data processing performed by the predictive maintenance judgment device]
Next, the flow of the determination process performed by the signal analysis unit 52c and the third determination unit 53c will be described with reference to FIG. FIG. 14 is a flowchart illustrating an example of a processing flow performed by the signal analysis unit and the third determination unit in the third embodiment.
 信号取得部51は、記憶部14から、所定時間分のAE出力M(t)を取得する(ステップS31)。 The signal acquisition unit 51 acquires the AE output M (t) for a predetermined time from the storage unit 14 (step S31).
 信号分析部52cは、ステップS31で取得した所定時間分のAE出力M(t)を大きい値から降順に並び替える(ステップS32)。 The signal analysis unit 52c sorts the AE output M (t) for the predetermined time acquired in step S31 in descending order from the largest value (step S32).
 信号分析部52cは、ステップS32で降順に並べ替えたAE出力M(t)の中から突発値を除去する(ステップS33)。具体的には、降順に並び替えたAE出力M(t)を例えば100刻み(0≦M(t)<100,101≦M(t)<200,…)で分類して、分類された100刻みの中にデータが2個以下しかない場合、当該2個以下のデータを除去する。 The signal analysis unit 52c removes sudden values from the AE output M (t) sorted in descending order in step S32 (step S33). Specifically, the AE output M (t) sorted in descending order is classified in increments of 100 (0 ≦ M (t) <100, 101 ≦ M (t) <200, ...), And classified as 100. If there are only two or less data in the notch, the two or less data are removed.
 第1の差分値算出部521は、AE出力M(t)の最大値Smax1と、最小値Smin1を特定する(ステップS34)。 The first difference value calculation unit 521 specifies the maximum value Smax1 and the minimum value Smin1 of the AE output M (t) (step S34).
 平均値算出部522は、所定時間分のAE出力M(t)の平均値Saveを算出する(ステップS35)。 The average value calculation unit 522 calculates the average value Save of the AE output M (t) for a predetermined time (step S35).
 第1の差分値算出部521は、最大値Smax1と、最小値Smin1との第1の差分値δ1を算出する。そして、第3の比率算出部528は、第3の比率R3(=δ1/Save)を算出する(ステップS36)。 The first difference value calculation unit 521 calculates the first difference value δ1 between the maximum value Smax1 and the minimum value Smin1. Then, the third ratio calculation unit 528 calculates the third ratio R3 (= δ1 / Save) (step S36).
 第3の判定部53cは、図13で説明した基準に従って、歯車箱30の状態の判定を行う(ステップS37)。 The third determination unit 53c determines the state of the gear box 30 according to the reference described in FIG. 13 (step S37).
 以上説明したように、第3の実施形態の予知保全判定装置12cにおいて、第1の差分値算出部521は、歯車箱30(機器)の金属筐体30a(筐体)の表面に設置したAEセンサ20のAE出力M(t)を取得して、所定時間分のAE出力M(t)の最大値Smax1と最小値Smin1との差分値δ1(第1の差分値)を算出する。平均値算出部522は、所定時間分のAE出力M(t)の平均値Saveを算出する。そして、第3の比率算出部528は、平均値Saveに対する差分値δ1(第1の差分値)の比率である第3の比率R3を算出する。そして、報知部54は、差分値δ1と第3の比率R3とに基づいて、即ち2次元マップ80aに基づいて歯車箱30に異常が発生するおそれがあることを報知する。これにより、予知保全判定装置12cは、歯車箱30に明らかな異常が起こった際に発生するAE出力M(t)よりも小さいAE出力M(t)を検出した時点で報知するため、歯車箱30の動作に影響を与える異常が起こる前に報知することができる。 As described above, in the predictive maintenance determination device 12c of the third embodiment, the first difference value calculation unit 521 is an AE installed on the surface of the metal housing 30a (housing) of the gear box 30 (equipment). The AE output M (t) of the sensor 20 is acquired, and the difference value δ1 (first difference value) between the maximum value Smax1 and the minimum value Smin1 of the AE output M (t) for a predetermined time is calculated. The average value calculation unit 522 calculates the average value Save of the AE output M (t) for a predetermined time. Then, the third ratio calculation unit 528 calculates the third ratio R3, which is the ratio of the difference value δ1 (first difference value) to the average value Save. Then, the notification unit 54 notifies that the gear box 30 may have an abnormality based on the difference value δ1 and the third ratio R3, that is, based on the two-dimensional map 80a. As a result, the predictive maintenance determination device 12c notifies when the AE output M (t) smaller than the AE output M (t) generated when a clear abnormality occurs in the gear box 30 is detected, so that the gear box is notified. It is possible to notify before an abnormality that affects the operation of 30 occurs.
 なお、第3の実施形態で説明した判定方法、すなわち、図13の2次元マップ80aに基づく判定方法を、第1の実施形態及び第2の実施形態に適用してもよい。このように複数の判定尺度に基づいて判定を行うことによって、歯車箱30の状態をより詳細に判定することができる。 The determination method described in the third embodiment, that is, the determination method based on the two-dimensional map 80a of FIG. 13, may be applied to the first embodiment and the second embodiment. By performing the determination based on the plurality of determination scales in this way, the state of the gear box 30 can be determined in more detail.
[第4の実施形態]
 本開示の第4の実施形態は、予知保全判定システム10dが備える、機器の異常が発生する兆候を検出して報知する予知保全判定装置12dの例である。
[Fourth Embodiment]
The fourth embodiment of the present disclosure is an example of the predictive maintenance determination device 12d provided in the predictive maintenance determination system 10d, which detects and notifies a sign that an abnormality occurs in the device.
 まず、図15を用いて、本実施形態における予知保全判定装置12dを用いた予知保全判定システム10dの全体構成について説明する。図15は、第4の実施形態に係る予知保全判定装置を用いた予知保全判定システムの全体構成図である。 First, with reference to FIG. 15, the overall configuration of the predictive maintenance determination system 10d using the predictive maintenance determination device 12d in the present embodiment will be described. FIG. 15 is an overall configuration diagram of a predictive maintenance determination system using the predictive maintenance determination device according to the fourth embodiment.
 予知保全判定システム10dは、図2で説明した予知保全判定システム2aの構成に、振動センサ70を追加した構成を有する。振動センサ70は、歯車箱30の金属筐体30aの表面に設置されて、歯車箱30に発生する振動加速度の大きさを測定する。具体的には、AEセンサ20が測定する周波数範囲よりも低い、数Hzから数10Hzの範囲の振動加速度の大きさを検出する。なお、振動センサ70は、本開示における加速度センサの一例であり、例えば、圧電型加速度センサ等が用いられる。 The predictive maintenance determination system 10d has a configuration in which the vibration sensor 70 is added to the configuration of the predictive maintenance determination system 2a described with reference to FIG. The vibration sensor 70 is installed on the surface of the metal housing 30a of the gear box 30 and measures the magnitude of the vibration acceleration generated in the gear box 30. Specifically, the magnitude of the vibration acceleration in the range of several Hz to several tens of Hz, which is lower than the frequency range measured by the AE sensor 20, is detected. The vibration sensor 70 is an example of an acceleration sensor in the present disclosure, and for example, a piezoelectric acceleration sensor or the like is used.
 予知保全判定システム10dは、歯車箱30に発生する振動加速度の大きさを測定して、振動加速度が所定の加速度よりも大きい場合に、第3の実施形態で説明した歯車箱30の状態を判定する方法を、別の判定方法に切り替える。即ち、予知保全判定システム10dは、歯車箱30に発生する振動加速度の大きさが所定の加速度、即ち第3の所定値ε3よりも大きい場合は、図13とは異なる判定基準によって、歯車箱30の状態を判定する。一方、歯車箱30に発生する振動加速度の大きさが第3の所定値ε3以下である場合は、図13に示した判定基準によって、歯車箱30の状態を判定する。なお、第3の所定値ε3は、発明者らの評価実験によると、10m/s程度とするのが望ましい。 The predictive maintenance determination system 10d measures the magnitude of the vibration acceleration generated in the gear box 30 and determines the state of the gear box 30 described in the third embodiment when the vibration acceleration is larger than a predetermined acceleration. Switch the method to be performed to another judgment method. That is, in the predictive maintenance determination system 10d, when the magnitude of the vibration acceleration generated in the gear box 30 is larger than the predetermined acceleration, that is, the third predetermined value ε3, the gear box 30 is based on a determination standard different from that of FIG. Judge the state of. On the other hand, when the magnitude of the vibration acceleration generated in the gear box 30 is equal to or less than the third predetermined value ε3, the state of the gear box 30 is determined according to the determination criteria shown in FIG. According to the evaluation experiments by the inventors, the third predetermined value ε3 is preferably about 10 m / s 2.
 図16は、第4の実施形態に係る予知保全判定装置の機能構成図である。予知保全判定装置12dの制御部13は、制御プログラムP3(非図示)をRAM13cに展開して動作させることによって、図16に示す信号取得部55と、信号分析部52dと、第4の判定部53dと、報知部54とを機能部として実現する。 FIG. 16 is a functional configuration diagram of the predictive maintenance determination device according to the fourth embodiment. The control unit 13 of the predictive maintenance determination device 12d expands the control program P3 (not shown) into the RAM 13c and operates the signal acquisition unit 55, the signal analysis unit 52d, and the fourth determination unit shown in FIG. The 53d and the notification unit 54 are realized as functional units.
 信号取得部55は、記憶部14から、所定時間分のAE出力M(t)を取得する。また、信号取得部55は、振動センサ70から、振動加速度を取得する。 The signal acquisition unit 55 acquires the AE output M (t) for a predetermined time from the storage unit 14. Further, the signal acquisition unit 55 acquires the vibration acceleration from the vibration sensor 70.
 信号分析部52dは、第3の実施形態で説明した機能に加えて、振動加速度判定部520を備える。振動加速度判定部520は、振動センサ70が取得した振動加速度が第3の所定値ε3よりも大きいか否かを判定する。 The signal analysis unit 52d includes a vibration acceleration determination unit 520 in addition to the functions described in the third embodiment. The vibration acceleration determination unit 520 determines whether or not the vibration acceleration acquired by the vibration sensor 70 is larger than the third predetermined value ε3.
 そして、報知部54の機能は、第1の実施形態で説明した通りである。即ち、本実施形態の場合、報知部54は、第4の判定部53dの判定結果に応じた報知を行う。 Then, the function of the notification unit 54 is as described in the first embodiment. That is, in the case of the present embodiment, the notification unit 54 performs notification according to the determination result of the fourth determination unit 53d.
 第4の判定部53dは、振動センサ70が取得した振動加速度の大きさに応じた判定方法によって、歯車箱30の状態を判定する。具体的な判定方法は後述する。 The fourth determination unit 53d determines the state of the gear box 30 by a determination method according to the magnitude of the vibration acceleration acquired by the vibration sensor 70. The specific determination method will be described later.
 予知保全判定装置12dは、歯車箱30に発生する振動加速度の大きさが第3の所定値ε3よりも大きい場合には、例えば図17に示す判定基準(2次元マップ80b)によって、歯車箱30の状態を判定する。図17は、振動加速度が第3の所定値ε3よりも大きい場合の判定基準の一例を示す図である。 When the magnitude of the vibration acceleration generated in the gear box 30 is larger than the third predetermined value ε3, the predictive maintenance determination device 12d uses the determination criteria (two-dimensional map 80b) shown in FIG. 17, for example, to determine the gear box 30. Judge the state of. FIG. 17 is a diagram showing an example of a determination criterion when the vibration acceleration is larger than the third predetermined value ε3.
 図17の縦軸には、差分値δ1(第1の差分値)をとり、横軸には、AE出力M(t)の最小値Smin1、又はAE出力M(t)の平均値Saveをとっている。そして、第4の判定部53dは、差分値δ1と最小値Smin1(又は平均値Save)とが形成する2次元マップ80bに基づいて、歯車箱30に異常が発生するおそれがあるかを判定する。 The vertical axis of FIG. 17 is the difference value δ1 (first difference value), and the horizontal axis is the minimum value Smin1 of the AE output M (t) or the average value Save of the AE output M (t). ing. Then, the fourth determination unit 53d determines whether or not an abnormality may occur in the gear box 30 based on the two-dimensional map 80b formed by the difference value δ1 and the minimum value Smin1 (or the average value Save). ..
 具体的には、差分値δ1が差分値第1閾値Td1よりも小さく、尚且つ、最小値Smin1(又は平均値Save)が信号出力閾値Ts1よりも小さい場合、即ち、差分値δ1と最小値Smin1(又は平均値Save)が、図17の領域W11の内側にある場合に、第4の判定部53dは、歯車箱30が低頻度での要経過観察状態(例えば1年に1回程度の経過観察が必要な状態)にあると判定する。そして、報知部54は、低頻度(例えば1年に1回程度)の要経過観察状態にあることを示す報知を行う。 Specifically, when the difference value δ1 is smaller than the difference value first threshold value Td1 and the minimum value Smin1 (or average value Save) is smaller than the signal output threshold value Ts1, that is, the difference value δ1 and the minimum value Smin1 When (or the average value Save) is inside the region W11 of FIG. 17, the fourth determination unit 53d determines that the gear box 30 is in a state requiring follow-up observation at a low frequency (for example, about once a year). It is determined that it is in a state that requires observation). Then, the notification unit 54 notifies that the patient is in a follow-up required state with a low frequency (for example, about once a year).
 また、差分値δ1が差分値第1閾値Td1以上であって、当該差分値第1閾値Td1よりも大きい差分値第2閾値Td2よりも小さく、尚且つ、最小値Smin1(又は平均値Save)が信号出力閾値Ts1よりも小さい場合、即ち、差分値δ1と最小値Smin1(又は平均値Save)が、図17の領域W12の内側にある場合に、第4の判定部53dは、歯車箱30が中頻度での要経過観察状態にあると判定する。そして、報知部54は、中頻度(例えば6ヶ月に1回程度)の要経過観察状態にあることを示す報知を行う。 Further, the difference value δ1 is equal to or larger than the difference value first threshold value Td1, is larger than the difference value first threshold value Td1, is smaller than the difference value second threshold value Td2, and has a minimum value Smin1 (or average value Save). When the signal output threshold value Ts1 is smaller than the signal output threshold value Ts1, that is, when the difference value δ1 and the minimum value Smin1 (or the average value Save) are inside the region W12 in FIG. It is determined that the patient is in a state requiring follow-up at a medium frequency. Then, the notification unit 54 notifies that the patient is in a follow-up required state with a medium frequency (for example, about once every 6 months).
 また、差分値δ1が差分値第2閾値Td2以上であって、差分値第3閾値Td3よりも小さく、尚且つ、最小値Smin1(又は平均値Save)が、信号出力閾値Ts1よりも小さい場合、即ち、差分値δ1と最小値Smin1(又は平均値Save)が、図17の領域W13の内側にある場合に、第4の判定部53dは、歯車箱30が高頻度での要経過観察状態にあると判定する。そして、報知部54は、高頻度(例えば3ヶ月に1回程度)の要経過観察状態にあることを示す報知を行う。 Further, when the difference value δ1 is equal to or larger than the difference value second threshold value Td2, is smaller than the difference value third threshold value Td3, and the minimum value Smin1 (or average value Save) is smaller than the signal output threshold value Ts1. That is, when the difference value δ1 and the minimum value Smin1 (or the average value Save) are inside the region W13 in FIG. 17, the fourth determination unit 53d puts the gearbox 30 in a state requiring follow-up at a high frequency. Judge that there is. Then, the notification unit 54 notifies that the patient is in a follow-up required state with high frequency (for example, about once every three months).
 また、差分値δ1が差分値第2閾値Td2よりも小さく、尚且つ、最小値Smin1(又は平均値Save)が信号出力閾値Ts1以上である場合、即ち、差分値δ1と最小値Smin1(又は平均値Save)が、図17の領域W14の内側にある場合に、第4の判定部53dは、歯車箱30が、緊急度の低い要整備状態にあると判定する。そして、報知部54は、緊急度の低い要整備状態(例えば2~3年以内の整備を推奨する状態)にあることを示す報知を行う。 Further, when the difference value δ1 is smaller than the difference value second threshold value Td2 and the minimum value Smin1 (or average value Save) is equal to or larger than the signal output threshold value Ts1, that is, the difference value δ1 and the minimum value Smin1 (or average). When the value Save) is inside the region W14 of FIG. 17, the fourth determination unit 53d determines that the gear box 30 is in a state requiring maintenance with a low degree of urgency. Then, the notification unit 54 notifies that the vehicle is in a state requiring maintenance with a low degree of urgency (for example, a state in which maintenance within 2 to 3 years is recommended).
 また、差分値δ1が差分値第2閾値Td2以上であって、差分値第3閾値Td3よりも小さく、尚且つ、最小値Smin1(又は平均値Save)が信号出力閾値Ts1以上である場合、即ち、差分値δ1と最小値Smin1(又は平均値Save)が、図17の領域W15の内側にある場合に、第4の判定部53dは、歯車箱30が、緊急度が中程度の要整備状態にあると判定する。そして、報知部54は、緊急度が中程度の要整備状態(例えば1~2年以内の整備を推奨する状態)にあることを示す報知を行う。 Further, when the difference value δ1 is equal to or greater than the difference value second threshold value Td2, is smaller than the difference value third threshold value Td3, and the minimum value Smin1 (or average value Save) is equal to or greater than the signal output threshold value Ts1, that is. When the difference value δ1 and the minimum value Smin1 (or the average value Save) are inside the region W15 in FIG. 17, the fourth determination unit 53d indicates that the gear box 30 is in a state requiring maintenance with a medium degree of urgency. Judged to be in. Then, the notification unit 54 notifies that the urgency is in a moderate maintenance required state (for example, a state in which maintenance within 1 to 2 years is recommended).
 また、差分値δ1が差分値第3閾値Td3以上である場合、即ち、差分値δ1と最小値Smin1(又は平均値Save)が、図17の領域W16の内側にある場合に、第4の判定部53dは、歯車箱30が、緊急度が高い要整備状態にあると判定する。そして、報知部54は、緊急度が高い要整備状態(例えば1年以内の整備を推奨する状態)にあることを示す報知を行う。 Further, when the difference value δ1 is equal to or larger than the difference value third threshold value Td3, that is, when the difference value δ1 and the minimum value Smin1 (or the average value Save) are inside the region W16 in FIG. 17, the fourth determination is made. The unit 53d determines that the gear box 30 is in a state requiring maintenance with a high degree of urgency. Then, the notification unit 54 notifies that the vehicle is in a state requiring maintenance with a high degree of urgency (for example, a state in which maintenance within one year is recommended).
 次に、図18を用いて、信号分析部52cと第4の判定部53dが行う判定処理の流れを説明する。図18は、第4の実施形態において信号分析部と第4の判定部が行う処理の流れの一例を説明するフローチャートである。 Next, the flow of the determination process performed by the signal analysis unit 52c and the fourth determination unit 53d will be described with reference to FIG. FIG. 18 is a flowchart illustrating an example of a processing flow performed by the signal analysis unit and the fourth determination unit in the fourth embodiment.
 信号取得部55は、振動センサ70から振動加速度を取得する。(ステップS41)。 The signal acquisition unit 55 acquires the vibration acceleration from the vibration sensor 70. (Step S41).
 信号取得部55は、記憶部14から、所定時間分のAE出力M(t)を取得する(ステップS42)。 The signal acquisition unit 55 acquires the AE output M (t) for a predetermined time from the storage unit 14 (step S42).
 振動加速度判定部520は、振動加速度が第3の所定値ε3よりも大きいかを判定する(ステップS43)。振動加速度が第3の所定値ε3よりも大きいと判定される(ステップS43:Yes)とステップS44に進む。一方、振動加速度が第3の所定値ε3よりも大きいと判定されない(ステップS43:No)とステップS45に進む。 The vibration acceleration determination unit 520 determines whether the vibration acceleration is larger than the third predetermined value ε3 (step S43). When it is determined that the vibration acceleration is larger than the third predetermined value ε3 (step S43: Yes), the process proceeds to step S44. On the other hand, if it is not determined that the vibration acceleration is larger than the third predetermined value ε3 (step S43: No), the process proceeds to step S45.
 第4の判定部53dは、2次元マップ80bに基づいて、歯車箱30の状態を判定する(ステップS44)。その後、図18の処理を終了する。 The fourth determination unit 53d determines the state of the gear box 30 based on the two-dimensional map 80b (step S44). After that, the process of FIG. 18 is completed.
 第4の判定部53dは、2次元マップ80aに基づいて、歯車箱30の状態を判定する(ステップS45)。その後、図18の処理を終了する。 The fourth determination unit 53d determines the state of the gear box 30 based on the two-dimensional map 80a (step S45). After that, the process of FIG. 18 is completed.
 以上説明したように、第4の実施形態の予知保全判定装置12dは、歯車箱30(機器)の表面に設置した振動センサ70(加速度センサ)の出力を取得して、当該振動センサ70の出力が第3の所定値ε3よりも大きい場合は、報知部54は、AEセンサ20の出力の最小値又は平均値と差分値δ1(第1の差分値)とに基づいて、歯車箱30に異常が発生するおそれがあることを報知する。そして、振動センサ70の出力が第3の所定値ε3以下の場合は、差分値δ1(第1の差分値)と第3の比率R3とに基づいて、歯車箱30に異常が発生するおそれがあることを報知する。これにより、予知保全判定装置12dは、歯車箱30に高い振動加速度が発生している場合であっても、歯車箱30の動作に影響を与える異常が起こる前に報知することができる。 As described above, the predictive maintenance determination device 12d of the fourth embodiment acquires the output of the vibration sensor 70 (accelerometer) installed on the surface of the gear box 30 (equipment), and outputs the vibration sensor 70. When is larger than the third predetermined value ε3, the notification unit 54 causes an abnormality in the gear box 30 based on the minimum or average value of the output of the AE sensor 20 and the difference value δ1 (first difference value). Notifies that there is a risk of occurrence. When the output of the vibration sensor 70 is equal to or less than the third predetermined value ε3, there is a possibility that an abnormality may occur in the gear box 30 based on the difference value δ1 (first difference value) and the third ratio R3. Notify that there is. As a result, the predictive maintenance determination device 12d can notify the gear box 30 before an abnormality that affects the operation of the gear box 30 occurs even when a high vibration acceleration is generated in the gear box 30.
[第5の実施形態]
 本開示の第5の実施形態は、予知保全判定システム10e(図19参照)が備える、機器の異常が発生する兆候を検出して報知する予知保全判定装置12eの例である。
[Fifth Embodiment]
A fifth embodiment of the present disclosure is an example of the predictive maintenance determination device 12e provided in the predictive maintenance determination system 10e (see FIG. 19) that detects and notifies a sign that an abnormality occurs in the device.
 図19は、第5の実施形態の予知保全判定システムのシステム構成の一例を示すシステムブロック図である。予知保全判定システム10eは、複数の歯車箱31a,31b,…に設置されたAEセンサ21a,21b,…の出力(プリアンプで増幅された出力)を、それぞれインターネット100を介して、予知保全判定装置12eに送信し、予知保全判定装置12eにおいて、各歯車箱31a,31b,…の状態を判定する。なお、歯車箱31a,31bは、それぞれ、モータ23a,23b,…によって回転駆動されて、押出機41a,41b,…を駆動している。また、AEセンサ21a,21b,…の出力には、各AEセンサが設置された歯車箱を特定する識別情報が付与されているものとする。 FIG. 19 is a system block diagram showing an example of the system configuration of the predictive maintenance determination system according to the fifth embodiment. The predictive maintenance determination system 10e outputs the outputs (outputs amplified by the preamplifier) of the AE sensors 21a, 21b, ... Installed in the plurality of gear boxes 31a, 31b, ... It is transmitted to 12e, and the predictive maintenance determination device 12e determines the states of the gear boxes 31a, 31b, ... The gear boxes 31a and 31b are rotationally driven by motors 23a, 23b, ..., To drive the extruders 41a, 41b, ..., Respectively. Further, it is assumed that the outputs of the AE sensors 21a, 21b, ... Are given identification information for identifying the gear box in which each AE sensor is installed.
 歯車箱31a,31b,…と予知保全判定装置12eとはインターネット100を介して接続されるため、予知保全判定装置12eの設置場所は、歯車箱31a,31b,…の近傍である必要はなく、歯車箱31a,31b,…から遠く離れた場所であってもよい。また、予知保全判定装置12eに接続される歯車箱31a,31b,…は、同じ工場に設置された歯車箱に限るものではなく、複数の工場に設置された歯車箱であっても構わない。 Since the gear boxes 31a, 31b, ... And the predictive maintenance determination device 12e are connected via the Internet 100, the installation location of the predictive maintenance determination device 12e does not have to be in the vicinity of the gear boxes 31a, 31b, ... It may be located far away from the gearboxes 31a, 31b, .... Further, the gear boxes 31a, 31b, ... Connected to the predictive maintenance determination device 12e are not limited to the gear boxes installed in the same factory, and may be gear boxes installed in a plurality of factories.
 予知保全判定装置12eは、前記した予知保全判定装置12a~12dのいずれかと同じ構成を備える。そして、予知保全判定装置12eは、各AEセンサ21a,21b,…の出力を、前記した第1の判定部53a,第2の判定部53b,第3の判定部53c,第4の判定部53dのいずれかと同じ判定方法で、歯車箱31a,31b,…の状態を判定する。 The predictive maintenance determination device 12e has the same configuration as any of the predictive maintenance determination devices 12a to 12d described above. Then, the predictive maintenance determination device 12e outputs the outputs of the AE sensors 21a, 21b, ... To the first determination unit 53a, the second determination unit 53b, the third determination unit 53c, and the fourth determination unit 53d. The state of the gear boxes 31a, 31b, ... Is determined by the same determination method as any of the above.
 そして、歯車箱31a,31b,…の状態に異常があると判定されると、予知保全判定装置12eが備える報知部54が、判定された内容を報知する。 Then, when it is determined that there is an abnormality in the states of the gear boxes 31a, 31b, ..., The notification unit 54 included in the predictive maintenance determination device 12e notifies the determined content.
 なお、AEセンサ21a,21b,…の出力には、各AEセンサが設置された歯車箱を特定する識別情報が付与されるため、歯車箱31a,31b,…は同じ型式である必要はない。即ち、予知保全判定装置12eは、異なる型式の歯車箱から得た異なるAE出力M(t)を判定するための複数の判定ロジックを備えて、予知保全判定装置12eが受信したAE出力M(t)に対しては、当該AE出力M(t)を検出した歯車箱に対応する判定ロジックを用いて、歯車箱の状態を判定してもよい。 Since the output of the AE sensors 21a, 21b, ... Is given identification information for identifying the gearbox in which each AE sensor is installed, the gearboxes 31a, 31b, ... do not have to be of the same model. That is, the predictive maintenance determination device 12e includes a plurality of determination logics for determining different AE output M (t) obtained from different types of gear boxes, and the predictive maintenance determination device 12e receives the AE output M (t). ), The state of the gearbox may be determined by using the determination logic corresponding to the gearbox that has detected the AE output M (t).
 また、予知保全判定装置12eが、歯車箱に異常が生じたと判定した際に、インターネット100を介して、判定結果を当該歯車箱に返信してもよい。そして、歯車箱に設置した、図19には非図示のアラーム等の報知装置にて、判定結果を報知してもよい。 Further, when the predictive maintenance determination device 12e determines that an abnormality has occurred in the gear box, the determination result may be returned to the gear box via the Internet 100. Then, the determination result may be notified by a notification device such as an alarm (not shown in FIG. 19) installed in the gear box.
 以上説明したように、第5の実施形態の予知保全判定装置12eは、1以上の歯車箱31a,31b(機器)の表面に設置したAEセンサ21a,21bとインターネット100を介して接続されて、当該AEセンサ21a,21bの出力を取得する。これにより、歯車箱(機器)から離れた場所において、当該歯車箱(機器)の異常判定を行うことができる。 As described above, the predictive maintenance determination device 12e of the fifth embodiment is connected to the AE sensors 21a and 21b installed on the surfaces of one or more gear boxes 31a and 31b (equipment) via the Internet 100. The outputs of the AE sensors 21a and 21b are acquired. As a result, it is possible to determine the abnormality of the gear box (equipment) at a place away from the gear box (equipment).
 10a,10b,10c,10d,10e…予知保全判定システム、12a,12b,12c,12d,12e…予知保全判定装置、20,21a,21b…AEセンサ、22…モータ、30,31a,31b…歯車箱(機器)、40…押出機、51…信号取得部、52a,52b,52c…信号分析部、53a…第1の判定部、53b…第2の判定部、53c…第3の判定部、54…報知部、70…振動センサ(加速度センサ)、80a,80b…2次元マップ、100…インターネット、520…振動加速度判定部、521…第1の差分値算出部、522…平均値算出部、523…第2の差分値算出部、524…第1の比率算出部、525…異常値除去部、526…第3の差分値算出部、527…第2の比率算出部、Save…平均値、Smax1,Smax2,Smax3…最大値、Smin1…最小値、δ1…差分値(第1の差分値)、δ2…差分値(第2の差分値)、δ3…差分値(第3の差分値)、M(t),M1(t),M2(t)…AE出力、R1…比率(第1の比率)、R2…比率(第2の比率)、R3…比率(第3の比率)、U…所定割合、Td1…差分値第1閾値、Td2…差分値第2閾値、Td3…差分値第3閾値、Tr1…比率第1閾値、Tr2…比率第2閾値、Ts1…信号出力閾値、ε1…第1の所定値、ε2…第2の所定値、ε3…第3の所定値 10a, 10b, 10c, 10d, 10e ... Predictive maintenance judgment system, 12a, 12b, 12c, 12d, 12e ... Predictive maintenance judgment device, 20, 21a, 21b ... AE sensor, 22 ... Motor, 30, 31a, 31b ... Gear Box (equipment), 40 ... extruder, 51 ... signal acquisition unit, 52a, 52b, 52c ... signal analysis unit, 53a ... first determination unit, 53b ... second determination unit, 53c ... third determination unit, 54 ... Notification unit, 70 ... Vibration sensor (accelerometer), 80a, 80b ... Two-dimensional map, 100 ... Internet, 520 ... Vibration acceleration determination unit, 521 ... First difference value calculation unit, 522 ... Average value calculation unit, 523 ... Second difference value calculation unit, 524 ... First ratio calculation unit, 525 ... Abnormal value removal unit, 526 ... Third difference value calculation unit, 527 ... Second ratio calculation unit, Save ... Average value, Smax1, Smax2, Smax3 ... maximum value, Smin1 ... minimum value, δ1 ... difference value (first difference value), δ2 ... difference value (second difference value), δ3 ... difference value (third difference value), M (t), M1 (t), M2 (t) ... AE output, R1 ... ratio (first ratio), R2 ... ratio (second ratio), R3 ... ratio (third ratio), U ... Predetermined ratio, Td1 ... difference value first threshold, Td2 ... difference value second threshold, Td3 ... difference value third threshold, Tr1 ... ratio first threshold, Tr2 ... ratio second threshold, Ts1 ... signal output threshold, ε1 ... th 1 predetermined value, ε2 ... 2nd predetermined value, ε3 ... 3rd predetermined value

Claims (14)

  1.  機器の筐体の表面に設置したAEセンサの出力を取得して、所定時間分の前記出力の最大値と最小値との第1の差分値を算出する第1の差分値算出部と、
     前記所定時間分の前記出力の平均値を算出する平均値算出部と、
     前記所定時間分の前記出力のうち、前記平均値未満の出力の最大値と最小値との第2の差分値を算出する第2の差分値算出部と、
     前記第2の差分値に対する、前記第1の差分値の比率である第1の比率を算出する第1の比率算出部と、
     前記第1の比率が第1の所定値以上である場合に、前記機器に異常が発生するおそれがあることを報知する報知部と、
     を備える予知保全判定装置。
    A first difference value calculation unit that acquires the output of an AE sensor installed on the surface of the housing of the device and calculates a first difference value between the maximum value and the minimum value of the output for a predetermined time.
    An average value calculation unit that calculates the average value of the output for the predetermined time, and
    A second difference value calculation unit that calculates a second difference value between the maximum value and the minimum value of the output that is less than the average value among the outputs for the predetermined time.
    A first ratio calculation unit that calculates a first ratio, which is a ratio of the first difference value to the second difference value,
    When the first ratio is equal to or greater than the first predetermined value, a notification unit for notifying that an abnormality may occur in the device and a notification unit.
    Predictive maintenance judgment device equipped with.
  2.  機器の筐体の表面に設置したAEセンサの出力を取得して、所定時間分の前記出力の最大値と最小値との第1の差分値を算出する第1の差分値算出部と、
     前記所定時間分の前記出力のうち、前記最大値に対して所定割合以上の出力を除去した後に残った出力の最大値と最小値との第3の差分値を算出する第3の差分値算出部と、
     前記第3の差分値に対する、前記第1の差分値の比率である第2の比率を算出する第2の比率算出部と、
     前記第2の比率が第2の所定値以上である場合に、前記機器に異常が発生するおそれがあることを報知する報知部と、
     を備える予知保全判定装置。
    A first difference value calculation unit that acquires the output of an AE sensor installed on the surface of the housing of the device and calculates a first difference value between the maximum value and the minimum value of the output for a predetermined time.
    Calculation of the third difference value for calculating the third difference value between the maximum value and the minimum value of the output remaining after removing the output of a predetermined ratio or more with respect to the maximum value among the outputs for the predetermined time. Department and
    A second ratio calculation unit that calculates a second ratio, which is the ratio of the first difference value to the third difference value,
    When the second ratio is equal to or greater than the second predetermined value, a notification unit for notifying that an abnormality may occur in the device and a notification unit.
    Predictive maintenance judgment device equipped with.
  3.  機器の筐体の表面に設置したAEセンサの出力を取得して、所定時間分の前記出力の最大値と最小値との第1の差分値を算出する第1の差分値算出部と、
     前記所定時間分の前記出力の平均値を算出する平均値算出部と、
     前記平均値に対する前記第1の差分値の比率である第3の比率を算出する第3の比率算出部と、
     前記第1の差分値と前記第3の比率とを各軸にとった2次元マップに基づいて、前記機器に異常が発生するおそれがあることを報知する報知部と、
     を備える予知保全判定装置。
    A first difference value calculation unit that acquires the output of an AE sensor installed on the surface of the housing of the device and calculates a first difference value between the maximum value and the minimum value of the output for a predetermined time.
    An average value calculation unit that calculates the average value of the output for the predetermined time, and
    A third ratio calculation unit that calculates a third ratio, which is the ratio of the first difference value to the average value, and
    A notification unit that notifies that an abnormality may occur in the device based on a two-dimensional map in which the first difference value and the third ratio are taken for each axis.
    Predictive maintenance judgment device equipped with.
  4.  機器の筐体の表面に設置したAEセンサの出力を取得して、所定時間分の前記出力の最大値と最小値との第1の差分値を算出する第1の差分値算出部と、
     前記所定時間分の前記出力の平均値を算出する平均値算出部と、
     前記所定時間分の前記出力のうち、前記平均値未満の出力の最大値と最小値との第2の差分値を算出する第2の差分値算出部と、
     前記第2の差分値に対する、前記第1の差分値の比率である第1の比率を算出する第1の比率算出部と、
     前記第1の差分値と前記第1の比率とを各軸にとった2次元マップに基づいて、前記機器に異常が発生するおそれがあることを報知する報知部と、
     を備える予知保全判定装置。
    A first difference value calculation unit that acquires the output of an AE sensor installed on the surface of the housing of the device and calculates a first difference value between the maximum value and the minimum value of the output for a predetermined time.
    An average value calculation unit that calculates the average value of the output for the predetermined time, and
    A second difference value calculation unit that calculates a second difference value between the maximum value and the minimum value of the output that is less than the average value among the outputs for the predetermined time.
    A first ratio calculation unit that calculates a first ratio, which is a ratio of the first difference value to the second difference value,
    A notification unit that notifies that an abnormality may occur in the device based on a two-dimensional map in which the first difference value and the first ratio are taken for each axis.
    Predictive maintenance judgment device equipped with.
  5.  機器の筐体の表面に設置したAEセンサの出力を取得して、所定時間分の前記出力の最大値と最小値との第1の差分値を算出する第1の差分値算出部と、
     前記所定時間分の前記出力のうち、前記最大値に対して所定割合以上の出力を除去した後に残った出力の最大値と最小値との第3の差分値を算出する第3の差分値算出部と、
     前記第3の差分値に対する、前記第1の差分値の比率である第2の比率を算出する第2の比率算出部と、
     前記第1の差分値と前記第2の比率とを各軸にとった2次元マップに基づいて、前記機器に異常が発生するおそれがあることを報知する報知部と、
     を備える予知保全判定装置。
    A first difference value calculation unit that acquires the output of an AE sensor installed on the surface of the housing of the device and calculates a first difference value between the maximum value and the minimum value of the output for a predetermined time.
    Calculation of the third difference value for calculating the third difference value between the maximum value and the minimum value of the output remaining after removing the output of a predetermined ratio or more with respect to the maximum value among the outputs for the predetermined time. Department and
    A second ratio calculation unit that calculates a second ratio, which is the ratio of the first difference value to the third difference value,
    A notification unit that notifies that an abnormality may occur in the device based on a two-dimensional map in which the first difference value and the second ratio are taken for each axis.
    Predictive maintenance judgment device equipped with.
  6.  機器の筐体の表面に設置した加速度センサの出力を取得して、当該加速度センサの出力が第3の所定値よりも大きい場合は、
     前記報知部は、前記AEセンサの出力の最小値又は平均値と前記第1の差分値とを各軸にとった2次元マップに基づいて、前記機器に異常が発生するおそれがあることを報知して、
     前記加速度センサの出力が前記第3の所定値以下の場合は、
     前記第1の差分値と前記第3の比率とを各軸にとった2次元マップに基づいて、前記機器に異常が発生するおそれがあることを報知する、
     請求項3に記載の予知保全判定装置。
    When the output of the acceleration sensor installed on the surface of the housing of the device is acquired and the output of the acceleration sensor is larger than the third predetermined value,
    The notification unit notifies that an abnormality may occur in the device based on a two-dimensional map in which the minimum value or average value of the output of the AE sensor and the first difference value are taken as each axis. do it,
    When the output of the acceleration sensor is equal to or less than the third predetermined value,
    Based on a two-dimensional map in which the first difference value and the third ratio are taken for each axis, it is notified that an abnormality may occur in the device.
    The predictive maintenance determination device according to claim 3.
  7.  1以上の機器の表面に設置したAEセンサとインターネットを介して接続されて、当該AEセンサの出力を取得する、
     請求項1から請求項6のいずれか1項に記載の予知保全判定装置。
    An AE sensor installed on the surface of one or more devices is connected via the Internet to acquire the output of the AE sensor.
    The predictive maintenance determination device according to any one of claims 1 to 6.
  8.  前記機器は、押出機を駆動する歯車箱である、
     請求項1から請求項7のいずれか1項に記載の予知保全判定装置。
    The device is a gearbox that drives an extruder.
    The predictive maintenance determination device according to any one of claims 1 to 7.
  9.  機器の筐体の表面に設置したAEセンサの出力を取得して、所定時間分の前記出力の最大値と最小値との第1の差分値を算出する第1の差分値算出プロセスと、
     前記所定時間分の前記出力の平均値を算出する平均値算出プロセスと、
     前記所定時間分の前記出力のうち、前記平均値未満の出力の最大値と最小値との第2の差分値を算出する第2の差分値算出プロセスと、
     前記第2の差分値に対する、前記第1の差分値の比率である第1の比率を算出する第1の比率算出プロセスと、
     前記第1の比率が第1の所定値以上である場合に、前記機器に異常が発生するおそれがあることを報知する報知プロセスと、
     を備える予知保全判定方法。
    A first difference value calculation process that acquires the output of an AE sensor installed on the surface of the housing of the device and calculates the first difference value between the maximum value and the minimum value of the output for a predetermined time.
    An average value calculation process that calculates the average value of the output for the predetermined time, and
    A second difference value calculation process for calculating a second difference value between the maximum value and the minimum value of the output less than the average value among the outputs for the predetermined time.
    The first ratio calculation process for calculating the first ratio, which is the ratio of the first difference value to the second difference value,
    A notification process for notifying that an abnormality may occur in the device when the first ratio is equal to or higher than the first predetermined value.
    Predictive maintenance judgment method.
  10.  機器の筐体の表面に設置したAEセンサの出力を取得して、所定時間分の前記出力の最大値と最小値との第1の差分値を算出する第1の差分値算出プロセスと、
     前記所定時間分の前記出力のうち、前記最大値に対して所定割合以上の出力を除去した後に残った出力の最大値と最小値との第3の差分値を算出する第3の差分値算出プロセスと、
     前記第3の差分値に対する、前記第1の差分値の比率である第2の比率を算出する第2の比率算出プロセスと、
     前記第2の比率が第2の所定値以上である場合に、前記機器に異常が発生するおそれがあることを報知する報知プロセスと、
     を備える予知保全判定方法。
    A first difference value calculation process that acquires the output of an AE sensor installed on the surface of the housing of the device and calculates the first difference value between the maximum value and the minimum value of the output for a predetermined time.
    Calculation of the third difference value for calculating the third difference value between the maximum value and the minimum value of the output remaining after removing the output of a predetermined ratio or more with respect to the maximum value among the outputs for the predetermined time. Process and
    A second ratio calculation process for calculating a second ratio, which is the ratio of the first difference value to the third difference value,
    A notification process for notifying that an abnormality may occur in the device when the second ratio is equal to or higher than the second predetermined value.
    Predictive maintenance judgment method.
  11.  機器の筐体の表面に設置したAEセンサの出力を取得して、所定時間分の前記出力の最大値と最小値との第1の差分値を算出する第1の差分値算出プロセスと、
     前記所定時間分の前記出力の平均値を算出する平均値算出プロセスと、
     前記平均値に対する前記第1の差分値の比率である第3の比率を算出する第3の比率算出プロセスと、
     前記第1の差分値と前記第3の比率とを各軸にとった2次元マップに基づいて、前記機器に異常が発生するおそれがあることを報知する報知プロセスと、
     を備える予知保全判定方法。
    A first difference value calculation process that acquires the output of an AE sensor installed on the surface of the housing of the device and calculates the first difference value between the maximum value and the minimum value of the output for a predetermined time.
    An average value calculation process that calculates the average value of the output for the predetermined time, and
    A third ratio calculation process for calculating a third ratio, which is the ratio of the first difference value to the average value, and
    A notification process for notifying that an abnormality may occur in the device based on a two-dimensional map in which the first difference value and the third ratio are taken for each axis.
    Predictive maintenance judgment method.
  12.  機器の筐体の表面に設置したAEセンサの出力を取得する予知保全判定装置を制御するコンピュータを、
     所定時間分の前記出力の最大値と最小値との第1の差分値を算出する第1の差分値算出部と、
     前記所定時間分の前記出力の平均値を算出する平均値算出部と、
     前記所定時間分の前記出力のうち、前記平均値未満の出力の最大値と最小値との第2の差分値を算出する第2の差分値算出部と、
     前記第2の差分値に対する、前記第1の差分値の比率である第1の比率を算出する第1の比率算出部と、
     前記第1の比率が第1の所定値以上である場合に、前記機器に異常が発生するおそれがあることを報知する報知部と、
     して機能させるプログラム。
    A computer that controls a predictive maintenance judgment device that acquires the output of an AE sensor installed on the surface of the device housing.
    A first difference value calculation unit that calculates a first difference value between the maximum value and the minimum value of the output for a predetermined time, and
    An average value calculation unit that calculates the average value of the output for the predetermined time, and
    A second difference value calculation unit that calculates a second difference value between the maximum value and the minimum value of the output that is less than the average value among the outputs for the predetermined time.
    A first ratio calculation unit that calculates a first ratio, which is a ratio of the first difference value to the second difference value,
    When the first ratio is equal to or greater than the first predetermined value, a notification unit for notifying that an abnormality may occur in the device and a notification unit.
    A program that works.
  13.  機器の筐体の表面に設置したAEセンサの出力を取得する予知保全判定装置を制御するコンピュータを、
     所定時間分の前記出力の最大値と最小値との第1の差分値を算出する第1の差分値算出部と、
     前記所定時間分の前記出力のうち、前記最大値に対して所定割合以上の出力を除去した後に残った出力の最大値と最小値との第3の差分値を算出する第3の差分値算出部と、
     前記第3の差分値に対する、前記第1の差分値の比率である第2の比率を算出する第2の比率算出部と、
     前記第2の比率が第2の所定値以上である場合に、前記機器に異常が発生するおそれがあることを報知する報知部と、
     して機能させるプログラム。
    A computer that controls a predictive maintenance judgment device that acquires the output of an AE sensor installed on the surface of the device housing.
    A first difference value calculation unit that calculates a first difference value between the maximum value and the minimum value of the output for a predetermined time, and
    Calculation of the third difference value for calculating the third difference value between the maximum value and the minimum value of the output remaining after removing the output of a predetermined ratio or more with respect to the maximum value among the outputs for the predetermined time. Department and
    A second ratio calculation unit that calculates a second ratio, which is the ratio of the first difference value to the third difference value,
    When the second ratio is equal to or greater than the second predetermined value, a notification unit for notifying that an abnormality may occur in the device and a notification unit.
    A program that works.
  14.  機器の筐体の表面に設置したAEセンサの出力を取得する予知保全判定装置を制御するコンピュータを、
     機器の筐体の表面に設置したAEセンサの出力を取得して、所定時間分の前記出力の最大値と最小値との第1の差分値を算出する第1の差分値算出部と、
     前記所定時間分の前記出力の平均値を算出する平均値算出部と、
     前記平均値に対する前記第1の差分値の比率である第3の比率を算出する第3の比率算出部と、
     前記第1の差分値と前記第3の比率とを各軸にとった2次元マップに基づいて、前記機器に異常が発生するおそれがあることを報知する報知部と、
     して機能させるプログラム。
    A computer that controls a predictive maintenance judgment device that acquires the output of an AE sensor installed on the surface of the device housing.
    A first difference value calculation unit that acquires the output of an AE sensor installed on the surface of the housing of the device and calculates a first difference value between the maximum value and the minimum value of the output for a predetermined time.
    An average value calculation unit that calculates the average value of the output for the predetermined time, and
    A third ratio calculation unit that calculates a third ratio, which is the ratio of the first difference value to the average value, and
    A notification unit that notifies that an abnormality may occur in the device based on a two-dimensional map in which the first difference value and the third ratio are taken for each axis.
    A program that works.
PCT/JP2020/042322 2019-05-21 2020-11-12 Predictive maintenance assessment device, predictive maintenance assessment method, and program WO2021100615A1 (en)

Priority Applications (3)

Application Number Priority Date Filing Date Title
DE112020005706.2T DE112020005706T5 (en) 2019-05-21 2020-11-12 PREDICTIVE MAINTENANCE DETERMINATION DEVICE, PREDICTIVE MAINTENANCE DETERMINATION METHOD, AND PROGRAM
KR1020217015134A KR102574186B1 (en) 2019-05-21 2020-11-12 Predictive maintenance determination device, predictive maintenance determination method, and storage medium
CN202080008480.XA CN113286995B (en) 2019-05-21 2020-11-12 Predictive maintenance determination device, predictive maintenance determination method, and storage medium

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP2019094935 2019-05-21
JP2019-209112 2019-11-19
JP2019209112A JP6812529B2 (en) 2019-05-21 2019-11-19 Predictive maintenance judgment device, predictive maintenance judgment method and program

Publications (1)

Publication Number Publication Date
WO2021100615A1 true WO2021100615A1 (en) 2021-05-27

Family

ID=73546474

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2020/042322 WO2021100615A1 (en) 2019-05-21 2020-11-12 Predictive maintenance assessment device, predictive maintenance assessment method, and program

Country Status (6)

Country Link
JP (1) JP6812529B2 (en)
KR (1) KR102574186B1 (en)
CN (1) CN113286995B (en)
DE (1) DE112020005706T5 (en)
TW (1) TWI763130B (en)
WO (1) WO2021100615A1 (en)

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH08261995A (en) * 1995-03-24 1996-10-11 Matsushita Refrig Co Ltd Damage degree diagnostic device for machine slide section
JP2001304954A (en) * 2000-04-20 2001-10-31 Rion Co Ltd Fault diagnosis method and device
JP2010230606A (en) * 2009-03-30 2010-10-14 Nidec Sankyo Corp Device and method for inspection of abnormal noise
KR101302519B1 (en) * 2012-07-05 2013-09-02 주식회사 포스코 Method for detecting abnormality of facilities by using probability density of vibration

Family Cites Families (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH066955B2 (en) * 1985-09-28 1994-01-26 ダイキン工業株式会社 Operation inspection device for rotary compressor
JPH07270228A (en) * 1994-03-29 1995-10-20 Kawasaki Steel Corp Anomaly diagnosis method for low speed rotary machine
JP2001324417A (en) * 2000-05-15 2001-11-22 Non-Destructive Inspection Co Ltd Method and device for evaluating damage in bearing
JP4117500B2 (en) * 2003-07-29 2008-07-16 日本精工株式会社 Abnormality diagnosis device, rolling bearing device having the same, and abnormality diagnosis method
JP2006077938A (en) * 2004-09-13 2006-03-23 Nsk Ltd Abnormality diagnosing device
JP2009042151A (en) 2007-08-10 2009-02-26 Jtekt Corp Defect detecting device and electric power steering device
JP2010165242A (en) * 2009-01-16 2010-07-29 Hitachi Cable Ltd Method and system for detecting abnormality of mobile body
JP6803161B2 (en) * 2015-07-07 2020-12-23 日本電産シンポ株式会社 Mold abnormality prediction system, press machine equipped with it, and mold abnormality prediction method
JP6523137B2 (en) * 2015-10-28 2019-05-29 株式会社神戸製鋼所 Abnormality detection device for rotating machine, abnormality detecting method for rotating machine, and rotating machine
TWI583936B (en) * 2016-06-24 2017-05-21 國立中山大學 Method of detecting precision machine status
JP6975031B2 (en) * 2017-12-08 2021-12-01 株式会社日立ビルシステム Bearing inspection equipment

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH08261995A (en) * 1995-03-24 1996-10-11 Matsushita Refrig Co Ltd Damage degree diagnostic device for machine slide section
JP2001304954A (en) * 2000-04-20 2001-10-31 Rion Co Ltd Fault diagnosis method and device
JP2010230606A (en) * 2009-03-30 2010-10-14 Nidec Sankyo Corp Device and method for inspection of abnormal noise
KR101302519B1 (en) * 2012-07-05 2013-09-02 주식회사 포스코 Method for detecting abnormality of facilities by using probability density of vibration

Also Published As

Publication number Publication date
DE112020005706T5 (en) 2022-09-08
JP6812529B2 (en) 2021-01-13
CN113286995B (en) 2023-04-04
CN113286995A (en) 2021-08-20
TW202134622A (en) 2021-09-16
TWI763130B (en) 2022-05-01
KR102574186B1 (en) 2023-09-06
JP2020193961A (en) 2020-12-03
KR20210077740A (en) 2021-06-25

Similar Documents

Publication Publication Date Title
JP5738711B2 (en) Rotating machine state monitoring device, rotating machine state monitoring method, and rotating machine state monitoring program
JP2009109350A (en) Monitoring and diagnosing system for rotary machine apparatus
TW458821B (en) Method and apparatus for detecting chattering of cold rolling mill
JP2009116420A (en) Monitoring diagnostic system for rotating machinery
US9020778B2 (en) Sensor based means of monitoring the mechanical condition of rotating machinery that operates intermittently
US10203677B2 (en) Apparatus for checking a state of a machine part
WO2021100615A1 (en) Predictive maintenance assessment device, predictive maintenance assessment method, and program
JP6496298B2 (en) Portable operation panel with vibration function and vibration detection function
JP4031745B2 (en) Gear diagnosis method and gear diagnosis device
TWM578425U (en) Life detection system of machine tool
WO2021002119A1 (en) Abnormality detection device for extrusion molder
JP7349971B2 (en) Predictive maintenance judgment device, predictive maintenance judgment method and program
JP7199793B2 (en) Anomaly detection system and anomaly detection method
JP2003065839A (en) Method and device for monitoring vibration
KR101481490B1 (en) Method for predicting residual life of bearing
KR101159540B1 (en) Method for examining badness of main drive in rolling mill
CN104713709A (en) Granulation with wear monitoring
JP2010112830A (en) Abnormality detection method of constant-velocity universal joint
WO2019186663A1 (en) Diagnostic device and threshold creation method
WO2022163261A1 (en) Device diagnosis system
JP2007163408A (en) Quality determination device and quality determination method for component
JP2021194730A (en) Inspection device, inspection method, and machine tool
JP2024085109A (en) Acoustic emission signal processing device and method
JP2017173020A (en) Deterioration detection device and deterioration detection method
JP2020135005A (en) Sign detection device, sign detection method and program

Legal Events

Date Code Title Description
ENP Entry into the national phase

Ref document number: 20217015134

Country of ref document: KR

Kind code of ref document: A

WWE Wipo information: entry into national phase

Ref document number: KR1020217015134

Country of ref document: KR

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 20891215

Country of ref document: EP

Kind code of ref document: A1

122 Ep: pct application non-entry in european phase

Ref document number: 20891215

Country of ref document: EP

Kind code of ref document: A1